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ABSTRACT 

Cell division is an important biological process, thus it is always an active field in 

biological research. To complete cell division, plant cells form a new cell wall that separates the 

two new cells. In contrast to the contractile ring of animal cells, plant cells form the new cell 

wall from their interior. Vesicles containing the new cell wall fuse at the cell plate between the 

two cells. The formation of the cell plate is guided by the phragmoplast, a microtubule and 

filamentous actin-containing structure.  Because vesicles are known to be transported by myosin 

motors during interphase and little is known about the role of myosin XI during cell division, I 

investigated the participation of the plant specific myosin XI in cell division. For this work I 

used the moss Physcomitrella patens as a model organisms because of its simple cytology and 

powerful genetics. Using a fluorescent protein fusion of myosin XI, I found that this molecule 

associates with the mitotic spindle immediately after nuclear envelope breakdown. Myosin XI 

stays associated with the spindle during mitosis, and when the phragmoplast is formed, it 

concentrates at the cell plate, forming a fine line. Using an actin polymerization inhibitor, 

latrunculin B, I found that the associations of myosin XI with the mitotic spindle and the 

phragmoplast are independent of the presence of filamentous actin. After using double-labeled 

lines for myosin XI the endoplasmic reticulum and vesicle markers, I found the myosin XI on the 

spindle is not colocalized with the endoplasmic reticulum and two types of vesicle markers. 

Furthermore, I also found the vesicle trafficking inhibitor, brefeldin A, does not inhibit the 

localization of myosin XI at the mitotic spindle and the phragmoplast. These observations 

suggest a new actin-independent behavior of myosin XI during cell division, and provide novel 

insights to our understanding of the function of myosin XI during plant cell division. 
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1. INTRODUCTION 

One of the most important features of cells is that they can make new copies of themselves 

by cell division. This is important because all cells arise from pre-existing cells-unicellular 

organisms use cell division to maintain a reasonable number of individuals in the environment, 

and multicellular organisms use cell division to generate clusters of cells to form complex 

structures. Thus, cell division has been a very active research topic since late 19th century. 

From years of study, much progress has been made in understanding cell division. For 

example, in prokaryotic organisms, researchers have found that bacterial cell division needs the 

formation of an FtsZ ring (Z ring) (Dai and Lutkenhaus, 1991; Lutkenhaus and Addinall, 1997); 

in eukaryotic organisms, the importance of the formation of the mitotic spindle is well 

documented and a general idea of how cytokinesis takes place has emerged (Glotzer, 2001; 

Scholey et al., 2003). Cell division in plants is less understood because most of the existing 

knowledge about cell division in eukaryotic organisms was done in animal and yeast cells. 

Though there are many similarities in fundamental mechanisms between plant and animal cell 

division (Lloyd and Chan, 2006), a number of differences exist, especially in cytokinesis. For 

instance, in animal and yeast cells, it is known that myosin II is important for cytokinesis 

(Bezanilla et al., 1997; Gerisch and Weber, 2000; Komatsu et al., 2000), but plant cells have no 

myosin II or orthologous genes (Thompson and Langford, 2002); and most obviously, plant cells 

do not form a contractile ring to complete cell division. Instead, they have a structure called the 

phragmoplast to help separate two daughter cells. Given all these differences, in order to have a 

better understanding of cell division in plants, more study should be done on the specific 

structures that define this process.  
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1.1: Cell Divisions in Other Systems 

The majority of the existing research on cell division focuses on four main types of cells: 

bacterial, fungal, animal and plant. 

Evolutionarily, bacterial cell division is thought to be the most primary type of cell 

division. Cell division in bacterial cells is mainly conducted by a tubulin homologue, Fts Z. Just 

like tubulin, Fts Z can polymerize into protofilaments in the present of GTP (Bramhill and 

Thompson, 1994; Erickson et al., 1996; Lu et al., 2000) and these protofilaments will then form a 

structure called Fts Z ring (Z ring) at the division plane. Researchers have shown mutations in 

Fts Z may cause severe defects in cell division in bacteria (Bi and Lutkenhaus, 1991; Mukherjee 

et al., 2001). After the formation of the Fts Z ring, with the help of many other regulators, such 

as Fts-A and Zip-A (Pichoff and Lutkenhaus, 2002), the bacterial cells constrict the Fts Z 

(Bramhill, 1997). At the final stage of cell division, bacterial cells form a septum to make the 

final separation of two daughter cells. 

 Unlike bacterial cells that use a “microtubule” based ring structure, fungal and animal cells 

use another type of machinery, the actomyosin-based contractile ring, to physically divide two 

daughter cells, though the basic idea is the same: form a ring-like structure to constrain the 

division plane, and when the connection between two cells is small enough, other protein 

complex-such as the septation initiation network (SIN), will join and regulate the final cut (Furge 

et al., 1998). The contractile ring in fungal and animal cells is a structure formed with actin 

filaments and myosin II (Bezanilla et al., 1997; Kitayama et al., 1997; May et al., 1997), along 

with some regulatory elements, like α-actinin (Mukhina et al., 2007) and formin (Pollard, 2010). 

With the help of advanced imaging methods, investigators have found the actin filaments in the 
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contractile rings are oriented in both directions (Schroeder, 1973; Sanger and Sanger, 1980). And 

myosin II in the contractile rings may also form filaments (Reichl et al., 2008; Zhou and Wang, 

2008), indicating that myosin II may generate force in the contractile rings by a mechanism 

similar to muscles. 

When discussing cell division, we are not only indicating the physical segregation of two 

daughter cells as mentioned above, but in addition, eukaryotic cells have developed a cell 

division specific structure called mitotic spindle to pull two sets of chromosomes into two 

daughter cells during cell division. The formation of the mitotic spindle in fungal cells requires 

another structure called the spindle pole body, and in animal cells requires centrosomes, while 

plant cells do not have any of these structures to assist their spindle assembly. In the case of 

animal cells, it is known that centrosomes will be duplicated during S phase (Sluder and Rieder, 

1985a, b), and subsequently, animal cells will change the dynamics of their microtubules 

(Masuda et al., 1988; McNally, 1996; Cassimeris, 1999) via factors like katanin (microtubule 

severing protein) (McNally and Thomas, 1998), and kin 1 family of kinesin-related protein 

(Desai et al., 1999). During prometaphase, after nuclear envelope breakdown, microtubules are 

rapidly assembled from two centrosomes to connect chromosomes at kinetochores. 

However, plant cells do not need microtubule organization centers, such as centrosomes, to 

form the spindles. And they do not need the actomyosin-based contractile rings to complete 

cytokinesis; instead, they use microtubules to perform this function. Given these key differences, 

knowledge about other eukaryotic systems is not sufficient for understanding cell division in 

plant cells. Thus, in the following section, I will briefly summarize what is currently known 

about cell division in plants. 
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1.2: Plant Cell Division 

1.2.1 Plant Spindle 

As mentioned before, most fungal and animal cells have both centrosomes and microtubule 

motors to help assemble their spindle that function as chromosome separation machinery. But 

because plant cells do not have centrosomes and one type of microtubule motor, dyneins, the 

spindle assembly in plants is quite different from fungal and animal spindle assembly (See 

Figure I.1). 

 Before mitosis starts, plant cells have abundant microtubules surrounding the nuclear 

envelope (Fiugre I.1, lower left panel). These microtubules, also known as perinuclear 

microtubules, can be formed by two mechanisms (Masoud et al., 2013). One is dependent on –

tubulin ring complexes ( –TuRCs), which is a common microtubule nucleation mechanism 

whose importance to microtubule nucleation in plant has been confirmed by gene knockdown 

(Binarova et al., 2006) and knockout experiments (Pastuglia et al., 2003; Nakamura and 

Hashimoto, 2009). The second mechanism is dependent on histone-1/tubulin complex (Hotta et 

al., 2007), which is a novel mechanism initially observed in the tobacco cultured cell line BY-2. 

 During late G2, the cortical microtubules will form a structure called the preprophase band 

(which will be discussed later). Meanwhile, the perinuclear microtubules will start accumulating 

(Kumagai et al., 2001; Dhonukshe et al., 2006) and undergoing conformational changes (Murata 

and Hasebe, 2007), probably mediated by katanin (Ambrose and Wasteneys, 2008; Panteris et 

al., 2011). Following this,  some microtubule motor proteins will join and work on the 

microtubules, regulating the organization of these microtubules (Bannigan et al., 2008; Zhu and 
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Dixit, 2012) and generating tensions on nuclear envelopes (Vos et al., 2000).These microtubules 

will then invaginate the nuclear envelopes (Dixit and Cyr, 2002). 

 

After the nuclear envelope breaks, microtubules will have another organizational change, 

and more proteins will participate in spindle formation. For example, many kinesins and kinesin-

like proteins (Liu et al., 1996) are found to be important for spindle formation in plants. 

Knocking-out or mutating the kinesins causes severe defects in spindle formation (Wiedemeier et 

al., 2002; Bannigan et al., 2007). In addition to these motor proteins, investigators have also 

identified other important players such as microtubule associated proteins (MAPs) (Fache et al., 

2010), the augmin complex (Ho et al., 2011; Hotta et al., 2012; Nakaoka et al., 2012), 

nucleoporins (Lee et al., 2009), and nuclear envelope-associated proteins (Graumann and Evans, 

2011; Oda and Fukuda, 2011), all of which play different roles to ensure proper spindle 

formation. 

 During prometaphase, the interpolar microtubules form at the polar regions and pass 

through the equator, while the kinetochore microtubules grow until they meet chromosomes 

Figure I.1. Comparison of mitotic spindle structure in animals (top) and plants (bottom). From (Bannigan et al., 
2008), figure 1. 
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(Dhonukshe et al., 2006). However, accumulating evidence suggests there are also microtubules 

growing from or near the chromosomes (Binarova et al., 1998; Dhonukshe et al., 2006; Zhang 

and Dawe, 2011). 

Currently, many things are known about plant spindle formation and regulation, but many 

of the ideas are borrowed from animal/yeast studies, and little is known about the details of these 

processes. Some regulatory components have been identified, but the knowledge of how they 

come to their target and how they interact with each other is still lacking. 

1.2.2 Preprophase Band and Cortical Division Site 

 As mentioned above, the cortical microtubules, with F-actin and other proteins, form the 

preprophase band (PPB) during late G2 phase. The PPB is thought to be important to plant cell 

division as it can predict the future division site. 

 To make the transition from the widely distributed localization of cortical microtubules 

during interphase to the restricted narrow band-distribution of cortical microtubules during 

preprophase, plant cells may require both the selective depolymerization of non-PPB 

microtubules (Dhonukshe and Gadella, 2003) and the selective stabilization of PPB microtubules 

(Vos et al., 2004), which need the assistance of many proteins or protein complexes (Chang-Jie 

and Sonobe, 1993; Smertenko et al., 2004; Ambrose and Wasteneys, 2008; Gaillard et al., 2008; 

Kawamura and Wasteneys, 2008; Wright et al., 2009). 

 The PPB starts disassembling before prometaphase and leaves some marks to guide 

cytokinesis; hence the location of PPB will define the cortical division site (CDS). Some markers 

are negative markers, like actin (Hoshino et al., 2003; Panteris, 2008) and a plant kinesin, KCA1 

(Vanstraelen et al., 2006) - after the PPB is disassembled, cortical actin and KCA1 will be 
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depleted only at the CDS, leaving a depleted zone at the CDS. The other markers are positive 

markers. For example, TAN is found localized at the CDS, and is thought to be important to 

guide the expansion of the phragmoplast (Cleary and Smith, 1998; Walker et al., 2007); 

RanGAP1 also localizes to the PPB and remains at the CDS throughout cell division (Xu et al., 

2008). 

 It has been postulated that the function of the CDS is to guide the orientation of the 

phragmoplast (Muller et al., 2009). One supporting line of evidence is that during telophase, it 

was found that in both Arabidopsis cells and BY-2 cells, microtubules frequently contact the 

CDS (Chan et al., 2005; Dhonukshe et al., 2005). An alternative function of the CDS might be to 

promote cell wall maturation, this is supported by experiments where growing cell plates were 

forced to attach to cell surface other than the CDS, and these new cell walls failed to mature 

properly (Gunning and Wick, 1985). 

Interestingly, the PPB is not formed in the protonemal cells of P. patens, but the location of 

the future cell division site is well regulated in these cells. This suggests that some of the 

functions performed by the PPB can be accomplished by alternative mechanisms. Though a 

general idea of PPB and CDS organization has emerged, as well as their possible function during 

cell division, there is no doubt that more regulatory components need to be identified, and a 

clearer picture of the relationships between already known players in PPB and CDS is still 

waiting to be obtained. 

1.2.3 Plant Cytokinesis 

After the two sets of chromosomes are separated, in plant cells, the phragmoplast 

assembles in the middle of the plane of division. The phragmoplast is mainly formed by 
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microtubules that form two antiparallel sets of co-aligned filaments and usually interdigitated in 

the middle (Hepler and Jackson, 1968; Hiwatashi et al., 2008). 

As showed in figure I 2, after the phragmoplast forms, Golgi-derived vesicles start to move 

in and fuse with each other. Two types of vesicle sizes are found by electron tomography. The 

larger vesicles are thought to be generated by fusion of smaller ones. The tubulo-vesicular 

network generated by these fusion events is called the cell plate, which stays in the middle of the 

two sets of microtubules (Segui-Simarro et al., 2004; Jurgens, 2005a). In order to constrain these 

vesicles in cell plate, dynamin-related proteins (DRPs) seem to form a ring surrounding the cell 

plate (shown in Figure I.2) (Hong et al., 2001; Otegui et al., 2001). SNARE proteins are also 

critical for proper cell division, because they mediate membrane fusion of these vesicles. One of 

these SNARE proteins, called KNOLLE, is found only localized at the cell plate, and mutations 

of KNOLLE will cause defects in vesicle fusion at the cell plate (Lauber et al., 1997). Similarly, 

the vesicle SNARES or VAMPs (VAMP 721, 722) are also required for vesicle fusion during 

cytokinesis (El Kasmi et al., 2013). 

After the initiation of the cell plate, the microtubules in the middle of the phragmoplast 

start depolymerizing while those at the periphery of the cell plate remain stable (Nishihama and 

Machida, 2001). The depolymerization or destabilization of microtubules in the middle of the 

phragmoplast is probably caused by the phosphorylation of MAP65, which has a significant 

reduction of microtubule-bundling activity when phosphorylated (Sasabe et al., 2006; Lee and 

Liu, 2013). It has been proposed that the phosphorylated MAP65 at the center of the 

phragmoplast loses its normal function of microtubule bundling, leading to depolymerization of 

these “unprotected” microtubules (Sasabe et al., 2006; Lee and Liu, 2013). Meanwhile, in order 

to expand the phragmoplast towards the peripheral cell walls; these microtubules will also need 
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to be amplified at the periphery. The nucleation of microtubules in the expanding phragmoplast 

is probably mediated by γ -tubulin and regulated by kinesin 14 (Murata et al., 2013). Thus, the 

phragmoplast dynamic structure is that of an expanding ring-like array of microtubules, until this 

array reaches the side membrane of the dividing cells. 

  

Figure I.2: Cell plate assembly. Modified from (Jurgens, 2005a), figure 2. Vesicles might be transported by kinesin 
along the phragmoplast microtubules, which is regulated by microtubule associated proteins (MAPs).  
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In addition to microtubules, actin filaments have also been identified at the phragmoplast, 

lining up with microtubules (Hepler et al., 2002). The function of these actin filaments is still not 

clear yet. In fact, experiments with actin inhibitors showed no effect on cell division (Hoshino et 

al., 2003; Sano et al., 2005), which questions the importance of filamentous actin participating in 

cytokinesis (Muller et al., 2009). 

1.2.4 Comparisons of Cell Division in Animal and Plant Cells 

Many differences exist between cell division in animals and plants: animal cells have 

centrosomes to form spindles, while plants lack these structures; animal cells determine the 

division site only after the spindle is formed, plants instead create the PPB before the nuclear 

envelopes break down; animal cells use contractile rings to make a cleavage furrow, while plants 

form a peripherally expanding phragmoplast to make cell plate.  

However, taking a closer look at the cell division in animal and plant cells, many 

similarities can also be found between these two systems. For example, one major difference 

between animal and plant cell division is the presence or absence of centrosomes to form the 

spindle, nevertheless, many similarities exist in terms of spindle formation. In plants, many of 

the spindle microtubules are nucleated on the chromosomes (Binarova et al., 1998; Dhonukshe et 

al., 2006; Zhang and Dawe, 2011); similarly, in animal cells, even though they have centrosomes 

to form the spindle, the nucleation of microtubules on the chromosomes is also important for 

spindle formation (Gruss et al., 2002; Gadde and Heald, 2004; Maiato et al., 2004). In addition, 

the kinesin 14 family of motors is important to spindle formation in both animal and plant cells 

(Sharp et al., 1999; Huisman et al., 2004; Ambrose et al., 2005). 

Another example is the similarity between the animal midbody and the plant phragmoplast. 

They both are localized at the middle of the division plane, both are mainly formed by 
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microtubules, and both are critical for cytokinesis in animal or plant cells. In addition, in both 

structures, microtubule bundling proteins are present and are essential for their formation and 

activity: plant cells have MAP65 (Jurgens, 2005b), while animal cells have the MAP65 

homologue, PRC1 (Mollinari et al., 2002). 

In summary, though cell divisions in plant and animal cells seem different, similarities exist 

between these two systems. As a matter of fact, because we know a great deal from studies with 

animal cells, we can apply some of this knowledge to better understand the less understood plant 

system. 

1.3: Cell Division Studies in Physcomitrella patens 

The moss Physcomitrella patens is a plant model system with many advantages for 

studying many fundamental biological processes. P. patens is easy to grow and propagate, which 

allows experiments to be done in a relatively short time. The protonema cells, which are the 

focus of many studies in polarized cell growth, are filaments made by chains of single cells. The 

cells are transparent, which makes them excellent subjects for microscopical observations. Most 

moss cells are haploid, which facilitates genetic analysis; furthermore, it is easier to manipulate 

P. patens genes than other plant model systems because of the availability of mitotic 

homologous recombination. Furthermore, its whole genome sequence is available, which 

facilitates bioinfomatic analyses. Thus, this model system is increasing its popularity in many 

laboratories (Schaefer and Zryd, 1997; Bezanilla et al., 2005; Rensing et al., 2008). However, 

most of the studies with P. patens have focused on tip growth. Only a handful of reports in the 

literature use P. patens to study cell division (Hiwatashi et al., 2008; Kosetsu et al., 2013; 

Hiwatashi et al., 2014; Miki et al., 2014; Wu and Bezanilla, 2014). Among them, only one report 



 

12 
 

published last year analyzed the relationship between actin, myosin and plant cell division (Wu 

and Bezanilla, 2014). This work found myosin VIII localized to the P. patens mitotic spindle, the 

phragmoplast and the cortical division site. When cells were treated with the actin-

depolymerizing drug, latrunculin B (LatB), the authors were still able to detect the localization of 

myosin VIII on the spindle and at the phragmoplast, suggesting an actin-independent mechanism 

for myosin VIII localization. However, they also observed that when treated with LatB, the 

phragmoplast had defects at the cells that were forming a branch, similar to the defect in myosin 

VIII null lines, leading them to conclude that the function of myosin VIII may be dependent on 

actin filaments though the localization of myosin VIII is not. They also analyzed the localization 

of an actin filament nucleator, a class II formin (For2A) and they found that this molecule 

accumulates only late on the spindle and remains on the edge of the phragmoplast throughout 

cytokinesis. Together, these results suggest that myosin VIII might associate with microtubules 

and work with actin to guide the expansion of the phragmoplast. As plants only have two types 

of myosins, VIII and XI, it will be important to investigate and compare the localization myosin 

XI during cell division. 

1.4: Myosin, Vesicles and the Endoplasmic Reticulum 

1.4.1 Myosins in Plants 

Myosin is a large superfamily of proteins that function as motors working on actin 

filaments. All of them hydrolyze ATP and produce forces along actin filaments.  Myosins 

typically contain three subdomains: the head/motor domain, the neck domain and the tail domain 

(See Figure I.3). The motor domain is the most conserved part of myosin, which can bind actin 

and ATP, generating force on actin filaments; the neck domain can be considered as the linker -- 

or lever arm -- between the head domain and the tail domain; it usually contains helical 
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sequences called IQ motifs, which can bind light chains or calmodulin; the neck domain also 

works as a regulatory element. The tail domain is the most diverse domain, which in some cases 

has a coil-coiled based dimerization domain and a globular domain that connects myosins with 

their cargos (Cope et al., 1996). 

 

 

By the year 2000, researchers had identified as many as 18 different classes of myosin 

(Furusawa et al., 2000). However, none of these are expressed universally throughout all phyla. 

Myosin II, for example, is important for animal cell motility and division, while it is not present 

in plant cells; on the other hand, plants only have the myosin V homologues: myosin VIII and 

myosin XI (Thompson and Langford, 2002).   

Phylogenetic analysis, and the presence of myosin VIII in all land plants suggest that 

myosin VIII appeared in evolution prior to the radiation of terrestrial plants, but after the 

divergence of green algae (Thompson and Langford, 2002). Myosin VIII has been implicated in 

cell plate maturation (Reichelt et al., 1999), intercellular transportation (Baluska et al., 2001; 

Figure I.3. Domain comparison of myosin VIII and myosin XI. Modified from  (Thompson and Langford, 2002).
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Avisar et al., 2008; Golomb et al., 2008), and plasmodesmata structure and function (Volkmann 

et al., 2003). 

Another important plant myosin is myosin XI, which is thought to be a homologue to 

myosin V (Thompson and Langford, 2002). According to the structure of Nicotiana tabacum 

myosin XI, they can be roughly divided into four domains (Tominaga et al., 2003), which is 

similar to its homologue in animal cells, myosin V. They contain an N-terminus motor domain, 

neck domain, which contains six IQ motifs, a rod region, which contains an α-helical coiled-coil 

structure, and a tail domain at the C terminus. Using an actin sliding assay, Tominaga found the 

maximum velocity of myosin XI from tobacco BY-2 cells is 7 µm s−1 (Tominaga et al., 2003), 

which is about 10 times faster than myosin Va (Mehta et al., 1999). The fastest motor protein 

currently known is a myosin XI from the alga Chara corallina, which can reach 50-70 µm s−1 

(Ito et al., 2007). Tominaga et al. showed that, similar to myosin V, myosin XI is a plus-end 

directed actin dependent motor with a step size of 35 nm (Tominaga et al., 2003). 

Similarly to its homologue myosin V, myosin XI is responsible for organelle and vesicle 

transport (Reisen and Hanson, 2007; Peremyslov et al., 2008; Sparkes et al., 2008; Peremyslov et 

al., 2012). It also has been shown to be critical for cell polarity and tip growth, as knocking down 

myosin XI in P. patens causes a severe growth defects (Vidali et al., 2010; Furt et al., 2013). 

Given the fact that both tip growth and cytokinesis in plants need vesicle trafficking and 

exocytosis (Reichardt et al., 2007; Rybak et al., 2014), myosin XI might play a role in plant cell 

division. So it is reasonable to investigate the function of myosin XI during cell division. 
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1.4.2 Vesicles 

Golgi-derived vesicles are critical for the formation of the cell plate (Segui-Simarro et al., 

2004). Different vesicle markers can be used to study the localization and dynamics of these 

vesicles. Two types of vesicle markers, vesicle associated membrane proteins (VAMPs) and 

Rab-GTPases, are discussed below because they were selected for the present work. 

Vesicle associated membrane proteins, also known as VAMPs, are a family of SNARE 

proteins, which share similar structures and function in vesicle fusion. In Arabidopsis thealiana, 

it was found that double knockout of VAMP721 and VAMP722 is lethal (Lipka et al., 2007; 

Kwon et al., 2008); mutations of both VAMP721 and VAMP722 also cause defects in cell plate 

formation (Zhang et al., 2011). When the localization of VAMP721 and VAMP722 was 

investigated, there was almost no signal in the cytoplasm, while there was a clear accumulation 

of both proteins at the cell plate (El Kasmi et al., 2013). Together, these results support the 

participation of this protein in cell plate formation. However, to this date, no information is 

available about the localization of VAMPs in P. patens during cell division. 

A different type of marker that can be used to track vesicle behavior is the Rab-GTPases. 

Rab-GTPases are a superfamily of small GTPases that regulate intracellular vesicle transport. In 

A. thaliana, Qi et al. showed that one subfamily of Rab-GTPases, RabAs, but not RabDs, are 

important for vesicle trafficking in the trans-Golgi network (Qi and Zheng, 2011). Because the 

formation of the cell plate requires these Golgi-derived vesicles, it is expected that RabAs 

participate in plant cytokinesis. Indeed, Chow et al. have shown that RabAs are important for 

cytokinesis and they showed RabAs accumulate at the cell plate (Chow et al., 2008). In P. 

patens, we know there are three types of RabAs (Agar), but their localization during cytokinesis 

has not been investigated.   
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1.4.3 Endoplasmic Reticulum 

The endoplasmic reticulum (ER) has many important functions, including protein folding 

and protein transport. Related to these functions, during interphase in plant cells, ER typically 

has three types of formations: the polygonal cortical ER arrays, the nuclear surrounding ER, and 

the ER that connects the other two types (Boevink et al., 1998; Ridge et al., 1999; Nebenfuhr et 

al., 2000; Gupton et al., 2006). 

Beside these localizations during interphase, the ER also has a specific localization during 

cell division. In tobacco NT-1 cells, before the nuclear envelope breaks down, the ER starts 

invading the nuclear envelope when the chromosomes begin to condense (Gupton et al., 2006).  

During metaphase and anaphase, the ER becomes tubules lining up with microtubules in the 

mitotic spindle (Gupton et al., 2006). Finally, during cytokinesis, the ER also appears at the 

phragmoplast, where it is assumed that it delivers components to support the development of the 

cell plate (Gupton et al., 2006). No information is available about the localization of the ER 

during cell division in P. patens. But we know that in other plants, myosin XI attaches to the ER 

membrane and plays a role in controlling the dynamics and localizations of the ER (Yokota et 

al., 2009; Yokota et al., 2011). Thus it is also important to investigate the colocalization of 

myosin XI and the ER during P. patens cell division.  

1.5: Hypotheses and Objectives  

As summarized by Gerd, plant cytokinesis is a process of “fission by fusion” (Jurgens, 

2005a); numerous vesicles are required in the division plane to build the cell plate. Thus vesicle 

transport is an important process during plant cell division. Based on the importance of myosin 

XI in polarized transport (Reisen and Hanson, 2007; Peremyslov et al., 2008; Sparkes et al., 



 

17 
 

2008; Vidali et al., 2010; Peremyslov et al., 2012), my hypothesis is that myosin XI may play a 

role in plant cell division.  

My goal for this project is to determine the possible role of myosin XI in plant cell 

division. These are the objectives I propose to achieve: 

1. Determine the localization of myosin XI during cell division.  

2. Determine the localizations of F-actin, Golgi-derived vesicles and the endoplasmic 

reticulum in relation to myosin XI. 

3. Use specific inhibitors to determine how they affect the localization of myosin XI 

during cell division.  
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2. MATERIAL AND METHODS 

2.1. Plant Material 

2.1.1 Cell Lines Used 

All cell lines used in this study were derived from the moss Physcomitrella patens (Hedw.) 

Brunch & Schimp. Gransden strain, and most of them were made in Vidali lab (LV lines). For 

microtubule imaging, tubulin EGFP line (GTU14) (Hiwatashi et al., 2008) was used. For GFP 

control imaging, 3mEGFP line (LV754) was used. For myosin XI imaging, both Myosin XIa-

3mEGFP and 3mCherry-RabA53 line, and Myosin XIa-3mEGFP and ER-mCherry line 

(constructed by me, LV832) were used. For actin imaging, LA2W-myo BKO line (LV765) was 

used. For VAMP imaging, 3mEGFP-Myosin XIa and 3mCherry-VAMP line (LV653) was used. 

For RabAs and myosin XI colocalization imaging, Myosin Xia-3mEGFP and 3mCherry-RabA53 

line, and 3mCherry-RabA53 and 3mEGFP-RabA21 line were used. For endoplasmic reticulum 

and myosin XI colocalization imaging, Myosin XIa-3mEGFP and ER-mCherry line (LV832) 

was used. 

2.1.2 Cell Line Passing 

One half plate of one week old P. patens was collected and placed into a 14 ml culture tube 

with 2 ml sterile water. The tissue was ground with a grinder (Fisher Power Gen 125), at top 

speed (30,000RPM) for 20 seconds. The ground tissue was spread into cellophane covered solid 

media plates (700 µl tissue per plate). For routine cell line expansions, PpNO3 plates were used, 

and for transformation, PpNH4 plates were used; all the plants were grown at 25 °C in a growth 

chamber. 
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2.1.3 Construct Preparation 

The mCherry fragment was amplified by PCR from plasmid: pTHUbigate-lifeact-mCherry. The 

forward primer was WPI 278 (attB5-mCherry-mEGFP. Sequence: GGGGACAACTTTGTA 

TACAAAAGTTGTGATGGTGAGCAAGGGCGAGGAG) and the reverse primer was UM 481 

(attB2_GFP_KDEL. Sequence: GGGGACCACTTTGTACAAGAAAGCTGGGTATCATAGCT 

CATCTTT CTTGTACAGCTCGTCCAT). The PCR product was ligated into  pDONR P5P2 

plasmid by BP reaction. The construct was then put into pTHUbigate plasmid by LR reaction 

with empty pTHUbigate plasmid, PENT P1P5r plasmid and the BP reaction product.  

2.1.4 Stable Transformation 

Nine ml of 8% mannitol and 3 ml of driselase (Sigma D9515-25G, 0.5% final 

concentration) were mixed in a sterile Petri dish. Six day old moss tissue was harvested from 

PpNH4 plates and transferred to the driselase solution. The dish was placed on the ROTO-

SHAKE, shaken at speed 2 at room temperature for 1 hr. Protoplasts were harvested by filtering 

the digestion product through a sterile filter (Cell strainer 70 µm Nylon). The protoplast solution 

was centrifuged at 700 rpm (250 g) in IEC CENTRA-7 centrifuge for 5 min. The supernatant 

was discarded, and the pellet was resuspended gently with 10 ml of 8% mannitol. The 

protoplasts were centrifuged and resuspended with 8% mannitol twice to wash out driselase. Cell 

number was counted with a hemocytometer after the wash step. Then, the protoplasts were 

resuspended with MMg medium to be at a final concentration of 1.6 x 106 protoplasts/ml of 

MMg. The protoplasts were left at room temperature for 20 min. 600 µl of protoplasts were 

mixed gently with 60 µg of linearized construct. 700 µl of PEG 4000/Ca was then added. The 

mixture was left at room temperature for 30 min, then diluted with 3 ml of W5 medium. The 

diluted protoplasts were centrifuged at 700 rpm (250 g) for 5 min to remove PEG. The 
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supernatant was discarded and the pellet was resuspended with 2 ml of melted PRMT/CaCl2. The 

protoplast solution was spread into 2 cellophane-covered PRMB plates (1 ml/plate). The plates 

were sealed with micropore tape and placed in a 25°C growth chamber. Four days after the 

transformation, the cellophane, along with the  transformed plants, was transferred to selective 

medium plate. One week later, the cellophane was transferred to a normal PpNH4 plate. One 

week after that, the cellophane was transferred back to a selective medium plate. One week later, 

the surviving plants were picked and placed in a new selective medium plate. When the plants 

were big enough, they were expanded to one PpNH4 plate (to maintain the line) and one PpNO3 

plate (to screen the line by confocal microscopy). 

2.1.5 Preparation of Moss Samples For Imaging 

MatTek 35mm Glass Bottom Dishes (holey slides) were sterilized by exposing them to UV 

light for 20 minutes. A sterile 1000 µl sterile pipet tip was placed upside down on the bottom of 

the plate in the middle of the glass. Solid PpNO3 media was melted in the microwave oven. 5 ml 

was added to the plate around the tip and left to solidify for 20 minutes. After the tip was 

removed, 70 µl of melted solid PpNO3 media was added in the plate inside the hole and spread 

well with a sterile pipet tip. A small piece of moss tissue from a one week old PpNO3 plate was 

placed horizontally inside the hole. The plates were taped with micropore tape (3M 

Micropore™) and placed in the growth chamber. Cells were observed at least 4 days after 

plating.  
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2.2. Imaging and Data Analysis 

2.2.1 Imaging 

For all imaging, the inverted Nikon Ti microscope was used with a 60X lens (Nikon Apo 

TIRF, NA=1.49). When imaging, the chamber with 1-2 week old plants was placed on the stage. 

Z-stacks at 0.5 µm intervals, with 7-9 planes, were acquired for multiple colors for each cell. 

Multiple cells were imaged with a 2 minute interval; with this setup, a total of 3-5 cells can be 

simultaneously recorded. The exposure time was 50 msec, and the intensity of the LED 

illuminator was adjusted, depending on the sample. 

For samples without drug treatment and with latrunculin B (LatB) treatment, the lengths of 

the movies were 6-8 hours, and for samples with BFA treatment, the length of the movies were 

less than 3 hours. For the low concentration of LatB treatment, 200 µl of 10 µM LatB were 

added into the hole of the chamber. For high concentration of LatB treatment, a total of 500 µl of 

100 µM LatB were added to the dish. 200 µl were placed in the hole and 300 µl were spread on 

the gel around the hole.  When treated with brefeldin A (BFA), 200 µl of 10 µM BFA was added 

into the dish. Imaging acquisition started 20 minutes after adding the drug.  

2.2.2 Data Analysis 

As shown in Figure II.1, for data analysis, frames that contain cell division events were 

duplicated from raw images. Then the duplicated images were rotated to make sure every cell 

was in the same orientation. A 250 pixels X 250 pixels area was cropped around where cell 

division happened. In the movies presented, the last frame where the nuclear envelope was still 

intact was set as frame 1 and time 0. Multiple Z planes will be projected into single plane image. 
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To measure the signal intensity changes on the spindle and at the phragmoplast, all the 

multiple planes movies were Z-projected by average intensity. A rectangular shaped region of 

interest was made bordering the division plane and the mean of signals in that area (Ms) was 

measured over time by ImageJ. The length and width varied a little, depending on the width of 

the cell, but the ratio of length to width was kept constant at 5:3 to make sure the similar portion 

of the cell was measured. The background signal (Mb) was measured by measuring the mean of 

the signal in some place outside and away from the cells.  

After obtaining these values, the background was subtracted from Ms. But because 

different cells had different expression levels of labeled proteins, and the positions of the cells in 

Figure II.1. Flow chart of data processing. 
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the dish also affected the illuminations, after the background was subtracted, there still were 

differences between different cells in fluorescence intensity. To make the signals more 

comparable they were normalized by the signal immediately after nuclear envelope breakdown: 

(Ms-Mb) in each frame was divided by (Ms-Mb) in the second frame to get the relative 

fluorescent intensity of the signals (Mr) at the division plane.  

Mri= (Msi-Mbi)/(Ms2-Mb2) 

Mr shows the fluorescent changes relative to the initial fluorescent intensity after the nuclear 

envelope breaks down. The second frame was used to correct this because when the nuclear 

envelope is still intact, there is a fluorescence void in the region of interest, thus it cannot show 

the differences that are useful for comparison. The second frame could always show the initial 

fluorescence quite well, though there was always a small accumulation of myosin XI in the 

second frame, which reduced slightly the relative accumulation of myosin XI.  
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3. RESULTS 

3.1. Timing for Cell Division 

To test whether I could record Physcomitrella patens cell division efficiently with 

fluorescence microscopy, I used a moss line expressing α-tubulin tagged with sGFP (Hiwatashi 

et al., 2008). I found that after nuclear envelope breakdown, the mitotic spindle appeared in the 

next frame (Figure 1). At approximately 12 min after nuclear envelope breakdown, the 

phragmoplast formed and started expending towards the periphery. Phragmoplast formation is 

evident by the change in the configuration of the microtubule array from elongated spindle to 

box-like (Figure 1, 12 min panel). Based on this result, I used 12 min as the timing for the 

formation of the phragmoplast.  

 

Figure 1. Example of cell division in tubulin-sGFP line. After the nuclear envelope breaks down at time 0, the 
spindle forms at the division plane. Typically, 12 min later, the phragmoplast forms in the middle of the division 
plane and starts to expand towards the side membrane of the dividing cell. (Scale bar: 10 um) 
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3.2. Myosin XI and Actin Localization 

To examine the localization of myosin XI during cell division, I used two moss lines 

derived from a line in which myosin XIa had been tagged at its C terminus with three copies of 

mEGFP (myosin XI-3mEGFP). The behavior of myosin XI-3mEGFP in both lines seemed 

identical.An example of this behavior is shown in Figure 2A. In both lines, myosin XI started 

accumulating on the spindle, immediately after nuclear envelope breakdown. After 

approximately 12 min, the localization of myosin XI changed into a fine line along the center of 

the phragmoplast. As shown in Figure 2B, the quantification of the accumulations of myosin XI 

in both lines showed that they are very similar to each other and wer clearly different from that 

of 3mEGFP alone (Compare Figure 2 and 3). The clear difference between the localization of 

myosin XI-3mEGFP and 3mEGFP indicates that myosin XI accumulates specifically on the 

mitotic spindle and the phragmoplast. 
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Figure 2 continued 

 

Figure 2. Myosin XI localization during cell division. A. A representative example of the localization of myosin 
XI during cell division. After nuclear envelope breaks down at time 0, myosin XI accumulates in the middle of the 
spindle and after the formation of the phragmoplast, myosin XI forms a fine line along the cell plate at the 
phragmoplast. (Scale bar: 10 µm) B. The relative fluorescence intensity of myosin XI at the division plane during 
cell division. The dash line is at time 12, when the formation of the phragmoplast begins. Error bar shows standard 
error of the mean. 
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Figure 3. Example of cell division in 3mEGFP control line. After the nuclear envelope breaks down, there is no 
clear accumulation of EGFP signal at the division plane. Because there is more accessible volume at the 
phragmoplast, more diffusing mEGFP signal appears at the division plane. (Scale bar: 10 µm) 
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To determine if the localization of myosin XI coincided with that of filamentous actin, I 

observed the localization of actin filaments during cell division using the lifeact-mEGFP line. 

Surprisingly, I found that actin did not accumulate on the mitotic spindle, in contrast to myosin 

XI, but did localize later at the phragmoplast (Figure 4A). Quantification of the increase of F-

actin signal was above background levels as determined by comparing with the level of diffusing 

3mEGFP. These results suggest that in P. patens protonemata, F-actin is not present on the 

mitotic spindle, but it accumulates at the phragmoplast. 
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Figure 4 continued 

  

Figure 4. F-actin localization during cell division. A. A representative example of the localization of F-actin 
during cell division. After nuclear envelope breaks down at time 0, there is no accumulation of F-actin on the 
spindle, but after the formation of the phragmoplast at time 12 min, actin filaments start to accumulate along the 
cell plate at the phragmoplast. F-actin was visualized with lifeact-mEGFP (Scale bar: 10 µm) B. The relative 
fluorescence intensity of actin at the division plane during cell division. The dash line is at time 12, when the 
formation of the phragmoplast begins.  Error bar shows standard error of the mean. 
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To test the effect of depolymerizing F-actin on the localization of myosin XI, I used the 

actin depolymerization drug, latrunculin B (LatB). Initially, I used 200 µl of 10µM LatB to 

depolymerize actin. After I added the drug, the tip cells stopped growing quickly and the actin 

accumulation at the phragmoplast was inhibited (Figure 5); however, cell division was not 

inhibited. I found that myosin XI still accumulated on the spindle and at the phragmoplast, 

though it seemed that LatB had some effects on the accumulation of myosin XI at the 

phragmoplast (Figure 6 and 7B). To verify that I depolymerized all the actin filaments in the 

cell, I used a higher concentration of LatB (100 µM) (Figure 5B and 6B). Despite the higher 

concentration of LatB, I was still able to find dividing cells, and the results were very similar to 

those from the 10 µM LatB treatment (Figure 6). Using one–way ANOVA, I analyzed 

fluorescence intensities from times 8 and 22 min (Figure 7C and 7D), and found that at time 8 

min, myosin XI accumulation, with and without LatB treatment, was significantly different from 

the 3mEGFP group, while at time 22 min, each group was significantly different from others 

(Figure 7D). These results suggest that two different mechanisms exist for myosin XI 

accumulation: an F-actin independent mechanism at the spindle and partially at the 

phragmoplast, and an F-actin dependent one for the rest of myosin XI at the phragmoplast. 

 

 

 

 



 

31 
 

  

 

Figure 5. F-actin localization after 10 µM-100 µM Latrunculin B treatment. A. A representative example of the 
localization of F-actin during cell division following LatB treatment. No clear accumulation of F-actin anywhere 
during the cell division is observed, similar to the localization of diffusing EGFP. (Scale bar: 10 µm) B. 
Quantification of the relative fluorescence intensity of lifeact-mEGFP labeled F-actin at the division plane during 
cell division with LatB. The dash line is at time 12, when the formation of the phragmoplast begins. Error bar shows 
standard error of the mean. 
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Figure 6. Myosin XI localization with 10 µM-100 µM LatB treatment. A. A representative example of the 
localization of myosin XI during cell division following LatB treatment. Myosin XI still accumulates at both the 
spindle and the phragmoplast after depolymerizing actin filaments with LatB (Scale bar: 10 µm) B. Quantification 
of the relative fluorescence intensity of myosin XI-3mEGFP at the division plane during cell division in the 
presence of LatB. Error bar shows standard error of the mean. 
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Figure 7 continued 

 

 
Figure 7. Comparison of F-actin and myosin XI signals during cell division with different Latrunculin B 
treatments. A. The relative fluorescence intensity of actin at the division plane during cell division with or without 
LatB. In the absence of LatB, F-actin accumulates only at the phragmoplast, but when in presence of LatB, no 
matter in which condition, the lifeact-mEGFP signal becomes similar to the signal of 3mEGFP. B. The relative 
fluorescence intensity of myosin XI-3mEGFP at the division plane during cell division with or without LatB. The 
accumulation of myosin XI on the spindle is not affected by depolymerizing F-actin, but the accumulation of 
myosin XI at the phragmoplast is partially inhibited by LatB treatment. In both A and B, the dash line is at time 12, 
when the formation of the phragmoplast begins. Error bar shows standard error of the mean.  C and D show the 
statistical analysis in chosen time points, 8 min and 22 min from Figure 7 A and B, respectively. Box represents 
standard error of the mean and the whisker represents standard deviation. ＊means P<0.05, ＊＊＊Means P<0.01. 
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3.3. Myosin XI and Vesicles 

To further investigate the actin-independent localization of myosin XI, I tested the 

possibility that myosin XI was being brought to these locations passively by vesicles. To 

visualize vesicles, I used two types of vesicle marker: the v-SNARE--vesicle associated 

membrane proteins (VAMPs), and members of vesicle trafficking regulatory proteins--RabAs. 

All the vesicle markers that I tested accumulated only at the phragmoplast, but not at the mitotic 

spindle (Figure 8, 9 and 10). Hence, these vesicles are likely bringing materials to the cell plate, 

but not the spindle. When comparing the level of accumulation of different RabAs, I found there 

was a significant difference between RabA53 and RabA21 (Figure 10C), thus it seems P, patens 

protonemata cells were using these vesicles selectively. Interestingly, when I treated the 

3mCherry-VAMP line with LatB, I also observed a decrease of VAMP signal at the 

phragmoplast, similar to the case of myosin XI (Figure 11). Together, these results indicate that 

the VAMP and RabA-labeled vesicles are not responsible for the actin-independent localization 

of myosin XI to the mitotic spindle.  
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Figure 8. Localization of 3mCherry-VAMP during cell division. A representative example of the localization 
of 3mCherry-VAMP labeled vesicles during cell division. Note that there is no accumulation of VAMP signal on 
the spindle but VAMP signal increases significantly at the division plane after the phragmoplast is formed. (Scale 
bar: 10 µm) 
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Figure 9. RabA53 localization during cell division. A. A represenative example of the localization of 
3mCherry-RabA53 during cell division. There is no accumulation of RabA53 on the spindle (2-10 min), but after 
the formation of the phragmoplast at 12 min, there is a weak accumulation of RabA53 along the cell plate. (Scale 
bar: 10 µm) B. The relative fluorescence intensity of RabA53 at the division plane during cell division. In both 
RabA53 lines, the accumulation of RabA53 signal is only visible at the phragmoplast, and the accumulation 
pattern is almost identical. The dash line is at time 12, when the formation of the phragmoplast begins. Error bar 
shows standard error of the mean. 
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Figure 10 continued 

 

Figure 10. RabA21 localization during cell division. A. A representative example of the localization of 
3mEGFP-RabA21 during cell division. There is no accumulation of RabA21 on the spindle, but it accumulates 
along the cell plate after the formation of the phragmoplast. (Scale bar: 10 µm) B. The relative fluorescence 
intensity of RabA21 at the division plane during cell division. Similarly to RabA53 signal, before the formation 
of the phragmoplast, they are identical to 3mEGFP signals, but after the formation of the phragmoplast, the 
behaviors of these markers are different from diffusing 3mEGFP.  The dash line is at time 12, when the formation 
of the phragmoplast begins. Error bar shows standard error of the mean. C. shows the statistical analysis in 
chosen time points, 22 min from Figure 10 B. Box represents standard error of the mean and the whisker 
represents standard deviation. ＊means P<0.05, ＊＊＊Means P<0.01. 
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Figure 11. Legend in the next page. 
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To further evaluate the possibility that myosin XI was passively accumulating at the 

spindle because of its association with vesicles, I used the vesicle trafficking inhibitor, brefeldin 

A (BFA). When BFA was added to the moss cells, tip growth stopped, but surprisingly, not the 

initiation of cell division (Figure 12). Many of the tips started cell division, but they did not 

complete division as the cell plate could not expand normally (see Figure 12, 32 min panel). In 

these cells, myosin XI continued to accumulate on the spindle as well as at the phragmoplast; 

nevertheless, the localization of myosin XI at the division plane lasted longer than 1 hour.  

Figure 11. VAMP localization in the absence of F-actin. A. A representative example of the localization of 
VAMP during division of a cell treated with 100 µM LatB. Compared with Figure 8, the behavior of VAMP in 
the presence and absence of LatB treatment seems similar, but the accumulation of VAMP at the phragmoplast 
seems weaker when cells are treated with LatB. (Scale bar: 10 µm) B. Relative fluorescence intensity of VAMP 
at the division plane during cell division. When the cells are treated with LatB, the accumulation of VAMP at the 
phragmoplast is strongly reduced; nevertheless accumulation is not completely inhibited by LatB. The dash line is 
at time 12, normally when the formation of the phragmoplast begins. But in this cell line, cell division seems to 
proceed faster. Error bar shows standard error of the mean, but in VAMP+100 µM LatB group, because there are 
only two cells recorded in this condition, the error bar shows the distribution of two cells.  
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Figure 12. Representative example of the localization of myosin XI after brefeldin A treatment. Blocking 
vesicle trafficking does not affect the localization of myosin XI at the mitotic spindle and at the phragmoplast. 
However, since there are no vesicles supporting the expansion of the cell plate, myosin XI stays at the division 
plane much longer than under normal conditions. The bright field image from the last panel shows that even after 
1 hr, the cell plate did not form at the division plane. Arrow indicates the division plane (Scale bar: 10 µm). 
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Together these results suggest that myosin XI accumulation on the mitotic spindle is not 

dependent on vesicles. As for the myosin XI at the phragmoplast, there is likely a fraction of 

myosin XI there that is not associated with vesicles. 

3.4. Myosin XI and Endoplasmic Reticulum 

The endoplasmic reticulum (ER) has been implicated in plant cell division and has been 

shown to associate with the mitotic spindle (Gupton et al., 2006); hence, I also tested the 

colocalization of myosin XI and the ER during P. patens cell division. 

As shown in Figure 13, I found that the ER was present in the middle of the spindle in the 

first 2 min after nuclear envelope breakdown, but it quickly left the middle zone in the next 2 

min. Using dual color imaging, I observed after 4 min, the center of the spindle had only 

increasing myosin XI signal, but not ER signal (Figure 13B). Thus there does not seem to be 

colocalization between the ER and myosin XI on the spindle after 2 min following nuclear 

envelope breakdown. However, when the phragmoplast formed at 12 min, I could detect that ER 

started accumulate along the newly formed cell plate close to the myosin XI signal. These 

observations suggest that myosin XI and ER can potentially associate at the phragmoplast; 

nevertheless, because of the limit of the resolution of my imaging method, I could not determine 

if myosin XI and the ER directly interact at the phragmoplast.  
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Figure 13. (Legend in the next page) 
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Figure 13. A representative example of the localization of ER during cell division. A. An example of the 
localization of ER during cell division. After the nuclear envelope breaks down at time 0, the ER briefly localized 
in the middle of the division plane before time 4 min, but soon leaves the middle of the spindle. After the 
formation of the phragmoplast at 12 min, the ER signal starts to appear at the division plane along the cell plate. 
B. Colocalization image of myosin XI-3mEGFP (green) and mCherry-ER (red). Myosin XI and the ER do not 
colocalize 4 min after nuclear envelope breakdown, but after the phragmoplast is formed, they colocalize at the 
cell plate. (Scale bar: 10 µm) 
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4. DISCUSSION 

4.1. The Actin-independent Localization of Myosin XI 

Based on my observations, myosin XI appears to have two accumulating events at the 

division plane during cell division. One happens shortly after nuclear envelope breakdown, 

localizing at the center of the spindle; the second one happens about 12 min later, following the 

formation of the phragmoplast, localizing along the cell plate. 

In other plant systems, previous studies have shown F-actin localization on the mitotic 

spindle (Forer and Jackson, 1979; Seagull et al., 1987; Yasuda et al., 2005; Yu et al., 2006), as 

well as at the phragmoplast (Clayton and Lloyd, 1985), so I also looked at the localization of F-

actin during cell division in P. patens. My results are similar to previous studies in that F-actin 

localized to the phragmoplast, but I could not detect a significant increase of F-actin on the 

spindle, which is consistent with results from a previous report of cell division in P. patens (Wu 

and Bezanilla, 2014). Because myosin XI is an actin-dependent motor, the presence of F-actin at 

the phragmoplast could explain the localization of myosin XI at same place, but the absence of 

actin accumulation on the spindle suggested a different actin-independent mechanism for 

accumulation of myosin XI in this structure. It is possible that I could not observe F-actin on the 

spindle because the concentration of actin on the spindle was below my detection limit, or 

because the F-actin on the spindle was too dynamic for lifeact-mEGFP to bind to it. If this is the 

case, and the localization of myosin XI is dependent on actin filaments during cell division, 

myosin XI accumulation should disappear when actin filaments are depolymerized. 

Thus, to examine the relationships of actin filaments and myosin XI during cell division, I 

used the actin depolymerization drug, latrunculin B (LatB). At first, I used 200 µl of 10 µM 
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LatB, and saw that the tip cell stopped growing right after I added the drug, suggesting that there 

was a rapid inhibitory effect on F-actin. However, the cells continued to divide, though after 

division, some tip cells looked shorter than normal tip cells. In these post mitotic cells, I found 

that the localization of actin was totally disrupted: there was no clear accumulation of actin 

anywhere in the cell. Surprisingly, in the presence of LatB, I was still able to detect accumulation 

of myosin XI on the spindle and at the phragmoplast. The increase of myosin XI at the 

phragmoplast was partically affected by the drug, but I still saw a clear increase of myosin XI 

signal at the phragmoplast. A possible difficulty with this 10 µM LatB concentration was that 

there might not be enough drug present to prevent actin filament formations during cell division, 

as I could identify cells containing actin/myosin XI ectopic clusters similar to those detected 

when cells are treated with 10 µM concentration of LatB (Furt et al., 2013). So I increased the 

concentration of LatB to 100 µM and used 500 µl of it. Again, even at this higher concentration, 

I could detect the accumulation of myosin XI at both places, while there was no actin 

accumulation or the presence of ectopic clusters. Based on these results, and consistent with the 

previous studies (Wu and Bezanilla, 2014), I can conclude that actin is not essential for cell 

division in the protonemata of P. patens, and that the accumulation of myosin XI on the spindle 

is not actin dependent, while the accumulation of myosin XI at the phragmoplast is partially 

dependent on actin filaments.  

4.2. Myosin XI May not Be a Passive Passenger on the Mitotic Spindle 

The initial hypothesis I tested to explain the actin-independent behavior of myosin XI was 

that because myosin XI attaches to many vesicles and organelles in plant cells, these myosin XI 

molecules might simply be a passive passenger, brought to these locations by vesicles and 

organelles. 
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If myosin XI was brought to these locations passively, I should be able to find myosin XI 

colocalizing with vesicles or organelles. So I used double fluorescently labeled moss lines to 

verify if there was any colocalization of myosin XI and vesicles or organelles on the spindle and 

at the phragmoplast. Initially, I imaged myosin XI and a vesicle marker, the v-SNARE vesicle-

associated membrane protein (VAMP). As reported by other groups (Zhang et al., 2011), VAMP 

accumulated at the phragmoplast, but not on the spindle. I concluded that VAMP-containing 

vesicles are not good candidates for the vehicle that brings myosin XI to the spindle.  

Interestingly, when I used LatB to depolymerize actin filaments, I saw a clear decrease of 

VAMP signal at the phragmoplast, but the VAMP signal was not completely lost, which was 

similar to the case of myosin XI.  

Given the similar effect of LatB treatment on myosin XI and VAMP accumulation at the 

phragmoplast, it is possible that there are two types of VAMP-labeled vesicles and two 

populations of myosin XI. Alternatively, VAMP-labeled vesicles could have both myosin XI and 

kinesins attached, which allows them to move along both cytoskeletal elements.  

The following scenarios could explain the decrease of signals of myosin XI and VAMP 

labeled vesicles. One is that actin and myosin XI are responsible for accumulating of some of the 

vesicles to the cell plate directly. However, this actin-dependent vesicle accumulation is probably 

not essential for cell plate expansion; otherwise the expansion would be slower in the absence of 

F-actin, as cells would not have enough vesicles to sustain normal cell plate expansion. Instead, 

when I compared the time between nuclear envelope breakdowns and the cell plate attachment to 

side membranes, I did not find a huge difference; both occurred around 28 min in the presence or 

absence of F-actin. This observation is consistent with a previous report from another group 
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which showed that cell division proceeds at a normal rate after depolymerizing actin filaments 

(Gupton et al., 2006). 

 A different possibility is that the transport of vesicles in other parts of the cell is actin 

dependent, but the accumulation of these vesicles at the phragmoplast is not. Thus, when I 

depolymerized actin filaments, the numbers of vesicles that could reach the phragmoplast 

decreased, resulting in a decreased VAMP signal. I believe this scenario is also unlikely, because 

it does not explain that the duration of cell division is not altered when F-actin is absent as the 

diffusion of these vesicles might not be fast enough to satisfy the requirement for vesicles for 

normal cell plate expansion.  

A third more likely possible explanation is that actin is participating in the transport and 

recycling of vesicles at the cell plate. When actin filaments are absent, both the transport of 

vesicles towards the phragmoplast and the recycling of vesicles from the cell plate are stopped, 

thus, the increase of membrane at the phragmoplast maintains normal speed, though there might 

be small defects that I am not able to detect in this study. Further investigations, ideally using 

super resolution or electron microscopy, are needed to determine the function of actin during 

plant cell division. 

In addition to VAMP as a vesicle marker, I also examined the localization of RabA 

proteins, which are known to associate with vesicles (Qi and Zheng, 2011). We checked two 

types of RabAs in P. patens (Agar), and found that they all behave similarly to VAMPs; i.e., they 

did not colocalize with myosin XI on the mitotic spindle but they did accumulate at the 

phragmoplast. Thus, RabA-containing vesicles might not participate in the mechanism that 

brings myosin XI to the spindle. When I compared the increase in levels of different RabA 

proteins, I found they accumulated differently. From these observations, it seems that 
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protonemata cells selectively accumulate different vesicles into the cell plate to meet the needs 

for proper cell plate expansion. However, determining whether the localization of RabA-

containing vesicles is partially dependent on actin filament, just like VAMP containing vesicles, 

will require future testing with LatB treatments. 

To further investigate the relationship between myosin XI and vesicle trafficking, I used 

the vesicle trafficking inhibitor, brefeldin A (BFA), which has been used for many years to 

inhibit vesicle trafficking to the Golgi apparatus (Misumi et al., 1986; Yasuhara and Shibaoka; 

Lam et al., 2009). After adding BFA, tip cells stopped growing immediately, which indicates that 

the inhibitor is active in protonemata. Surprisingly, I was able to find cells that started cell 

division; however, these tip cells failed to complete cell division, because of failure of cell plate 

expansion. In these cells, I was still able to detect the accumulation of myosin XI on the spindle 

and the initial accumulation at the phragmoplast, though the signal of myosin XI at the 

phragmoplast did not increase as the phragmoplast and the cell plate failed to expand. But after I 

finished imaging, I could always find some cells with a strong myosin XI signal at the 

phragmoplast. These tip cells were very short as cell growth was arrested at the beginning, but 

they still could form the cell plate quite well. I think this was because different cells were 

exposed to the drug unevenly, with some having less than others, and also because BFA 

gradually loses its function due to the metabolism of this drug by the cells (Fujiwara et al., 1988). 

In future experiments, it will be important to find a higher concentration of BFA or a method of 

applying the drug that results in more consistent results. It will also be important to verify that I 

blocked all vesicle trafficking towards the phragmoplast, this could be done combining BFA 

treatment with the imaging of the vesicle markers discussed above. 
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These observations suggest that myosin XI is not attached to vesicles on the spindle. To 

further explore the mechanism of myosin XI localization to the spindle, I investigated the 

possibility that myosin XI was associated with the endoplasmic reticulum. The reason for this is 

that it has previously been reported that the ER is involved in cell division in plants (Gupton et 

al., 2006). To address this, I constructed a moss line with EGFP-labeled myosin XI and 

mCherry-labeled ER. In this line, I detected that the ER reached the center of the newly formed 

spindle, but it quickly left the middle zone, and in the following minutes, I could only detect the 

green signal of myosin XI there. It is possible that the initial accumulation of myosin XI in the 

spindle was directed by the ER, but this seems unlikely because the ER does not continue to 

accumulate in the middle zone. Following the formation of the phragmoplast, I was able to see 

the localization of the ER signal along the phragmoplast. However, due to the resolution of my 

movies I was not able to determine if myosin and the ER were interacting. 

Together, these results suggest that myosin XI is not a passive passenger on the mitotic 

spindle, and that myosin XI may have some novel function during cell division. 

4.3. Possible Actin-independent Roles of Myosin XI During Cell Division. 

Having examined the colocalization of myosin XI, two types of vesicle marker and the ER, 

and also after using a vesicle trafficking inhibitor to investigate the relationship between myosin 

XI and Golgi-derived vesicles, I think it is unlikely that myosin XI is passively transported to the 

spindle and the phragmoplast by vesicles or the ER. In this following section, I will explore other 

possibilities because there are many previous studies indicating myosins could have interesting 

functions not associated with actin (Lantz and Miller, 1998; Wu et al., 1998; Doyle et al., 2009).  
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One possibility is that myosin XI interacts with microtubules. There are some studies 

indicating this could be the case. For example, in 1998, Wu et al. showed that in mouse cells, 

myosin Va colocalized with microtubule organizing center (MTOC) without detectable F-actin 

on the spindle (Wu et al., 1998), and they also showed that this colocalization was not specific to 

mouse cells, as they also stained human cells (HeLa), and they still observed the localization of 

myosin Va at the MTOC. Similarly, Doyle showed in fission yeast that a class V myosin, 

myo51p could associate with spindle pole bodies (Doyle et al., 2009); they found that this 

association was independent of actin, but interestingly, dependent on stable microtubule 

networks. Since myosin XI and myosin V are homologues, it is possible they share the same 

ability to interact with microtubules. 

Another similar possibility is that myosin XI associates with microtubules through 

microtubule associated proteins (MAPs). Supporting evidence for this possibility was reported in 

Drosophila embryos (Lantz and Miller, 1998). Lantz et al. found that a class VI unconventional 

myosin was coexpressed with a microtubule binding protein in several tissues, and they 

colocalized to the same structures. They thought this interaction between myosin VI and the 

microtubule binding protein might help coordinate the interaction between microtubules and 

microfilaments. Furthermore, this reported interaction suggests that the interaction between 

myosins and microtubule binding proteins is possible. If this is the case in P. patens, in the 

future, I should be able to identify microtubule binding proteins that could interact with myosin 

XI during cell division. 

An alternative possibility is that myosin XI interacts with nuclear envelope proteins on the 

spindle and different structures at the phragmoplast. Tamura et al. showed that in Arabidopsis, 

one component in the linker of nucleoskeleton and cytoskeleton (LINC) complex, WIT1, could 
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interact with myosin XI-i (Tamura et al., 2013). In addition, a previous report showed that 

another protein in this complex localizes at the middle of the spindle during metaphase 

(Graumann and Evans, 2011). Hence this association could be the way in which myosin XI is 

brought to the spindle in P. patens - through the connection with the LINC complex. Though this 

is possible, I anticipate the other two alternative  possibilities I mentioned above are more likely 

for the following reasons: 1. During telophase, the LINC complex moves towards the cell poles 

with the chromosomes, while myosin XI appears to stay in the middle; 2. The association with 

the LINC complex does not explain the localization of myosin XI at the phragmoplast, as the 

LINC complex does not localizate there; 3. The association with the LINC complex still does not 

explain the function of myosin XI on the spindle, unless myosin XI interacts with other proteins 

besides F-actin. So if the LINC complex plays a role in bringing myosin XI to the spindle, there 

must be something else helping maintain the concentration of myosin XI at the midzone 

throughout cell division, and helping accumulate myosin XI at the phragmoplast. 

Since I was not able to find anything that colocalizes well with myosin XI on the spindle, it 

is hard for me to definitely state the function of myosin XI at the spindle or what myosin XI is 

associating with on the spindle. But after researching the literature, I was able to propose three 

possibilities as listed above. Furthermore, I think all these possibilities are not mutually 

exclusive; myosin XI could interact with microtubules or microtubule associated proteins to help 

regulate the formation of the spindle and the phragmoplast, or it could also help localize the  

LINC complex or similar structures to the middle of the spindle during metaphase through its 

interaction with both LINC complex and microtubules. To have a better understanding of myosin 

XI during cell division, more studies, such as myosin XI co-immunoprecipitations, are required, 

looking closer at its localization during cell division in plant cells. 
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4.4. Similarity of the Localizations of Myosin XI and Myosin VIII 

As showed by Wu and Bezanilla (Wu and Bezanilla, 2014), myosin VIII accumulates at the 

center of the spindle as well as at the phragmoplast, even in the absence of F-actin. Based on my 

data, it appears that myosin XI has the same localization as myosin VIII during cell division. 

Nevertheless, these two proteins have different functions during interphase in P. patens (Vidali 

et al., 2010; Wu et al., 2011). Furthermore, we do not have simultaneous imaging of both 

molecules, which makes a side-by-side comparison difficult. I was not able to identify any 

previous work using direct comparisons for the participation of these two myosins in other plant 

systems during cell division. Thus future comparison will require higher resolution images of 

myosin XI and the simultaneous localization of these two important proteins. 

An alternative way to address this problem is to look into the similarities between myosin 

XI and VIII, trying to identify something in common that could explain their similar behavior 

during cell division. Though I did not look at the sequence similarity across the complete 

molecules, myosin XI and myosin VIII both share an N-terminal SH3-like domain (See Figure 

I.3) (Thompson and Langford, 2002). Among the myosin superfamily, only myosin II, myosin 

VIII and myosin XI have this SH3-like domain at their N-terminus, and the function of this SH3-

like domain is unknown in plant myosins. Thus I suggest that this domain might be one possible 

reason that myosin VIII and myosin XI share a similar behavior during cell division.  

SH3 domain stands for the Src homology 3 domain, which is widely present in all 

eukaryotes. It is known as an important protein-interaction module, typically binding to proline-

rich peptides. In animal cells, many microtubule-associated proteins have these proline-rich 

peptides that could interact with other proteins with SH3 domains (Sontag et al., 2012). 
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Currently, little is known about plant microtubule-associated proteins, but in the future, we may 

be able to identify some microtubule-associated proteins with proline-rich peptides that can 

interact with myosin XI and VIII. 

Based on the N-terminal similarity of myosin XI and myosin VIII, and the importance of 

SH3 domain in protein-protein interaction, I think these myosins could interact with 

microtubules indirectly through the interaction between SH3-like domains and microtubule 

associated proteins, in a way illustrated in Figure IV.1. In the case of MAP65, it has been shown 

that MAP65 could work as a spring system to control the length of the overlapping part of two 

anti-parallel microtubules (Lansky et al., 2015). It is possible that by using myosin, plant cell 

could potentially gain several benefits: 1. Because myosin is usually bigger than MAPs (for 

instance, in tobacco, MAP65 is about 65kD in size (Smertenko et al., 2000), while myosin XI is 

about 175kD in size), the incorporation of myosin XI in the MAP “spring” system could reduce 

the number of MAP molecules required to get a similar effect; 2. Because myosin XI is abundant 

in the plant cytoplasm, cells do not need to synthesize more molecules and could simply recruit 

what is diffusing in the cytoplasm; 3. the incorporation of myosin XI may  control the distance 

between two MAP molecules, providing finer control of microtubule organization in both the 

spindle and the phragmoplast. 
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4.5. Difficulties in Determining the Functions of Actin and Myosins During 

Cell Division 

Because the spindle and the phragmoplast are usually described as microtubule structures, 

studies on these structures are dominated by research on microtubules, microtubule motors and 

microtubule-associated proteins. Not many reports are focused on studying actin and myosins 

during plant cell division. However, I was still able to find several articles where the presence of 

actin and myosins on the spindles was investigated with different methods (Forer and Jackson, 

1979; Seagull et al., 1987; Yasuda et al., 2005; Yu et al., 2006) as well as the presence of actin at 

the phragmoplast (Clayton and Lloyd, 1985; Molchan et al., 2002). 

Unfortunately, the importance of F-actin and myosin on the spindle and at the 

phragmoplast are still under debate. Some groups have shown there is localization of F-actin on 

Figure IV.1. Possible interaction between myosin and MAPs. Modified from (Lansky et al., 2015). Some 
microtubule associated proteins stay at the overlapping site of two anti-parallel microtubule filaments, regulating the 
length of the overlapping site. When myosin is present, myosin might interact with MAPs and increase the distance 
between two MAPs, helping control the formation of the microtubule structure.  
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the spindle, while others have not shown localization of actin on the spindle at all (Barak et al., 

1981; Sommi et al., 2011). Even if researchers agreed with the presence of actin and myosin on 

these structures, to determine the functions of these proteins is even more difficult. 

There are several major problems we face to understand the function of actin and myosins 

during cell division (Sandquist et al., 2011). The first problem is the existence of reports with 

different results obtained with the same drug treatments (Sampson and Pickett-Heaps, 2001; 

Yasuda et al., 2005); further complicating this problem is that even with the same drug in the 

same species, researchers get different results (Fabian and Forer, 2007; Xie and Forer, 2008). A 

separate problem is that because biological processes are usually interconnected, it is hard to tell 

whether a given abnormality is the indirect result of inhibiting a separate off-target process. 

Similarly, actin and myosins are important in many biological processes, and we have no drugs 

that can affect participating in a single process; when we treat the cells with drugs, it is hard to 

determine whether the abnormality is caused by the specific portion of actin / myosins at specific 

places at specific time.  
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5. CONCLUSIONS AND FUTURE DIRECTIONS 

5.1. Major Conclusions 

The results from this thesis indicate that in P. patens, after the nuclear envelope breaks 

down, myosin XI accumulates in the middle of the division plane, where the spindle localizes. 

This myosin XI localization is not dependent on actin filaments. So far, I could not find anything 

that colocalizes well with myosin XI on the spindle, thus I think myosin XI might have some 

novel functions that are independent of actin and are likely associated with microtubules. 

After the formation of the phragmoplast at about time 12 min, myosin XI stays along the 

cell plate and keeps accumulating as the cell plate expands toward the periphery. This myosin XI 

localization is partially actin-dependent. In addition to myosin XI, I also found vesicle markers, 

such as VAMPs and RabAs, that accumulate along the cell plate as well, and it appears the 

accumulation of these vesicles is partially actin-dependent, similar to myosin XI, indicating that 

actin plays a role in accumulating myosin XI and these vesicles at the division plane, though it is 

not critical for the normal cell plate expansion.  

Besides myosin XI and vesicles, I also tested the potential participation of the endoplasmic 

reticulum in P. patens cell division. ER stays around the spindle 4 min after the nuclear envelope 

breaks down, thus having no colocalization with myosin XI on the spindle. However, after the 

phragmoplast is formed, the ER signal appears along the cell plate, suggesting the involvement 

of ER in the formation of the cell plate. But because of the resolution of my movies, I could not 

tell if the ER is truly interacting with myosin XI or not. 

In summary, my work is the first attempt to show the localization of myosin XI in plant cell 

division, and shows the actin-independent localization of myosin XI. My results leave us with 
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new questions that require future research. This research of myosin XI in plant cell division will  

help us better understand this important motor, and ideally, it should enable us to control this 

motor protein to accomplish specific goals, such as accelerating plant cell growth and possibly 

increasing the yield of crops. 

5.2. Future Directions 

One of the major problems in this project is that I do not have enough sample numbers for 

the statistical analysis of some lines and treatments. More tests with these lines and drug 

treatments will strengthen the conclusions of this work.  

All my data was not acquired with high a resolution imaging method, because I had no 

experience investigating plant cell division. Initially, I wanted to record as many cells as possible 

so I might be able to get one or two division events. In order to detect finer structures and gain 

better localization information, I need to find ways to improve the quality of my acquired data, as 

well as to use a higher resolution method. One possible direction is to use image deconvolution 

to gain better localization information, which will reduce the out of focus background. Because I 

used epifluorescence microscopy, the out-focus light reduces the signal-to-noise ratio in my 

images. Although I can get a general idea of the localization of my labeled proteins, I cannot get 

more precise localizations of them. This is more critical when I try to image a structure as 

complex as the ER. Another direction is to use a different imaging method, for example a 

spinning-disc confocal microscope. Now that I have more experience and confidence recording 

plant cell division, I should be able to obtain much higher quality images and show more 

information about the localizations of the proteins I have been investigating. 
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 In addition to improving my movies and imaging method, I also would try to test the 

function of myosin XI. Since our lab already has a a myosin XI temperature sensitive line, I 

could try to disrupt the function of myosin XI during cell division by increasing the temperature 

when the cell starts dividing and see how plant cell division is affected. However, one major 

problem we have is we are not sure if the functional part of myosin XI during cell division is the 

part we mutated. If not, we need to try to make other mutants, such as a mutant lacking the SH3 

domain. The other way to test the function of myosin XI is try to use a myosin inhibitor, like 2,3-

Butanedione monoxime (BDM), which affects the ATP binding site on myosins. Unfortunately 

this inhibitor is known to have low specificity.  

To test the interaction between myosin XI and some other proteins, I suggest using an co-

immunoprecipitation assay. First, I would try to find an optimized procedure to lyses plant cells. 

After that, I would attach an anti-myosin XI antibody to beads, and pull down myosin XI, along 

with proteins that interact with myosin XI, in P. patens. Next, I would elute protein-protein 

interaction complex and use mass spectrometry to determine what is interacting with myosin XI. 

As we are interested in protein-protein interaction during cell division, before lysing the plant 

cells, I would also try to synchronize P. patens cell (Lucretti and Dolezel, 1995) and only lyse 

cells when most of cells are dividing.  

I could also try to do some tests based on my hypothesis on the interactions of myosin XI 

and microtubules. One way to do this is to make a double-labeled line and use better imaging 

methods to detect the localizations of myosin XI and microtubules with high resolution. 

Meanwhile, I could also try some in vitro tests with purified myosin XI and microtubules. If I 

could detect the interaction of myosin XI and microtubules, and figure out the effect of myosin 
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XI on the microtubules in vitro, I could conclude that one of the functions of myosin XI during 

cell division really is regulating microtubules.  

In addition, I could also try to detect the colocalization of myosin XI and some microtubule 

binding proteins, using double-labeled lines or in vitro binding assays, starting with the proteins 

reported in the literature. For example, MAP65 has been studied in P. patens during cell 

division, and it localizes to similar places as myosin XI during cell division (Kosetsu et al., 

2013), thus I could start with MAP65.I would use the RNAi construct developed by Kosetsu et 

al. (Kosetsu et al., 2013); if the localization of myosin XI is altered by RNAi, I could conclude 

that the localization of myosin XI is dependent on MAP65.  

To further test the importance of the SH3-like domain I mentioned before, I would also use 

inducible promoters to express mEGFP-labeled SH3-like domain from myosin XI into P. patens 

protonemata cells during cell division, if this SH3-like domain construct accumulates at the same 

position as myosin XI does, I would conclude the SH3-like domain is probably responsible for 

the localization of myosin XI during plant cell division. Alternatively, I could also use the same 

methods to express mEGFP-labeled myosin XI lacking SH3-like domain during cell division to 

confirm whether SH3-like domain is important for the localization of the localization of myosin 

XI at the mitotic spindle and the phragmoplast. 
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7. APPENDIX FOR MEDIUM 

7.1.Stock Solutions 

 FW 1X 500X Final Volume Weight 
MgSO4·7H2O 246.48 g/mol 1 mM 500 mM 500 mL 61.6 g 
KH2PO4 136.09 g/mol 1.84 mM 920 mM 500 mL 62.6 g 
Ca(NO3)2·4H2O 236.15 g/mol 3.4 mM 1700 mM 500 mL 200.7 g 
Di-ammonium tartrate 184.15 g/mol 2.72 mM 1360 mM 500 mL 125 g 
 
Micro elements FW 1X 1000X Final Volume Weight 
H3BO3 61.83 g/mol 9.93 µM 9.93 mM 614 mg 
CuSO4·5H2O 249.68 g/mol 220 nM 220 µM 55 mg 
MnCl2·4H2O 197.91 g/mol 1.97 µM 1.97 mM 390 mg 
CoCl2·6H2O 237.93 g/mol 230 nM 230 µM 1L 55 mg 
ZnSO4·7H2O 287.54 g/mol 190 nM 190 µM 55 mg 
KI 166 g/mol 168 nM 168 µM 28 mg 
NaMoO4·2H2O 241.95 g/mol 100 nM 100 µM 24 mg 
 
 FW Final Concentration Final Volume Weight 
CaCl2 147.02 g/mol 1 M 200 mL 29.4 g 
Mannitol 182.17 g/mol 0.8 M 500 mL 72.9 g 
MES 
*Adjust pH 5.7 with KOH 

195.24 g/mol 20 mM 500 mL 1.95 g 

MgCl2 203.3 g/mol 150 mM 500 mL 15.25 g 
NaCl 58.44 g/mol 500 mM 500 mL 14.61 g 
KCl 74.6 g/mol 50 mM 500 mL 1.86 g 
 
 

7.2.PpNH4 Medium 1X 

Recipe for 1L: 
MgSO4·7H2O – 500X   2 mL 
KH2PO4 – 500X   2 mL 
Ca(NO3)·4H2O – 500X  2 mL 
Di-ammonium tartrate   0.5 g 
FeSO4·7H2O   12.5mg 
Micro elements 1000X  1 mL 
H2O    Up to 1L 
If making solid medium add Agar directly to bottle 7g/1L 
Autoclave 20 minutes 121°C  
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7.3.PpNO3 Medium 1X 

Recipe for 1L: 
MgSO4·7H2O – 500X  2 mL 
KH2PO4 – 500X  2 mL 
Ca(NO3)·4H2O – 500X   2 mL 
FeSO4·7H2O   12.5mg 
Micro elements 100X  1 mL 
H2O    Up to 1L 
If making solid medium add Agar directly in the bottle 7-10g/1L 
Autoclave 20 minutes 121°C 
 

7.4.PRM-B 1X 

Recipe for 1L: 
MgSO4·7H2O – 500X   2 mL 
KH2PO4 – 500X   2 mL 
Ca(NO3)·4H2O – 500X  2 mL 
Di-ammonium tartrate               0.5 g 
FeSO4·7H2O   12.5mg 
Micro elements 1000X  1 mL 
Mannitol   60g 
H2O    Up to 1L 
Add Agar directly in the bottle 8g/1L and autoclave 20 minutes 121°C 
When medium cools down, add 10mL of 1M CaCl2 stock and then pour plates 
 

7.5.PRM-T 1X 

Recipe for 1L: 
MgSO4·7H2O – 500X   2 mL 
KH2PO4 – 500X   2 mL 
Ca(NO3)·4H2O – 500X  2 mL 
Di-ammonium tartrate – 500X  2 mL 
FeSO4·7H2O   12.5mg  
Micro elements 1000X  1 mL 
Mannitol   60g 
H2O    Up to 1L 
Add Agar directly in the bottle 6g/1L and autoclave 20 minutes 121°C, aliquot by 50mL/bottle 
Before use, melt medium and when medium cools down, add 0.5 mL of 1M CaCl2 stock per bottle 
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7.6.MMg Buffer 

Recipe for 100 mL: 
 Stock Final Concentration Final Volume
Mannitol 0.8 M 0.4 M 50 mL
MgCl2 150 mM 15 mM 10 mL
MES 20 mM pH 5.7 4 mM 20 mL
H2O   20 mL
 

7.7.W5 Buffer 

Recipe for 100 mL: 
 Stock  Final Concentration Final Volume
NaCl 500 mM 154 mM 30.8 mL
CaCl2 1M 125 mM 12.5 mL
KCl 50 mM 5 mM 10 mL
MES 20 mM pH 5.7 2 mM 10 mL
H2O   36.7 mL
 


