
An Investigation of Modular Dependencies in 
Aspects, Features and Classes 

 
By 

Shoushen Yang 

A Thesis 

Submitted to the Faculty 

of the 

WORCESTER POLYTECHNIC INSTITUTE 

in partial fulfillment of the requirements for the 

Degree of Master of Science 

In 

Computer Science 

by 

____________________________________ 
May 2007 

 
 
 
APPROVED: 

 

____________________________________ 

Professor George T. Heineman, Thesis Advisor 
 
 
____________________________________ 
Professor Gary Pollice, Thesis Reader 
 
 
____________________________________ 
Professor Michael Gennert, Head of Department 



ABSTRACT 

The essence of software design is to construct well-defined, encapsulated modules that are 

composed together to build the desired software application. There are several design paradigms 

in use today, including traditional Object-Oriented Programming (OOP), Feature-Oriented 

Programming (FOP), Aspect-Oriented Programming (AOP) and Instance-Oriented Programming 

(IOP). FOP studies the modularity of features in product lines, where a feature is an increment in 

program functionality. AOP aims to separate and modularize aspects when an aspect is a 

crosscutting concern. IOP, as an extension to FOP, makes the layers work like object factories. 

While each is good at solving different types of problems, they are closely related. The 

composition of modules is complicated because modules have (often hidden) dependencies on 

other modules. This thesis aims to better understand the way dependencies are managed by each 

approach. We focus on the dependencies caused by the inheritance relationship in OOD. We also 

focus on the precedence issue in AOP and FOP, that is, how designers are able to specify the 

order by which modules are composed together. Different precedence means different semantics, 

but the current tools can not guarantee the correct precedence is adopted. We first provide a way 

to help the designer better manage the dependencies in OOD, then we solve the precedence issue 

separately for AOP and FOP by providing a similar way to manage the dependencies in AOP 

and FOP. Based on this, we show that a unified model is possible to help manage the 

dependencies by using source code annotations to specify the designer intent. We evaluate our 

technique with use cases. 
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1 Introduction 

While there are numerous approaches to software design, they are based on the common idea of 

creating a design from modular building blocks. Over time, a design is expanded or changed by 

adding new modular building blocks to the design. In this thesis, we focus on the question of 

adding a new module Mn+1 to a design. This can be represented as the composition of a set of 

design modules: 

D = M1 ● M2 ● M3 ● … …● Mn ● Mn+1

where ● is some composition operator. Assuming the compositions occurs from left to right, 

then 

D = ((((M1 ● M2 ) ● M3 ) ● … …● Mn ) ● Mn+1 ) 

Given this model theory, we need to understand: 

1. what is possible to be a modular unit, and  

2. what is possible for the composition operator ●. 

 

This design question is more limited than the issue of general design because the modules M1, 

M2, … , Mn are not changed when we add a new module Mn+1. In this thesis, we investigate four 

design approaches: Object-Oriented Programming (OOP), Feature-Oriented Programming (FOP), 

Aspect-Oriented Programming (AOP) and Instance-Oriented Programming (IOP).  

 

In OOP, the modular units are simply classes, which may form a package as one modular unit. 

The other three approaches can all contain classes as units; however, in AOP the modular units 

may be aspects; in FOP, they may be features, composed with a set of classes or refined classes; 

while in IOP, they may be a set of instances. 

 

Regarding the linear composition shown above, it may happen that a modular unit is dependent 

on some other modular unit. These dependencies are complicated because software composition 

has an inherent order. Consider two functions f and g with the following definitions: 

f(x) = x + 5; 

g(x) = 2x; 

The composition between f and g has different result if we use different orders: 
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f ● g (x) = 2x +5; 

g ● f (x) = 2(x +5) = 2x + 10; 

Composing modular units is similar to composing functions. “M1 ● M2” may be different from 

“M2 ● M1”.  

 

There is a critical problem related to dependencies between modular units, namely how the 

precedence of the units impacts the semantic meaning or behavior of the software. There is some 

work related to this issue [18], but no general framework on guaranteeing correct precedence 

between the modular units. For example, Stoerzer et al in [18] demonstrated the precedence issue, 

analyzed the interference between AOP advice, provided a solution to detect the conflict between 

aspects, and came up with an implementation to tell the programmer what aspects the explicit 

precedence should be declared between. However, from the perspective of the designer [18] still 

could not tell when if a wrong explicit precedence was declared. 

 

For OOP, the composition is complex due to inheritance, association and aggregation 

relationships between the classes. What we most care about in this thesis is the composition 

caused by inheritance, because inheritance can make a newly-added modular unit inherit code 

from an existing unit, and this leads to the question of how the old code is inherited. We know 

that in Java the overriden method uses super to directly access code found in a superclass, but 

the use of super may have many possibilities. At this point, OOP is similar to FOP, which we 

now explain. 

 

For FOP or IOP, the composition is linear and straightforward; however the composition is more 

complex than it appears. In FOP, take the AHEAD suite [2] for example; while layers are 

composed linearly, the order of layers within the equation barely captures the relationship 

between them. Inspecting the code of the layers more closely, one may find that the superficial 

linear composition does not describe the semantics of the final generated code. The simplest 

example is that in FOP, if the programmer forgets to call Super(), the relationship will not 

exist between this layer and its parent layers; in addition, the refined layer can call Super() at 

the beginning of the refined method, or at the end of the code. We can treat this situation as 

caused by the precedence issue between the layers and the Super() invocation positions. In 

FOP the current strategy to guarantee the sequence of generated code is not enough. When 

considering FOP, we consider IOP at the same time by the ACDK project at WPI [3], because 
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IOP is based on the idea of FOP and provides the extension of the concept of instance. 

 

The composition in AOP is more complex due to the flexible woven strategy. A piece of advice 

can be embedded into any number of classes at the same time, by using wildcards in the 

joinpoints. When more and more aspects and classes are woven together, the final program may 

be unpredictable. And as many papers have pointed out that, different conflicts may exist between 

the different modular units [22] [23] [24]. That is, the composition may encounter some conflict 

problems. The precedence between the aspects during the composition is one of the possible 

reasons which cause the conflicts, and the issue is just what we will focus in this thesis. We 

consider the AspectJ framework [14] for AOP. AspectJ allows the programmers to specify the 

composition precedence between aspects by declaring precedence and the precedence between 

advice and the method in objects by declaring the advice to be before, after or around the 

joinpoint. However, similar to AHEAD, this is not enough as well. There is no way to guarantee a 

correct sequence is applied during the composition process. If some incorrect precedence is used, 

the programmer has to wait till the runtime to find it. 

 

In this thesis, we will solve the precedence problem for AOP, FOP and IOP separately, and 

define a unified model. We first analyze dependencies between the units by analyzing the data 

flow and control flow interference between aspects, features or classes. We then analyze which 

kinds of dependencies are useful to precedence by categorizing the dependencies. We finally 

investigate how to detect and solve the potential wrong semantics caused by wrong precedence, 

and come up with a unified model to resolve the precedence issue by using source code 

annotations. We test our solution with enough use cases. 

1.1 Motivation 

To the best of our knowledge, there is no general solution to guarantee the correct precedence of 

composition in IOP, FOP and AOP. Moreover, because of the similarity of AOP, IOP and FOP, 

the solutions in each methodology should be similar as well. Actually for FOP, there is only 

discussion on the precedence between layers in an equation which is insufficient as we 

demonstrate. In the next subsections, we will use examples to demonstrate why this issue is 

critical in AOP, IOP and FOP. Due to the similarity between IOP and FOP, we only show the 

example for FOP. 
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1.1.1 An AOP Example 

For AOP research, the aspect interference problem is a known issue [18]. The advice precedence 

problem is one example, where different precedence of aspects can cause different semantics. 

Here is a simplified TeleCom example taken from the AspectJ distribution [14].  

 

We will show step by step how the development process looks like for the simplified Tele-system 

and finally come up with the precedence problem between the aspects. Please note in this 

example we are not considering the multi-thread condition, which means we assume in the system 

there is only one phone call being made at a time. 

 

Let’s suppose the initial program for the system is like Figure 1. We only have the Connection 

class to manage the connection and there is no requirement to calculate how much the customer 

should pay for the calling (Assume at the beginning any call is free). 

  
public class Connection{ 
 void start(){ 
System.out.println("Starting the call."); 

} 
void stop(){ 
System.out.println("Stopping the call."); 

} 
public static void main(String[] args) throws InterruptedException{  

Connection conn = new Connection(); 
conn.start(); 

   //the customer is in the call 
  System.out.println("Calling..."); 

   Thread.sleep(1000); 
  conn.stop();  
} 

} 
 
The output: 
Starting the call. 
Calling... 
Stopping the call. 

 
Figure 1. Base Class – Connection 

 

Now we have the new requirement which asks to calculate how long every phone call lasts so that 

we can calculate how much every customer should pay. We plan to adopt AOP for the 

requirement change. We can use one aspect called Timing to calculate the time and one aspect 
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called Billing to calculate the bill. We know after a connection is stopped, the Timing aspect 

should calculate the time and the Billing aspect should calculate the bill. We have two 

programmers to work on this and after a discussion they decide to add a helper class called 

Timer as Figure 2 shows. The Timer class provides the ability to store the starting time and the 

ending time, and finally determine how long a phone call is. The Timing aspect needs to keep the 

starting and ending time by calling the Timer class. The Billing aspect needs to call Timer to 

get the time then calculate the bill after one connection is stopped. Then two of the programmers 

begin to work on each of the aspects. 

 

The two aspects are finished as Figure 3 shows. The programmer who is responsible for Timing 

has tested the aspect and is confident in it. The output is shown in Figure 4. At the same time the 

programmer for Billing also claims that he/she has done enough testing and the aspect works 

well. 

 
public class Timer{ 
public static long start, stop; 
public static void start() { 
start = System.currentTimeMillis(); 
System.out.println("Starting time:" + startTime); 
stop = start;  
} 
public static void stop() { 
stop = System.currentTimeMillis();  
System.out.println("Stopping time:" + stopTime); 
} 
public static long getTime() { 
  return stop - start;  
}  

} 
 

Figure 2. Helper Class – Timer 
 

public aspect Timing{  
pointcut start (): call(void

Connection.start()); 
before(): start () { 

     Timer.start();  
}
pointcut end (): call(void 
Connection.stop()); 

 

after(): end () { 
     Timer.stop();  

} 
} 

Public aspect Billing{ 
 private long rate = 10;     

pointcut end (): call(void 
Connection.stop()); 

 after():end () { 
     long time = Timer.getTime();  

long cost = rate * time;      
System.out.println("The cost 
is: " + cost);  

} 
} 

 
Figure 3. Aspects – Timing and Billing 
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The output: 
Starting time:1169736011125 
Starting the call. 
Calling... 
Stopping the call. 
Stopping time:1169736012156 

 
Figure 4. Output when weaving only aspect Timing 

 
Then they begin to integrate the two aspects with the old code. However after the integration they 

find the output is not as expected, as shown in Figure 5. 

 
The output: 
Starting time:1169751255406 
Starting the call. 
Calling... 
Stopping the call. 
The cost is: 0 
Stopping time:1169751256406 

 
Figure 5. Output when weaving two aspects – Timing and Billing 

 

From the output we can see the cost is 0. So they begin to investigate in and they determine that 

the bill is calculated before the time is calculated. And the reason is that a random precedence is 

used when no explicit declaration on this is made. 

 

After they realize the reason they add a new aspect to specify the precedence between the two 

aspects, as shown in Figure 6. 

 
public aspect Precedence{ 
 declare precedence: Timing, Billing; 
} 

 
Figure 6. Wrong aspect precedence 

 

Then they weave all of them and run the program again. Unfortunately, they still get the same 

wrong output. The reason is that an after advice is used on the pointcut, so the preceded aspect is 

actually executed afterwards. Then they figure out the reason and change the order of the two 

aspects in the declare statement, as Figure 7 shows. 

 
public aspect Precedence{ 
 declare precedence: Billing, Timing; 
} 

 
Figure 7. Correct aspect precedence 
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After they weave the three aspects together with the other two classes, they find that finally the 

problem is solved. Figure 8 shows the correct output. 

 
The output: 
Starting time:1169751279421 
Starting the call. 
Calling... 
Stopping the call. 
Stopping time:1169751280421 
The cost is: 10000 

 
Figure 8. Output when specifying the correct precedence 

 
 

From this example, we can see the precedence issue may cause challenge, and the current strategy 

can not guarantee a correct semantics. The verification can only be done during runtime, and 

there is no efficient way to detect this kind of problem. We propose that one can detect invalid 

semantics during compile time. 

1.1.2 An FOP Example 

FOP provides no standard way to identify the precedence between features. The lack of similar 

discussion in FOP is the primary motivation for the proposal work. We argue that it is not good 

enough to only depend on the implicit precedence in an equation:  

 

D = M1 ● M2 ● M3 ● … …● Mn ● Mn+1

 

We use the simplified TeleCom example from the prior section to demonstrate FOP. As in AOP, 

we will also show step by step how the development process looks like and finally come up with 

the precedence problem between the layers. Once again, assume in the system there is only one 

phone call at a time. 
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public class Connection{ 
 void start(){ 
  System.out.println("Starting the call."); 
 }  
 void stop() { 
  System.out.println("Stopping the call."); 
 } 
 public static void main(String[] args) throws InterruptedException 
 { 
  Connection conn = new Connection(); 
  conn.start(); 
   //the customer is in the call 
  System.out.println("Calling..."); 
  Thread.sleep(1000); 
  conn.stop(); 
 }  
} 

The output: 

 
 

Figure 9. Base Layer (Layer 0) – Connection 
 

Let’s suppose the initial program for the system is like Figure 9, which is the base layer (layer 0) 

and actually exactly the same as base program in AOP. We only have the Connection class to 

manage the connection and there is no requirement to calculate how much the customer should 

pay for the calling (Assume at the beginning any call is free). And of course the output is also the 

same in AOP. 

 

Now we have the new requirement (again, same as in AOP) which asks to calculate how long 

every phone call lasts so that we can calculate how much every customer should pay. We plan to 

adopt FOP for the requirement change because we know it is also reasonable to use FOP for this 

example. We can have a layer called Timing to calculate the time and a layer called Billing to 

calculate the bill. We can also add a helper class called Timer as Figure 10 shows (same as in 

AOP). The Timer class provides the ability to store the starting time and the ending time, and 

finally provide how long a phone call is. We put Timer and Timing layer to calculate the time. 

We know after a connection is stopped, the Timing layer should calculate the time and the Billing 

layer should calculate the bill. So apparently Timing should be before Billing.  

 

The two layers are finished as Figure 11 shows. By only applying Timing we can get the output as 
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shown in Figure 12. By applying Billing together with Timing we get the output as Figure 13 

shows. Figure 14 shows the architecture in AHEAD. 

 
public class Timer{ 
 public static long start, stop; 
    public static void start() { 
        start = System.currentTimeMillis(); 
        System.out.println("Starting time:" + start); 
        stop = start; 
    } 
    public static void stop() { 
        stop = System.currentTimeMillis(); 
        System.out.println("Stopping time:" + stop); 
    }  
    public static long getTime() { 
        return stop - start; 
    }  
} 

 
Figure 10. Helper Class – Timer 

 

However if we use the wrong precedence between the Timing layer and Billing layer, such as 

composing Billing before Timing (this may happen by mistake), we will get the wrong output as 

Figure 15 shows. 

 

Even if we can guarantee the layers’ precedence between each other, there are still potential 

problems. In the Billing layer in Figure 11, a stop() call to its Super() method (i.e., the layer 

which Timing refines) must be invoked before the other code. But what will happen if the 

programmer forgets to call it, or even put the wrong order with the other code? In both cases, we 

will get the wrong semantics. For example if we delete the stop() call to its Super() method, 

we will get the output as Figure 16 shows. And if we invoke the Super() at the end of the 

stop() method, we will get the wrong output as Figure 17 shows. 
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refines class Connection{ 
 void start(){ 
  Timer.start(); 
  Super().start(); 
 } 
 void stop(){ 
  Super().stop(); 
  Timer.stop(); 
 } 
} 

refines class Connection{ 
 private long rate = 10; 
 void stop(){ 
  Super().stop(); 
     long time = Timer.getTime(); 
     long cost = rate * time;      
     System.out.println("The cost 
is: " + cost); 
 } 
} 

 
Figure 11. Timing (left) and Billing (right) 

 
The output: 

 
 

Figure 12. Output when weaving only Timing 
 

The output: 

 
 

Figure 13. Output when weaving two layers – Timing and Billing 
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Figure 14. The whole architecture in AHEAD 

 

The output: 

 
 

Figure 15. Output when Timing is after Billing 
 
 

The output: 

 
 

Figure 16. Output when forgetting the call to Super() in Billing 
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The output: 

 
 

Figure 17. Output when Super() is called after the other code in Billing 
 

From the example, we can see, in AHEAD, the dependency is maintained by the refines and 

Super() keywords between layers together with the sequence of the layers. The equation file 

only provides the high-level structure of the system composition and there are numerous 

implementations that could alter, often greatly, the semantic understanding of the resulting system, 

by calling Super() at different places, or if the programmer misses the Super() invocation 

just through carelessness. There is no way to specify or capture this missing invocation. Thus it’s 

not guaranteed when we want to do conservative weaving, which requires a Super() call must 

happen exactly once [10]. We need to not only guarantee the correctness of high-level structure, 

but also guarantee the correct invocation of the super call. 

1.2 Related work 

Comparison and contrast have been deeply discussed between AOP and FOP. For example [4] 

shows when to use features and when to use aspects by case study. At the same time, many 

researchers are working on unifying the different paradigms. [8] tries to unify AOP and 

traditional OOD. [17] uses Aspectual Mixin Layers to bring concert between FOP and AOP. 

 

About the interference between features or aspects, [10] addresses the question of semantic 

reasoning about multiple weavings, by considering semantic refinement for FOP where 

components are built from features and weavings. [18] presents an interference analysis between 

the aspects and provides a solution to detect and solve the conflicts, but it can not guarantee a 

correct precedence is used. [22] aims to detect the semantics conflict between crosscutting 

concerns in AOP. In [24], a tool named Alpheus is given, which allows users to specify aspects 

dependencies and to specify conflicts and resolution rules. In [5], a framework is proposed to 

support conflict detection and resolution, which is more powerful than the declare precedence 

construct of AspectJ. [26] proposes a combined pointer and effect analysis to classify aspects by 

their effects on the base system. [27] addresses the increased complexity of AspectJ, and also 
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propose one solution to solve the precedence issue. [37] investigates into the incompatible and 

inconsistent interactions when multiple aspect languages are used when implementing a system. 

[37] also illustrates how to solve the adverse interactions. 

 

ACDK is the ongoing research being conducted in WPI [3] to implement the idea of IOP. For the 

precedence issue, ACDK extends the AHEAD suite [2] to allow the users to specify concerns 

between layers. ACDK also provides an easy-to-use UI to view the concerns. 
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2 Background 

2.1 Object-Oriented Design (OOD) 

The idea of object-oriented (OO) originated in the 1960s; however it was not commonly used in 

mainstream software application development until the 1990s. Today most programming 

languages support Object-Oriented Programming. Object-oriented design (OOD) is concerned 

with designing a model by separating the requirements as different objects. 

 

In the methodology of OO, the main composed element is called a class, which contains 

constructors, methods and fields. A class is generalized from objects which have the same 

characteristics in dynamic, run-time form. Once a class is defined, objects can be instantiated 

from it. Fields (also called attributes or properties) describe the information defined by a class and 

therefore maintained by an object. A method defines executable behavior for a class. Methods can 

be used to update the state of the object, where state is defined to be the set of the values of an 

object’s fields. 

 

A subclass can extend a class to create a new class. Subclasses can have new fields to describe the 

new characteristics of the subclasses and new methods that define their new behavior. Also, a 

subclass can change the methods that it inherited from its superclass (also known as the parent 

class) – such methods in the subclass are called overriden methods. The mechanism of 

inheritance introduces two concerns: how is the the constructor in the subclass defined, and how 

do overriden methods in the subclass alter the behavior of the method as defined in the parent 

class. 

 

Constructors in a subclass must follow strict constraints. If the parent class uses a default 

constructor (i.e., a no-argument constructor) then the subclass can continue to use the default 

constructor or create its own constructor without any constraint. However, if the parent class has a 

constructor which is not the default one (i.e., there are typed parameters), the subclass must 

explicitly define a constructor, and in the constructor, a super() call to one of the constructors 

in the parent class must be explicitly invokes as the first statement of the constructor in the 

subclass. In addition, the super() constructor may only be invoked once. These constraints are 
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understandable since constructors are used to initialize objects, and a subclass must rely on its 

superclass to properly initialize the object from its perspective before the subclass can initialize 

the object. If the superclass were not initialized first, some inherited fields could be used without 

definition. All in all, constructors are special and strict constraints are necessary to guarantee that 

a correct object can be created from the class. 

 

Regarding overriden methods, there are few constraints on how (or when) to call the super 

method. The subclass may never call the super method, or it could call the super method 

multiple times. We believe this lack of constraints will cause problems. For example, a parent 

class might expect that a super call is invoked in subclasses, but if it is not invocated (this is 

possibly done purposely, also maybe through carelessness), the compiler is unable to detect an 

error, or even flag a warning. A potential defect may arise. Besides, the location of the super 

invocation may generate different semantic code. We have conducted a deep analysis on this topic 

in Section 3.1 . 

 

Note that coupling and cohesion are the way to evaluate the dependencies in traditional 

Object-Oriented Software Engineering (OOSE) and much research has been conducted on the 

topic (see [20] for a survey). However in OOD there is no way to explicitly capture dependencies 

between classes, which lead to fragile code. We try to capture the dependencies caused by 

inheritance to avoid the fragile code. More information on the OOD paradigm can be found 

easily (for example, [28] gives a good explanation). 

 

2.2 Aspect-Oriented Programming (AOP) 

The essence of software design is to construct well-defined, encapsulated modules that are 

composed together to build the desired software application. However, designers still have 

difficulty fully dividing a problem as a completely modular and encapsulated model. Although 

breaking a problem into objects makes sense, some pieces of functionality must be across objects. 

Aspect-Oriented Programming (AOP) is one of the solutions to the problem.  

 

AOP is just a concept, so it is not restricted to a specific programming language. There have been 

different frameworks of AOP for the extensions of different programming languages, for example, 

the tools that support AOP for Java include: AspectJ, AspectWerkz, JBoss AOP etc, the tools for 
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C++ include: AspectC++ and FeatureC++, and tools for Ruby include AspectR. In this thesis, we 

will use AspectJ as the framework for the explanation of the concepts and examples. A small 

example would be provided to explain how to use AOP for a project. Some interesting stuff 

related to AspectJ would be introduced briefly. But before that, we will first introduce some 

concepts in AOP. 

 

2.2.1  Basic Concepts 

Aspect: An aspect is a modular unit of crosscutting implementation [36]. It encapsulates 

behaviors that can be injected into multiple classes as reusable modules. A typical implementation 

process with AOP is, we first implement our project, and then we do separately with crosscutting 

concerns in the code by implementing aspects. Finally, both the code and aspects are woven into a 

final executable form with an aspect weaver. 

 

Crosscutting concerns: Though many classes in an OO model perform a single, specific function, 

they often share some common requirements with other classes. For instance, we may want to add 

logging to classes whenever a thread enters or exits a method. With the traditional OO paradigm, 

we have to have corresponding code in every class. Thus, even though the primary functionality 

of each class is very different, the code for secondary functionality is sometimes identical. Those 

pieces of secondary functionality are called crosscutting concerns. 

 

Join Points: A join point means to define a point in the program flow, where advice can be woven 

into the code of an application. For example, a join point can be defined on the following actions: 

 Method call, Method execution 

 Constructor call, Constructor execution 

 Object pre-initialization, Object initialization 

 Field reference, Field set 

 Handler execution 

 Advice execution 

 

An example of a join point for a method call would be like:  

 

 call(void Connection.stop()) 
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The join point means the point when the stop() method in the Connection class is called. 

 

For one statement of a join point, you can use wildcards to represent many join points, or plus (+) 

to represent the subclasses, for example: 

call(void *.stop()) means the points when the stop() method in any class is called. 

 

Point-cut: A pointcut is a set of join points. This is the term given to the point of execution in the 

application at which crosscutting concern needs to be applied. Whenever the program execution 

reaches one of the join points described in the pointcut, a piece of code associated with the 

pointcut (called advice) is executed. An example to define a pointcut is: 

 

 pointcut myPointCut(): call(void Connection.stop())|| 

                               call(void Connection.start()); 

 

This pointcut specifies a pointcut when the stop() or start() method is called in the 

Connection class. 

 

Advice: This is the additional code that you want to apply to your existing application. The 

advice may have the following types: 

 before 

 around 

 after 

 after 

 after returning 

 after throwing 

 

An example to a piece of advice is like: 

after():myPointCut () { 

    System.out.println("This is my advice"); 

   } 

 

This advice means to add additional code after the previous pointcut is reached. 
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2.2.2  A Small Example 

Suppose you are working on a banking system. You know in every operation of the account, the 

authentication must be performed to make sure that the user has the right. In traditional 

programming, you may include the authentication checking in every operation. But this way, a lot 

of redundant code would be generated (you may just use “copy + paste” to work on this, but this 

is prone to errors). If we use AOP to implement this, we can take the authentication as the 

crosscutting concern, and use an aspect to implement it, then weave it into the other code. 

 

The code for the operations may be as Figure 18 shows (of course there may be multiple classes.). 

 
public class Account{  
 public void openAccount(){} 
 public void closeAccount() {} 
 public void transfer(){} 
    ………… 
} 

 
Figure 18. Account class 

 
The aspect for this is possible to be as Figure 19 shows. 
 
public aspect Authentication { 
 pointcut authentication(): call(void *.*()); 
  
 void around(): authentication(){ 
  // do the authentication 
  if (isCorrect(authentication)) 
   proceed(); 
  else 
   throw new RuntimeException("Wrong authentication!"); 
 } 
} 
 

Figure 19. Authentication aspect 
 
In this example, we defined the aspect to use an around advice to execute the authentication. We 

stated that if the authentication is passed, the exact account operation can be continued, but if the 

authentication is not passed, an exception would be thrown. The proceed() method will 

continue the execution of the method specified in the join points. 
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2.2.3  Advice ordering 

You might be wondering, if there are multiple aspects or multiple sets of advice in one aspect, 

what is the order to apply them on the same join point? The answer is that the precedence can be 

declared between the aspects, and some default precedence is used inside one single aspect. 

 

For advice within a single aspect, precedence among before and around advice follows a simple 

rule: a piece of advice declared earlier in the source file has higher precedence over a piece of 

advice defined later. However, after advice behaves differently: if two pieces of advice defined in 

the same aspect want to execute at the same join point, and one or both of them are after advice, 

the advice defined later in the source file has higher precedence over the one defined earlier [14]. 

 

For the precedence between aspects, the programmer can explicitly declare the precedence 

between them, for example, if there are two aspects A and B, the programmer can declare like 

this: 

declare precedence: A, B; 

 

And the advice in the higher aspects has higher precedence. Now, suppose we have the basic class 

as following as Figure 20 shows. 

 
public class C { 
 public void m() { 
  System.out.println("This is the basic method."); 
 }  
 public static void main(String[] args) { 
  new C().m(); 
 } 
} 
 

Figure 20. Base class C 
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public aspect A1{ 
 pointcut pc(): call(void C.m());  
 before(): pc() { 
  System.out.println("before A1..."); }  
 before(): pc() { 
  System.out.println("before A2..."); }  
 after(): pc() { 
  System.out.println("after A1..."); } 
 after(): pc() { 
  System.out.println("after A2..."); } 
} 
 

Figure 21. The A1 aspect 
 
The output when A1 (from Figure 21) is woven into C is: 
 
before A1... 
before A2... 
This is the basic method. 
after A1... 
after A2... 
 
This output is straightforward and easy to understand. However if we put them into two aspects as 

the Figure 22 shows, the output would be different. 

 
public aspect A1{ 
 pointcut pc(): call(void 
C.m());  
 before(): pc() { 
  System.out.println("before 
A1...") } 
 after(): pc() { 
  System.out.println("after 
A1...");} 
} 

public aspect A2{ 
 declare precedence: A1, A2; 
 pointcut pc(): call(void 
C.m()); 
 before(): pc() { 
  System.out.println("before 
A2..."); } 
 after(): pc() { 
  System.out.println("after 
A2..."); } 
} 

 
Figure 22. A1 and A2 aspects 

 
The output is: 
before A1... 
before A2... 
This is the basic method. 
after A2... 
after A1... 
 
Notice that the order of the after advice in the output. This is different from the above output.  

Another problem with AspectJ is the precedence issue between the aspects that we focus on in 

this thesis. If we don’t explicitly declare the precedence between the aspects, default precedence 

would be adopted, but sometimes this is not the programmer expects. So how to guarantee a 
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correct precedence is what aspectJ should improve in future, because for a very large project, 

such precedence is critical. We have provided a solution to this in this thesis. 

2.3 Feature-Oriented Programming (FOP) 

Feature-oriented programming is actually an extension of the object-oriented programming 

paradigm. Whereas object-oriented programming supports incremental development by 

subclassing, feature-oriented programming enables compositional programming overwriting with 

inheritance [30].  

 

Feature Oriented Programming (FOP) is the study of feature modularity. While the term feature 

has a different definition in different papers, the main idea is that features are mapped one-to-one 

to modular implementation units (feature modules). Each feature contains a set of classes which 

are necessary to this feature and probably also to the other features. Feature implementations are 

actually very close to OO framework designs. This is demonstrated at the following part of the 

basic idea. A major contribution of object-oriented programming is the reuse by inheritance. Its 

success and its extensive use have led to several approaches to increase flexibility. FOP is a 

model for object-oriented programming which nicely generalizes inheritance and includes the 

extensions and new concepts [30].  

 

FOP was developed to implement software incrementally in a step-wise manner. AHEAD 

(Algebraic Hierarchical Equations for Application Design) is an architectural model for FOP and 

a basis for large-scale compositional programming [2].  

 

2.3.1  Basic Concepts 

Consider a class as shown in Figure 23. The base class C has four member variables v1-v4. 

Apparently we can define C many ways by using inheritance with several classes. Figure 24 

shows another possible way. 

 
class C {

int v1;
int v2;
int v3;
int v4;
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} 
 

Figure 23. The base class 

 
class C1 { 
int v1; 
} 

class C2 extends C1{
  int v2;   
} 

class C3 extends C2{
 int v3; 
} 

class C extends C3{
   int v4; 
} 

 

Figure 24. Another definition of C 

 

As you can see, a class extension can add new members. Actually it can also extend existing 

methods of a class. So C can be synthesized as C ● C3 ● C2 ● C1. From this idea, we can use a 

new keyword refines to represent Figure 24, as Figure 25 shows. refines means extension. 
 

class C { 
int v1; 
} 

refines class C { 
  int v2;   
} 

refines class C { 
 int v3; 
} 

refines class C { 
   int v4; 
} 

 

Figure 25. Another representation type 

 

So when we create a single class, we can use several steps to finish it. Now think if we want to 

finish a project, which is composed with a lot of classes, we can use same way for every single 

class. When considering the steps for every class, it is reasonable to use layers to group the steps 

between those classes, as Figure 26 shows. Thus FOP provides a good way to construct 

well-defined, encapsulated modules. 

 

Layer 0 (the first step for all classes) 

Layer 1 (the second step for all classes) 

Layer 2 (the third step for all classes) 

Layer n (the nth step for all classes) 

 

Figure 26. A project with layers 

 

FOP has advantages such as the improvement of the flexibility and scalability of the system. It 

also helps the designers separate requirements into different features; perhaps, too, it is 

well-suited to how designers work on a software system. Suppose a product line is finished, but 
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now we have to add or change some of the features of this product. People will hesitate to make 

changes to the existing code, for fear of breaking existing features. Using layers, one can cleanly 

encapsulate changes with minimal impact on existing code. 

 

• Design Rules 

The layers can be put in any sequence as the programmers want. For example, a project is 

composed as L4 ● L3 ● L2 ● L1, and it is understandable that a different composition order may 

be wrong, like L4 ● L3 ● L1 ● L2. Thus we need design rules to make sure a correct composition 

order is adopted. 

 

Actually this is a fundamental problem in FOP. The use of a feature in a program can enable or 

disable other features. As introduced in the AHEAD tool suit, design rules are domain-specific 

constraints that define composition correctness predicates for features. Design rule checking 

(DRC) is the process by which design rules are composed and their predicates validated. AHEAD 

has two different tools for defining and evaluating design rules: drc and guidsl, though drc is 

a first-generation tool and guidsl is a next generation tool. However, both of them come from 

the same theory – the use of grammars to define legal sequences (i.e. compositions) of features. 

By this way, only legal composition sequence can be used for a given project. 

 

However, we believe rule checking is insufficient to guarantee that the correct semantics is 

generated, because the compositions are more complex than they appear to be. We discussed this 

in the motivation part, and we provide a good solution to solve this. 

 

Currently FOP is still an academic concept that has not yet been widely adopted by industry [32]. 

FOP is appropriate to implement such layered, step-wise refined architectures. During the 

evolution, software has to be adapted to fit unanticipated requirements and circumstances. This 

results in modifications and extensions that crosscut many existing implementation units in 

numerous ways, and this makes a big challenge to FOP. 

 

Now there are few programming languages support FOP, and fewer mature frameworks that 

support FOP. This is a big obstacle to the future of FOP. 
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2.4 Instance-Oriented Programming (IOP) 

IOP is an extension to FOP. IOP intends to combine FOP and the Model/View/Controller 

paradigm, and it provides a very straightforward GUI to view the layers and the corresponding 

software files. IOP also describes an elegant way to specify the concerns between features and 

provide an initial way to solve the precedence problem in FOP. The ACDK project is an ongoing 

project in WPI, to implement the idea of IOP [3]. 

 

In order to explain the idea of IOP, let us start with an example. This example is about the 

Klondike solitaire game. First Figure 27 shows the design of a game with six buildable piles and 

Figure 28 shows the executable program with this design. You can see there are six buildable 

piles in the game. Now, if you want to add another buildable pile, it is very easy to do so without 

touching the existing code but just add a layer of aBuildPile into the system. Figure 29 shows the 

design with seven piles, and Figure 30 shows the executable program with the seven piles. 

 

 
Figure 27. Design with six BuildablePiles 
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Figure 28. Executable program with six BuildablePiles 

 

 
Figure 29. Design with seven BuildablePiles 
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Figure 30. Executable program with seven BuildablePiles 

 

From this example, it is clear that IOP focuses on the instances. We have to say that IOP is only 

adaptable to some systems, not to all the systems. For those systems which require multiple 

instances of the same thing, IOP is very useful and helpful. It makes a better management of the 

components. In the rest part of this thesis, we will not distinguish FOP and IOP, because they are 

same thing related to the dependencies that we focus on. 
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3 Analysis of Modular Dependencies 

3.1 Class Dependencies in OOD 

One of the characteristics of object-oriented software is the complex dependency that may exist 

between classes due to inheritance, association and aggregation relationships [34]. We may find 

out the dependencies between the classes by analyzing the data flow or control flow between 

them. We can also divide the dependencies into two groups. Given a class C, the two groups are 

defined as: 

 G1(C) is the group of classes on which C depends statically, i.e. at compile time; 

 G2(C) is the group of classes on which C depends dynamically, i.e. at run time; 

 

In this thesis, we only focus on the dependencies caused by inheritance during compile time. The 

reason we focus on inheritance is that, when we consider the extension of an existing system, and 

inheritance is traditionally used to change the existing features of the system. The reason we only 

consider compile time is that we hope to detect the dependency conflicts during compile time, so 

it is not meaningful to consider the dependencies during run time, which may be caused by 

polymorphism. Thus we don’t need to analyze the data flow between the classes because the 

relationship due to inheritance is very easy to identify. 

3.1.1  Inheritance Dependencies 

A subclass can add new attributes or methods, as well as change the methods in its superclass. 

What we care about is that how a method changes the method in the superclass. 

 

There is an implicit ordering of functionality regarding methods in a subclass and overridden 

methods with the same signature in its ancestor classes. In some cases, a class C requires its 

subclass SC to override a particular method m (note that the current Java compiler allows the 

@Override annotation to be associated with a method, but this is only used to validate that the 

specific method in SC is actually capable of overriding a method in the base class C. It is not an 

error to omit this annotation when there is an override present, but it is an error to claim an 

override when no such relationship exists).  
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For the rest of our discussion, we assume that m is not abstract in either class. The relationship 

between SC.m and C.m has no fixed semantics, but is rather left to the discretion of the designer. 

There are several cases to consider: 

 

 SC.m replaces C.m – The implementation of SC.m is used at runtime for all objects of 

class SC, and the original code found in C.m is never used. 

 SC.m incorporates C.m as a one-time invocation – The implementation of SC.m provides 

some additional logic but makes a single call to C.m (via Java’s super.m() invocation) to 

the original C.m code found in class C.  

 SC.m makes multiple calls to C.m –This practice is generally discouraged because of the 

potential side effects that may result, yet there is no inherent ability for Java or C++ 

compilers to detect these situations. 

 

When SC.m incorporates C.m as a one-time invocation, there are yet three possibilities to 

consider: 

 

 super.m() is the first statement in SC.m – Termed the pre case as Figure 31 shows, SC.m 

first invokes the behavior as identified by the superclass C before it performs its actions. 

 super.m() is the last statement in SC.m –Termed the post case as Figure 31 shows, SC.m 

first invokes its specialized logic and then requests the appropriate behavior to be invoked 

in the superclass C. 

 super.m() is the middle statement in SC.m –Termed the middle case as Figure 31 shows, 

SC.m first invokes its specialized logic around the method in the superclass C. 

 
pre middle post 
SC.m (params) { 
 
super.m(params); 
 
 // now do extra 
 
} 

SC.m (params) { 
 // do something 
first 
 
 super.m (params); 
 
 // do something next
} 

SC.m (params) { 
 // do something 
    
// now invoke 
parent 
 super.m(params); 
} 

 

Figure 31, Three cases to consider 

 

Note that even if method m returned a value, the above logic would still be the same.  
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3.1.2  Examples of Using Super From the JDK 

Given the latest JDK 1.6 release (Fall 2006) has numerous examples where the method from a 

superclass is invoked from within the subclass. 

 

/** 
 * Processes events on this button. If an event is 
 * an instance of <code>ActionEvent</code>, this method invokes 
 * the <code>processActionEvent</code> method. Otherwise, 
 * it invokes <code>processEvent</code> on the superclass. 
 * <p>Note that if the event parameter is <code>null</code> 
 * the behavior is unspecified and may result in an exception. 
 * 
 * @param        e the event 
 * @see          java.awt.event.ActionEvent 
 * @see          java.awt.Button#processActionEvent 
 * @since        JDK1.1 
 */ 
protected void processEvent(AWTEvent e) { 
  if (e instanceof ActionEvent) { 
     sActionEvent((ActionEvent)e); proces
     return; 
  } 
  super.processEvent(e); 
} 
 

Figure 32. ActionEvent example 
 

Given the above code example as Figure 32 shows, drawn from java.awt.Button, ActionEvent 

events (present from the beginning JDK1.1) are handled differently from the other type of 

AWTEvents. This method clearly overrides the default implementation as defined in 

java.awt.Component, but doesn’t invoke the super’s method for ActionEvent objects. 

 

The java.lang.Character class provides an interesting example of invoking super as Figure 33 

shows. 
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/** 
 * Returns the standard hash code as defined by the 
 * <code>{@link Object#hashCode}</code> method.  This method 
 * is <code>final</code> in order to ensure that the 
 * <code>equals</code> and <code>hashCode</code> methods will 
 * be consistent in all subclasses. 
 */ 
public final int hashCode() {  
  return super.hashCode(); 
} 

 
Figure 33. hashCode method in java.lang.Character class 

 

This hashCode method seems irrelevant, but the final designation on the method clearly 

specifies that no future subclass can override this method to perform alternative behavior. 

 
/** 
 * Represents a list of values for attributes of an MBean. 
 * The methods used for the insertion of javax.management.Attribute Attribute  
 * objects in the AttributeList overrides the corresponding methods in the  
 * superclass ArrayList. This is needed in order to insure that the objects  
 * contained in the AttributeList are only Attribute objects. This avoids  
 * getting an exception when retrieving elements from the AttributeList. 
 * 
 * @since 1.5 
 */ 
public class AttributeList extends ArrayList   {  
     
    ... 
 
    /** 
     * Sets the element at the position specified to be the attribute 
specified. 
     * The previous element at that position is discarded. If the index is 
     * out of range (index < 0 || index > size() a RuntimeOperationsException 
should 
     * be raised, wrapping the java.lang.IndexOutOfBoundsException thrown. 
     * 
     * @param object  The value to which the attribute element should be set.       
     * @param index  The position specified. 
     */           
    public void set(int index, Attribute object)  {  
 try { 
     super.set(index, object); 
 } 
 catch (IndexOutOfBoundsException e) { 
     throw (new RuntimeOperationsException(e, "The specified index is out 
of range")); 
 } 
    } 
} 
 

Figure 34. set method in AttributeList class 
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From the javax.management.AttributeList class as Figure 34 shows, the designers extend the 

base class java.util.ArrayList to store a set of Attribute objects; however numerous methods 

need to be protected to ensure proper behavior; below we show the set method implementation. 

 

Designers are truly faced with numerous choices when designing the relationship between classes 

and their subclasses. Annotations can be used to capture the complex relationships between the 

various classes in a framework; if this information were found only in textual documentation, it 

could not play a central role in verifying that the proper design was followed. As an example, 

consider the intent of a designer to force the subclasses of a class C to provide an implementation 

for a specific method; in some cases, C can be defined as abstract. In other cases, however, there 

is no recourse. Here is what the java.applet.Applet class does as Figure 35 shows. 

 

/** 
 * Returns information about this applet. An applet should override 
 * this method to return a String > containing information 
 * about the author, version, and copyright of the applet. 
 *  
 * The implementation of this method provided by the 
 * Applet class returns null. 
 * 
 * @return  a string containing information about the author, version, and 
 *          copyright of the applet. 
 */ 
public S g getAppletInfo() {  trin
 return null; 
} 
 

Figure 35. A method in java.applet.Applet class 
 

If this method is not overridden by the Applet subclass, a potential problem exists if other 

framework classes expect this method to return a meaningful value. Clearly the design should be 

able to annotate this method so comprehensive analysis could detect potential errors in subclasses 

that choose not to override this method. 

 

Another similar example is related to three classes: java.awt.Rectangle2D, java.awt.Rectangle 

and javax.swing.text.DefaultCaret. Rectangle extends from Rectangle2D and DefaultCaret 

extends from Rectangle. The two subclasses override the equals method but they use different 

ways to override. Rectangle calls the super method as its last statement; however DefaultCaret 

never calls the super method. Details on how they are implemented can be found in the JDK 
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source files. 

 

We focus our attention on the Java programming language, although the ideas would be present in 

object-oriented languages such as C++ or even Perl. The Java language provides the final 

keyword to enable designers to restrict subclasses from overriding methods of a class (indeed, 

from preventing designers from even extending a class designated as final).  

3.2 Aspect Dependencies in AOP 

Aspectual dependencies and interactions, similar to the aspects themselves, are not confined to 

one development stage, but span the whole development cycle: from requirements to 

implementation. In view of the effects of the aspectual dependencies and interactions, 

considerable research and development work on these issues has been undertaken even since the 

inception of AOP and AOSD. A significant number of papers in journals and conferences have 

been published and several workshops including this theme have been successfully organized, 

showing that the field has a wide base of continuous research being done by established groups 

around the world. 

 

Dependency covers the situation where one aspect explicitly needs another aspect and hence 

depends on it. Without the other aspect, the former aspect cannot perform correctly. A dependency 

does not result in a problem or erroneous situation as long as the aspect on which another one 

depends is ensured to be present and not changed [35]. To illustrate this situation, two simple 

dependencies are the following: 

 In the context of security, authorization depends on authentication. 

 In the example of TeleCom we mentioned earlier, Billing depends on Timing. 

3.2.1  Analysis 

Again, same as in OOD, We may find out the dependencies between the aspects by analyzing the 

data flow or control flow between them. There are already some papers discussed this, like [18]. 

However, in this thesis, we don’t do that way. Instead we only consider the dependencies as long 

as the aspects share same joinpoints. In this situation, we treat them as being dependent on each 

other. The reason is that, we only focus on the dependencies which may cause the precedence 

issue. We know that advice is that basic unit to contain the changes. And advice uses joinpoints to 
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inject the changes, so joinpoints are the “evil source” for the precedence issue. If they don’t share 

same joinpoints, the aspects will not be woven together so one can’t generate the precedence 

issue. As long as we catch those dependencies with same joinpoints, we can resolve the 

precedence issue. 

 

As we have already known, for a piece of advice, it has the following types. 

 before 

 around 

 after 

 after 

 after returning 

 after throwing 

We may find that they are corresponding to the relationships between the subclass method and the 

superclass method as discussed in OOD part.  

 For a piece of before advice, the super.m() is the last statement in the method of the 

subclass.  

 For a piece of after advice, the super.m() is the first statement in the method of the 

subclass.  

 And for a piece of around advice, the super.m() is the middle statement in the method 

of the subclass (as called proceed() in AOP).  

 

The difference between OOD and AOP at this point is that, in OOD the order between subclasses 

and superclasses are fixed, that is, we know which must come first and which must come last; but 

in AOP, the order between the aspects are not fixed, that is, they are either defined by declare 

precedence statement, or left undefined. What is more, the subclasses at the same level in OOD 

will not be woven together to generate new code, the aspects do need to. So the final woven code 

in AOP may have several versions, and thus some wrong versions might be generated, and in this 

condition we call them conflicts.  

 

Conflicts include the following two types: 

 One aspect totally depends on other aspects and a given order between that aspect and 

the other aspects must be followed. If such order is not followed or the depended 

aspects are removed, a conflict occurs.. 

 One aspect that works correct in isolation does not work correctly anymore when it is 
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composed with other aspects. Thus this type of conflict occurs. An aspect influences the 

correct working of another aspect negatively, often because different (sub-)concerns will 

have conflicting requirements. Typically, the conflict can be solved by mediation 

between the two aspects, because – in a sense – they are complementary. 

3.2.2  Examples of Conflicts 

Conflicts are actually also “dependencies”. They depend on each other to avoid conflicts. The 

TeleCom is a very good example for the first type of the conflicts – the billing aspect depends 

on .timing.  Here we give examples for the second type. 

 

We still use the TeleCom example. Suppose now the TeleCom system is working very well, but 

we will add some new features to that system. First we give an example which demonstrates that 

one aspect is added to the system and there is not any conflict. This example requires that logging 

should be added to log the starting time and ending time for every connection. An aspect called 

TimerLog is finished as Figure 36 shows. 

 
public aspect TimerLog { 
 
    after(Timer t): target(t) && call(* Timer.start())  { 
      Logger.log("Timer started: " + t.startTime); 
    } 
 
    after(Timer t): target(t) && call(* Timer.stop()) { 
      Logger.log("Timer stopped: " + t.stopTime); 
    } 
} 

 

Figure 36. The TimerLog aspect 

After this aspect is woven with the other aspects, the system is still working very well. Now let us 

have a look at an example that the new aspect is harmful to the other aspects, that is, a new aspect 

is added then the other aspects are not working. Suppose we need an aspect to reset the starting 

time and the ending time to zero after a connection is stopped. The aspect as Figure 37 shows is 

added to the system. 
public aspect Reset { 
 
     after(Timer t): target(t) && call(* Timer.stop()) { 
         t.startTime = 0; 

t.stopTime = 0; 
    } 
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} 

 

Figure 37. The Reset aspect 

 

This aspect is added and woven after timing but before billing. Thus the billing is always zero, 

and this is definitely not expected. 

 

When conflicts occur, sometimes the programmers can find them immediately by some output, 

but they are not always so lucky. Some conflicts may only happen during some special conditions. 

So some tools are needed to guarantee that no conflicts occur in the system. 

3.3 Feature Dependencies in FOP 

From the background part, we know that FOP comes from the idea of inheritance in OOD. So the 

dependencies in FOP have something in common with the dependencies in OOD, regarding the 

relationship between the classes. Also, we know that AOP and FOP both generate final code by 

weaving the aspects or features together, so the dependencies in FOP have something in common 

with the dependencies in AOP too. 

 

One layer is actually one feature in FOP. One layer includes some classes. So the feature 

dependencies are actually the dependencies between groups of classes. At the same time, we 

know that there is always an order between the layers. So there are two elements which dominate 

the dependencies between the classes and dominate the final semantics: 

1. The layer order between the layers; 

2. The position of the Super call ocurrs. 

J1 

J2 

L0 L1 L2 

m:Super(post) m:Super(pre) 

 

 
Figure 38. An example equation 
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On one level, a shallow form of precedence appears to exist within FOP because of the ability to 

specify a system as an equation of the composition of a series of layers. However, the underlying 

situation is more complex, as we showed in the example. Consider the following system S = L2 ● 

L1 ● L0 as Figure 38 shows. In this equation, the “base” layer L0 contains the definition of a Java 

class file (J1) with a single method m. Layers L1 and L2 refine the m method of J1. As the above 

example shows, within FOP, a layer can refine an existing layer. For example, using the AHEAD 

toolset, L1 could refine J1 as Figure 39 shows. 

 
refines class J1 { 
     public void m() { 
       ... // execute refinement code 
       Super().m(); 
     } 
}  
 

Figure 39. Possible refinement with AHEAD 
 
The terminology “m:Super(post)” means that within the L1 refinement, method m invokes its 

“Super” method after it has accomplished its work. Another alternative, would be “m:Super(pre)” 

where the refinement first invokes the “Super” method before it does any work. The third 

alternative, is “m:Super(middle)”, which means the refined method invoke “Super” method in the 

middle of the code. Another alternative is “m:Super(null)” which means that the refined method 

completely overrides the implementation of m within its class. 

 

In most cases, the refined method should only invoke its “m:Super()” method exactly once, 

otherwise the semantics of the original method call may change in unexpected ways. Prehofer 

describes this exact property in his paper on Conservative Weavings [10]. We extend this same 

restriction a little bit that we allow a total replacement, which means the refined method does not 

call Super at all. Thus we classify the method refinement as having two parts: before-super and 

after-super. The “before-super” part contains the statements executed before Super is invoked, 

while “after-super” contains the statements executed after Super has completed. Apparently 

“before-super” and “after-super” could be empty when the call to Super is m:Super(pre) or 

m:Super(post). Again, we may find that this is same thing as the advice we talked about in AOP 

part above. m:Super(pre) is corresponding to the after advice in AOP. Due the clear 

corresponding relationship, we won’t mention the others at this part. 
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Indeed, given the picture of the equation file earlier, it is only with the annotations on the 

horizontal edges that one knows the overall semantics of how the method invocation m has been 

changed. For example, the equation for J1 in the Figure 40 will produce the following execution 

sequence:  

 
L2.before-super ; L1.before-super ; L0 ; L1.after-super ; L2.after-super 

 

J1 

L0 L1 L2 

m:Super(any) m:Super(any) 

 
Figure 40. An example equation 

4 Solutions to the Precedence Issue 

Given the modular dependencies we have investigated within these design methodologies, we 

provide a way for each methodology to better manage the dependencies. We also claim that it is 

possible to come up with a uniform model (see Section 4.4) that captures the common features 

that are present in all methodologies. For this research effort we enable designers to annotate the 

individual modules with annotations that are then analyzed to determine if the resulting 

composition is consistent. 

 

Definition: A consistent composition satisfies all known module annotations. 

 

Because the space of annotations is universal, we restrict our attention to the ability for designers 

to specify ordering constraints among the various design modules.  

4.1 OOD 

Though there is not any common precedence issues in the OOD paradigm, from the dependencies 

we analyzed above, we can see that the relationship due to inheritance is complex and there is not 

any tool to help clarify the relationship.  
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To support the complex needs of Object-oriented designers, we need a set of annotations to 

clarify the intent of the designer when complex class relationships are formed. We have designed 

a set of annotations that are appropriate when both C and SC have concrete implementations of 

method m. An annotation always exists within a specific class, known as the target of the 

annotation. In the situations below, sometimes the target class is the subclass SC in the 

relationship; at other times, it is the superclass C. In all cases, the context is clear. 

 

The first four annotations are associated with the target subclass method SC.m: 

 

 @Before – Force the subclass method SC.m to invoke super.m() before any of its in its 

execution; not doing so would be an error 

 @After – Force the subclass method SC.m to invoke super.m() as the last statement in its 

execution; not doing so would be an error 

 @Override – This annotation is already present in the JDK standard. We leave it as it is, 

and choose to interpret it simply as a clarification that the given method m is truly 

intended to override the functionality of a method in its super class. However, this 

knowledge is not enough to capture the complex relationship (even with @Before and 

@After) 

 @Replace – This annotation prevents the super.m() method from being invoked within 

the subclass method. Note that we can’t default to this behavior when the annotation is 

not present because of the ambiguity of the @override annotation 

 

There are annotations that would be useful in the superclass C as well. These are specification 

annotations to be applied to all subclasses (recursively) of the class. For each of the four 

annotations above, there is a corresponding @DenyAction and @MustAction that can be present 

in the target superclass: 

 

 @MustOverride – Declare that a subclass must override a particular method in C. In 

Java (and other object-oriented languages) a method can be declared abstract (or virtual 

in C++) which essentially forces concrete subclasses to override the method  

 @DenyOverride – Make it impossible for a subclass to override a particular method. In 

Java, this can be accomplished by using the final modifier for a method 
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 @MustReplace – Force the subclass method m to have @Replace as its annotation and 

prevent any attempt to simply inherit as is the default C m implementation. We require 

this capability because it is not simply sufficient to assume that C could design m as 

abstract (i.e., it could be required for objects of class C) 

 @DenyReplace – Make it impossible for a subclass to override and replace a specific 

method. Subclasses must include an invocation to super.m in their implementations of m 

 

 @MustBefore – Force subclasses to only have @Before annotations. This annotation 

declares implementations of subclass “SC.m” must execute before the invocation of C.m 

 @DenyBefore – Make it impossible for subclasses to have @Before subclass behavior 

where the method C.m is invoked via super before the execution of SC.m’s special code 

 @MustAfter – Force subclasses to only have @After annotations. This annotation is 

used to say “C.m” must execute after the invocation of any of the implementations of m 

in any subclass SC 

 @DenyAfter – Make it impossible for subclasses to have @After subclass behavior 

where the method C.m is invoked via super after the execution of SC.m’s special code 

 

Put together, this set of annotations is complete and we can put together a matrix that shows the 

compatibility between annotations in the superclass C and the subclass SC. Note that these 

compatibilities are transitive to ancestor classes of C. 

 

 Override Replace Before After 
 @must @deny @must @deny @must @deny @must @deny 
@Before YES NO NO YES YES NO NO YES 
@After YES NO NO YES NO YES YES NO 
@Replace YES NO YES NO NO YES NO YES 
@Override YES NO YES YES YES YES YES YES 

 

Given these annotations, then, the above table shows the allowed compatible annotation pairs. 

@MustReplace is not compatible with @Before, for example, while @DenyBefore is 

compatible with @After. 

 

We now define an algorithm to analyze the set of object-oriented design annotations to determine 

if the design is consistent with the annotated constraints. We omit from consideration the 

inheritance relationships inherent in the use of java.lang.Object as the implicit superclass for all 

classes in Java. The only clarification we would like to point out is that often there are 

relationships between methods of the same class that cannot easily be expressed by means of the 
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annotations we have proposed. The contract for java.lang.Object demands that “If two objects 

are equal according to the equals(Object) method, then calling the hashCode method on each of 

the two objects must produce the same integer result.”. Capturing this complex dependency 

would require recourse to defining pre- and post-conditions for the methods in SC and C 

respectfully. Thus, if SC chooses to override equals(Object), then there should be a corresponding 

override of the hashCode method. In our model, we have no place for relationships between 

annotations found in the same class. This topic is left for future work. For this algorithm to work, 

we assume the existence of a tool that evaluates source code to determine the following functions: 

 

 int invokesSuper (Class c, String m) – the number of times method m in class c 

invokes super.m() 

 Type typeSuper (Class c, String m) – Determines the way that method m in class c 

invokes super.m(); returns either pre (the invocation to super.m is the first statement), 

post (the invocation to super.m is the last statement), middle (code exists both 

before and after the invocation to super.m), or undef (the method m in class c 

contains control flow that makes it impossible to clearly classify the use of super.m). 

 

An algorithm has been given for the consistence checking below. 
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ALGORITHM: ConsistencyChecker. Determine if the annotations defined in the set of 

classes is consistent with the implementation of the classes. 

 

INPUT:  

 

The set CL identifies the classes. We also define the inheritance relationship IN between 

these classes where IN is drawn from the set CL × CL. If class SC extends C then (SC, 

C) ∈ IN. Note that IN ignores the implicit extensions of java.lang.Object by all Java 

classes. 

 

PRE-PROCESSING: 

 

Construct the directed multigraph G = (V, E) where V is the set of vertices and E 

contains a set of directed edges between these vertices. Each node n in V represents a 

class C from CL, thus |V|=|CL|. For each element (C, SC) ∈ IN, create a set of labeled 

edges S = {e = (u, v) | u is the node representing SC while v is the node representing C}. 

For each edge e ∈ S, e.method refers to the method m defined in C which is overridden 

by a method m in SC, e.source represents the annotations associated with C.m, and 

e.target represents the annotations associated with SC.m. The edges in S are added to E. 

Clearly the time to construct the graph is O(|IN|) and the graph is acyclic because Java 

supports only single inheritance. 

 

STEPS: 

 

Iterate over all classes in C and traverse links back to the superclass, building up the 

allowed annotations in the ultimate relationship, stopping and declaring as errors when a 

specific annotation is invalid given the known compatibilities. 

 

Now we show how this algorithm works. First we get the classes and inheritance information as 

Figure 41 shows. Then we construct the directed multigraph based on that information, as Figure 

42 shows. Each node n in V represents a class C from CL. For each (SC, C) ∈ IN, construct edge 

e in E representing a method in C that is overridden by a method in SC, where 
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e.source = annotations in C 

e.target = annotations in SC 

 

Clearly the time to construct the graph is O(|IN|) and the graph is acyclic since classes can not 

inherit from each other recursively. The graph is also simple since Java only allows single 

inheritance. 

 

 

C1

C2 C3

C4

C5 C6C7

 

Figure 41. CL and Inheritance relationship 

 

 

C1 

C2 C3

C4

C5 C6C7 

 

Figure 42. The directed multigraph 

 

Then the last step is to iterate over each node in Figure 42 to find out the errors given the known 

compatibilities. 
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4.2 AOP 

By analyzing how and why the precedence issue may cause the semantics problem, we decide to 

use annotation to solve the problem. Annotations do not directly affect program semantics, but 

they do affect the way programs are treated by tools and libraries, which can in turn affect the 

semantics of the running program [33]. Annotations complement javadoc tags. In general, if the 

markup is intended to affect or produce documentation, it should probably be a javadoc tag; 

otherwise, it should be an annotation. You may have known that there are three annotation types 

that are predefined by the language specification itself: @Deprecated, @Override, and 

@SuppressWarnings. So now we will create our own annotations. 

 

Basically for every piece of advice, the programmer can use annotations to specify where the 

advice should be invoked during the final weaving process. If a wrong order is used against the 

corresponding annotation, an error would be reported. 

 

Here are the annotations we have defined so far. All the annotations’ RetentionPolicy is RUNTIME, 

which means that those annotations will be kept by the compiler during runtime. 

 

@BeforeFirst The advice must be executed first before the 

refined method is executed. 

@Before The advice can be executed anywhere before 

the refined method is executed. 

@BeforeLast The advice must be executed as the last one 

before the refined method is executed. 

@AroundFirst The advice must be executed first before the 

refined method is executed, and must be 

executed the last one after the refined method 

is executed. 

@Around The advice can be executed anywhere around 

the refined method. 

@AroundLast The advice must be executed last before the 

refined method is executed, and must be 

executed the first one after the refined method 
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is executed. 

@AfterFirst The advice must be executed first after the 

refined method is executed. 

@After The advice can be executed anywhere after the 

refined method is executed. 

@AfterLast The advice must be executed as the last one 

after the refined method is executed. 

@Before(Aspect) The advice must be executed before related 

advice (same joinpoint) in another aspect. 

@After(Aspect) The advice must be executed after related 

advice (same joinpoint) in another aspect. 

 

Basically we can go through every method in the classes, find out all the advice that refine that 

method, by going through all the advice in all the aspects, then find out the possible execution 

orders of the advice, and during the finding process, we compare the advice execution position 

against its annotation. If we find out any conflict error, the find process will stop immediately and 

report this error.  

 

We have two types of the result for the checking. One is Warning, which does not affect the 

semantics, but we think it is a potential problem to impact the semantics; the other one is Error, 

which makes the semantics wrong. So when we find out some warnings, we don’t stop the 

finding process, but if we find out any errors, the process should be stopped immediately. 

 

For warnings, there are two types: 

 

Annotation is missed. If there is not any annotation for a piece of advice, 

a warning is generated for that advice. 

No precedence is declared between two 

dependent aspects. 

If we can not find a precedence relationship 

between two dependent aspects, a warning is also 

generated. 

 

For errors, there are five types: 
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Annotation conflicts with its own advice. Represents the error when a wrong annotation is 

used on a piece of advice, for example, a 

@BeforeFirst annotation is declared on an after 

advice. 

Notice here that the relative annotations like 

@Before(Aspect) or @After(Aspect) can be put on 

any type of advice.  

Not the first advice is executed. One piece of advice is declared to be the first to be 

executed, but actually not. This includes 

@BeforeFirst, @AfterFirst and @AroundFirst. 

Notice for @AroundFirst, the pre-execution and 

the post-execution are different. For pre-execution, 

the advice must be executed first, but for 

post-execution, it must be executed last. 

Not the last advice is executed. One piece of advice is declared to be the last to be 

executed, but actually not. This includes 

@BeforeLast, @AfterLast and @AroundLast. 

Notice for @AroundLast, the pre-execution and 

the post-execution are different. For pre-execution, 

the advice must be executed last, but for 

post-execution, it must be executed first. 

Not before a given aspect. A piece of advice is declared to be executed before 

the other advice in another aspect, but actually it is 

not guaranteed to be before it. This is only for 

relative annotation. 

Not after a given aspect. A piece of advice is declared to be executed after 

the other advice in another aspect, but actually it is 

not guaranteed to be before it. This is only for 

relative annotation. 

 

 

An algorithm is given below on how to check the consistency. 
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ALGORITHM: ConsistencyChecker. Determine if the annotations defined in the set of 

aspects is consistent with the implementation of the aspects and the base classes. 

 

INPUT:  

 

The set of the classes and aspects, and the declared precedence relationship between the 

aspects, together with the annotations and corresponding advice. The input may look 

like as Figure 43 shows. 

 

STEPS: 

 

1. Check the conflicts between the aspects. If two aspects are dependent on each other 

but there is not any precedence relationship declared between them, warnings 

should be reported. 

2. Check whether the annotations are compatible after the aspects are woven together 

with the classes. This checking process starts from all the base methods in the base 

classes. For each base method, we go through all the aspects to find out all the 

advice that try to change the method, then based on the precedence between the 

advice, we build the final execution order for that method. During the building 

process, we check the annotations to make sure that they are always correct when a 

piece of new advice is added to the execution order. For example, if the first advice 

is declared to be executed @BeforeFirst, but a piece of new advice can be added to 

the head of the execution order (even that advice can be added somewhere else, but 

as long as there is a possibility), a conflict should be reported and the whole 

checking process quits. 

 

Based the above, a design model is given. The annotation diagram is shows at Figure 44. The 

result errors and warnings diagram is shown at Figure 45. The main classes diagram is shown at 

Figure 46. 
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A1 A2 A3

C2 C3C
1

 

Figure 43. Set of classes and aspects 
 

 

 
 

Figure 44. The annotation diagram 
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Figure 45 The reported errors/warnings diagram 

52 



 

 
 

Figure 46. Main classes diagram 
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4.3 FOP / IOP 

When considering the precedence problem FOP is actually very similar to AOP. However, 

concern is a new concept in FOP, which means some layer may require something to be provided 

on its left or right. A before advice in AOP can be implemented in FOP by just invocating the 

Super call at the last line of the refined method. Similarly an after advice can be implemented in 

FOP by putting the Super call at the first line of the refined method. For around advice, the 

Super call should be put inside the refined method. The only difference lies when building the 

execution order. In AOP, the final execution order is determined by the precedence of the aspects 

and the type of the advice. The precedence can be specified explicitly, but sometimes some of 

them are not specified, so some random precedence can be adopted between some aspects. In 

FOP the execution order is determined by the order of the layers and the position of the Super 

calls. The order of the layer is always specified.  

 

We argue that in FOP, a Super call must be invocated exactly one or zero times. If a Super 

call is not invoked, there is a potential danger in breaking the relationship with the parent methods, 

but maybe this is sometimes wanted, though not common. If a Super call is called multiple 

times, a wrong and complex semantics might be used and this is not expected. Actually in this 

case a typo might be conducted. [10] claims same idea here. Note that the Super call over here 

is only about the call to its own parent method, and one time means that the Super call is called 

for one time during one execution, but maybe next time the Super call is at another location, but 

still only called for one time. 

 

From this analysis, we decide to use same annotations as in AOP with a little change. And those 

annotations are also the basis for the unified model. We need to add a new annotation called 

@Replace. This annotation is used not common. 

 

@Replace The new method totally replaces the super 

method. The Super is not invocated. 

 

 

We validate the FOP project in four steps:  

1. Validate the concerns are satisfied. 
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2. Validate the annotations are compatible with their own code. 

3. Validate the annotations are still correct after weaving the layers together. 

4. Validate the relative annotations. 

 

During validating the concerns, we check all the required concerns one by one, and when we find 

one of them is not satisfied, we quit the validating and report the error. If all of the concerns are 

satisfied, when validate that the annotations are compatible with their own code. For example, a 

@BeforeFirst annotation should have code which uses Super call at the last line, and a 

@Around annotation should have Super call inside the code. Then we move on to check whether 

the final execution order is correct based on the annotations. When building the execution order, 

we start from the base layer to find out all the normal methods (not refined method), then we go 

through all the other layers and find out the refined method on those normal methods, by 

considering the position of the Super calls, we can build the final execution order for the given 

normal method. During the building process, we check with the annotations on the methods to see 

whether they are satisfied. We quit the checking process as long as we find any error.  

 

In the solution, we didn’t mention Jak files. We think that is not necessary to be mentioned in the 

solution, because we know every layer contains a set of classes, including the normal classes and 

the refined classes. Jak files are just used to contain the classes, and they are not related to the 

execution order. So it is reasonable to skip the idea of Jak files. 

 

Figure 48 shows the class diagram related to concerns. Figure 49 shows the similar class diagram 

as in AOP for the annotations. Figure 50 shows the results diagram. From the diagram we can see 

the following errors are used and reported. Figure 51 shows the main classes diagram. 

 

 Required flowleft is not satisfied. One layer requires a flowleft but no layers on 

its right can provide that flowleft concern. 

 Required flowright is not satisfied. One layer requires a flowright but no layers on 

its left can provide that flowright concern. 

Annotation conflicts with the code of the 

method 

Annotation is not correctly used on the method. 

This is caused by the position of the Super call. 

Not correct Super call times. The Super call should be invocated for exactly 

one time. Any wrong invocations will be 
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reported with this error. 

Not executed pre-first. A method is annotated to be executed as 

@BefireFirst or @AroundFirst, but this is not 

guaranteed for the pre-part. 

Not executed pre-last. A method is annotated to be executed as 

@BefireLast or @AroundLast, but this is not 

guaranteed for the pre-part. 

Not executed post-first. A method is annotated to be executed as 

@AfterFirst or @AroundLast, but this is not 

guaranteed for the post-part. 

Not executed post-last. A method is annotated to be executed as 

@AfterLast or @AroundFirst, but this is not 

guaranteed for the post-part. 

Not before given layer. This is related to relative annotations. One 

method is annotated to be executed before the 

same method in another layer, but this is not 

guaranteed. 

Not after given layer. This is related to relative annotations. One 

method is annotated to be executed after the 

same method in another layer, but this is not 

guaranteed. 

Not replacing the method. A method is annotated to replace the super 

method but actually this is not the case. 

 

The algorithm to validate the system is shown below. 
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ALGORITHM: ConsistencyChecker. Determine if the annotations defined in the set of 

refined classes are consistent with the implementation of the refined classes and the base 

classes. 

 

INPUT:  

 

The set of layers, and the precedence relationship between the layers. The layers include 

the corresponding base classes and refined classes, together with the concerns and 

annotations. Figure 47 shows a demo of the input, where C means regular class while 

RC means refined class on C. 

 

STEPS: 

 

1. Check the concerns between the layers are satisfied. 

2. Check whether the annotations are compatible with their own actual code. 

3. Check the non-relative annotations are compatible with the whole system. Same as 

in AOP, we build the execution order for every base method in the base classes. The 

process starts from the base layer. For every layer, first find out every base method, 

then for every base method, we go through the other layers on the left to find out all 

the refined methods on them. Thus an execution order can be built together with the 

precedence relationship between the layers and the position where Super is 

invocated. During the building process, annotations are checked with their refined 

methods’ position in the execution order. If a conflict is detected, the whole 

checking process would quit and an error would be reported. 

4. Check all the relative annotations. Same as checking the non-relative annotations, 

we check every layer from right to left and find out all the relative annotations then 

we compare this layer with the relative layer and the position of the Super is 

invocated, so as to find out that whether the relative annotations can be satisfied. 
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RC1 C1

RC0 C0RC0

 
Figure 47. Example of input 

 
 

 
 

Figure 48. Concerns diagram 
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Figure 49. Annotations class diagram 
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Figure 50. Result diagram 
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Figure 51. The main class diagram 
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4.4 The Unified Model 

From all the discussions above, we can see that there is a core set of concerns in common 

between the paradigms, especially between AOP and FOP regarding the precedence issue. 

 

We decide to adopt the following annotations as the unified model. In the unified model, we treat 

the layers or aspects as groups. And for OOD, the groups should be done based on the class 

hierarchy. For example, if two classes are extending the same parent class, they should be in the 

same group and they will be finally grouped like layers in FOP. We assume that this is already 

done by tools. So we can treat OOD as FOP in our model. 

 

@BeforeFirst The new code must be executed first before the 

basic method is executed. 

@Before The new code can be executed anywhere 

before the basic method is executed. 

@BeforeLast The new code must be executed as the last one 

before the basic method is executed. 

@AroundFirst The new code must be executed first before the 

basic method is executed, and must be 

executed the last one after the basic method is 

executed. 

@Around The new code can be executed anywhere 

around the basic method. 

@AroundLast The new code must be executed last before the 

basic method is executed, and must be 

executed the first one after the basic method is 

executed. 

@AfterFirst The new code must be executed first after the 

basic method is executed. 

@After The new code can be executed anywhere after 

the basic method is executed. 

@AfterLast The new code must be executed as the last one 

after the basic method is executed. 

62 



 

@Before(Group) The new code must be executed before related 

new code in another group. 

@After(Group) The new code must be executed after related 

new code in another group. 

@Replace The new code totally replaces the basic 

method, without calling the super method. 

 

Again similar to the algorithm in OOD, AOP and FOP in checking the consistence with the 

annotations, we first validate the compatibilities between the annotations. Then we build the 

execution order and during the building process we check the annotations one by one to see 

whether they are compatible with the execution order. Basically the errors are similar to the ones 

in FOP so we omit them here. 

5 Implementation and Examples 
5.1 OOD 

We have finished the implementation for this part with the annotations. The implementation is 

against the solution at 4.1.  

 

Here we give an example to show how the annotations are used. Suppose we have a base class as 

Figure 52 shows. This class requires that the subclass must override this method and at the same 

time, the subclass must call super at the first statement. 

 
public class Sample { 
 
 /** 
  * This class has a set of annotations: 
  *  
  *  <ol><li>@Overrides(type=Type.MUST) -- Declares subclasses must  
  *  override this method, or suffer an error. 
  *  </ol> 
  */ 
 @Overrides(type=Overrides.MUST) 
 @Before(type=Before.MUST) 
 public void doThis() { 
  System.out.println ("SAMPLE"); 
 } 
} 
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Figure 52. The base class 

 
public class SampleSubclass extends Sample { 
  
 /** 
  * This class has a set of annotations: 
  *  
  *  <ol><li>@Overrides -- Declares that this subclass overrides the 
  *  method in superclass. 
  *  </ol> 
  */ 
 @Overrides 
 @After 
 public void doThis() {  
   
  System.out.println("DO MY STUFF"); 
  super.doThis(); 
 } 
} 

Figure 53. The subclass 

 

Now we have a subclass which extends the base class, as Figure 53 shows. In this class the 

extended method annotates itself to call super at the last statement. Apparently, this conflicts with 

its parent class. So an error is reported on this: 

 
Before:MUST incompatible with After 

 

Though we used the algorithm stated in Section 4.1, we can use same algorithm as we used for 

AOP and FOP to find out the conflicts, by building the execution order. For example, in the 

above example we notice that the base class annotates that the method must be called at the first 

statement. If we build the execution order, we can easily find out that it will not be executed at the 

first statement. By this way, we don’t even need to depend on the annotations in the subclass, 

because we directly use the actual code in the overriding method. 

5.2 AOP 

In this part, we show the implementation of the annotations and the checking engine. Then we use 

some examples to demonstrate how the annotations and the engine work. 

 

• Implementation of Annotations 
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The latest JDK versions (from 5.0) support annotations, so that we can take advantage of this. An 

example implementation of an annotation is as Figure 54 shows. This example demonstrates how 

to define a relative before annotation. In this definition, note that the annotation type declaration 

is itself annotated. Such annotations are called meta-annotations. The first line, @Retention 

(RetentionPolicy.RUNTIME), indicates that annotations with this type are to be kept by the 

compiler during runtime. The second @Target (ElementType.METHOD) indicates that this 

annotation type can be used to annotate only method declarations. 

 
@Retention(RetentionPolicy.RUNTIME) 
@Target({ElementType.METHOD}) 
@Before( 
    String value(); 
) 
 

Figure 54. Definition of relative @Before annotation 

 

The use of this annotation can be demonstrated as Figure 55 shows. This annotation means that 

the advice must be executed before the advice in aspect B. 

 

public aspect A{ 
  pointcut myF():  call(void F.f1());   
  @Before(“B”) 
  before(): myF() { 
     // do something 
  } 
}   
 

Figure 55. Example use of relative @Before annotation 

 

• Implementation of the Engine 

 

For the solution in Section 4.1, we can implement a checking engine for AOP. The 

implementation can find out all the warnings and errors. We have built enough testing cases to 

test our engine. 

 

Major classes include:  

Checker The main class that does the checking. There is 

a check() can be called to find out the warnings 
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and errors when the environment is built up. 

Environment Represent the whole environment, which 

contains all the classes, aspects, methods, 

advice, annotations, etc from the source files. 

Class Represent a class. 

Method Represent a method. 

Aspect Represent an aspect. 

Advice Represent a piece of advice. 

Annotation Represent an annotation. 

JoinPoints Represent the joinpoints for a piece of advice. 

Pointcut Represent a pointcut. 

PrecedenceManager Manage the precedence between the aspects. 

Result Represent the result generated after a checking 

is done. 

Warning The parent class for all the warnings. 

Error The parent class for all the errors. 

 

The enumerations include: 

AdviceType The advice types, including BEFORE, AFTER 

and AROUND advice. 

AnnotationType The annotation types, including all the types 

listed in Section  4.1. 

PrecedenceType Represent the precedence types between 

aspects. This includes HIGHER, LOWER, 

INDEPENDENT, ITSELF and UNDIFINED. 

 

A lot of testing cases (examples of the AOP files for all of the warning and errors) have been 

developed against the tool. 

 

 A small example 

 

Here is an example of finding out one of the warnings: annotation is missed. 
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Suppose the existing class and methods are as Figure 56 shows. 

 
public class F { 
  void f1() { } 
} 

Figure 56. Existing class 

 

We have an aspect which tries to use a piece of advice before the f1() method, as Figure 57 

shows. 

 
public aspect A { 
  pointcut myF():  call(void F.f1());   
  before(): myF() { 
     // do something 
  } 
}   

Figure 57. An aspect which contains the warning 

 

By using our engine to check the source code of the classes and aspects, the engine will report the 

following message: 

 
WARNING: No annotation was found on advice: BEFORE myF() at line 4 at aspect 

A 

 

 Another small example 

 

We have another example for finding out the errors. Suppose we have two aspects on the above 

existing class, as Figure 58 and Figure 59 show. 

 
public ect A {  asp
  pointcut myF():  call(void F.f1());   
  @Before 
  before(): myF() { 
     // do something 
  } 
}   

 

Figure 58. An aspect that actually executes first 
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public aspect B { 
  pointcut ):  call(void F.f1());    myF(
  @BeforeFirst 
  before(): myF() { 
     // do something 
  } 
}   

 

Figure 59. An aspect that is declared to execute first but actually not 

 

If we have a declared precedence statement on the two aspects: declare precedence: A, B, we can 

see aspect A would be executed before aspect B. 

 

However, the annotation in aspect B means that the advice should be executed first before the 

method. So a conflict exists for the code. Our engine can find out this error by combining all the 

aspects and the precedence between them, and report the following error message: 

 
ERROR: CONFLICTS FOUND: Advice BEFORE myF() in aspect B at line 4 was declared 

to be the FIRST to be executed, but advice BEFORE myF() at line 4 in aspect 

A can be executed before it 

 

 The TeleCom example 

 

Now let us use our solution against the TeleCom system we mentioned above. The programmer 

first finished the Connection class. Then the new requirement comes so two programmers start to 

work on it. Before they started to work, they came to an agreement that the timing should be 

calculated first before the billing. So same as above, a helper class Timer is created. The 

difference is the use of the annotation for the aspects. They created the two aspects as Figure 60 

shows.  
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public aspect Timing{  
pointcut start (): call(void

Connection.start()); 
@BeforeFirst 
before(): start () { 

     Timer.start();  
} 
pointcut end (): call(void 
Connection.stop()); 

@AfterFirst 
after(): end () { 

     Timer.stop();  
} 

} 

public aspect Billing{ 
 private long rate 0    = 1 ;    

pointcut end (): call(void 
Connection.stop()); 
@AfterLast 

 after():end () { 
      long time = Timer.getTime(); 

long cost = rate * time;      
System.out.println("The cost 
is: " + cost);  

} 
} 

 

Figure 60. Aspects with annotations 

 

Again, they didn’t specify the precedence between the two aspects, so the got the following 

results by our tool. 

 
WARNING: No precedence declared between Aspect Timing and Aspect Billing, 

but they are dependent on each other. 

ERROR: CONFLICTS FOUND: Advice AFTER end() in aspect Timing at line 9 was 

declared to be the FIRST to be executed, but advice AFTER end() at line 5 

in aspect Billing can be executed before it 

 

Then they use the declared statements to specify the precedence between the two aspects by 

“declare precedence: Timing, Billing”. However, this is a wrong precedence. Our tool will find 

out this and again report the following error: 

 
ERROR: CONFLICTS FOUND: Advice AFTER end() in aspect Timing at line 9 was 

declared to be the FIRST to be executed, but advice AFTER end() at line 5 

in aspect Billing can be executed before it 

 

Then they rethink about the precedence and find out they used the wrong precedence. With the 

correct precedence declared, our tool will report no errors.  

 

From the examples, you can see that we do not need to wait till the runtime to find out the wrong 

semantics caused by the precedence issue. And not to say, some wrong semantics can not be 

found just in runtime by analyzing the output in a short time.  
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5.3 FOP / IOP 

For the solution in Section 4.2, we can implement a checking engine for FOP. The 

implementation can find out all the errors. We have built enough testing cases to test our engine.  

 

Major classes include:  

Checker The main class that does the checking.  

Equation Represent equation of the layers. 

Layer Represent a layer. 

Class Represent a class. 

Method Represent a normal method. 

RefinedMethod Represent a refined method. 

MethodBody Represent the method body for a method. 

CodeFragment Represent code fragment. 

SuperCall Represent a Super call. Subclass of 

CodeFragment. 

Annotation Represent an annotation. 

RelativeAnnotation Represent a relative annotation. 

Concerns Represent the concerns for one layer. 

Result Represent the result generated after a checking 

is done. 

Error The parent class for all the errors. 

 

The enumerations include: 

ExecutionAnnotationType The annotation types, including all the types 

listed in Section 4.2. 

PrecedenceType Represent the precedence types between layers. 

This includes LEFT, RIGHT and ITSELF. 

 

A lot of testing cases (examples of the FOP files for all of the errors) have been developed 

against the tool. 

 

 

70 



 

 A Small Example 

 

This is an example about the concerns. Suppose we have a layer called layer1 which required a 

flowright concern “Bool deckBuilt”. However, none of the layers on its left provides that concern. 

Our tool will report an error like this: 

 
ERROR: Required flowright Bool deckBuilt at layer layer1 can not be satisfied. 
 

If a new layer is added to the equation on the left and provides the deckBuilt flowright concern, 

the error will be eliminated. 

 

 Another Small Example 

 

This example is about the Super call invocation times. As we mentioned above, the Super call 

must be invocated for at most one time in a refined method.  

 

If multiple invocations of Super happen as Figure 61 shows, an error would be reported: 

 
ERROR: In Layer: Layer_1->Class:A->Method:int m(int), at line 4 

       You must call Super exactly for one time, but you called 2 times. 

 

refines class A{  
   int m(int i) { 
     Super().m(i); 

Super().m(i); 
     // do something 
   } 

 
 }   

Figure 61. Multiple Super calls are invocated 

 

 Third Example 

 

This example is about the annotations that are not compatible with their own code. For example, 

it will be wrong if a @Before annotation is used on a refined method which does not call Super 

at the last line. Figure 62 shows this. 
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refines class A{  
   @Before 

int m(int i) { 
     Super().m(i); 
     // do something 
   } 

 
 }   

Figure 62. Annotations incompatible with their own code 

 

An error should be reported on this: 

 
ERROR: In Layer: Layer_1->Class:A->Method:int m(int), at line 4 

       The annotation BEFORE conflicts with its actual code. 

 

 Fourth Example 

 

This example is about the error when annotations are not compatible with the final woven code. 

Suppose a refined method is declared to be the first one executed before the basic method, 

however another refined method will be executed before it. Figure 63 shows the one declared to 

be executed first. Figure 64 shows the one is actually executed first. The method in Figure 64 is 

on the left layer of Figure 63. 

 

refines class A{  
   @BeforeFirst 

int m(int i) { 
// do something 

     Super().m(i); 
   } 

 
 }   

Figure 63. A method declared to be executed first 

 
refines class A{     

int m(int i) { 
// do something 

     Super().m(i); 
   } 

 
 }   

Figure 64. A method that is actually executed first 
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An error is reported on this by our tool: 

 
RROR: In Layer: BaseLayer->Class:A->Method:int m(int), at line 4 

It is declared to be executed PREFIRST, but the method in 

Layer:Layer_1->Class:A can be executed before it. 

 

 The TeleCom Example 

 

Now let us use our tool against the TeleCom example we showed above in the motivation part, to 

see whether our tool can solve the problem very well. 

 

When working on the TeleCom example, the only difference is that the programmer needs to 

annotate the methods for Timing and Billing, as Figure 65 shows. 
refines class Connection{ 
   @Before 
 void start(){ 
  Timer.start(); 
  Super().start(); 
 } 
    @Before(“Billing”) 
 void stop(){ 
  Super().stop(); 
  Timer.stop(); 
 } 
} 

refines class Connection{ 
 private long rate = 10; 
    @After(“Timing”) 
 void stop(){ 
  Super().stop(); 
     long time = Timer.getTime(); 
     long cost = rate * time;      
     System.out.println("The cost 
is: " + cost); 
 } 
} 

 
Figure 65. Timing (left) and Billing (right) with annotations 

 

If Timing is on the right of Billing in the equation (which means Timing is the nearest layer to the 

base layer), the equation is expected and everything should be working okay. Our tool will not 

report any errors. However if Billing is on the right of the Timing, the equation would be wrong, 

because the time should be calculated before the bill. The annotations tell this too. So with our 

tool, an error is reported as below: 

 
ERROR: In Layer: Timing->Class:Connection->Method:void stop(), at line 4 

It is declared to be executed BEFORE the method in Layer:Billing, but 

this is not guaranteed. 
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5.4 The Unified Model 

From the analysis above on different design methodologies, we can have a general solution for 

the design problem on how to specify the designer intent. Figure 66 shows the architecture of 

such a solution. We can see that, 

1. Annotations can be widely adopted to solve the problem for different design methodologies.  

2. We need a specific parser for each design methodology. The parser is used to retrieve the 

annotation information and the other information from the source code. 

3. A single back-end evaluation model can be adopted to unify all methodologies. This model 

constructs the directed multigraph, and evaluates the graph based on the semantics of the 

annotations as determined by the compatibility matrix (i.e. see section 4.1), together with the 

final execution order.  

 

OOD 

AOP 

FOP 

IOP 

Parser 

Retrieve information 

Unified Model 
Evaluation 

System 

Adopt 
Annotations 

Parser 

Parser 

Parser 

 

Final 
result 

 
 

Figure 66 The general solution 

 

In our implementation for the methodologies, we have implemented simple parsers to retrieve the 

information. For example, for AOP, we use class reflection to retrieve the annotations 

information and the class information. For FOP, we retrieve the information by parsing the 

source code line by line.While those parsers are still simple, they work fine for the given 

examples. More general parsers should be finished for different methodologies.  

 

We have implemented evaluation systems for each methodology we investigated, but the unified 
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model is not given. This is also stated as future work. When designing this model in future, we 

should consider unifying the evaluation strategies for different methodology. For OOD, we 

adopted compatibility matrix and only consider the annotations compatibility, however for AOP 

and FOP, we built final execution order to identify the annotation conflicts. The two strategies 

should be put together to improve the evaluation. 

6 Conclusion and Future Work 
We believe see that our annotations can solve the precedence issue very well in OOD, AOP and 

FOP. The best reason to support the annotation idea is that we think designers should always 

know the relationship between the classes, aspects or layers, thus they should always know where 

the aspects or layers should be applied in whole system. Annotation enables the designers to 

control the semantics of the system. It is like when building a wall, the designer annotates every 

brick with a number, thus the workers know where to put the bricks in the wall. 

 

Thus we can claim that we can guarantee that a correct semantics is adopted for the precedence 

issue.  

 

For future work, as we already pointed out in the above section, more general parsers should be 

implemented for different design methodologies. We have implemented simple parsers for 

different methodology in our implementation. Besides it may be useful to use our research results 

with the existing IDEs such as Eclipse and AHEAD, for instance a plug-in in Eclipse may 

accelerate the use of the annotations. A unified model to evaluate the annotations should also be 

designed. 
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