

Project Number. GFP1404

WANDERLOG

A Major Qualifying Project Report:

submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by:

Christina Aiello

Cassandra Hamlin

Benjamin Senecal

Date: March 6th, 2015

Approved:

Professor Gary F. Pollice, Major Advisor

i

Abstract

WanderLog is a travel journal/scrapbook application developed for Android™ Devices.

This is an application that can be used by study-abroad students or other travelers to

record their experiences. The application gives users the ability to create “timelines,”

which are the equivalent to journals or scrapbooks. Each timeline can contain one or

more “entries,” which are the equivalent of pages in a journal. Users then can insert

photographs, videos, audio recordings, and text into entries.

ii

Acknowledgements

We would like to thank our advisor, Professor Gary F. Pollice, for guiding us throughout

this project.

We would also like to thank all of the individuals who took time out of their schedules to

test and provide feedback about our project.

Lastly, we would like to thank the authors of all projects and other documents that we

used as references throughout this project (seen in our references).

iii

Table of Contents

Abstract.. i

Acknowledgements ... ii

List of Figures ... v

List of Tables ... vi

1 Introduction ... 1

2 Background ... 4

2.1 Similar applications ... 4

2.1.1 Major competitors ... 5

2.2 Why our application? .. 8

2.3 Android™ smartphone background .. 9

2.3.1 Choosing a Mobile Operating System .. 9

2.3.2 The Android™ Life Cycle ..10

2.4 Media on the Android™ Smartphone ...13

2.5 Testing Android™ Applications ..13

2.6 Conclusion ...14

3 Methodology ..16

3.1 User Interface ..16

3.2 Database ...21

3.3 Testing ..29

4 Results and Analysis ..32

4.1 Usability Results ..32

4.2 Source Code Statistics ..33

5 Future Work and Conclusions ..34

References ...37

Appendix A: ... A1

WanderLog: What It Does And How To Use It .. A1

Timelines .. A1

Creating a Timeline ... A2

Editing a Timeline ... A3

Creating an Entry .. A5

Deleting Entries... A6

iv

Editing an Entry... A6

Creating Media ... A8

Editing, Reordering, and Deleting Media ... A13

How To Install Our Project .. A14

Appendix B .. B1

Usability tasks .. B1

Usability Data ... B1

Appendix C: Glossary .. C1

v

List of Figures

Figure 1.1: This graphic shows the percentage of individuals in various age groups and yearly

income groups who own smartphones (Smith, 2013). .. 1

Figure 2.1: Shown here is the ScrapPad application ("ScrapPad - Scrapbook for IPad"). 7

Figure 2.2: This diagram explains the Android™ life cycle ("Starting an Activity”).11

Figure 3.1: Flow diagram for our application. ..18

Figure 3.2: The database structure for WanderLog ...26

vi

List of Tables

Table 1: This table contains various categories and example applications that are similar to our

project. ... 4

Table 2: This table summarizes positives and negatives of each aforementioned application. ... 8

Table 3: A table of all the views WanderLog uses ...28

Table 4: Summarization of users' problems or suggestions for our application32

1

1 Introduction

Fifty-six percent of American adults owned smartphones in the year 2013, according to

the Pew Research Center (Smith, 2013). People now more than ever are looking to

access the Internet, take photographs, record videos, write notes, and much more while

on-the-go, making mobile applications for smartphones increasingly prevalent in today’s

society. Many popular websites today either have mobile-friendly websites and/or

specifically have created applications for mobile users, further adding use to mobile

devices.

Figure 1.1: This graphic shows the percentage of individuals in various age groups and yearly income groups who
own smartphones (Smith, 2013).

2

Smartphones serve as an ‘all-in-one’ device, offering the functionality of a camera,

journal, notebook, and audio recorder all in one unit. Individuals who travel can use

smartphones to make notes, take photographs, record videos, and record sound clips of

the world around them. This additional functionality provided by smartphones is

convenient for travelers, as it eliminates the need to carry around several different

devices.

Travelers want to preserve the sights, sounds, and experiences for personal viewing.

Travelers also want to share their experiences with friends and family. Students at

Worcester Polytechnic Institute who participate in Major Qualifying Projects (MQPs),

Interactive Qualifying Projects (IQPs), and Humanities projects have the opportunity to

travel to off campus locations and are often required to keep a travel journal of their

experiences.

WanderLog provides the ability to combine numerous types of media into a clean,

organized, travel-focused record that allows for easy and enjoyable reflection upon

one’s travels. The application lets the user create what are called “timelines”, where

each timeline is roughly equivalent to a journal or scrapbook. Like any good journal, the

timeline has many pages, called “entries”, and each entry can be filled with various

types of media including photographs, videos, text, and sound clips. By defining

timelines, entries, and media, WanderLog provides an easy-to-navigate structure for

recounting a user’s explorations.

3

Presently, people often use websites and applications such as Flickr/Flicka™,

Facebook™, or Twitter™ to share their travel experiences. While these options let user

share media and text, chronologically grouping all the relevant content is not always

possible in these applications. In addition, these applications put more focus on adding

information and less focus on organizing the information. When creating media, a lot of

current applications only offer one or two types (usually pictures and text) By having the

ability to include more types of media, WanderLog has greater flexibility in how time

spent traveling is recorded by the application. Our project group took notes on

advantages and disadvantages of current options when designing our application.

4

2 Background

Prior to beginning development, we researched existing travel oriented applications and

the processes and standards of Android™ programming. This section of our paper

outlines our findings regarding similar applications and major competitors, and then

continues on to explain our choice of the Android™ platform. After choosing the

Android™ platform, we conducted more research into the Android™ lifecycle and

application testing on Android™ devices. We also include in this section research

relating to media types available to use on Android™ devices.

2.1 Similar applications

Numerous applications currently exist that offer the functionality of storing pictures,

video, and text. However, none of the current options offer a consolidated, trip-focused,

offline method to display information. Applications similar to our project can be grouped

into the following categories:

Table 1: This table contains various categories and example applications that are similar to our project.

Category Example

Photographs, videos, and

text

Facebook, Tumblr

Note-taking Evernote™

Scrapbooking applications Google+™ gallery, ScrapPad

The categories listed above fall short in that they provide the ability for a user to

preserve and manage only a couple of types of media.

5

In contrast to note-taking applications that are used for lists and reminders, we created

our application for individuals who travel and want to document their trips. In

comparison to popular social media tools such as Facebook and Twitter, WanderLog

presents media such as photographs, videos, and text in a more organized in a more

hierarchically structured fashion. The purpose of this application is solely for

documenting individual traveling experiences rather than being used to post any and all

unrelated media. Below we assess major competitors for our application.

2.1.1 Major competitors

Many applications exist on both Web and mobile platforms that let users post and share

different types of media. The two major services that provide functionality similar to our

application are Facebook and Tumblr™: social media websites with mobile applications.

Both Facebook and Tumblr are widely used websites that allow users to post, group,

and connect several types of media; however, both of these services require an Internet

connection to create posts, which can be problematic for someone who wants to make

a post while not connected to the Internet.

With 1.15 billion active users per month, Facebook is the largest existing social media

network. Its users can post text, photos, and videos to their timeline, where they are

displayed in chronological order. Though it includes the types of media also found in our

application, Facebook does not offer means of organization beyond the timeline. Videos

are displayed independently of everything else, though they can have text descriptions.

Photos can be grouped into albums and can have captions, but there is no way to group

individual posts into a cohesive “article.”

6

The dilemma of organizing posts into a larger group also exists in Tumblr. There are

several media options available for a post on Tumblr including text, video, photos, and

audio. Like a Facebook timeline, posts on Tumblr blogs are often displayed

chronologically with the most recent content first. Tumblr offers slightly more flexibility

for organization than Facebook. A handful of photos can be grouped into a photoset

post, as opposed to keeping all photos in one all-encompassing album. The Tumblr blog

can also be manipulated by putting a customized theme on your blog that influences

how posts are displayed. Though there are more ways for a user to manipulate how

their posts are displayed, there still no way to group all content posted into an organized

hierarchy.

Evernote is a mobile application with a Web interface centered on creating notes. This

application excels in its note taking capabilities, letting users put text, pictures, video,

audio recordings, and attach files into a note. It also has the ability to write a note with a

stylus or one’s finger. Evernote also offers the ability to organize notes within collections

called notebooks. Many users of Evernote like the large set of features that application

has; however, some users do not like how the features seem to make simple tasks

harder as more features are added ("Reviews"). Evernote also does not offer as many

features for organizing within the note. All forms of information within the note are

placed in the note and left there for the user to rearrange things within the note

manually. Drag and drop features do not exist for simple rearranging of information

within a note.

7

ScrapPad is a mobile application that allows a user to create his or her own scrapbook

using media from his or her phone. The application offers options to apply borders to

pictures, use multiple font styles for text, and lets the user create multiple scrapbooks

within the application. Reviewers of this application cited the application's ease of use

and multiple options for designing ("ScrapPad - Scrapbook for IPad"). There were

qualities of this application that users did not enjoy, such as not having a way to back up

these scrapbooks created within the application, in addition to not having an auto save

feature that prevents data from being lost if the application crashes before the user can

save his or her work ("ScrapPad - Scrapbook for IPad").

Figure 2.1: Shown here is the ScrapPad application ("ScrapPad - Scrapbook for IPad").

8

A summary of the positives and negatives of each aforementioned application can be

seen below:

Table 2: This table summarizes positives and negatives of each aforementioned application.

Application Pros Cons

Facebook Allows for text, photo, video Cannot organize different
types of media together.
Photographs can be grouped
into albums, but photos and
videos (for example) cannot
be grouped together.

Tumblr Allows for text, photo, video,
audio

Does not have a means of
grouping all content posted
into an organized hierarchy

Evernote Allows for text, photo, video,
audio, attaching of files.
Users can handwrite notes.
Can organize notes into
"notebooks."

Does not support drag-and-
drop reordering of a note's
content.

ScrapPad Allows for text and photos
Can add borders and stylized
text to pictures
Can create multiple
scrapbooks

No way to back up
scrapbooks (if device is
damaged, cannot retrieve
data)
No automatic saving feature

2.2 Why our application?

Our application does what current applications already on the Google Play Store do not

do quite as well – act as a multimedia travel journal for people to record their

experiences in one organized, focused place. This application supports common forms

of media such as text, pictures, audio, and video. It also supports organization by date

and trip, allowing users to go back through an organized account of everything they did

to find exactly what they are looking for with ease. The application also focuses on a

9

simple and efficient user experience so the user spends less time on organization and

more time logging travel experiences.

One of the groups that this application is targeting is Worcester Polytechnic Institute

(WPI) students completing an Interdisciplinary Qualifying Project (IQP). The IQP is a

project where WPI students try to solve social issues using the technical and research

skills they have learned. For this project, students have the option to go abroad to an off

campus location to complete their project. A student who chooses this option would

benefit from an application that allows for easy logging and sharing of travel

experiences. In addition, every IQP team must write a paper detailing their experience,

and this application can help students easily recall their travels.

2.3 Android™ smartphone background

2.3.1 Choosing a Mobile Operating System

In order to create an application, a mobile operating system (OS) has to be chosen. The

ideal choice of a mobile OS would have a large amount of people who use it, so the

application would be easily available to a large audience, and the OS would also have

to be low development cost.

The first criterion desired from a mobile OS is a large user base. Since this application

was designed to log travel experiences, it would most likely be run on a smaller, more

portable device that can easily be carried with the user. The device that best fits this

category is the smartphone or tablet. We considered two popular mobile operating

systems, Android™ and iOS™, for the development because any other options would

have too low of a presence in the smartphone market to be easily deployable to a large

10

group of people. In Q2 2014, smartphones running the Android™ OS made up the

largest smartphone OS market share with 84.6% of smartphones shipped running

Android™, while smartphones running iOS™ made up 11.9% of the smartphone market

(Mawston, "Wireless Smartphone Strategies"). Therefore, an application that is easily

accessible to the majority of smartphone users must run on Android™.

The second criterion is a low development cost. Starting with the cost of making an

application public, the cost to host an Android™ application on the Google Play Store is

a one-time fee of $25 to create an account ("Get Started with Publishing”). The cost to

develop in Android™ is free because Android™ development is done in either

Android™ Studio or Eclipse, both of which have free downloads for Windows, OSX, and

Linux. In comparison, iOS™ application development costs $100 a year for a developer

program to host applications on the Apple Application Store. In addition, an iOS™

application can only be programmed on an Apple computer, so there would be

additional costs getting equipment necessary to produce an iOS™ application even

though that software for it is a free download ("Apple Developer”). When considering

costs, Android™ still comes out on top as the OS to use for mobile application

development and was, therefore, the mobile OS chosen for our application.

2.3.2 The Android™ Life Cycle

The Android™ life cycle is a series of stages that all Android™ activities go through at

different points when being using on a device. An Android™ activity is essentially a

window that the user can interact with. The stages an activity goes through are

accompanied by a series of methods that are called at each stage in the life cycle. The

11

different stages and methods that are called to transition from one stage to another are

displayed in the figure below.

Figure 2.2: This diagram explains the Android™ life cycle ("Starting an Activity”).

At the very beginning of an app’s life cycle, the onCreate() method is called when the

application is being opened. The body of this method is where some of the initial one-

time things get done like creating or linking to a database. After onCreate() is the

onStart() method. The onStart() method is called before the application becomes visible,

so a user interface should be created during this method call. After onStart() is the

onResume() method which mainly recreates any saved states that the user may have

been in beforehand. At this point in the application lifecycle, the application is fully

visible and the user can freely interact with it.

While the activity is visible to the user, there are actions the user can take to make the

activity not be visible anymore. If the user does something that causes another activity

to be displayed in front of the current activity, then the onPause() method will be called

on the activity that is moving into the background. Since the activity is losing focus,

pieces of information necessary to save state should be saved, like form entries or

12

unsaved draft emails. If the user goes back into the application, the onResume()

method would get called to restore the saved state. On the other hand, if the user

decides to do something like switch applications or go to the home screen, then the

onStop() method will be called on the current activity. At this point, the application may

never come back into the foreground, so all states should be saved here, and all

resources that are not necessary should be released.

In addition to the user, the Android™ OS can also affect the activity life cycle. One

situation where this is the case is if the OS ever runs low on memory and needs to free

some up. it may call onDestroy() on the application which would completely close the

application and its activities. Everything should be closed and released during the

onDestroy() method call. If the onDestroy() method is not called on the application, and

the user goes back into the application, the onRestart() method will get called followed

by the onStart() method, then the onResume() method. The only new step here is the

onResume() method which will handle things that may need to be restored from a

previous state as a result of calling onStop().

13

2.4 Media on the Android™ Smartphone

There are multiple types of media available on Android™ devices: Users are able to

record audio, take photographs, record videos, and write text. Each type of media

provides a different way to record an experience.

Video and photographs can be taken with the default camera application on an

Android™ device, in addition to being able to download pictures and video from

websites, email, and text messages. Android™ developers have the option to either

allow users to make use of the existing camera application on the Android™ device or

directly access the camera hardware to create one's own camera application. Text can

be written in numerous applications, one of which is the default note-taking application

available on Android™ devices.

There is no default sound-recording application on Android™ devices. There are,

however, ways for developers to allow users to record audio. In addition, there are

options that allow applications to control an application’s volume, respond to hardware

audio key presses, and manage audio focus ("Building Applications with Multimedia").

2.5 Testing Android™ Applications

Testing is an important part of the software development lifecycle and is integral to the

success of an application. For Android™, a particularly valuable method of testing is a

unit testing framework called Robotium. Unit tests are small tests that allow a

programmer to individually test parts of his or her code. Unit tests can detect

regressions, which are software bugs found after modifying code, in addition to

14

continuously asserting that previously-written code functions in an expected manner..

Don Wells, author of an Extreme Programming website, says that "during the life of a

project an automated test can save you a hundred times the cost to create it by finding

and guarding against bugs" (Wells, 2013). The purpose of unit testing is to "guard your

functionality from being accidentally harmed" (Wells, 2013), if either the author of the

tests or another individual modifies the code being tested by the unit tests during the

refactoring process. Unit tests can help a programmer see if changes to the structure of

a program also affected the program’s functionality.

The testing framework called "Robotium" is an automated unit testing framework for

Android™ Applications. This testing framework allows for function-testing scenarios,

system-testing scenarios, and user acceptance-scenarios (Reda, “User Scenario

Testing for Android™"). Some benefits of using this framework are fast test case

execution, the ability to handle multiple Android™ activities automatically, and easy

integration with various build automation tools such as Ant, Gradle, and Maven (Reda,

“User Scenario Testing for Android™"). This testing framework supports Android™ API

level 8 and above, and it can be used both for testing on real devices and on the

Android™ emulator (Reda, “User Scenario Testing for Android™"). Tests can be run

from the command line or within a design studio such as the Android™ Design Studio.

2.6 Conclusion

Competing applications, reasons individuals choose Android™ devices, and

components of the Android™ device are all pieces that were taken into account when

designing this project. While numerous competing applications exist, no application

15

provides the exact functionality desired for our needs. The successes of competitors, in

addition to their pitfalls, were considered when designing this project. After deciding on

the Android™ platform, we researched several hardware and software components of

Android™ devices in order to familiarize ourselves with the methods necessary to

design the structure of our application.

16

3 Methodology

In designing and developing this application, three areas of importance needed to be

researched in detail and put into practice within our project: the user interface, the

structure of the database, and the ability to implement testing. Android™ applications

put a heavy emphasis on certain important user interface design concepts, which we

researched and implemented within our project. In addition, choosing a proper database

and structure for that database was important not only for the current development for

our application, but future development as well. The chosen structure could affect the

difficulty of developing a website to accompany the mobile application in the future.

Last, testing is an integral part in identifying and preventing bugs in software, so we

researched multiple methods for testing our product.

This chapter outlines which processes and procedures we used in development and

how we used them. We start by discussing our user interface design process and

Android™ design principles, and then move on to outline the development of the

database. Finally, we describe our methods of testing different portions of our

application.

3.1 User Interface

The design principles for Android™ applications centralize around three goals: Enchant

Me, Simplify My Life, and Make Me Amazing ("Design | Android™ Developers"). The

objectives of these goals exist to enhance the experience of Android™ users and

ensure that an application is simple and easy for them to use. People will be more

17

responsive and more accepting of applications that involve less cognitive work and

make them feel like they know what they are doing. Therefore, the easiest way to create

a positive user experience is to keep screen layouts as simple as possible and to only

present information necessary to the user at the time. The Android™ design principles

suggest breaking information into small tasks and chunks to avoid overloading the user

with too much information. In order to decide how to split up tasks into different screens,

we first drafted user stories and use cases based on the desired functionality of our

application, such as adding a photo to an entry from the photo gallery or titling a

timeline. We then determined which tasks would be performed on each screen based

on a logical flow (entries that are part of timelines are obviously created from within a

timeline), and the structure of similar applications discussed in the background.

The analysis of several applications that have similar functionality to this project led to

several design decisions and helped us in developing an information flow that would

make sense to users. While determining how to group tasks, we looked to applications

that have similar information grouping, such as Evernote and Facebook, to see what

organizational mechanisms were commonly used.

18

Figure 3.1: Flow diagram for our application.

The Android™ Developers Guide describes relationships between screens as

descendent or lateral. Descendent screens involved navigating down a screen

hierarchy, or in the case of our application, navigating to an entry from a timeline.

Lateral navigation is navigating between a collection of sibling screens of the same type

(i.e. a group of timelines or a group of entries).

One of the suggestions in the Android™ Developers Guide, and also the most common

way we found both lateral and decedent navigation implemented, was in a list view.

Thus, our timelines and entries are displayed in vertical lists, and the users navigate

down the information hierarchy by selecting one of the child items in the list. To handle

up navigation between entries and timelines, we rely on Android™’s back button, which

19

was also a common trend we saw in many Android™ applications, as the developers

guide heavily stresses the importance of maintaining look and feel of the Android™

design standards.

We also made use of Android™’s standard action bar for additional navigation. Instead

of using buttons on the screen for common or universal tasks, Android™ suggests using

icons in the action bar, especially when tasks require moving to a new screen. We put

the functionality of creating, editing, and adding content to timelines and entries in the

action bar in order to remove clutter from the content screens and to prevent users from

having to search for a button to accomplish one of these tasks. We include a cancel

button on the action bar whenever a user is in the edit screen for a timeline or entry.

This eliminates the necessity for the user to use the back button to reach a previous

screen, as it is mostly used for navigating up a hierarchy, which is not the case in the

instance of creating a new object or editing an existing one.

 Android™ user interface design should not only implement familiar navigation to

standard Android™ applications, but should also incorporate a similar look and style.

There are two standard Android™ themes: Holo Light and Holo Dark. We started with

the Holo Light theme and customized our color scheme from there, keeping the

application design simple by minimizing color selection. According to Google design

guides, good design uses no more than three hues of a primary color, along with an

accent color ("Google Design Guidelines"). In addition to adhering to design principles,

we also wanted to create a brand for our product. While color psychology is an

important aspect of branding a product, research has shown that a person’s personal

20

experience has too much impact on how they perceive a specific color to confidently

conclude that any one color will evoke a particular emotion. It is instead most important

to create a brand that people will recognize and that includes colors that are appropriate

for the brand (e.g. something that is supposed to be seen as rugged will likely not be

associated with pink). (Bottomley, "The Interactive Effects of Colors and Products on

Perceptions of Brand Logo Appropriateness."). The color pallet we chose uses blue as

the primary color with green as an accent. Since our application is geared towards

travel and our logo incorporates an image of a globe, we used colors that are most often

associated with maps of the earth.

In order to ensure that our product was usable in practice, we conducted user studies.

Usability testing is essential to software design, as it ensures that the people who will be

using a product are able to figure out how it works and use it with ease. The study

conducted consisted of nine tasks (listed in Appendix B) that walked the user through

the process of creating a timeline, creating an entry, and adding media to that entry.

Users also completed tasks relating to editing and deleting various items. Each task

was timed in order to gauge how difficult it was for users to complete it. After a user

completed a task, they gave any relevant feedback they had, such as if the task was

easy to complete or if it was confusing, and why.

21

3.2 Database

Data storage in an Android™ application is vital to the success of many applications,

and with users of WanderLog recording travel experiences, storage of data is an

important aspect of this application. We were then faced with two questions: which

database should we use and how should we structure it? The chosen database would

have to be well-suited for the kind of data that will be stored on the device, which is

partially dependent by how much information the user wishes to put in it. After choosing

a database, the structure would be decided based on the information to be stored in it.

In this case, our application has timelines, entries, and media. In addition, entries are

linked to a timeline, and media to an entry. The relationships between elements in the

database must also be reflected in the structure. A properly-structured database allows

for ease of an application’s development. Two popular databases for mobile

applications are SQLite and CouchbaseLite. The Android™ Developer Website

provides extensive documentation for integrating SQLite into an Android™ application.

CouchbaseLite is a more popular noSQL database that is capable of running on mobile

devices with limited resources.

We first researched advantages of an SQLite database. The extensive support on the

Android™ Developers Website was a big advantage over CouchbaseLite. SQLite would

also be easier because of our group members’ past experience with SQL. These

benefits, however, do not come without drawbacks. One of the first drawbacks is that

SQLite would require a more effort to set up than the CouchbaseLite database. Set-up

would require setting up all the tables in the database. Since creation would be through

22

Java, that would involve the creation of a contract class which essentially sets up the

structure for that database. Like the name suggests, the contract class would set up a

contract that the database tables and the user queries would have to follow. One of the

other drawbacks to using SQLite is that the database does not come with any built in

functionality for syncing with external SQL databases.

 We then looked at CouchbaseLite. Being a noSQL database, CouchbaseLite would

offer a structure-free implementation of a database. A lack of structure is advantageous

because allows for the insertion of free-form data without much change to the structure

of the database. Another advantage of using CouchbaseLite is that it comes with built in

support for syncing with other Couchbase databases, which would be ideal if a Web

application is to be made in the future to work with the mobile application. Like with

SQLite, the advantages come with a cost. One of these costs is the lack of information

available on the Android™ Developer Website. All support for using Couchbase would

have to come from the Couchbase website or other sources on the Internet. Another

disadvantage is that Couchbase would require more organization. The lack of structure

makes the database very adaptable, but it is also easy to make mistakes due to the lack

of imposed structure in the database. Lastly, none of our group members have had

previous experience with noSQL databases, meaning it would be slow to get started

with Couchbase (but it would be a much better learning experience than SQLite).

When it came time to make a decision, we decided to use CouchbaseLite as the

database that would back our application. The advantage of it not being innately

structured made the database well suited for the storage of timelines, entries, and

23

media which are more free-form types of data. On the other hand, the cons for using

CouchbaseLite would not delay our project by an unreasonable amount of time. Once

we decided on CouchbaseLite, the next challenge was to learn about document-based

databases and figure out how to structure the database.

After deciding on CouchbaseLite, we researched and familiarized ourselves with it. The

Couchbase online documentation for Android™ devices turned out to be the most

useful resource for setting up the database. It offered detailed instructions for including

CouchbaseLite in an Android™ project in eclipse as well as some code to get a

database started. The Couchbase online documentation also provided us with general

tips for using a noSQL database, which was helpful after we set up our database.

One of the more challenging aspects of this project was choosing the best structure for

the database. The structure for the database went through an iterative process, starting

with a basic structure and being continuously revised until the final structure was made.

The first appearance of the database in the application was with a basic text application

– all this application did was let a user store text and then display a list of all the stored

text in the database. This initial database had very similarly structured documents. They

all had a key, “text”, which corresponded to a value which was the text inserted by the

user. Such a simple database structure did not last long, but it did accomplish the goal

of incorporating CouchbaseLite into the application.

The next step was adding support for pictures. In order to support different stored

content, the “TYPE” key was introduced. This key would have a value of either picture

24

or text and could be compared to determine what type of content is stored in that

database document. Once the document type is known, the calling method would know

whether to look at the “text” key or the “picture” key and whether text or a picture would

be returned. We also had to figure out how to store pictures in the database. The

resulting process was to store a Uniform Resource Identifier (URI) of the picture and

use that to load the picture when it needs to be displayed. By using the URI for the

picture, the application can drastically reduce the size of the database by storing

something that points to where the picture can be found rather than storing the whole

picture. Further in this paper, we will discuss how these images are displayed.

With more than one type of document in the database, it became necessary to start

creating views on the database. Views are similar to SQL indexes – They are a subset

of the data in the database that can be queried. To look up data more easily, a view for

text documents and a view for picture documents were created by coding map functions

that will look at the value corresponding to the type key and add appropriate content to

the views. The keys in the views consisted of either the text or the picture URI

depending on the view. This way, the content could be displayed without any

processing of documents since the desired content was already stored in the key. With

these views, a list that displays all the text in the database would just have to query the

view with all the text documents in the database and display the keys of all the results.

After basic types of media could be successfully inserted and read from the database,

the next step was to incorporate timelines and entries into the database.

25

Timelines are the largest structure that represents a whole trip. Within a timeline would

be several entries with each entry corresponding to some event in the timeline, and

there would be media such as text or pictures inside an entry. The next challenge was

to make the database reflect this relationship between timelines, entries, and media.

First, we created timeline documents which stored the general data a timeline would

have like a title. Next, we created a view over all the timelines so timelines could be

easily queried. Entries in media followed media similar process. Now that all the content

could be stored in the database, the relationships between timelines and entries, and

entries and media were next. We added a timeline key to each entry document to make

an entry part of a timeline. The value of this key would correspond to the timeline that

the entry is part of. Adding the timeline key to entries created a link between entries and

timeline, but the link was not reflected in the views. We used the timeline unique

identifier as the key in a view of entries to fix this. This way, the view could be queried

for a specific timeline unique identifier, and the results from the query would be all of the

entries that are part of the given timeline. To make the rest of the entry data accessible,

the values returned from a query consisted of the documents containing the rest of the

information for the entries.

26

Figure 3.2: The database structure for WanderLog

27

After creating an entry view, a media view had to be created. We originally created a

view that consisted of both text and picture documents, but then realized this was not an

accurate enough representation of the data. Both text and pictures are media, so entries

should contain media, which could be either text or a picture. To accomplish this, we

changed the type for text and picture documents to media and added a media type key

to these documents to distinguish between text and pictures. With text and pictures

encapsulated into the media document type, coding the view for media became very

similar to the view for an entry; there would be a key for the entry that the media

belongs in. The unique identifier of the entry that the media belongs to would then be

used as the key for the view of media and the document would be used as the value.

The database structure at this point in time held up well for a couple of development

cycles and worked well when we added the picture with caption type. However, when

we decided to add ordering to timeline, entries, and media, an order had to be added to

all the database documents. At first, adding an order to the document seemed sufficient,

but then a way to order the information in the list view would have to be created. To

solve this issue, we took advantage of the default ordering behavior of CouchbaseLite

views. The views automatically order by the key. To order documents, we had to

change the key to something that would represent the order. For timelines, we changed

the key from the timeline name to the timeline order, which lead to timelines being

ordered by creation order.

After ordering timelines, the process of ordering entries became a little more

complicated. For entries, we wanted to order them by the date given to that entry.

28

Unfortunately, the keys for the entry view already serve the purpose of identifying the

timeline each entry is part of. Swapping out the key for the order number was not be an

option because then the entries would not be organized by timeline. We needed the

entries to be ordered by both the timeline information and the date. To solve this, we

used compound keys: The compound key is a list of items, and the keys in the view are

first ordered by the first item in the list, then, in the event of ties, the second item is used

to order the keys further. This process continues until the whole list has been used to

order the keys. To take advantage of this, we used a list with two items as the key. The

timeline unique identifier in the first item in this list, and the entry date formatted to be in

the form year-month-day is the second item in the list. This made the entries ordered

first by timeline and then by date if there is more than one entry in a timeline.

In order to support reordering media, a different process was necessary. Users have the

ability to reorder media, so the order would have to be based off of an order number.

After adding an order number to all media documents, the same process we used to

order entries could be used. The key would be a list where the entry the media is part of

is the first item in the list, and the order number for the media in the form of a zero-

padded string is the second item in the list. With this system in place, the database

supported reordering of media, and the application had to make sure changing the order

numbers of documents was done correctly.

Table 3: A table of all the views WanderLog uses

View Name View Key View Value

timeline View [timeline order] timeline document

entry View [timeline id, entry date] entry document

media view [entry id, media order] media document

29

3.3 Testing

Testing is an integral part of software development. Testing is, as described in the

Microsoft Developer Network guide on testing, “a proxy for the customer” (“Testing in

the Software Lifecycle”). It is a method of extensively testing each component to assure

that the product aligns with the expectations held by project stakeholders. Microsoft

supports this by describing tests as “executable requirements” (“Testing in the Software

Lifecycle”). Unit testing, one method used in software development, is used to test

methods, classes, or procedures. Unit tests allow a developer to test the smallest

possible pieces of code and monitor those pieces’ behavior.

One successful method for unit testing software is JUnit, described as a “simple

framework to write repeatable tests” (“JUnit Wiki”). Repeatable tests allow for

continuous assessment of functionality, letting developers see if any additions or

alterations made to existing code have caused a difference between what is expected of

the code and what the code does. This can help developers identify problems and begin

plans to resolve them.

A major component of JUnit tests are assertions: These are the “bread and butter” for

unit testing (“JUnit Wiki”). Assertions can access whether something is true, false, null,

or not null, for example. These assertions can be used on primitive types, objects, and

arrays. JUnit also allows developers to create Exception Tests. These tests “specify

expected exceptions in unit tests” (“JUnit Wiki”). Our project group has chosen to make

30

use of JUnit testing for any classes within our project that are not classes for the user

interface of the application.

One unit testing suite that exists for Android™ devices is the Robotium Test Automation

Framework. As described on their project homepage, “Robotium makes it easy to write

powerful and robust automatic black-box UI tests for Android™ applications” (Reda,

“User Scenario Testing for Android™”). This framework allows developers to write

automated user-interface tests for major Android™ components, such as action bars,

activities, buttons, date pickers, lists, and text boxes. These tests can be function tests,

system acceptance tests, and user acceptance tests. The framework allows for unit

testing on multiple Android™ devices, which benefits our project because our

application is meant to be used on any Android™ device (phone or tablet). This

particular framework also allows for multiple Android™ activities to be tested

automatically, which is beneficial for our project because we have multiple activities

running within our application. We have implemented Robotium tests within our project,

which allows us to repeatedly test the functionality of our application from a user’s

perspective. These tests allow us to not only test the activity that is presently being

viewed, but also to test that activities successfully transition from one to the other by

clicking certain elements on the screen.

In conclusion, our project group researched three areas of importance in detail to make

the best decisions for the application in its present and potential future form. We

conducted research related to the user interface, the structure of the database, and the

31

ability to implement testing. Once we conducted this research, we implemented these

practices and ideas within our project.

32

4 Results and Analysis

The resulting application of this Major Qualifying Project (MQP) lets a user compile a

series of events using a variety of media types (picture, audio, notes, and more) into a

simple event timeline that can be navigated with ease. In this section, we discuss the

metrics we used to analyze our final project, starting with the usability testing results,

and then different statistics pertaining to our code.

4.1 Usability Results

The results from our usability testing indicate that the overall structure of the application

is logical to users and that many of the features function as expected. In general, once

users figured out how using edit mode and the information structure worked, they found

it easy to navigate the given tasks. One issue that all users made clear was that their

first instinct for editing a piece of media, specifically adding a caption to a picture that is

in an entry, is that their first instinct was to tap on a picture to caption it. This, among

other results from our user study, can be seen in the table below.

Table 4: Summarization of users' problems or suggestions for our application

Problem or Suggestion Number of Users

User clicked on a full-screened image to try to add a caption 13 out of 13

Clicked start and end date text when editing entry (rather than

calendar icon)

1 out of 13

Did not know how to save an edited timeline 1 out of 13

Thought that edit mode would allow user to add media items to

a timeline

1 out of 13

Desired a confirmation message when deleting a timeline 4 out of 13

33

This user testing allowed for us to access our current product and acquire suggestions

from users as well. One repeatedly-made suggestion from users was to have

confirmation for deleting timelines, which we have incorporated into our code. The raw

usability data is included in Appendix B.

4.2 Source Code Statistics

By the conclusion of the project, our project group wrote 11,174 lines of code. 9,960 of

these lines are project code and 1,214 lines are test code. Our project contains four

packages, 31 classes, and 54 tests. While working on our project, our group made 301

commits to Git.

34

5 Future Work and Conclusions

Future development for this project might involve further improving the application itself

or creating a website that would work alongside the application.

One possibility for future work would be the creation of a website interface that would

sync with the Android™ application. A Web interface would allow for easier sharing, a

popular idea in today’s culture. This would require insertion of pictures into the database

(rather than picture URIs, which are what is currently stored in the database) and the

creation of user accounts. In addition to allowing for syncing, a Web interface would

allow users to use desktop or laptop computers which would allow for easier typing.

In addition to creating a Web application that would be an extension of our application.

Some ideas include GPS location tagging, an “audio bank,” and more, which are

described below:

 Implementing Global Positioning System (GPS) tagging for locations could be

useful because it would allow a user’s location to be immediately loaded into an

entry or timeline. This would act like the default date for timelines and entries

being set to the current date.

 The creation of an activity that lets a user record any sound clip and later attach it

to an entry (an “audio bank,” so to speak) would allow a user to record an audio

clip without having already created an entry for that audio to go into. At the

35

moment, a user must have already created an entry before recording audio, and

audio clips cannot be moved between entries.

 Adding the ability to take pictures or videos from within the application would

prevent users from needing to open the camera application on their devices to

take a picture or record a video.

 Allowing for the insertion of pictures, videos, or audio from various locations such

as Dropbox, Facebook, and Google Drive would give users more flexibility with

our application. Rather than being limited to using images saved on one’s device,

this would let a user use images hosted on a website.

 For ease of reading, we feel that “next entry” and “previous entry” buttons located

within each entry would be valuable to the user. This is a small addition that

could improve the project.

 An improvement that could be made to backing up the application’s data would

be inserting the actual images into the database. Our project’s database only

stores Uniform Resource Identifiers (URIs) rather than the actual images

themselves, meaning that images cannot be shared between two devices at the

moment.

 To provide a more responsive user experience, bitmap caching should be

implemented in the app. By caching picture date, the images would load faster

when they must be reloaded after being scrolled back on screen because the

images could be read from the app’s ram rather than from disk.

 Another improvement that could be made to the application is adding full screen

rotation support. As of now, the application does not crash during screen rotation,

36

but it will not preserve state from one screen orientation to another. If the user is

typing some text and rotates the screen, that text will be lost.

 In addition to improving or adding features, some more essential fixes that should

also be made to the application could make it run more smoothly. The first of

these fixes is loading an image from disk. The current temporary image is not

sized correctly, so when the picture is loaded, the image either jumps up or down

in size suddenly which can disorient a user. To prevent this, the temporary image

should be sized to the same dimensions as the picture that will replace it.

 The second fix major fix is merging edit mode into view mode. When a user

wants to edit something, he or she will want to do it right away, not have to switch

into edit mode and find where they wanted to edit all over again. Editing should

be done by tapping on the item in the list to bring up editing options like changing

or deleting content. Then, reordering could be done with drag handles in the list.

 In conclusion, our project team successfully created an application that allows

users to document their experiences in a journaling/scrapbooking form. Our team

surpassed our base goals of adding picture, text, and video to entries, and we

dove into our stretch goals of adding audio recordings and syncing with Google

Drive.

37

References

“Accessing Google APIs.” Android™ Developers Guide. N.p., n.d. Web. 14 Oct. 2014.

<https://developer.android.com/google/auth/api-client.html>

“Android™ Audio Capture.” Android™ Developers Guide. N.p., n.d. Web. 29 Dec. 2014.

<http://developer.android.com/guide/topics/media/audio-capture.html>

“Android™ Processing Bitmaps Off the UI Thread.” Android™ Developers Guide. N.p.,

n.d. Web. 14 Oct. 2014. <http://developer.android.com/training/displaying-

bitmaps/process-bitmap.html>

"Apple Developer." iOS™ Developer Program. 2015. Web. 14 Oct. 2014.

<https://developer.apple.com/programs/ios/>.

Bauer, Carl. “Drag-Sort-ListView.” N.p. 2 April 2013.

 https://github.com/bauerca/drag-sort-listview

Bottomley, P. A., and J. R. Doyle. "The Interactive Effects of Colors and Products on

Perceptions of Brand Logo Appropriateness." Marketing Theory 6.1 (2006): 63-

83. Web.

"Building Applications with Multimedia." Android™ Developers Guide. N.p., n.d. Web.

14

Oct. 2014.

 <http://developer.android.com/training/building-multimedia.html>

“DatePickerFragment.” Android™ Developers Guide. N.p., n.d. Web. 14 Oct. 2014.

http://developer.android.com/guide/topics/ui/controls/pickers.html#DatePicker

"Design | Android™ Developers." Design | Android™ Developers. Google, n.d. Web. 7

Dec. 2014.

https://github.com/bauerca/drag-sort-listview
http://developer.android.com/guide/topics/ui/controls/pickers.html#DatePicker

38

Dextor. “Get filename and path from URI from mediastore.” N.p., n.d.

<http://stackoverflow.com/questions/3401579/get-filename-and-path-from-uri-

from-mediastore>

"Get Started with Publishing." Android™ Developers Guide. N.p., n.d. Web. 14 Oct.

2014. <http://developer.android.com/distribute/googleplay/start.html>.

"Google Design Guidelines." Google Design Guidelines. Google, n.d. Web. 7 Dec. 2014.

“Grid View.” Android™ Developers Guide. N.p., n.d. Web. 14 Oct. 2014.

<http://developer.android.com/guide/topics/ui/layout/gridview.html>

“JUnit Wiki.” JUnit, Github., n.d. Web. 12 Dec. 2014.

<https://github.com/junit-team/junit/wiki>.

“Loading Large Bitmaps Efficiently.” Android™ Developers Guide. N.p., n.d. Web. 14

Oct. 2014. <http://developer.android.com/training/displaying-bitmaps/load-

bitmap.html>

Mawston, Neil. "Wireless Smartphone Strategies." Android™ Captured Record 85

Percent Share of Global Smartphone Shipments in Q2 2014. Web. 14 Oct. 2014.

<http://blogs.strategyanalytics.com/WSS/post/2014/07/30/Android™-Captured-

Record-85-Percent-Share-of-Global-Smartphone-Shipments-in-Q2-2014.aspx>.

“Navigation Drawer Fragment.” Android™ Developers Guide. N.p., n.d. Web. 16 Oct.

2014. <https://developer.android.com/design/patterns/navigation-

drawer.html#Interaction>

"Reviews." Evernote. 3 March 2015. Np.p, n.d. Web. 14 Oct. 2014.

<https://play.google.com/store/apps/details?id=com.evernote&hl=en>.

39

"ScrapPad - Scrapbook for IPad." Apple Application Store. N.p., n.d. Web. 13 Oct.

2014.<https://itunes.apple.com/us/app/scrappad-scrapbook-for-

ipad/id353143273?mt=8>

Mayani, Paresh. “Select Multiple Photos from Gallery.” N.p., 18 Oct. 2012.

<http://www.technotalkative.com/android-select-multiple-photos-from-gallery/>

Smith, Aaron. "Smartphone Ownership 2013." Pew Research Centers Internet

American Life Project RSS. Pew Research Center, 5 June 2013. Web. 15 Oct.

2014.

 <http://www.pewinternet.org/2013/06/05/smartphone-ownership-2013/>

"Starting an Activity." Android™ Developers. N.p., n.d. Web. 14 Oct. 2014.

<http://developer.android.com/training/basics/activity-lifecycle/starting.html>.

“Testing in the Software Lifecycle.” Microsoft Developer Network. Microsoft, n.d. Web.

12 Dec. 2014. <http://msdn.microsoft.com/en-us/library/jj159342.aspx>.

Thompson, Arthur. "Copying database to Google Drive.” N.p., 8 Dec 2014.

<https://github.com/googledrive/android-

demos/blob/master/src/com/google/android/gms/drive/sample/demo/CreateFileA

ctivity.java>

Reda, Renas. "User Scenario Testing for Android™." Robotium - The World's Leading

 Android™ Test Automation Framework. Google, n.d. Web. 13 Oct. 2014.

https://code.google.com/p/robotium/

Wells, Don. "A Gentle Introduction." Extreme Programming. N.p., 8 Oct. 2013. Web. 13

 Oct. 2014.<http://www.extremeprogramming.org/>

https://code.google.com/p/robotium/

A1

Appendix A:

WanderLog: What It Does And How To Use It

The original purpose for creating WanderLog is to make an application for travelers.

This application allows a travel to chronicle events as they happen and maintain an

electronic journal of their travels. WanderLog can support multiple different trips in what

are called Timelines. Each timeline describes a single trip taken by the traveler and can

have several events that take place within it. While traveling, a person might go to a

restaurant, meet some local residents, go to public events, and many more possibilities.

All these possible events are stored in what is called an Entry within a Timeline. Within

these Entries, the traveler can add text, pictures, videos, and audio to the Entry. By

combining all of these pieces of media, a blog style page can be created to recount

what happened at that event.

Timelines

Upon launching the application for the first time, the user will view a screen that will

display all the timelines stored in the application in a list.

A2

This screen will look empty at first, but will fill up as more timelines are added to the

app.

Creating a Timeline

At the top of the main screen, there will be a button with a plus symbol. This symbol

stands adding a timeline. If the user is unsure what the symbol means, he or she can

hold down on the button, and a pop up message will describe the functionality of the

button. Upon tapping on the new timeline button, the user will then be presented with a

screen where a new timeline can be created.

A3

The add timeline screen will have text areas where the user can tap on to bring up a

keyboard and enter information like a timeline’s title, location, and description. After

adding all this information, the user can then tap on the start and end date text to bring

up a date picker for selecting the date. After all the information has been added, the

user can select the button with a check on top to save the new timeline, or, at any time,

the user can tap the “x” button on top to cancel creating a timeline. After a new timeline

has been created, the main screen will be shown again with the new timeline added.

Editing a Timeline

From the main timeline viewing screen, a user can tap on any of the timelines listed to

display the contents of that timeline. The new screen that will appear contains all the

information inserted into the timeline upon creation as well as a list of entries that are a

part of that timeline.

A4

All the entries in this timeline will be sorted by the date given to them with the most

recent ones being on the top of the list. If the user wishes to edit any of the timeline

data, he or she must tap on the edit button at the top which looks like a pencil. This

enables all the edit options for the timeline data being displayed. After editing, the user

can then tap the “X” to cancel changes or the save button represented by a floppy disk.

After saving or editing, the user will go back into view mode with all the editing options

disabled.

Syncing with Google Drive:

Saving to and Downloading from Google Drive

 To sync with Google Drive, the “Sync with Google Drive” option in the overflow menu

(of the main timeline screen) can be clicked.

A5

An Internet connection (3G/4G or wifi) is required to sync with Google Drive. Once

synced with Google Drive, the application allows a user to save all of his or her

timelines from Google Drive or download a copy of timelines from Google Drive. To

save to google drive, a user clicks the “Save Timelines to Google Drive” button. The file

can be given any name (but must end in “.cblite”). To download timelines from Google

Drive (which will set the downloaded file to the user’s database, overwriting any

timelines on the device), the user can click “Download Timelines from Google Drive.”

The user must choose a database file (ending in “.cblite”).

Creating an Entry

From inside of a timeline, the button with a plus sign on it at the top can be tapped on to

add a new entry to the current timeline.

A6

The next screen can then be used to enter information for a new entry like a title,

description, more specific location, and date. After entering the information, the cancel

and save buttons at the top of the screen can be used to go back to the viewing timeline

screen and either discard or save the changes made.

Deleting Entries

If ever a user wishes to delete an entry, this can be done in the edit window of the

timeline the entry is within. From the timeline detail screen, the screen where the list of

entries can be viewed, the edit button that looks like a pencil in the top of the screen can

be used to enter edit mode. Once in edit mode, all of the entries in the list will now

display a delete button in the upper right corner of the entry. Once done deleting, the

cancel and save buttons at the top can be used to confirm or undo the deletions.

Editing an Entry

After an entry is created, the details of that entry can be displayed by tapping on the

entry in the list of entries present in the timeline details page. The user will transition to

A7

the entry details page where all of the entry information as well as any media within the

entry will be displayed. In order to change any of the information about the entry that

was inserted during creating, the user must first tap on the edit button, the one that

looks like a pencil, in the top of the entry details screen. Once in edit mode, tapping on

the title, description, or location will bring up a keyboard to edit the information. The

date can also be tapped on to bring the datepicker back up to select a new date. When

edits are done, the cancel and save buttons at the top can be used to return to the entry

detail screen and either discard or save the changes.

A8

Creating Media

The essence of the WanderLog application is the ability to create media that recounts

the events of an event. When at the entry detail screen, the add media button (plus

icon) in the top can be used to add media. Upon tapping this button, a drop down menu

will appear with options to add text, pictures, videos, or audio.

A9

From the drop down menu, tapping “Add Text” from this menu will bring up an area to

type out some text and buttons at the bottom to add the typed text or cancel adding the

current text.

The “Add a Picture” button can be tapped from the add media drop down menu to bring

up the photo selector.

A10

Multiple photos can be checked off before adding them. The back arrow can be used to

cancel from the photo selector. If a single photo is selected to add, a confirmation

screen will display the picture and give the option to add a caption before adding the

picture.

If multiple photos are selected, a confirmation screen will also display to confirm or

cancel the addition of multiple photos. Captions can be added after importing multiple

photos by editing the photo in edit mode.

A11

To add a video, the “Add a Video” button can be tapped in the drop down menu for

adding media. This will bring up the video selector where a single video can be selected

to add to that activity. Tapping a video will select it for adding to the entry while tapping

the back button will cancel adding a video. If a video is selected, a confirmation screen

will appear where the video will be previewed and a caption can be added before

confirming or rejecting the addition of the video.

Lastly, audio can be added to the entry by tapping the “Add Audio” button in the add

media drop down menu. This will bring up an area where audio can be recorded by

tapping the “Start Recording” button.

A12

After tapping the button, it will change to a button to stop recording audio. After tapping

the button to stop audio recording, a new button will appear to replay the recorded

audio.

At this point, the audio can be re-recorded if it did not come out well the first time.

Before saving the audio, a caption can be added to the audio to distinguish it from other

A13

audio recordings. After everything is good to save, the buttons at the bottom of the

audio recording area can be used to save or cancel adding the audio.

Editing, Reordering, and Deleting Media

After media has been added to an entry, it can be edited, reordered, or deleted all

through the use of edit mode. Edit mode can be entered by tapping on the edit button

(pencil icon) at the top of the entry detail screen. Once in edit mode, edit and delete

buttons will appear to the right of the media.

The delete button is an “X” that will remove the corresponding piece of media from the

entry. The edit button is a pencil icon to the right every piece of media that can be used

to edit the text in that media, which means the entire content of text media and the

captions to pictures, videos, or audio clips.

A14

Media can also be reordered in edit mode by dragging media up and down. Once all the

editing, reordering, and deleting has been completed, it can all be confirmed by tapping

the check mark icon at the top, or it can all be undone by tapping the “X” button at the

top. Tapping either of these two buttons will also exit edit mode and resume view mode.

How To Install Our Project

Download the .apk file to your Android device from https://drive.google.com/file/d/0B-

_RoHL8_wb5VUd1NUFQd3ppNGM/view?usp=sharing. Once it has been downloaded,

locate your downloads on your device and click the file. This will prompt you to install

our application.

B1

Appendix B

Usability tasks

Task 1 Create a Timeline

Task 2 Edit Timeline Title

Task 3 Create Entry

Task 4

Add multiple pictures to an

entry

Task 5 Caption a picture

Task 6 Edit the date of an entry

Task 7 Delete media from an entry

Task 8 Delete an entry

Task 9 Delete a timeline

Usability Data

Numbers indicate time in seconds taken to complete task

User
ID

Class
year

Gender Android™
user?

Task 1 Task 2 Task 3

1 2015 M no 44.56 11 30.81

 Didn't take
time to figure
out what to
do...time
used was for
typing

Checkmark more
obvious than
saving...maybe
make them the
same button

made sense...I hate
typing on this tablet

2 2018 F yes - for
about a
month

29.9 26.08 31.2

 straight
forward

- entry list heading
looks like input for
creating an entry

3 2015 F no 37.71 13.33 33.68

 tapped start
date and end
date text first
rather than
icon

easy put stuff in at the
same time as creating
an entry

4 2015 M never owned
a
smartphone

30.83 25.8 35.33

 easy flip icons around add entry button was
last button pressed -
thought it made

B2

another timeline. Put
add entry button on
entries heading line

5 2015 M no 45.88 10 20.55

 didn't know
what button
to press to
finish

easy why set location for
timeline and
entries..might want a
timeline with new york
and boston

6 2017 F yes 40.43 12.11 47.4

 very easy to
use

- thought would be
entering an entry in
edit timeline screen

7 2017 F no 31.42 15.12 34.75

 straight
forward

- tapped on entry
heading first

8 2018 F yes 35.53 12.53 31.84

 - - made sense

9 2016 F yes 41.02 11.98 32.71

 easy easy adding in action bar
made sense

10 2016 F no 39.03 18.7 33.28

 - - -

11 2015 M no 38.1 13.57 22.69

 easy easy easy

12 2015 M yes 32.92 12.78 29.04

 - - wasn't confusing

13 2016 M yes 28.13 13.98 24.01

 made sense - made sense to edit in
action bar

User
ID

Task 4 Task 5 Task 6 Task 7 Task 8 Task 9

1 25.28 49.76 15.5 9 13.31 6.7

 make
checkboxes
to the left of
the pictures
they're with

first instinct
was to press
and hold on
the picture to
get a menu.
First thing
looked for was
edit key on
bottom of
picture

maybe
have
tapping on
date bring
up date
picker as
well as icon

wasn't obvious
that button
was pressed

same as
other
things...made
sense

there should
be
confirmation
on that

2 18 19.36 14.4 3.55 19.55 10.23

 tried to hit
the overflow
button which
is what some

click on
picture first.
edit button
makes sense

- - usually swipe
to go back

-

B3

android apps
use

3 31.31 27.88 6.73 9.88 6.28 3.9

 maybe
clearer icon

click on
picture from
view and then
edit picture

- makes sense
after editing

follows same
format as
rest of
deleting

-

4 23.85 41.59 29.35 4.61 9.71 4.41

 trouble
differentiating
between plus
buttons on
different
screens

tap on picture
to add caption
maybe

didn't state
task well
enough

didn't know if
hitting x button

wasn't
obvious to hit
save

put in
confirmation
on that

5 13.71 25.36 5.63 5.1 5.65 7.46

 nothing
confusing

tap on the
picture...didn't
realize to save

that was
really easy

 interactions
are similar in
different
levels

-

6 48.9 16.37 6.33 5.83 7.13 4.11

 went into edit
screen first

tapped on
picture first

- - - -

7 32.33 18.93 9.64 6.21 7.37 4.59

 - tapped on
picture first

- - easy to do
given
previous
deleting

-

8 22.73 23.93 7.14 3.95 6.32 3.92

 also made
sense

tapped on
picture first

- straightforward knew what to
do from
previous task

simple

9 18.62 30.41 6.86 4.17 8.12 4.91

 didn't realize
checkboxes
immediately

tapped on
picture
first...figured
out to use
editmode

- saw delete
button when
editing

- -

10 24.95 26.29 10.83 5.92 10.39 5.19

 make
checkboxes
more clearly
attached to
pictures

tapped on
picture
first...expected
to edit from
there

- - - -

11 20.77 29.94 8.98 6.12 8.24 4.98

 didn't think to
use plus
immediately
but figured it
out quickly

tapped on
picture first

- - not clear it
was
necessary to
hit save to
actually
delete

easy but
might
misclick and
accidentally
delete

12 20.12 25.81 5.41 6.08 7.16 4.11

 tapped on
entry
heading first

tapped on
picture
first...editmode

- - - -

B4

but figured
out to go to
action bar
quickly

made since
once realized
to click on
pencil

13 14.87 19.82 6.28 5.97 6.23 3.93

 - tapped on
picture first

knew to use
edit button
immediately

button
lagged...wasn't
sure if pressed
at first

- maybe
confirm
deleting
timeline

C1

Appendix C: Glossary

 Timeline: The object that contains a set of events for some trip (set of entries).

 Entry: An entry in the timeline. This will have a title and media (one or more media
items) within it.

 Abstract Media: An abstract class that will contain shared methods between the
types of media:

o Text: Written type of media (could be written in an external note or within the
application)

o Photo: Visual media (taken either within application or externally)
o Video: Visual media (taken either within application or externally)
o Audio: Sound media (taken within application)

 Create Entry View: Screen that allows user to create an entry

 Entry View: Full screen view for an entry that displays all media in an entry

 Edit Entry View: Content view that shows what media is in an entry and allows user
to edit entries details/what media in an entry

 Create Timeline View: Screen that allows user to create a new timeline

 Edit Timeline View: Content view that shows what entries are in a timeline and
allows the use to edit timeline details/what entries are in a timeline

 Media View: View of a fragment containing a media object on top an Entry Detail

View or a Present Entry View

