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ABSTRACT 

 

The purpose of this project was to determine whether adult stem cell plasticity might 

serve as a replacement therapy for using the ethically controversial embryonic stem cells (ESCs).  

This topic was investigated through an extensive literature review supplemented with interviews 

of key stakeholders.  Our data indicate that researchers disagree considerably on whether 

plasticity (trans-differentiation outside a normal developmental pathway) exists, although we 

found strong evidence for it in some systems.  We also identified several potential reasons for the 

discrepancies among various researchers, including the silencing of reporter genes used to detect 

host genes (giving false negatives), not using the sensitive and powerful Cre-Lox system to tag 

donor cells regardless of how they later differentiate, differences in the developmental ages of 

the donor and host animals leading to a decreased survival of donor cells, and differences in the 

purity and composition of the donated stem cells which strongly affects their potency.  We 

identified a best practice methodology using the Cre-Lox system for demonstrating plasticity 

without undergoing donor-host cell fusion, and conclude that more research should be done 

directly comparing the effectiveness of ESCs to trans-differentiation therapies prior to deciding 

whether one cell type can replace the other. 
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EXECUTIVE SUMMARY 
 

 

 

Regenerative medicine uses stem cells to potentially replace damaged tissues in some 

diseases.  These cells can expand to provide a large number for therapy, or can differentiate into 

more specialized tissues.  There are two main types of stem cells:  1) embryonic stem cells 

(ESCs), and 2) adult stem cells (ASCs).  ESCs are isolated from the inner cell mass of a 5-day 

old blastocyst embryo prepared by in vitro fertilization (IVF) technology.  These embryos are 

surplus embryos prepared at a fertility clinic, and must be used with donor consent.  Because the 

embryo is destroyed when isolating the inner cell mass, the process is ethically controversial and 

is opposed by individuals who believe that life begins at conception, or by individuals who argue 

that no life form should be harmed.  In addition to their ethical concerns, ESCs have received 

inconsistent federal funding in the U.S. depending on which political administration is in power.  

President Bush prevented federal funding for deriving new ESC-lines during his presidency 

while President Obama allows new ESC-lines to be created but with several stipulations.  Due to 

the ethical concerns and inconsistent funding for ESCs, scientists are constantly seeking 

replacement cells for therapies. 

ASCs are isolated from tissues other than embryos.  These cells include hematopoietic 

stem cells (HSCs), mesenchymal  stem cells (MSCs), neural stem cells (NSCs), epithelial stem 

cells, etc.  ASCs typically function to replace aging or dying cells in adult tissues.  Isolating them 

does not destroy an embryo, so they are less controversial.  Unfortunately,  ASCs typically as 

less potent than ESCs.  Potency is the ability of a stem cell to become other types of cells.  The 

higher the potency, the greater the number of tissues the stem cell can become.  ESCs are 

pluripotent and can become any cell in the adult body, so ESCs are of very high interest in 
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regenerative medicine.  ASCs are typically less potent, do not grow as well as ESCs, and are rare 

and hard to isolate, so using ASCs to replace ESCs in therapies is a challenge. 

Some evidence exists that some types of ASCs, such as HSCs, MSCs, or bone marrow 

cells in general, when injected into a host can help heal tissues other than their normal 

differentiation pathway.  For example, some evidence exists that HSCs (which normally form 

blood cells) can help heal heart muscle in heart attack patients.  To accomplish this, the injected 

HSCs would need to differentiate outside their normal developmental lineage (trans-differentiate) 

to form cardiomyocytes.  This process is also termed by some scientists as plasticity.  For this 

IQP, we chose to investigate stem cell plasticity as a potential replacement for ESCs.  If the 

process works well, the HSCs or MSCs from a patient could be expanded and injected back into 

the same patient (autologous transplantation) to trans-differentiate into heart tissue for example 

without using ESCs.  Our research quickly taught us that not all scientists agree that trans-

differentiation exists in vivo, and that scientists do not even agree on the definition of plasticity. 

We first performed a Literature Review, documenting the need to find replacement cells 

for ESCs, and identifying several key controversies associated with adult stem cell plasticity.  

Then, we performed a series of interviews with key scientists on both sides of the various 

arguments to help evaluate the issues. One of the first things we learned about stem cell plasticity 

is that few researchers agree on what it is.  Stem cell plasticity lacks a standard definition, and 

each researcher interprets the term in different ways.  Some scientists use the term very broadly 

to indicate potency, the ability of a stem cell to become other types of cells, regardless of how 

they achieve the differentiation.  This broad definition would include trans-differentiation plus 

all normal cell developmental pathways.   However, other scientists use the term to indicate 
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differentiation outside the normal developmental lineages, and this latter more defined definition 

was adopted by our team for this IQP.   

Experimentally determining whether a cell has undergone differentiation outside its 

normal lineage is not an easy task.  Our Literature Review determined that most scientists use a 

donor-host combination to help solve the problem.  In this approach, usually HSCs, MSCs, or 

bone marrow cells containing a mixture of the two, are isolated from a host animal and injected 

into a recipient disease model animal.  For example, HSCs (that normally form blood cells) 

might be injected into a mouse model for stroke to determine whether they can differentiate into 

neurons or glial cells.  The donor and recipient cells are usually tagged genetically to distinguish 

them from each other.  In addition to determining whether the injection functionally improves 

the symptoms, our research indicates it is important to rule out fusion of the host and donor cells, 

which would not be a direct conversion of the donor cell into the specialized tissue.  It is also 

important when not seeing any evidence of host-cell survival, to make sure the reporter gene has 

not become silenced in the donor cell (which would give a false negative finding). 

A significant problem we encountered in this project was that even within one specific 

disease model (diabetes, stroke, myocardial infarction, liver disease), some scientists found 

evidence supporting plasticity while others did not, so much of our research and interviews 

focused on attempting to resolve this discrepancy.  We determined that these discrepancies might 

result from: 1) the silencing of reporter genes used to detect host genes over time (giving false 

negatives), 2) not using the sensitive and powerful Cre-Lox system for tagging fused cells or for 

tagging cells of the original hematopoietic lineage), 3) differences in the developmental ages of 

the donor and host animals leading to a decreased survival of donor cells in the host animals, 4) 

differences in the purity and composition of the donor stem cells (the cruder the stem cell batch, 
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the more likely it will have highly potent stem cells, so with different degrees of purity the 

results will vary), and 5) differences in the micro-niche colonized by the injected stem cells in a 

given experiment. 

Our findings indicate that stem cell trans-differentiation very likely exists in some 

systems, but it is normally rare, and in some cases represents cell fusion not trans-differentiation.  

Our best evidence for trans-differentiation is for the treatment of diabetic mouse models with 

HSCs where we identified seven studies arguing for plasticity (migration of the injected HSCs 

into the pancreas followed by differentiation of the cells into insulin-producing cells), and no 

studies arguing against it.  Several other diabetes researchers observed improved normoglycemia 

in mice injected with HSCs, but do not believe in trans-differentiation, however those 

researchers did not provide any evidence against it themselves. 

Our research also identified a best-practice methodology which we believe should be 

applied in the future by all labs attempting to demonstrate plasticity without cell fusion.  The best 

practice is demonstrated by Ianus et al. (2003) and by Alvarez-Dolado et al. (2003).  In different 

applications, these scientists used a Cre-Lox system to tag donor cells regardless of what those 

cells later differentiated into in the host mouse.  For example, the donor male mouse can be  

engineered to contain a Cre-recombinase gene under the control of a promoter specific for the 

donor cells (i.e. CD45 for HSCs).  The donor mouse also contains a floxed-stop-promoter-GFP 

reporter that switches on in cells of the original hematopoietic lineage (HSCs).  Once the stop 

codon is removed from the GFP promoter, the GFP gene is switched on permanently, so the 

donor cells are GFP+ regardless of how they later differentiate.  The Cre-Lox system is 

simultaneously also used to visualize cell fusion of donor and host cells if it occurs.  The host 

mouse is engineered to be floxed-promoter-LacZ, so if they fuse with any donor cells (Cre 
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positive) LacZ will be switched on, allowing the cells to stain blue with X-gal.  In the host 

tissues (i.e. pancreas for a diabetes mouse model) the presence of GFP+ cells containing Y-

chromosome markers (original donor cells) that are LacZ-negative would be evidence of trans-

differentiation without cell fusion.   

Although several scientists that we interviewed did not believe cells are capable of 

undergoing major reprogramming in vivo, the fact that some cells are well proven to be capable 

of major reprogramming by artificial means implies that the reprogramming is at least 

theoretically possible in vivo, even if it is rare.  Our research showed that major cell 

reprogramming into vastly different phenotypes indeed can occur under special conditions, such 

as the Nobel Prize winning experiments of John Gurdon (reprogramming skin nuclei injected 

into enucleated eggs) and of Yamanaka (reprogramming skin cells into pluripotent cells by 

transfection with genes encoding transcription factors).   

In order to determine whether trans-differentiation therapies can replace embryonic stem 

cell therapies, the two treatments must be directly compared to each other.  We conclude that few 

current studies have been designed to directly compare functional recovery between these two 

stem cell types, so we make a final recommendation that such important studies should be done 

prior to determining whether one stem cell type can replace the other. 
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PROJECT GOALS 

 

 

Due to a relatively low number of embryonic stem (ES) cell lines, and ethical and 

funding issues associated with the destruction of a human embryo, stem cell researchers need a 

replacement for ES cells for performing cell therapies.  The overall goal of this project is to 

document and evaluate the scientific evidence that adult stem cell plasticity exists, and if so, 

determine whether cells prepared by this type of trans-differentiation can serve as potential 

replacements for ES cells in some types of therapies. 

The first objective is to develop a comprehensive assessment of the scientific evidence 

for and against the existence of stem cell plasticity, including its discovery, various methods of 

trans-differentiation, and diseases being treated.  The second objective is to characterize what 

key scientific stakeholders believe are the strengths and weaknesses of the existing data that this 

process exists, and their suggestions for potential solutions.  The third objective is to evaluate 

the evidence for and against the existence of stem cell plasticity.  The fourth objective is to 

recommend potential solutions for resolving any issues associated with proving that stem cell 

plasticity exists, including rigorous methods for ruling out cell fusion, and make 

recommendations for resolving any remaining issues of using iPS cells for therapy. 
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LITERATURE REVIEW 
 

 

 

Stem Cell Introduction 
 

 

Stem Cell Definition 

 

 Stem cells are a type of cells with two unique properties: 1) self -renewal and 2) the 

ability to become other cell types (Stem Cell Basics, 2002; What Are Stem Cells, 2004). After 

cell division, a stem cell can either remain as a stem cell, or it can differentiate into a more 

specialized cell under specific biological conditions.  Based on their unique properties, stem cells 

are thought to have tremendous values in regenerative medicine and are the subject of much 

current research (Stem Cell Basics, 2005).  

 

Stem Cell Potencies 

One of the most critical properties of stem cells is their ability to develop into other 

specific cell types, which refers to their potency.  The higher the potency, the more kinds of cells 

they can become.  Potencies are roughly classified into five categories:  totipotency, pluripotency, 

multipotency, oligopotency, and unipotency (Stem Cell Basics, 2005).  Newly fertilized eggs 

(zygotes) through the eight-cell stage are considered totipotent, and can differentiate into all cell 

types in an organism plus extra-embryonic tissues such as the placenta. As the zygote develops 

for about 5 days, it forms a blastocyst or hollow ball, with some cells specializing to form the 

inner cell mass and others forming the outer cell layer or trophoblast.  The cells of inner cell 

mass of the blastocyst contain embryonic stem cells (ESCs) and are considered pluripotent.  

Pluripotent cells can form all cells of the adult organism including any of the three germ layers: 

endoderm, mesoderm, or ectoderm.  
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Following pluripotency, stem cells enter the stage of multipotency. At this stage, the stem 

cells have the potential to differentiate into multiple cell types, but cannot form all types of cells. 

Hematopoietic stem cells (HSCs) and mesenchymal stem cell (MSCs) are examples of 

multipotent stem cells. As the cells continue growing, their potency is further limited to 

oligopotency and unipotency.  Oligopotent cells can only differentiate into a few cell types. For 

instance, a lymphoid cell can give rise to B cells and T cells but not cells from other tissue 

lineages.  Unipotent cells can give rise to only one specific cell type (What Are Stem Cells, 2004; 

Stem Cell Basics, 2005). 

 

Stem Cell Types 

 In general, stem cells can be broadly categorized into two main types: 1) embryonic 

stem cells (ESCs), and 2) non-embryonic or adult stem cells (ASCs) (Types of Stem Cells, 2012). 

In addition, researchers have manually reprogrammed adult or somatic cells into stem-cell-like 

cells by inserting the genes encoding several reprogramming transcription factors. These 

artificially made stem cells are called “induced pluripotent stem cells” (iPSCs), and much 

research is focused on their true potencies and uses in therapies.  

 

 Embryonic Stem Cells (ESCs) 

 Embryonic stem cells are harvested from the inner cell mass of blastocysts 5-10 days 

after in vitro fertilization (IVF) (What are Embryonic Stem Cells, 2010; Mandal, 2013).  The 

blastocyst is a hollow microscopic ball of cells comprised of three structures: the trophoblast (the 

outer layer of cells that surrounds the blastocyst), the blastocoel (the hollow cavity inside the 

blastocyst), and the inner cell mass (approximately 30 cells at one end of the blastocoel). ESCs 
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are considered to be pluripotent because they give rise to any of more than 200 different cell 

types in the body (Types of Stem Cells, 2012).  Due to their pluripotency, ESCs are a promising 

source for regenerative medicine and tissue replacement.  As long as they are cultured under 

appropriate conditions, they remain undifferentiated and can be expanded.   

 When ESCs are allowed to clump together to form embryoid bodies, they begin to 

spontaneously differentiate.  To direct ESCs to differentiate into a specific desired cell type, 

researchers change the chemical composition of the culture medium or modify the cells by 

inserting specific genes (What are Embryonic Stem Cells, 2010; Mandal, 2013).  

 In spite of their strong potency and uses in regenerative medicine ESCs have problems, 

including the potential for immune-rejection from the host, problems with differentiation, ethical 

issues, and funding issues (discussed below) (Swaminathan, 2008; Types of Stem Cells, 2012).  

 

 Adult Stem Cells (ASCs): 

Adult stem cells represent any type of stem cell that is not an embryonic stem cell.  These 

cells are typically isolated from adult tissues or from umbilical cord blood (What Are Adult Stem 

Cells, 2012).  These cells are also called somatic stem cells, in reference to their adult tissue 

origins.  Their roles are generally thought to maintain and repair tissues in the body.  ASCs are 

typically thought to be capable of differentiating into only the cell types of the tissue in which 

they are found, however several experiments have shown that some ASCs may be able to 

differentiate into cell types found in organs or tissues other than their usual tissue of origin.  This 

phenomenon is called trans-differentiation (What are Adult Stem Cells, 2012). For example, 

some scientists argue that bone marrow stem cells that normally form the cellular components of 

blood can trans-differentiate into cardiac muscle cells for treating heart attack patients. Currently, 
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numerous types of adult stem cells have been identified in many organs and tissues. Some ASCs 

are able to form many different kinds of tissues, while others can form just a few types of cells 

(Adult Stem Cell 101, 2013).  

Overall, although ASCs may provide regenerative cells for regenerative medicine, they 

are rare in mature tissues, so their isolation still represents a challenge. In addition, some types 

are hard to grow in culture (What are adult stem cells, 2012).  Below are discussed some of most 

common types of ASCs. 

 

 Hematopoietic Stem Cells (HSCs) 

HSCs are isolated from bone marrow, peripheral blood, or from umbilical cord blood.  

Their main role is to generate more than 10 distinct mature types of blood and immune cells 

(Seita and Weissman, 2010).  HSCs have been used since the late 1950’s (Thomas et al., 1957) 

in human bone marrow transplants to treat blood cancers such as leukemia, lymphoma, or 

hereditary blood disorders such as plastic anemia, β-thalassemia, and Blackfan-Diamond 

syndrome (Hematopoietic Stem Cells, 2011).  Because they have been used in human patients 

for decades, HSCs are the most characterized type of stem cell.  Interestingly, several researchers 

have also investigated an exciting application of HSCs in cancer treatment where HSCs are 

engineered to attack solid tumors such as in metastatic kidney cancer (Hematopoietic Stem Cells, 

2011). 

Despite more than 50 years of investigation on HSCs, researchers still have difficulties 

identifying HSCs from other bone marrow cells. The most common approach relies on specific 

markers appearing on the HSC surface (Spangrude et al., 1988). In 1992, Irving Weissman and 

his collaborators proposed the following markers for identifying mouse and human HSCs:  
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Mouse: CD34
low/-, 

SCA-1
+
, Thy1

+/low
, CD38

+
, c-kit

+
, lin

-
 

Human: CD34
+
, CD59

+
, Thy1

+
, CD38

low/-, 
c-kit

-/low
, lin

-
 

However, some scientists believe these markers are too restrictive, and do not accurately 

represent true HSCs (Hematopoietic Stem Cells, 2011).  

 

 Mesenchymal Stem Cells (MSCs) 

In addition to HSCs, bone marrow also contains another type of stem cell known as 

MSCs or bone marrow stromal cells. However, these cells are also found in other tissues such as 

cord blood, peripheral blood, fallopian tubes, fetal liver, and lung.  MSCs were first isolated in 

Russia in the 1960’s (Friedenstein, 1976).  They are progenitors of connective tissue lineages 

including bone, muscle, skin, cartilage, and adipocytes, and provide the stromal support system 

for HSCs in the marrow (Bianco et al., 2008). In addition to these orthodox differentiation 

pathways, MSCs have been reported to undergo unorthodox differentiation, forming neural and 

myogenic cells (Bianco et al., 2008).  Therefore, both the orthodox and the unorthodox plasticity 

of MSCs and their isolation from adult tissue instead of embryos indicates their potential 

therapeutic value for repairing cardiovascular tissues, bone, and cartilage, and treating lung 

fibrosis and spinal cord injury (Barry and Murphy, 2004).  

 

 Neural Stem Cells (NSCs) 

In the mid-1980’s, neuroscientists still believed it was impossible to renew neurons in the 

adult human brain and spinal cord.  But in the late 1980’s, scientists found that some parts of the 

adult human brain are capable of generating new neurons under certain conditions (Temple, 

1989). The new neurons originate from "neural stem cells" present in the adult brain, and are 
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similar to those in a developing fetus that initially give rise to the brain and spinal cord 

(Rebuilding the Nervous System with Stem Cells, 2009).  NSCs have been found to differentiate 

into many types of cells in the brain including neurons (the main message carriers in the nervous 

system), and neural-support cells oligodendrocytes and astrocytes (Rebuilding the Nervous 

System with Stem Cells, 2009). This discovery gives hope for treating neurodegenerative 

diseases such as Parkinson's disease and amyotrophic lateral sclerosis, and brain and spinal cord 

injuries caused by stroke or trauma (Rebuilding the Nervous System….2009).  

 

 Cardiac Stem Cells (CSCs)  

Although researchers used to think that cardiac tissue was unable to regenerate, it is now 

known that the heart contains a small population of endogenous stem cells capable of generating 

cardiomyocytes and coronary vessels. In 2003, researchers isolated and expanded c-kit-positive 

human cardiac stem cells (hCSCs) (Beltrami et al., 2003). These c-kit-positive cells possess the 

basic characteristics of stem cells: when locally injected in the infarcted myocardium of immune-

deficient mice or rats, human CSCs differentiate into myocytes, coronary resistance arterioles, 

and capillaries, forming a chimeric heart that contributes to improved performance (Bearzi et al., 

2007).  CSCs have also been isolated with the Isl+ marker on their surface (Laugwitz et al., 

2005).  Therefore, hCSCs might provide therapies for patients affected by heart failure. 

 

 Induced Pluripotent Stem Cells (iPSCs) 

Induced pluripotent stem cells, are adult somatic cells (such as skin) that have been 

genetically reprogrammed to an ESC–like state by treatment with genes encoding 

reprogramming transcription factors.  iPSCs were first induced in mice in 2006 (Takahashi and 
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Yamanaka, 2006) and in humans in 2007 (Takahashi et al., 2007).  Although the potency of 

iPSCs remains the subject of much research, some scientists claim iPSCs are pluripotent (like 

ESCs) and can produce all three germ layers. If so, they would be as valuable as ESCs for 

regenerative medicine while not having the problems associated with ESCs (discussed below) 

(What are Induced Pluripotent Stem Cells, 2009).  In addition, they would be immunologically 

matched to the skin cell donor (patient) so might not be immune-rejected like ESCs.  The 

discovery of iPSCs also provides scientists with useful tools for studying drug development and 

disease modeling.  However, iPSCs are sometimes reprogrammed using viruses to deliver the 

transcription factor genes, and the viruses can cause cancer in the cell lines.  Therefore, 

researchers are devising non-viral delivery strategies to reprogram iPSCs (What are Induced 

Pluripotent Stem Cells, 2009). 

 

Examples of Stem Cell Medical Uses 

Based on their regenerative properties, stem cells have been tested in a variety of animal 

disease models and in a few types of human patients.  In animal models, stem cells have been 

tested for treating leukemia, diabetes, heart attacks, stroke, spinal cord injuries, Parkinson’s 

disease, lung cancer, and macular degeneration.  The animal models have been tested with both 

embryonic stem cells and a variety of adult stem cells.   

Human leukemia patients have been treated with bone marrow stem cells since the late 

1950’s (Thomas et al., 1957), and with over 50 years of research experience these cells have 

become the best characterized type of stem cell.  With respect to ESCs, Geron received FDA 

approval to test their use in patients with spinal cord injuries, but terminated their trials in 2011 

due to insufficient corporate funds (Baker, 2011; Kaiser, 2011). This leaves biotech company 
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Advanced Cell Technology, formerly of Worcester (MA) one of the only approved clinical trials 

for ESCs, in this case to treat macular degeneration (Lok, 2012). 

Several studies have been performed with adult stem cells to treat human patients with 

heart attacks and stroke.  Most of the students were performed with bone marrow cells, but in 

some cases they used purified HSCs or MSCs.  For example, in clinical trials Britten et al. (2003) 

applied either bone marrow cells (BMCs) or circulating blood (CPC) into the infarcted artery of 

patients with acute myocardial infarction (AMI).  Four months post-treatment, their results 

indicated that the heart global ejection fraction had increased significantly, and the end-systolic 

volume and the infarct size decreased significantly.  In 2006, Schachinger et al. performed a 

similar experiment on 204 patients with AMI receiving an intracoronary infusion of BMCs or a 

placebo medium randomly. Four months post-therapy, the BMC group showed greater 

improvements in the heart global left ventricular ejection fraction. These clinical BMC 

transplantations show the feasibility of using BMCs to improve the myocardial infarction 

condition, and reduce the clinical end point of death.  

MSCs have also been used in heart attack and stroke patients.  Chen et al. (2004) and 

Bang et al. (2005) used MSCs in heart attack patients and stroke patients, respectively. Chen et al. 

(2004) randomly assigned 69 patients with AMI to receive bone marrow stromal cells (BMSCs, 

also called MSCs) or saline injections. Three months post-therapy, they observed that the 

patients receiving BMSCs had greater improvement in myocardial conditions—the left 

ventricular ejection fraction increased, the perfusion defects decreased, and the left ventricular 

end-diastolic volume and end-systolic volume decreased significantly. In Bang et al.’s study, the 

five stroke patients who received an intravenous infusion of MSCs showed improved 

neurological deficits and neurological function one year after transplantation.  



 

20 

In the few clinical trials performed so far, bone marrow cells have displayed the best 

contribution to functional recovery, showing excellent potential in regenerative medicine.  

 

Problems Using Embryonic Stem Cells 

 Because ESCs are very potent (pluripotent), and are relatively easy to identify 

(blastocyst inner cell mass), isolate (micro-suction pipette), and grow (using James Thompson’s 

feeder layer cells), many scientists believe they represent our best hope for treating specific 

human diseases.  But ESCs have serious problems associated with their use.  Their isolation 

destroys the blastocyst embryo, which has ethical issues.  And because of the ethical issues, the 

federal funding of ESC research has varied considerably depending on the political 

administration. 

 

ESC Ethical Issues 

The destruction of human embryos when isolating hESCs has created much public debate 

on this topic. As mentioned in the ESC section, ESCs are isolated from the inner cell mass of 5-

10 day old blastocyst embryos prepared by in vitro fertilization (IVF).  The isolation of the cells 

destroys the embryo which has the potential for life, so the ethical debate focuses on the status of 

the 5-10 day old human embryo. The human embryo debate is not new.  IVF technology was 

first developed in the early 1960’s in rabbits and was later applied to humans.  The world’s first 

“test tube baby” Louise Brown was born in 1978 (BBC News, 1978).  The development of IVF 

technology, primarily by Robert Edwards in Britain (see Edwards, 2001, for a historical review), 

resulted in Edwards receiving the 2010 Nobel Prize in Medicine or Physiology.  The IVF 

procedure is not perfect, so doctors prepare extra embryos for implantation if the initial attempt 
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fails and follow-up procedures are necessary. Once the family has enough children, questions 

remain on what should be done with the surplus embryos.  Should they be used in other women 

to make children?  Should they be used for research (to derive new ES cells)?  Should they be 

destroyed?  

Generally, the ethical debate focuses on two fundamental moral principles: the duty to 

prevent or alleviate suffering, and the duty to respect the value of human life (Hug, 2006). 

However, we cannot fulfill both of these duties in the case of ESCs, because the embryo is 

destroyed (dis-value of human life) in order to attempt to alleviate suffering (using the ESCs to 

treat diseases). So, the problem is which duty should be given more priority in this ethical 

dilemma. Three main positions exist within this debate: 

 

 An embryo has full moral status after fertilization of the egg 

Individuals supporting this position argue that life begins at conception, and consider 

embryos worthy of respect and protection because embryos are potential persons. For example, 

the Roman Catholic, Orthodox and conservative Protestant Churches believe the embryo has the 

status of a human from conception, thus no embryo research should be permitted (Farley, 1999; 

Hug, 2006). Pope John Paul II commented against embryo research in 2001 (Pope John Paul II, 

2001), and Pope Benedict XVI also addressed this issue in 2008 (Pope Benedict XVI, 2008).   

 

 An embryo has a moral status that begins with deserving protection and increases as 

the fertilized egg becomes more human-like  

Others believe that fertilized human eggs before implantation do not own any of the 

psychological, physiological, emotional or intellectual properties of personhood, but acquire 
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those properties over time. And IVF embryos are special in that unless they are implanted into a 

uterus, they only have the potential for life   Thus, these groups focus on personhood being 

achieved later than fertilization, and full potential being reached only after implantation.  

Judaism (Gilbert, 2010) and Islam (Siddiqi, 2002) argue that an embryo does not have full 

human status before 40 days post-fertilization and focus on the goal of ESCs research to cure 

diseases and save lives, so both of these religions allow some research on embryos (Hug, 2006). 

Some individuals in this group point out that people react differently to the loss of an 

embryo compared to a death of an infant, and we tend to make judgments of how great the loss is 

based on the stage of the lost life. Therefore, they consider an embryo before implantation has 

less moral status than a human fetus or a baby, and the protection should only increase when the 

embryos become more human-like.  

 

 An embryo has no moral status at all 

People in this category consider an embryo the same as other tissues or body parts, as 

embryos do not develop enough to survive independently. In this case, the only respect due to a 

blastocyst is the respect shown in general to the other people’s property.  As examples, 

Buddhism (Keown, 2004) and Hinduism (Bahnot, 2008) prohibit any harm on sentient beings 

who are able to feel. Because blastocysts have no nervous system and are not sentient beings, 

both of these religions do not see the destruction of 5-day old embryos in ESC research as 

morally wrong (Hug, 2006).  
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ESC Inconsistent Funding Issues 

One of the most serious problems associated with ESC research is its inconsistent 

funding by the federal government.  Federal funding levels in the U.S. vary considerably 

depending on which administration is in office.   

Embryo research was first considered seriously under President Bill Clinton, who in 1993 

the year of his inauguration designed the NIH Revitalization Act (1993) and formed a National 

Bioethics Advisory Commission make recommendations for performing embryo and stem cell 

research (Clinton, 1994).  Based on their recommendations, Clinton was about to propose a bill 

to Congress allowing embryo research, but in 1995 the Republican-led Congress passed the 

Dickey-Wicker Amendment banning all embryo research (Kiessling, 2010).  This ban remained 

in effect until Bush took office in 2001. 

In 2001 in his first year as President, President George W. Bush made an executive order 

to ban federal funding for deriving any new ESC lines after August 21, 2001, the date of the 

order (Human Embryonic Stem Cell Policy, 2001).  Although under this order federal money 

could be used to support ESC lines derived prior to that date, subsequent research showed that 

most of the approximately 60 ESC lines were genetically identical or were defective, so 

scientists complained they did not have a sufficient number of ESC lines for research purposes 

(Holden and Vogel, 2002).  Several attempts were made by Congress to over-ride the executive 

order, but President Bush vetoed each attempt.  Interviewed for his decision on ESC research, 

Bush replied: “This bill would support the taking of innocent human life in the hope of finding 

medical benefits for others. It crosses a moral boundary that our decent society needs to respect. 

So I vetoed it” (Bash and Walsh, 2006). 
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On March 9, 2009, newly elected President Barack Obama implemented an executive 

order to reverse Bush’s ban on embryo research (Associated Press, 2009; President Barak Obama, 

2009).  Obama charged NIH with creating new guidelines for stem cell research, and he adopted 

those guidelines in his order.  The order currently allows new ESC lines to be created from 

surplus reproductive IVF embryos with donor consent, and opens up many more ESC lines for 

researchers to use.  Obama encountered a potential roadblock on August 23, 2010, when a U.S. 

district judge granted a preliminary injunction to stop the federal funding of ESC research 

because it violates the Dickey-Wicker amendment which he said was still in effect.  The ruling 

by Judge Royce C. Lamberth was a blow to the Obama administration (CNN Library 2013), but 

on April 29, 2011, a federal appeals court announced that it would set aside that ruling.  The 

uncertainty brought grant reviews at the nation’s largest funding agency, the National Institutes 

of Health (NIH), to a halt (Singer 2011). The lower court appealed the decision to the Supreme 

Court, but on January 7, 2013, the Supreme Court declined to hear the appeal, allowing embryo 

research to continue.  A three-judge appeals court panel unanimously agreed with a lower court 

judge's dismissal of the case (Baynes, 2013). Chief Judge David B. Sentelle said: "Unless they 

have established some `extraordinary circumstance,' the law of the case is established and we 

will not revisit the issue" (Holland, 2012).   Dr. Francis Collins, Director of the NIH, said after 

the decision, "NIH will continue to move forward, conducting and funding research in this very 

promising area of science. The ruling affirms our commitment to the patients afflicted by 

diseases that may one day be treatable using the results of this research" (Holland, 2012).   

As these examples show, ESC funding over the past 20 years has been inconsistent.  The 

funding may decrease in the future if a President is elected who is against this type of research, 

making a strong argument for finding stem cell alternatives. 
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Stem Cell Plasticity as a Potential Replacement for ESCs 

Due to the problems discussed above of using embryonic stem cells, scientists are 

constantly seeking alternative cells for therapies.  This project focuses on the potential use of stem 

cell plasticity as a replacement therapy.  In this process, cells other than ESCs are used to 

differentiate outside their normal pathways to replenish cells in other tissues.  The existence of 

plasticity is extremely controversial, with many scientists arguing it does not exist, and if it does 

not even agreeing on what it is.  Can hematopoietic stem cells that normally form blood cells be 

used to heal damaged heart cells in heart attack patients?  If so, how do those cells heal the heart 

tissue; do they directly differentiate into heart muscle, or do they induce surrounding muscle cells 

to form more muscle?  

 

Stem Cell Plasticity: Definition and Assay 

Currently, there is no universally acknowledged definition of stem cell plasticity on 

record in this little understood and controversial field. Questions about what stem cell plasticity 

is, whether plasticity resides within the stem cell itself or is induced in surrounding cells, and 

what evidence can prove plasticity exists remain controversial. Due to these controversies, 

researchers have devised their own definitions of stem cell plasticity. Some representative 

definitions are discussed below.  

In Theise’s review article (2010), stem cell plasticity was given a very broad definition.  

Four different cell development pathways were described:  1) The first pathway describes the 

standard lineage differentiation, including the natural events of cell development and tissue 

maintenance. The growth of a fertilized egg to an embryo is one of the examples of this natural 

pathway.  2) The second pathway involves cell dedifferentiation.  For instance, a somatic cell 
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regains the properties of stem cells which allow the cell to develop into another cell type.  iPS 

cells are an example of this process.  3) The third pathway includes the most accepted definition 

of “plasticity,” where “cells of one lineage become cells of another lineage, across organ or 

embryonic tissue barriers, by changing gene expression in response to microenvironmental cues” 

(Theise, 2010).  Based on this definition, Theise implies the importance of a cell’s environment 

inducing cell conversion. 4) The fourth pathway is cell fusion, the joining of the plasma 

membranes of two adjoining cells.   Cell fusion results in a tetraploid cell with a change in gene 

expression caused by the merging of the cells. Much controversy exists about how adult stem 

cell plasticity occurs, especially between transdifferentiation and cell fusion. Both pathways have 

been confirmed by many researchers, but some researchers see only one type.  Overall, in 

Theise’s study, the term “plasticity” was defined as a change in cell types.  So, based on this 

broad definition, stem cell plasticity can refer to normal cell differentiation within natural 

developmental pathways (i.e. the formation of blood cells from hematopoietic stem cells) and 

refers to the non-natural and rarer conversion of one stem cell type to other cell types (i.e. the 

formation of hepatocytes from hematopoietic stem cells) (Theise, 2010). 

In contrast to Theise’s comprehensive definition of plasticity, Wagers and Weissman 

(2004) state that “plasticity” refers to unexpected stem cell potency.  In this view, adult stem 

cells are thought to be multipotent but normally tissue-specific, with adult stem cells playing a 

key role in tissue regeneration within a normal subset of cell lineages. Plasticity of adult stem 

cells, however, is the breakthrough of the normal subset barriers or trans-differentiation outside 

the normal developmental pathway to a completely different tissue. Trans-differentiation results 

in replacing tissue-specific markers and functional phenotypes of the original cell type with those 

of the new cell type (Wagers and Weissman, 2004).  
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For purposes of this project, we will use Wagers’ definition and its focus of 

differentiation outside the normal developmental lineage into a different type of tissue. Given 

this definition of plasticity, the experimental proof of plasticity should be based on acquiring 

evidence for cross-lineage cell differentiation, and the acquisition of new gene profiles and new 

functional cell phenotypes of the original donor cell without evidence of fusion of the donor cell 

with a host cell. 

Most of the documented evidence for plasticity in adult stem cells use bone marrow stem 

cells, which contain hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) (also 

called multipotent stromal cells).  Under normal biological conditions, HSCs give rise to all 

blood cell lineages.  MSCs normally generate multiple mesenchymal type lineages. Both types of 

adult stem cells are reported to have unexpected capacities to differentiate across cell lineages 

under specific experimental settings, although some scientists deny these cells can do this. Some 

studies attempt to purify the donor cells to include only HSCs or MSCs, while other studies 

simply use bone marrow cells regardless of what cells are included. 

To demonstrate trans-differentiation potential, it is important to use a donor cell whose 

genome is tagged or is distinctly different than the host genome, so the survival and location of 

the injected cell can be mapped.  Methods for tagging the genome of the donor cell include the 

use of fluorescent transgenes, like green fluorescence protein (GFP), or by Y-chromosome 

mapping.  Some studies use the Cre-recombinase system for determining whether the original 

donor cells are the same cells expressing the therapeutic phenotype post-therapy.  The 

acquisition of new functional characteristics by a donor cell can be assayed by transcriptional 

profiling techniques, such as RT-PCR or hybridization arrays, or RNA-SEQ techniques.  

Evidence for trans-differentiation would include a cell whose genome maps to the donor cell 
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while at the same time expressing mRNAs of a new cell type outside its normal lineage.  And 

most importantly, based on the definition of plasticity chosen for this project, the evidence for 

plasticity should rule out cell fusion, as this process would not be the direct conversion of the 

donor cell outside its normal pathway (Wagers and Weissman, 2004). 

 

Plasticity in Hepatic Cell Lineages 

 

Evidence For Plasticity in Hepatic Lineages 

One of the earliest studies showing evidence for bone marrow cell plasticity into hepatic 

lineages was in 1999 (Petersen et al., 1999).  This research group transplanted bone marrow stem 

cells from male rats into female rats with induced liver injury. Several donor genetic markers 

were assayed including Y-chromosome, cross-strain, and cross-sex genes, and demonstrated the 

presence in liver of a subset of donor-derived regenerated hepatic oval cells. These hepatic oval 

cells then continued differentiating into mature hepatocytes. This initial study suggested that 

bone marrow stem cells are capable of trans-differentiating into a hepatic epithelial cell lineage 

(Petersen et al., 1999).  

 

In 2000, one of the first trans-differentiation experiments using purified human 

hematopoietic stem cells showed they could be used to derive hepatocytes (Alison et al., 2000).  

Bone marrow transplants using male HSCs were performed on female patients with liver damage.  

Y-chromosome mapping was performed to indicate the origins of the donor HSCs. The result 

showed that many hepatocytes present in the transplanted female liver were Y-chromosome 

positive, showing they originated from the donor HSCs.  Based on this result, human HSCs may 
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have the potential to differentiate into an epithelial hepatocyte lineage if given the proper growth 

environment such as damaged tissues (Alison et al., 2000). 

Following these initial studies, a 2000 study was done by Lagasse’s research group to 

show evidence for the plasticity of purified HSCs (Lagasse et al., 2000).  Similar to 

contemporary state-of-the-art studies, they showed that purified HSCs were capable of 

differentiating into liver cells by transplanting bone marrow cells (initial experiment) or highly 

purified HSCs (second experiment) from male mice containing the wild-type gene for fumaryl-

acetoacetate hydrolase (FAH) into female mice lacking this gene.  Mutation of the FAH gene 

causes hepatorenal tryrosinemia, an inherited disease leading to severe liver and kidney failure. 

Using bone marrow cells, their results showed the livers of recipient mice contained donor-

derived cells that covered 30-50% of the liver mass.  The donor-derived repopulating 

hepatocytes were morphologically similar to normal hepatocytes, producing the FAH enzyme 

from the donor HSC gene. Several liver functional tests demonstrated a significant improvement 

in the recipients’ livers. The research group also identified the type of bone marrow cells that 

gave rise to hepatocytes. Highly purified HSCs or KTLS isolated from normal adult male mice 

were injected intravenously into lethally irradiated adult female FAH deficient mice. The 

expression of the FAH enzyme and the presence of Y-chromosome markers were used to 

indicate the degree of hepatic engraftment in the recipient. The result showed the regenerated 

hepatocytes were positive for all parameters. Moreover, HSC-derived hepatocytes replaced a 

section of the diseased liver indicating a functional improvement in recipients’ livers similar to 

the result with the bone marrow cells. A third experiment confirmed the results of the previous 

experiments and also showed that the purified HSCs (KTLS) were the only cell source in adult 

bone marrow to derive hepatic progenitors (Lagasse et al., 2000). 
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In 2004, evidence was obtained that HSC conversion to hepatocytes can occur without 

cell fusion (Jang et al., 2004).  Based on the definition of plasticity chosen for this IQP, it is 

important to rule out cell fusion as the basis for the conversion.  HSCs, after being co-cultured 

with damaged liver tissue, expressed several key liver transcription factors and cytoplasmic 

proteins specific for liver cells. The cell fusion process in liver tissue is difficult to assay because 

liver cells are often bi-nucleate, but the authors chose to assay sex chromosomes.  They found 

that any tetraploid cells in the liver were host-derived female-female (XXXX) not donor-derived 

male-female (XYXX), indicating direct cell conversion occurred instead of cell fusion with the 

female hepatocytes.  In addition to addressing cell fusion, this experiment also suggested that 

acute liver injury can be an important inducer of trans-differentiation (Jang et al., 2004).  

In addition to the above mentioned studies with HSCs, other studies have shown evidence 

for the trans-differentiation of MSCs into liver cells.  For example, in the presence of in vitro 

induced hepatocyte growth factor, bone marrow stromal cells (BMSCs), isolated from rat femurs 

and tibias, were capable of differentiating into hepatocyte-like cells (Wang et al., 2004). Several 

tests at the molecular level confirmed the hepatic functional characteristics of these BMSC-

derived cells (Wang et al., 2004).  

 

Possible Mechanisms of Plasticity and Liver Tissue 

If plasticity exists, how it is accomplished (its mechanism) helps prove it exists.  In 

general, two potential mechanisms for the engraftment of bone marrow-derived hepatic cells into 

liver tissue have been suggested:  1) with or 2) without the presence of liver tissue injury (Theise 

and Krause, 2002). Induced by various types and severities of liver damages, bone marrow cells 

engraft into liver through the circulation. Oval cells or other hepatic progenitor cells are present 
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at the engraftment site as a result of the liver injury. Under such a complex microenvironment, 

the marrow cells adopt the morphology of hepatic progenitor cells and continue developing into 

hepatocytes.  To aid recruitment of the injected HSC to the wounded liver, one study reported 

that hepatic cells from a severe injured liver site release a type of chemokine (SDF-1) into the 

nearby bloodstream which attached to an SDF-1-receptor on the surface of the marrow cells 

(Theise and Krause, 2002). 

Without acute liver injury, without the presence of oval liver cells, the marrow cells are 

thought to engraft in liver through a different pathway. The site and distribution of the 

engraftments are different from the ones during injury. In this case, some liver cells may act as 

short term progenitors that assist the marrow cells with engraftment and their further 

differentiation (Theise and Krause, 2002).  

Several studies have identified specific growth factors responsible for deriving hepatic 

cells from adult stem cells. For instance, hepatocyte nuclear factor 4-alpha (HNF-4α), a nuclear 

receptor protein critical to liver development, was found to have a significant role in converting 

MSCS into hepatocytes. Compared with hepatoma cell lines, the hepatic cells derived from 

human mesenchymal stem cells expressed HNF-4α (Chen et al., 2010).  To improve the 

efficiency of hepatic differentiation, the rat HNF-4α gene was introduced into MSCs through 

adenovirus delivery. As a result, the expressions of several hepatocyte nuclear factors and key 

hepatic markers like albumin were significantly increased (Chen et al., 2010). In addition, the 

P450 gene that expresses a detoxifying enzyme in the liver, was also induced by HNF-4α 

treatment. Overall, the differentiation level of MSCs-derived hepatic cells and further functions 

of these cells were efficiently enhanced by the over-expression of HNF-4α, thus HNF-4α appears 

to be one of the key determinants in hepatic induction from mesenchymal stem cells. 



 

32 

 

Comparison of Plasticity for Liver Tissue and ESC Therapy 

Since the discovery of embryonic stem cells, with their strong pluripotency and ease of 

isolation and growth, ESC research has been regarded as the most promising area of regenerative 

medicine. Several studies have successfully used ESCs to generate hepatocytes, so these studies 

provide a comparison for judging whether bone marrow cells can replace ESCs for this type of 

therapy.  One study directly compared ESCs to adult stem cells for liver therapy, identifying 

each of their advantages and disadvantages.  ESCS are pluripotent so they have the ability to 

differentiate into all cell types in the body; therefore, designing ESCs to differentiate into a 

specific cell type (liver in this case) is more plausible than with adult stem cells. However, ESCs 

have been reported to form tumors in experimental settings, and the ethical issues of ESCs pose a 

problem.  In any case, the use of ESCs or adult stem cells must produce cells that are similar 

enough to the target tissue to be functional and be stable, the level of differentiation must be 

sufficient to provide clinical improvement, and the mechanism must be more fully understood.  

So it might be too early to declare a winner between ESCs and adult stem cells. 

In one study (Brolen et al., 2010), hepatocytes were derived from human ESCs in three 

stages. The first stage involved converting undifferentiated human ESCs into endoderm which 

can create liver cells. The second stage derived hepatic progenitor cells from the endoderm in the 

presence of key growth factors. In the final stage, the hepatic progenitor cells were further 

differentiated into mature hepatocyte-like cells that exhibited typical hepatocyte morphology and 

functional characteristics (Brolen et al., 2010).  

In another study, scientists cultured human ESCs in 10% serum containing hepatocyte 

growth factors which helped convert the ESCS into hepatic lineage cells that expressed 
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endoderm-specific and hepatocyte-specific genes (Basma et al., 2009). These derived cells also 

produced functional hepatic proteins similar to those of well-differentiated human mature liver 

cells. Basic liver metabolic activities were also detected in these cells (Basma et al., 2009).  

In a 2013 study, scientists showed that iPS cells can be used to create liver cells (Takebe 

et al., 2013).  They co-cultivated hepatic endoderm cells induced from human iPSCs with 

endothelial and mesenchymal cells resulting in liver bud formation. The iPSC-derived liver buds 

were further transplanted into mouse models, and surprisingly were able to form vascularized 

and functional liver (Takebe et al., 2013).  This study provides the first demonstration of 

functional human organ generation from pluripotent stem cells, which provides a breakthrough 

achievement in stem cell research. Someday, similar success may also be achieved with 

plasticity treatments.  

 

Evidence Against Plasticity in Hepatic Tissue 

A significant number of studies have failed to find evidence of adult stem cell trans-

differentiation into liver cells.  Based on his review of 77 studies related to derivation of hepatic 

cells from hematopoietic stem cells, Thorgeirsson and Grisham (2006) concluded that HSCs 

have little potential in hepatocyte regeneration. Thorgeirsson argues that HSC conversion into 

hepatic cells is a rare event, with a frequency of less than one in 10
-4

.  Without special treatment 

to enhance cell conversion, more than 80% of the studies examined resulted in the production of 

hematopoietic-derived hepatocytes with less than 0.05% of the total liver mass. Only 6% of the 

studies showed an engraftment rate in excess of 1.5%.  However, under selective conditions such 

as induced liver injury, more than 50% of the studies reported a significant increase in the cell 

conversion rate. However, even under injury conditions, Thorgeirsson argues the conversion is 
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not due to trans-differentiation of hematopoietic cells; instead, he suggests the following 

possibilities: a) differences in post-engraftment amplification of hematopoietic cells is the cause 

of variation in efficiency of cell conversion; b) for those experiments performed in vitro, the 

unnatural culture environment might alter the nature of HSCs making them more “plastic” than 

occurs naturally; c) there is a lack of precision in donor cell detection methods.  Overall, due to 

the low number of hematopoietic-derived hepatocytes, there was little chance these regenerated 

cells would contribute to liver repair, and compared to regular hepatocyte transplantation, 

hematopoietic stem cell treatment showed no advantage.  In some cases the bone marrow cells 

responsible for the conversion were not identified, and cell fusion was not ruled out.  And in 

some cases, liver function could improve without the injected cells fully becoming hepatocytes.  

Without converting into hepatocytes, HSCs can naturally contribute to liver function and repair 

by producing cytokines and growth factors.  So, Thorgeirsson suggested further studies are 

required to verify the ability of HSCs to regenerate hepatocytes (Thorgeirsson and Grisham, 

2006).  

To demonstrate trans-differentiation, the donor cells must express tissue-specific markers, 

must show no remaining hematopoietic markers, and must exhibit morphology as well as 

phenotype of tissue-specific cells.  Following this guideline, Wagers’ group transplanted highly 

purified HSCs (or KTLS) containing the gene for green fluorescent protein (GFP) to track the 

donor cells during trans-differentiation.  They saw no GFP-positive donor cells in the host liver, 

and concluded that no trans-differentiation occurred (Wagers et al., 2002).  They acknowledged 

that HSCs might exhibit a wider potency when exposed to injured tissues, but concluded that 

even during injury there is little evidence for HSC trans-differentiation into liver (Wagers et al., 

2002). 
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In 2005, Lian’s group (2005) tested for adult stem cell plasticity using highly purified 

HSCs and two types of stimulation: cytokine addition and tissue injury. When treated with 

cytokines, several liver markers and hepatocyte transcription factors were detected in 

hematopoietic-derived liver cells. However, the same result was shown in their control group 

lacking the cytokines. Further tests indicated the HSCs were naturally capable of expressing 

liver-related markers both in vivo and in vitro.  In addition, bone marrow cells could pick up 

albumin from the blood without trans-differentiation.  Moreover, no difference was shown in 

hepatic markers whether the HSCs were cultured alone, with healthy liver, or with injured liver. 

Therefore, inconsistent with previous studies, neither cytokine nor tissue injury had any 

significant effect in inducing transdifferentiation and enhancing expression of tissue-specific 

markers (Lian et al., 2005).  

Although several studies mentioned earlier showed evidence for bone marrow cell trans-

differentiation into hepatocytes in FAH-mutant mouse models without cell fusion, not all studies 

agree with those studies. For instance, in one study, bone marrow cells from female FAH 

positive wild type mice with a specific transgenic marker were transplanted into lethally 

irradiated male FAH-mutant mice (Wang et al., 2003). Southern blot analysis for the transgenic 

marker indicated only a small fraction of positive cells, therefore, there was little possibility that 

trans-differentiation occurred. Additional experiments showed that a larger proportion of 

hepatocytes expressed the genotypes that could only result from cell fusion. This study 

concluded most of the regenerated hepatocytes in the FAH mouse model resulted from cell 

fusion between donor bone marrow cells and the host hepatocytes, with trans-differentiation 

being a rare event (Wang et al., 2003). 
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Plasticity in Myocardial Infarction Treatments 

 

Acute myocardial infarction (MI) is a leading cause of morbidity and mortality 

worldwide.  A myocardial infarction occurs when blood supply to the heart is interrupted, 

causing the irreversible loss of cardiac muscle or death (American Heart Association, 2002). 

Recently, the discovery of stem cell plasticity gives hope for repairing damaged myocardium 

without using ESCs.  This section discusses the evidence for and against trans-differentiation of 

bone marrow derived cells into cardiomyocytes.  

 

Evidence for Plasticity in Myocardial Infarction Treatments 

In 2001, Orlic et al. demonstrated that when bone-marrow derived Lin
- 
c-kit+ 

hematopoietic stem cells (BM-HSCs) were injected directly into hearts in mouse heart attack 

models, these cells could improve cardiac performance, by increasing vascularity and 

regenerating cardiomyocytes by trans-differentiation into endothelial cells and cardiomyocytes, 

respectively.  The injected cells were also able to produce cytokines and other factors that induce 

myogenic repair and prevent fibrosis (Herzog et al., 2003). Evidence for the direct conversion of 

HSCs into heart muscle was followed by tracking the fate of the transplanted cells using Y-

chromosome mapping and GFP transgene markers present in the donor cells. 

MSCs have also been shown to potentially trans-differentiate into cardiomyocytes. 

Treating these cells with the DNA demethylating agent 5-azacytidine (which switches on the 

expression of specific repressed genes) was shown to induce multiple new phenotypes, including 

cardiac phenotypes, showing the trans-differentiation capacity of MSCs in vitro (Makino et al., 

1999; Hakuno et al., 2002). In 2005, Fukuda and Fujita isolated and transplanted BM-MSCs into 
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mice finding that it was the MSCs not the HSCs in bone marrow that trans-differentiate into the 

cardiomyocytes. However, due to the small number of incorporated MSCs, and the use of animal 

serum to expand these cells in vitro, MSCs are still limited for clinical trials on humans (Yoon et 

al., 2005). 

 

Possible Mechanisms for Plasticity Treatments for Myocardial Infarction 

When cells undergo reprogramming, they alter their gene expression profiles.  It is suggested 

that transplanted adult stem cells may recognize a change in microenvironments through cell 

surface receptors, which stimulate various transcription factors and regulatory molecules by 

signal transduction pathways (Avots et al., 2002).  BM-HSCs and BM-MSCs stay in the BM 

stem cell niche under hypoxic conditions by increasing Oct4 expression and telomerase activity 

to maintain their stemness (Hass et al., 2011). With changes to the hypoxic conditions, stem cells 

increase the release of multiple paracrine mediators, which helps accelerate angiogenesis,  

arteriogenesis, cardiomyogenesis, reduce apoptosis, and promote the recruitment of circulating 

progenitors into the regenerating the damaged myocardium (Yoon et al., 2005). 

MicroRNAs (miRNAs) are noncoding RNAs which bind the 3’UTR of target mRNAs to 

decrease their translation.  Many miRNAs, such as miRNA-181, miRNA-223, and miRNA-142 

are specifically expressed during hematopoietic lineage commitments (Chen et al., 2004). In 

BM-MSCs, miRNA-124 has been shown to regulate the in vitro synthesis of cardiomyocytes 

from BM-MSC (Cai et al., 2012). 
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Effectiveness of ESCs versus Plasticity for Treating Myocardial Infarction 

ESCs have been used to treat heart attacks in mouse models.  Utilizing differences in 

glucose and lactate metabolism, researchers are now able to isolate cardiomyocyte populations of 

up to 99% purity differentiated from human ESCs (Tohyama et al., 2013).  And these cells can 

be electromechanically integrated into the host heart tissue (Shiba et al., 2012).  However, the 

transplant of ESCs into human myocardium has not yet been performed, as teratoma formation 

was observed when human ESC-derived cardiomyocytes were transplanted into 

immunosuppressed Rhesus monkeys (Blin et al., 2010).  

Myocardial infarction is one of the few diseases currently being treated in human patients 

by stem cells, so in this category some data is available to compare to ESC treatments.  Bone 

marrow-derived stem cells used for autologous transplant have shown safety profiles in both 

animals and humans for treating myocardial infarction (Amado et al., 2005; Hare et al., 2012). 

The results, however, vary between clinical trials.  Some trials showed significant improvement 

in the left ventricle ejection fraction (LVEF), while other trials reported either no improvement 

in LVEF upon treatment or increased LVEF in the control group. In 2010, Assmus et al. 

performed a double-blind and placebo-controlled clinical trial, termed the REPAIR-AMI trial, by 

transplanting autologous bone marrow cells back into the same patient (intracoronary delivery) 

following an acute myocardial infarction. Two years post-treatment, the patients showed 

significant improved outcomes and ventricular function.  However, the TIME trial by Traverse et 

al. (2012) did not show any significant improvements in ventricular function after intracoronary 

delivery of autologous bone marrow cells in similar patients.  Likewise, there was no significant 

improvement in the POSEIDON trial after the trans-endocardial injection of BM-MSCs in 

patients with ischemic cardiomyopathy (Hare et al., 2012). Differences in the cell preparation or 
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baseline patient statistics may explain the discrepancies in patient improvement. However, the 

issue needs to be investigated more systematically, and larger clinical trials are currently 

underway.  

 

Evidence Against Plasticity for Myocardial Infarction 

Although six studies have shown evidence for HSC or MSC plasticity when treating 

myocardial infarction, three other research groups argue that plasticity does not exist and are not 

able to reproduce any plasticity results (Wagers et al., 2002; Balsam et al., 2004; Murry et al., 

2004).  Wagers’s group used a constitutively expressed GFP-reporter gene to tag their donor 

HSCs, and 4-9 months after transplant saw no evidence of GFP
+
 cells in host non-hematopoietic 

tissues (such as heart, liver, kidney, lung etc.).  They concluded that the injected HSCs did not 

trans-differentiate into cardiomyocytes. Similarly, Murry’s research group tracked donor cells 

using either a cardiac restricted or a ubiquitously expressed GFP reporter gene. Although his data 

showed that donor cells could survive long term in the hematopoietic system, he saw no evidence 

of trans-differentiation into cardiac lineages.  Murry’s group also used another cardiomyocyte-

restricted tracking system: donor BM-HSCs from a transgenic mouse line in which the cardiac-

specific α-myosin heavy chain (αMHC) promoter drives the expression of a nuclear-localized β-

galactosidase reporter gene. These β-gal+ cells would be readily detected if they trans-

differentiated into cardiomyocytes using X-gal staining. However, 1-4 weeks post-transplant into 

the infarcted zone of non-transgenic recipients, no blue X-gal signals were detected in heart cells, 

indicating no cardiac trans-differentiation.  In this case, the GFP reporter gene was also utilized 

to eliminate the possibility of gene silencing of the Lac-Z reporter.  However, after using both 

tracking systems, Murry’s research did not find any evidence for bone marrow-derived 
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cardiomyocytes.  

Of the three mentioned research groups, although Balsam et al. (2004) saw no sign of 

plasticity, they did see cardiac improvement.  Six weeks post-treatment, the cell-treated mice 

demonstrated a statistically significant, yet modest, improvements in cardiac output, ventricle 

fractional shortening, and decreased left ventricular chamber dimensions at end-diastole and end-

systole. However, the infarct size was not significantly different between the two groups. Their 

observed improvement in cardiac output was probably limiting ventricular dilation and 

dysfunction for reasons that remain unexplained. These researchers concluded that HSCs cannot 

trans-differentiate into cardiomyocytes after myocardial infraction, and have provided an alert on 

this matter for the ongoing clinical studies.   

Other researchers have claimed that the apparent trans-differentiation is only the result of 

cell fusion (Terada et al., 2002; Alvarez-Dolado et al., 2003). Using a Cre/lox recombination 

system to knock out specific genes on demand, they were able to track transplanted cells in vivo 

to argue that BM-derived cells fuse in vivo with several types of cells including cardiac muscle, 

contributing to the formation of multinucleated cells (Alvarez-Dolado et al., 2003).  In this 

method, two lines of mice were used: 1) mice expressing Cre-recombinase (Cre) and GFP 

constitutively under the control of a hybrid cytomegalovirus enhancer β-actin promoter, and 2) 

the R26R transgenic mouse containing a LacZ reporter gene under the control of a promoter with 

a floxed stop signal (initially off) (Alvarez-Dolado et al., 2003).  If an injected donor cell fuses 

with a host cell, the Cre-recombinase from the donor cell excises the floxed stop signal switching 

on the LacZ reporter in the fused cell. LacZ expression can be detected by the formation of a 

blue precipitate after X-gal staining, so the presence of blue cells in the host indicates that cell 

fusion has occurred. To test whether BM-HSCs contributed to fusion events in vivo, the Alvarez-
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Dolado group used a specific configuration of the Cre-LoxP system where donor mice contained 

Cre under the control of a CD45 promoter, so Cre would be expressed only in cells of the 

hematopoietic lineage.  Once Cre is expressed in those cells, it switches on GFP expression 

tagging the cells to follow their fate.  The presence of GFP
+
 β-gal

+
 cells in the host heart would 

be evidence of cells of the hematopoietic lineage (GFP) fusing with host cells (β-gal
+
).  CD45-

Cre donor BM-HSCs were injected into four lethally irradiated R26R LacZ recipient mice, which 

were examined 10 months after transplantation. GFP
+
/β-gal

+
 cardiomyocytes were observed in 

two of the four mice. These fused cells were observed to have the same morphology and 

alignment as other surrounding mature cardiac muscle fibers, and also express a cardiac specific 

protein troponin I, suggesting that BM-HSCs fuse in vivo with pre-existing cells in the heart to 

form mature cardiomyocytes.  Any trans-differentiated GFP
+
/ β-gal

-
 cells were rare (Alvarez-

Dolado et al., 2003).  

 

Plasticity in Stroke Treatments 

 

Evidence for Plasticity in Stroke Treatments 

Some researchers have shown evidence for plasticity of HSCs and MSCs when treating 

mouse stroke models.  Stoke occurs when there is interruption in the blood supply to the brain. 

Stroke has a high mortality rate and causes severe disabilities worldwide. Recently, many 

researchers have observed improvements in motor function of rat stroke models following bone 

marrow cell transplantation.  

Chen’s and Felfly’s research groups have injected bone marrow stromal cells (BMSCs) 

or Sca1+ bone marrow cells enriched for HSCs, respectively, into rat models with transient 

middle cerebral artery occlusion (tMCAO). Both research groups observed that the tMCAO rats 
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showed significant motor improvement (spent less time removing tape on one limb using the 

other paw) compared to the control group without any treatment, and showed improved survival 

rates (Chen et al., 2008; Felfly et al., 2010). Pavlichenko’s group observed similar results using 

MSCs and the Morris water maze swimming test to measure memory and motor performance 

(Pavlichenko et al., 2008).  The treated rats used less time to locate the hidden platform, and also 

showed improved survival rates. Thus, these authors conclude that transplantation of HSCs or 

MSCs can restore cognitive function of rats in a stroke model to nearly normal levels. 

 

Mechanism 

In order to explore the reason for the behavioral improvements in the rat stroke models, 

Chen et al. (2008) and Pavlichenko et al. (2008) isolated and cultured the MSCs from normal rat 

whole bone marrow. Then they used histochemical staining and fluorescent labeling 

methodology, respectively, to track the location of the transplanted MSCs (Chen et al., 2008; 

Pavlichenko et al., 2008). Felfly et al. (2010) also used a fluorescent labeled marker to detect the 

implanted HSCs in tMCAO mice.  Significantly, the three research groups discovered that the 

implanted bone marrow stem cells migrated to the lesion site of the brain instead of following 

random blood flow, and the migration correlated with a reduction in infarct volume over time.  

Chen et al. (2008) suggested BMSCs had the ability to express growth factors (such as 

nerve growth factor and brain-derived neurotrophic factor) that help maintain neural survival and 

brain function.  By using the human-specific antibodies and neural cell markers, Zhao et al. 

(2002) were able to track their implanted hMSCs in rats and concluded they gave rise to neuronal 

cells after migrating to the infarct site (Zhou et al., 2002). Brazelton et al. (2000) detected the 
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presence of NeuN-positive and class III β-tubulin-positive neurons from 1 to 6 months after bone 

marrow transplantation in lethal irradiated adult mice using fluorescent markers.  

In human patients, Mezey et al. (200; 2003) combined immunocytochemistry and 

fluorescent in situ hybridization histochemistry (using a probe against the Y-chromosome) to 

detect Y-chromosome-positive cells in female patients with neural disorders who received bone 

marrow from normal male donors.  In their previous studies with mice, the group showed that 

bone marrow cells perfused intravenously migrated to the brain to improve neuronal 

performance, so they hypothesized the same might occur with human patients.  Y-chromosome 

positive male donor marrow cells were found in the hippocampus and the neocortex of the 

patients (Mezey et al., 2000; 2003). Although the transplanted bone marrow generated only 

about 0.2% - 0.3%, and 0.025% - 0.05% of the neurons, respectively,  in Brazelton’s and 

Mezey’s studies, this is strong evidence that bone marrow stem cells have the potential to 

regenerate new neurons in vivo. Although the research did not focus on whether the perfused 

cells directly trans-differentiated or fused with existing neurons, the data provides direct 

evidence that cells outside the normal neuronal lineages can locate in the brain and help create 

new neurons.  

Also in human patients, Bang et al. (2005) treated human neural disorder patients with 

MSCs. The Phase I study showed that MSCs are safe to apply in larger clinical trials.  In addition, 

since the MSC transplantation was autologous, obtaining the MSCs from the patients themselves, 

the immune reaction after the transplantation appeared to be avoided (Bang et al., 2005). 

Borlongan et al. (2004) claimed that BMSCs were able to recover stroke impairments in 

rat models due to their ability to restore the damaged cerebral blood flow (CBF) and the blood 

brain barrier (BBB).  Borlongan’s research group measured CBF restoration of the rat models 
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before stroke surgery, during MCAO, and after BMSC transplantation, and they measured the 

BBB level with an Evans Blue permeability assay. They observed that the CBF level and the 

BBB level of the MCAO rat models reached to nearly normal levels after receiving more than 

40,000 BMSCs from day 4 to day 11 after transplantation, compared to the control group with 

MCAO only. However, this study did not show any improvement in infarct volume reduction, 

perhaps due to the overall low level of new tissue regeneration. 

Felfly et al. (2010) stressed that the number of injections and the number of cells are 

critical when treating stroke.  They discovered that the tMCAO rats did not survive after only 

one injection of Sca1+ bone marrow cells on either day 1 or day 2 post-occlusion. Instead, the 

tMCAO rats survived with two consecutive Sca1+ bone marrow cell injections on each day 1 

and day 2. The report suggested that the function of the first injection stabilized the stroke, and 

the second injection provided greater protection. And the number of therapeutic cells appears to 

be important in the treatment, which emphasizes that the cells to be used in therapy should be 

expanded before delivery if possible.  

 

Comparison with ECS Therapy for Stroke 

Researchers have also used ESCs to treat rat stroke models.  Daadi et al. (2008) cultured 

human ESCs in vitro with neural growth factors EGF, bFGF and LIF, and yielded human neural 

stem cells (hNSCs). The cultured hNSCs were transplanted in vivo into rat stroke models, and 

developed into neurons (Daadi et al., 2008). The report indicated that the ESCs did not 

differentiate into tumor cells, which was a significant finding. However, further investigation 

would be required to determine whether other experiments with ESCs induce tumors as observed 

with other research teams. 
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Evidence Against Plasticity in Stroke Treatments 

Some researchers argue that stem cell plasticity does not exist when treating stroke.  

Castro et al. (2002; 2003) tried to detect the presence of donor cells converted to neural cells 

after transplanting bone marrow stem cells in irradiated mice, but failed to identify any surviving 

donor cells. Their donor cell marker, LacZ, did not apparently express in the brain cells of the 

stroke mice after stem cell injection (Castro et al., 2002).  Mezey et al. (2003) mentioned in their 

study that donor markers might not be easy to detect since they might be lost or silenced after 

transplantation. Thus, they suggested Castro et al. should choose more reliable markers, such as 

Y-chromosome mapping, to detect surviving donor cells (Mezey et al., 2003).  As a reply, Castro 

et al. (2003) claimed that their donor marker was present in the brain after bone marrow 

transplantation but did not show up in any new neurons.  Thus, they claimed the implanted bone 

marrow stem cells were incapable of trans-differentiating into neural cells.  

Overall, with respect to the stroke treatments, many research groups have shown that 

bone marrow stem cells can migrate to non-marrow tissue and regenerate new tissues (reviewed 

in Borlongan et al., 2011), but their survival in the new tissues and how strongly the surviving 

cells contribute to the improved function is not fully understood, so more studies are needed for a 

conclusion.   

 

Plasticity in Diabetes Treatments 

 

Evidence for Plasticity in Diabetes Treatments 

Diabetes is a disease where the body does not produce enough insulin or does not 

respond well to insulin, resulting in glucose mismanagement and hyperglycemia. In type I 
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diabetes, the pancreatic islet β-cells deteriorate and fail to secrete insulin.  In type II diabetes, 

cells fail to respond to the insulin that is made.  Scientists are currently using various types of 

stem cells to attempt to treat type I and II diabetic animal models.  The treatments include ESCs, 

adult pancreatic stem cells, and bone marrow stem cells containing HSCs and MSCs.  In the 

bone marrow treatments, if the marrow cells differentiate into insulin-producing β-cells, it 

provides evidence for trans-differentiation, as marrow cells do not normally form pancreatic 

tissue. 

One of the first studies with diabetes showing evidence of trans-differentiation was done 

in 2003 (Hess et al., 2003).  This study used adult bone marrow cells to treat a type I diabetes 

mouse model treated with streptozotocin to induce pancreatic damage.  The transplanted cells 

localized to the pancreas, proliferated, and resulted in the formation of islet-like structures that 

secreted insulin and lowered glucose levels (Hess et al., 2003).   

A second key 2003 study done at New York University School of Medicine also saw 

evidence that bone marrow could produce insulin-producing tissue in vivo in mice, but went 

further to show the treatment resulted from the direct trans-differentiation of the transplanted 

donor cells (Ianus et al., 2003).  A Cre-lox system was used to visualize donor cells directly 

expressing insulin.  In this system, a Cre-recombinase gene (Cre) driven by an insulin promoter 

was inserted in the male mouse donor genome.  The donor cell genome was also engineered to 

contain a fluorescent tag (enhanced green fluorescent protein, eGFP) under the control of a 

promoter with a stop codon flanked by Lox-P sites.  If a specific donor cell trans-differentiated to 

express insulin, the Cre-recombinase gene was switched on which removed the Lox-P sites on 

the GFP stop codon switching on GFP.  Evidence of direct trans-differentiation of a donor cell 

occurs if Y-chromosome-positive cells from the male donor also express GFP.  Four to six weeks 
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after transplantation, recipient mice showed Y-chromosome and EGFP double-positive cells in 

pancreatic islets, providing evidence of direct trans-differentiation. As a negative control, neither 

of the donor or recipient cells, from the bone marrow cell or peripheral blood cell, were positive 

for GFP, so none of these cells outside the pancreas trans-differentiated.  The trans-differentiated 

GFP-positive cells purified from islets expressed insulin, glucose transporter 2 (GLUT2), and 

transcription factors typically found in pancreatic β cells (Ianus et al., 2003).   

Another study showing evidence of trans-differentiation into β-tissue is provided by Oh 

et al. (2004).  Similar to the previous study, this study used adult bone marrow cells to treat a 

type I mouse model.  Western and ELISA analysis of glucose-treated cultured cells showed that 

insulin was produced. After transplantation of the cultured cells into hyperglycemic mice, the 

serum glucose levels became normal for at least 90 days.  Later removal of the graft resulted in 

death of the animal. Electron microscopy of the graft showed that the cells had same 

ultrastructure as mature β-cells. So, this study showed that bone marrow stem cells can trans-

differentiate into pancreatic insulin producing cells in vitro which can be used in vivo to treat 

diabetic mice (Oh et al., 2004). 

Purified mesenchymal stem cells (MSCs) have also been used to treat diabetes mouse 

models.  MSCs have excellent differentiation potential, and have recently become widely 

researched.  Abdi et al. (2008) used MSCs to treat diabetic mouse models and found increased 

islet sizes and improved insulin production.  The human MSCs cells used to treat the diabetic 

mice were detected in the islets as double positives for human-2-microglobulin and mouse 

insulin. Because MCSs have shown success in treating a large variety of diseases, including 

cancer, reducing the incidence of GVHD after bone marrow transplantation, myocardial 

infarction, amyotrophic lateral sclerosis, metachromatic leuko-dystrophy, and Hurler syndrome, 
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the data prove that MSCs are capable of very broad differentiation in vivo.  However, thus far no 

human clinical trials have used MSCs to treat diabetic patients (Abdi et al., 2008).  

Another group of scientific researchers also used MSCs to treat diabetic mouse models.  

Boumaza et al. (2009) found that the MSCs that migrated to the hematopoietic environment 

secreted immune-regulatory hormones such as IL-6, HGF, and TGF-b1, while those MSCs that 

migrated to the pancreas expressed insulin and glucagon, showing that the in vivo micro-

environment is important for stem cell differentiation (Boumaza et al. 2009).   

Hao et al. (2013) also confirmed the successful used of MSCs for treating diabetic mouse 

models.  Their infusion of MSCs decreased hyperglycemia to normal levels in type 2 diabetic 

rats, and normoglycemia was maintained for at least 9 weeks. 

However, Shin and Peterson (2012) showed little improvements in their treatment of 

diabetic mice with MSCs.  They observed relatively few injected MSCs recruited to the pancreas 

in the diabetic mice.  They concluded that stem cells might be impaired in diabetic mice, and  

identified endogenous MSCs as a potential therapeutic target in diabetes (Shin and Peterson 

2012). 

In addition to using adult stem cells, ESCs have also been used to treat diabetic mouse 

models, and their success should be compared to the use of adult stem cells when trying to 

ascertain potential replacement therapies.  ESCs have been used in several studies for treating 

diabetic mice.  For example, Lie et al. (2011) developed an in vitro protocol for differentiating 

ESCs into pancreatic tissue by suppressing expression of the protein Nanog.  The protocol 

increased the expression of markers essential for pancreatic epithelium development, and the 

transplanted cells revealed a homogenous pancreatic exocrine-like morphology that stained 

positively for amylase.  Several other studies have developed protocols for differentiating human 
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ESCs into insulin producing cells (Assady et al., 2001; Lumelsky et al., 2001; Seguev et al., 2004; 

D’Amour, 2006), and have used mouse ESCs to treat NOD mouse models of Type-I diabetes 

(Beilhack et al., 2003 and 2005; Hess et al., 2003).  As discussed in the ESC section, ESCs can 

sometimes produce teratoma tumors.  For example, Fujikawa et al. (2005) implanted islet-like 

tissue differentiated from ESCs into mice which negated the hyperglycemia for 3 weeks, but 

teratoma formation then negated the success (Fujikawa et al., 2005). 

 

Evidence Against Plasticity in Diabetes Treatments 

Although no diabetes study has directly disproved trans-differentiation, some academic 

researchers do not believe the diabetes plasticity data is convincing, so continue to treat diabetes 

by doing more traditional islet transplantations.  For example, the laboratory of Professor 

Kenneth Brayman treats diabetes in patients (ClinicalTrials.gov, identifier NCT00703599) or 

mice by islet transplantation (not stem cells) to replace β-cells (Jahansouz et al., 2011; Chhabra 

and Brayman, 2013). Another islet transplantation study in 2013 from same lab restored 

endogenous insulin production in mice and normoglycemia. They hope for a 5 year survival of 

the graft.  A difficult part of islet transplantation is that patients require islets from several donor 

pancreases to create a successful graft (Ramesh et al., 2013).   In addition, Kang et al. (2005) 

showed that islet treatment of diabetic NOD mice can restore normoglycemia, but in humans the 

treatment would be complicated by the use of immune-restrictive drugs and by limited organ 

availability.  The treatment was successful when performed early in the disease, but not when 

administered late after host islet destruction.  For the late treatments, “despite obtaining full 

hematopoietic engraftment in over 50 transplanted mice, only one mouse became insulin 

independent, and no b-Gal positive [donor] islets were detected in any of the mice.    
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METHODS 

 

This project had four objectives: 

1 Develop a comprehensive assessment of the scientific evidence for and against the 

existence of stem cell plasticity, including its discovery, various methods of trans-

differentiation, and diseases being treated. 

2 Characterize what key scientific stakeholders believe are the strengths and weaknesses 

of the existing data that this process exists, and their suggestions for potential solutions. 

3 Evaluate the evidence for and against the existence of stem cell plasticity. 

4 Recommend potential solutions to resolving any issues associated with proving stem cell 

plasticity exists, including rigorous methods for ruling out cell fusion, and make 

recommendations for resolving any remaining issues of using iPS cells for therapy. 

 

  
To accomplish objective-1, we performed an extensive review of the current research 

literature, including reputable academic journal articles, relevant books, scholarly websites, and 

other pertinent materials. 

To accomplish objective-2, we conducted an extensive set of semi-structured, in-depth 

interviews with various academic stakeholders in the stem cell field who claim to have 

developed plasticity-type differentiation procedures, or who argue that stem cell plasticity does 

not exist, to determine their range of opinions on this technology and whether such cells could be 

used as a replacement for ES cells in therapies.  The stakeholders included academic experts on 

stem cell plasticity (for and against), including some who are currently using such cells for 

treating diseases.  The interviewees also included some academic ethicists to help classify such 

cells, and contrast their usage with ES cells.  Some of the stakeholders were initially identified 

by referral from the project advisor, Dave Adams, but most were identified from the literature, 

and especially by referral from the initial interviewees (to develop a referral “snowball”). 
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Once contact was made with a potential interviewee, a time and place was set up for the 

interview to be performed at the interviewee’s workplace.  Whenever possible, some interviews 

were conducted in person, but most were conducted by phone or Skype.  Our first round of 

prospective interviewees was contacted by email and/or phone.  If no response was received after 

one week, we used follow-up emails or phone calls.  We developed our interview questions (see 

report Appendix) based on our background research.  Then based on their responses to our 

initial questions, we tailored our subsequent questions to best obtain information from that 

person.  

With respect to the method of the interview, if the interview was performed in person, 

whenever possible it involved two team members, so that one member could ask questions while 

the other member wrote detailed notes, and vice versa.  For either email or phone interviews, we 

informed the interviewee about the purpose of our project, and asked whether the interviewee 

consented to be quoted.  If necessary, we explained how we would protect their confidentiality 

by giving them the right to review any quotations used in the final published report, explaining 

that the interview is voluntary, and explaining that the interviewee may stop the interview at any 

time or refuse to answer any question.  After the interview, we asked each interviewee for 

permission to follow-up with them at a later date if needed to fill in any gaps in the information.  

And, as mentioned above, asked them to recommend other potential stakeholders we might 

interview, to further increase the number of interviews with key individuals. 

With respect to the total number of interviews needed for our project, we stopped 

interviewing when we obtained sufficient information to represent all sides of the problem, and 

when all unclear points had been clarified. 
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To accomplish objectives-3 and 4, the group synthesized all of the information collected 

in our literature research, interviews, and follow-up interviews to ascertain the strength of the 

evidence for and against stem cell plasticity, and created recommendations for further research. 
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RESULTS/FINDINGS 

 

Based on the Literature Review performed for the first part of the project, we 

documented the need to find replacement cells for embryonic stem cells (ESCs), and identified 

several key controversies associated with adult stem cell plasticity as a potential ESC 

replacement.  We then performed a series of selected interviews with scientists on both sides of 

the various arguments to help evaluate the issues.  

 

ESC Ethics and Funding:  The Need for an ESC Replacement 

As documented in the Literature Review, ESCs are isolated from a 5-day old IVF 

blastocyst embryo, which destroys the embryo.  The destruction of the embryo has ethical 

problems for individuals who believe that life begins at conception or who believe that life in any 

form should be preserved.  Although the purpose of ESC research is to devise therapies for 

treating diseases to alleviate suffering, it violates the moral principle to respect human life (Hug, 

2006).  Our Literature Review documented that different religions have different perspectives on 

when embryos reach full human status after fertilization. For example, while the Roman Catholic, 

Orthodox, and conservative Protestant Churches believe that life begins at conception and that no 

embryo research should be allowed (Farley, 1999; Hug, 2006), other religions, such as Judaism 

(Gilbert, 2010) and Islam (Siddiqui, 2002), Buddhism (Keown, 2004) and Hinduism (Bahnot, 

2008) believe that ensoulment begins later and have no major objections for embryo research so 

long as the research is used to attempt to save lives.   

In order to have a better understanding of the ethical concerns associated with various 

types of stem cell research, we conducted an interview with Dr. Jason T. Eberl, an academic bio-
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ethicist who occupies the Semler Endowed Chair for Medical Ethics at Marian University, 

College of Osteopathic Medicine in Indianapolis, Indiana.  Dr. Eberl indicated that unlike ESC 

therapies, ASCs therapies usually receive acceptance from the public, including the opponents of 

human ESCs (Eberl, personal communication, 7-23-13).  In fact, most of the stakeholders 

knowledgeable in stem cell research think that ASC research will eventually lead to beneficial 

therapeutic outcomes. Dr. Eberl also pointed out a prominent example for individuals against 

ESC research but who support ASC research is the second conference held by The Vatican in 

April 2013, who emphasized the use of different ASC therapies for different diseases. In addition 

to supporting ASC therapies in general, Dr. Eberl also mentioned several other therapies such as 

altered nuclear transfer with oocyte-assisted programming, iPSC therapies, and chimeric 

embryos as great alternatives for ESC therapies. Referring to the safety and efficiency of stem 

cell clinical trials, Dr. Eberl claimed there is always some degree of risk in any clinical trial, so 

the most important thing moving forward is to make sure that applicants are informed of both 

known and unknown risks before agreeing to participate in the trials. 

Our Literature Review also documented how the federal funding for ESC research has 

varied considerably over the past three U.S. presidencies.  President Clinton was generally in 

favor of embryo research and instituted the NIH Revitalization Act (1993) recommending that 

embryo research be funded under special circumstances.  But before he was able to institute any 

funding, in 1995 Congress enacted the Dickey-Wicker Amendment that prohibited federal 

spending on embryo research.  In 2001, newly elected President Bush enacted his Human 

Embryonic Stem Cell Policy (2001) which allowed federal spending only on ESC lines derived 

prior to August of 2001, and that ban remained in effect until President Obama took office in 

January of 2009.  Obama currently allows federal funding for embryo research (Bayes, 2013), 
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but only on those embryos prepared by IVF in reproductive clinics, no longer needed for 

reproduction, and only with donor consent.  This inconsistent funding not only applies to the U.S. 

but to all five of the top stem cell research countries, the U.S., Japan, Germany, UK, and France  

(Couffignal-Szymzcak, 2009).   In an interview with Science magazine, Janet D. Rowley, the 

Deputy Dean for Research at the Pritzker School of Medicine of the University of Chicago, 

commented on why more progress has not been achieved for ESC therapies by saying “It’s fair 

to ask why we lack convincing data on the use of embryonic stem cells to treat diabetes, 

Parkinson’s disease, and other medical problems. The answer is hardly surprising: U.S. scientists 

have been prevented [during periods of funding bans] from working on these very critical 

problems….in federally funded projects” (Rowley et al., 2002). 

Adult stem cell (ASC) therapies, which are not associated with the destruction of human 

embryos and are not subjected to the same inconsistent funding as ESCs, appear as promising 

replacement for ESC therapies.  However, our research has determined that ASCs also have a 

few problems.  They typically do not grow as well as ESCs, they are rare cells in the body so are 

hard to to identify and isolate, and their differentiation potential is typically lower than ESCs.  So, 

research progress on ASCs has also been relatively slow.  The type of ASC therapy investigated 

in this project as a potential replacement for ESCs involves stem cell plasticity. 

 

Definition of Plasticity  

Initially, our attention was drawn to the topic of stem cell plasticity from several studies 

(discussed in the Literature Review) showing that adult stem cells such as hematopoietic stem 

cells (HSCs) or mesenchymal stem cells (MSCs) (both typically isolated from bone marrow cells) 

sometimes appear to benefit an organ outside their normal developmental lineages, such as HSCs 
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benefiting human heart attack patients.   Such treatments if they actually work might serve as 

alternatives to using ESCs to treat the same disease.   

But one of the first things we learned about stem cell plasticity is that few researchers 

agree on what it is.  Stem cell plasticity lacks a standard definition; each researcher interprets the 

term in different ways.  To illustrate the confusion, Saul J. Sharkis from Johns Hopkins 

University defined stem cell “plasticity” as being stem cell potency, the ability of a stem cell to 

form multiple cell types (Sharkis, personal communication, 6-18-13).  This definition would 

include trans-differentiation and all normal cell developmental pathways.   However, Diane 

Krause from Yale University School of Medicine stated, “stem cell plasticity is a problematic 

term; although the term mostly refers to the potential of a cell to differentiate into a lineage that it 

“should not,” ironically, no one has a clear understanding of what a cell should do or should not 

do in vivo (Krause, personal communication, 7-2-13).  Our Literature search indicated that 

scientists are loosely divided into two camps: 1) those with a very broad interpretation of the 

term that focuses on a change in the molecular status of a cell, and 2) those with a more narrow 

interpretation more pertinent to our project that it applies to cells differentiating in a pathway 

different than usual biological development.  As an example of the broad definition group, Neil 

David Theise, of the Albert Einstein College of Medicine (NY) believes that plasticity is one of 

the innate properties of all cells, and refers to their ability to change their gene expression 

profiles over time (Theise, personal communication, 7-10-13). These changes can result from 

normal cell development, from cell fusion, or from cell trans-differentiation outside a normal 

developmental pathway.  For purposes of our project, we chose the narrower version of the 

definition, trans-differentiation outside the normal developmental pathway.  As an example of 

this stance, Hady Felfly from University of Miami, who studies the use of HSCs to treat mouse 
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stroke models, when interviewed claimed that stem cell plasticity is “the ability of a stem cell to 

differentiate across tissue boundaries, that is, a stem cell resident in a particular tissue gives rise 

to a cell type of a different tissue” (Felfly, personal communication, 6-15-13).  However, this 

more narrow definition of plasticity referring to differentiation “outside the normal 

developmental pathway” implies that we actually know what normal development is.  So, for 

purposes of this project we will indicate when the evidence for plasticity is strong and when it is 

weak. 

 

Detecting Plasticity  

Experimentally determining whether a cell has undergone differentiation outside its 

normal lineage is not an easy task.  Our Literature Review determined that most scientists use a 

donor-host combination to help solve the problem.  In this approach, usually HSCs, MSCs, or 

bone marrow cells containing a mixture of the two, are isolated from a host animal and injected 

into a recipient animal that is a model for a disease.  For example, HSCs (that normally form 

blood cells) might be injected into a mouse model for stroke to determine whether they can 

differentiate into neurons or glial cells.  The donor and recipient cells are usually tagged 

genetically to distinguish them from each other.  In the stroke example, valid evidence for trans-

differentiation would consist of demonstrating clearly that an injected HSC tagged with a GFP 

reporter migrates to the recipient’s brain and in that environment differentiates into a cell 

expressing a variety of neuronal markers and helps improve neural performance.  Our results 

indicate that it is important to make sure the evidence rules out the possibility of cell fusion, i.e. 

the injected cell itself should express the neural markers not a host cell the injected cell has fused 

with (Wagers and Weissman, 2004).  It is also important when staining cells with antibodies 
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against tissue-specific markers to make sure it is the injected cell itself that expresses the new 

markers not cells above and below the focal plane.  It is also important when not seeing any 

evidence of host-cell survival, to make sure the reporter gene has not become silenced in the 

donor cell (which would give a false negative finding). 

Based on our interviews and Literature Review, we have identified what we believe is the 

best practice methodology for detecting trans-differentiation.  This method uses the Cre-

recombinase / Lox-P system for tagging fused donor-host cells.   Figure-1 shows how the Cre-

Lox system typically works (we will subsequently show how to modify the general system for 

detecting fused cells).  In the first figure, the mouse on the upper left expresses Cre-recombinase 

(Cre) under a promoter that is always on.  This mouse is crossed with the one in the upper right 

containing a target gene flanked by Lox-P restriction sites.  Genes flanked by Lox-P sites are 

termed “floxed”.  The floxed target gene is upstream from a GFP reporter.  In the offspring mice 

actively expressing Cre (lower left) in the same cells that contain the floxed target gene, the Cre 

cuts the Lox-P sites excising the targeted gene for deletion, switching on GFP expression.  

 

 

 

 

Figure-1:  Diagram of the 

Cre-Recombinase / Lox-P 

System for Tagging Cells.   
(Zepper Wikipedia.com) 
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Ianus et al. (2003) modified the Cre-LoxP system to demonstrate that donor bone marrow 

cells trans-differentiate into pancreatic islet beta cells without cell fusion (Figure-2). The donor 

mice contained the Cre gene under the control of an insulin promoter that would be switched on 

if the cells became pancreatic.  The donor cells also contained eGFP reporter under the control of 

a floxed stop codon (Figure-2a).  Male donor bone marrow cells were transplanted into lethally 

irradiated female mice (bone marrow transplant) to rescue the hematopoietic system (Figure-2b).  

Their results showed that the host pancreas contained cells glowing for GFP and containing male 

Y-chromosome markers (of donor bone marrow origin).  

 

 

 

 

 

To eliminate the chance of cell fusion, the experiment was modified to that the male 

donors contained Cre under the control of an insulin promoter, while the female recipients 

contained eGFP under the control of a floxed stop codon (Figure-2c).  In this case, GFP 
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fluorescence would only occur if the donor cells fused with the host cells (the Cre would be 

expressed in insulin-producing cells, and if fused with host the floxed stop codon in front of the 

GFP gene would be removed).  Alvarez-Dolado et al. also used Cre-LoxP system that was 

reported by lacZ gene instead of EGFP, to demonstrate cell fusion (2003).  

 

 

 

 

 

 

 

 

 

Evidence for Plasticity 

In this project, we focused our research to determine whether plasticity exists for four 

different therapies:  liver disease, strokes, myocardial infarction, and diabetes.  For each disease, 

we found evidence in the literature and interviews for and against plasticity.  The evidence in 

favor of plasticity was strongest for diabetes, where we identified 7 studies arguing for plasticity, 

and no studies arguing against it.  The evidence for plasticity was somewhat balanced for the 

other three diseases analyzed:  stroke (2 for, and  3 against), liver disease (5 for, and 4 against), 

and heart attacks (5 for, and 6 against).  Several researchers demonstrated evidence for stem cell 

plasticity when observing bone marrow derived cells trans-differentiate into different cell types 

in vivo such as hepatocytes (Lagasse et al., 2000), cardiomyocytes (Orlic et al., 2001), β-cells 
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(Oh et al., 2004), neural cells (Felfly et al., 2010).  Our research has identified what we believe 

are two best-practice methodologies for tracking trans-differentiation without cell fusion.  The 

first is Ianus et al. (2003) performed at the New York University School of Medicine who 

inserted the Cre-recombinase gene driven by an insulin promoter into the male mouse donor 

genome.  The donor mouse genome was also engineered to contain a floxed-stop-GFP gene.  If 

an injected donor cell migrated to the pancreas and trans-differentiated to express insulin, the 

Cre-recombinase gene was switched on removing the Lox-P sites on the GFP stop codon 

switching on GFP.  Evidence of direct trans-differentiation of a donor cell occurs if Y-

chromosome-positive cells from the male donor also express GFP, which the authors indeed 

observed.   

The second best practice methodology identified in our research is exampled by Alvarez-

Dolado et al. (2003).  In the donor mouse genome, they placed Cre under the control of a CD45 

promoter, so Cre would be expressed only in donor cells of the original hematopoietic lineage 

regardless of what they differentiated into later on.  The donor genome also contained a floxed-

stop-GFP gene, which would be removed by Cre in originally hematopoietic cells.  So, in the 

mixing experiment, donor cells of the original hematopoietic lineage could be identified in the 

various host tissues as GFP+ cells.  In the host mouse, they inserted a floxed-stop-LacZ gene, so 

if those cells fused with donor hematopoietic cells (containing Cre) LacZ would be switched on 

and would be visible as a blue color with X-Gal stain.  In a heart attack mouse model, they 

observed GFP+ cells in the heart (hematopoietic donor cells) but the cells were also blue (LacZ+) 

so had undergone fusion with host cells, indicating no direct trans-differentiation.  This best 

practice methodology should, however, be used by other labs to determine whether their 

observed improvements in disease performance are due to cell fusion. 
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A significant problem we encountered was that even within one disease model, some 

scientists found evidence supporting plasticity while others did not, so many of our interviews 

focused on resolving this discrepancy.  We identified several potential reasons for the 

discrepancies in the literature including: 1) silencing of reporter genes used to detect host genes 

(giving false negatives), 2) not using the sensitive and powerful Cre-Lox system, 3) differences 

in the developmental ages of the donor and host animals leading to a decreased survival of donor 

cells in the host animals, 4) the purity and composition of the donated stem cells (the cruder the 

stem cell batch, the more likely it is to have highly potent stem cells), and 5) the micro-niche 

colonized by the injected stem cell.   

Hady Felfly of the University of Miami, who studies the use of HSCs to treat stroke 

models, pointed to the importance of stem cell micro-niches in these donor-host injection 

experiments.  In the past several years, scientists have shown that the micro-environment 

immediately surrounding a stem cell strongly affects its properties.  Extending those findings to 

the injection experiments, one experiment might show that the injected cells migrated 

successfully to a micro-niche that encouraged cell trans-differentiation to cure the disease, while 

another lab group might not see the same micro-niche incorporation.  “Stem cells require specific 

artificial microenvironments for trans-differentiation, but the stem cells might lose some of their 

potentials in non-natural niches” (Felfly, personal communication, 6-15-13). And to get correct 

expression of a GFP reporter gene, before transplanting the donor cells into an animal, the stem 

cells have to go through several in vitro manipulation steps, such as transfecting the stem cells 

with a GFP expressing vector, which might change their properties.  Saul Sharkis of Johns 

Hopkins University suggested that another reason some groups may not detect stem cell 

plasticity relates to the potency of the stem cells (Sharkis, personal communication, 6-18-13). He 
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indicated that the more primordial and potent the injected cells, the increased chance of forming 

other tissues and of graft survival.  This could strongly be a factor when some groups work with 

highly purified populations of cells they believe are HSCs, while other groups inject total bone 

marrow cells which would include cells of a variety of potencies. 

 

Evidence Against Plasticity  

Other research labs see no evidence for plasticity.  For example, our Literature Review 

identified the following labs against plasticity in cardiomyocytes (Wagers et al., 2001, Murry et 

al., 2004), neural cells (Castro et al., 2002, 2003), and pancreatic -cells (Shin and Peterson, 

2012).   Dr. Daniel A. Peterson at the Chicago Medical School in North Chicago, Illinois uses 

MSCs to treat diabetic mouse models. His injected MSCs induced the mobilization of existing 

host endogenous stem cells to the injection site to heal the pancreas, but the grafted MSCs did 

not survive long term in the host, so they mainly appeared to affect endogenous stem cells 

(Peterson, personal communication, 7-26-13). His research group has not found any data 

supporting the trans-differentiation of MSCs into insulin-producing cells, concluding that long-

term the MSCs can only form bone, cartilage, and fat tissues, not pancreas. 

Likewise, Dr. David M. Harlan from the University of Massachusetts Medical School, 

who has been studying the Islets of Langerhans within the pancreas to understand the cause of 

diabetes, believes the early reported evidence for bone marrow-derived stem cell trans-

differentiation is unreliable and controversial, and has not been able to reproduce the earlier 

findings (Harlan, personal communication, 8-2-13).  After spending more than a year 

investigating the potential trans-differentiation of bone marrow cells into neural cells, Dr. H. 

David Shine from the Baylor College of Medicine and his group did not observe any evidence of 
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surviving donor cells that would have expressed the β-galactosidase reporter gene. Even after 

trying other methods, such as Mezey’s recommendation to perform Y-chromosome mapping 

(Mezey et al., 2003), they were still unable to see any evidence for plasticity.  He believes that 

the transplanted bone marrow cells might expedite the healing process, but themselves do not 

change cell fate.  He regards all the claims for bone marrow cell plasticity with skepticism, 

believing such claims should be carefully evaluated.   

Similarly, Dr. Derek Rossi from Harvard University provided reasons why stem cell 

plasticity is not likely to occur naturally. Dr. Rossi claims it would be extremely difficult for a 

cell to change its fate in vivo once it has committed to a lineage. For example, HSCs are 

normally only able to form blood and immune cell types in vivo based on our current knowledge 

of developmental biology.  He thinks the reported evidence for stem cell plasticity might just be 

the results of cell fusion (Rossi, personal communication, 7-5-13). Secondly, he believes that 

stem cell plasticity, if actually occurs, would require tremendous changes in both epigenetic and 

transcriptional programming, which do not happen under normal physiological conditions. Our 

research has shown that major reprogramming indeed can occur under special conditions, such as 

the injection of a skin nucleus into an enucleated egg (John Gurdon’s nobel prize winning 

experiments) and in the case of induced pluripotent cells transfected with genes encoding 

reprogramming transcription factors (Yamanaka nobel prize).  Thirdly, Dr. Rossi suggested the 

technical difficulties of tracking injected cells in mice, especially when the percent surviving 

cells are low.  For these reasons, Dr. Rossi considered stem cell plasticity mostly disproven and 

not an enthusiastic research area anymore. 

For more than the last 10 years, several researchers have analyzed the use of HSCs for 

treating heart attacks, after initial studies such as Orlic et al. (2001) claimed that bone marrow-
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derived stem cells could regenerate myocardium. However, some researchers including Dr. 

Charles Murry from the University of Washington in Seattle, Washington, and Dr. Amy Wagers 

from Harvard University found that the data could not be reproduced.  We conducted two 

interviews with these researchers to attempt to understand the conclusions drawn from their 

studies.  Dr. Murry, while believing that stem cell plasticity indeed exists under certain 

circumstances (such as artificial cell reprogramming or stress), did not believe that simply 

changing the environment of an ASC could actually trans-differentiate that cell into another cell 

beyond its lineage in the new environment (Murry, personal communication, 7-17-13).  Dr. 

Murry found other reports for stem cell trans-differentiation such as Orlic et al. disproven, as 

such studies are irreproducible and believed the results observed from those studies could be due 

to poor microscopy, bad assays, or confusion between white blood cells for other cell types. 

Referring to the Kawada et al. paper (2004) about the potential of MSCs from bone marrow to 

convert into cardiomyocytes, Dr. Murry, like Dr. Peterson, did not believe that MSCs could turn 

into any other cell types other than bone, fat, cartilage and fibroblastic cells. Dr. Murry suggested 

the most convincing method to prove the existence of stem cell plasticity would have a reliable, 

unbiased cell tracking system to genetically track both the lineage and the phenotype of the 

transplanted cells in the new environment. Dr. Wagers, who has published papers refuting stem 

cell plasticity in different tissues, also shared the same point mentioned by Dr. Rossi, that ASCs 

normally only possess certain lineage-restricted differentiation potential within tissues. While 

acknowledging that cell fate could be changed under certain conditions, such as artificial cell 

reprogramming (microinjection into oocytes or iPS cells), Dr. Wagers did not believe that such 

interventional methods proved that stem cell plasticity occurs naturally in vivo (Wagers, personal 

communication, 7-24-13). Her research group has not seen HSCs trans-differentiate into other 
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lineages, or seen HSCs incorporate into solid tissues. In a few cases where her lab may have 

observed incorporation into solid tissues, such as in liver, Purkinje neurons, or skeletal muscle, 

she attributed these events to be the products of cell-cell fusion, not trans-differentiation. Dr. 

Wagers also discussed the inverse experiments in which non-hematopoietic tissues could 

regenerate blood system (Wright et al., 2001; McKinney-Freeman et al., 2002), but reasoned that 

the contamination of circulating HSCs in the solid tissues was the likely cause. 

Diane Krause of the Yale University School of Medicine suggested that HSCs from bone 

marrow were not responsible for trans-differentiation into lung epithelial cells in her study 

(Kassmer et al., 2011) (Krause, personal communication, 7-2-13). Her group transplanted wild-

type hematopoietic and non-hematopoietic bone marrow cells into irradiated surfactant-protein-

C-null mice, respectively. Only the epithelial cells derived from non-hematopoietic bone marrow 

cells were detected in the lung of the receipt mice (Kassmer et al., 2011).  For further 

investigation, her group discovered that very small embryonic like cells (VSELs) from the bone 

marrow formed most of the new epithelial cells in the lung after transplantation. Thus, her 

research group concluded that VSEL might be the primary source for this lung epithelial cell 

engraftment, but more needs to be explored.  

 

 

Comparison of ESCs and Trans-Differentiation Therapies 

In order to determine whether trans-differentiation experiments can replace embryonic 

stem cell (ESC) therapies, the two treatments must be directly compared to each other.  

Unfortunately our research has determined that not many studies were designed to do a direct 

comparison.  The Literature Review summarized the ESC treatments for a few diseases in mouse 
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models.  Mouse models remain the system where most of our ESC data lies because no ESC 

human clinical trial has yet  concluded (two are currently underway).  For example, Daadi et al. 

(2008) indicated that human ESCs differentiated in vitro into neurons could successfully treat 

stroke in mouse models. And Tohyama et al. (2013) did a similar study with differentiated ESCs 

to treat heart attacks in rat models. In addition, ESCs have been used to treat liver disease in 

mouse models (Brolen et al., 2010), and diabetes in mouse models (Lie et al., 2011).  Bryon 

Petersen of the University of Florida indicated in his interview that there are more than 100 

papers reporting the use of ESCs differentiating into beta cells to treat diabetes (Petersen, 

personal communication, 8-5-13).  However, no clinical trials using ESCs to treat diabetes have 

occurred in the U.S.  Dr. Petersen said that he has not heard of any here in the US, but has heard 

of some trials in Brazil and Argentina, but did not know the specifics of these trials. He further 

explained that for diabetes ESC clinical trials to take place in the US, a lot of things would need 

to happen to show that the cells are safe and function properly.  ESCs often show problems of 

cancer formation.  Fujikawa et al. (2005) indicated that teratoma formation was the main cause 

of his failures in treating diabetes type I using ESCs.   

With respect to human clinical trials and trans-differentiation, our literature survey 

identified several studies where researchers observed cardiac functional improvements in heart 

attack patients  treated with HSCs or MSCs.  But those clinical studies were not designed to test 

for trans-differentiation, so they cannot be used in a functional comparison.  Overall, Amado et 

al. (2005) and Hare et al. (2012) believe that bone morrow stem cells hold the best potential for 

treating diseases in animals and in humans.  
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CONCLUSIONS / RECOMMENDATIONS 

 

Based on the research performed for this project, our group is able to make several 

conclusions or recommendations.  Our findings indicate that stem cell trans-differentiation very 

likely exists in a few systems, but it is normally rare, and in some cases is cell fusion not trans-

differentiation.  Our best evidence for trans-differentiation is for the treatment of diabetic mouse 

models with HSCs where we identified seven studies arguing for plasticity (migration of the 

injected HSCs into the pancreas followed by differentiation of those cells into insulin-producing 

cells), and no studies arguing against it.  Several other diabetes researchers observed improved 

normoglycemia in mice injected with HSCs, but do not believe in trans-differentiation.  However 

those researchers did not provide any evidence against it themselves. 

A significant problem we encountered in this project was that even within one specific 

disease model, some scientists found evidence supporting plasticity while others did not, so 

much of our research and interviews focused on attempting to resolve this discrepancy.  We 

conclude that these discrepancies might result from: 1) the silencing of reporter genes used to 

detect host genes over time (giving false negatives), 2) not using the sensitive and powerful Cre-

Lox system for tagging fused cells or for tagging cells of the original hematopoietic lineage), 3) 

differences in the developmental ages of the donor and host animals leading to a decreased 

survival of donor cells in the host animals, 4) differences in the purity and composition of the 

donor stem cells (the cruder the stem cell batch, the more likely it will have highly potent stem 

cells, so with different degrees of purity the results will vary), and 5) differences in the micro-

niche colonized by the injected stem cells in a given experiment. 
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Our research has identified a best-practice methodology which we believe should be 

applied in the future by all labs attempting to demonstrate plasticity without cell fusion.  The best 

practice is demonstrated by Ianus et al. (2003) and by Alvarez-Dolado et al. (2003).  In different 

applications, these scientists used a Cre-Lox system to tag donor cells regardless of what those 

cells later differentiated into in the host mouse.  For example, the donor male mouse can be  

engineered to contain a Cre-recombinase gene under the control of a promoter specific for the 

donor cells (i.e. CD45 for HSCs).  The donor mouse also contains a floxed-stop-promoter-GFP 

reporter that switches on in cells of the original hematopoietic lineage (HSCs).  Once the stop 

codon is removed from the GFP promoter, the GFP gene is switched on permanently, so the 

donor cells are GFP+ regardless of how they later differentiate.  The Cre-Lox system is 

simultaneously also used to visualize cell fusion of donor and host cells if it occurs.  The host 

mouse is engineered to be floxed-promoter-LacZ, so if they fuse with any donor cells (Cre 

positive) LacZ will be switched on, allowing the cells to stain blue with X-gal.  In the host 

tissues (i.e. pancreas for a diabetes mouse model) the presence of GFP+ cells containing Y-

chromosome markers (original donor cells) that are LacZ-negative would be evidence of trans-

differentiation without cell fusion.   

Although several scientists that we interviewed did not believe cells are capable of 

undergoing major reprogramming in vivo, the fact that some cells are well proven to be capable 

of major reprogramming by artificial means implies that the reprogramming is at least 

theoretically possible in vivo, even if it is rare.  Our research has shown that major cell 

reprogramming into vastly different phenotypes indeed occurs under special conditions, such as 

the Nobel Prize winning experiments of John Gurdon (reprogramming skin nuclei injected into 
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enucleated eggs) and of Yamanaka (reprogramming skin cells into pluripotent cells by 

transfection with genes encoding transcription factors).   

In order to determine whether trans-differentiation therapies can replace embryonic stem 

cell therapies, the two treatments must be directly compared to each other.  We conclude that few 

current studies have been designed to directly compare functional recovery between these two 

stem cell types, so we make a final recommendation that such important studies should be done 

prior to determining whether one cell type can replace the other. 
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APPENDIX   

LIST OF INTERVIEW QUESTIONS 

General Questions for Plasticity Stem Cell Researchers: 

1. Can you tell me a little more about your current position and how you became 

interested in working with stem cells? 

2. Which types of stem cells do you work with? 

3. Which fundamental biological process are you trying to understand, or which 

disease are you trying to treat? 

4. Open-ended question:  what do you see as the strengths and weaknesses in the 

current evidence for stem cell plasticity? 

 

The interviewee’s response to the opening questions was tracked and used to decide which 

follow-up questions best applied to this particular subject.  For example, if the subject brought up 

the issue of problems associated with low cell numbers produced by trans-differentiation, we 

asked whether other scientists also see this problem and how they are trying to solve it. 

 

 

Questions for Plasticity Stem Cell Researchers: 

1. Which type of stem cells do you reprogram, and why did you choose those cells?  

2. What method do you use to perform your reprogramming? 

3. Does your reprogramming use viruses, and if so, have you seen any evidence of 

integration at a harmful site in the genome? 

4. Have you observed any evidence of tumor formation during your therapies?  If 

so, what do you think causes that, and how might it be prevented? 

5. How efficient is your method of reprogramming?  Is it efficient enough to 

provide a sufficient number of cells for therapy? 

6. Are your reprogrammed cells able to graft within the animal or patient, and how 

did you prove this? 

7. How potent do you think your reprogrammed cells are?  What level of potency is 

needed to treat the disease you are working on? 

8. Have you observed any slow growth of your re-differentiated cells?  If so, is it a 

problem for therapy? 

 

 

Questions for Researchers Denying Plasticity Exists: 

1. What is your evidence arguing that stem cell plasticity does not exist? 

2. Do you disagree with other scientists claiming plasticity exists for their stem cell 

type? 

3. What experiments do you think would conclusively prove that plasticity exists? 

 

 

 



 

82 

Questions for ES Cell Researchers: 

1. Do you think that the U.S. has a sufficient number of ES cell lines for performing 

the thorough research studies required for using such cells for therapies? 

2. In the recent past, did the periods of lack of federal funding to derive new ES cell 

lines negatively affect U.S. ES cell research? 

3. Do you think that ES cell ethical issues increase the demand for ES cell 

replacements, such as those prepared by cell trans-differentiation from adult stem 

cells? 

4. Do you think that cells prepared by trans-differentiation can serve as replacements 

for ES cells in therapies? 

 

 

Questions for Academic Bio-Ethicists: 

1 Are you familiar with stem cell plasticity?  If not, we will explain this briefly to 

them. 

2 Do you think trans-differentiated cells have fewer ethical concerns than ES cells? 

3 Do you think researchers should try to find alternatives for ES cell treatments? 

4 Do you think that more research should be performed to more fully understand 

stem cell plasticity prior to using such cells for therapy? 

 

 

INTERVIEW PREAMBLE 

 

 

We are a group of students from the Worcester Polytechnic Institute in Massachusetts, 

and for our research project we are conducting a series of interviews to investigate problems 

associated with stem cell plasticity and the use of cells derived by trans-differentiation for 

therapy. 

 

Your participation in this interview is completely voluntary, and you may withdraw at 

any time. During this interview, we would like to record our conversation for later analysis. We 

will also be taking notes during the interview on key points. Is this okay with you?  

 

Can we also have your permission to quote any comments or perspectives expressed 

during the interview? This information will be used for research purposes only, and we will give 

you an opportunity to review any materials we use prior to the completion of our final report. If 

the subject does not agree to be quoted, we will respond as follows: “Since you would not like to 

be quoted during this interview, we will make sure your responses are anonymous.  No names or 

identifying information will appear in any of the project reports or publications.” 

 

Your participation and assistance is greatly appreciated, and we thank you for taking the 

time to meet with us. If you are interested, we would be happy to provide you with a copy of our 

results at the conclusion of our study. 
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APPENDIX CONTINUED:   INTERVIEW TABLE 

 

Group 
Member 

Interviewee 
Date of 
Initial 

Contact 

Date of 
Second 
Contact 

Interview Date  
or 

Termination Date 

Armand Name:          Chad Cowan 

Address:       Department of Stem Cell and Regenerative Biology, Harvard University,  
                     and Massachusetts General Hospital. 
Email:           chad_cowan@harvard.edu 
Expertise:      Diabetes and stem cells. 

6-7-13 7/24/13 Terminated 
7/29/13 

 
 

Name:          Mehboob Ali Hussain M.D. 

Address:      The Johns Hopkins Hospital, Metabolism Division.  
Email:          mhussai4@jhmi.edu 
Expertise:    Diabetes and stem cells. 

7/18/13 7/23/13 
Sent email 
reminder 

Terminated 
7/29/13 

 
 

Name:          Kenneth L Brayman 

Address:       Department of Surgery, University of Virginia School of Medicine, P.O. Box  
                     800709, Charlottesville, VA 22908-0709.  
Email:           klb9r@virginia.edu 
Expertise:     Diabetes and stem cells. 

7/18/13 7/23/13 
Called to set 

up phone 
interview  

7-30-13 
Interviewed  
by phone 

 
 

 
 

Name:           Paolo Fiorina 

Address:       Children's Hospital Boston. 
Email:            paolo.fiorina@childrens.harvard.edu 
Expertise:      Diabetes and stem cells. 

7/23/13 7/24/13 
Sent 

questions 

Terminated 
7-16-13 

 Name:           Daniel A. Peterson 

Address:       Chicago Medical School.     
Email:            daniel.peterson@rosalindfranklin.edu 
Expertise       Uses MSCs to treat type-2 diabetic models.  

7/24/13 7/24/13 
accepted  
interview 

Interviewed on 
7-26-13 
8-4-13 

 
 

Name:            Mariusz Z. Ratajczak 

Address:        University of Louisville 
Email:            mzrata01@louisville.edu  
Expertise:      Stem Cell Biology  

7/29/13 8/10/13 
Follow up 

8-15-13 
Terminated  

 
 

Name:           John F. Tisdale     

Address:        National Institutes of Health     
Email:            JohnTis@intra.niddk.nih.gov      
Expertise:      Molecular and Clinical Hematology Branch  

7/29/13 7/31/13 
Does not 
follow the 

field anymore 

8-1-13 
Terminated  
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Name:           Malcolm Alison 

Address:       Barts Cancer Institute, UK 
Email:           m.alison@qmul.ac.uk  
Expertise:     Professor of Stem Cell Biology, Centre for Tumour Biology 

7/30/13 8/10/13 
follow up 

8-15-13 
Terminated  

 
 

Name:          David M Harlan  

Address:       University of Massachusetts Medical School 
Email:           david.harlan@umassmed.edu  
Expertise:     Diabetes 

7/30/13 8/1/13 
called for 
reminder  

8-2-13 
Interviewed 
in person  

 
 

Name:          Bryon Petersen   

Address:      University of Florida  
Email:          bryonpetersen@ufl.edu  
Expertise:    Diabetes and stem cells 

8/4/13  
 

8-5-13 
Interviewed  

 
 

Name:         Benard E Tuch 

Address:      Prince of Wales Hospital, Australia 
Email:          From, Research gate 
Expertise:    Diabetes Transplant Unit 

8/4/13  Interviewed on 
8-5-13 
8-8-13 

 
 

Name:         HongKui Deng   (also emailed by Xuan) 

Address:     Peking University  
Email:         hongkui_deng@pku.edu.cn  
Expertise:   Stem Cell Biology  

8/4/13 8/11/13 8-15-13 
Terminated  

    
 

 

Chang Name:          Eva Mezey 

Address:       National Institute of Neurological Disorders and Stroke, NIH, Building 36,  
                     Room 3D-10, 9000 Rockville Pike, Bethesda, MD  20892. 
Email:          mezeye@mail.nih.gov 
Expertise:    Stroke and stem cells. 

5/28/13 6/13/13 sent 
reminder 

Interviewed 
6/25/13 

 
 

 
 

Name:          Hady Felfly 

Address:      University of Miami 
Email:           hadyeditorial@gmail.com 
Expertise:     Stroke and stem cells.  Uses HSCs to protect mice from stroke. 

6/4/13  
 

Interviewed 
6/15/13 

 
 

 
 

Name:         Harald Neumann 

Address:      European Neuroscience Institute Gottingen, Gottingen, Germany 
Email:          hneuman1@uni-bonn.de 
Expertise:    Stroke and stem cells. 

6/11/13 6/19/13 Terminated 
6/28/13 

 
 

mailto:m.alison@qmul.ac.uk
mailto:david.harlan@umassmed.edu
mailto:bryonpetersen@ufl.edu
mailto:hongkui_deng@pku.edu.cn
mailto:mezeye@mail.nih.gov
mailto:hadyeditorial@gmail.com
mailto:hneuman1@uni-bonn.de


 
3 

 
 

Name:          Leonard I. Zon 

Address:      Harvard Stem Cell Institute (HSCI), Harvard Medical School. 
Email:          zon@enders.tch.harvard.edu 
Expertise:    Hematopoietic stem cells; nervous system. 

6/11/13 6/19/13 Terminated 
6/28/13 

 
 

 
 

Name:          Daniel G. Tenen 

Address:       HSCI and Beth Israel Deaconess Medical Center, Boston. 
Email:           csidgt@nus.edu.sg 
Expertise:     Hematopoietic stem cells. 

6/11/13 6/19/13 Terminated 
6/20/13 

 
 

 
 

Name:           Yong-San Huang 

Address:       Department of Veterinary Medicine, College of Veterinary Medicine,  
                      National Chung-Hsing University, Taiwan. 
Email:            yshuang@mail.nchu.edu.tw 
Expertise:      Stoke and hematopoietic stem cells. 

6/19/13 6/28/13 Terminated 
7/12/13 

 
 

 
 

Name:           George Daley 

Address:        Harvard Stem Cell Institute, and Boston Children’s Hospital, Harvard 
                      Medical School. 
Email:           george.daley@childrens.harvard.edu 
Expertise:     Hematopoietic stem cells. 

6/21/13 7/3/13 Terminated 
7/12/13 

 
 

Name:           Derek Rossi 

Address:       HSCI; Immune Disease Institute, Harvard University. 
Email:            rossi@idi.harvard.edu 
Expertise:      Hematopoietic stem cells; denies the existence of HSC plasticity. 

6/21/13 7/3/13 
accepted 
interview 
request 

7/5/13 
phone interview 

with Xuan 

 
 

Name:            H. David Shine 

Address:        Department of Neurosurgery, Neuroscience, Molecular and Cellular 
                      Biology, and Center for Cell and Gene Therapy, Baylor College of Medicine. 
Email:            hshine@bcm.edu 
Expertise:      Denies bone marrow stem cells trans-differentiate into neural cells in vivo. 

6/28/13 7-15-13 
Sent 

questions 

Terminated 
8-23-13 

 
 

Name:            Cesar V. Borlongan 

Address:         Department of Neurosurgery and Brain Repair, University of South Florida 
                       College of Medicine. 
Email:             cborlong@health.usf.edu 
Expertise:        Neurosurgery 

7/3/13 7/15/13 Terminated 
7/23/13 

     

Khanh Name:            Margaret Goodell 

Address:        Baylor College of Medicine  
Email:            goodell@bcm.tmc.edu 
Expertise:       Supports plasticity for hematopoietic stem cells. 

06/13/13 06/17/13 Terminated 
06/24/13 

mailto:zon@enders.tch.harvard.edu
mailto:csidgt@nus.edu.sg
mailto:yshuang@mail.nchu.edu.tw
mailto:hshine@bcm.edu
mailto:cborlong@health.usf.edu
mailto:goodell@bcm.tmc.edu
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Name:            Hiroshi Kawada  

Address:        Tokai University School of Medicine, Japan  
Email:             hkawada@is.icc.u-tokai.ac.jp 
Expertise:       Supports plasticity for mesenchymal stem cells. 

06/13/13 06/17/13 Terminated 
06/24/13 

 
 

Name:            Charles Murry  

Address:         University of Washington 
Email:             murry@u.washington.edu 
Expertise:       Against plasticity for hematopoietic stem cells. 

06/24/13 
 

07/09/13 
Sent 

reminder 

Interviewed 
07/17/13 

 
 

Name:            Robert Robbins  

Address:        Stanford University 
Email:             robbins@stanford.edu 
Expertise:       Against plasticity for hematopoietic stem cells. 

06/25/13 07/02/13 Terminated 
07/10/13 

 
 

Name:             XiYong Yu  

Address:         Research Center of Medical Sciences, Guangdong Provincial People’s 
                       Hospital, China. 
Email:              yuxycn@hotmail.com 
Expertise:        Supports plasticity for mesenchymal stem cells. 

07/03/13 
interview 
after 7-20 

7-23-13 
Sent 

questions 

08/15/13 
Terminated 

 
 

 
 

Name:              Stefanie Dimmeler  

Address:          University of Frankfurt, Germany  
Email:               dimmeler@em.uni-frankfurt.de 
Expertise:         Supports transdifferentiation of endothelial progenitor cells in vitro. 

07/01/13 07/10/13 Terminated 
7-24-13 

 
 

Name:              Amy Wagers  

Address:          Harvard Stem Cell Institute  
Email:              amy.wagers@joslin.harvard.edu 
Expertise:        Against plasticity of hematopoietic stem cells. 

06/27/13 07/10/13 
Accepted 

 
 

Interviewed 
7-24-13 

 
 

 
 

Name:             Keiichi Fukuda  

Address:         Professor, School of Medicine, Keio University. 
Email:              kfukuda@sc.itc.keio.ac.jp 
Expertise:        Supports transdifferentiation of mesenchymal stem cells. 

07/03/13 
wrong email 

address 

 
 

Terminated 
7-24-13 

 
 

Name:            Sten Eirik W Jacobsen  

Address:         HSCL, Lund University, Sweden  
Email:             Sten.Jacobsen@stemcell.lu.se 
Expertise:       Supports cell fusion, not transdifferentiation for hematopoietic stem cells. 

07/03/13 07/10/13 Terminated 
7-24-13 

 
 

Name:             Piero Anversa  

Address:         Harvard Medical School 
Email:              panversa@partners.org  
Expertise:        Supports plasticity for bone marrow cells. 

06/27/13 
(accepted) 

07/10/13  
Sent 

reminder 

Terminated 
8-9-13 

mailto:hkawada@is.icc.u-tokai.ac.jp
mailto:murry@u.washington.edu
mailto:robbins@stanford.edu
mailto:yuxycn@hotmail.com
mailto:dimmeler@em.uni-frankfurt.de
mailto:amy.wagers@joslin.harvard.edu
mailto:kfukuda@sc.itc.keio.ac.jp
mailto:Sten.Jacobsen@stemcell.lu.se
mailto:panversa@partners.org
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Name:             Arturo Alvarez-Buylla 

Address:          UCSF  
Email:              abuylla@itsa.ucsf.edu 
Expertise:        Supports cell fusion of bone-marrow derived cells with Purkinje neurons, 
                         cardiomyocytes and hepatocytes. 

07/09/13  
 

Terminated 
7-24-13 

 
 

Name:             Donald Bruce 

Address:          Edinethics Ltd., Edinburgh, UK  
Email:              info@edinethics.co.uk 
Expertise:        Bioethics. 

07/16/13 
(accepted, 

phone 
interview) 

08/09/13 
sent reminder 

Terminated  
08-14-13  

 
 

Name:             Jason T. Eberl 

Address:         Semler Endowed Chair for Medical Ethics, College of Osteopathic 
                        Medicine, 311C, Marian University, 3200 Cold Spring Road, Indianapolis, 
                        IN 46222-1997.  And Indiana University, Center for Bioethics. 
Email:             jeberl@iupui.edu   and jeberl@marian.edu 
Phone:            (317) 955-6601 
Expertise:       Bioethics  

07/16/13 
(accepted) 

 
 

Interviewed  
07-23-13 

 
 

Name:             Neil Chi 

Address:         Department of Medicine, Division of Cardiology, University of California 
                       San Diego, La Jolla, CA 92093. 
Email:             nchi@ucsd.edu 
Expertise:       In vivo cardiac reprogramming in zebrafish.  Argues that differentiated  
                       atrial cardiomyocytes can trans-differentiate into ventricular cardiomyocytes. 

07/25/13 
(sent  

questions) 

08/09/13 
sent reminder 

Terminated 
8-23-13 

 
 

   
 

 

Xuan  Name:            Snorri S. Thorgeirsson 

Address:        Center for Cancer Research National Cancer Institute.  
Email:             snorri_thorgeirsson@nih.gov  
Expertise:       Against plasticity.  

06/17/13 ______ Terminated 
08/07/13 

 
 

Name:            Neil David Theise 

Address:        Albert Einstein College, New York. 
Email:            NTheise@chpnet.org   
Expertise:      Supports stem cell plasticity. 

06/12/13 06/24/13 
06/26/13 
07/08/13 

Interviewed 
07/10/13 

 
 

Name:            David W. Russell 

Address:        University of Washington 
Email:            drussell@u.washington.edu  
Expertise:       Supports cell fusion. 

07/11/13 ______ Terminated 
08/07/13 

 Name:             Saul J. Sharkis 06/12/13 06/17/13 Interviewed 

mailto:abuylla@itsa.ucsf.edu
mailto:info@edinethics.co.uk
mailto:jeberl@iupui.edu
mailto:jeberl@marian.edu
mailto:nchi@ucsd.edu
mailto:snorri_thorgeirsson@nih.gov
mailto:NTheise@chpnet.org
mailto:drussell@u.washington.edu
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 Address:         Johns Hopkins University 
Email:             ssharkis@jhmi.edu  
Expertise:       Pro stem cell plasticity. 

 
 

06/18/13 

 
 

 
 

Name:             Eric Lagasse 

Address:          McGowan Institute for Regenerative Medicine 
Email:              lagasse@pitt.edu  
Expertise:        Pro plasticity. 

06/12/13 06/17/13 Terminated 
06/27/13 

no response  

 
 

Name:            Jacqueline Whang-Peng 

Address:         National Health Research Institute in Taiwan 
Email:             Jqwpeng@nhri.org.tw  
Expertise:       Pro plasticity. 

06/17/13 ______ Terminated 
07/08/13 

 
 

Name:            Diane S Krause MD, PhD 

Address:        Department of Laboratory Medicine, Yale University School of Medicine,  
                      New Haven, CT 06520. 
Email:            diane.krause@yale.edu 
Expertise:      Currently focuses on stem cell plasticity. 

06/26/13 
Out of office 
until 07/01 

07/08/13 
follow-up 
questions 

Interviewed 
07/02/13 
07/08/13 

 
 

Name:           Hongkui Deng (also emailed by Armand) 

Address:       Peking University  
Email:           hongkui_deng@pku.edu.cn 
Expertise:     Against plasticity, pro ES cells. 

07/11/13 ______ Terminated 
08/07/13 

 
 

Name:          Markus Grompe, M.D 

Address:      Oregon Health & Science University  
Email:          grompem@ohsu.edu 
Expertise:    Liver and stem cells. 

06/27/13  ______ Terminated 
06/27/13 

 

 

 

 

 

 

mailto:ssharkis@jhmi.edu
mailto:lagasse@pitt.edu
mailto:Jqwpeng@nhri.org.tw
mailto:hongkui_deng@pku.edu.cn
mailto:grompem@ohsu.edu

