

LOSS RATIO MODELING FOR BUSINESS OWNER'S POLICY

11TH APRIL, 2012

PRESENTATION OUTLINE

Introduction

- Goals and Objective
- Exploratory Analysis
- Data Preparation
- Modeling Process
 - Model Design
 - Model Fitting
 - Testing and Adjusting Model
- Key Results
- Conclusions
- Acknowledgements

INTRODUCTION

Background on Project:

- Worcester Polytechnic Institute Final Project
- Past usage of credit scores in Personal Lines
- Recent shift to usage in Commercial Lines

Business Issue:

How can credit scores be used to improve the predictive ability of the current Hanover Business Owner's Policy model?

Proposed Solution:

Model that implements a credit score variable to predict loss ratio for each policy.

PRESENTATION OUTLINE

- Introduction
- Goals and Objective
- Exploratory Analysis
- Data Preparation
- Modeling Process
 - > Model Design
 - Model Fitting
 - Testing and Adjusting Model
- Key Results
- Conclusions
- Acknowledgements

PROJECT GOALS AND OBJECTIVES

- Identify a base <u>set of risk factors</u> for Business Owner's Policy.
- 2. Use these risk factors to calculate <u>predicted loss ratios</u> for each policy.
- 3. Bucket predicted loss ratios into categories according to <u>level of risk</u>.

PRESENTATION OUTLINE

- Introduction
- Goals and Objective
- Exploratory Analysis
- Data Preparation
- Modeling Process
 - Model Design
 - > Model Fitting
 - Testing and Adjusting Model
- Key Results
- Conclusions
- Acknowledgements

We outlined <u>three</u> primary goals:

- I. Familiarize ourselves with the data set and composition of various data fields.
 - Graphical representations of make-up of data variables.
 - Statistical analysis on data variables
- 2. Observe relationships between variables different data trends and relationships amongst variables.
 - Univariate analysis by plotting variables against loss ratios.
 - Correlation among credit variables
- 3. Identify changes necessary to improve the data set.
 - Identification of invalid, missing or inconsistent data
 - Loss ratio analysis to identify outliers.

There were 299, 441 policies over the period 2006-2011

<u>Numeric Data</u>	 Histograms for numeric variables Scatter plots of loss ratio vs. variables. Box and Whisker plots 	
<u>Categorical Data</u>	 Bar Graphs to show make-up of categories Frequency tables showing percentage breakup. 	
<u>Invalid, Missing or</u> Inconsistent Data	 Policies missing credit information. Incurred losses with negative, blank and extreme values. Building, Property and Contents limits with values <100. Rerated premiums with values <500. Business start and control year with years in 18th Century. 	

inover

LR Relativities by Effective Year

Loss Ratio Relativity

inover

LR Relativities by Market Segment

LR Relativities by State

LR Relativities by Program

nover

Loss Ratio Relativity

LR Relativities by Book Transfer Code

Loss Ratio Relativity

LR Relativities by Construction Type

LR Relativities by Protection Code

Incurred Loss

Rerated Premium

Population of Credit Variables.

Variable	Number of Zeros	Number of non-zero policies	Number of NA's	Total
C Points	5,822	179,316	114,303	299,441
F Points	5,822	179,216	114,403	299,441
Liens	187,374	195	111,872	299,441
Suits	187,421	148	111,872	299,441
Judgments	187515	54	111,872	299,441
Legal Status	0	134, 638	164,803	299,441

C Points (Risk of credit default)

CPoints Distribution

CPoints

C Points (Risk of credit default) LR Relativities by C Points

F Points (Risk of financial stress)

FPoints Distribution

F Points (Risk of financial stress)

änover

LR Relativities by F Points

C Points vs. F Points Scatter plot

EXPLORATORY ANALYSIS (SUMMARY)

- Roughly 40% of policies had no credit data.
- Noticed <u>unexpected values</u> for some variables:
 - Rerated premiums (below \$500, the minimum premium amount)
 - Incurred losses (below \$0)
 - Building year (polices with years of zero and starting in 17th Century)
 - Building, property and contents limit (values less than 100)
 - Building Start and Control years (values given as 0)
- Many policies had <u>data given as N/A</u>: incurred loss, legal status, business start and control year.
- We noticed a number of <u>extreme values</u> in rerated premiums, incurred losses and incurred loss ratios.

PRESENTATION OUTLINE

- Introduction
- Goals and Objective
- Exploratory Analysis
- Data Preparation
- Modeling Process
 - Model Design
 - > Model Fitting
 - Testing and Adjusting Model
- Key Results
- Conclusions
- Acknowledgements

DATA PREPARATION (INITIAL STEPS)

- I. We began with <u>299,441</u> policies
- 2. We removed the following
 - 120,226 polices with no credit information ("no-hits")
 - 332 restaurant policies were removed
- 3. We were left with 178,883 policies for use in modeling

	Original data	Remove No Hits	Remove Restaurant	After data Deletions
Incurred Loss Ratio	33.26%	32.94%	32.99%	32.99%
Number of Policies	299,441		► I 78,883 ■	i 78,883

DATA PREPARATION (INITIAL STEPS)

Definition of Hits/No-Hits

Total Policies	Total No-Hits	Total Hits
299,441	120,226	179,215

DATA PREPARATION

Once we reduced the data to <u>178,883</u> policies, we made additional adjustments:

- I. Rerated premium <u>capped at 500, impacting 423 policies</u>.
- Building, property and contents limit between 0 and 100 were set to 0, impacting 113 policies.
- 3. Building years before 1631 were set to NA, impacting 22 policies.
- 4. Incurred losses given as <u>negative or NA</u> were <u>set to zero</u>, impacting 165,809 policies (only 19 policies were negative).
- 5. Incurred loss ratios <u>capped at 95th percentile of the positive loss</u> ratios (2071%), impacting 501 policies.

	LR before adjustments	Capping at 95 th percentile
Incurred Loss Ratio	32.99%	21.76%

DATA PREPARATION

- After cleaning the data we had to determine the <u>appropriate variables</u> to use in the model.
- However we had to check for multi-collinearity between variables. As expected our results showed that <u>C points and F points were</u> <u>correlated</u> which had to be corrected.
- Factor Analysis:

- enabled <u>analysis of multi-collinearity among continuous variables.</u>
- an uncorrelated factor was found by <u>weighting the sum of the</u> <u>standardized variables</u> (C Points and F Points).
- this factor was named Financial Stability and used as an input variable.

DATA PREPARATION

Creation of Data Variables

- Control Age= 2012 max (business start year, control year)
- Business Age= Effective year Building year
- Effective Age= 2012 effective year
- Created an indicator for:

- polices with contents limit only, building limits only and both building and contents limits.
- Miscellaneous modifications:
 - grouped protection codes 1-2, 3, 4-6, and 7-10.
 - grouped location count into those = I and those > I.
 - combined apartment and condominium program names
 - included states with less than 1,000 policies in Southeast, Midwest or West regions.
 - grouped by GL Limit: less than I million, I million, or 2 million.
 - New Transfer?

DATA PREPARATION (SUMMARY)

- I. Deleted policies with missing, invalid or inconsistent data (i.e., no-hits and restaurant policies)
- 2. Data Adjustments:
 - Adjusted negative incurred losses.
 - Capped:
 - Rerated premiums at \$500.
 - Positive incurred loss-ratios at 95th percentile.
 - Building, property and contents limit below 100.
 - Building years before 1631.
- 3. Modified Data Variables
 - Created control age, effective age and financial stability.
 - Created indicators for certain variables.
 - Grouped specific variables into major sections for better analysis.

PRESENTATION OUTLINE

- Introduction
- Goals and Objective
- Exploratory Analysis
- Data Preparation
- Modeling Process
 - Model Design
 - Model Fitting
 - Testing and Adjusting Model
- Key Results
- Conclusions
- Acknowledgements

MODEL DESIGN

Response variable: Incurred loss ratio

Model distribution: Tweedie (member of exponential family)

<u>Model type</u>: Generalized linear model (GLM)

Input variables:

- Program Name, Region, and Construction Type
- Property Limit, Legal Status, Property Deductible, and New/Renew
- Financial stability, Control Age, and Effective age
- Limit Indicator, Location count and Protection Group
- New transfer

MODEL DESIGN

 $log(E[loss ratio]) = B0 + \beta 1 \times Program name \downarrow + \beta 2 \times Legal Status \downarrow + \beta 3 \times Financial Stability \downarrow + ... + \varepsilon$

- Components of GLM:
 - <u>Random component</u>- a group of n independent observations with a distribution from the exponential family.
 - <u>Systematic component</u>- a linear predictor $\eta = \beta \mathbf{X}$ is used to weight the predictor variables for each individual observation.
 - <u>Link function</u>- A logarithmic link function was used which set the predictor above ($\eta = \beta \mathbf{X}$) equal to log (μ) where μ represents the predicted incurred loss ratio.

MODEL FITTING

- I. Create random sample: 80% build sample, 20% for validation sample.
 - Assigned random number to each policy
 - Ordered the policies from lowest to highest
 - Chose top 80% for build sample
- **2. Model using software:** Used GLM method in R software to model Loss Ratios with Tweedie family.

3. Rerun on Full Sample:

- Model created using the <u>build sample</u>, then run on <u>validation sample</u>.
- After optimal model was achieved, model was run on <u>full sample</u>.

TESTING AND ADJUSTING MODEL

Before we were able to analyze results we performed tests to determine goodness of model fit:

- Analysis of Variance (ANOVA) with Chi-Squared test P-value
 - Measures the significance of each input variable to the overall model fit
- <u>Akaike Information Criteria (AIC)</u>
 - Measures the relative fit of a candidate model fit compared to other candidates
- Lift Charts
 - Breaks data into groups based on variable being measured.
 - Calculates and plots actual and predicted incurred loss ratio relativities.

PRESENTATION OUTLINE

- Introduction
- Goals and Objective
- Exploratory Analysis
- Data Preparation
- Modeling Process
 - Model Design
 - > Model Fitting
 - Testing and Adjusting Model

Key Results

- Conclusions
- Acknowledgements

CREDIT MODEL LIFT BY FINANCIAL STABILITY (BUILD SAMPLE)

Actual versus Predicted LR Relativities by Financial Stability

CREDIT MODEL LIFT BY FINANCIAL STABILITY (VALIDATION SAMPLE)

Actual versus Predicted LR Relativities by Financial Stability

CREDIT MODEL LIFT BY FINANCIAL STABILITY (FULL SAMPLE)

Actual versus Predicted LR Relativities by Financial Stability

CREDIT MODEL LIFT BY POLICY TYPE (FULL SAMPLE)

Actual versus Predicted LR Relativities by Policy Type

CREDIT MODEL LIFT BY BUSINESS TYPE (FULL SAMPLE)

Actual versus Predicted LR Relativities by Business Type

CREDIT MODEL LIFT BY MARKET SEGMENT (FULL SAMPLE)

Actual versus Predicted LR Relativities by Market Segment

CREDIT MODEL LIFT BY FLEET SIZE (FULL SAMPLE)

Actual versus Predicted LR Relativities by Fleet Size

CREDIT MODEL LIFT BY POLICY EFFECTIVE AGE (FULL SAMPLE)

Actual versus Predicted LR Relativities by Policy Effective Age

CREDIT MODEL LIFT BY C-POINTS (FULL SAMPLE)

änover

Actual versus Predicted LR Relativities by C-Points

CREDIT MODEL LIFT BY F-POINTS (FULL SAMPLE)

änover

Actual versus Predicted LR Relativities by F-Points

PRESENTATION OUTLINE

- Introduction
- Goals and Objective
- Exploratory Analysis
- Data Preparation
- Modeling Process
 - Model Design
 - > Model Fitting
 - Testing and Adjusting Model
- Key Results
- Conclusions
- Acknowledgements

CONCLUSIONS

- The credit variable <u>Financial Stability</u> is an <u>powerful predictor</u> of future loss ratio of a policy.
- Implementation of a credit factor will allow for <u>better</u> <u>differentiation of risk</u>, ultimately improving underwriting profit.
- Usage will ensure that Hanover's <u>underwriting techniques</u> are <u>competitive and more advanced</u>.

PRESENTATION OUTLINE

- Introduction
- Goals and Objective
- Exploratory Analysis
- Data Preparation
- Modeling Process
 - Model Design
 - Model Fitting
 - Testing and Adjusting Model
- Key Results
- Conclusions
- Acknowledgements

ACKNOWLEDGEMENTS

The WPI Team would like to thank all the persons that invested time to help shape the direction and outcome of our project:

Isin Ozaksoy Marc Cournoyer Jonathan Blake Chen Li Alyssa Potter Professor Jon Abraham

And everyone else at Hanover and Worcester Polytechnic Institute that made this project possible!

THANK YOU!

QUESTIONS?