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Abstract 
The goal of the fire containment drone project is to create a fire suppression system 

that can be easily integrated with an Unmanned Aerial Vehicle (UAV) to aid in the containment 

and control of offshore vessel fires. This system is designed to be an effective and reliable 

option for land fire-fighting personnel to operate at a safe distance to reduce potential risk and 

injury. 
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1 Introduction 

Over the course of the year 2014, there were 1,298,000 fires that resulted in 3,275 

civilian deaths, 15,775 injuries, and $11.2 billion in property damage. Since 2013, the number of 

reported fires grew by 4.7% (NFPA, 2016). In the United States, a fire department responds to a 

fire every 24 seconds (NFPA, 2016). Firefighters are the first line of defense when suppressing 

fires and almost every situation they encounter is different. One specific situation that often 

adds increased risk to firefighters is a marine vessel fire. Vessels that are docked at bay or out 

on the water provide space and accessibility challenges, increasing the difficulty of the 

firefighting tactics.  

The recent innovation and technological influence of robots have created opportunities 

to make many of the tasks that endanger the men and women who risk their lives everyday 

easier and safer. Robotic applications are becoming more common in highly hazardous 

environments in order to reduce any potential risk to humans. One example is the creation of 

unmanned vehicles, both ground and aerial, which have provided safer alternatives to many 

high risk situations. Specifically, unmanned aerial vehicles (UAVs) offer a different approach to 

traditional firefighting techniques. UAVs could potentially offer faster response time, decreased 

risk to firefighters and a “bird's eye view” of the scenario at hand.  

The goal of the Fire Containment Drone project is to develop a UAV in order to aid in the 

containment and control of offshore vessel fires. To accomplish this goal, a system must be 

designed and implemented such that it provides a reliable and effective solution to this 

problem while remaining easy to use by fire personnel.  

In order for the system to be successful, a set of requirements must be met. These 

requirements can be broken down into each of the three key disciplines of robotics 

engineering: mechanical engineering, electrical and computer engineering, and computer 

science. In addition, a general requirement is to select an effective fire retardant solution that is 

appropriate to use on vessels. 

There are four main mechanical system requirements. The first is a drone platform 

capable of carrying a system payload that contains both the fire retardant solution and spray 
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system. Secondly, a lightweight and durable container must be chosen to hold the fire 

retardant solution. Next, a mechanism to transport the fire retardant solution from a holding 

container to a nozzle system. This mechanism must provide the appropriate functionality 

similar to that of a fire hose to provide adequate pressure to be able to attack the fire at a 

distance that provides safe operation of the drone platform. Finally, a spray nozzle design must 

be created to produce a spray pattern that provides effective fire suppression.  

The main electrical requirement is a custom designed printed circuit board (PCB) to 

control the electrical power distribution for all subsystems. A PCB and microprocessor will need 

to work together to control the on-board mechanism, sensors, and signals passed between the 

multiple devices. In addition, a camera system should be present on the system to allow for 

video streaming capabilities. Finally, an effective number of communications signals must be 

implemented to control communications between the drone system and base computer.  

The software of the fire containment drone must fully control the drone subsystem. A 

primary requirement includes the use of a Graphical User Interface (GUI) to provide a user-

friendly interface that can provide accurate data and allow a user to perform all the necessary 

actions to control the system from a distance. For the GUI to be successful, two additional 

requirements must be implemented. The first is background software to send and receive 

messages between the drone platform and base computer. The second requirement to 

compliment the GUI is a video stream from the on-board camera system to the base computer 

to provide the pilot and operational personnel with a first person view. This is very important 

for the pilot of the drone to know the location of the drone relative to the environment. In 

addition, vessel fires have the potential to be very difficult for land based firefighters to access. 

A drone platform streaming video gives the option to assess a situation that may not be 

accessible otherwise. A final requirement to aid to aid fire-fighting operations is the 

implementation of a fire detection functionality to help locate the fire via the drone’s camera 

system.  

The contents of this paper will first explore the background of fire research and 

containment as well as its impact in maritime settings. In addition, background research will be 

conducted in the use of drone technology. After the background has been established, the 
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paper will examine many different potential options to meet the requirements needed to have 

an effective solution. Mechanical concepts such as spray patterns and nozzles, pumps, tubing, 

tanks, and the overall number of degrees of freedom of the fire suppression system will be 

compared and evaluated. For electrical and computer engineering, concepts such as image 

sensing via camera sensors, system power distribution, and the wireless communications 

between the UAV and the base computer will all be discussed. In addition, the paper will cover 

key components in the software used to run and control the UAV, its many subsystems, and the 

function of the base computer.  

Finally, using research, modeling, and various testing methods, the best options to fulfill 

each of the above stated requirements were chosen by the team to construct a reliable 

effective system. The proposed solution was prototyped and tested. The results, analysis and 

conclusions are discussed in the later portion of the report. 
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2 Background and Literature Review 

2.1 Fire Basics 

Fire is the process of oxidation, or the combining oxygen with another substance, 

happening at a very fast rate. Fire releases energy that produces both heat and light and there 

are three components to every fire: fuel, heat, and oxygen shown in Figure 2.1. All three 

components must be present to have a fire (NFPA, 2016). Fire will continue to burn and spread 

while the three of these components are available. The life of a fire is broken up into four 

stages. The first is the starting ignition when fuel, heat, and oxygen join together to start a 

chemical reaction. The second stage is the growth of a fire. This is when the original ignition 

produces enough heat to ignite additional fuel. The third stage is when the fire has fully 

developed. At this stage, fire has spread over much if not all of the available fuel and oxygen is 

being rapidly consumed. This stage results in the most heat damage. The final stage is the decay 

of a fire. Once all the fuel has been consumed, temperature decreases, lowering the intensity of 

the fire. 

 

Figure 2.1: Fire Triangle 

The strategy of fire suppression is to remove at least one of the three sides of the fire 

triangle. This consists of either cooling the burning material, excluding oxygen, removal of the 

fuel sources, or breaking the chemical reaction (NFPA, 2016). The suppression method used is 

based on the classification of the fire which is based on the fuel type. Class A fires consist of 
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ordinary combustible materials like wood, cloth, paper, rubber, and plastics. Water is the most 

effective agent in suppressing Class A fires. Class B fires consist of flammable liquids and 

combustible liquids such as tars, oils, alcohols, and flammable gases. Foam is the most effective 

agent in suppressing these fires. Class C fires are anything that would be considered class A or B 

with the addition of energized electrical equipment. Carbon dioxide and dry chemical agents 

are the most effective suppression technique for this type of fire however, water can be 

dangerous due to its conductivity. Class D fires consist of combustible metals such as 

magnesium, titanium, and sodium among others. These metals usually burn at extreme heat 

making them difficult to suppress with water. Class D fires are often suppressed with special 

powders based on sodium chloride and sand. Finally, Class K involves fires in cooking 

applications that involve cooking substances such as vegetable or animal oils and fats (NFPA, 

2016). 

2.2 Marine Vessel Fire Fighting  

As long as there is fuel, oxygen, and heat, fire can happen anywhere. Although most 

fires take place on land, whether structural or outside, the small number of fires that happen 

on marine vessels both docked and out at sea can be more negatively impactful to people and 

the environment. Marine vessel firefighting presents all new challenges to firefighters unique to 

those for a land fire. Increased difficulty to accessibility, the challenge of a moving structure 

fire, and higher pollution impacts are just a few of these challenges. Firefighters must adapt to 

the added risk presented in these situations.  

2.2.1 Marine Vessel Fire Statistics  

In 2014, the United States Coast Guard reported 4,064 accidents that involved 2,678 

injuries, 610 deaths, and approximately $39 million in damages to property as a result of 

recreational boating accidents (Coast Guard, 2014). Of those accidents, 263 were due to fire-

related accidents leading to 129 injuries and 5 deaths with over $12 million in property damage 

(Coast guard, 2014). Although they only account for less than one percent of recreational 

boating accidents, fires on marine vessels can be very difficult to contain and have even led to 
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loss of life. Statistics for marine vessel fires are relatively consistent yearly from 2010-2014 as 

seen in Table 2.1 below. 

Year Accidents  Injuries Deaths Damage ($) 

2014 263 129 5 12,798,427 

2013 226 107 0 12,586,601 

2012 277 106 7 13,849,847 

2011 221 109 7 28,551,173 

2010 251 104 2 11,764,352 

Table 2.1: Marine Vessel Fires 2010-2014 (Coast Guard, 2014) 

Table 2.1 shows that the most number of accidents happened in 2012 closely followed 

by 2014. In the five-year span, there have been 21 deaths recorded and $80 million in property 

damage. Although marine vessel fires are not leading in any category, the dangers presented to 

not only the occupants of the vessel, but for fire personnel and the environment, are very high.  

2.2.2 Firefighting Strategy and Tactics  

The National Fire Protection Agency (NFPA) has developed a guideline for land based 

fire departments that respond to marine vessel fires. This guideline can be found in the NFPA 

1405 code (NFPA, 2016). According to the NFPA, the U.S Coast Guard is interested in helping in 

fire prevention and firefighting tactics, however local authorities are principally responsible for 

maintaining necessary fire-fighting capabilities in U.S ports and harbors. The Coast Guard will 

provide assistance without conveying the impression that the Coast Guard will relieve local fire 

authorities of their responsibilities (NFPA, 2016). The U.S Coast Guard will usually help in 

coordinating firefighting operations for marine fires, however they do not carry enough 

equipment for fire-fighting capabilities. The U.S Coast Guard determines anchorage locations, 

which are locations that often provide isolation from other vessels. Firefighting operations can 

be performed in these locations by local fire departments providing less exposure problems and 

risk than there would be present in a populated area. (NFPA, 2016).  

The general tactics for fire-fighting operations revolve around confinement, preventing 

the spread of fire, prevention of endangerment to people, and protection of exposures. 

Environmental impact is also a great influencer in decision making strategies when handling 
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fire-fighting operations. Water pollution due to the high potential of hazardous materials on a 

marine vessel is very significant. Pollution impacts from firefighting operations can easily 

exceed the impact of the fire itself (NFPA, 2016). According to the Florida Keys Area 

Committee’s Marine Firefighting Plan, when a vessel and its cargo are deemed a total loss, it 

may be best to sink it in an area where environmental impact is minimized (Florida Keys, 2012).  

Every vessel response should initially be treated as a hazardous materials incident. 

Hazardous materials response units should always respond and/or be immediately available to 

a marine vessel fire. A command post (CP) must be set up to direct operations during a marine 

vessel fire. If the vessel on fire is far from land, a floating CP can be established as close to the 

scene as possible without endangering CP personnel (Florida Keys, 2012).  

The two most common fire suppression methods used in marine vessel fires are foam 

and water. When attacking with foam, the fire-fighting vessel should be moved where the foam 

is being sprayed downwind, and the attack on the fire should only start if enough foam is 

readily available to suppress the fire as re-ignition is highly possible (NFPA, 2016). If attacking 

with water, the area must remain accessible and dewatering capabilities must be established to 

keep stability of the vessel in the water. This is more prominent with smaller vessels.  

2.2.3 Fire Fighting Risk  

In addition to the generic risks associated with fighting fire, firefighters face additional 

risk when battling a marine vessel fire. One of the most different aspects of marine firefighting 

versus land firefighting is the effect of tides and currents. Tides can create strain on weakened 

parts of vessel creating stability issues for firefighters trying to board a vessel. High tides and 

fast currents can also make attaching anything such as a ladder or anchor system very difficult 

(NFPA, 2016). Furthermore, as with any fire situation, firefighters must use full protective gear 

including a personal floatation device. Therefore, falling into the water is a huge risk and in any 

rescue situation, there needs to be a way of detecting and rescuing fire personnel who fall into 

the water. Small rescue boats are essential as most docks and piers can be too high compared 

to water level and most fire-fighting vessels are too large to provide fast rescue operations.  
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Shipyards and dry-docks are where most docked vessel fires occur due to the welding, 

burning, and grinder jobs that happen in these areas. In these types of environments, many 

vessels are only accessible by one gangway. This can make firefighting operations confined and 

limited due to space. In addition, floating piers have weight limits that can easily be reached 

when multiple fire personnel in full gear are on them (NFPA, 2016). According to the NFPA, falls 

are the number one hazard for firefighters in a marine dock environment due to an increase slip 

ratio (NFPA, 2016). Other risks that are present to firefighters in marine vessel fires include 

limited air quality below deck in a vessel as well as hazardous materials and/or flammable 

liquids stored in compartments on a vessel. These are just some of the many increased risks 

during marine fire operations and in no way represent a complete list of the risks presented to 

firefighters. Additional risk factors may be presented based on the situation.  

2.3 Fire Suppression Techniques  

2.3.1 Carbon Dioxide, Water and Foam 

There are many different types of fire suppressant techniques used. Of these, carbon 

dioxide, water, and foam are the most common. Carbon Dioxide is a very common user-friendly 

suppressant as it can be easily stored in a pressurized handheld extinguisher. A carbon dioxide 

(CO2) extinguisher is designed to apply carbon dioxide directly to a fire that could occur in an 

area or space that essentially has no enclosure surrounding it (NFPA 12, 2015). Since carbon 

dioxide is non corrosive, non-damaging, and leaves no residue, CO2 is an ideal fire suppressant 

as it can spread to all parts of a fire (NFPA 12, 2015) In addition, as a gas, it will not conduct 

electricity and can be used on electrical hazards. Carbon dioxide is effective because it creates a 

blanket preventing the fire from receiving oxygen, therefore eliminating one side of the fire 

triangle.  

Foam is made of an aggregate of air-filled bubbles used to form a cohesive floating 

blanket on flammable and combustible liquids (NPFA 11, 2016). It suppresses a fire by excluding 

air and cooling fuel thus helping to prevent the spread and re-ignition of the fire. Foam is the 

only permanent agent used for spills or tanks of burning flammable or combustible liquids 
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(NFPA 11, 2016). There are many different types of foam used for different firefighting 

applications. Foam can also be used as fire prevention as it can be applied to flammable liquids 

that have not yet been ignited in order to create a blanket, preventing ignition from another 

source (NFPA 11, 2016).  

Finally, water is the most widely used fire suppressant due to its ability to attack all 

three sides of the fire triangle. Water reduces the heat of a fire and while doing so, displaces air 

from fire, cutting off a fire’s oxygen supply. Additionally, water can be used to directly attack 

the fuel source suppressing the supply. The abundance of water is another reason which makes 

it so successful. Most major cities and towns have developed and adapted a fire hydrant system 

to be able to deliver water in abundance to anywhere, allowing firefighters easy access to fire 

suppressant.  

2.3.2 FireIce  

While carbon dioxide, water, and foam are the common fire suppressants used by 

firefighting services, other products have been developed over the years as alternatives. One 

these alternatives is GelTech Solutions’ FireIce. FireIce is an eco-friendly polymer that mixes 

with water to create a fire suppression substance that not only extinguishes fires at a fast rate, 

but stops fires from starting again. The mixture is biodegradable making it eco-friendly and non-

conductive, allowing the suppressant to be used on electrical and utility equipment. In addition, 

FireIce has innovated a new way of providing home fire protection and extinguishing forest fires 

(GelTech, 2017).  

To help fire personnel fight fire, GelTech Solutions has produced equipment for FireIce 

including a Class-A Fire Extinguisher than has been certified and tested by Underwriters 

Laboratories (UL). In addition, the Southwest Research Institute in San Antonio, Texas 

conducted a fire extinguisher performance evaluation using FireIce in accordance with the UL 

711 wood crib fire test (Weyandt & Janssens, 2008). The evaluation was done on Class 2-A and 

40-A cribs as well as a ten-tire fire to record the extinguish time and reignition if applicable. The 

results of the test are shown in Table 2.2 below. 
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Table 2.2: Southwest Research Institute FireIce Test Results (Weyandt & Janssens, 2008) 

As one can see by the fourth and the rightmost column in Table 2.2, FireIce successfully 

extinguished and prevented reignition in all tests. On average, FireIce extinguished the fire in 

about 17 seconds for the 2-A crib test and 110 seconds for the 40-A crib test. The test 

concluded that FireIce successfully meets the UL standards for rating and testing of fire 

extinguishers. FireIce has recently been approved for use by the United States Forest Service 

and currently being used by firefighters, first responders, and military personnel (GelTech, 

2017).  

2.4 Drone Technology and Applications 

Unmanned Aerial Vehicles (UAVs), also known as drones, are aircraft that do not have a 

pilot onboard and are either controlled remotely or are autonomous. Drones have many 

military and commercial applications. There are two types of UAVs, fixed-wing and rotary-wing. 

Both designs have their advantages and disadvantages and are used in different applications 

(Floreano & Wood, 2015). 
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2.4.1 Types of Drones 

Fixed-wing drones operate similar to airplanes where the roll, pitch, and yaw are 

controlled by ailerons, elevators, and a rudder respectively, which are found on rigid wings. Roll 

is the rotation about the x-axis of the center of gravity (COG) of the drone, pitch is the rotation 

about the y-axis of the COG of the drone, and yaw is the rotation about the z-axis of the COG of 

the drone. The thrust is typically provided by a propeller or some other form of forward 

propulsion and lift is generated by the wings of the drone. Refer to Figure 2.2 for a visual 

representation. his type of drone is good for surveying areas, mapping regions, moving large 

payloads, or any other application that that requires a large distance to travel or area to cover 

(Peterson, Neilan, Rubenstein, & Toribio, 2016). 

2.4.2 Drones and Fire 

Fire impacts the drone through changing air currents that cause turbulence and 

potential heat damage to the drone. Turbulence is generated by a fire because the fire’s hot air 

creates airflow up towards the drone (SFPE Handbook, 2016). Drones are traditionally 

lightweight and fragile, so turbulence can have a large impact on how well they can navigate. 

The heat from the fire can also cause damage to the mechanical and electrical components if 

they are overexposed. Most drones have a frame and body made of plastic as plastic provides a 

strong enough base and is lightweight. However, plastic has a lower melting point in 

comparison to other materials like metals and this can cause issues if the drone stays around 

the fire for too long (Peterson et al., 2016). 

An important characteristic to take into consideration when fighting a fire with a drone 

is the amount of heat that it is dissipating. The heat dissipated by the fire is influenced by many 

factors such as type of heat transfer, distance, and time. The types of heat transfer are 

convection, conduction, and radiation. The drone will be flying around the fire so there will be 

no heat transfer via conduction as there will be no solid contacts made with objects producing 

heat. In an open-air environment, convection is negligible if the drone does not fly directly over 

the fire. Therefore, the primary heat transfer influencing the heat experienced by a multi-rotor 

drone is radiation (Peterson et al., 2016). 
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Figure 2.2: Axis of Aerial Motion 

Rotary-wing, or multi-rotor drones have more than two rotors mounted on the drone 

which provide upward thrust and generate lift. The roll, pitch, and yaw of a multi-rotor drone 

are controlled through changing the speeds of individual propellers. Typically, rotors are used in 

pairs and will rotate complementary to other pairs of rotors to maintain stability and control. 

This type of drone is good for applications that require the drone to hover, stay in a fixed area, 

or applications that require precision (Peterson et al., 2016). Figure 2.3 below shows some of 

the possible configurations of multi-rotor drones. 

 

Figure 2.3: Multi-rotor Drone Configurations 
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2.5 Pre-Determined Design Elements 

Due to the previous project and research done with fire containment drone by last 

year’s team, a few system designs were already predetermined. The first of these specifications 

was the drone platform. Through previous research and current accessibility to an available 

drone platform, the DJI S1000 multirotor drone, controlled through a Pixhawk 4, was used for 

the testing of the fire suppressant system. The S1000 has a payload of approximately 11 pounds 

with a flight speed of roughly 40 miles per hour (mph). With a fully charged battery, the drone 

had a flight time of around 15 minutes when carrying the previous fire suppression system 

(MQP, 2016). Last year’s team also determined the fire suppressant, FireIce, which was used in 

the current system. The team decided to continue using FireIce due to its ability to handle Class 

A, B, and C fires, which are the most common types of fires on boats (MQP, 2016). Additionally, 

FireIce is non-conductive making fighting electrical fires on marine vessels safer, and since it is 

eco-friendly, it has no negative environmental impacts. FireIce has also been proven to prevent 

reignition through testing. Furthermore, the team already had access to the fire suppressant 

making the testing low cost and therefore increasing the feasibility of using FireIce.  

2.6 Mechanical Background 

One of the most integral components of the Fire Containment drone is the mechanical 

system which has the goal of propelling FireIce from the drone to the flaming boat. Factors that 

influenced the end design are the required distance to propel the FireIce, the minimum spray 

coverage desired, and desired user intractability. A limiting factor in many design 

considerations was the maximum weight capacity, where the DJI S1000 drone is only capable of 

carrying 24.25 lbs. The key components of the mechanical system that were researched and 

implemented were the spraying system, the degrees of freedom of the system, the pumping 

system, and the FireIce container.  

Various other factors were assessed and estimated in conjunction with these objectives 

such as cost, size requirements, weight requirements, feasibility, and complexity. Size is 

important because the drone has a limited space underneath its structure to host the system 
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and it was important to keep the weight of components in mind due to the payload capacity as 

previously mentioned. Feasibility and complexity were assessed for each component due to the 

tools and time, respectively, available to the team. All of these factors were considered for all 

the design alternatives and were input into a respective decision matrix for each component of 

the mechanical system. 

2.6.1 Spray Pattern and Requirements 

The main objective of the spray pattern device was to atomize the FireIce to the best 

possible degree before applied to its target. It is important to note that the process of 

atomization must be done in a relatively controlled manner as outside forces such as wind can 

cause the spray path to miss the intended target if the FireIce droplets become too small too 

soon (Grant, Brenton, & Drysdale, 2000). It is also beneficial to optimize the longitudinal 

coverage of the spray so as to ensure that more of the fire is contained during spraying. This 

process involved preliminary calculations to estimate the system output, and testing was done 

to confirm these estimates. Multiple conceptual ideas were surmised to accomplish a 

satisfactory spray pattern. These ideas were researched and assessed on multiple factors that 

were collectively input into a decision matrix and evaluated quantitatively.  

Fluidic Oscillator 

The first option was a fluidic oscillator. A fluidic oscillator is a nozzle with an inner 

chamber that causes pressure imbalances which in turn force the fluid exiting the nozzle to 

oscillate back and forth or up and down. The main benefit of this is that it does not require any 

external sources of energy to generate its spray pattern. The spray pattern is driven by the flow 

of the fluid itself in the nozzle chambers (Kim, 2011). The main drawback with this idea, 

however, is that it is difficult to create and requires many iterations to perfect. It would be low 

cost because 3D printed nozzle parts could be made for testing and a single final product would 

be manufactured. It would also be of minimal additional size as the spray pattern inducer is 

contained within the nozzle itself. Overall, it would be able to effectively atomize the FireIce 

solution due to the rapid change in fluid direction.  
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Pneumatic Actuation 

A pneumatically induced system would feature a piston attached to a pivot that is fixed 

to the nozzle, which would rapidly oscillate the nozzle position. The main drawback and major 

factor affecting the feasibility of pneumatic actuation is that the compressor may not be able to 

keep up with the constant actuation of the piston in order to generate the oscillation frequency 

desired. 

Electromechanical Actuation 

This design would implement a motor that would pivot the nozzle on a fixed range of 

motion. This design could implement a gearbox depending on the speed and torque that this 

system would require. This would work well for atomization as it is possible to control the 

rotation through a feedback loop and make a smooth sweeping motion for a set range of 

motion, however, it may not be able to oscillate at a desirable frequency.  

Impact Sprinkler 

An impact sprinkler is a device typically used on lawns to create a spray pattern on the 

grass. This system works by having a hammer hitting the stream which in turn causes the 

stream to shift positions in one direction around its axis. Eventually this action causes it to reset 

to its initial angle orientation where it repeats the cycle. This would work moderately well for 

atomization, but overall it doesn’t seem like a feasible idea because it would alter the flight 

pattern and possibly influence the drone’s alignment with the fire.  

Multiple Exit Nozzle 

Multiple exit nozzles increase coverage by ejecting the spray in various directions in 

which the independent nozzles are oriented. The main drawback of this design is that the 

additional pressure generated will not better the system more than a basic fanned nozzle could, 

and the design would require more space.  
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Piezoelectric and Vibration Motors 

A vibration induced spray pattern would use a piezoelectric motor or vibration motor to 

induce an oscillation pattern. The main drawback with this design is that it may be difficult to 

generate enough force out of the piezo motor or vibration motor to actuate the nozzle as 

desired.  

Fanned Nozzle 

A fanned nozzle is a typical nozzle with a spray angular degree greater than 0. This 

causes the stream to thin out and gradually spread horizontally as it travels. The only drawback 

with this is that a high degree of angling could cause the spray to be too fanned out and a lot of 

FireIce would be wasted.  

Solid Stream Nozzle 

A solid stream nozzle keeps the fluids flow as it exits the nozzle uniform. By using this 

nozzle, the FireIce will not atomize as well, but it will be able to achieve greater distances and 

be disturbed less by wind fluctuations. This is the most reliable option for propelling the FireIce 

to the target fire.  

Spray Pattern Decision 

A decision matrix was generated in order to assess each option as seen in Table 2.3 

below. The components were rated from very low to very high. These were opinion based and 

averaged ratings based upon the cumulative research done on each design idea. 
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Solution Power 
Requirements 

Cost Size Req. Complexity 
or Risk 

Atomization Feasibility Score 

Fluidic Oscillator No Additional Low Low Med/High High Med 25 

Pneumatically 
Induced 

Pneumatics High High Med  Med/High Low 11 

Electro-
mechanically 
Induced 

Servo Low/Med Med/Hig
h 

Low Med/High Low/Med 17 

Impact Sprinkler No Additional Low Med  High Med  Low 17 

Multiple Nozzles No Additional Low/Med Low/Med Low Low Med 23 

Vibration Induced Piezo/Motor Low Low Med Med  Med 24 

Fanned Nozzle No Additional Low Low Low Med  High 28 

Solid Stream  No Additional Low Low Low Low High 26 

Table 2.3: Spray Pattern Decision Matrix 

From this matrix our team was able to conclude that the most viable options to pursue 

were the fanned nozzle, the solid stream nozzle, and the fluidic oscillator. The previous MQP 

group had also come to similar conclusions, where they decided upon a solid stream and an 

angled flat spray, confirming that our assessment of these options are supported by previous 

research as well.  

2.6.2 Degrees of Freedom 

The degrees of freedom (DoF) of the mechanical system are important to the system as 

they define the level of control and complexity the system has. The main goal of introducing 

additional degrees of freedom is to allow for the user to control the direction of the spraying 

system. There were three independent mechanical system layouts assessed: 1 and 2 DoF at the 

nozzle, 1 and 2 DoF of the entire mechanical system, and 0 DoF of the entire system and nozzle. 

The goal of doing this was to find the best and most practical approach of targeting the fire with 

the spray system. The options discussed are shown in Table 2.4 below. 
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Number of DoF Location of DoF 1 Location of DoF 2 

0 DoF N/A N/A 

1 DoF At the Nozzle, Longitudinal N/A 

1 DoF At the Nozzle, Latitudinal N/A 

1 DoF Entire System, Longitudinal N/A 

1 DoF Entire System, Latitudinal N/A 

2 DoF At the Nozzle, Longitudinal At the Nozzle, Latitudinal 

2 DoF Entire System, Longitudinal At the Nozzle, Latitudinal 

2 DoF Entire System, Longitudinal At the Nozzle, Longitudinal 

2 DoF Entire System, Latitudinal At the Nozzle, Latitudinal 

2 DoF Entire System, Latitudinal At the Nozzle, Longitudinal 

Table 2.4: DoF Considerations 

Based upon the options presented above, the team decided at least one DoF was 

required for the system as it would be necessary to control the path of the FireIce by either 

pitching it upwards or downwards, eliminating the option for a 0 DoF system. It was also quickly 

decided by the team that there was no need for any latitudinal translation or rotation of the 

system, as the spray pattern would accomplish this. This eliminated the options involving any 

latitude rotation as well as all of the 2 DoF considerations. Finally, the team decided on the 1 

DoF at the Nozzle with longitudinal rotation. This configuration allows the operator to reorient 

the pitch of the nozzle in an attempt to better direct the flow of FireIce to its target.  

Driving Mechanism 

In designing this subsystem, the driving mechanism to control the motion of the joint 

was analyzed. The considerations were a stepper motor, a high powered servo, and a DC motor 

both with and without an encoder. The team quickly decided against the use of an encoder 

with the DC motor because it would require hardware interrupts, and the team deemed this 

would be too unreliable. These driving mechanisms can be seen in Table 2.5 below. 
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Driving 
Mechanism 

Voltage 
Requirement 

Software 
Restrictions 

Other Electrical 
Requirements 

Stall Torque 
(Nm) 

Weight 
(lbs.) 

Stepper Motor 12 V Blocking Driver Chip 2.938  1.109 

PWM High 
Powered Servo 

5 V Non-Blocking N/A 1.520  0.132 

DC Motor 12 V Blocking H-Bridge 1.765  0.518  

Table 2.5: Driving Mechanisms 

The above table highlights the strengths and weaknesses of each driving mechanism 

option. The team decided that the stepper motor was not as feasible of an option due to the 

fact that it required a driver chip and had excessive weight, despite the significantly greater stall 

torque and precision motion. The team also decided against the PWM servo module because 

while its stall torque was adequate, the team preferred to have a higher stall torque as well as a 

more robust motor. In the end, our team chose the DC motor, but instead of using an encoder 

to measure its rotation, we decided to use a potentiometer.  

2.6.3 Pumping System 

Determining a pump for the mechanical system was very important because the system 

relies on it to pressurize FireIce, a relatively viscous substance, in order to propel it a reasonable 

distance. Based upon the previous team’s report, the pressure needed at the exit is 100 psi in 

order to get an adequate suction and flow from the FireIce substance (Peterson et al., 2016). 

However, their team was only able to propel the FireIce solution 19 feet, only 4.5 feet over 

their required safe distance from the fire. If a gust of wind were to alter the drones position to 

somewhere within the unsafe operating range, it would be a problem as components could 

melt. Our team decided to revisit the pumping system and create a new system for this 

application in order to maximize our spraying distance so that there is a greater safety for the 

drone. To do this, multiple pumping mechanisms were analyzed and a decision matrix was 

created to decide upon the top viable candidates for pumps.  

Gear Pumps 

The first solution for a pump system was the gear pump. There are two main 

classifications of gear pumps: external and internal. An external gear pump is configured with a 
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gear ratio of 1:1 consisting of a driver and a driven gear. In this design, fluid flows from an inlet 

and around the gears in the direction away from where the gears make contact. During the flow 

around the gears, the fluid is translated to an outlet. The gears, at a fixed rotational velocity, 

create suction and pressurize the system through its motion.  

Internal gear pumps consist of an internal gear, similar to a sun in a planetary gear 

system, that rotates and meshes with a gear that revolves around it with an offset center, 

similar to a ring gear. One variation of this includes a chamber between the natural gap in 

between the driver and the ring gear. These configurations are capable of generating higher 

suction. The variation with a chamber is capable of pumping viscous substances.  

These systems require an external casing surrounding the gears that should be fitted to 

the inlet, gears, and outlet to create the most optimized system. All three systems would 

require relatively low size requirements as the gears and structure can be made moderately 

compact. By adjusting the drive motor speed, one can adjust the rotational velocity of the gears 

and in turn increase or decrease the pressurization of the fluid in the gear pump.  

Centrifugal Pump 

This type of pump has a rotational element, the impeller, that is operated via an electric 

motor. The fluid enters an inlet to the impeller and as it spins, the fluid is accelerated radially 

outwards from the center, exiting from an outlet. This design would require that fluid be 

present for the impeller so as not to create a dry suction which can harm the system. 

Centrifugal pumps come in many sizes, but, based upon our team’s research, those suitable for 

application on the drone would require excessive space in the system and would exceed the 

drones critical weight.  

Diaphragm Pump 

A diaphragm pump is a positive displacement pump that uses a diaphragm and valves to 

create suction. Diaphragm pumps can be up to 97% efficient and are good at self-priming. They 

are able to handle highly viscous liquids and can have high discharge pressures. This type of 

pump would require a moderate amount of space on the drone and a moderate amount of 
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additional weight. This was the pump of choice by the previous team and this design was taken 

into consideration and compared to the other possibilities during the testing phase.  

Rotary Vane Pump 

A rotary vane pump has a rotating element within a cylindrical casing that hosts an inlet 

on one side and an outlet on the opposite side. The rotating element has a series of cutout slits 

or chambers which hold a sliding plate that is either pushed away from the rotating element by 

a spring or pneumatics. These plates are pushed in and out through contact with its container 

walls. As the rotating element rotates, the chamber plates move in and out and on one arc of 

the system, transfers the fluid from the inlet to the outlet. This system would require an 

external motor in order to power the rotating element.  

Screw Pump 

A screw pump is a positive displacement pump that uses one to many screws to move a 

fluid along their axes and is great with highly viscous fluids This type of pump has the advantage 

of moving without turbulence, an ability to pump high viscosities without losing flow rate, and 

the ability to operate despite changes in the pressure. The major downfall is its typically 

tremendous size and weight.  

Pneumatic Hand Pump 

This design takes the properties of a hand pump design, but instead actuates it with 

pneumatics. The hand pump design uses a plate inside the tank that pushes against the volume 

of solution causing the pressure to increase and in turn cause the fluid to flow through the 

system. The issues with this design the additional spatial and weight requirements for 

pneumatics, the variances in output pressure, and an inability to control amount of FireIce 

ejected after activation.  

Pumping System Decision 

A decision matrix was created for the pump options in order to properly assess each 

solution for the previously stated categories, the cost, feasibility, weight requirements, size 
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requirements, and power requirements were all taken into consideration. From this matrix and 

these categories, multiple solutions were assessed and a quantitative ranking operation was 

implemented to determine which options were viable to pursue, as shown in Table 2.6 below. 

The components were rated from very low to very high. These were opinion based and 

averaged ratings based upon the cumulative research done on each design consideration.  

Solution Power 
Requirements 

Cost Size Req.  Complexity 
or Risk 

Pump 
Ability 

Score 

Gear Pump: 1 to 1 12V Motor Med High Low Med 12 

Geroter 12V Motor Med High Low/Med Med 11 

Geroter with 
Chamber 

12V Motor Med High Med Med 10 

Centrifugal Pump 12V Motor Med Med Low High 16 

Diaphragm Pump 12V Motor Low/Med Med Low High 17 

Rotary Vane Pump 12V Motor Med High Med/High Med 9 

Screw Pump 12V Motor High Med/High Med Med 9 

Pneumatic Pump Pneumatics Med Med/High Med/High Low/Med 9 

Table 2.6: Pump Decision Matrix 

 From the decision matrix, our team was able to conclude that our most viable pump 

options were the diaphragm pump, the centrifugal pump, and the gear pump. Upon initial 

design iterations, the gear pump and centrifugal pumps were quickly dismissed, as they either 

were too large for our system, weighed too much, or a combination of both. In the end, our 

team decided upon pursuing diaphragm pumps.  

2.6.4 Tubing System 

The tubing portion of the mechanical system is responsible for the transfer of the FireIce 

solution from the tank to the pump and from the pump to the nozzle. Factors to consider when 

determining which tubing material and dimensions to choose are friction, flexibility, and 

rigidity. 

The frictional coefficient of the material properties for the selected tube is important as 

the lower the frictional coefficient, the less energy is lost in the system. For the flexibility and 

rigidity, two options were considered. One option was that the tubing must be flexible so that 

the nozzle will be able to achieve 1 or 2 degrees of freedom. The other alternative is for if there 
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is to be no degree of freedom at the nozzle, in which case there is no need for flexibility. In this 

case, the tubing material properties will need to be focused on high rigidity and low flexibility.  

Due to the selection of a single degree of freedom at the nozzle, our team decided that 

it was important to have some flexibility in the tubing. In the end, our team decided that it 

would be best to have flexible tubing connecting the tank to the pump. From the pump to the 

nozzle, we decided upon transitioning from flexible tubing to a rigid pipe near the nozzle to 

better control the fluid flow.  

2.6.5 FireIce Containment System 

In order to extinguish the boat fire, the design required a method of containing the 

FireIce. The container had to be lightweight while still able to hold as much FireIce as deemed 

necessary. Also, the container needed to have entry and exit ports to allow for the insertion of 

FireIce into the tank and the exit to the nozzle. 

The previous team delved into this topic and created 4 alternatives for tanks: a 

consumer off the shelf (COTS) container, a PVC container, and a custom Trapezoidal container. 

Based on their findings they decided to pursue the COTS container because it was capable of 

holding one half-gallon while only weighing 0.631 pounds when empty. When filled, it weighed 

4.17 pounds, and since weight is very important in this system, the team determined that this 

low weight and high volume solution was the best choice. 

Our team used this previous analysis to come to our own conclusions, deciding upon 

creating our own tank that would weigh less than or equal to 4 pounds, reducing the weight 

this portion of the overall system incurs.  

2.7 Electrical Background 

2.7.1 Camera System 

Having a camera on board the drone will allow the operator of the drone have visual 

feedback from the drone to the base computer. This will enable the operator to have 

knowledge of the flight path of the drone during all stages of the flight, and thus enable the 
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operator to make real-time decisions on how to control the drone. Due to the variety in camera 

systems, the team looked into two main types of cameras, visible light and thermographic. 

Thermographic Cameras 

Unlike the typical camera, which uses light energy, Thermal cameras operate by heat 

energy. This heat energy is emitted by all objects such as humans and animals, as well as 

inorganics like fire and boats. One of the limitations of visible light cameras, as mentioned 

above, is the difficulty in sensing in the absence of light energy. Because thermal cameras sense 

using thermal energy instead of visible light, this ceases to be an issue. However, thermal 

imagers are not without their own limitations. Because thermal energy does not have a visual 

spectrum by which heat can be seen, thermal cameras must rely on other means in order to 

display the data that it gathers. They do this by converting the relative heats of the objects, 

such as a human or a flame, in its view to the background into a gray-scale (How thermal 

cameras work.). 

Visible Light Cameras 

Visible light cameras operate using the spectrum of colors that are visible to the human 

eye. In order to produce the images that people see in the world, visible light cameras capture 

and process light energy from the surrounding environment and convert it into electrical 

signals. One of the limitations of visible light cameras, however, is the need of a light source. 

However, this is not a serious problem as the locations where most boat fires would occur are 

in places with an abundance of light sources, such as the moon, the sun, and artificial light 

sources. The fire itself will also provide a source of light. 

2.7.2 FireIce Level Sensing 

In order to know how much FireIce is left in drone, the team decided to test the 

effectiveness of a multitude of different sensor types. The different types of sensors that were 

researched and tested include float sensors, pressure transducers, non-contact sensors, and 

flowmeters. Through the testing of the sensors, it was found that none of the researched 

methods would work in the current system. In the end, the team decided to use a simple timer 
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using the total elapsed time operating the pump to estimate the remaining level of the FireIce 

solution.  

Float Sensors 

One of the first methods that was looked into were float sensors, specifically magnetic 

float sensors. There were a few reasons as to why this type of sensor was not implemented in 

the final design. Firstly, it was determined that the magnetics used within the sensing system 

could cause interference with the various electrical systems on board the drone, such as 

navigation and communication. Also, the general orientation of the drone while in flight will 

cause the FireIce solution in the tank to almost never be level. Due to this, readings from a float 

sensor would be not be representative of the remaining FireIce solution.  

Pressure Transducers 

The major problem that was found with using pressure transducers to determine the 

amount of FireIce solution left in the tank was around the mounting of the transducer. With the 

tank hanging from the bottom of the drone, additional mounting hardware would have been 

required in order to create a place to mount the transducer to the bottom of the tank. This 

would result in extra weight burdened on the drone, which was less than desirable. 

Non-Contact Sensors 

The use of non-contact sensors was explored greatly, but was deemed impractical due 

to much of the same reasons as the pressure transducers. The sensors of choice were to be a 

series of ultrasonic sensors configured in such a manner as to approximately recreate the 

surface of the solution within the tank via software. Much like the pressure transducers, the 

main problem with the ultrasonic sensors was where to mount them. The sensors needed to be 

placed either inside the tank with the solution, which would limit the amount of FireIce we 

could carry due to the sensors taking up vertical space, or outside of the tank with a piece of 

the tank cut open. However, with the constant tilting of the orientation of the drone while in 

flight, holes in the top of the tank could have proven to be troublesome.  
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Flowmeter 

As with all of the other systems tested with the goal of measuring the remaining amount 

of the FireIce solution, the use of the flowmeters proved to be impossible. Unlike however with 

the pressure transducers and the non-contact sensors, the flowmeters had easy mounting in 

line with the tube and the pump. The flowmeters that the team had decided upon gave a digital 

output in the form of a series of pulses. These pulses could be counted through the use of a 

software interrupt to determine the flow of the FireIce solution. However, the rate at which the 

sensor could send the pulses were too fast for the Raspberry Pi to handle given all of the other 

tasks that it needed to do. Do to the timing limitations of the flowmeters, it was determined by 

the team that they would not be used. 

2.7.3 Communication 

MAVLink 

As previously mentioned, the last team used the Pixhawk as a controller for the drone. 

The base sends messages wirelessly to the controller and it responds back, allowing users to 

navigate the drone. The Pixhawk specifically uses MAVLink to communicate with the base. 

MAVLink is a lightweight messaging marshalling library that allows for the transmission of 

telemetry and other types of data to micro air vehicles, and it has gone through extensive 

testing with PX4, Pixhawk, APM, and AR.Drone platforms (MAVLink micro air vehicle 

communication protocol. 

MAVLink messages are variable in length and are transmitted as strings of encoded 

bytes as can be seen in Figure 2.4. The payload of the message is prefaced by 6 header bytes: 

STX, LEN, SEQ, SYS, COMP, and MSG. STX denotes the beginning of a message, LEN contains the 

max size of the payload, and SEQ is the sequence number of the messages. The fourth byte, 

SYS, is for the system, the fifth for the component ID, and the sixth is the message header. 

Following this is the payload which is variable in length. After the payload are two checksum 

bytes which determine if there has been any error during transmission as per usual for 

messages that are sent over a network connection (MAVLink micro air vehicle communication 
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protocol.). If these bytes show that there has been a transmission error, the Pixhawk discards 

the message and waits for the base to send it again. 

 

Figure 2.4: MAVLink Message Package Structure (MAVLink micro air vehicle communication protocol.) 

Pymavlink 

One possible way to decode MAVLink messages from the Pixhawk to the base as well as 

encode MAVLink messages and send them from the base to the Pixhawk is by using pymavlink. 

Pymavlink is an open source Python script which reads in MAVLink XML message definitions 

and generates a module for reading and writing those messages (MAVLink python 

bindings.2016). There are two ways of running pymavlink, GUI and command line, and it can 

generate modules in multiple languages: C, C#, Java, JavaScript, Lua, and Python for version 2.7 

or later. To select a language, the user must place an XML file containing the definitions for the 

MAVLink messages of the chosen language in the ‘message_definitions’ folder and name it 

common.xml. Once the Python script is run, users can add the resulting file into their program 

which will allow them to process multiple MAVLink streams at once and parse the messages. 

Users can then ‘pack’ messages using various functions depending on the desired message and 

then serialize it, sending it to the Pixhawk (MAVLink python bindings.2016).  

After much consideration, the team decided against using Pymavlink. While Pymavlink 

would have allowed the team to send MAVLink messages to the Pixhawk in order to control the 

drone, this would not aid in meeting any of the major requirements of the project.  

Bluetooth 

Bluetooth, defined by the IEEE 802.15.1 standard, was originally developed to replace 

cables in personal area networks and is an open specification for short-range wireless voice and 

data communications. Bluetooth was originally considered for three different applications: wire 
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replacement, ad hoc networking of several different devices in short proximity, and as an 

access point to the wide area voice and data networks like those provided by cellular networks. 

Today, Bluetooth is primarily used in the first application, as a wire replacement (Pahlaven & 

Krishnamurthy, 2013).  

 The physical connection of the Bluetooth technology uses a FHSS (frequency hopping 

spread spectrum) modem that gives the technology coverage from a range of 10 meters to 

about 100 meters. For applications such a computer mouse and laptop, this is fine, but for a 

drone that needs to across open water to boat fires, possibly miles away, this is insufficient 

(Pahlaven & Krishnamurthy, 2013). 

ZigBee 

ZigBee, like Bluetooth is a technology handled by the IEEE 802.15 working group for 

wireless personal area networks. ZigBee, defined by the 802.15.4 specification, is a suite of 

protocols capable of networking with nodes that are in range. Where Bluetooth is based off of 

the IEEE 802.11 FHSS standard using a frequency hopping spread spectrum, ZigBee is based off 

of the IEEE 802.11 DSSS standard. DSSS, or direct sequence spread spectrum, is a form of data 

transmission where each information symbol is coded into smaller, narrower pulses also known 

as chips. These chips are generated as pseudo-noise (PN) sequences. These sequences are 

generated using a variety of different methods depending on the band of transmission. For the 

2.4 GHz band, the PN sequences are generated through the use of 16-ary orthogonal coding 

with sequences having 32 chips (Pahlaven & Krishnamurthy, 2013).  

 XBee, the transmission technology used by the previous team, is an application of 

ZigBee with a much greater range of coverage than that of Bluetooth (XBee® DigiMesh® 2.4.). 

XBee devices can cover an area up to 28 miles, which is more than acceptable for the system’s 

application. 

As such, the team looked further into using it to send messages between the base 

computer and the Raspberry Pi on the drone. The XBee modules would be connected to the 

base computer that is running the GUI through USB and the Raspberry Pi through a serial 

connection. This would allow commands from the GUI to be sent to the drone and for data to 

be sent from the drone to the base computer to be displayed on the interface. 
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Furthermore, the XBee models being used have two different modes: Transparent (AT) 

and Application Programming Interface (API). In AT mode, any data that is sent to the XBee 

module is immediately sent to the pair XBee module. The transmission is a simple serial TX out 

and serial RX in communication. This mode only works when you are using two XBees and 

simple point to point communication. AT mode is the default mode on XBees. API mode uses 

data packets instead of simple serial transmission. It is preferred for larger networks that 

involve communication between multiple devices. API uses a master (controller) and slave 

(router) system that allows a master XBee device to send to and receive from all slave devices. 

In addition, the API mode has a built in packet delivery confirmation with every transmit 

package. Both modes will be tested to see which is best.  

Thorough tests of the XBee modules’ reliability over various distances were performed 

and found that they transmitted messages without error up until they were approximately 

300ft apart. However, the team determined it was best to use XML HTTP requests to send 

messages to and from the base computer since it would limit the number of communication 

types being. As such, the XBee modules were not integrated into the system design. 

2.7.4 Power Distribution 

The previous team used a combination of a 12V buck converter and a 5V step down 

voltage regulator to create two voltage points for which every electrical component operated 

from (Peterson et al., 2016). Since this system is already in place, and verified to be working, 

further research into methods of achieving the voltage drops and components to do so was not 

done. Therefore, this portion of the PCB design already aligned well with the previous team’s 

design. More information on the design can be found in their report. 

2.8 Software Background 

2.8.1 Graphical User Interface 

The previous team created a Graphical User Interface (GUI) to both control the drone 

and to monitor its status. However, there was room for improvement within the old system. 
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According to the previous team, the GUI had latency issues and they were unable to implement 

certain features as initially intended. For example, in order to spray the FireIce continuously, 

the program running the GUI had to repeatedly send a signal to the drone. A function was 

created to check on a flag every 200 milliseconds (Peterson et al., 2016). Also, since the camera 

on the drone was never fully implemented, the GUI did not support live video, a major 

requirement of the new system. While the GUI did do its job, it could have benefited from a 

more intuitive layout. A screenshot of the previous team’s user interface can be found below in 

Figure 2.5. 

 

Figure 2.5: Previous GUI design (Peterson et al., 2016) 

2.8.2 Image Processing 

In order to meet the team’s secondary requirement of processing the image, the team 

first had to determine what type of processing would be most helpful. At first, it was proposed 

that the drone should be able to detect a fire and autonomously fly to it. This idea was 

scrapped however, the team decided that having a system to detect a fire would satisfy the 

requirement of processing the video data and would be a useful addition to the system. 

The time required to process the images affects the latency in the system and the team 

wanted to mitigate this as much as possible. The 2016 De-mining MQP team did some testing of 

various ways of processing the data from their camera. At first the camera was down to 2 FPS 

after applying their algorithm to the input. The algorithm that the data was being run through 
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was broken into multiple steps, so they first attempted to run multiple frames through the 

algorithm at once, assigning each frame to a different part of the algorithm and then switching 

them around as they finished. This method did not affect the FPS too much, so they attempted 

to use multiple cores on the RasPi, which has four, to process the frames as can be seen in 

Figure 2.6. This processing method was effective, increasing the camera back up to 8 FPS and 

decreasing the latency from 500ms to 200ms (Lockman & Haydon, 2016). 

 

Figure 2.6: De-Mining Image Processing 

The 2016 De-mining MQP team also separated their algorithm into a separate script and 

sent the important data to the main control code through ports. This allowed them to run the 

algorithm at different speeds than the main code and be blocked if necessary to assure that it 

would not affect the speed of the main code. As effective as this process was, it also had its 

drawbacks; it required an asynchronous data-passing method. As such, the previous team 

implemented a client-server port scheme which controlled the passing of data from the 

standalone script to the main control code (Lockman & Haydon, 2016). 
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OpenCV 

OpenCV is an open source computer vision and machine learning software library which 

was originally built to advance machine perception in commercial products and provide a 

common infrastructure for computer vision applications. OpenCV contains more than 2500 

optimized algorithms which can be used to detect and recognize faces, classify human actions 

in videos, identify objects, etc. Specifically, OpenCV contains functions which could be used to 

extract fire colors from the drone’s camera feed and enable the team to determine the exact 

location of the fire (About.2016).  

Visualization 

Receiving the camera data at a usable FPS is necessary when it comes to satisfying the 

requirement of streaming video to the base computer as outlined in Chapter 1. The 2016 De-

mining MQP team tried two methods of viewing the data. The first method was to remote 

desktop into the RasPi and view it using its operating system. The problem with this was that 

the WiFi connection was not fast, causing the camera stream to decrease to 0.25 FPS. This was 

not a high enough rate to be used, so they continued onto their second method which was to 

send the camera data to a web stream which could be viewed by any connected clients. This 

was accomplished via a Python script running on the Raspberry Pi. This ended up being the 

ideal choice as it was quick enough to adequately see the camera stream and be able to control 

the drone (Lockman & Haydon, 2016). 
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3 System Architecture 

3.1 Mechanical System Architecture 

3.1.1 Pre-determined System Parameters 

Property Value 

Air Density,  1.205 [kg/m^3] 

Air Kinematic Viscosity, v 15.11e-6 [m^2/s] 

Air Specific Heat, cp 1,005 [J/(kg*K)] 

Air Temperature, T 293 [K] 

Air Thermal Conductivity, k 0.0257 [W/(m*K)] 

Gravity, g 9.81 [m/s^2] 
Table 3.1: Global System Properties 

Assumption Value 

FireIce Density, d 1,200 [kg/m^3] 

FireIce Dynamic Viscosity,  1e-3 [Pa-S] 
Table 3.2: Global System Assumptions 

3.1.2 Spray Pattern 

Spray Pattern Distance and Coverage 

In order to determine the required spray distance, we had to first find the minimum safe 

distance of operation from the fire. In finding this value, we only have to worry about heat 

transfer from radiation due to the fact that convection and conduction will not affect our 

system as we are neither in contact with a surface and the drone is operating in an open 

environment. This can be modeled using equation 1 below:  

 

𝑟 = √
𝑄𝜆

4𝜋𝑞′′
 

 
Equation 1: Minimum Safe Distance 

 In this equation, we solve for “r” which is the minimum safe distance of operation from 

the source of the fire. The previous team found the minimum distance to equal 14.2 feet with 
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acrylic which has the highest radiative heat transfer rate of all materials on the boats in 

question. They found other common materials such as wood and fiberglass to have minimum 

distances of 9.25 feet and 4.7 feet respectively. Our team used the acrylic minimum safe 

distance, as it was the most limiting case. We also decided that it was beneficial to add a safety 

factor, “Nd”, of 1.5 to add a buffer between the drone and this minimum safe distance as shown 

in equation 2.  

𝑟𝑛 = 𝑁𝑑 ∗ 𝑟 

Equation 2: Minimum Safe Distance with Safety Factor 

This will help protect the drone from getting too close and minimize the chance of an 

outside influence, such as wind, from pushing the drone into the dangerous zone. Our resulting 

minimum safe distance with the safety factor was 21.3 feet, or roughly 6.5 meters.  

 Once we had obtained the minimum safe distance, we then used the distance formula, equation 3, to 
find the minimum horizontal distance to the fire given a range of our expected operating heights.  

𝑑 =  √Δ𝑥2 + Δ𝑦2 
Equation 3: Distance Formula 

Our operating heights ranged from 2 to 6 meters above the origin of the surface of the 

hypothetical body of water the drone would fly over. We found the following 

minimum horizontal distances to the fire in Table 3.3:  

 

Height (m) Minimum Horizontal 
Distance to Fire (m) 

2 6.18 
3 5.77 
4 5.12 
5 4.15 
6 2.5 

Table 3.3: Minimum Horizontal Distances to Fire based on Drone Operating Height 

Based upon Table 3.1, we know that our minimum horizontal distance to the fire is 

limited by the 6.18 meters at a height of 2 meters. Using this case, we were able to model the 

FireIce as a projectile motion problem to solve for the exit velocity required at the nozzle. Using 

the projectile motion equation, equation 4, the mass flow rate relationship, equation 5, and 

volumetric flow rate relationship, equation 6, we were able to find the needed outlet 
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conditions from the nozzle to satisfy our worst case scenario for a minimum safe distance to 

the fire.  

𝑌𝑓 = 𝑥𝑓 tan θ −
𝑔𝑥𝑓

2

2𝑣0
2 cos2 𝜃

 

Equation 4: Projectile Motion 

𝑄 = 𝜌 ∗ 𝑣 ∗ 𝐴 
Equation 5: Mass Flow Rate Relationship 

𝑉 = 𝑣 ∗ 𝐴 
Equation 6: Volumetric Flow Rate Relationship 

When performing these calculations, we assumed our degrees of freedom of the nozzle 

could rotate 90 degrees, 45 degrees upwards, and 45 degrees downward. For our analysis, we 

only considered upwards pitch because downward pitch would only be needed to adjust the 

spray and wouldn’t require extra pressure. The projectile motion equation was assessed at 

various angles (0, 15, 30 and 45 degrees). The solid stream and fanned nozzle candidates had an 

option for an outlet diameter of 0.04 inches, which we assumed for this analysis. This made our 

cross sectional area 0.810732 mm^2. Using this information, we then found the required outlet 

flow rates and velocity. The results are shown below in Table 3.4:  

 

Angle Required Outlet 
Velocity (m/s) 

Required Outlet Mass Flow 
Rate (kg/s) 

Required Outlet Volumetric Flow 
Rate (Liters/s) 

45 6.77 6.59e-3 5.49e-3 

30 6.70 6.52e-3 5.43e-3 

15 7.41 7.21e-3 6.01e-3 

0 9.68  9.42e-3 7.85e-3 
Table 3.4: Calculated Required Outlet Velocities and Flow Rates 

From this analysis we found that after pressure and flow losses leading up to the nozzle 

that our maximum required outlet mass flow rate is 9.42e-3 kilograms per second and a 

volumetric flow rate of 7.85e-3 liters per second, which occurs at a nozzle angle of 0 degrees.  

Spray Design 

In order to determine the optimal atomization of FireIce to adequately contain a boat 

fire, we had to calculate the optimal droplet size. Our team decided to calculate for the worst 



 

36 
 

case scenario which we determined to be a gasoline induced boat fire. In calculating this, 

numerous properties were needed, shown in Table 3.5, and assumptions, shown in Table 3.6.  

Property Value 

Gasoline Density, gas 719.7 [kg/m^3] 

Gasoline Specific Heat, cgas 2,200 [J/(kg*K)] 

Gasoline Thermal Conductivity, kgas 0.1 e-3 [W/(m*K)] 

Gasoline Kinematic Viscosity, 8.8 e-7 [m^2/s] 

FireIce Initial Velocity, V0 9.68 [m/s] 

Drone Minimum Height, hmin 2 [m] 

Drone Height, hmax {2<=h<=6} [m] 
Table 3.5: Optimal Droplet Diameter Properties 

Assumption Value 

Gasoline Temperature, Tgas 1300 [K] 

Fire Origin,h0 0 [m] 

Droplet Surface Temperature,Ts 294 [K] 

Fire Convective Heat Release Rate, Qc'  4.5 [kW] *Average Reported Methane HRR 
Table 3.6: Optimal Droplet Diameter Assumptions 

There were two main cases to consider when solving this: an evaporating case and a 

non-evaporating case. The evaporating case of eliminating the fire is to use a finer mist to cool 

the flame itself to eliminate and suppress the fire. The non-evaporating case is where the 

FireIce would ideally penetrate the fire plume and cool the fuel or origin of the flame. The 

evaporating case is found using equation 7.  

𝑑𝑜𝑝𝑡 = √36𝑣 ∗
𝜌𝑔𝑎𝑠

𝜌𝑑
∗

−𝑉0ℎ0

2 +
𝑘𝑒𝑣𝑉0

4 + ∫ 𝑈(ℎ)𝑑ℎ
0

ℎ𝑚𝑎𝑥 

0.5𝑉0
2 −

𝑔ℎ0

2

 

Equation 7: Optimal Droplet Diameter for Evaporating Situation 

 U(h) in equation 7 is the velocity of the fire’s plume that is generated. This value is a function of the 
plume height which is found using equation 8.  

𝑈(ℎ) = 3.4 (
𝑔

𝑐𝑔𝑎𝑠𝑇∞𝜌∞
)

1
3

𝑄𝑐
′

1
3(ℎ − ℎ0)−1/3 

Equation 8: Fire Plume Velocity 

 Using equation 8 we found the average plume velocity to be a rate of 4.94 meters per 

second. Our team also created a table of the plume velocities at the various distances away 

from the origin as shown below in Table 3.7.  
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Height (m) Fire Plume Velocity (m/s) 

0.001 13.07 

0.01 6.07 

0.1 2.82 

1 1.31 

2 1.04 

3 0.91 

4 0.823 

5 0.76 

6 0.72 
Table 3.7: Fire Plume Velocities based on Height from origin 

In order to solve equation 7 we also had to determine the evaporation constant, kev, 

using equation 9. This gives us a coefficient representative of the rate of evaporation based on 

gasoline properties and our environmental properties.  

𝑘𝑒𝑣 = (
8𝑘𝑔𝑎𝑠

𝜌𝑔𝑎𝑠𝑐𝑔𝑎𝑠
) ∗ ln (1 +

𝑐𝑔𝑎𝑠

𝐿
(𝑇𝑔𝑎𝑠 − 𝑇𝑠)) 

Equation 9: Evaporation Constant 

Our team found kevto equal 6.37e-9. Using this constant, our fire plume values, and the 
properties previously mentioned, we were able to discover that the optimum droplet diameter 
for the evaporating case to be 1.58 mm.  
 Next, we proceeded to assess the optimal droplet diameter for the non-evaporating situation 
using equation 10.  
  

𝑑𝑜𝑝𝑡 = √36𝑣 ∗
𝜌𝑔𝑎𝑠

𝜌𝑑
∗

∫ 𝑈(ℎ)𝑑ℎ
ℎ𝑚𝑖𝑛

ℎ𝑚𝑎𝑥
−

|𝑉0|
2

(ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛)

𝑔(ℎ𝑚𝑖𝑛 − ℎ𝑚𝑎𝑥) − 0.5𝑉0
2  

Equation 10: Optimal Droplet Diameter for Non-Evaporating Situation 

From this equation, our team found that the non-evaporating case had an optimal 

droplet diameter of 4.32 mm. This was the droplet diameter size that our team strived to 

achieve in designing our spraying system.  

To determine our actual droplet diameter mathematically, our team used Weber’s 

Equation, equation 11. In order to solve for this, our team had to find the Ohnesorge number, 

the Weber number, and the Reynolds number using equations 12, 13, and 14 respectively. It is 

important to note that the “d” in the equation is the nozzle outlet diameter.  

 

𝜆𝑜𝑝𝑡 = 4.44𝑑(1 + 3𝑍)0.5 
Equation 11: Weber’s Equation for Droplet Diameter 
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𝑍 =
𝜇𝐿

(𝜌𝐿σd)0.5
=

√𝑊𝑒

𝑅𝑒
 

Equation 12: Ohnesorge Number 

𝑊𝑒 =
𝜌𝑣2𝑑

𝛾
 

Equation 13: Weber Number 

𝑅𝑒 =
𝜌𝑣𝑑

𝜇
 

Equation 14: Reynolds Number 

After solving these equations, we found our droplet diameter of the FireIce to be 4.53 

mm, which is very comparable to the 4.32 mm optimal droplet diameter we had calculated 

previously. This confirmed our team’s decision to pursue the solid stream and fanned nozzles 

with the 0.04 inch outlet diameter.  

Fluidic Oscillator Design 

In designing the fluidic oscillator, a test subject was developed and simulated in 

SolidWorks, as shown above in Figure 3.1. This simulation showed promise as it was able to 

create lift between the inlet stream and the outlet. This causes the spray pattern to oscillate 

back and forth as it exits the nozzle. 

 

Figure 3.1: Fluidic Oscillator Simulation 

While this simulation was able to prove that this design is possible, there were many 

issues with it. In order to create this effect, our nozzle would require a diffuser, as seen on the 
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right of the system in Figure 3.1. Based off of our previous calculations, we would need a nozzle 

outlet of 0.04 inches in diameter to generate the adequate velocity. The fluidic oscillator design 

requires a wide outlet nozzle to perform as expected, and in the simulation done, it required a 

minimum of 0.4 inches to oscillate even a slight amount. While it is possible to increase the 

pressure to the system to allow for an optimal outlet diameter to make this design possible, our 

drone is limited to a 24 pound payload, and as will be later calculated, our team found that 

under the weight restrictions of the drone, we could get no more than 160 psi out of the 

system. With such a large orifice at the outlet we later calculated a need for 275 psi, dispelling 

any chance for this nozzle solution to work.  

3.1.3 System Degrees of Freedom 

The addition of the single degree of freedom at the nozzle is beneficial to increasing the 

range on the spray as well as for adjusting it to better target the fire. Our team modeled the 

FireIce in the projectile motion equation, equation 4, to create a table of distance based on the 

operating height and spray angle as shown in Table 3.8.  

Based on this data we were able to quantify our expected spray distances and found 

that we get the maximum distance when oriented at 30 degrees. At our operating height of 6 

meters and angle of 30 degrees, we would achieve a spray distance of 14.29 meters which is a 

considerably long range. This data also confirmed to us that a 45 degree range in the positive 

and negative is optimal for adjusting the spray.  
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Height Angle Calculated Distance (m) 

2 0 6.18 

2 15 8.82 

2 30 10.90 

2 45 11.25 

3 0 7.57 

3 15 10.08 

3 30 11.89 

3 45 11.95 

4 0 8.74 

4 15 11.16 

4 30 12.76 

4 45 12.59 

5 0 9.77 

5 15 12.13 

5 30 13.56 

5 45 13.18 

6 0 10.71 

6 15 13.00 

6 30 14.29 

6 45 13.73 
Table 3.8: Spray Distances based on Operating Height and Spray Angle 

3.1.4 Pumping System 

One of the most critical components of the mechanical aspects of this project is the 

pumping system. In order to determine the pumping systems requirements a series of 

calculations were needed. Firstly, our team had to find the pressure required at the inlet of the 

nozzle. The nozzles that we found from the spray pattern analysis had an inlet diameter of 0.25 

inches. Using this data, we used the volumetric flow rate equation, equation 6, and created a 

volumetric flow rate relationship as shown in equation 15. This relationship shows that 

volumetric flow is constant throughout a system and we used that characteristic to find the 

inlet velocity at the nozzle.  

𝐴𝑖𝑣𝑖 = 𝐴0𝑣0 

Equation 15: Volumetric Flow Rate Relationship 

We found the inlet velocity to the nozzle had to be 0.248 meters per second. Based 

upon the nozzle ratings, and a required 0.124 gallon per minute rate of flow, we found that we 
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needed a 138.7 psi outlet pressure. Knowing this value, our team used Bernoulli’s Equation, 

equation 16, to find the required inlet pressure to the nozzle.  

𝑃2 − 𝑃1

𝜌
= −

𝑣2
2 − 𝑣1

2

2
 

Equation 16: Bernoulli’s Equation 

This equation allowed us to find that we needed an inlet pressure to the nozzle of 

146.85 psi. The last step was to determine the pressure loss over our tubing and piping 

connections from the pump to the nozzle. Our tubing solution consisted of two main parts, one 

made up of 0.45 meters of plastic tubing and 0.1 meters of steel pipe, for a total of 0.55 meters. 

By using the pressure loss equation, equation 17, the f coefficient equation, equation 18, and 

Reynolds number we were able to determine the pump pressure required for this system to 

function.  

Δ𝑃 = 𝑓(𝐿 𝐷⁄ ) ∗
𝜌 ∗ 𝑉2

2
  

Equation 17: Pressure Loss 

𝑓 = 64/𝑅𝑒 

Equation 18: f coefficient 
 

The f coefficient came out to be 0.0287 and we found our pressure loss to be 58.25 

Pascals, or a 0.00845 psi difference, which is expectedly low due to the short range of 

operation. This results in our system requiring 146.86 psi from the pumping system. Knowing 

that pumps do not provide perfect efficiency, we factored in a 90% efficiency rating to find the 

max pressure our pump needed to be rated for. This gave us an ideal max pressure rating of 

163 psi.  

FireIce Containment System 

The design of the FireIce containment system was determined based upon weight 

restrictions from the max payload. We decided to design the tank to contain as much FireIce as 

possible with the remaining amount of weight capacity remaining. The primary limiting factor in 

the tank design was the placement of mounting fixtures for the mounting plate’s clamps to the 

drone. Avoiding the need for standoffs and keeping the tank within the width parameter of the 
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mounting plate itself, the maximum surface area it could have was 1.89e4 mm 2. Having the 

width and length of the tank parameters fixed, the tank was designed primarily around the 

height dimension. The final volume was 1.5e6 mm3, or 1.5 Liters. 

Based upon our volume and volumetric flow rate through the system, we calculated the 

time that it would take to completely empty the tank of FireIce from the system. With a flow 

rate of 7.85e-3 liters per second and a volume of 1.5 liters, it would take approximately 3 

minutes and 11 seconds to discharge all of the FireIce from the system.  

3.2 Electrical System Architecture 

The electrical system architecture is composed of two subsystems. These subsystems 

are comprised of the camera system and the power distribution system. Section 3.2.1 will 

briefly talk about the specific requirements needed to be met for the camera system and 

section 3.2.2 will discuss the specific voltage requirements for each of the different 

components in the electric system.  

3.2.1 Camera System 

The camera system used to meet the visualization requirements for the drone needed 

to have certain characteristics. The first of these requirements is that the camera needed to be 

able to stream a video. The second requirement is that the camera system needed to take the 

video with a resolution that will allow digital image processing techniques to be employed. The 

final requirement of the camera system is that is needed to be easily configured to work 

alongside the rest of the system.  

3.2.2 Power Distribution System 

The power distribution system for the system includes a 12V source as well as a 5V 

source. The combination of these sources powers the entirety of the board. Table 3.9 below 

describes the voltage requirements for each of the components on the board. The currents 

needed for each of the various electrical and mechanical components varied and is also shown 

in the table below.  
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The pump needed a 12V source and 8.33A to run at its peak. These requirements are 

not hard requirements and can be under the specified amounts, but for optimal performance, 

they should be met. The H-bridge needed to have both a 5V source for the logic operations 

performed on the chip and a 12V source to power the DC motor connected to the H-bridge. The 

current needed for the H-bridge is reliant on the current requirements of the DC motor. The 

current requirement for the DC motor was significantly less than what was needed for the 

pump and was not considered during the design of the power distribution system. The ADC also 

needed the 5V source to use as a reference in the quantization for the analog signals coming 

from the temperature sensors. The current requirement of the ADC, was determined to be 

quite low at 500μA. Both of the different types of sensors used needed a 5V source as well. The 

current requirement for the temperature sensors and the flowmeters was deemed to be met 

by the 5V source that the previous team used, the D24V50F5 5V, 5A step down voltage 

regulator. 

 

Device Name Voltage Requirement Current Requirement 
Pump 12V 8.33A 
H-Bridge 12V & 5V <8.33A 
ADC 5V 500μA 
Temperature Sensors 5V <5A 
Flowmeters 5V <5A 

Table 3.9: Voltage and current requirements for the various components in the electrical system 

3.3 Software Architecture 

In order to properly control the system on the drone and monitor both the drone and 

system’s status, the team needed to develop two main pieces of software: the GUI and the 

Data and Control Server. 

3.3.1 Graphical User Interface 

The GUI needed to be designed so that it was capable of displaying and transmitting a 

variety of data. The main features required for sending commands to the drone were five 

buttons: Start Spray, Stop Spray, Rotate Up, Rotate Down, and Fire Detection. The first four 

buttons needed to turn the spraying on and off and control the vertical angle of the spray. The 
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last button would enable and disable the fire detection image processing on the camera 

stream.  

The GUI would also display data from the camera, and temperature sensors, as well as 

the estimated FireIce level remaining in the tank. The camera stream would be 640 pixels by 

480 pixels so that users can easily determine what is being displayed. The team wanted the 

temperature sensors to be displayed in a way which would be aesthetically appealing while also 

allowing it to easily warn the user if the drone is getting too hot. Lastly, the FireIce level would 

be displayed so that it the user can visibly see the tank level decreasing.  

3.3.2 Control Server 

The server’s main purpose is to watch for messages from the GUI, control the pump, 

rotate the nozzle, process the image from the camera, and respond to the GUI with the 

temperatures from all of the temperature sensors. As such, the team needed to design the 

server so that it would be able to run all of these tasks efficiently, not causing any delays in its 

response to the GUI. The image processing was a main concern for causing a lag in the camera 

stream, so the team took extra care in making sure the image processing would allow for a high 

enough frame rate, 15 FPS. 

3.3.3 Communication 

Having a reliable and speedy connection was a high priority for the team. Without that, 

there could be an added delay to the server’s response to the GUI which, as already discussed 

above, is to be avoided. Additionally, the communication would ideally be easy to understand, 

implement, and add on-to incase the team decided it would like more communication between 

the base computer and Raspberry Pi.  
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4 Final Design 

4.1 Mechanical 

4.1.1 Spray Pattern 

The nozzle is responsible for pressuring the FireIce so that it reaches the target. Based 

upon the results from the decision matrix, the most viable candidates for nozzles and relative 

spray patterns were a solid stream, a flat-fanned nozzle spray, and a fluidic oscillator. Based 

upon our calculations, a fluidic oscillator was deemed impossible due to our pump limitations. 

This had left our team with the decision between a solid stream and flat-fanned nozzle spray.  

The solid stream atomizes to a droplet diameter very near the optimal droplet diameter 

and has the highest probability of reaching the target without too much worry of the stream 

being carried off by wind variances. The flat fanned 15-degree nozzle allows for a richer 

longitudinal coverage than the solid stream would provide and it would be able to cover a more 

ideal surface area. The tradeoff is that it has a greater chance of be carried off by the wind as 

the stream thins out.  

After testing both the solid stream and the fanned nozzle solutions, it was quickly 

determined that the solid stream nozzle was the ideal candidate. Initial testing proved that the 

wind fluctuations were too much for the fanned nozzle to handle and the spray was carried 

away only 5 to 7 feet from the outlet. The solid stream, however, was not easily deterred by the 

wind forces and operated as expected. The resulting nozzle that our team chose was a Type 416 

stainless steel solid stream nozzle rated for 1.5 gpm at 1000 psi having an inlet diameter of 0.25 

inches and an outlet diameter of 0.04 inches.  

4.1.2 Degrees of Freedom 

The final design implemented the single degree of freedom system, located at a joint 

attached to the nozzle assembly. This added degree of freedom allows the nozzle angle to be 

adjusted approximately 60 degrees. The reasoning behind adding this feature is that it allows 
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for the adjustment in projectile motion of the FireIce solution as it exits the nozzle. In the end, 

the team decided to go with the DC Motor because of its low weight, robustness, and it was 

able to be controlled relatively well when used with a potentiometer. The motor also operates 

at 80 rpm at 12V and 40 rpm at 6V, which is slow and practical for our application which will 

primarily consist of small and infrequent rotations.  

This motor was then incorporated into our master assembly file for the drone, and 

subsequent mounting and adaptor components were integrated to couple the motor with the 

nozzle and the mounting plate itself. The output shaft of the motor has a hub to hub 

connection. The second hub connection is custom made with a 3D printer and attaches to an 

identical component to securely fasten the nozzle. The DoF subsystem that integrated the 

nozzle adaptor piece can be seen in Figure 4.1 below 

 

Figure 4.1: DoF Subsystem 

4.1.3 Pumping System 

Pump 

In order to get the FireIce from the tank to the nozzle and generate the flow required, a 

pump was needed. Based upon the results of the team’s decision matrix, as shown in Table 2.6, 

the top 3 choices for viable pump candidate types were the centrifugal pump, the diaphragm 
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pump, and an internal gear pump. All of these pumps are powered by an integrated motor, 

which requires a 12V input based upon the standard operation voltage required for the 

performance range needed for the system’s operation.  

Originally, the team had concluded on a gear pump sold by McMaster which had an 

exceptional range of output flow rate, but this pump was deemed impossible for our 

application due to its size and weight. In the end, the team decided upon a diaphragm pump, 

the sole pump discovered that was better than the previous MQP pump and within our weight 

requirements, with the following specifications: 12V DC, 100W, a max of 160 psi, and a max of 8 

L/m.  

Tubing 

The tubing selection is critical for the performance of the DoF, as well as the 

implementation of the connections between major system components. The nozzle DoF 

subassembly, as well as future adaptation to the nozzle that requires a controlled flow, needs a 

rigid and relatively coaxial approach to the nozzle input. To accomplish this, the team decided 

to implement a blend of rigid piping and flexible tubing for the connection from the nozzle 

input to the pump output. The connection from the output of the tank to the input of the pump 

was to be very flexible so the tubing was used.  

For the selection of the tubing material, the focus was on flexibility, opacity, maximum 

operation pressure, maximum operation temperature, and its inner and outer diameter which 

were dimensions based upon other components. In the end, a stainless steel pipe was chosen 

for the connection to the nozzle, which is rigid, straight, and has very good corrosion resistance. 

Using a barbed adaptor, this is connected to the flexible tubing that in turn connects to the 

outlet of the pump. The flexible tubing that was chosen was high-pressure PVC tubing that had 

a soft hardness rating, high flexibility, and could withstand a maximum pressure of 220 psi, 

which is well above the maximum pressure of 160 psi that can be generated by the diaphragm 

pump. To prevent sagging or twisting of the flexible tubing, guides in the form of eyelets are 

going to be used to control the path of the flexible tubing as it approaches the nozzle. This 

same tubing was implemented between the pump inlet and the tank outlet. 
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4.1.4 FireIce Containment System 

The tank is an important aspect of the entire system, as it has the responsibility of 

holding the FireIce solution, of maximizing the volume that can be held without getting in the 

way of other system components, and of being easily accessible.  

The tank was designed in such a way that the FireIce is guided to the tank exit by a 

rounded base that directs the flow to the output. In addition, the output is angled downwards, 

while the tubing that channels to the pump is directly upwards, creating a dry system. Suction 

from the pump draws the FireIce out of the tank. The final design for the tank design is shown 

in Figure 4.2 below. 

 

Figure 4.2: Tank Design 

The physical tank was created using a fiberglass mold. To do this, a casting structure was 

made out of cut up MDF blocks and milled down using a CNC to the appropriate dimensions to 

match the features of the tank. For mounting purposes, the fiberglass was drilled out on the 

flanges to correspond with the matching holes on the mounting plate. The milling process can 

be seen in Figure 4.3.  
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Figure 4.3: Milling the Tank Mold 

Once the milling process was completed, 3 coats of polyurethane was applied to the 

mold and then an anti-sticking agent was applied as well. Once that was accomplished, 5 layers 

of fiberglass was plastered to the mold and coated with a specialized gluing agent. The result of 

this step is shown in Figure 4.4.  

 
Figure 4.4: Fiberglassing the Mold 

Once the fiberglass was dry, the team removed it from the MDF mold and drilled out its 

mounting holes, the inlet and outlet holes, and attached the tubing adaptors to it. A critical 

aspect was the application of caulking, or sealant, around the threaded PVC to hold in FireIce 

and prevent leakage.  
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4.1.5 Overall Mechanical Design 

The integration of the entire system began at the design level in SolidWorks. To mount 

the mechanical system to the drone, custom shaft collars were created to fit the mounting 

plate to the rails of the drone. The mounting plate itself was used to attach the separate 

components such as the tank, pump, and nozzle system. Custom mounts were made for the 

integration of the DC motor and nozzle mounts. The entire mechanical system design is shown 

below in Figure 4.5. This design does not include the flexible tubing for simplicity.  

 

Figure 4.5: Final Mechanical System 

Weight Distribution 

The weight was one of the most important things to consider when the drone was being 

designed. The maximum weight the drone can carry is 24.251 lbs. By using SolidWorks, we were 

able to also ensure that the center of gravity of the system was as centrally located as possible 

because the drone would experience significant drift if we neglected this factor. The individual 

component weights can be seen below in Table 4.1. 
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Item Weight 

S1000 Drone 9.26 lbs. 

Battery 5.3 lbs. 

Tank (Filled with FireIce) 3.8 lbs. 

Mounting Plate 1.78 lbs. 

Pump 2.75 lbs.  

DC Motor 0.518 lbs. 

Motor Mount 0.031 lbs. 

Motor Hub (x2) 0.029 lbs. 

Nozzle 0.05 lbs. 

Piping System 0.06 lbs. 

Fasteners ~.05 lbs. 

Nozzle Pivot 0.03 lbs. 

TOTAL 23.687 lbs. 

Table 4.1: Component Weights 

4.1.6 Mounting Plate 

The mounting plate is an important component as it is the component that connects the 

tank, pump, and DoF system to the drone platform. It features semicircle cuts in the front in the 

back to allow for the nozzle to rotate and to provide space for the inlet of the tank, 

respectively. The plate is 0.3125 inches thick, a relatively decent thickness to minimize acute 

deflection and bending moment from the mounted components. In addition, it is made of 

strengthened acrylic which has a yield strength of 18 ksi and a melting point of roughly 320 

degrees Fahrenheit, making it a decent candidate for mounting and for the potential high 

temperatures it could be exposed to. The final mounting plate design can be seen below in 

Figure 4.6.  
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Figure 4.6: Mounting Plate 

The team also analyzed the mounting plate to ensure that it would not experience any 

failures. A Solidworks simulation was run to find the von Mises stress and compare it to our 

yield strength, as shown below in Figure 4.7. As the simulation shows, the mounting plate is 

well designed and is well within our parts yield strength, even at the most likely features for 

failure on the part which are the bolted components between the mounting plate and the 

drone itself as the entire load is supported at these points. 

 

Figure 4.7: Stress Concentrations on the Mounting Plate 
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4.2 Electrical Design 

4.2.1 Schematic Design 

Figure 4.8 below shows the H-Bridge driver circuit, used to drive the two DC electric 

motors connected to the GPIO pin 13 and the GPIO pin 16. The main part of the circuit is the 

SN754410, a quadruple half-H driver. The GPIO pins 19 and 21 connect to the driver’s enable 

pins, enabling the control of the two DC electric motors connected via pins 3/6 and pins 11/14. 

The GPIO pins 13 and 16 are connected to the two sets of control signals corresponding to the 

two DC electric motors. In order to prevent contradictory control signals to be applied to the 

pins 3/6 and 11/14, two 74HC1G04DCK inverter gates were set between the GPIO pins and the 

chip. 

 
Figure 4.8: H-Bridge Driver Circuit 

The 12V buck converter circuit, shown below in Figure 4.9, is composed of two main 

components. The first of these components is the LM22678, a 12V buck converter. The primary 

purpose of this chip is to take the 22V battery and to create a 12V source used to the pump. 
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The second component of the circuit is the control of the pump. Controlled by the GPIO pin 20, 

the IRF520 Power MOSFET powers the pump with the 12V generated by the LM22678. 

 
Figure 4.9: 12V Buck Converter Circuit 

Shown below in Figure 4.10, the analog-to-digital converter (ADC) circuit consists of a 

MCP3008-I/SL eight channel ADC connected to four temperature sensors through channels zero 

through three. Channels four through seven are wired for general use. The pinouts for each of 

the channels are configured to support a three-wire format: a ground wire, a power wire, and a 

signal wire. 

 
Figure 4.10: Analog-to-Digital Converter Circuit 
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The GPIO header circuit, shown below in Figure 4.11, consists of two parts. The first part 

is shown on the left and is 2x20 male pin header for use with the ribb-o-tron 5000 from the 

Raspberry Pi. The second part of the circuit, shown on the right, consists of pinouts for the 

different ports from the rib-o-tron 5000. 

 
Figure 4.11: GPIO Header Circuit 

The last portion of the schematic, as shown below in Figure 4.12, shows two connectors 

for two digital output flow meters connected to GPIO pins 5 and 6. In addition, there is a pinout 

for each of the different voltage levels used across the board: 12V, 5V, and 3.3V. Lastly, there is 

a connection for the 5V step down voltage regulator, D24V50F5. The D24V50F5 takes in the 

12V source and generates the 5V source. 

 
Figure 4.12: Flow Meters, Power Pins, & 5V Step Down Voltage Regulator 
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4.2.2 Printed Circuit Board Design 

Based off of the schematics shown in the previous section, Figure 4.13 below shows the 

PCB used to power all of the electrical components of the drone. The final board is 

approximately two inches by three inches. The final design of the board was a 2-layer PCB; the 

red traces in the figure represent the top of the board while the blue traces represent the back 

of the board. The traces sending power to the various components and the traces connecting 

those components to ground are all of a thicker width at 24mil compared to the 16mil of the 

regular traces sending. Lastly, a ground plane was implemented on the back side of the board in 

places with empty space, as to ensure a good ground connection on the board. 

 
Figure 4.13: Fire Containment Drone PCB Design 
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4.2.3 System Control 

In order to control the system mounted on the drone platform, some sort of 

microcontroller was needed. The previous team used an Arduino Uno as their microcontroller, 

however, it has been decided that a Raspberry Pi 3 was to be used for the drone instead. This 

decision was made to simplify the system and because the team did not believe that any 

functionality will be lost. The previous team did not use the camera they selected in their end 

product, so the Raspberry Pi Camera Module V2 was implemented by the team instead. Using 

the Raspberry Pi in conjunction with the Pi Camera was simpler than using the Arduino with the 

3DR camera used by the previous team. Also, the Raspberry Pi and the camera use Python 

which means that the team would have access to numerous libraries to help with image 

processing, motor control, and communication. Since there are libraries for all the needed 

Arduino functions in Python, and due to the simplicity of using Python for the camera and 

microcontroller, the Raspberry Pi 3 was determined to be a better choice than an Arduino. 

Before the final system was created, tests were conducted on the Raspberry Pi. First, 

the camera was configured to get a video to display on the Raspberry Pi itself. After this, a 

simple image streaming script was created that would send video to an HTML page on the base 

computer. Finally, the GPIO, or general purpose input/output, capabilities were tested. This 

included reading values from the ADC and controlling the motor. 

4.3 Software Design 

4.3.1 Graphical User Interface 

As discussed earlier, the Graphical User Interface needed to be easy to use and have the 

ability to both control the system and output data, like temperature and video, from the 

system. First, a mock-up of the interface was created. The team reviewed and adjusted this 

mockup until it was deemed satisfactory for all of the GUI’s needs. The layout of the GUI was 

equally important. This interface was designed with ease-of-use in mind.  
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After the team found an appropriate design, the GUI’s visual elements were created and 

the communication with the drone platform was implemented using HTML and JavaScript 

respectively. 

The final design, pictured in Figure 4.14 below, uses a server built with node.js to host 

the client, the GUI. This design allows the server to receive ‘GET’ and ‘POST’ requests from the 

client and either send the client data, such as temperatures from the temperature sensors on 

the drone, or receive data, such as the data that is sent when any of the four command buttons 

in the GUI are clicked -- turning the pump on and off and lowering and raising the nozzle. With 

this design, the client can easily access image data from the Raspberry Pi while communicating 

with the server which provides all of the other data.  

 

Figure 4.14: Final GUI Design 

The team also added in a feature to the GUI which allows the user to toggle a Fire 

Detection View of the camera. The Fire Detection View uses OpenCV to filter the image so that 

only colors of fire are visible and then a box is drawn around the largest continuous area of fire. 

The Fire Detection View’s purpose is to aid the user in pinpointing the fire in the camera 

stream.  

In order to bring up the GUI, the user must run the base computer server in the terminal 

and then load localhost:5002 in an internet browser. Doing so will bring up the GUI and load 

any immediate data that it needs from the Control Server. The Control Server should be running 
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on the Raspberry Pi before bringing up the GUI on the base computer or it will not connect and 

work properly. 

4.3.2 Communication 

There are a large number of messages constantly being sent between the base 

computer and drone. Since the GUI was implemented in HTML, the team decided to send the 

messages over a server and client XML HTTP connection. The GUI uses these messages to 

control the sprayer on the drone while the drone uses the messages to report its current 

temperature. More specifically, the client receives messages from the server which contain 

temperature data from the four temperature sensors on the drone every second. The client 

also sends messages to the server when the user presses any of the five buttons in the GUI 

which control the pump, nozzle angle, and toggles the Fire Detection View.  

Two servers run on the Raspberry Pi, one for the camera’s video stream and one for 

sending and receiving control and status data. The video server runs on port 5001 and will 

constantly post a jpg image taken from an image queue provided by the image processing 

algorithm discussed in section 4.3.5. The control server handles requests for data and takes in 

data from the base computer. The base computer can request both the percent of FireIce 

remaining, which is just a stored value that is set when the base computer tells the Pi to stop 

spraying, and the temperature data. When asked for the temperatures, the sensors are read 

from the ADC chip and converted into Fahrenheit. The control server also processes the 

following commands from the base computer: Spray, Stop Spray, Rotate Up, Rotate Down, and 

Toggle Image Processing. Respectively, these control the pump, DoF, and decide whether or not 

to process the video stream before sending the data. The source code can be found in Appendix 

B: Source Code. 

4.3.3 FireIce Level Sensing 

After testing all of the sensors as mentioned in section 2.7.2, the team decided to use 

timers to estimate the current FireIce level in the tank. This was implemented by having the 

base computer time how long the pump has sprayed and use that in conjunction with the 

calculated average flow rate of the FireIce. More specifically, when the user brings up the 
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client, a function is run which fetches the logged current level of the FireIce from the Control 

Server and displays it in the GUI. Then, when the user selects the “Start” button, a function is 

run which posts a message to the Control Server to begin spraying, sets the variable spraying to 

be true, and begins the updateFireIce function. This function checks if the variable spraying is 

set to true, and if so it calculates the total amount of time this session that the pump has been 

spraying and uses the flow rate and initial level of the tank to determine the current level of 

FireIce. If the last height was above 10%, it then updates the height of the tank level bar and 

label in the GUI. The color of the tank level is also changed to yellow if the height drops below 

50% and then red once it is below 25%. If the variable spraying is still set to true, a timeout is 

set to run updateFireIce again in 1 second. If the last height of the bar was not above 10%, 

however, the bar is not updated and an automatic “Stop” command is sent to the Control 

Server. This was added to prevent the user from accidentally running the pump while there is 

no FireIce left which could damage it.  

When the user selects the “Stop” button, a message is posted to the Control Server to 

stop the pump, the variable spraying is set to false, and the amount of time that the pump has 

been spraying is logged to be used in further calculations of the height of the bar when the 

pump is turned on again. The current level of the FireIce is also sent to the Control Server so 

that it can be saved and accessed later if the client needs to reconnect. All of the code 

described can be seen in Appendix B: Source Code. 

The team decided to have the client keep track of the amount of FireIce in the tank 

because that would reduce the number of messages sent between the base computer and 

Raspberry Pi. Keeping the number of messages transmitted low will help to reduce any latency 

within the Control Server which is one of the team’s goals. However, the team also deemed it 

necessary to have the server log the level of the FireIce, so this was set to be done only when 

the pump is turned off as mentioned above.  

4.3.4 Temperature Sensing 

As previously mentioned, there are four temperature sensors that the client receives 

data from and displays in the GUI. To do this, when the user brings up the client, after the 
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FireIce level is initialized, updateTempData is run which retrieves the four temperature values 

from the Control Server. These temperatures are input into a Draw function which displays 

each of the temperatures in a canvas at one of the four corners of the top-view picture of the 

drone in the GUI. Each of these canvases has a circle around it which is colored based on the 

temperature in that canvas: less than 95 degrees F is green, 95 to 104 degrees F is orange, and 

104 degrees F and above is red. The colors are updated accordingly every time the Draw 

function is run. Upon the function’s completion, updateTempData sets a timeout to run itself 

again after 1 second. This updating loop will continue until the client or Control Server is closed. 

The code for these functions can be seen in Appendix B: Source Code. 

4.3.5 Fire Detection Algorithm 

The fire detection algorithm is used to pinpoint the exact location of the fire and display 

it in the GUI. To do this, the algorithm converts the image from BGR values to HSV values. Then, 

a mask is created by filtering out all of the pixels that are not within a specified range per value. 

This range was picked to maximize the amount of fire seen while also minimizing stray pixels 

that make it through the filtering. The algorithm then calculates all of the contours that are in 

the remaining image. In other words, it finds all of the places where the colors suddenly 

change. For example, going from red (the fire) to black (the screened out pixels) will create a 

contour. The algorithm then draws a box around the largest contour to bring the user’s 

attention to the fire. All of these image transformations and manipulations are done using the 

cv2 library. An example image which was run through the fire detection algorithm can be seen 

in Figure 4.15 below. 

 

Figure 4.15: Image after running through the fire detection algorithm 
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5 Results and Discussion 

5.1 Mechanical System Results 

5.1.1 Spraying System Results 

The main requirement for the mechanical system was to be able to propel FireIce to the 

fire from at least our minimum safe distance to the fire. To ensure that we accomplished this, 

we set up a test of the entire system. Our team conducted testing at the 2 meter operating 

condition to assess our calculated values against the experimental as shown in Table 5.1. In 

addition to this measurement, our team evaluated resulting spray distribution width at the end 

of the stream, receiving a result of 4 feet, or 1.22 meters.  

 

Height (m) Angle Calculated Distance (meters) Experimental Distance (meters) 

2 0 6.18 8.66 

2 15 8.82 9.65 

2 30 10.90 10.08 

2 45 11.25 10.59 
Table 5.1: Experimental Distance Results 

5.1.2 Tank Results 

Our team had calculated that we would get an estimated 3 minutes and 11 seconds of 

operation out of our tank. From testing we were able to determine that the tank had an 

experimental operation time of 1 minute and 15 seconds. This value was most likely lower than 

expected due to imperfections in the tank build, the fact that not all FireIce is usable when air 

bubbles are introduced, and due to a fluctuation current output during the test. However, 

knowing this value, we allowed the user to be notified of the FireIce levels when operating the 

drone via the software implementation on the GUI.  

5.2 Electrical System Results 

The main electrical requirement for the system, as specified in Chapter 1, was a custom 

designed PCB to control the electrical power distribution for all the different subsystems. The 
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PCB and the microprocessor needed to work together to control the on-board mechanisms, 

sensors, and signals passed between the multiple devices. Another requirement was that a 

camera system should be present on the system to allow for streaming capabilities and fire 

detection. The last requirement of the electrical system was that an effective number of 

communications signals must be implemented to control communications between the drone 

system and bas 

5.2.1 Printed Circuit Board  

The custom designed PCB used to power and control the drone as shown in section 

4.2.2 was unfortunately not able to be implemented in the final implementation of our system. 

The reasons as for why the team was not able to implement it were due to electrical failures in 

the circuitry. The team was not able to fully debug the issues plaguing the PCB, but was able to 

determine a likely cause. While the PCB was being soldered, mistakes occurred requiring the 

unsoldering of a couple of key components. It was believed by the team that during the 

unsoldering process that the slight burning of the board and the resoldering of the small 

components may have caused the board to short itself, due to the backside being a ground 

plane. Ideally, the team would have reassessed the design of the PCB to allow for more space 

for each component to make the soldering of the board easier and proceed to order and solder 

a new board. However, due to the time constraints placed upon the team, the team decided to 

recreate the circuitry on the PCB on a protoboard. 

The testing done on the protoboard showed a few minor problems with the overall 

design of the PCB. The first of these problems was the voltage requirement to operate the 

MOSFET circuit to control the pump. The schematic that was used for the original design was 

based off of the schematic that the previous team had implemented. It was overlooked by the 

team that there would be differences in the circuit used between the two different 

implementations due to the differences between the Arduino used in the previous team’s 

project and the Raspberry Pi used in the current project. In the design of the protoboard’s 

circuitry, a simple schematic was found for the MOSFET and used in place of the schematic 

shown in section 4.2.1. 
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The only other problem that was known by the team with the PCB was the connection 

for pump. It was overlooked that the size requirement for the wires connecting to the pump 

would be larger than a general purpose wire, used for the other parts of the design. The team 

corrected this oversight during the implementation of the protoboard. Figure 5.1 below shows 

a picture of the working protoboard used for the final demonstration of the system.  

 
Figure 5.1: Final Protoboard Design and Implementation 

5.2.2 FireIce Level Sensing 

As part of the sensing system of the drone, the team did not implement FireIce level 

sensing in any form. Section 2.7.2 details the different type of sensors that were tested and the 

reasoning behind why the specific type of sensor was not implemented. In lieu of sensing the 

remaining amount of FireIce in the system, the team decided on a method of estimation using 

the total time that the system has been dispelling its FireIce solution as an indication of how 

much of the solution is left. This implementation of FireIce level estimation... 

5.2.3 Camera System 

The camera system chosen by the team met the requirements as defined in Chapter 1 in 

that the camera chosen was able to stream video at an effective refresh rate and at a usable 

resolution for fire detection.  

5.2.4 Communications Links 

The basic requirement of the communication system on the drone was that the number 

of communication links between the drone and the base computer was to be minimized while 



 

65 
 

keeping all desired functionality. This requirement was successfully implemented through the 

use of two links. With the two links, as specified in section 0, the system was able to 

communicate with the drone all of the necessary commands to operate the fire containment 

system on the drone, retrieve vital information about the state of the drone such as the 

readings from the on-board temperature sensors, view the video stream from the drone, and 

be able to control on the flight of the drone.  

5.3 Software System Results 

5.3.1 Raspberry Pi and GUI 

The Raspberry Pi was first initialized and had its software updated. Next, the camera 

module was connected and video was streamed to the Pi’s screen. This was done to ensure that 

the camera was working and to get a general idea of the resolution and framerate that could be 

expected. Once the streaming was working, the GPIO capabilities needed to be tested. The 

Raspberry Pi was temporarily connected to a breadboard which held an ADC chip that was 

connected to few other components: LEDs, a servo motor, and several potentiometers. First, 

the configuration for the communication between the ADC and the Pi through SPI was set up 

and tested. The potentiometers simulated temperature data that the temperature sensors 

would output in the final system. The LEDs were then used to familiarize the team with 

programming the GPIO pins.  

Testing was then conducted to make sure that the camera and temperature sensing 

data would properly be sent to the GUI and displayed. Following this, tests were successfully 

run to see if the server would receive the commands from the GUI. After this testing was 

completed, the parameter for the FireIce level sensing estimation algorithm was calibrated and 

the Raspberry Pi and GUI were ready to be tested within the complete system. 

5.3.2 Communication 

As previously mentioned, the base communicates with the Raspberry Pi by running a 

client which is hosted by a server on the Pi. Every time data is requested or sent, it is 
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transmitted via XML HTTP messages. These messages are delivered over the WiFi, so the 

Raspberry Pi and base computer must always be connected to the same WiFi. The strength of 

the WiFi connection could result in delays in the messages and camera streaming to the base 

computer, but this will be tested as soon as the team has the entire system built. Assuming that 

there is a good WiFi connection, the XML HTTP messages will be reliable as HTTP messages 

already deal with dropped packages and have error detection built into it.  

When it comes to further projects, it would be best to integrate a communication 

method that would allow the drone and base computer to be off of any WiFi. For this project, 

however, a WiFi connection was needed for other purposes, so it was best to keep the 

communication lines to a minimum and utilize what the team already had.  

5.3.3 Fire Detection Algorithm 

The Fire Detection Algorithm was calibrated and tested with multiple fire sources. The 

first tests were on videos of boat fires. These tests were relatively successful, screening out 

most of the undesired colors from the image stream. The reflection of the screen did cause 

some uncertainty in the testing results which is why the team then moved on to testing with 

candles. Upon pointing the camera at the fire, the algorithm accurately captured all of the 

colors of the fire while screening out the rest. After a few more tests in different lighting 

environments, the team deemed the candle testing to be successful, and the algorithm was 

ready to be fully integrated into the entire system. 

5.3.4 Mission Planner 

In order to calibrate the Pixhawk’s compass and magnetometer, the team used Mission 

Planner, a ground station application provided by ArduPilot. Every time the drone is used, it 

should be properly calibrated in order to optimize flight. Although Mission Planner allows for 

users to send the drone target locations, the team will not have much use for that, however, 

Mission Planner does allow for the calibration of the Pixhawk and viewing of the preflight 

warnings and errors which are essential to the flight safety of the drone. Figure 5.2 below 

shows Mission Planner’s flight data interface which displays the warnings and errors as well as 

the drone’s position and flight metrics. 



 

67 
 

 
Figure 5.2: Mission Planner Flight Data Interface 
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6 Conclusions and Recommendations 

The goal of the Fire Containment Drone was to create a UAV system in order to aid in 

the containment and control of offshore vessel fires. This was completed by determining 

specific requirements that must be addressed in order to have a functional and effective 

system. In conclusion, the team was able to meet all the design requirements after researching 

the different choices and choosing the best options. Although the team ran into many different 

changes over the course of the project, the final testing of the system delivered desirable 

results that allows for future opportunities and further advancement, 

Mechanically, the system performed as expected, if not better. The system was 

designed with a safety factor of 1.5 for the minimum safe distance of the drone away from the 

fire. This led us to need an output that could span a minimum of 6.18 meters using a solution of 

20% FireIce and 80% water. From our testing, we found that our system was capable of 8.66 

meters at the most critical case (elevation of 2 meters, pitch of 0 degrees), exceeding our 

expectations. In addition, we were able to achieve a 1.22 meter, or 4 feet, spray coverage, 

which is satisfactory for a path of egress.  

Future recommendations for the mechanical side include increasing the FireIce holding 

capacity and increasing the pressure output by implementing a more powerful pump. However, 

the current system is as optimized as possible given our weight restrictions, so a drone that is 

capable of carrying a higher payload would be required. By implementing a better pump, it 

would be able to ideally use a fluidic oscillator which would achieve similar results to the solid 

stream nozzle, but also be able to fluctuate the orientation of the stream mechanically.  

Electrically, although the PCB did not go as planned, the team was still able to effectively 

create the same result on a protoboard that could be put on the system. The different circuits 

on the protoboard were able to produce the results allowing the software and mechanical 

portions of the system to communicate. The Raspberry Pi was a good microprocessor choice 

that was very universal and fulfilled many of the requirements the team needed. With built-in 

WiFi, GPIO pins, and high processing power, the team was able to use this single device for 

electrical and software needs.  
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Future recommendations for the electrical side include having a functional working PCB 

that had all the required circuits and components as well as some extra space for 

improvements and changes. Due to time restraints the team was not able to order a second 

version of the PCB with the fixed problems. The original PCB was also very small and made it 

very difficult to solder and change out components as needed. Increasing space on the physical 

face of the board should be a priority. In addition, a better way to detect the FireIce levels in 

the storage tank should be implemented. The team choose to go with a software 

implementation based on time, however, a sensor measurement would be more reliable.  

Future recommendations for the software would be to move more towards a 

completely autonomous system. The team started working on portions such as the fire 

detection algorithm that could be use in an autonomous system. In addition, the team used a 

WiFi router to host the communication between the base computer and the system on the 

drone platform. Although this worked well, it has very limited range and would not be ideal for 

land/air communication. The implementation of higher range devices over radio signal is more 

preferred. 

Finally, in general, the team was not able to test the system on the drone in a flight test 

due to time restraints and heavy delays. These test should be carried out moving forward to get 

a clear understanding of what can be improved on and precisely how effective the system 

performs under flight conditions. A live test fire should also be performed to evaluate the 

performance of the FireIce fire retardant.  

 

 

 

  



 

70 
 

7 References 

OpenCV Documentation. (2016). Retrieved from http://opencv.org 

 

Teledyne DALSA. “CCD vs. CMOS” Teledyne DALSA Inc., n.d. Web. 15 Sept. 2017. 
<http://www.teledynedalsa.com/imaging/knowledge-center/appnotes/ccd-vs-cmos/> 

 

Floreano, D., & Wood, R. J. (2015). “Science Technology and the Future of Small Autonomous 
Drones” Nature. 21 Sept. 2016. Web.  
<http://www.nature.com/nature/journal/v521/n7553/full/nature14542.html> 

 

Hansen, C. (2015). "How To Measure The Level Of Viscous Liquids." APG. Web. 15 Sept. 2017. 
<https://www.apgsensors.com/about-us/blog/how-to-measure-the-level-of-viscous-liquids>. 
 

SightLogix., n.d. “How Thermal Cameras Work” Web. 21 Sept. 2017. 
<http://www.sightlogix.com/how-thermal-cameras-work/>. 
 

Kim, G. (201A study of fluidic oscillators as an alternative pulsed vortex generating jet actuator 
for flow separation control 1).  
 
Lockman, Arthur, and Tucker Haydon. De-Mining with UAVs. Rep. Worcester: Worcester 
Polytechnic Institute, 2016. Print. 
 
MAVLink micro air vehicle communication protocol. Retrieved from 
http://qgroundcontrol.org/mavlink/start 
 
MAVLink python bindings. (2016). Retrieved from 
http://qgroundcontrol.org/mavlink/pymavlink 

 

National Fire Protection Association., Society of Fire Protection Engineers., and Books24x7 
Engineering Pro Collection. (2002) SFPE Handbook of Fire Protection Engineering. National Fire 
Protection Agency. Web.  
 
National Research Council, Staff, Complete Ebrary Academic, and Halon National Research 
Council . Naval Studies Board. Committee on Assessment of Fire Suppression Substitutes and 
Alternatives to. Fire Suppression Substitutes and Alternatives to Halon for U.S. Navy 
Applications. Washington, D.C: National Academy Press, 1997. Print.  
 

NFPA. (2016). NFPA 1405: Guide for land based departments that respond to marine vessel 
fires (6th ed.) National Fire Protection Agency. 

http://qgroundcontrol.org/mavlink/pymavlink


 

71 
 

 
NFPA. (2015) "All About Fire." National Fire Protection Association. Web. 21 Sept. 2016. 
<http://www.nfpa.org/news-and-research/news-and-media/press-room/reporters-guide-to-
fire-and-nfpa/all-about-fire>  
 

Pahlaven, K., & Krishnamurthy, P. (2013). Principles of Rireless Access and localization Wiley. 
 

Peterson, C., Neilan, T., Rubenstein, D., & Toribio, B. (2016). Fire Containment Drone. 
Worcester Polytechnic Institute. Report. 28 Aug. 2016. 
 

Weyandt, N., & Janssens, M. (2008). Fire extinguisher performance evaluation with GelTech 
solutions inc.'s FireIce water additive on class 2-A and 40-A cribs and A ten-tire fire in general 
accordance with UL 711. (). San Antonio, TX: SouthWest Research Institute.  
 

XBee® DigiMesh® 2.4. Retrieved from https://www.digi.com/products/xbee-rf-
solutions/modules/xbee-digimesh-2-4#specifications 

 

  

https://www.digi.com/products/xbee-rf-solutions/modules/xbee-digimesh-2-4#specifications
https://www.digi.com/products/xbee-rf-solutions/modules/xbee-digimesh-2-4#specifications


 

72 
 

8 Appendix A: System Diagram 
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9 Appendix B: Source Code 

Raspberry Pi (Python) 

import cv2 

from PIL import Image 

from http.server import BaseHTTPRequestHandler, HTTPServer 

import io 

import time 

import cgi 

from multiprocessing import Queue, Process, Value 

import signal 

from picamera import PiCamera 

from picamera.array import PiRGBArray 

from time import sleep 

import numpy as np 

import RPi.GPIO as GPIO 

import os 

import spidev 

 

""" 

Written by: John Lomi 

""" 

 

#define pins 

motor1Inv = 12 

motor1 = 13 

motor1En = 19 

pumpPin = 20 

 

#setup GPIO 

GPIO.setmode(GPIO.BCM) 

GPIO.setwarnings(False) 

 

GPIO.setup(motor1Inv, GPIO.OUT) 

GPIO.setup(motor1, GPIO.OUT) 

GPIO.setup(motor1En, GPIO.OUT) 

GPIO.setup(pumpPin, GPIO.OUT) 

 

GPIO.output(pumpPin, 1) 

GPIO.output(motor1En, 0) 

 

#setup SPI 

spi = spidev.SpiDev() 

spi.open(0,0) 

 

#setup camera 

capture = None 

startQ = Queue(maxsize=3) 

endQ = Queue(maxsize=3) 
 

 

class CamHandler(BaseHTTPRequestHandler): 
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    """Handle video streaming 

 

    Arguments: 

    BaseHTTPRequestHandler -- The handler for the HTTP requests 

 

This class handles the streaming of the video to all clients that submit 

a 'GET' request 

    """ 

 

    def do_GET(self): 

  """Post a jpg repeatidly to all connected clients to create a 

video""" 

        if self.path.endswith('.mjpg'): 

            self.send_response(200) 

            self.send_header('Content-type','multipart/x-mixed-replace; 

boundary=--jpgboundary') 

            self.end_headers() 

 

            while True: 

                try: 

                    frame = endQ.get(block=True, timeout=None) 

                    jpg = Image.fromarray(frame, 'RGB') 

                    tmpFile = io.BytesIO() 

                    jpg.save(tmpFile, 'JPEG') 

                    self.wfile.write(bytes("--jpgboundary", 'UTF-8')) 

                    self.send_header('Content-type', 'image/jpeg') 

                    self.send_header('Content-length', 

str(bytes(tmpFile.getbuffer().nbytes), 'UTF-8')) 

                    self.end_headers() 

 

                    jpg.save(self.wfile, 'JPEG') 

 

                    print("Image sent") 

 

                except KeyboardInterrupt: 

                    print("KeyboardInterrupt caught") 

                    break 

            return 

 

        if self.path.endswith('.html'): 

            print("path ends with .html") 

            self.send_response(200) 

            self.send_header('Content-type', 'text/html') 

            self.end_headers() 

 

            self.wfile.write(bytes('<html><head></head><body>', 'UTF-8')) 

            self.wfile.write(bytes('<img 

src="http://192.168.1.130:5001/cam.mjpg"/>', 'UTF-8')) 

            self.wfile.write(bytes('</body></html>', 'UTF-8')) 

 

            return 

 

 

class CtlHandler(BaseHTTPRequestHandler): 

    """Handle control and status communications 

 

    Arguments: 
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    BaseHTTPRequestHandler -- The handler for the HTTP requests 

 

    This class handles requests for statuses and commands for system control 

    """ 

 

    def do_GET(self): 

        """Send information to base computer including FireIce level and 

temperature data""" 

        global tankPct 

        print("CtlHandler: do_GET") 

        self.send_response(200) 

        self.send_header('Content-type', 'text/plain') 

        self.send_header('Access-Control-Allow-Origin', '*') 

        self.end_headers() 

 

        if self.path.endswith('getPct'): 

            #send back tank percentage 

            self.wfile.write(bytes(str(tankPct.value), 'UTF-8')) 

        elif self.path.endswith('getTemp'): 

            #measure temp sensors 

            temp_data = getTemp() 

            #send back the data 

            self.wfile.write(bytes(temp_data, 'UTF-8')) 

        

        return 

     

    def do_POST(self): 

        """Process commands to the Pi including Spray, Rotation, and Image 

Processing""" 

        global pImg, tankPct 

        print("CtlHandler: do_POST") 

        content_length = int(self.headers['Content-Length']) 

        post_data = self.rfile.read(content_length) 

 

        self.send_response(200) 

        self.send_header('Access-Control-Allow-Origin', '*') 

        self.end_headers() 

 

        if self.path.endswith('setPct'): 

            #update tank percentage 

            post_data = float(post_data) 

            tankPct.value = post_data 

            print("---------- {}".format(tankPct.value)) 

        else: 

            post_data = int(post_data) 

             

            #switch through data types 

            if post_data == 1: 

                #Start spraying 

                print("---------- Spray") 

                startSpray() 

                pass 

            elif post_data == 2: 

                #Stop spraying 

                print("---------- Stop Spray") 

                stopSpray() 

                pass 
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            elif post_data == 3: 

                #Rotate Up 

                print("---------- Rotate Up") 

                rotateUp() 

                pass 

            elif post_data == 4: 

                #Rotate Down 

                print("---------- Rotate Down") 

                rotateDown() 

                pass 

            elif post_data == 5: 

                #toggle image processing 

                pImg.value = 1 ^ pImg.value 

                print("---------- Toggle Img Processing") 

            else: 

                print("Unrecognized post_data") 

        return 

 

 

def getTemp(): 

    """Return temperature data from the sensors using the ADC and SPI""" 

    temp1 = toTemp(readADC(0)) 

    temp2 = toTemp(readADC(1)) 

    temp3 = toTemp(readADC(2)) 

    temp4 = toTemp(readADC(3)) 

 

    return '{}\n{}\n{}\n{}'.format(temp1, temp2, temp3, temp4) 

 

 

def readADC(chan): 

    """Read data from the ADC on the specified channel 

 

    Arguments: 

    chan -- the ADC channel to use 

    """ 

 

    adc = spi.xfer2([1, (8+chan)<<4, 0]) 

    data = ((adc[1]&3) << 8) + adc[2] 

    return data 

 

 

def toTemp(data): 

    """Convert ADC data to a Farenheight temperature 

 

    Arguments: 

    data -- the value to be converted 

    """ 

 

    return int((data * 297)/float(1023)) 

 

 

def startSpray(): 

    """Turn on the pump to start spraying""" 

    GPIO.output(pumpPin, 0) 

    pass 
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def stopSpray(): 

    """Turn off the pump to stop spraying""" 

    GPIO.output(pumpPin, 1) 

    pass 

 

 

def rotateUp(): 

    """Turn the DoF motor CCw""" 

    GPIO.output(motor1, 1) 

    GPIO.output(motor1Inv, 0) 

 

    GPIO.output(motor1En, 1) 

    sleep(.1) 

    GPIO.output(motor1En, 0) 

    pass 

 

 

def rotateDown(): 

    """Turn the DoF motor CW""" 

    GPIO.output(motor1, 0) 

    GPIO.output(motor1Inv, 1) 

 

    GPIO.output(motor1En, 1) 

    sleep(.1) 

    GPIO.output(motor1En, 0) 

    pass 

 

 

def putImage(): 

    """Grab image from camera and put into a queue""" 

    global shutdown, frameQ 

    camera = PiCamera() 

 

    camera.framerate = 15 

    camera.resolution = (640, 480) 

 

    rawCap = PiRGBArray(camera, size=(640, 480)) 

 

    #allow camera to warm up 

    sleep(.5) 

 

    try: 

        for frame in camera.capture_continuous(rawCap, format="bgr", 

use_video_port=True): 

            frame = frame.array 

 

            #try to add image to queue, skip if timeout 

            try: 

                startQ.put(frame, block=False) 

            except: 

                pass 

 

            #clear stream 

            rawCap.truncate(0) 

 

    except KeyboardInterrupt: 

        print("KeyboardInterrupt Caught") 
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        #cleanup 

        camera.close() 

        cv2.destroyAllWindows() 

 

 

def processImage(): 

    """Process the frames from the camera and put them in a queue to be 

transmitted""" 

    try: 

        while True: 

            try: 

                image = startQ.get(block=True, timeout=1) 

            except: 

                pass 

            else: 

                if(pImg.value): 

                    #convert to HSV 

                    image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) 

                                 

                    #define mask boundaries 

                    # [0, 178, 178]  [32, 255, 255] 

                    lower = np.array([0, 125, 125], dtype='uint8') 

                    upper = np.array([32, 255, 255], dtype='uint8') 

 

                    #mask image 

                    mask = cv2.inRange(image, lower, upper) 

                    #image = cv2.bitwise_and(image, image, mask = mask) 

 

                    #find contours 

        contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_SIMPLE)[-2] 

 

                    #find the largest contour 

                    if(len(contours)): 

                        maxLen = 0 

                        maxInd = 0 

                        for i in range(0, len(contours)): 

                            contLen = len(contours[i]) 

                            if(contLen > maxLen): 

                                maxLen = contLen 

                                maxInd = i 

 

                        #create box around largest contour 

                        x,y,w,h = cv2.boundingRect(contours[maxInd]) 

 

                        image = cv2.cvtColor(image, cv2.COLOR_HSV2RGB) 

                     

                        cv2.rectangle(image, (x,y), (x+w, y+h), (0,255,0), 2) 

                    else: 

                        image = cv2.cvtColor(image, cv2.COLOR_HSV2RGB) 

                         

                else: 

                    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 

 

                 

                #put image in final queue 

                endQ.put(image, block=True, timeout=None) 
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    except KeyboardInterrupt: 

        pass 

 

 

def streamServer(): 

    """Start video streaming server""" 

    try: 

        server = HTTPServer(('', 5001), CamHandler) 

        print("5001 started") 

        server.serve_forever() 

    except KeyboardInterrupt: 

        server.socket.close() 

 

 

def controlServer(): 

    """Start control server""" 

    try: 

        server = HTTPServer(('', 5002), CtlHandler) 

        print("5002 started") 

        server.serve_forever() 

    except KeyboardInterrupt: 

        server.socket.close() 

 

 

def main(): 

    global tankPct 

    global pImg 

    tankPct = Value('f', 100.0) 

    pImg = Value('i', 0) 

     

    key = cv2.waitKey(1) & 0xFF 

 

    #initialize image processing processes 

    putP = Process(target=putImage) 

    imgP1 = Process(target=processImage) 

 

    #initialize server processes 

    streamP = Process(target=streamServer) 

    controlP = Process(target=controlServer) 

 

    #start all processes 

    putP.start() 

    imgP1.start() 

    streamP.start() 

    controlP.start() 

 

    #loop until ctrl-c 

    try: 

        while True: 

            pass 

    except KeyboardInterrupt: 

        pass 

     

     

 

    #end processes 
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    print("Ending Processes...") 

    GPIO.cleanup() 

    imgP1.join() 

    putP.join() 

    streamP.join() 

    controlP.join() 

 

 

if __name__ == '__main__': 

    main() 

Base Computer Server (JavaScript) 

/* 

 * Written by Kyle Young 

 * Last edited: 3/15/2017 

 *  

 * This code will run the GUI for the fire containment drone on localhost 

port 5002. 

 * It also provides the appropriate libraries and images so that the GUI is 

properly displayed. 

 */ 

 

var http = require('http') 

  , fs   = require('fs') 

  , url  = require('url') 

  , qs   = require('querystring') 

  , path = require('path') 

  , port = 5002; 

 

// The function run every time a page is loaded on the server 

var server = http.createServer (function (req, res) { 

  var uri = url.parse(req.url, true) 

 

  //function sendIndex(res, movieList,timer, query, numRes) 

  switch( uri.pathname ) { 

    case '/': 

      sendFile(res, 'final_gui.html', 'text/html') 

      break 

    case '/final_gui.html': 

        sendFile(res, 'final_gui.html', 'text/html') 

        break 

    case '/img/drone.png': 

      sendFile(res, 'public/img/drone.png', 'image/png') 

      break 

    case '/js/scripts.js': 

      sendFile(res, 'public/js/scripts.js', 'text/javascript') 

      break 

    case '/style.css': 

        sendFile(res, 'public/css/style.css', 'text/css') 

        break 

    case '/bootstrap.min.css': 

      sendFile(res, 'public/css/bootstrap.min.css', 'text/css') 

      break 

    case '/bootstrap.min.css.map': 
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      sendFile(res, 'public/css/bootstrap.min.css.map', 'text/css') 

      break 

    default: 

      res.end('404 not found') 

  } 

}); 

 

// Listens on environment's port or port 5002 

server.listen(process.env.PORT || 5002) 

console.log('listening on 5002') 

var temps = [75,80,85,70] 

 

 

// sends files to client when requested 

function sendFile(res, filename, contentType) { 

  contentType = contentType || 'text/html' 

 

  fs.readFile(filename, function(error, content) { 

    res.writeHead(200, {'Content-type': contentType}) 

    res.end(content, 'utf-8') 

  }) 

 

} 

 

Graphical User Interface (HTML) 

<!-- 
Written by Kyle Young 
Last Edited: 3/15/2017 
 
This code will generate the GUI for the fire containment drone. If it does not connect to the 
Control Server at the URL in the img tag,  
it will not load the display correctly. 
--> 
 
<html> 
<head> 
 <title>Fire Containment Drone</title> 
 <meta charset="utf-8"> 
 <meta http-equiv="X-UA-Compatible" content="IE=edge"> 
 <meta name="viewport" content="width=device-width, initial-scale=1"> 
 <link rel="stylesheet" type="text/css" href="style.css"> 
 <link rel="stylesheet" type="text/css" href="bootstrap.min.css"> 
</head> 
 
<body style="background-color:grey;"> 
 <script src="js/scripts.js"></script> 
 <div class="content"> 
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  <img src="http://192.168.1.131:5001/cam.mjpg" alt="Stream Picture" 
width=640 height=480 style="float:left"> 
  <!-- <div id="picture">Image Stream</div> --> 
  <input type="button" name="downBtn" id="fireDetect" value="Fire Detection" 
class="enable btn" onClick="toggle();"> 
 </div> 
  
 <div class="sidebar"> 
  <div> 
   <input type="button" name="sprayBtn" id="spray" value="Start Spray" 
class="enable btn btn-success" onClick="sendData(1);"> 
   
   <input type="button" name="upBtn" id="up" value="Rotate Up" 
class="enable btn btn-primary" onClick="sendData(3);"> 
  </div> 
  <div> 
   <input type="button" name="stopBtn" id="stop" value="Stop Spray" 
class="enable btn btn-danger" onClick="sendData(2);"> 
   
   <input type="button" name="downBtn" id="down" value="Rotate Down" 
class="enable btn btn-info" onClick="sendData(4);"> 
  </div> 
  <div> 
   <img id="droneImg" id="droneImage" src="img/drone.png" alt="Image of 
Drone" width='278px' height='278px' style="float:left"> 
   <canvas id="temp0" width='278px' height='278px'></canvas> 
   <canvas id="temp1" width='278px' height='278px'></canvas> 
   <canvas id="temp2" width='278px' height='278px'></canvas> 
   <canvas id="temp3" width='278px' height='278px'></canvas> 
 
   <div id="myProgress"> 
     <div id="myBar"> 
       <div id="label">100%</div> 
     </div> 
   </div> 
  </div> 
 </div> 
 <script> 
  initializeFireIceLevel() 
 
  window.beforeunload = closingCode; 
   
  // Draw([90,95,100,105]); // can be run instead of updating temp data in 
initializeFireIceLevel to display example data 
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 </script> 
</body> 
</html>  

Graphical User Interface (JavaScript) 

/* 

 * Written by Kyle Young 

 * Last Edited: 3/15/2017 

 * 

 * This file contains all of the scripts used in the fire containment drone 

GUI: 

 *    - Sending data 

 *    - Updating temp data 

 *    - Displaying temps 

 *    - Initializing the FireIce level 

 *    - Updating the FireIce level 

 */ 

 

//================= Variables 

=============================================================================

================================== 

var spraying = 0; //variable to keep track of whether the drone is currently 

spraying or not. Used for FireIce update 

var height = 100; //starting height of the fireIce bar 

var initialHeight = 100; //initial height of the FireIce bar retrieved from 

the control server 

var tankSeconds = 75; //seconds until tank runs out of FireIce 

var percentPerSecond = 100/tankSeconds; //percentage that the bar should drop 

per second 

var startTime = 0; //initializes the starting spray time to 0 

var loggedTime = 0; //the amount of time in the past during this session that 

the pump has sprayed 

var lastHeight = 100; //previous height of the FireIce bar 

var fireDetect = 0; //toggle for fire detection algorithm button 

var requestTemp = 1; //variable used to stop the client from requesting 

temperatures from the server after the client is closed 

 

//================= Functions 

=============================================================================

================================== 

var IP_ADDRESS = "192.168.1.131"; 

 

/* 

 * Send data to the control server 

 * @param num - the number to be sent based on the button pressed 

 */ 

function sendData ( num ) { 

  var oReq = new XMLHttpRequest(); 

 

  oReq.open("POST", "http://" + IP_ADDRESS + ":5002", true); 

 

  oReq.send(num); 

 

  console.log("Sent: " + num); 
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  if(num == 1){ //if start spraying 

    spraying = 1; 

    console.log("spraying="+spraying) 

 

    //set start time for spraying 

    startTime = new Date().getTime()/1000; 

 

    //start updating FireIce level 

    updateFireIce(); 

  } 

  else if(num == 2){ //if stop spraying 

    spraying = 0; 

    console.log("spraying="+spraying) 

 

    //calculate time since started spraying 

    var addedTime = new Date().getTime()/1000 - startTime; 

 

    //update total past time sprayed since session started 

    loggedTime = loggedTime + addedTime; 

 

    console.log("loggedTime = " + loggedTime); 

 

    //update control server's logged FireIce level 

    var oReq2 = new XMLHttpRequest(); 

    oReq2.open("POST", "http://" + IP_ADDRESS + ":5002/setPct", true); 

    oReq2.send(height.toString()); 

  } 

} 

 

/* 

 * Toggle the color for the fire detection algorithm button so that the user 

knows if it is currently selected or not 

 */ 

function toggle(){ 

    //send fire detection message to control server 

    sendData(5); 

 

    var fireButton = document.getElementById("fireDetect"); 

 

    if(fireDetect == 0){ //if fire detecting 

        fireButton.style.backgroundColor = "#030D73"; 

        fireButton.style.color = "white"; 

        fireDetect = 1; 

    } 

    else { //if not fire detecting 

        fireButton.style.backgroundColor = "teal"; 

        fireButton.style.color = "inherit"; 

        fireDetect = 0; 

    } 

} 

 

/* 

 * Code to run when the page closes 

 */  

function closingCode(){ 

    requestTemp = 0; 
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    return null; 

} 

 

/* 

 * Updates the temperature data by requesting it from the control server 

 */ 

function updateTempData (){ 

    console.log('Updating temps'); 

    if(requestTemp == 1){ 

        function reqListener(){ 

            var temp = this.responseText.split('\n'); 

 

            //draw temps 

            Draw(temp) 

 

            //set timeout for another temp update 

            setTimeout(updateTempData,1000) 

        } 

 

        var oReq = new XMLHttpRequest(); 

 

        oReq.addEventListener("load", reqListener) 

 

      oReq.open("GET", "http://" + IP_ADDRESS + ":5002/getTemp", true); 

      oReq.send(1); 

    } 

} 

 

/* 

 * Draws the temperatures onto the top-view of the drone 

 * @param temps - an array of temperature strings  

 */ 

function Draw(temps){ 

    var img = document.getElementById("droneImg"); 

    for(var i = 0; i < 4; i++){ 

      var cnvs = document.getElementById('temp'+ i); 

       

      cnvs.style.position = "absolute"; 

      cnvs.style.left = img.offsetLeft + "px"; 

      cnvs.style.top = img.offsetTop + "px"; 

       

      var ctx = cnvs.getContext("2d"); 

      ctx.beginPath(); 

 

      ctx.font = "32px serif"; 

 

      //put text in ring 

      if(i == 0){ //front left 

        ctx.arc(47, 47, 30, 0, 2 * Math.PI, false); 

        ctx.fillStyle = 'white'; 

          ctx.fill(); 

          ctx.fillStyle = 'black'; 

          ctx.textAlign = 'center'; 

        ctx.fillText(temps[i], 47, 57); 

      } 

      else if(i == 1){ //front right 

        ctx.arc(231, 47, 30, 0, 2 * Math.PI, false); 
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        ctx.fillStyle = 'white'; 

          ctx.fill(); 

          ctx.fillStyle = 'black'; 

          ctx.textAlign = 'center'; 

        ctx.fillText(temps[i], 231, 57); 

      } 

      else if(i == 2){ //back left 

        ctx.arc(47, 231, 30, 0, 2 * Math.PI, false); 

        ctx.fillStyle = 'white'; 

          ctx.fill(); 

          ctx.fillStyle = 'black'; 

          ctx.textAlign = 'center'; 

        ctx.fillText(temps[i], 47, 241); 

      } 

      else{ //back right 

        ctx.arc(231, 231, 30, 0, 2 * Math.PI, false); 

        ctx.fillStyle = 'white'; 

          ctx.fill(); 

          ctx.fillStyle = 'black'; 

          ctx.textAlign = 'center'; 

        ctx.fillText(temps[i], 231, 241); 

      } 

       

       

      ctx.lineWidth = 5; 

 

      //adjust colors of ring based on temp 

      if(temps[i] < 95){ 

        ctx.strokeStyle = '#00ff00'; 

      } 

      else if(temps[i] < 104){ 

        ctx.strokeStyle = 'orange'; 

      } 

      else{ 

        ctx.strokeStyle = 'red'; 

      } 

       

      ctx.stroke(); 

    } 

} 

 

/* 

 * Updates the FireIce bar in the GUI based on the change of time since 

spraying began and the initial level 

 */ 

function updateFireIce(){ 

    if(spraying == 1){ //if currently spraying 

        var timeSprayed = new Date().getTime()/1000 - startTime + loggedTime; 

        height = Math.max(Math.round((initialHeight - (percentPerSecond * 

timeSprayed))*100)/100,0); 

        if(lastHeight > 10){ //if last height was great enough, continue to 

spray 

            var level = document.getElementById("myBar");  

 

            var barHeight = 278; //should be dynamically allocated, but was 

unable to 
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            // calculate height of bar 

            level.style.height = height + '%'; 

            document.getElementById("label").innerHTML = height * 1 + '%'; 

            level.style.marginTop = barHeight - 

Math.floor(barHeight*height/100)+'px'; 

 

            console.log(height) 

            lastHeight = height; 

 

            // choose appropriate color for bar 

            if(height > 50){ 

                level.style.backgroundColor = "green"; 

            } 

            else if(height > 25){ 

                level.style.backgroundColor = "orange"; 

            } 

            else{ 

                level.style.backgroundColor = "red"; 

            } 

 

            if(spraying){ 

                console.log("adding updateFireIce to stack") 

                setTimeout(updateFireIce,1000); 

            } 

        } 

        else{ //stop spraying 

            sendData(2); 

        } 

    } 

} 

 

/* 

 * Retrieve the initial FireIce level from the control server 

 */ 

function initializeFireIceLevel(){ 

    function reqListener(){ 

        var temp = this.responseText.split('\n'); 

        initialHeight = parseInt(temp); 

 

        var level = document.getElementById("myBar");  

 

        var barHeight = 278; //should be dynamically allocated, but wasn't 

working 

 

        // calculate height for bar 

        level.style.height = initialHeight + '%'; 

        document.getElementById("label").innerHTML = initialHeight * 1 + '%'; 

        level.style.marginTop = barHeight - 

Math.floor(barHeight*initialHeight/100)+'px'; 

 

        console.log(initialHeight) 

        lastHeight = initialHeight; 

 

        // choose appropriate color for bar 

        if(initialHeight > 50){ 

            level.style.backgroundColor = "green"; 

        } 
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        else if(initialHeight > 25){ 

            level.style.backgroundColor = "orange"; 

        } 

        else{ 

            level.style.backgroundColor = "red"; 

        } 

 

        updateTempData(); 

    } 

 

    var oReq = new XMLHttpRequest(); 

 

    oReq.addEventListener("load", reqListener) 

 

  oReq.open("GET", "http://" + IP_ADDRESS + ":5002/getPct", true); 

 

  oReq.send(); 

  console.log("initializing FireIce Level"); 

} 

 


