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ABSTRACT 

The NVIDIA Tegra chip is used in the automotive industry, with an emerging usage in 

autonomous vehicles. Tegra display testing faces challenges that include a lack of negative 

testing in the test infrastructure and failure to meet some safety requirements to comply with 

international and industry standards. We implemented more testing on the input/output 

control function calls to verify the display system behaves as expected with both valid and 

invalid inputs and fixed any system bugs that were revealed by the implemented test cases. We 

also refactored the codebase to satisfy different requirements for standard and safety builds. In 

total, we implemented 18 test cases, fixed 4 system bugs, integrated test cases to Tegra 

software’s continuous integration and continuous development pipeline, and refactored 3 

functionalities on safety system build. With the work the team has accomplished, the display 

system is more robust, the codebase is also cleaner and more concise. 
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1) INTRODUCTION 

The NVIDIA Tegra chip is a system-on-chip (SoC) that is used in various industries such as 

mobile devices (phones, laptops), gaming devices (NVIDIA Shield Portable, NVIDIA Shield TV), 

embedded systems (drones, robotics), and automotive systems. There is emerging usage of the 

Tegra chip in autonomous vehicles (AVs). The NVIDIA Orin and Tegra products are a critical part 

within DRIVE OS teams to develop code for various parts of the operating system and within 

AVs. The NVIDIA Orin is the main computer that is used within NVIDIA’s AVs as shown in Figure 

1. These computers are operated by the Tegra X1 chip. The Orin board architecture layout 

includes various interfaces that connect to other physical hardware that is within a self-driving 

car. One prime example of this is the Orin Display Driver (ODD). The ODD is used by the DRIVE 

OS team for AV displays.  

 

Figure 1: NVIDIA Orin Board 

However, the public has a concern: if it is safe to use in an AV. To tackle this question 

and concern, ensuring safety is critical. Therefore, a robust and safe operating system remains a 

priority for NVIDIA DRIVE OS. 

NVIDIA DRIVE OS is the operating system (combination of QNX and Linux) that is 

specifically designed around safety and security for AVs. Its respective operating system and 

software stack are solely intended for the use of developing and deploying AV software and 

applications onto DRIVE AGX-based hardware. The purpose of the design and architecture 
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around the operating system is to incorporate a safe and secure executable environment for 

safety-critical applications on-board the AVs. 

BlackBerry QNX for Safety is a full-featured, real-time OS for safety-critical embedded 

software used in safety sectors such as automotives [1].  QNX can handle high-priority tasks 

with low latency, which makes it well-suited for applications such as automotive systems. 

Another major benefit of QNX is the microkernel architecture, which minimizes downtime and 

cyberattack surfaces through isolation and separation mechanisms.  

DRIVE OS must be thoroughly tested to comply with safety requirements, avoid 

regression issues, ensure system functionality, and fix defects within the codebase. Each team 

working on DRIVE OS is responsible for developing unit and integration tests for their group’s 

work. Our team works exclusively on the display device driver for DRIVE OS. Testing the display 

driver involves a combination of positive and negative testing where positive testing validates 

driver functionality on valid inputs while negative testing validates driver failures on invalid 

inputs.  

Currently, many of the tests on the display driver are positive tests. The team has 

already confirmed that many functions within the device driver produce the expected action 

and results. However, the current testing infrastructure lacks negative tests. The behavior of 

the driver involving image projection and memory allocation with invalid inputs remains 

unverified and undocumented. Additionally, some positive tests for the driver need to be 

updated to run more efficiently within the Continuous Integration and Continuous 

Development (CI/CD) pipeline.  

Our team’s approach to further develop the testing infrastructure required us to identify 

gaps within existing tests and blueprint integration-level tests that would result in the failure of 

the device driver. Each test endured a lengthy verification process where we confirmed that a 

test could run to completion, target the correct issue, and integrate properly within the CI/CD 

pipeline. Alongside this verification process, we documented concepts related to each test to 

increase overall understanding and enabled extension of the device driver for the display team. 

https://blackberry.qnx.com/en/products/safety-certified/qnx-os-for-safety
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Ultimately, our efforts resulted in the addition of 18 integration tests. Through each of 

our tests, we verified the driver’s ability to handle invalid input and discovered various system 

bugs that needed correction. Correcting each defect resulted in a more robust device driver and 

increased the display team’s confidence in the functionality of DRIVE OS.  

The following chapters of this report detail the key concepts of our project and are 

organized as follows. Chapter 2 refers to the background where more technical terms related to 

the project were explained. Chapter 3 describes the methods used to approach the problem. 

Chapter 4 details our implementation towards our project objectives. Chapter 5 concludes with 

summary on our project outcomes. Chapter 6 highlights further work that can be done to 

extend our project. 
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2) BACKGROUND 

Testing DRIVE OS requires intricate knowledge of the Tegra recovery system, hardware 

abstractions, system calls, and verification methods. Understanding each of these topics not 

only facilitates designing a test but also with comprehending their implications. Furthermore, 

these topics are repeatedly referenced throughout the implementation and verification 

processes of our project. 

2.1 Tegra Recovery Architecture 

The recovery system on Tegra platform consists of two main parts: Tegra SoC and 

microcontroller unit (MCU) AURIX as shown within Figure 2. Both parts are connected to a host 

computer through USB serial, allowing users to communicate from the host machine to the 

target board through minicom. Inside a Tegra SoC minicom terminal, users can access the QNX 

shell of the board, while AURIX minicom allows users to reset and recover the board. Because 

Tegra SoC and AURIX have separate Embedded MultiMediaCard (EMMC) storage, users can 

recover the board by flashing a new image without the risk of bricking the board. Even if an 

image is corrupted and results in the board being non-responsive in any way, the board can still 

be recovered by flashing a new, non-corrupted image. 

 

Figure 2: Tegra Recovery Architecture 
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2.2 Hardware Abstraction 

The Pixel Processing Pipeline is the fundamental process workflow for how pixels get 

processed, transformed, and then displayed onto the display for users to view. Hardware on 

board is utilized to take a compositor blended screen-size pixel stream and drive it onto a single 

sink display for a user to see. The Pixel Processing Pipeline involves hardware and software to 

work together with one another to properly compute the necessary pixels to be piped onto the 

display. The various key components of the Pixel Processing Pipeline are described below: 

Channel: is the control interface for the set of hardware resources on the DRIVE OS computer. 

A channel contains a push-buffer memory which allows the software to interact and write 

commands to hardware, and there is a channel state which is maintained by the hardware that 

the software can then read. NVKMS (NVIDIA Kernal Management System) currently interacts 

with window channels and core channels in which there is one for each one respectively.  

• Window Channel: configures the alpha/opaque blending, color key, and other attributes 

of its specific window. 

• Core Channel: configures all heads, specifies the background color of the compositor for 

the pipeline. 

Window: is also referenced to as an overlay or layer which is a rectangular section of the 

screen.  

Head: corresponds to the hardware on Orin that is used to take a compositor-blended screen-

size pixel stream and drive it onto a single sink display. Orin board only has one set of output 

links and pads which are used to drive DP (Display Port) or HDMI (High-Definition Multimedia 

Interface) ports. 

Dev: is a device which is either a single GPU or multiple GPUs linked by Scalable Link Interface 

(SLI). A multiple-GPU configuration does not pertain to Tegra because there is only one sub-

device within ODD. 

Disp: represents an individual programmable display engine of a GPU, which there is one on the 

Tegra chip. 
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Connector: represents the physical electrical connection to the GPU.  

Dpy: represents the connection from the display device to the system hardware, which in our 

case because of the DP-MST this means that serval dpys can mapped onto the same connecter. 

Surface: represents the memory to be sent out onto specific window. 

Diagram below will be replaced by custom one that will be made 

 

Figure 3: Pixel Processing Pipeline on Orin 

 

2.3 Device Input and Output Control 

An input/output control (IOCtl) call is a system call in the QNX operating system that 

allows the operating system to communicate with an external device. An IOCtl call can facilitate 

the implementation of a device driver by manipulating attributes in an operating file related to 

the device [2]. For example, the IOCtl calls for a display device can check and set the mode 

timings or produce images onto the screen. Within QNX, an IOCtl call accepts three arguments: 

a file descriptor for the device that will be manipulated, a request code, and arguments for the 

request. Each request code is a series of bytes that uniquely define the code, detail the action, 

define the arguments, and specify the direction of data transfer. With a request code, a device 

driver can identify the correct action and manipulate the correct configuration files on the 

device. 

https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.lib_ref/topic/i/ioctl.html
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The testing infrastructure created for this project was built exclusively on the display 

driver. Furthermore, only a subset of all request codes used in the display driver were needed 

to complete code coverage within the driver. The request codes and actions of IOCtl calls used 

in this project are listed below: 

• Register Surface IOCtl 

• Unregister Surface IOCtl 

• Flip IOCtl 

Register Surface IOCtl: The register surface IOCtl is responsible for preparing a surface within 

memory. The register surface IOCtl accepts parameters specifying the device owner, width and 

height, memory layout, and pixel layout of the surface to create a surface that matches the 

arguments. Once the surface has been created and placed in memory, the register surface IOCtl 

will also set a surface handle which will allow each client to reference and utilize the surface. 

Unregister Surface IOCtl: The unregister surface IOCtl is responsible for deallocating a 

registered surface and freeing its information from memory. The unregister surface IOCtl 

accepts parameters specifying the device owner and surface handle of the surface that will be 

unregistered. Through the surface handle, the IOCtl can identify the correct surface in memory 

that needs to be deallocated. Once a surface has been unregistered, clients can no longer 

reference and utilize the surface through the surface handle. 

Flip IOCtl: The flip IOCtl is responsible for grabbing the information of a surface in memory, 

populating a layer with this information, and assigning these layers to a head. The flip IOCtl can 

then project the pixel information of the surface onto the display to create a visual. The flip 

IOCtl accepts parameters specifying which layers will be populated with what surface alongside 

the heads that these layers will be assigned to. Once the parameters have been populated, the 

assignment of heads to layers will be validated and compared to the configuration of the head 

to window mapping configuration file. 

 



   
 

12 
 

2.4 System Images 

When building a system image, there are various flags that indicate the specific image. 

1) Build type: Standard build is mainly used for development purposes. The default audience 

for standard builds is internal. Safety build is used for production purposes and thus has 

many restrictions on process abilities and permissions. The default audience for safety 

builds is external. 

2) Log level: Release build only maintains error logs, while debug build maintains error, debug, 

and info logs.  

3) Target board: since different boards have different device configurations, image build needs 

to specify the target board type. The boards that were used in the project were: p3663-a01, 

p3663-a01-f1, and p3710-10-a01. 

4) Target OS: Embedded QNX is mainly used for production and embedded Linux is used for 

development. The project only focused on QNX image. 

 

2.5 Head to Window Mapping Configuration File 

The main purpose of the head to window mapping is to map specific heads on the board 

to windows which get transformed through the compositor portion of the pixel processing 

pipeline. The Drive Tree Config is saved within the kernel software which is in direct contact 

with the hardware side. The device tree source include(.dtsi) file stores the drive tree config 

where the nvidia,window-head-mask hex configuration is stored at. The head to window 

mapping table from bits to window mapping shows as follows in Table 1:  
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Table 1: Head to Window Mapping Table 

Head-Bitmask  Window-Number  

BITMASK (0-7)  0  

BITMASK (8-15)  1  

BITMASK (16-23)  2  

BITMASK (24-31)  3  

BITMASK (32-39)  4  

BITMASK (40-47)  5  

BITMASK (48-55)  6  

BITMASK (56-63)  7  

 

A head refers to how many displays are connected to the computer which in our case is 

for the ODD. The default configuration of ODD includes a max of 2 heads and 4 windows. There 

are 64 bits dedicated for the head to window mapping where there are 8 sets of 8 bits and each 

set of 8 bits is mapped to a given window (0-7). When inputting a head into a specific window 

you must start at the right most w_0 window. The bitmask calculation for the head to window 

mapping is as follows: 

 

𝐵𝐼𝑇𝑀𝐴𝑆𝐾(𝑏𝑥 − 𝑏𝑦) = {𝑤𝑛 | 𝑤 is a window and 𝑛 is window number} 

  

00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  

w_7             w_6            w_5             w_4             w_3           w_2            w_1              w_0  
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All valid heads start at:  

 

𝐻𝑒𝑎𝑑𝑣𝑎𝑙𝑖𝑑(𝑛) = {n | n >  1} 

 

When the head is 0 this means that that specific window is not mapped to a head.  

Decimal  Binary  Hexadecimal  

000  00000000  0x00  

001  00000001  0x01  

002  00000010  0x02  

003  00000011  0x03  

004  00000100  0x04  

005  00000101  0x05  

006  00000110  0x06  

007  00000111  0x07  

…  …  …  

255 11111111 0xFF 

  

On the Pixel Processing Pipeline for ORIN CPU the default and required number of 

windows is 4 and the required number of heads is 2. The mapping of the device tree 

configuration within the hardware abstraction is shown in Figure 4 below. 



   
 

15 
 

 

Figure 4: Window to Head Abstraction 

 

2.6 Cyclic-Redundancy Check 

A cyclic-redundancy check (CRC) is a data integrity verification method used to help 

detect errors in data after it has been transmitted from a source to a destination. A CRC 

generates values from the data before it is transmitted. These values are then compared to the 

generated values of the data after transmission. If the values before and after transmission are 

not equivalent, then the CRC can identify that the data has been corrupted. A CRC generates 

values by performing modulo-2-polynomial division on sections of the data [3] which effectively 

generates a hash value for each section. 

In AVs, CRC checking is a crucial feature that guarantees the functionality of its safety 

system. The features of an AV like a rear-view camera, warning system, and lane control all 

interact with the driver through the display. Therefore, running CRC checks ensure that the 

driver is receiving accurate and timely information from the screen. Furthermore, these checks 

can help identify dead pixels or dead spots on the screen if a series of frames are flagged as 

corrupted. 

https://www.educative.io/answers/how-to-calculate-the-crc
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Figure 5: The Hash Values of a Single Frame in CRC 

In this project, CRCs were utilized to detect transmission errors for each frame that is 

projected onto the screen. When any client wants to display a visual onto the screen, the device 

driver creates the final image by compiling the desired surfaces into a single buffer. This buffer 

is serialized and fed into the display for projection. A CRC partitions the buffer and generates 

three different values: raster generator, compositor, and output. With these values, the CRC 

can identify corruption if the hashes before serialization differ from the hashes after 

serialization. 
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3) METHODS 

The test integration cycle was critical for our methods used because of the flow in 

relation to the development and testing portions of the project. NVIDIA DRIVE OS Tegra Display 

team utilizes physical Drive AV boards to deploy changes within the codebase to verify its 

functionality with in-code test cases and physical verification from the developers. The build 

process confirmed functionality of any changes within the codebase. After functionality was 

confirmed the verification process within the CI/CD pipeline tested our changes against the 

entire DRIVE OS codebase. After changes were confirmed within DRIVE OS codebase there were 

documentation changes for the code within the system.  

 

3.1 Build Process 

NVIDIA DRIVE OS Tegra Display team has three different boards p3663-a01, p3663-a01-

f1, and p3710-10-a01 to run and verify code changes that were made. There are three main 

relationships between our build process to develop, build, and flash developed code onto any 

of the Drive AV computer boards. The process for developing code within the team and 

deploying to a computer board is the following (also shown in Figure 7): 

1. Drive Farm: Software developers at NVIDIA use Drive Farm which is a cloud environment 

that hosts daily trees which are DRIVE OS builds that are synchronized between all software 

teams working on DRIVE OS. Different build environments are needed based on which team 

a software developer is on. The Tegra Display team and the MQP team used rel-37 builds, 

which is a combination of both Linux and QNX operating systems. Figure 6 below shows the 

various builds that we could use, which change based on different tasks being worked on. 

After a developer grabs/snapshots a DRIVE OS tree, they can make any necessary changes 

within the codebase and then build an image for their current tree. 
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Figure 6: Tree Search Output from Drive Farm 

2. SCP Files to Host Computer: to properly deploy changes onto the Drive AV computer there 

is a middleman host computer that is connected to the Drive AV computer. From a 

developer's Drive Farm environment, the developer uses SCP (secure transfer protocol) to 

transfer files from the build over to the host computer.  

3. Flash OS to Drive AV Computer: After all files have been deployed onto the host computer, 

the new DRIVE OS is flashed onto the Drive AV board. The flashing process removes the 

entire OS that was on the Drive AV board and then installs the new DRIVE OS that is on the 

host computer. 

4. Run Tests: The last part of the pipeline is to run the necessary test cases that were changed 

by the developer. This is done with assertions within the codebase and sometimes with 

visual verification from the developer looking at the display next to the Drive AV board. 

 

Figure 7: Local Build and Deployment Process 
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3.2 Verification Process (CI/CD Pipeline) 

 Once a tree is copied (snapshot) from cloud to development environment Drive Farm, 

we can run coverage deviation on a clean repository to create a baseline (see Section 3.2.4), 

which is a one time setup for each tree (shown in Figure 8 blue section). 

NVIDIA uses Gerrit for code review. The review process (shown in Figure 8 green 

section) requires developers to push changes as a patchset with the covdev summary of the 

changes, local verification, +1 from a reviewer, +2 from another reviewer, and a successful run 

from GVS. When all requirements are met, the committed patchset is automatically picked by 

the promotion cycle and merged to the rel-37 branch of the code base. 

 

Figure 8: Development Cycle 

3.2.1 Local Verification 

Local verification involves building and flashing the image onto the target board. With 

standard builds, tests are located in the /samples folder. Safety builds do not have Tegra 

display test binary packaged, so we need to scp the test binary to the board /tmp folder. For 

each test developed, a local verification is necessary. The command to run tests varies 

depending on the test mode and steps needed. For example: 
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1) To run a surface layout test: 

/samples/tegradisp/tegradisp-test -t surface-layout -v -D 

2) To run a window notifier test that requires CRC check: 

/samples/tegradisp/tegradisp-test -t window-notifier -H roc -G /tmp -v -D 

If the test and visual verification (if needed) passes, then the local verification is 

completed. If the test or visual verification fails, then further investigations of the failure is 

needed. Running slog2info | grep modeset | grep ERROR on the board root terminal returns a 

list of error logs of the previous activities. 

 

3.2.2 Pre-Check-In Script 

The pre-check-in script is the second part of local verification. This script runs all other 

tests related to the display driver and its associated IOCtl calls. After finishing and verifying our 

own test, we scp the latest version of the pre-check-in script to the board. We then execute this 

bash script which automates the process of running all display tests. The script prints the result 

of each test and its associated logs which we look over for errors. This script guarantees that 

our changes have not influenced other tests and ensures that all tests continue to work 

properly. Once we verify that every test in the script passes, our changes can then be reviewed 

by senior developers for +1 and +2 approval. 

 

3.2.3 GVS 

Gerrit Virtual Submit (GVS) is a testbot responsible for running a developer’s changes 

against the entirety of DRIVE OS. When a change is submitted to GVS, the testbot prepares a 

remote server, implements the change into the codebase, and builds every system image 

related to DRIVE OS. GVS then installs every package required for the operating system and 

begins executing scripts to pressure test the new change with the rest of the codebase. 
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Figure 9: Sample GVS Report after Submitting Changes 

Like the pre-check-in script, GVS guarantees that our changes do not corrupt any 

downstream operations for not only display tests but for the entirety of DRIVE OS that other 

teams are developing on. GVS represents the final step of our verification process and serves as 

the final approval before our changes are merged into the codebase.  

If a change fails at any part of the GVS run, then this change cannot be merged into the 

codebase. This policy ensures that the code on GVS remains correct so that all developers can 

pull this codebase and begin developing changes on a fresh branch. The state of GVS allows us 

to compare our local environment to a golden standard to help us search for any 

inconsistencies on our drive farm.  

 

3.2.4 Covdev 

Covdev is a NVIDIA internal auditing tool for coverity (static code analysis) which 

provides accurate delta between 2 baselines with deviation information. Covdev can detect 

code violations against MISRA C, which is a set of software development guidelines for C 

programming language developed by MISRA (Motor Industry Software Reliability Association).  

For example, to create a baseline for display driver repository, developers must be on 

top of tree (no changes), and run: 

covdev --create-baseline display_driver 

After committing changes, command below can be run to compare with the baseline: 

covdev --compare-baseline display_driver -m -n 
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The output is a summary of deviated information on code violation of the new changes 

compared to the baseline as shown in Figure 10.  It reports how many violations are there total 

in the code repo, number of undeviated violations, number of new violations introduced by the 

new change, and number of violations that are fixed by the new change. The summary is 

automatically appended to the commit message. 

 

Figure 10: Sample covdev Summary Output 

 

3.3 Test Integration and Documentation 

 For each new test developed, after it has been merged into the development 

branch, it needs to be added to the GVS script so that it can be integrated into the CI/CD 

pipeline for future development. The test also needs to be added to the SWITS (Software 

Integration Test Specification) documentation for safety compliance, including the test name, 

description, list of IOCtl APIs used, requirement id, test design, test procedure, and expected 

result. 
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4) IMPLEMENTATION 

To fulfill the project objectives, the team has completed various test cases, including 

positive and negative IOCtl test cases, head to window mapping test cases, and operating 

system test cases. In addition to tests, the team also performed refactoring work on the existing 

codebase such as removing outdated code and compiling out certain functionalities on safety 

builds. 

4.1 Test Cases 

 Our team worked on various test cases for IOCtls in the display driver. These tests 

ranged from positive to negative tests that verified the behavior of IOCtls when provided both 

valid and invalid inputs. The IOCtl tests were extensively documented and grouped by the IOCtl 

they manipulated. Details such as test file name, test function name, and verification method 

are all documented alongside the concepts related to the test. 

4.1.1 Register/Unregister IOCtl Tests 

The register surface and unregister surface IOCtls are responsible for allocating and 

deallocating a surface in memory, respectively. The IOCtls accept parameters that reference the 

surface and describe the properties of the surface that will be allocated or deallocated. The 

tests in this section detail the behavior of the register and unregister surface IOCtls when the 

parameters are manipulated to both valid and invalid inputs. 

Surface Register Device Handle Negative Test 

Test File Name tegradisp-test-surface.c 

Test Case Name nvKmsTestRegisterSurfaceNegative (new) 

Negative / Positive Negative 

IOCTL Calls Used RegisterSurface 

Verification Method IOCtl fails 

Bugs Found? No 
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Purpose 

This test investigates what happens to the register-surface IOCtl when an invalid device 

handle is provided. An invalid device handle is defined as any index that results in a null pointer 

(no device information) being returned. We expect the register-surface IOCtl to fail as 

registration should not be possible with an undefined memory location for devices. 

Concepts & Relevant Background 

A device represents a single GPU used for the display. When a device is allocated, all the 

information is loaded into RAM. When a register-surface call occurs, the IOCtl uses the device 

handle to find the appropriate device information from memory and loads that information to 

associate surface information with the device. The register-surface IOCtl then validates all 

device information before allocating a surface that the device will own. The device handle is 

simply an unsigned 32-bit integer. This device handle serves as an index into an array of 

pointers, where the pointer is the location of the device information. A device handle of 0 is an 

invalid device handle as a user cannot request no information when requesting device 

information. 

Test Step 

Setup: 

     1. Initialize fd, pDevice, pConfig, and params  

     2. Create invalid device handles (min handle value, one greater than device handles  

allocated, handle in between min and max handle values, max handle value)  

Test: 

1. For each invalid device handle, set the device handle of params to the value and attempt  

to register-surface  

     2.  Expect the register-surface IOCtl call to fail due to referencing an invalid location in  

memory  

Test tear down: 

     1. Free pConfig  

     2. Free pDevice  
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     3. Close fd  

Verification 

For this test, registering a surface using the various invalid device handles should cause 

the IOCtl to fail, and the tester should be unable to see anything on the display screen. 

 

Surface Register Device Sizes Negative Test 

Test File Name tegradisp-test-surface.c 

Test Case Name nvKmsTestRegisterSurfaceNegative (new) 

Negative / Positive Negative 

IOCTL Calls Used RegisterSurface 

Verification Method IOCtl fails 

Bugs Found? No 

Purpose 

This test investigates what happens to the register-surface IOCtl when registering a 

surface that has dimensions that cannot be represented by the display. For example, registering 

a surface with 0 pixels of width and height, or a surface that is larger than the screen is invalid. 

The register-surface IOCtl should fail as the display should not try to render surfaces it cannot 

physically handle. 

Concepts & Relevant Background 

A device holds all information pertaining to the heads and layers of the display and can 

be used to derive the configurations of the display. The configuration of the display holds 

information like the dimensions of the screen in pixels and the mode timings of the display. 

When a register-surface call occurs, the dimensions of the surface must be specified. Before the 

surface can be allocated, the specified dimensions are validated against the dimensions of the 

display. The register-surface call will fail if the requested dimensions for the surface exceeds the 

dimensions of the display. 
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Test Step 

Setup: 

1. Initialize fd, pDevice, pConfig, and params 

2. Create invalid surface sizes (min width and height, invalid width with valid height, valid 
width and invalid height, invalid width and invalid height, max width and height)  

Test: 

1. For each invalid surface size, set the width and height of params to the value and 
attempt to register-surface  

2. Expect the register-surface IOCtl call to fail due to allocating a surface that cannot fit on  
the display  

Test tear down: 

     1. Free pConfig  

     2. Free pDevice  

     3. Close fd  

Verification 

For this test, each invalid surface dimension should fail the register-surface IOCtl, and 

the tester should see nothing on the display screen. 

 

Surface Unregister Invalid Handle Test 

Test File Name tegradisp-test-surface.c 

Test Case Name nvkmsTestSurfaceUnregisterNegative (new) 

Negative / Positive Negative 

IOCTL Calls Used SurfaceUnregister 

Verification Method Test case pass 

Bugs Found? Yes 
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Purpose 

The purpose of this test was to verify that the surface unregister IOCtl fails when feeding 

in an invalid surface buffer handle during surface deregistration or attempting to deregister the 

same surface twice. 

Test Step 

PART 1: Invalid Buffer Handle 

Setup:  

1. Initialize all pointer values to null (pDevice, pConfig, pSurface), fd = -1 

             2. Open NvKMS 

             3. Allocate pDevice 

Test:   

1. Unregister an unallocated surface (if any fails, go to done) 

 a. surfaceHandle = 0 (invalid range, NULL pEvoSurface) 

 b. surfaceHandle = 1 (valid range, NULL pEvoSurface) 

 c. surfaceHandle = 30 (valid range, NULL pEvoSurface) 

 d. surfaceHandle = 0xFFFFFFFF (invalid range, NULL pEvoSurface) 

 

PART 2: Unregister The Same Surface Twice 

Setup:  

1. I nitialize pConfig 

2. Allocate pSurface 

Test:   

1. Deregister pSurface  

2. Deregister pSurface again 

Test tear down:  

1. free pConfig 

2. free pSurface  

3. free pDevice 

4. close(fd) 
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Verification 

Part 1 of the test should result in unregister surface IOCtl to fail with error that it 

attempts to unregister null surface pointer. 

In part 2 of the test, the first deregister call should succeed, and then second one should 

fail. 

Debugging 

1. With the test properly setup, it was observed that the test failed in part 1. During 

some investigation, it was discovered that in surface unregister IOCtl source code, deregister a 

null surface pointer did not return a false status. The solution was to add a fatal error when 

surface pointer is null. 

2. With the solution to the first bug implemented, there were then failures with free 

device and releasing ownership IOCtl during test tear down for all test cases. During 

investigation of source code for free device IOCtl, it was discovered that a device console 

surface handle was also being unregistered. Since the console surface handle is no longer in 

use, attempting to free it resulted in a null surface pointer and caused a fatal error during free 

device process. The solution was to remove the unused console surface handle and its relevant 

functions. 

 

4.1.2 Flip IOCtl Tests 

A flip IOCtl is responsible for projecting an image onto the display screen. The flip IOCtl 

accepts parameters that define which layers will be populated by what surface and the 

specified head that the layers will be pushed to. The tests in this section detail the behavior of 

the flip IOCtl when the parameters are manipulated to both valid and invalid inputs. 

Alpha-Opaque Blending Positive Test 

Test File Name tegradisp-test-flip.c 

Test Case Name NvKmsTestLayerAlphaBlending (edited) 
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Negative / Positive Positive 

IOCTL Calls Used Flip 

Verification Method Visual, CRC 

Bugs Found? No 

Purpose 

This test verifies that flipping layers with adjusted alpha values on different alpha-

blending modes will display correctly by showcasing a changing transparency.  

Concepts & Relevant Background 

When a surface is flipped onto a screen, the blending mode of the layer must be defined 

prior to the flip occurring. The blending mode of layers defines the transparency of a layer. 

Defining a layer with alpha blending enabled allows the color to have a percentage of 

transparency take effect, which allows colors to blend when two layers lie atop each other. A 

layer with opaque blending has no transparency. As a result, underlying colors do not show 

from beneath an opaque layer. For alpha blending there are multiple modes defined: pre-

multiplied surface, pre-multiplied pixel, non-pre-multiplied surface, and non-pre-multiplied 

pixel. There is also an entirely transparent blending mode. Each of these modes defines how 

the transparency of each pixel is calculated. 

Test Step 

Setup: 

1. Initialize flipState, pDevice, and an array with all blending modes 

2. Allocate a flipState 

3. Set the device from flip state 

4. Test and check with CRC a red screen to make sure flipping works properly   

Test:  

1. Flip a surface with opaque blending (doesn’t matter what the alpha value is since 
opaque ignores alpha) 

2. Flip a surface with the remaining blending modes by looping through the alpha  
 values from 0.0 to 1.0 at increments of 0.1 with each blending mode 

3. Check every flip with a CRC 
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4. Expect all CRC checks to pass   

Test tear down: 

1. Free flip state 

Verification 

The test flips a red screen on the display. A green surface is then flipped atop the red 

screen. The transparency levels of the green screen are then adjusted, and a yellow screen 

should become more visible as the transparency of the green screen goes down. This should be 

verified five times for the different blending modes. 

Further General Work  

Working on the positive test for alpha-opaque blending revealed an error within GVS. 

When pulling the CRCs from GVS and running them on a local environment, every CRC file failed 

against the check locally. This behavior indicates that GVS CRCs were either incorrect or that 

CRC checks were not running on GVS correctly. On further investigation, the error on GVS 

stemmed from a malformed test script that was not properly executing tests with a CRC check. 

This script allowed all incorrect CRCs to pass on GVS and merge into the main codebase. 

Therefore, a fix was issued to both correct the script and all CRCs currently on GVS. With this 

fix, CRC checking now runs properly on GVS for all current and future tests. 

 

Alpha-Opaque Blending Negative Test 

Test File Name tegradisp-test-flip.c 

Test Case Name NvKmsTestLayerAlphaBlendingNegative (new) 

Negative / Positive Negative 

IOCTL Calls Used Flip 

Verification Method IOCtl fails 

Bugs Found? No 
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Purpose 

This test investigates what happens when two layers with identical depths are flipped 

onto the same head. Identical depths are an errant input and cannot be rendered by the 

display, resulting in the flip IOCtl to fail. 

Concepts & Relevant Background 

When a surface is flipped onto a screen, the depth of the layer must be defined prior to 

the flip occurring. The depth of the layer defines which layer lies atop another layer on the 

screen. The lower the depth, the closer to the top that layer is. For example, a layer with a 

depth of 0 that takes up the entire height and width of the screen prevents a layer with a depth 

of 1 from being seen. 

Test Step 

Setup: 

1. Initialize flipState, pDevice, compParams, size, and rrParams  

2. Allocate a flip state  

3. Set the device from flip state  

4. Set width and height   

Test:  

1. Create compParams with opaque blending and depth 3  

2. Flip green surface with depth 3  

3. Flip yellow surface with depth 3  

4. Expect flip to fail on yellow surface due to same depth  

5. Clear flips  

6. Change compParams to alpha blending  

7. Flip green surface with depth 3  

8. Flip yellow surface with depth 3  

9. Expect flip to fail on yellow surface due to same depth 

Test tear down: 

1. Free flip state   
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Verification 

For the negative test, the flip IOCtl should fail on the second flip of each blending mode. 

When the first surface is loaded onto a layer with a depth of 3, there are no other layers flipped 

concurrently, which means no conflicts occur with rendering the depths of the layers. However, 

on the second flip of a layer with a depth of 3, there is now a conflict between the second layer 

being flipped and the first layer that was already flipped. Flip validation should identify this 

conflict and fail the IOCtl call. 

 

Flip with Invalid Surface Handles Test 

Test File Name tegradisp-test-flip.c 

Test Case Name nvKmsTestFlipBase (new) 

Negative / Positive Negative 

IOCTL Calls Used Flip 

Verification Method IOCtl fails 

Bugs Found? No 

Purpose 

This test investigates what happens to the flip IOCtl when an invalid surface handle is 

provided for the flip. An invalid surface handle is defined as any index that results in a null 

surface pointer (no surface information) being returned. The flip IOCtl is expected to fail 

because a flip is not be possible with an undefined memory location. 

Concepts & Relevant Background 

Whenever a surface is allocated, the information of this buffer is loaded into RAM. After 

loading into RAM, a surface handle is generated which allows any client to reference the 

information of a surface and read its buffer from RAM. The surface handle is an unsigned 32-bit 

integer. Any client can access any of the allocated surfaces if they use a valid surface handle. 

Surfaces are not allocated for any singular client. When a flip occurs, all surface handles are 
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checked for validity to ensure that no undefined memory locations are used for a flip. A surface 

handle of 0 for the flip IOCtl is a valid surface handle and represents an unpopulated layer that 

is ignored when the flip displays all defined layers onto the screen. 

Test Step 

Setup: 

1. Initialize flipState, validSurface, invalidSurface, size, compParams, and rrParams  

2. Allocate a flipState  

3. Set width and height  

4. Test and check a flip with validSurface to make sure flipping works properly 

Test: 

1. Create invalid surface handles (one greater than allocated, in between max pointers  
allowed, above max pointers allowed, the highest value of an unsigned 32-bit integer)  

2. For each invalid surface handle, set the surface handle of the invalidSurface to the 
value and attempt to flip using the invalidSurface  

3. Expect the flip to fail due to referencing an invalid location in memory 

Test tear down: 

      1. Free flip state   

Verification 

For this test, a flip with a valid surface handle is performed first to verify that the flip 

IOCtl can display a visual onto the screen if the surface handle references the correct location in 

memory. After verifying this behavior, the test can then use a range of invalid surface handles 

and attempt to flip using these handles. Each of the invalid surface handle flips should fail, and 

the tester should be unable to see anything on the display screen. 
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Flip with Invalid Layer Test 

Test File Name tegradisp-test-flip.c 

Test Case Name nvKmsTestFlipBase (new) 

Negative / Positive Negative 

IOCTL Calls Used Flip 

Verification Method IOCtl fails 

Bugs Found? No 

Purpose 

This test investigates what happens to the flip IOCtl when a single flip occurs and it 

attempts to flip multiple layers and at least one invalid layer is defined for the flip. All layers in a 

flip must be validated before a flip occurs. Therefore, the flip IOCtl is expected to fail if it cannot 

use some of the information in the input. 

Concepts & Relevant Background 

Whenever a flip is performed, the specifications of the flip are validated by checking the 

fields of the heads and layers. Within a function called that validates flip parameters within the 

flip IOCtl, the layers of a flip are checked for violations. Violations such as flipping layers on 

inactive heads, flipping layers with the same depth, and flipping layers with an invalid surface 

handle are all caught by this function. The function performs the previous check iteratively on 

each head and layer. When the first violation is caught, the function will fail the IOCtl 

immediately. 

Test Step 

Setup: 

      1. Initialize flipState, size, params, compParams, rrParams, invalidSurface  

      2. Allocate a flipState  

      3. Set width and height  

Test: 

      1. Create an invalid surface handle and set the surface handle of invalidSurface to this value 
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      2. Prepare two layers to flip: valid surface on 0th layer, invalid surface on 1st layer 

      3. Expect the flip IOCtl to fail due to one layer being defined incorrectly 

Test tear down: 

1. Free flip state  

Verification 

For this negative test, the flip IOCtl should fail after the flip call. During flip validation, 

the flip call loops through each layer defined in params. There should be no issues validating 

the first layer defined in parameters but should flag the second layer due to the invalid surface 

handle. The flip IOCtl should subsequently fail. The tester should be unable to see anything on 

the display screen. 

 

Flip with Extra Layers Test 

Test File Name tegradisp-test-flip.c 

Test Case Name nvKmsTestFlipBase (new) 

Negative / Positive Negative 

IOCTL Calls Used Flip 

Verification Method IOCtl fails 

Bugs Found? No 

Purpose 

This test investigates what happens to the flip IOCtl when it attempts to flip more layers 

than currently allocated to a head. Since a head has a limited number of layers that it can use to 

help render visuals, an extra layer cannot be rendered by the head. Therefore, the flip IOCtl is 

expected to fail if it cannot use some of the information in the input. 

Concepts & Relevant Background 

From the configuration file, a device recognizes the number of layers allocated to each 

head. When a device attempts to flip several layers onto the screen, each layer is counted and 
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checked against the allocation in the configuration file. If the number of layers being flipped for 

a head exceeds the number of layers allocated to that head, then the flip IOCtl errors out on 

validation, and the flip is not performed.  

Test Step 

Setup: 

       1. Initialize flipState, size, params, compParams, and rrParams  

       2. Allocate a flipState  

       3. Set width and height  

Test: 

       1. Prepare to flip numLayers+1 valid layers 

       2. Flip params which will simultaneously flip the numLayers+1 layers  

       3. Expect the flip to fail due to flipping more layers than allocated to a head 

Test tear down:  

        1. Free flip state  

Verification 

For this negative test, the flip IOCtl should fail after the flip call. During flip validation, 

the flip call loops through each layer defined in the parameters. There should be no issues 

validating the layers that fit within the allocation of the head. However, on the extra layer, flip 

validation should error out because it has identified a defined layer that is outside its allocation 

of layers. The tester should be unable to see anything on the display screen. 

Debugging 

When creating this test, flip validation initially failed at recognizing extra layers and 

chose to silently ignore these layers instead of failing the IOCtl call. The extra layers were 

ignored due to the configuration of the device. Since the device recognized the number of 

layers allocated to each head at runtime, it would not attempt to look at layers beyond this 

allocation. Therefore, extra layers would never be validated, and the flip would happen 

successfully. However, this is not the intended behavior for the flip IOCtl. Therefore, changes 

were made to the flip validation source code. The flip IOCtl now checks layers beyond what is 
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allocated for the device in the flip. If the number of layers defined in the flip exceeds the 

number of layers allocated, then the IOCtl now fails. Having the flip IOCtl validate layers outside 

the number allocated to a head allowed the flip IOCtl to correctly identify and catch extra layer 

flips. 

 

Overlay Minimal Scaling Test 

Test File Name tegradisp-test-flip.c 

Test Case Name nvKmsTestMinimalScaling (new) 

Negative / Positive Positive 

IOCTL Calls Used Flip 

Verification Method Visual, CRC 

Bugs Found? No 

Purpose 

The purpose of this test was to verify overlay scaling succeeds when there is 1 row and 1 

column changes for each direction (up or down). 

Concepts & Relevant Background 

The existing overlay scaling test consists of a sequence of maximal up and down scaling. 

It is not feasible to add to the CI/CD pipeline because it requires a specific setting for IMP (is 

mode possible) configuration, which configures device timing, clock, and other settings. The 

change on IMP settings could potentially break other tests on GVS. Since this test is a minimal 

scaling test, it is less stressful and can be easily integrated to GVS, so that overlay scaling 

functionality can be tested within the CI/CD pipeline. The scaling depends on input size and 

output size parameters when calling the flip overlay function. 

Test Step 

Setup:  

1. Allocate FlipState 
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2. Get pOverlaySurface from FlipState and set it to CMYKWRGB color bars 

Test: 

1. Perform a combination of 9 scaling tests with different height and width (no scaling, min 
downscaling, min upscaling) in different directions 

2. Verify CRC 

Test tear down: 

1. Free FlipState 

Verification 

The first flip should display CMYKWRGB color bars with full screen size (see Figure 11). 

The CRC check should pass. The second flip should also have the CMYKWRGB color bars but 

with a very slight yellow line on the right and bottom (see Figure 12). The same verification is 

needed for the rest of the directions used in scaling. 

             

       Figure 11: First Flip                                                   Figure 12: Second Flip 

Further Work 

Currently, the test only passes the first three flips (original in and out, height minimal 

down scaling, and height minimal up scaling). The display shows no further updates with the 

rest of the test cases, and eventually hangs at the last test case (minimal upscaling for both 

height and width). The suspected reason of failure is incorrect IMP configurations, but more 

investigation is required for the test case to pass. 
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Window Completion Notifiers Test 

Test File Name tegradisp-test-syncpt.c 

Test Case Name nvKmsTestWindowNotifier (new) 

Negative / Positive Both 

IOCTL Calls Used Flip 

Verification Method Visual, CRC pass, Notifier State 

Bugs Found? No 

Purpose 

The purpose of this test was to verify window completion notifier states with a 

successful flip, an outright failed flip, and a sequence of flips on different layers are as expected. 

Concepts & Relevant Background 

The window notifier surface is a non-ISO surface used to report the status of a flip on 

another allocated surface. For the notifier to update a status, the pointer to a notifier surface 

needs to be passed in a part of the flip parameter.  The window notifier can have the following 

status: NOT_BEGUN, BEGUN, and FINISHED. When a flip is blocked or failed, the window 

notifier status should be NOT_BEGUN, which is also the initialized status. When a non-null flip 

has successfully being performed, the notifier status is updated to BEGUN to inform that the 

display is continuously scanning out pixel values from the surface memory. When a null flip is 

performed, the notifier state is updated to FINISHED to inform that the display is no longer 

scanning from the surface memory.  

Test Step 

Setup:  

1. Initialize pDevice, pConfig, fd, pSurface[], pNotif[] 

2. open nvkms 

3. allocate device 

4. allocate config 

5. grab ownership 
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6. initialize the maximum number of layers (numLayers) that is configured on the device 

7. allocate an array (numLayers size) of surface with decreasing window sizes and 
populate the surfaces with alternating color (red and green)  

8. allocate an array (numLayers size) of notifier surfaces 

 

Test:  

1. Test failed flip with invalid handle 

This is the first part of the whole test, where we pass in the first surface registered in 
the array (pSurface). Then, another surface is registered inside this partial test, which is used as 
an invalid surface by manually setting pInvalidSurface->surfaceHandle to 0xffffffff 
(pInvalidSurface). It is also populated to green with a smaller window size. 

1) Perform flip on pSurface, check notifier state 

2) Check CRC 

3) Reset the notifier 

4) Perform flip on pInvalidSurface, check notifier state 

5) Check CRC 

Tear down:  

       restore pInvalidSurface->surfaceHandle to original value and free pInvalidSurface 

2. Test multiple window flip 

This is the second part of the whole test, where we perform a sequential flips on the 
array of pSurfaces and check the corresponding notifier state and CRC value after each flip. 

 

Test tear down: 

1. Free notifiers 

2. Free surfaces 

3. Release ownership 

4. Free config 

5. Free device 

6. Close fd 

Verification 

For the first part of the test, after the first flip, which should succeed, the notifier state 

should be BEGUN, and the screen is all red with a CRC check. The second flip should report an 
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IOCtl flip failure. Verify that the notifier state is NOT_BEGUN and the screen remains red with 

another CRC check.  

In the second part of the test, for each flip of the surface pointer array (from i to 

numLayers), verify that the notifier state for pNotif[j] for j <=i is BEGUN, and otherwise 

NOT_BEGUN. Therefore, any happened flip should have state BEGUN and remain BEGUN, and 

any unhappened flips should have state NOT_BEGUN till the flip happens. The window should 

have alternating red and green boxes with decreasing size. The test verifies CRC after each flip. 

 

Transfer Functions Degamma/Regamma Test 

Test File Name tegradisp-test-transfer-functions.c 

Test Case Name nvKmsTestTransferFunctions (new) 

Negative / Positive Negative 

IOCTL Calls Used Flip, Query CRC 

Verification Method Visual, CRC 

Bugs Found? No 

Purpose 

This test case specifically feeds in non-surface gamma values into the different gamma 

surface, which cause the CRC checks to fail (shown in Figure 13). The transfer-functions test was 

expanded to verify that different degammas are used for linear vs sRGB/Rec709 inputs, and 

that the same degamma is used for sRGB and Rec709 inputs. The surface is specified as sRGB or 

Rec709, which communicates to the driver via flip parameters. We create a mismatch by 

applying a linear transfer function on the actual pixels. Therefore, we can compare the output 

CRCs on the same input (linear) pixels when the driver is told the surface is Linear, sRGB, or 

Rec709. This allows us to confirm that the driver degamma selection logic is working as 

intended. 
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Figure 13: Negative Transfer Function Test 

Concepts & Relevant Background 

The previous testing of the transfer function (shown in Figure 14) only tests out direct 

one-to-one mapping of the degamma and regamma transfer protocols onto the screen. Before, 

this generalized test case only tested out the direct mapping with the static CRC JSON files 

within storage. This works when the transfer functions for linear, sRGB, and Rec709 are 

transferred onto the screen and then checked with the static CRC JSON files. 

 

Figure 14: Positive Transfer Function Test 

Test Step 

Setup:  

1. Initialize pDevice, pConfig, fd, pSurface, internalCRC[2] 
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2. Open nvkms 

3. Allocate device 

4. Allocate config 

5. Grab ownership 

Test: 

1. Iterate through sRGB and Rec709 gamma surfaces 

a. Allocate surface for current gamma 

b. Draw gradient bands with linear gamma (this fills up the pixel buffer) 

c. Flip buffer onto screen 

d. Query current CRC values for the screen 

e. Initialize CRC values within internalCRC at the current gamma surface 

2. Verify that the internalCRC raster, output, and compositor values at sRGB are not equal 
to the internalCRC raster, output, and compositor values at Rec709. 

3. Verify that the CRC of sRGB from internalCRC and linear are not equal to each other 

Test tear down: 

1. Free Config 

2. Release Ownership 

3. Free Device 

4. Close nvKms file descriptor 

 

Verification 

Verify that the internal CRC raster, output, and compositor values at sRGB are not equal 

to the internal CRC raster, output, and compositor values at Rec709. The second check will then 

verify that the CRC of sRGB from internal CRC and linear are not equal. Figure 15 below shows 

the normal gamma transfer from the positive test case, while Figure 16 below shows the 

negative test case causing the displacement within the pixels when doing the 

degamma/regamma. 
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          Figure 15: Normal Gamma Transfer                             Figure 16: Negative Gamma Transfer 

 

4.1.3 Head-Window Mapping Config Tests 

The head to window mapping within the drive tree configuration is a critical part within 

the ODD since it tells the kernel level software how many heads and windows are allocated for 

whichever board it is on. All examples below are from the Orin board head to window mapping 

which has 1 head and 4 windows valid windows.  

Example 1 (Valid window on Invalid head):  

Description: Map window 0 (valid) to head 3 (invalid)  

64-bit layout:  

00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000011  

w_7             w_6            w_5             w_4             w_3           w_2            w_1              w_0  

Drive Config Layout:  

display@13800000 {  

nvidia,window-head-mask = <0x00000000 0x00000003>;   

};  

Driver Failure to Load from slog2info:  
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Figure 17: Driver Bailing on Valid Window on Invalid Head 

Example 2 (Invalid window on valid head):  

Description: Map window (invalid) to head 1 (valid)  

64-bit layout:  

00000000  00000000  00000000  00000001  00000000  00000000  00000000  00000000  

w_7             w_6            w_5             w_4             w_3           w_2            w_1              w_0  

Drive Config Layout:  

display@13800000 {  

nvidia,window-head-mask = <0x00000001 0x00000000>;  

};  

Driver Failure to Load from slog2info:  

Figure 18: Driver Bailing on Invalid Window on Head 
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Example 3 (Invalid window on Invalid head):  

Description: Map window (invalid) to head 1 (valid). This specific example shows using a 68-bit 

window to head mapping which is simply not allowed and will cause the driver to fail.  

00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000000  00000

001  

          w_8        w_7            w_6          w_5            w_4          w_3           w_2           w_1          w_0  

Drive Config Layout:  

display@13800000 {  

nvidia,window-head-mask = <0x00000000 0x0000000001>;  

};  

Driver Failure to Load from slog2info:  

Figure 19: Driver Bailing on Invalid Window on Invalid Head 

 

Example 4 (Valid Windows on One Valid Head):  

Description: Map 4 valid windows onto head 1 (valid).  

00000000  00000000  00000000  00000000  00000001  00000001  00000001  00000001    

w_7             w_6            w_5             w_4             w_3           w_2            w_1              w_0  

Drive Config Layout:  
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display@13800000 {  

nvidia,window-head-mask = < 0x00000000 0x01010101>;  

};  

 

4.1.4 Other Tests 

The following tests do not involve any IOCtl calls. The thread priority verification test is 

on the QNX operating system level, while the NVKMS handle deregistration test case tests the 

API used by client applications to close the kernel management system.  

Thread Priority Verification 

Test File Name tegradisp-test-statemgr.c 

Test Case Name nvKmsTestStateMgr (edited) 

Negative / Positive Positive 

IOCTL Calls Used N/A 

Verification Method Test Case Pass 

Bugs Found? Yes 

Purpose 

The thread priority verification is added as part of the tegradisp-statemgr-test. The 

purpose of this test is to verify that devg-modeset and devg-disp-serializer threads have the 

correct priority during INIT_DONE and OPERATIONAL modes as shown in Table 2 and 3. 

Table 2: devg-modeset Process Threads 

devg-modeset Thread Name INIT_DONE 
Priority 

OPERATIONAL 
Priority 

Display HW interrupt 
handling thread 

modeset_hw_intr 35 27 

RM Deferred work thread 
used for SV deferred work 

modeset_rm_worker 35 23 
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Timer event thread used 
for FF detection 

modeset_timer_thread 35 30 

NVDVMS thread for state 
management 

modeset_nvdvms 35 23 

  

Table 3: devg-disp-serializer process threads 

devg-disp-serializer Thread Name INIT_DONE 
Priority 

OPERATIONAL 
Priority 

NVDVMS thread for state 
management 

serializer_nvdvms 35 23 

GPIO ERRB irq thread serializer_errb 35 30 

 

Test pre-req step: 

1. For each thread that needs to be tested, thread name is set during its creation using 

pthread_setname_np() API. This also satisfies a safety requirement for process 

monitoring. For safety builds, there is limited permission and abilities. We are unable to 

set a thread name from a different process. Therefore, the thread is setting its own 

name inside its thread function.  

2. Enable devg-serializer for simulation mode. 

NOTE: Some board has display serializer disabled. Testing for serializer threads is skipped if that 

is the case. 

Concepts & Relevant Background 

There are different modes that the board is at in this test: INIT_DONE, OPERATIONAL, 

DEINIT_PREPARE, and DEINT.  

• INIT_DONE: the board has successfully booted up and initialized all processes, thread 

priorities are set to high. 
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• OPERATIONAL: when the board is performing any tasks such as flipping a surface, thread 

priority is set to normal priority. 

• DEINIT_PREPARE: the board is ready to tear down processes and shut down. 

• DEINT: the board has shut down; all processes are killed. 

To acquire thread information from the testing environment, first process id of the 

threads is needed. The devctl(proc_fd) system call on command "DCMD_PROC_TIDSTATUS" 

allows us to iterate through all threads in the process by incrementing thread id (until the 

devctl call fails).  

Template: 

void 

do_process (int pid, int fd, char *name) 

{ 

  procfs_status   status; 

  printf ("PROCESS ID %d\n", pid); 

  

// now iterate through all the threads 

  status.tid = 1; 

  while (1) { 

    if (devctl (fd, DCMD_PROC_TIDSTATUS, &status, sizeof (status), 0) 

!= EOK) { 

      break; 

    } else { 

      do_thread (fd, status.tid, &status); 

      status.tid++; 

    } 

  } 

} 

Using QNX system call ThreadCtlExt(process_id, thread_id) on command 

"_NTO_TCTL_NAME", thread name of given process id and thread id can be acquired. 

Test Step 

Setup:  

1. Initialize nvdvms state, rrParams, serializer_enabled (false) 

2.  Verify state is INIT_DONE 

3. Allocate device, config, surface 

Test (new steps are marked in red): 

1. Wait for INIT_DONE state. All APIs are allowed in this state. 
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2. Note down devg-modeset and devg-disp-serializer process id. 

3. Allocate device and perform modeset and flip. This should succeed. 

4. Check thread priorities for devg-modeset and devg-disp-serializer (if serializer is 
enabled) 

5. Transition VM to OPERATIONAL state 

6. Perform Flip. This should Pass. 

7. Perform modeset. This should Fail. 

8. Check thread priorities for devg-modeset and devg-disp-serializer (if serializer is 
enabled) 

9. Transition to DEINIT_PREPARE 

10. Perform modeset. This should Fail. 

11. Deallocate device. 

12. Transition to DEINIT. 

Verification 

This test was verified on a p3663 board and p3710 board. Both a positive and a 

manually negative test were conducted. All thread priorities for the positive should match the 

table given above in INIT_DONE and OPERATIONAL mode. All thread priorities for the negative 

test should match the expected values that were manually adjusted. For the p3710 board, 

serializer process is not initialized, and its threads are not tested.  

Debugging 

The serializer errb thread reported incorrect priority in OPERATIONAL mode during 

initial testing. It was discovered that the thread was being set to the priority of a lock thread. 

The lock thread was not created due to a check for lock pin presence (in this case, lock pin is 

absent and there should not be a lock thread). However, there was no check for lock pin 

presence to set the thread priority when mode changes to OPERATIONAL. Thus, the priority for 

lock thread was still set even though the thread was not created and mistakenly set to the errb 

thread instead. The solution was to add the same pin check for priority set. 
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NvKMS Handle Unregister Test 

Test File Name tegradisp-test-basic.c 

Test Case Name nvkmsTestBasic (edited) 

Negative / Positive Negative 

IOCTL Calls Used N/A 

Verification Method Test case pass 

Bugs Found? No 

Purpose 

The purpose of this test was to verify that the NVKMS close API fails when feeding in a 

negative file descriptor. 

Test Step 

The test was added to nvkmsTestBasic (marked in red) 

Setup: 

1. initialize fd, pDevice 

2. open nvkms 

3. allocate pDevice 

Test: 

1. deregister -1 as NVKMS fd 

Test tear down: 

1. free device 

2. close(fd)  

Verification 

Deregister -1 as file descriptor should not return 0 (success) in the test. 
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4.2 Code Refactoring 

 There are certain parts within the codebase that are needed to be refactored to change 

the architecture within ODD. These changes were essential to the safety within the system 

builds of DRIVE OS.  

4.2.1 Compile-out IOCtl’s on Safety Builds 

Compiling out IOCtl’s is a thorough process because they play important in  

communicating from the user space and the kernel space. There are some IOCtl calls that we do 

not want to make publicly available through an API. Therefore, we not only have to properly 

compile them out of safety builds, but also to ensure the functions’ usability within standard 

builds. Depending on if the IOCtl is called within tests cases, the refactoring part needs to be 

done methodically to preserve the ODD code architecture.  

As a result of compiling out ValidateModexIndex and SetMode IOCtls from safety 

builds, they are now deprecated functions within the ODD codebase. The process of compiling 

out these IOCtl calls from safety builds is shown within Figure 20. 

 

Figure 20: Compiling Out Modes 
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 The reason for compiling out of the SetMode IOCtl call from safety builds was because 

that we do not want a client facing API to be accessing this important IOCtl call. The SetMode 

IOCtl call changes various screen parameters such as screen size, head information, and other 

system critical features. Compiling out the SetMode does not remove it entirely from the safety 

builds; however, ODD can still access the IOCtl call to properly setup the screen and parameters 

on bootup.  

 

4.2.2 Compile-out Logging Functions on Safety Builds 

 Logging functions existed within NVKMS that were unnecessary for safety builds within 

trees for DRIVE OS, causing unnecessary logging within the safety builds. The process of 

compiling out these functions within safety builds required editing the nvkms-

modepool_non_safety.c file to include the logging functions within the non_safety builds of 

DRIVE OS. However, to make sure that the logging functions will not be used within the safety 

builds of DRIVE OS, we need to include stubbed out versions of the logging functions within the 

nvkms-modepool_stubs.c file. Depending on which build the system image (release or safety) 

is currently being used, the MakeFile for that system image changes because of the different 

safety C file that needs to be used.   

 

4.2.3 Remove Client Specified LUT Set 

Currently, client specified LUTs in ODD is not supported. The process of removing 

related functions and header files require moving certain functions or definitions to other API 

files as well as changing the MakeFile for both standard and safety builds. In this operation, file 

nvkms-color-management.c, nvkms-color-management.h and nvkms-color-management-

stub.c were completely removed. The related functions inside nvkms-modeset.c were also 

removed. 
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5) CONCLUSION 

The usage of Tegra chip in AVs is safety critical. The display driver system plays an 

important role in updating information in real time. Thorough and extensive test cases for the 

display driver, both positive and negative ones, are necessary to confirm that the system 

behaves as expected. Compliance with international and industry standards is also critical to 

prevent potential road hazards from occurring. 

However, the challenge faced by the Tegra display driver team was a lack of negative 

testing and adherence to some safety standards within the codebase. Furthermore, some 

deprecated functionalities existed within safety system builds. 

Our team focused on implementing tests, fixing bugs revealed by the added tests, and 

re-factoring to help solve these problems faced by the display driver system. The team 

implemented 18 integration tests, which verified the driver’s behavior with various valid and 

invalid inputs to different display driver system functionalities. Every test that was 

implemented underwent an extensive verification process to confirm proper performance. 

Each implemented test case was also able to check off at least one safety requirement that was 

not met with the previous test infrastructure.  

While developing ODD, our team has fixed relevant bugs within the kernel level source 

code. The solutions for the revealed bugs improved and streamlined the performance of the 

testing infrastructure that developers within the Tegra display team use. Alongside the source 

code, bugs were found and fixed within the CI/CD pipeline. With the work implemented, ODD 

now has a more robust display driver and increased reliance within DRIVE OS. 

Additionally, our team completed an extensive code refactoring process for different 

IOCtl calls and logging functions. The refactoring process included compiling out unneeded 

functionalities from the safety builds, which allowed for a more streamlined safety system on 

DRIVE OS. This process was critical to comply with international and MISRA (Motor Industry 

Software Reliability Association) road safety standards. With this work, the ODD display driver 

now has a cleaner and more concise codebase. 
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6) FUTURE WORK 

Future work for this project includes continued development of the testing 

infrastructure, integration of tests into test scripts, and further investigation of display driver 

configuration files. Each of these avenues provides an opportunity to improve the reliability of 

the display driver and DRIVE OS. 

The IOCtl calls that were utilized throughout this project (register surface, unregister 

surface, and flip) only represent a subset of all IOCtls present in the display driver. Therefore, 

future projects can expand upon our work on IOCtl negative testing by exploring more invalid 

inputs on different IOCtls. Testing these untouched IOCtls can also provide ample amounts of 

documentation that further elucidates the innerworkings of the display driver. 

While each completed test helps improve the stability of DRIVE OS, the utility of these 

tests can be extended by integrating them into testing scripts. Not only can testing scripts 

automate the process of executing all newly created tests, but they can also be placed within 

GVS. Within GVS, the testing scripts will be executed with every change that is pushed by a 

developer. These scripts will then ensure that new changes for DRIVE OS do not compromise 

the integrity of the display driver. 

The last area of extension in our project includes the configuration files that are utilized 

on boot-up of the display driver. Like the head-to-window mapping configuration file, the 

display driver also utilizes another configuration file used for configuring the mode timings of 

the display. Through this file, the resolution, refresh rate, and internal clock timings can all be 

manipulated. The values within the mode timings configuration can be manipulated similarly to 

the head-to-window mapping file to better understand configurations that result in the driver 

crashing. 
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