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Scientific databases have emerged over the past two decades to store, analyze, and query science 

data such as in chemistry, biology, medicine, and earth sciences, among others. One of the major 

issues in scientific applications is that data are typically generated from the collaboration among 

many scientific labs and groups, which usually results in many challenging issues in integrating 

such data and managing their conflicts. These challenges represent a major hurdle to scientists 

that slowdown the progress in these fields. In this project, we study several of these challenges 

and highlight them through examples. We take biological databases as a test case in our project. 

We then focus on one major issue, which is “managing the conflicting data” and propose 

recommendations and potential solutions to address this issue. 
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Scientists in many fields, e.g., biology, chemistry, physics, medicine and healthcare, 

astronomy, and earth sciences, have been, for many years, collecting and analyzing data outside 

the database management systems (DBMSs). This is mostly because scientists used old-fashion 

methods such as file systems for storing their data, and on top of that most analysis tools have 

been designed to operate on files. For example, biologists used to store their data in flat files and 

process those using Perl scripts and other domain-specific tools such as BLAST (Basic Local 

Alignment Search Tool: http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

However, with the scientific discoveries and the rate of collecting and generation data, 

the storage and analysis of scientific data becomes a major hurdle for scientists? They realized 

that they are of a great need to more complex systems for managing their data than flat files. 

That is where the database management systems (DBMSs) come into place (Refer to Figure 2.1). 

DBMSs offer many unique features such as structured schemas, data consistency, high-level 

query language, recovery and concurrency mechanisms, indexing techniques, and others. 

Therefore, over the past two decades, DBMSs have provided eminent support for various 

scientific applications, and since then scientific databases have become commonly used by the 

scientific community.    

                           

       Figure 2.1: Shifting from file system to DBMSs for storing and querying the data. 
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In this project, we focus on one type of scientific data, which is biological data. In that 

domain, biologists need to store and analyze massive amounts of biological data generated from 

computer stimulations, instruments, and lab in database systems in order to perform their work. 

That is why scientific databases play significant role in computational biology. There are several 

hundred biological databases and it is increasing at a staggering rate, which makes it very 

difficult to keep an accurate track of all of the data collected throughout the years. 

Even though many biologists have pen-and-paper method, they found it very hard to keep 

up using a regular notebook fitting all of the collected data and comparing it with other data. 

Moreover, with these data accumulating at a high rate, they started to have bigger issues than just 

collecting the data. Therefore, biology applications were among the first scientific applications to 

use databases and share the data across the world. Examples of these databases are MetaBase1, 

DBcat 2 , and GenBank3  that are among the biggest biological databases created through 

collaboration of many research labs. DBcat, for example, is a comprehensive catalog for 500 

biological databases, while GenBank is one of the major databases which contains over four 

million nucleotide sequences and is considered one of the largest biological databases available 

for public and for biologist where they can save and share their results. 

One of the problems biologists are facing is that the size and growth of biological data 

collected in these databases become a serious problem. Biologists need various analysis tools to 

fix data duplication and repetition, missing and wrong values, non-standardized data formats, 

and conflicts that appear when data from multiple sources are shared and exchanged. Another 

problem biologists are facing is the lack of knowledge in areas such as computer software, 

information systems, computer hardware, data management, programming and the differences 

between query language, and the differences between database schemas.  

Typically, the big repositories of databases are used as reference sources and for 

verifying local, under-developed data. Therefore, Biologists do concentrate in creating smaller 

more focused database within their research labs. Nevertheless, the success of these databases 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
1 MetaBase: http://metadatabase.org/wiki/Help:About 
2 DBcat: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC102454/ 
3 GenBank: http://www.ncbi.nlm.nih.gov/genbank/ 
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and the increasing demands of wider international coverage of data collected to be shared create 

a corresponding pressure for these small and local databases to be integrated and published into 

the larger repositories, allowing a single query interface too many databases at once. It is very 

important to integrate and process the data in a shared collaborative environment for better 

utilization of the data, more accurate results, and faster progress in the scientific domain. This 

issue is widely known in the information management community as “Data Integration”. Data 

integration is basically the process of integrating and sharing data from many sources or sites. 

Data integration involves many challenges that need to be addressed such as mapping and 

alignment of data, unifying the structure of the data, resolving mismatches and conflicts, among 

many others. Scientists always face these issues while sharing and integrating their data. Our 

work in this project will focus on studying the issues and challenges involved in the data 

integration of scientific databases.   
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In the following, we summarize the goals of our project: 

• Study different methods currently available for storing, collecting and sharing data. 

• Study several databases that biologist and biomedical researchers currently use. 

• Analyzing the collected data and highlighting conflicts found between different datasets.  

• Suggesting a better solution to resolve and avoid conflicts. 
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Biomedical researchers and biologists are our target in this project. One significant 

problem they are facing is the conflicting or mismatched data, due to conflicting biological data 

and unknown problem among researchers that perform similar experiments around the world. It 

is very important to connect and have the same information correctly processed and shared for 

better results saving time and money. We also target audience interested in database systems and 

interested in learning how these systems can serve scientific domains. 
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The rest of this report is as follows. In Chapter 3, we give a background discussion on 

scientific databases and biological concepts.  In Chapter 4, we discuss issues related to data 

integration.  In Chapters 5 and 6, we discuss in more detail the datasets we worked on and how it 

is analyzed. Chapter 7 contains our preliminary ideas on how to address the issue of conflicting 

data using taxonomy models and database features. In Chapter 8, we conclude our project and 

findings. 
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A Scientific Data Management System (SDMS) is a specialized information system for 

electronic record management for most types of analytical data and documentation, which 

ensures long-term data preservation, accessibility, and recovery. Scientists normally refer to data 

management as the mere physical data storage and access layer. Scientific Data Management is 

the platform technology where all analytical and related data, including the printed reports 

generated by instrument scientist use to view the actual contact of the report. SDMS provides the 

ability for a quicker and easier method to locate and view data with out the software used to 

create these data for us. 

Database is the collection of data that related to each other that organized and useful information 

may be pulled and used for future studies. The fact that the data are shared regularly prevents the 

duplication of data collection. Science data center provide the access to both data and the 

applications that analyze the data these two areas works with each other as specific scientific 

domain creating massive dataset, giving the user ability to understand and indeed in constantly 

adding improving the dataset performance.  

Scientific data management system has important physical components that have to be present 

for the data to function properly some of these components are: 

! Metadata schema which is the most important component  

!  The organization of the collected metadata  

! Accessing the physical data. 

! User data access interface. 

! The storage and management for Metadata. 

! Workflow description and management. 

! Ownership and data lifetime definition. 

! Data quality evaluation process. 
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Scientific databases involve many technical challenges. One of these challenges results 

from many different opinions of the same phenomena that are inconsistent, resulting from 

different methods, measurements, or experts’ interpretations. Furthermore, many of the errors 

found that has already been published are not cleaned or revised. For many scientists once 

analysis has been published, there is no need to be recreated, but focusing on finding the relation 

within the given database and link it to others. Another challenge in scientific databases is related 

to dealing with the diversity, and the complexity of the verity data creates the need of different 

areas where the scientific data can be managed. Even though there is a wide science agreement 

using a specific type of techniques and measurements there is still a little to not arrangement on 

the ways data collected and stored triggering major conflict and no system available linking over 

all information.  

Usually scientists concentrate on creating smaller and more focused database that require a 

lot of attention and maintenance. They may also store their data in flat files outside the database, 

which results in many problems including: 

• Restricted file and directory naming schemes 

• Project data origins are basically big flat directories. 

•  Researchers retrieve files by discovering and finding out the connection between them 

without any specific program  

• Somewhat the agreement on following a specific techniques and measurement scientist 

use, but not on the way which data stored neither a specific database system nor 

application. 

• Another important point of the various scientific data is its availability to discover it by 

browsing that if the data is well described and the flexibility accessing the data, which 

would allow us as users to establish a relation between data already discovered.  

 

"

"
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In the table below, we summarize several research areas in scientific database. 

Creation of logical collections: The main purpose of a Data Management 
system is to abstract the physical data into 
logical collections.  
 

Physical data handling: 
 

This covers the maps between the physical to 
the logical data views, which means data 
reproduction, backup, caching, etc. 
 

Interoperability support: 
 

Normally the data does not exist in in the same 
place, or different data collection should be put 
together in the same logical assembly. 
 

Security support: 
 

Data access authorization allowing only the 
scientists to change his/her data which will 
provide to trust the actual data and no one else 
can change it.  
 

Data ownership: 
 

The responsibility for the data quality and 
explanation. 
 

Metadata collection, management and 
access: 
 

Are the data talks and explain the current data 
 

Persistence The lifetime protection for the data against any 
sudden changes in technology. 
 

Knowledge and information discovery 
 

Capability to pinpoint useful relationships and 
information within the data collection. 
 

Data dissemination and publication 
 

Method provides parties who are interested in 
knowing the latest information and any changes 
in the data collection. 
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In this section, we overview some of the centers created for storing and managing scientific data. 

• Scientific Data Management Center (SciDAC) 

SciDAC is an advanced data management technology most needed in the scientific 

community helping scientist to better understand the importance of data management and data 

analytical challenges for their current and future science need because of the increasing volume 

and the complexity of the collecting data that requires managing, generating and analyzing data 

starting from initial stage of receiving data to the final analysis of the data. SciDAC improved 

three most needed areas: 

1. Storage system needed where large amount of data can be stored and accessed in timing 

manner 

2. Ability to perform complex data analysis and searches for a large data sets, storing as 

well as ability to track and locate a specific datasets 

3. Generating, collecting and storing data and their results before and after processing. 
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Is the most important and most leading database for research in almost all biological 

fields where individual laboratories and large centers able to submit directly into the database. 

GenBank is a sequence database; large collection of digital nucleic acid sequences, protein 

sequences and other sequences stored on a computer, these sequences could be from only one 

organism or organisms with a DNA have been sequenced. GenBank is available online with no 

cost with additional usage rights. 

This database is produced and maintained by the National Center For Biotechnology 

Information as part of the International Nucleotide Sequence Database Collaboration as well as 

the National Institute of Health in the United States. Direct submission made using web based 

form called BankIt, upon receiving the submission GenBank staff examine the originality of the 

data giving them a unique access number performing quality check then releasing the data to the 

public after verifying the information provided that can be accessed suing the global query cross-

database search system or web portal, or could be downloadable by FTP which is a standard 

network built on the individual server used to transfer files from one host to another using 

internet, where the data can be controlled. 

Bacterial Genome Submission Examples: 
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GenBank flat file 

LOCUS  OB_HTE831       3630528 bp    DNA     circular BCT 11-DEC-2002 

DEFINITION  Oceanobacillus iheyensis HTE831, complete genome. 

ACCESSION 

VERSION 

KEYWORDS    . 

SOURCE      Oceanobacillus iheyensis HTE831 

  ORGANISM  Oceanobacillus iheyensis HTE831 

            Bacteria; Firmicutes; Bacillales; Oceanobacillus. 

REFERENCE   1  (bases 1 to 3630528) 

  AUTHORS   Takami,H., Takaki,Y. and Uchiyama,I. 

  TITLE     Genome sequence of Oceanobacillus iheyensis isolated from the Iheya 

            Ridge and its unexpected adaptive capabilities to extreme 

            environments 

  JOURNAL   Nucleic Acids Res. 30 (18), 3927-3935 (2002) 

   PUBMED   12235376 

REFERENCE   2  (bases 1 to 3630528) 

  AUTHORS   Takami,H., Takaki,Y. and Chee,G. 

  TITLE     Direct Submission 

  JOURNAL   Submitted (26-DEC-2001) Hideto Takami, Japan Marine Science and 

            Technology Center, Deep-sea Microorganisms Research Group; 2-15 

            Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan 

FEATURES             Location/Qualifiers 

     source          1..3630528 

                     /organism="Oceanobacillus iheyensis HTE831" 

                     /strain="HTE831" 

                     /db_xref="taxon:221109" 

     gene            1830..2966 

                     /gene="dnaN" 

                     /locus_tag="OBB_0002" 

     CDS             1830..2966 
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                     /gene="dnaN" 

                     /locus_tag="OBB_0002" 

                     /EC_number="2.7.7.7" 

                     /codon_start=1 

                     /transl_table=11 

                     /product="DNA-directed DNA polymerase III beta chain" 

                     /translation="MRFTIQRDKLINGVSNVMKAISARTVIPILTGMKIEVKNHGVTL 

                     TGSDSDISIEYYIPIEEDGIVHVENIEEGTIILQAKYFPDIVRKLPESTVDIVVDDQL 

                     NVRITSGKAEFNLNGQSAEEYPQLPKVQTENSFELPIDLLKSMIKQTVFAVSTMETRP 

                     ILTGVNLKLVDNSLSFTATDSHRLARREIPVSNAPIEISQIVVPGKSLNELNKILGDS 

                     EETVEISVTNNQILFRTKHLNFLSRLLDGNYPETSRLIPEQSKTKIQLKTKELLGTID 

                     RASLLAKEERNNVVKFNAPGNSMIEISSNSPEVGNVVEEITADQMEGEDVKISFSSKY 

                     MIDALKAIEYDEVQIEFTGAMRPFIIRPVGDDSILQLILPVRTY" 

operon          91493..96462 

                     /operon="rrnA" 

     gene            91493..93058 

                     /gene="rrsA" 

                     /locus_tag="OBB_0089" 

                     /operon="rrnA" 

     rRNA            91493..93058 

                     /gene="rrsA" 

                     /locus_tag="OBB_0089" 

                     /operon="rrnA" 

                     /product="16S ribosomal RNA" 

     gene            93292..96213 

                     /gene="rrlA" 

                     /locus_tag="OBB_0090" 

                     /operon="rrnA" 

     rRNA            93292..96213 

                     /gene="rrlA" 

                     /locus_tag="OBB_0090" 

                     /operon="rrn" 
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Portal for E-coli research type K-12 strains and their phage and mobile elements, 

launches 14 different web resources for E. coli information and organizing the result that targets 

to: 

" Facilitate access to E. coli information that is distributed over the web  

" Make E. coli genomics data easy to access, search and analyze.  

" Enable the community to add information to the knowledgebase  

" Provide community features such as a calendar, colleague search, blog entries 

"mentioning E. coli; and educational materials  

 

Protein Data Bank: 

Protein Data Bank is the single widespread storehouse for the processing and distribution 

of 3D biological macromolecular structure data of large biological molecules such as proteins 

and nucleic acid. The data, usually achieved by X-ray crystallography or NMR spectroscopy and 

submitted by biologists and biochemists from around the world, are easily available on the 

Internet via the websites of its member associations as well as these database is updated weekly. 

As of April third of 2012 the breakdown of the current holding is: 

Experimental 

Method 

 

Proteins 
Nucleic 

Acids 

Protein/Nucleic 

Acid 

complexes 

Other Total 

X-ray 

diffraction 
65950 1346 3261 2 70559 

NMR 8185 979 186 7 9357 

Electron 

microscopy 
284 22 116 0 422 

Hybrid 44 3 2 1 50 

Other 140 4 5 13 162 

Total: 74603 2354 3570 23 80550 
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Protein Data Bank file describing a protein consists of hundreds to thousands of lines  

HEADER    EXTRACELLULAR MATRIX                    22-JAN-98   1A3I 

TITLE     X-RAY CRYSTALLOGRAPHIC DETERMINATION OF A COLLAGEN-LIKE 

TITLE    2 PEPTIDE WITH THE REPEATING SEQUENCE (PRO-PRO-GLY) 

... 

EXPDTA    X-RAY DIFFRACTION 

AUTHOR    R.Z.KRAMER, L.VITAGLIANO, J.BELLA, R.BERISIO, L.MAZZARELLA, 

AUTHOR   2 B.BRODSKY,A.ZAGARI,H.M.BERMAN 

... 

REMARK 350 BIOMOLECULE: 1 

REMARK 350 APPLY THE FOLLOWING TO CHAINS: A, B, C 

REMARK 350   BIOMT1   1  1.000000  0.000000  0.000000        0.00000 

REMARK 350   BIOMT2   1  0.000000  1.000000  0.000000        0.00000 

... 

SEQRES   1 A    9  PRO PRO GLY PRO PRO GLY PRO PRO GLY 

SEQRES   1 B    6  PRO PRO GLY PRO PRO GLY 

SEQRES   1 C    6  PRO PRO GLY PRO PRO GLY 

... 

ATOM      1  N   PRO A   1       8.316  21.206  21.530  1.00 17.44           N 

ATOM      2  CA  PRO A   1       7.608  20.729  20.336  1.00 17.44           C 

ATOM      3  C   PRO A   1       8.487  20.707  19.092  1.00 17.44           C 

ATOM      4  O   PRO A   1       9.466  21.457  19.005  1.00 17.44           O 

ATOM      5  CB  PRO A   1       6.460  21.723  20.211  1.00 22.26           C 

... 

HETATM  130  C   ACY   401       3.682  22.541  11.236  1.00 21.19           C 

HETATM  131  O   ACY   401       2.807  23.097  10.553  1.00 21.19           O 

HETATM  132  OXT ACY   401       4.306  23.101  12.291  1.00 21.19           O 

... 
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In this section, we present some of the common formats for storing scientific data. 

• CDF—Common Data Format 

• Self-describing data format for the storage of scalar and multidimensional data in a 

platform- and discipline-independent way 

• Scientific data management package (CDF Library) allows application developers to 

manage these data arrays 

• Transparent access to data and metadata through Application Programming Interfaces 

(APIs) 

• Built-in support for data compression and automatic data un-compression 

• Large file support (> 2GBytes) 

• CDF library includes a suite of tools that allow users to manipulate CDF files 

HEADER, TITLE 
and AUTHOR 
records  
 

Provide information about the researchers who defined the 
structure 

REMARK records  
 

Contain free-form annotation, but they also accommodate 
standardized information 

SEQRES records  
 

Give the sequences of the three-peptide chains (named A, B and 
C), which are very short in this example but usually span 
multiple lines. 
 

ATOM records  
 

Describe the coordinates of the atoms that are part of the protein. 
For example, the first ATOM line above describes the alpha-N 
atom of the first residue of peptide chain A, which is a proline 
residue; the first three floating point numbers are its x, y and z 
coordinates and are in units of Ångströms.[1] The next three 
columns are the occupancy, temperature factor, and the element 
name, respectively. 
 

HETATM records  
 

Describe coordinates of hetero-atoms, that is those atoms which 
are not part of the protein molecule. 
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• NetCDF—Network Common Data Format (.nc) 

• NetCDF data file format. 

• Self-describing format for exchanging scientific data. 

• Used in atmospheric research, GIS, and related fields. 

• NetCDF is an acronym derived from network Common Data Form. 

• Binary file format. 

• Conceptually based on NASA's Common Data Format, but incompatible with this 

format. 

• Developed by the Unidata center at the University Corporation for Atmospheric Research 

(UCAR). 

•  

• NASACDF 

• CDF data file format. 

• General-purpose, self-describing format for storing multidimensional datasets. 

• Used for storage, management, and exchange of scientific data and images. 

• CDF is an acronym for Common Data Format. 

• Developed since 1985 by the National Space Science Data Center at NASA. 

• Binary file format. 

• Related to, but incompatible with, netCDF. 

• GenBank (.gb, .gbk) 

• MIME type: chemical/seq-na-genbank  

• GenBank molecular biology format. 

• Native format of the U.S. National Center for Biotechnology Information (NCBI) 

database. 

• Standard format for storing and exchanging annotated DNA sequences. 

• Plain text format. 

• Developed in 1982 as part of the NIH GenBank project. 

 

 

 



#!"
"

• HDF5 (.h5) 

• HDF data format Version 5.  

• General purpose format for representing multidimensional datasets and images. 

• Used for storage, management, and exchange of scientific data. 

• HDF is an acronym for Hierarchical Data Format. 

• Developed by the U.S. National Center for Supercomputing Applications (NCSA). 

• Binary file format. 

• Incompatible with HDF Version 4 and earlier. 
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Metadata is structured information that describes, explains, locates, or otherwise makes it 

easier to retrieve, use, or manage an information resource. Metadata is often called data about 

data or information about information. The term metadata is used differently in different 

communities. Some use it to refer to machine understandable information, while others use it 

only for records that describe electronic resources. In the library environment, metadata is 

commonly used for any formal scheme of resource description, applying to any type of object, 

digital or non-digital. Metadata can describe resources at any level of aggregation. Metadata can 

help in many tasks for better understanding the data. Examples of these tasks are: 

1- Resource Discovery: Permitting resources to be found by related reasons. As the number 

of Web-based resources grows rapidly, comprehensive sites or portals are progressively 

useful in organizing links to resources based on audience or topic. 

2- Interoperability: Describing a resource with metadata allows it to be understood by both 

humans and machines in ways that promote interoperability. Using defined metadata 

schemes, shared transfer protocols, and crosswalks between schemes, resources across 

the network can be searched more flawlessly. 

3- Digital Identification: Most metadata schemes include elements such as standard 

numbers to individually identify the work or object to which the metadata refers. The 

actual elements that point to the object, the metadata can be combined to act as a set of 

identifying data, differentiating one object from another for validation purposes. 
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4- Archiving and Preservation: Metadata efforts center on the discovery of recently created 

resources. However, there is a growing concern that digital resources will not outlast in 

usable form into the future. Digital information is fragile; it can be corrupted or altered, 

intentionally or unintentionally. Metadata is the key to confirming that resources will 

survive and continue to be accessible into the future. 
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Since our focus in the remaining of this report will be on biological data, we will give in this 

section and brief background on biological science and define the main terms in biology. 

• Chromosomes Mechanism 

Every chromosome contains a single molecule of DNA, snakelike carrier of hereditary 

information. If stretched out to its full length, the DNA molecule in a human chromosome would 

be between 1.7 and 8.5 centimeters long, depending on the chromosome. But it would be 

vanishingly thin, less than a millionth of a centimeter across. A chromosome quite a complex 

structure, with the DNA molecule wound around protein spools and fastened into loops, coils, 

and fibers by other proteins. In a chromosome, protein is the packaging and DNA is the contents 

of the package. In its most tightly packaged or "condensed" form, a chromosome, which contains 

several centimeters of DNA, is only a few ten-thousandths of a centimeter long. Generally, 
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however, chromosomes are fully condensed only in preparation for cell division. The rest of the 

time, some of the loops and coils are unfastened so that the DNA can do its work, 

communicating hereditary instructions to the rest of the cell. 

 

• Genes 

A gene is a small piece of the genome. It's the genetic 

equivalent of the atom: As an atom is the fundamental unit of matter, a 

gene is the fundamental unit of heredity. Genes are found on 

chromosomes and are made of DNA. Different genes determine the 

different characteristics, or traits, of an organism. In the simplest terms 

one gene might determine the color of a bird's feathers, while another 

gene would determine the shape of its beak. The number of genes in  

the genome varies from species to species. More complex organisms tend to have more 

genes. Bacteria have several hundred to several thousand genes. Estimates of the number of 

human genes, by contrast, range from 25,000 to 30,000. 

 

What Do Genes Do? 

Genes tell a cell how to make proteins. Roughly speaking, each gene is a set of 

instructions for making one specific protein. Proteins are a diverse group of large, complex 

molecules that are crucial to every aspect of the body's structure and function. Collagen, which 

forms the structural scaffolding of skin and many other tissues, is a protein. Insulin, a hormone 

that regulates blood sugar, is a protein. Trypsin, an enzyme involved in digestion, is a protein. So 

is the pigment melanin, which gives hair and skin its color. Still other proteins regulate the 

body's production of proteins. 

 

What Do Genes Look Like? 

A gene has several parts. In most genes, the protein-making instructions are broken up 

into relatively short sections called exons. These are interspersed with introns, longer sections of 

"extra" or "nonsense" DNA. Genes also contain regulatory sequences, which help determine 

where, when, and in what amount proteins are made. 
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These sequences are crucial to how your body works. 

They help determine which genes are "turned on," or 

transmitting their protein-making instructions to the 

rest of the cell, in different cells throughout the body. 

All your cells contain the same genes, but cells don't make all the proteins they have genes for. A 

schematic drawing of a gene including these features looks like a ribbon divided into segments. 

But like many schematic drawings, this one is quite different from the physical reality of a gene. 

Actually, a gene is rather nondescript from a physical point of view. It basically looks like any 

other piece of DNA. 

• DNA 

DNA is the molecule that is the hereditary material in all living cells. Genes 

are made of DNA, and so is the genome itself. A gene consists of enough DNA to 

code for one protein, and a genome is simply the sum total of an organism's DNA. 

DNA is long and skinny, capable of contorting like a circus performer when it winds 

into chromosomes. DNA contains information necessary to build a living organism.  

 

What is DNA made of? 

DNA is a very large molecule, made up of smaller 

units called nucleotides that are strung together in a row, 

making a DNA molecule thousands of times longer than it is 

wide. Each nucleotide has three parts: a sugar molecule, a 

phosphate molecule, and a structure called a nitrogenous 

base. The nitrogenous base is the part of the nucleotide that 

carries genetic information, so the words "nucleotide" and 

"base" are often used interchangeably. The bases found in 

DNA come in four varieties: adenine, cytosine, guanine,  

and thymine—often abbreviated as A, C, G, and T, the letters of the genetic alphabet. 
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What Does DNA Look Like? 

A DNA molecule is a double helix, a structure that looks much 

like a ladder twisted into a spiral. The sides of the ladder are made of 

alternating sugar and phosphate molecules, the sugar of one nucleotide 

linked to the phosphate of the next. DNA is often said to have a sugar 

and phosphate "backbone." 

 In other words, the order of bases on one DNA strand, or side of the 

ladder, determines the bases on the other side of the ladder. Thus, 

DNA sequences are often written as if DNA were only single-stranded: 

AGTCTGGAT…. Scientists need sequence only one DNA strand in order to know the sequence 

of both strands.  

 
 

                        

How Are New DNA Molecules Made? 

New DNA molecules are made by copying, using old DNA 

molecules as a template. 

When a cell needs to copy a DNA molecule, it "unzips" part of the double helix, breaking the 

rungs of the ladder in half so that the molecule separates down the middle. New nucleotides, 

floating free in the cell, can then hook up with complementary nucleotides along each strand. 

Gradually the unzipping proceeds and the new strands continue to grow until one DNA molecule 

becomes two identical DNA molecules. A cell copies its entire DNA in this fashion each time it 

divides. In the cells of complex organisms such as humans, this process takes an average of 8 

hours. In other words, each human cell can read and reproduce the entire genome sequence in 

one working day. 

 

How Does DNA Tell A Cell About Making Proteins? 

DNA tells a cell how to make proteins through the genetic code. Both DNA and proteins 

are long molecules made from strings of shorter building blocks. While DNA is made of 

nucleotides, proteins are made of amino acids, a group of 20 different chemicals with names like 

alanine, arginine, and serine. The genetic code enables a cell to translate the nucleotide language 
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of DNA into the amino acid language of proteins. In the genetic code, each group of three 

nucleotides—known as a "triplet" or "codon"—stands for a specific amino acid. For example, 

GCA stands for alanine, AGA stands for arginine, and AGC stands for serine. There are 64 

possible codons, but only 20 amino acids, so more than one codon may code for a single amino 

acid. For example, GCA, GCC, and GCG all mean alanine. For the most part, the genetic code is 

the same across every form of life, from bacteria to sea stars to German shepherds to humans.  

 

How Much DNA Is In A Gene? How Much Is In A Genome? 

Both genes and genomes come in a variety of sizes. About 1,000 base pairs would be enough 

DNA to encode most proteins. But introns—"extra" or "nonsense" sequences inside genes—

make many genes longer than that. Human genes are commonly around 27,000 base pairs long, 

and some are up to 2 million base pairs. Very simple organisms tend to have relatively small 

genomes. The smallest genomes, belonging to primitive, single-celled organisms, contain just 

over half a million base pairs of DNA.  But among multicellular species, the size of the genome 

does not correlate well with the complexity of the organism. The human genome contains 3 

billion base pairs of DNA, about the same amount as frogs and sharks. But other genomes are 

much larger. A newt genome has about 15 billion base pairs of DNA, and a lily genome has 

almost 100 billion.  

 

• Genome Sequencing 

Genome sequencing is figuring out the order of DNA nucleotides, or bases, in a genome—

the order of As, Cs, Gs, and Ts that make up an organism's DNA. The human genome is made up 

of over 3 billion of these genetic letters. A DNA sequence that has been translated from life's 

chemical alphabet into our alphabet of written letters might look like this: 

 

                          

That is, in this particular piece of DNA, an adenine (A) is followed by a guanine (G), which is 

followed by a thymine (T), which in turn is followed by a cytosine (C), another cytosine (C), and 

so on. 
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What is Genome Sequencing? 

Genome sequencing is often compared to "decoding," but a sequence is still very much in 

code. In a sense, a genome sequence is simply a very long string of letters in a mysterious 

language. 

 

Why Is Genome Sequencing Important? 

Sequencing the genome is an important step towards understanding it. At the very least, 

the genome sequence will represent a valuable shortcut, helping scientists find genes much more 

easily and quickly. A genome sequence does contain some clues about where genes are. Genes 

account for less than 25 percent of the DNA in the genome, and so knowing the entire genome 

sequence will help scientists study the parts of the genome outside the genes.  

 

What Makes Sequencing The Human Genome Different From Sequencing Other 

Genomes? 

The human genome is a lot bigger than other genomes that have been sequenced in the 

past. Most genomes that have been sequenced to date belong to viruses, bacteria, or other simple 

forms of life with relatively small genomes. The human genome is about a thousand times larger 

than an average bacterial genome. Even the fruit fly genome, the largest genome sequenced prior 

to the human genome, is just 165 million base pairs—less than a tenth the size of the human 

genome. 
 

In addition, the human genome is about 25 to 50 percent repetitive DNA, but bacterial 

and viral genomes contain very little of this exasperating stuff. In repetitive DNA, the same short 

sequence is repeated over and over again. Repetitive DNA may also be more difficult to 

sequence than other DNA. Sometimes the procedures used to copy DNA and prepare it for 

sequencing do not work on repetitive DNA, and a sequencing machine may have a hard time 

reading the same string of letters over and over.  
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Genome Variations: 

Genome variations are differences in the sequence of DNA 

from one person to the next. Just as you can look at two people and 

tell that they are different, you could, with the proper chemicals and 

laboratory equipment, look at the genomes of two people and tell 

that they are different, too. In fact, people are unique in large part 

because their genomes are unique. 

 

How Different Is One Human Genome From Another? 

The more closely related two people are, the more similar their genomes. Scientists 

estimate that the genomes of non-related people—any two people plucked at random off the 

street—differ at about 1 in every 1,200 to 1,500 DNA bases, or "letters." Whether that's a little or 

a lot of variation depends on your perspective. There are more than three million differences 

between your genome and anyone else's. On the other hand, we are all 99.9 percent the same, 

DNA-wise. Most genome variations are relatively small and simple, involving only a few 

bases—an A substituted for a T here, a G left out there, a short sequence such as CT added 

somewhere else, for example. Your genome probably doesn't contain long stretches of DNA that 

someone else's lacks. 

 

Why Is Every Human Genome Different? 

Every human genome is different because of mutations—"mistakes" that occur 

occasionally in a DNA sequence. When a cell divides in two, it makes a copy of its genome, and 

then parcels out one copy to each of the two new cells. When a mutation occurs in a sex cell—a 

sperm or an egg—it can be passed along to the next generation of people. Your genome contains 

about 100 "new" mutations—changes that occurred as your parents' bodies made the egg and 

sperm cells that became you. Other variations in our genome arose many generations ago and 

have been passed down from parent to child over the years, until they ended up in you. We are 

probably share each one of these older variations with many other people all over the world, but 

still, no one else has the exact same combination of variations that you have. 
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Where Are Genome Variations Found? 

Variations are found all throughout the genome, on every one of the 46 human 

chromosomes. But this variation is by no means distributed evenly: It's not as if there is one 

difference every 1,000 bases as regular as rain. Instead, some parts of the genome are "hot spots" 

of variability, with hundreds of possible variations of a sequence. Other parts of the genome, 

meanwhile, don't vary much at all between individuals—in scientific parlance, they are said to be 

"stable.". The majority of variations are found outside of genes, in the "extra" or "junk" DNA 

that does not affect a person's characteristics. Mutations in these parts of the genome are never 

harmful, so variations can accumulate without causing any problems. Genes, by contrast, tend to 

be stable because mutations that occur in genes are often harmful to an individual, and thus less 

likely to be passed on. 

 

What Kinds Of Genome Variations Are There? 

Genome variations include mutations and polymorphisms. Technically, a polymorphism 

(a term that comes from the Greek words "poly," or "many," and "morphe," or "form") is a DNA 

variation in which each possible sequence is present in at least 1 percent of people. For example, 

a place in the genome where 93 percent of people have a T and the remaining 7 percent have an 

A is a polymorphism. If one of the possible sequences is present in less than 1 percent of people, 

then the variation is called a mutation. 

Informally, the term mutation is often used to refer to a harmful genome variation that is 

associated with a specific human disease, while the word polymorphism implies a variation that 

is neither harmful nor beneficial. However, scientists are now learning that many polymorphisms 

actually do affect a person's characteristics, though in more complex and sometimes unexpected 

ways. 
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About 90 percent of human genome variation comes in the form of single nucleotide 

polymorphisms, or SNPs (pronounced "snips"). Any one of the four DNA bases may be 

substituted for any other—an A instead of a T, a T instead of a C, a G instead of an A, and so on. 

Theoretically, a SNP could have four possible forms, or alleles, since there are four types of 

bases in DNA. But in reality, most SNPs have only two alleles.  
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Neil Campbell., Jane Reece., (2008) From Gene to Protein. Powerpoint presentation. Biology 

Eighth Edition. 
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Data Integration is the process of integrating data from different sources with the purpose 

of creating a single over-all view, using the combined information to answer queries. There are 

two kinds of integrating data; Physical, which means copying data to a warehouse, and Virtual 

which means keeping the data at the original sources while retrieving the answer from each 

source at query time. 
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It is a repository gathering data from a variety of data sources and providing integrated 

information for Decision Support Systems of an enterprise. The data sources provide the original 

data to the warehouse. A data warehouse may integrate data from multiple autonomous and 

heterogeneous data sources, which could be either remote or local, and not under the control of 

the data warehouse users and administrators. A data warehouse has the following characteristics:  

• Subject oriented: data warehouse only includes the data that will be used for the 

organization’s Decision Support System (DSS) processes. 

• Integrated: Data warehouses collect data from multiple data sources, which may be 

distributed, heterogeneous and autonomous. 

• Nonvolatile:  The warehouse data are normally long-term, not updated in real-time and 

just refreshed periodically. 

• Time Variant: Information from one past time point to the present may be contained in 

the data warehouse.  

Data warehouse consist of three components: 

• Detailed Data: it is the lowest level of source information necessary for supporting the 

DSS processes. 

• Summarized Data: The summarized data is derived from the detailed data, in order to 

allow faster processing of specific DSS functionality. 

• Metadata: A data warehouse not only provides integrated data, but also pro- vides 

information about the content and context of the data. 

"
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Integration of multiple information systems generally aims at combining selected systems so that 

they form a unified new whole and give users the illusion of interacting with one single 

information system. There are many reasons for data heterogeneity among the different sources. 

The following figure summarizes these reasons. 

 

 

Figure 4.1: Reasons of Data Heterogeneity. 

 

As we notice from the figure, the reasons for data heterogeneity can be classified into three 

categories: Structural, Syntactical, and Semantic. 

• Example of Structural Heterogeneity: An example of the Structural heterogeneity due to 

different schemas can be illustrated in the following figure. The structure of the tables storing 

the data can be different (even if storing the same data). For example, in one table the 

customer name is divided into two fields; firstName and lastName, while in the second table, 

the name is stored in one field, FullName. 
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• Example of Syntactical Heterogeneity: An example of syntactical heterogeneity is that data 

can be stored in different systems such as relational databases, object-oriented database, 

XML databases, or even flat files. 

                        

• Example of Semantic Heterogeneity: An example of semantic heterogeneity is that same 

logical values stored in different ways such as the following examples: 

 

 

 

Or same values in different sources can mean different things. For example, Column ‘Title’ in 

one database means ‘Job Title’ while in another database it means ‘Person Title’.  
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As highlighted above heterogeneity results in many problems that can be classified as: 

Communication Heterogeneity: It’s a problem due to factors such as differences in structures, 

semantics of data; the constraints supported or query language. Differences in structure occur 

when two data models provide different primitives such as object-oriented models that support 

specialization and inheritance and relational models that do not. 

Schema Heterogeneity: Dealing with incompatible data types or query syntax. The structure of 

tables storing the data can be different 

Semantic heterogeneity: Data across constituent databases may be related but different. Some 

values in different sources may mean different things. 

Data Type heterogeneity: Is storing the same data using different data types 

Value Heterogeneity: Same logical values stored in different ways 
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E.g., ‘Prof’, ‘Prof.’, ‘Professor’  

 E.g., ‘Right’, ‘R’, ‘1’ ……… ‘Left’, ‘L’, ‘-1’ 
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There are three main models for data integration, which we overview in this section. 

These models are: Federated databases, Warehousing, and Mediation. 

Federated Database: is a type of meta-database management system (DBMS), which 

transparently maps multiple autonomous database systems into a single federated database. It is a 

simplest architecture where every pair of sources can build their own mapping and 

transformation, so if source X needs to communicate with source Y they have to build a mapping 

between X and Y called Wrapper. The following figure shows the structure of federated systems. 

                       

 

 

 

 

 

 

 

Figure 4.2: Federated Databases Diagram. 

 

Data Warehouse: A data warehouse is a relational database that is designed for query and 

analysis rather than for transaction processing. It usually contains historical data derived from 

transaction data, but it can include data copied and stored from other sources. It separates 

analysis workload from transaction workload and enables an organization to consolidate data 

from several sources. Users can only query the warehouse database and not insert new records or 

alter existing ones. The figure below shows the structure of a warehouse system, where the data 

have to go through an ETL (Extract-Load-Transform) component first in order to be unified 

before inserting the data into the warehouse. 

7
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Mediation: Mediator is a virtual view over the data (it does not store any data). Data is stored 

only at the source. Mediator has a virtual schema that combines all schemas from the sources. 

The mapping takes place at query time and this is unlike warehousing where mapping takes 

place at upload time. The following figure shows the structure of the mediation systems. 

                        

 

In a mediation system, a given user’s query is evaluated as follows: 

• User Query is mapped to multiple other queries 

• Each query (or set of queries) are sent to the sources 

• Sources evaluate the queries and return the results 

• Results are merged (combined) together and passed to the end-user   

9
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Figure 4.3: Warehouse Database Diagram. 

Figure 4.4: Mediation Mechanism Diagram. 
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 In this section, we describe the sources from which we collect the data needed for the 

project. We also present how we massage and transform the data from its original format to fit 

our local database from which we will analyze the data. 

Intuition and Motivation: One of the main reasons that lead to data conflicts is that multiple 

scientific groups or labs are working on the same set of objects. Each group or lab will have their 

own methods, techniques, and instruments for generating and collecting the data. Hence, as the 

number of these isolated groups increases, the changes for having significant conflicts among the 

data values also increases---especially if the datasets has many attributes, some of them are 

standard and others are not. For example, conflicts may arise because of human errors, missing 

data, use of different precision instruments or algorithms. Therefore, we extensively searched for 

scientific datasets that have the properties described above. 

Searching Process (Internet and Local Companies): Given the intuition mentioned above, we 

started our search on the Internet looking for at least two or three good sources of data serving 

our needs. At the same time, we contacted several local companies working on biological and 

biomedical data analysis such as Abbott4 and UMASS Medical School5 in order to collect 

potential datasets for our project. We scheduled meetings with their data analysis groups to 

describe our project and get feedback from them and possible collaboration. The feedback we 

got from the meetings was very positive as we found that both labs face the issue of integrating 

data from many sources and they always have to deal with conflicting data. From our discussion 

with them, it turned out that they mostly resolve these conflicts manually, which is both a time-

consuming process and error prune. However, despite the interest they showed in the project, 

they could not share data with our group due to privacy restrictions and the companies’ policies. 

On the other side, our search on the Internet was successful and we managed to found very good 

data sources that serve our needs. 

 

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
4 Abbott Laboratories health care company: http://www.abbott.com/index.htm 
5 UMASS Medical School: http://www.umassmed.edu/research/index.aspx 
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 Data Source I (PortEco): PortEco (the new face of EcoliHub), which is the next-

generation resource for knowledge and data about the biology of Escherichia coli K-12 group 

strains. PortEco search mechanism allow you to search results from more that 15 different E.coli 

data resources, which gave us the opportunity to search through the website and found variety of 

data resources about genes, proteins, enzymatic reactions, etc. The official website for the 

PortEco system can be found at: http://www.prfect.org. The PortEco system is supported by NIH 

and is used for both educational and research purposes. Figure 5.1 shows possible search 

mechanisms from PortEco website where we can search the raw data of genes or search 

experimental data and publications.  

 

 

 

Figure 5.2, on the other hand, illustrates the possible datasets that we can search or download.  

As shown in the figure, the closeness of the origin of the datasets is also maintained in the 

system. 
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Example of the data that can be retrieved from PortEco system is shown in Figure 5.3. The figure 

shows four gene information coming from one dataset (with ID = 13).  

 

           

Data Source II (GenoBase): GenoBase website which has been created as a major resource of 

high-throughput data being collected to understand comprehensively the living E.coli K-12 

model cell. GenoBase is linked also to PortEco, but the nice thing with this website is the ability 

to issue SQL queries from the website (as shown in Figure 5.4) and to get back a nice graphical 

presentation for genes data. This was very helpful to our group as it allowed us to compare 

results between structured results containing data about the same objects. In order to find the data 

conflict between these tables. GenoBase Key Search method displays two rows for each gene: 

one row shows data for the E. coli K-12 MG1655 genome; the other shows data for the E. coli 

K-12 W3110 genome. The website of the GenoBase system can be found at: 

http://ecoli.naist.jp/GB8/index.jsp. 
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>?@ABL> 2%2= >?@@EEF >?@@EEC 57*45'5;+-' /@GG@ @@AC@AL @@ALE>C <'H'<0' $IJJ ?@
>?@ABLA 2%23 >?@@EEF >?@@EEC 57*45'5;+-' /@GGB @@AL?EA @@FE>LA <'H'<0' $IJJ ?@

!"#$%&'.)+,"6(.(3'.3"(7(,8(98'",-"10).2*0"343.'5g"

!"#$%&'.)(,"2:(5;8'"<(.("/)05"10).2*0"343.'5g"
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An example of an SQL query results is depicted in Figure 5.5.  
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We performed the following steps in order to download the needed datasets from the PortEco 

website: 

1- Creating an account on the EcoliHub server. This account enables us to login to their 

system and retrieves the data. 

2- Installing MySQL server version 5.5 on a local Ubuntu virtual machine in order to 

establish a connection with EcoliHub server. 

3- Issuing multiple queries to the EcoliHub server to retrieve all data belonging to certain 

tables. The retrieved data are downloaded into local files which will be later uploaded into 

our database. 

!"#$%&'.)-,"&=>"3'()*+",-.')/(*'"/0)"?'-0@(3'g"

!"#$%&'.).,"A+'"(-3B')".0"(-"&=>"CD')4",-"?'-0@(3'g"
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The following command shows an example of downloading the protein table from PortEco and 

storing the data into file “protein.txt”.  

 

 

Using these commands we installed two main tables, Gene and Protein, from the original 

EcoliHub database, along with some other tables related to these two tables. After we installed 

the data from EcoliHub database we end up carrying more than 50,000 rows of data distributed 

between several files. Then, in order to upload the data from the files into the local database, we 

wrote a small program using Ruby language. Ruby is a flexible and powerful language that deals 

with files much simpler and faster than other languages. The program takes as input the file 

containing the data, reads it line by line, and then transfers each single line into an insert 

statement that is stored in another file. During the transforming mechanism, the program deals 

with the NULL values in the data vary carefully and makes sure to transform them to the right 

representation so that when we insert them in our database, they will be NULL values and not a 

strings. In the following, we illustrate an example of the transformation process. 

 

Data Processing Scenario: 

 

P E%F!""""D)'!e'*08,"""""]k>>"""]k>>""]k>>"""]k>>""]k>>"""$%!HgI%"""]k>>"""*(8*e;,"""
]k>>""!JJ!"

9:"#$%&'-,'-4&'%64&'0-;4%-"0&0',.-#'7<&';&8167&="

P  /gB),.'"l,-3').",-.0"1)0.',-NQY6m"](5'm"MM&'CD'-*'m">'-U.+m"
>'-U.+M;;)0:,5(.'m"V+()U'm""X)(U5'-.m"T08'*D8()Q',U+.V(8*m"
T08'*D8()Q',U+.2:;m""1YV(8*m"1Y2:;m"6(.(&'.QY6O""

9:"#$%&',.-#'>38?'$.-@."#="

P  ,-3').",-.0"1)0.',-NQY6m"](5'm"MM&'CD'-*'m">'-U.+m">'-U.+M;;)0:,5(.'m"
V+()U'm""X)(U5'-.m"T08'*D8()Q',U+.V(8*m"T08'*D8()Q',U+.2:;m""1YV(8*m"1Y2:;m"
6(.(&'.QY6O"7(8D'3"

9:"#$%&'-,'7<&'-37$37="

> mysql -u mohamaddb -p -h publichouse.ai.sri.com 

ecolihouse -e "select * from Protein;" > Protein.txt 
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  In this section, we describe in some details the database that we built locally to store the data. 

Then we use this database to analyze the data by issuing many queries over the data as we will 

describe in Section 6. 

  For our purpose, we created three main tables; Genes, Proteins, and Subsequences. We 

present below the SQL “Create Table” commands we used to create the tables including the 

columns in each table. As we will explain later, each of the two tables contains many fields but 

not all of them are used by our analysis---we focused on some important fields. Some of the 

fields are not giving us the ability to search for conflicts between data.  For example, Primary 

Keys and Foreign Keys have no actual real-world meaning between the different datasets. 

Therefore, by comparing ID's between different datasets we will not get the right analysis for 

Data conflicts. On the other hand, the main fields related to our research are the fields that can 

define properties of the data. These fields should not be different from one dataset to another. For 

example, in table Protein, the Name, AASequence fields should be the same across datasets for 

the same protein. Similarly, in table Gene, the Name, Type, and CodingRegionStart should be the 

same. Therefore, comparing data across datasets depending on the uniqueness of the Name or 

AASequence will allow us to extract data conflicts between datasets.  
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The SQL “Create Table” Statements as presented below: 

                 

 

  

• CREATE TABLE Gene 
• ( WID  BIGINT  NOT NULL, 
• Name  VARCHAR(255), 
• NucleicAcidWID  BIGINT, 
• SubsequenceWID  BIGINT, 
• Type  VARCHAR(100), 
• GenomeID  VARCHAR(35), 
• CodingRegionStart  INT, 
• CodingRegionEnd  INT, 
• CodingRegionStartApproximate  
VARCHAR(10), 

• CodingRegionEndApproximate  
VARCHAR(10), 

• Direction  VARCHAR(25), 
• Interrupted  CHAR(1), 
• DataSetWID  BIGINT  NOT 
NULLm"

VW2MA2"AM@>2"0&1&"

•  (WID  BIGINT  NOT NULL, 
•  Name  TEXT, 
•  AASequence  LONGTEXT, 
•  Length  INT, 
•  LengthApproximate  VARCHAR

(10), 
•  Charge  SMALLINT, 
•  Fragment  CHAR(1), 
•  MolecularWeightCalc  FLOAT, 
•  MolecularWeightExp  FLOAT, 
•  PICalc  VARCHAR(50), 
•  PIExp  VARCHAR(50), 
•  DataSetWID  BIGINT  NOT 

NULL, 

VW2MA2"AM@>2"2%34&"1"

•  ( WID  BIGINT  NOT NULL, 
•  NucleicAcidWID  BIGINT  NOT NULL, 
•  FullSequence  CHAR(1), 
•  Sequence  LONGTEXT, 
•  Length  INT, 
•  LengthApproximate  VARCHAR(10), 
•  PercentGC  FLOAT, 
•  Version  VARCHAR(30), 

VW2MA2"AM@>2"5$67&8$&19&"
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Gene.Name: is common first name (common shorted form)  

Gene.Type: It is a name given to some stretches of DNA and RNA that code for a polypeptide or 

for an RNA chain that has a function in the organism.  

Gene.CodingRegionStart and Gene.CodingRegionEnd: The coding region of a gene, also 

known as the coding sequence or CDS (from Coding DNA Sequence), is that portion of a 

gene's DNA or RNA, composed of exons, that codes for protein.  

Gene.Direction: It is Transcription in which the process of creating a complementary RNA copy 

of a sequence of DNA.  

Gene.NuclecAcidWID: ID referencing the subsequence table.  

Gene.Interrupted: is a gene that contains sections of DNA called exons, which are expressed as 

RNA and protein, interrupted by sections of DNA called introns, which are not expressed.  

Gene.DataSetWID: It is the maximal and minimal values of any gene in the sample.  

Protein.AASequence: Amino Acid Sequence is the order that amino acids join together to form 

peptide chains, or polypeptides.  

Protein.Charge: The charge on amino acid side chains depends on the pH.  

Protein.Fragment: Protein fragmentation and domain swapping are valuable methods for the 

study of inter- and intra-domain and subdomain interactions in proteins.  

Protein.MolecularWeightCalc: used to approximate charge of a peptide or protein sequence.  

Protein.MolecularWeightExp: The relationship between subunit molecular weight and 

heterozygosis.  

Protein.DataSetWID: is a repository for the 3-D structural data of large biological molecules, 

such as proteins and nucleic acids 

Subsequence.sequence: Determine the amino acid sequence of a protein, as well as which 

conformation the protein adopts and the extent to which it is complexes with any non-peptide 

molecules.  

Subsequence.FullSequence: contains the genome sequence. 
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The relational schema that captures the relationships among the tables is presented in the figure 

below. 

 

 

''''''''''''''!"#$%&'.)/,"A(98'3")'8(.,0-(8"3*+'5(g"

 

 

 

 

 

 

 

 

 

 

 

 

 

Protein

Submit

ProteinWIDSpotWID

BioSourceWIDProteinWID

EnzymatticReaction

GeneWIDProteinWID

GeneWIDNucleicAcidWID

BioSourceWIDGeneWID

Gene

NucleicAcid

Subsequence



%E"
"

U!")535"K25<S707 

 Goal: Our Data analysis focuses on interpreting the two main tables; Gene and Protein 

presented in Section 5.4. The analysis is pointed toward collecting statistics to highlight the 

degree of match/mismatch between the different datasets. These statistics can be used as a 

measure to assess whether data coming form multiple sources usually conflicts with each other. 

In order to achieve these goals we wrote a set of queries to process the data inside the database. 

In the following, we describe each SQL (Structured Query Language) query, its syntax, the 

output from the query, and finally brief comment on the result. 

VC1HSW-"

• Description:  

 This query wrote to find Datasets differences. In other words, find how many Genes or 

Proteins in Di and not in Dj 

 

 

• Query Steps: 

1. Create a separate view for each dataset in tables Gene and Protein containing all 

data belongs to this dataset. 

2. Join the selected dataset view (Di) with the comparable dataset view (Dj) based 

on names equality. 

3. Count the number of records which found in Di but not in Dj. 

   
 

 

 

 

 

P !"#"$%&$'()%*+,&-.'/&01"
P 23"."&01456/""
P 578&95"
P  *!"#"$%&0:456/"&-.'/&0:,;"

A3&.?'!AB'!?47":="
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• Results: 

Gene Data Sets: 

• Value V[Di,Dj] = # of Genes in Di & not in Dj 

Protein Data Sets: 

• Value V[Di,Dj] = # of Proteins in Di & not in Dj 

"

VC1HSW#"

• Description:  

This query wrote to find Datasets similarities. In other words, find how many Genes or 

Proteins in Di and in Dj. 

• Query Steps: 

1. Create a separate view for each dataset containing all data belongs to this dataset. 

2. Join the selected dataset view Di with the comparable dataset view Dj based on 

names equality. 

           Dj 
Di 1001 7 11 12 13 14 

1001 0 1986 2114 2201 2303 1979 

7 2087 0 500 450 552 351 

11 2017 302 0 325 427 147 
12 2105 253 332 0 0 161 

13 2105 253 332 0 0 161 
14 2058 329 322 291 393 0 

          Dj 
Di 

1001 2 7 11 12 13 14 

1001 0 0 0 0 0 0 0 
2 5154 0 3741 4706 3792 3792 3407 
7 5154 5086 0 4365 3273 3273 2890 

11 0 0 0 0 0 0 0 
12 5154 5298 3364 2758 0 0 2233 
13 5154 5298 3364 2785 0 0 2233 
14 5154 5307 3368 3976 2430 2430 0 
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3. Count the number of records which found in Di and in Dj.                 

 
• Results: 

Gene Data Sets: 

              Dj 
Di 

1001 7 11 12 13 14 

1001 4405 2318 2388 2300 2300 2347 

7 2318 4304 4002 4051 4051 3975 

11 2388 4002 4502 4176 4176 4179 

12 2300 4051 4170 4501 4603 4165 

13 2300 4051 4170 4501 4603 4165 

14 2347 3975 4180 4210 4210 4326 
 

• Value V[Di,Dj] = # of Genes in Di & in Dj 

• Value V[Dk,Dk] = The total number of records in Gene dataset Dk 

Protein Data Sets: 

       Dj 

Di 

1001 2 7 11 121 13 14 

1001 0 0 0 0 0 0 0 

2 0 5685 333 115 147 147 91 

7 0 328 4303 200 277 277 141 

11 0 96 187 4975 1396 1396 113 

12 0 140 275 1568 4146 4146 314 

13 0 140 275 1568 4146 4146 314 

14 0 92 141 129 327 327 3724 
 

• Value V[Di,Dj] = # of  Proteins in Di & in Dj 

P !"#"$%&$'()%*+,&-.'/&01"
P 23"."&01456/""
P 578&95"
P  *!"#"$%&0:456/"&-.'/&0:,;"

A3&.?'!AB'!?47":="

• Value V[Dk,Dk] = The total number of records in Protein dataset Dk 
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• Description:  

 This query wrote to find the records that have the same name and different in at least one 

field value between two datasets Di and in Dj in table Protein. 

• Query Steps: 

1. Create a separate view for each dataset containing all the records that belong to 

this dataset in table Protein. 

2. Join the selected dataset view (Di) with the comparable dataset view (Dj) based 

on  the equality of all the fields in a record from Di to all the fields in a record 

from Dj. 

3. Count the number of records resulting from the join. 

'

• Results: 

Protein Data Sets: 

                              

          Dj 

Di 

 

1001 

 

2 

 

7 

 

11 

 

121 

 

13 

 

14 

1001 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

2 0/0 5685/5685 333/333 115/93 147/147 147/147 91/91 

7 0/0 328/328 4303/0 200/200 277/277 277/277 141/141 

11 0/0 96/74 187/187 4975/0 1396/1396 1396/1396 113/107 

12 0/0 140/140 275/275 1568/1568 4146/0 4146/1077 314/314 

13 0/0 140/0 275/0 1568/0 4146/1077 4146/0 314/314 

14 0/0 92/1 141/141 129/123 327/327 327/327 3724/0 

• Value V[Di,Dj] in form of pairs (V1/V2) 

• V1 = # of  Proteins in Di & in Dj 

• V2 = # of  Proteins common between Di & in Dj, but different in at least on field value. 

 

• Comments on Results: 

Using this type of queries we were able to find the number of records which have at least one 

different field value. By joining the two selected  datasets on the equality of every field value 
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between Di and Dj  we don't just count the number of the records matching the join, but also 

what we found is the number of identical records between different protein datasets, because 

AASequence was part of  table Protein, so the equality from comparing AASequence means 

they are identical, since protein sequence is unique per protein name. 

"VC1HSWJ"

• Description:  

 This query wrote to find the records that have the same name and different in at  least 

one field value between two datasets Di and in Dj in table Gene. 

• Query Steps: 

1. Create a separate view for each dataset containing the Name, Direction, Type, 

GenomeID  from table Gene and Gene sequence which is a Subsequence from 

table Subsequence with starting point equal to  CodingRegionStart and a length 

equal to  CodingRegionEnd - CodingRegionStart. 

2. Join the selected dataset view (Di) with the comparable dataset view (Dj) based 

on  the equality of all the fields in a record from Di to all the fields in a record 

from Dj. 

3. Count the number of records resulting from the join. 

                    

 

P !"#"$%&$'()%*0:<=)$%&0:456/",&"
P >.'/&0:?&01"
P 23".""
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*01456/"?B,&6)D&&&&&&& &9>5@AA
*0:48EF"?B,&C&9>5@AA*0148EF"?B,&
6)D&&"
P 9>5@AA*&0:&G90?B,&C&9>5@AA
*014G90?B,&6)D&&&&&&&& &"
P 9>5@AA*0:&!(HIJ?B,&C&9>5@AA
*014!(HIK?B,&6)D&& &9>5@AA
*0:40:.?B,&C&9>5@AA*014GIK0:.?B,;"

A3&.?'!AB'!?47":="

P L."6%"&M:"N&0:&6<&"
P !"#"$%&56/"&6<&0:&56/"?&
!(H<%.:)O
*!"P(")$"?L'D:)OQ"O:')!%6.%?&
L'D:)OQ"O:')R)DS
L'D:)OQ"O:')!%6.%,&6<&!(HIJ?&
0:."$=')&6<&0:&0:.?&8EF"&6<&0:&
8EF"?&G")'/"90&6<&0:&G90&"
P >.'/&!(H<"P(")$"?&G")"&"
P 23"."&
!(H<"P(")$"45($#":$T$:D290CG"
)"45($#":$T$:D290&6)D&
G")"406%6!"%290CIJ;"

C.&"7&'D6&;'9:"#$%&="
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• Results: 

Gene Data Sets: 

             Dj 

Di 

 

1001 

 

7 

 

11 

 

12 

 

13 

 

14 

1001 4405/0 2318/2318 2388/2388 2300/2300 2300/2300 2347/2347 

7 2318/2318 4304/4304 4002/4002 4051/4051 4051/4051 3975/3975 

11 2388/2388 4002/4002 4502/4502 4176/4176 4176/4176 4179/4179 

12 2300/2300 4051/4051 4170/4170 4501/0 4603/334 4165/4165 

13 2300/2300 4051/4051 4170/4170 4501/232 4603/0 4165/4165 

14 2347/2347 3975/3975 4180/4180 4210/4210 4210/4210 4326/4326 

• Value V[Di,Dj] in form of pairs (V1/V2) 

• V1 = # of  Genes in Di & in Dj 

• V2 = # of  Genes common between Di & in Dj, but different in at least on field value. 

 

• Comments on Results: 

In order to find the records that are different in at least one field value notice we didn't 

include all Gene data fields in the view. Also you can notice that we have to find the Gene 

sequence from table Subsequence and include it in the view in order to do the comparison. 

We only selected the important data fields from table Gene , the ones which can define the 

uniqueness's of the record, and also to make us sure and accurate about records being 

identical we have to find the Gene sequences and compare them. 

Notice here that the only two datasets that contain the same exact records are 12 and 13 

where the rest of them are not, because some of the datasets contain one or more field with 

NULL values for all of the records where in other datasets those fields has a value not equal 

to NULL, and this will lead to recognize them different in at least 1 field value. 
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• Description:  

This query wrote to find records common in names, but different in gene sequence 

between datasets Di and Dj in table Gene. 

• Query Steps: 

1. Create a separate view containing the Name and sequence for all the records for 

each dataset in table Gene. 

2. Join the selected dataset view (Di) with the comparable dataset view (Dj) based 

on equal names, but different gene sequences. 

3. Count the number of records resulting from the join. 

""""""""" "

• Results: 

Gene Datasets: 

             Dj 

Di 

 

1001 

 

7 

 

11 

 

12 

 

13 

 

14 

1001 0 0 0 0 0 0 

7 0 0 0 0 0 0 

11 0 0 0 0 0 0 

12 0 0 0 0 25 0 

13 0 0 0 25 0 0 

14 0 0 0 0 0 0 

• Value V[Di,Dj] = # of Genes common in names, but different in sequences between Di & Dj 

P L."6%"&M:"N&01&6<&<"#"$%&
56/"?&<(H<%.:)O*!"P(")$"?&
L'D:)OQ"O:')!%6.%?&
L'D:)OQ"O:')R)D&S&
L'D:)OQ"O:')!%6.%,&6<&!(H<"P&"

P >.'/&G")"?&!(H<"P(")$"&"
P 23"."&G")"45($#":$T$:D290&
C&

&
!(H<"P(")$"45($#":$T$:D290&
6)D& &G")"406%6!"%290CU;"

C.&"7&'D6&;'9:"#$%&="

P !"#"$%&$'()%*0:<=)$%&
01456/",&"

P >.'/&01?&0:&"
P 23"."&01456/"&C&0:456/"&
6)D&014!(H<"PVC&0:4!(H<"P;"
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• Description:  

This query wrote to find records common in names, but different in protein sequence 

between datasets Di and Dj in table Protein. 

• Query Steps: 

1-  Create a separate view containing the Name and sequence for all the records for each 

dataset in table Protein. 

2- Join the selected dataset view (Di) with the comparable dataset view (Dj) based on 

equal names, but different protein sequences. 

3- Count the number of records resulting from the join. 

"""""""""""""" "

Results: 

Protein Datasets: 

                              

          Dj 

Di 

 

1001 

 

2 

 

7 

 

11 

 

12 

 

13 

 

14 

1001 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 

7 0 0 0 0 7 7 0 

11 0 0 0 0 0 0 0 

12 0 0 7 0 0 245 0 

13 0 0 7 0 245 0 0 

14 0 0 0 0 0 0 0 

• Value V[Di,Dj] = # of Proteins common in names, but different in sequences between Di & Dj 

P V)'(.'"7,'B"6n"(3"3'8'*."
](5'm"MM&'CD'-*'"

P X)05"1)0.',-"
P Q+')'"6(.(&'.QY6bGo"

C.&"7&'D6&;'9:"#$%&="

P &'8'*."*0D-.N6,3K-*."
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P X)05"6nm"6,""
P Q+')'"6ng](5'"b"6,g](5'"
(-<""
P 6ngMM&'CD'-*'pb"
6,gMM&'CD'-*'o"
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• Description:  

This query wrote to collect the records referring to the same Gene name. In order to 

show us the conflicts along multiple data sets. 

• Query Steps: 

1-  Pick a gene name that you wish to apply the query using it. 

2- Select most important fields in gene table belong to the given gene name from every 

data set in the table. 

A3'''&. ?'
9:"#$%&= 

Name NucleicAcidWID SubseqWID Type GenomeID CodingStart CodingEnd Direction DataSet 
thrL NULL NULL NULL NULL 190 255 forward 1001 
thrL NULL NULL polypeptide NULL NULL NULL NULL 7 
thrL NULL NULL NULL EG11277 190 255 F 11 
thrL 5121196 5121197 polypeptide b0001 190 255 Forward 12 
thrL 5133007 5133008 polypeptide b0001 190 255 Forward 13 
thrL NULL NULL NULL b0001 190 255 F 14 

 

• Comments on Results: 

As we notice in the above table the results for the same gene name along different 

datasets are not the same, but they have many similarities for example in 

CodingRegionStart and CodingRegionEnd. If we notice in field Direction five of the 

records have the same direction “Forward” but the representation of the word 

“Forward” was in two different shapes “Forward” and “F” which is considered as 

physical difference between the two record but not a conceptual difference, since 

“Forward” means the same as “F” but with different representation. 

 

P &'8'*."](5'm"]D*8',*M*,<QY6m"&D93'CD'-*'QY6m"A4;'m"?'-05'Y6m"
V0<,-UW'U,0-&.().m"V0<,-UW'U,0-2-<m"6,)'*K0-m"6(.(&'.QY6""

P X)05"?'-'""
P Q+')'"](5'bq.+)>qo"

A3&.?'9:"#$%&="
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• Description:  

This query wrote to show us how user input can have different representations (which 

will lead to data conflict) but same meaning. 

• Query Steps: 

1. Pick a field name that you want to test its values. 

2. Select the distinct values presented in the selected field. 

 

 

 

 

 

  

• Comments on Results: 

As we can see in the above column there are more than one representation for each value 

in field Direction, so we have NULL means Unknown and Reverse can be represented 

as R and finally we have Forward which is equivalent to F. One can think that this is not 

a problem, but if you tried to select the records where Direction=”Reverse” the query 

result will not include records where Direction=”r” where they are the same meaning in 

fact. 

 

Direction 

NULL 

Unknown 

Reverse 

R 

Forward 

Query Example: 

Select DISTINCT Direction From Gene; 
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Very much like a spoken language, the names for different types of species are different all over 

the world. This can cause a lot of confusion when trying to gather information about a certain 

species.  LITCHI, which stands for Logic-based Integration of Taxonomic Conflicts in 

Heterogeneous Information, is focused on detecting conflicts and errors within real taxonomic 

checklists.  The goal of the LITCHI project that is funded by a grant from the BBSRC/EPSRC 

Bioinformatics Initiative is to create a tool that can be used by skilled taxonomic editors. This 

tool will help these editors identify and find solutions to conflicts that are within taxonomic 

checklists. A taxonomic checklist is an informative list of information about a certain taxa / 

species.  

A good example of a conflict would be what was listed about the ILDIS World Database of 

Legumes. This database holds information on a total of 19,043 taxa but there are 37,394 names 

that have been applied to the said taxa. This results in an average two different names for each 

taxa. There are many reasons why this has happened. One reason may be that a certain species 

could have been discovered and named by two or more different biologists on their own. 

Conflicts can be found by seeking relationships between accepted and known names and 

synonyms. 

Most scientific names do have to meet the international Code of Botanical Nomenclature. This 

code is a series of rules that set guidelines for the making of new botanical names. The 

taxonomic categories of which these names are comprised of are:  

• Familia (family) 

• Genus 

• Species 

• Subspecies  

• Varietas (variety) 
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If any species is to be renamed the plan is to retain the specific epithet from the original given 

name (base name).  

Regardless of all the inconsistencies and conflicts in scientific naming, there still has been no 

agreement in the taxonomic community about what needs to be done or what the “best practice” 

is when issuing and using scientific names. LITCHI biologists have started to suggest some 

potential rules. Two of these rules are  

• A full name may not appear as an accepted name and as a synonym in the same 

checklist.  

• A full name should not appear as an accepted name more than once in the same 

checklist.  

• In no checklist is a full name a synonym of more than one taxon.  

• Within any given checklist, two names may not contain the same Latin components 

unless labeled as a homonym or a misapplied name.  

• Within any given checklist, every full name that is indicated to be misapplied by the 

form of its authority must be labeled as a misapplied name, and vice versa.  

When a species is moved from one genus to another it is apparent that the name of this species 

may change. There is a rule that helps in aiding this conflict that states a checklist may not 

contain both a name and its basionym unless both names refer to the exact same taxon.  

The LITCHI system will have repository style architecture. This means that the information will 

be communicated through a central database between a few different components. The three 

software components are the date import / export function (DIEF), the conflict reasoning engine 

(CRE), and the interface for Taxonomists (IfT). The most important part of this system is going 

to be the central database. The use of this central database will eliminate the need to constantly 

create and update large files and also eliminates some possible difficulties that relate to the 

communication of such large files.  
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The LITCHI system has already been able to produce results. For example; sets of conflicts 

generated from several checklists have been analyzed by LITCHI biologist, and have led to 

refinements of the formal model, they compared 5808 names in the trible Galegease from the 

ILDIS world database of Legumes with 1908 names from the Legumes of Northern Eurasis 

database, they detect 1500 potential conflicts. 

Rule Rule Description Conflicts 

C27 A full name may not appear as both an accepted name and a 

synonym in any given checklist 

43 

C4 A full name may not appear as the accepted name of more 

than one taxon in any given checklist. 

372 

C5 A full name may not appear as the synonym of more than 

one taxon in any given checklist. 

112 

W25 Within any given checklist, two names may not contain the 

same Latin components (but different authorities) unless 

labeled as a homonym or a misapplied name. 

812 

C26 Within any given checklist, every full name which is 

indicated to have been misapplied by the form of its 

authority must be labeled as a misapplied name, and vice 

versa. 

32 
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The LITCHI system is still in need of some finishing touches and is not complete yet but 

taxonomists using the system have yielded some very good and useful results detecting conflicts 

in the ILDIS World Database of Legumes. Another benefit that was discovered is its role in the 

cleansing of data prior to it being integrated into the system.  One can assume that the LITCHI 

system will be an extremely beneficial and useful tool when it is complete.  
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In our case of study (Gene & Protein tables) and after analyzing the collected data we 

found that the reasons of data conflicts between datasets are many. Starting from data 

redundancy, where same genes and proteins records appear in different datasets, missing data 

values where some datasets have missing values for some fields either in some records or 

completely along all the records. Moreover, there are conflicts coming from having different 

representations of values, where these representations may refer to the same meaning. All these 

reasons combined in these tables maximized the occurrence of data conflict and make it harder 

for us to search for solutions that can fit in to our model and resolve conflicts. 

LITCHI was a great model made by scientists and experts to resolve data conflicts along 

different datasets using special algorithms, taxonomies and checklists to resolve conflicts that 

can happen because of different representations for the same value or data redundancy. In our 

case LITCHI can be applied on table gene and protein by creating a taxonomy and check lists for 

the variety of representation for same values along table fields, so in this case for example in 

table Gene field Direction every time the taxonomy will read value F will match it to value 

Forward (Refer to Query 8 in Section 6). So now all records that have Direction value equal to 

Forward or F will be regarded as compatible fields and there record should appear in queries’ 

results asking for either of the two values Forward or F. Second, LITCHI system can resolve 

data redundancy, because we can add a new algorithm and alter our taxonomy in order to filter 

out records that already exist in our database. In this case,  we can check if the Gene or Protein 

name is already exist, and we can run the comparison for all fields between the new coming 

record and the stored one. If they match, then we compare them if they are identical by 

comparing sequences and other fields, and if all tests get passed positively we can avoid inserting 
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the coming record into the table. Applying these changes will help resolving several of data 

conflicts, so the queries can return the correct results. 

The LITCHI system, however, cannot solve other types of conflicts that may arise in the 

datasets. For example, if two records in Genes or Proteins tables have the same name and 

sequence but different in other fields, then LITCHI will consider them as different and will keep 

both of them in the database without noticing that they are conflicting with each other. When a 

user queries the database, the returned records will contain both records with different 

information. This is still considered as data conflicts, because for example, if we go back to Data 

Analysis section (Section 6) and specifically Query 6, we see that the gene name "thrL" have 

more than one occurrence along different datasets with variations along almost all fields between 

records, and this will cause confusion for users and in some cases can cause the users take wrong 

decisions because of this variations. In the following section, we suggest another approach 

complementary to LITCHI system to overcome this limitation. 
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After we saw the exploitations which couldn't be resolved using the LITCHI system and 

avoid this type of conflicts. We came up with a suggestion to resolve this problem by building a 

history-tracking database system, where the changes over the data can be tracked and if 

different versions exist in the database, the system can track which version is more recent. 

Our suggestion build on the idea of having one up-to-date dataset of Genes or Proteins which 

will be in tables Gene or Protein that will be available for users to query. This dataset will be 

carrying unique and up-to-date Gene or Protein records with unique names and sequences. 

Basically we are going to add five columns for tables Gene and Protein and the fields are 

CurrRecordID, CurrDataSetID, UpdatedRecordID, UpdatedDataSetID, and UpdatingDate. 

Each of these fields will play a role in order to get to our final goal. CurrRecordID will be 

representing the ID of the current record after a new coming record updates it. 

UpdatedRecordID represents the ID of the current record before it gets updated. UpdatingDate 

represents the timestamp of updating the record. CurrDataSetID represents the ID for the dataset 

that the current record belongs to. And UpdatedDataSetID represents the datasetID of the 

updated record. The execution mechanism works as follows: 
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1- We will start with our initial Gene or Protein dataset, and initially UpdatedRecordID, 

UpdatedDataSetID, and UpdatingDate fields will be empty, and CurrRecordID, 

CurrDataSetID will be carrying the information for the current record. 

2- We will receive a new Gene or Protein dataset. 

3- We will apply LITCHI mechanisms on the coming dataset to avoid identical records. 

4- Check if the coming records and the current records has the same name and sequence, but 

different in at least one filed 

5- Store copy of the current record in table GeneDataSetStore or ProteinDataSetStore. 

6- Update the current record fields values by the new coming values if they are different.  

7- Store the coming record ID in CurrRecordID, and the coming dataset ID in 

CurrDataSetID and store the record ID before get upadated by the coming record in 

UpdatedRecordID and the record dataset ID before get upadated by the coming record in  

UpdatedDataSetID and the date of updating the record in UpdatingDate. 

 

Special Case: 

 If the name of Gene or Protein in the coming record doesn't exist in the current database 

available to the user, then this record will be inserted as it is and it will be the initial record for 

this name and its dataset will be the initial dataset. After building this model we will end up 

having finalized dataset with most recent updated records and with unique record for each Gene 

or Protein. In case the user wants to go back for older versions he can go recursively by 

accessing the records in table GeneDataSetsStore or ProteinDataSetsStore using the values from 

CurrRecordID, CurrDataSetID, UpdatedRecordID, UpdatedDataSetID, and UpdatingDate. 
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 Example: 

 

Current Record Before Update 

ID Name Sequence Direction GenomID CurrRID CurrDSID UpdID UpdDSID Date 
1 thrL AAGGA Forward 111 1 1 NULL NULL NULL 
 

    New Coming Record 

 

ID Name Sequence Direction GenomID CurrRID CurrDSID UpdID UpdDSID Date 
2 thrL AAGGA Reverse 111 2 2 NULL NULL NULL 
 

 

Current Record After Update 

ID Name Sequence Direction GenomID CurrRID CurrDSID UpdID UpdDSID Date 
2 thrL AAGGA Reverse 111 1 1 2 2 6:30 PM  

9/29/2012 
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In this project, we studied several data integration issues that arise from collecting and 

sharing scientific data from different sources and datasets. We studied how scientist, over the 

past years, have been collecting and analyzing their data in isolation, e.g., storing and analyzing 

data in their individual laboratory, what systems they are using, and what file formats are mostly 

common among scientists. Our studies have focused on biological databases and we used several 

of the biggest biological databases available on the Internet, e.g., MetaBase, PortEco ,and 

GenBank, as our case studies. Our initial hypothesis is that different datasets will definitely 

contain conflicting data, e.g., same objects in the different datasets but with different attribute 

values. Based on the case studies that we used, we proved the correctness of our hypothesis 

through the analysis of the data and we reported significant percentage of conflicting data. We 

then studied possible solutions for avoiding/resolving such conflicts. We proposed two potential 

solutions that combined can reduce the effect of conflicts; the first solution is based on 

taxonomy-based models, and the second solution is based on extensions to database systems to 

track the history of evolving data.  

In conclusion, we believe that scientists face a real problem when sharing data from 

many sources due to conflict issues. There must be efficient and systematic mechanisms to 

overcome this issue and help scientists focus on their research and experiments. We put our 

effort in this project to address this problem and this report summarizes our findings. 
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