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Abstract 

 

The thesis describes the design of a fringe projection system to study the 

dynamics of condensation with potential application in a reduced gravity 

environment. The desired properties of the system are its simplicity, portability, 

compact size and robustness to vibration, making it suitable for use in 

spaceflights. The concept is that an optical system for imaging the 

condensation layer enables extraction of valuable data from the image because 

of the ability of the optical system to image the perturbations in the 

condensation films.  By acquiring a sequence of images of the deformed fringe 

pattern, the change in the surface topology can be observed over time, giving 

greater understanding of condensation dynamics in reduced gravity. 

The principle behind the system is fringe projection, which is a simple 

way of optically mapping a surface in which fringes are projected onto the 

object under test in one direction and are viewed from another direction. The 

projected fringe pattern gets changed in accordance with the surface topology 

of the object. This change manifests itself in the form of angular and spatial 

frequency carrier shift in the Fourier domain. Thus the extraction of surface 

topology of the object becomes a matter of linear frequency domain filtering. 

The deformed fringe pattern is thus analyzed by a Fourier transform based 

fringe analysis technique followed by phase unwrapping.  

The system hardware setup was developed, and a series of experiments 

were performed which validate the working of the system. A condensation 
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chamber was developed and integrated with the system to allow study of 

condensation. The process of condensation was implemented by cooling the 

reference copper block by circulating ice cold water though it and by passing 

water vapor over it in a controlled manner. 

The fringe projection system was implemented using laser light, which 

involved the generation of fringes with the use of a beam splitter and two 

reference mirrors. The results obtained were promising except for the presence 

of excessive amount of speckle noise in the images. As an alternative, fringe 

projection was also implemented using a white light source and a Ronchi ruling. 

It was found that the fringes obtained from the white light source were of low 

intensity and contrast and the camera was not sensitive enough to capture 

images good enough for further analysis. Suggestions have been provided for 

further improvement of these images as further work. 
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Chapter 1: Introduction 

 

1.1 Background for condensation 

 
The subject of this thesis is an optical measurement system for 

characterizing the dynamics of condensation in reduced gravity. Thus, we begin 

with a description of the process of condensation. 

 Condensation is the physical process of converting vapor to a liquid. In 

the process, molecules give up some energy in the form of heat. The reverse 

happens with evaporation, where the molecules take away heat when they 

evaporate. At a liquid-vapor interface, molecules are constantly entering the 

liquid state from the vapor and others are going from the liquid to the vapor. 

When there is greater number of molecules going from the vapor to liquid state, 

rather than the reverse, then condensation is said to be occurring [1]. For 

example, when water vapor from the air condenses onto a glass of cold water, 

heat is transmitted due to the phase change, through the glass into cold water. 

The need for development of techniques to measure condensation in low 

gravity environments arises from the fact that the phenomenon of condensation 

on a cooled metal surface is a complex one, with different behavior in the case 

of reduced gravity. Condensation is affected by parameters such as 

temperature and pressure of the vapor, the condensing surface, and the 
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viscosity and thermal conductivity of the condensate etc. The mechanisms of 

conduction and convection also play a role in the condensation process, of 

which convection is a gravity driven process. Thus, in reduced gravity 

environments, condensation rates would be significantly altered. 

 

1.2 Condensation Measurement Techniques 

 
Several techniques for measurement of condensation are possible, and 

the ones most appropriate for the current project are briefly described here.   

One technique for measuring condensation is in the form of an ultrasonic 

system. The ultrasound system, implemented previously as part of this project, 

and described in a M.S. thesis by Michael Shear, uses several transducers in 

pulse-echo mode, to determine the thickness of the fluid film at discrete 

locations opposite each transducer [1]. The next section explains this technique 

in more detail. This system was found to yield thickness and growth rate 

information, but only limited topographic information about the condensing fluid 

film. This limitation is due to the fact that information about the condensate is 

available only at discrete points. 

A second approach to condensation measurement utilizes heat flux 

measurements; if the temperature of the vapor is known, and the temperature 

of the block onto which the vapor is condensing is known, the amount of fluid 

condensing can be calculated from the total heat flux of the system.  This 
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measures the condensation rate, but provides no information about the 

topology of the fluid film or about the film thickness at any given time. 

Another simple approach can be to simply capture the growth and spatial 

distribution of the condensing fluid film as a video stream. However, this would 

yield only qualitative rather than quantitative information. 

The fourth measurement approach for monitoring the progress of 

condensation is an optical system, in which the condensate layer is illuminated 

with a fringe pattern and the reflections off of the fluid layer are recorded with a 

CCD camera.  This system measures the topology of the fluid layer as well as 

its thickness and growth rate, over the entire area of interest. This 

measurement approach is the one we chose to implement, and will be 

described in greater detail in later chapters.   

 

1.3 Summary of Ultrasound technique 

 
The pulse-echo ultrasonic system measured the thickness of a 

condensing film in real time, as well as processed the data to determine wave 

velocity and wavelength data for perturbations within the condensing film.  This 

was done using several ultrasound transducers mounted on the outside surface 

of the condensation chamber [1].   

This research was conducted using a condensation test cell.  A similar 

condensation cell has been utilized for the current research, designed 

specifically for use with the optical system. The condensation cell used in the 
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ultrasonic system consisted of a cylindrical shell constructed of relatively 

insulating plastic, with fittings for introducing vapor into the test cell. The cell 

was made of copper with cooling channels piped through it. Following is a 

description of the ultrasonic system from Michael Shear’s Master of Science 

thesis [1] along with a block diagram of the system. 

  
 

Figure 1-1:  A block diagram of the ultrasonic thickness measurement system 
   

“Eight ultrasonic transducers were connected through a multiplexer to a 

pulser-receiver (P/R) unit, which was connected to a computer-based 

oscilloscope.  The oscilloscope hardware was contained within a single Type II 

PCMCIA card. The oscilloscope was controlled through a control program 

which performed all processing as well as all control of the multiplexer.  The 

data from the P/R unit was processed through several signal-processing steps, 
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and the thickness estimate was extracted from this data.  This process was 

repeated for each of the active transducers and could be continuously repeated 

to generate a thickness vs. time record.   

Condensate layers, which are thin relative to the wavelength of the 

ultrasonic signal, have the frequency response of a “comb filter”; in other words, 

the reflected energy due to a broadband ultrasound pulse falls in certain 

narrowband frequency ranges.  The center frequencies of the passbands of the 

comb filter fulfill the equation (2n+1) f0 where n is an integer greater than or 

equal to zero and: 

 
d4

cf0 =    (1.1) 

  

or, equivalently,  

 
0f4

cd =  (1.2) 

  

where d is the thickness of the fluid layer in meters and c is the speed of sound 

in the fluid in meters/second. 

 The f0 value was extracted through Fourier analysis of the signals 

acquired by the system.  If the fluid layer was of an appropriate thickness for 

this technique to work (approximately 50-2000 microns) the FFT obtained clear 

peaks at odd multiples of f0 (f0, 3 f0, 5 f0, 7 f0, etc.) and the locations of these 
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peaks were extracted using a peak-detection algorithm which produced an 

estimated f0 and through Eqn. 1.2, the estimated layer thickness was obtained.  

For thicker layers, a more conventional echo-delay method was used.  In 

this method, the interval between the arrival time of the echo from the copper-

fluid interface and the arrival time of the echo from the fluid-vapor interface was 

measured which yielded a thickness estimate using Eqn. 1.3. 

 
2

tcd ∗
=    (1.3) 

  

This method worked for layers, which were at least one or two 

wavelengths thick.  For the 5MHz center frequency transducers used, this 

meant that the method was more useful for fluid layers with a thickness of about 

0.5mm or greater.  The system used the thick-film algorithm first, and if an 

invalid result or results less than 750 microns were generated, the thin-film 

algorithm was then run with the same data.”  

To overcome the limitations of the ultrasonic system in measuring full 

field data about condensation and its inability to provide any surface topology 

information, the proposed optical measurement system was envisioned and 

developed. 
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1.4 Development Stages of the Proposed Measurement System 

 
The system developed for the current project is intended to be used for 

condensation studies in spaceflight experiments. The system needs to be in a 

form suitable for performing condensation research on NASA’s KC-135 aircraft 

which provides approximately 25 second periods of reduced gravity 

environment through parabolic trajectory maneuvers. 

To monitor condensation in these reduced gravity environments, the 

proposed optical measurement system with the condensation test cell must be 

developed. This process was started with the development of the optical 

measurement system. The system was initially based on the principle of 

interferometry and fringe skeletonization [2], but later changed to the principle of 

fringe projection and Fourier transform based fringe analysis. This change 

became necessary as the maximum thickness of fluid film that can be 

measured with interferometry and fringe skeletonization was found to be limited 

to the range of few micrometers. The fringe projection system allows 

measurement of fluid layers up to many millimeters. This system was initially 

tested with objects of known dimensions. This helped us validate the working of 

the system while also bringing out some minor flaws. After making corrective 

improvements, the experiments were then repeated with static fluid films. The 

results of these tests showed excessive amount of noise in the reconstructed 

surface information. This led to investigation of an alternate implementation of 

the fringe projection system with an incoherent light source. This differed from 
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the coherent light system in the choice of light source (an LED) and in the 

mechanism of generation of fringes, which was done using a Ronchi ruling. 

However, it was found that the fringes obtained from the white light source were 

of low intensity and contrast and the camera was not sensitive enough to 

capture images good enough for further analysis. 

Soon after the development of the optical system, the condensation test 

cell was developed and was integrated with the system to perform bench top 

condensation experiments. The system was found to be successful in 

reproducing the process of condensation in the cell. However, some problems 

discussed in detail in the following chapters prevented us from obtaining useful 

optical data in this process.  

 

1.5 KC135 Flight Experiment Requirements 

 
Since the proposed optical system is intended for use in KC-135 aircrafts, 

it was important that the system be portable, lightweight and able to withstand 

vibration. In addition, care was taken to keep the dimensions of the system 

minimal, which will be useful while packaging the system for the flight 

experiments. The development of the system was done with these basic criteria 

always in mind. This had an important influence on the choice of technique for 

surface metrology. This is explained in greater detail in Chapter 2. Additionally, 

the individual components used to assemble the final system were selected to 
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be lightweight, yet capable of being secured firmly in place to minimize effects 

of vibration. 

 

1.6 Thesis Goals 

 
The goal of this research is the development of an optical system for 

dynamic measurement and monitoring of condensation film thickness and 

surface profile. The ultimate goal is to develop a system which can be used to 

study the process of condensation in reduced gravity environments. The current 

status of the project is that the system has been implemented and tested with 

static fluid films. Research was done to improve the quality of results by 

identifying and minimizing the major sources of noise. An alternate 

implementation was also proposed and investigated to remove the biggest 

source of noise, by switching to incoherent light. Testing has been done with 

quantifiable non-fluid objects and static fluid films of varying thicknesses and 

profiles. Tests with the condensation test cell were attempted, but were not able 

to yield useful data due to equipment problems listed further in the thesis. 

 

1.7 Thesis Outline 

 
The structure of the thesis is as follows: 

Chapter 1 presents a brief introduction to this thesis and the research 

project of which it is a part. A background of the theory of condensation and the 
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motivation for this project is described. A summary of the previous work done 

as part of this research project is also presented. 

Chapter 2 delves into the fundamental optical metrology theory relevant 

to the understanding of this thesis. Contemporary techniques in the field of 

surface measurement have been discussed and the reasoning behind the 

selection of the technique is explained. 

In Chapter 3, the complete description of the hardware comprising the 

system is presented. This includes the optical equipment as well as the 

construction of the condensation cell. 

Chapter 4 begins with an explanation of the signal processing steps 

involved in the analysis, followed by the available software solutions meeting 

the requirements. The chapter ends with the evaluation of the selected software. 

Detailed descriptions of various experiments performed and results 

obtained with the setup are provided in Chapter 5. This includes non-fluid, 

stationary fluid as well as condensation experiments. 

Finally, Chapter 6 concludes the thesis with a discussion of the goals 

achieved and provides direction for further research. 
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Chapter 2: Optical Metrology Theory 

 

2.1 Introduction 

 
In the field of non-destructive testing and analysis, optical metrology 

plays a very important role. Optical inspection techniques make it possible to 

obtain important visual information under difficult conditions such as boilers or 

in sensitive environments [3]. These techniques can be categorized into two 

main areas on the basis of the type of measurement. The first category includes 

techniques, which provide information on the shape or structure of the test 

object while the other category includes techniques that analyze properties of 

the object other than its shape [3]. Some examples of applications in the first 

category are surface roughness measurements, inspection and measurement 

of wafer surface during VLSI manufacturing and shape recognition. The second 

category supports applications that go beyond plain visual inspection, such as 

material characterization, coating evaluation, detection of overheated 

components [3]. 

Further sections in this chapter will cover some of the techniques used 

for surface inspection. Techniques such as phase shifting interferometry, moiré 

methods, and fringe projection are some of the techniques widely used in 
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optical metrology. Before explaining these techniques in detail, a review of the 

theory of optical interference will be covered. 

 

2.2 Theory of Optical Interference 

 
Principle of Coherence: If light originating from a source is divided into 

two beams, then the inherent fluctuations in the two beams are in general 

correlated, and the beams are said to be completely or partially coherent 

depending on whether full or partial correlation exists. In light beams from two 

independent sources, the phase functions are usually uncorrelated and such 

beams are called incoherent beams. When coherent waves superpose, they 

produce visible interference effects because their amplitudes can combine, 

whereas for the incoherent waves, their intensities combine. Interference 

produced by incoherent waves varies too rapidly in time to be practically 

observed. 

 When two mutually coherent beams pass through a point, we can 

observe the phenomena of interference between the wavefronts. The medium 

at that point is subjected to the total effect of the superposition of the two 

vibrations, and under certain conditions, this superposition results in stationary 

waves, known as interference fringes.  

Consider the superposition of two monochromatic plane waves )r(U1
r and 

of the same frequency and with different complex amplitudes. The result is )r(U2
r
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a monochromatic wave of the same frequency and the complex amplitude is the 

sum of the individual amplitudes, i.e. 

 )r(U)r(U)r(U 1
rrr

+=  (2.1) 

 Expressing the plane waves in terms of their intensities, we get 

 2
11 UI =  (2.2) 

  2
22 UI =   (2.3) 

Thus, we have, 

  2
*
1

*
21

2
2

2
1

2
21

2 UUUUUUUUUI +++=+==  (2.4) 

where the asterisk denotes complex conjugation.  

If   

  1j
11 eIU ϕ=  (2.5) 

  2j
22 eIU ϕ=  (2.6) 

then,   

  ϕ++= cosII2III 2121   (2.7) 

where   

   (2.8) 21 ϕ−ϕ=ϕ
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 Eqn. 2.7 is known as the interference equation, and the term ϕcosII2 21  

is known as the interference term. At different points in space, the resultant 

irradiance can be greater, less than or equal to 21 II + , depending on the value 

of the interference term, i.e. depending on ϕ . Irradiance maxima occur for 

and minima occur form2π=ϕ ( )π+=ϕ 1m2 . The dark and light zones that would 

be seen on a screen placed in the region of interference are known as 

interference fringes. 

 An interferometer is, in the broadest sense, a device that generates 

interference fringes. Interferometers can basically be classified into two types: 

wavefront splitting interferometers and amplitude splitting interferometers. 

 Wavefront splitting interferometers recombine two different parts of a 

wavefront to produce fringes. The earliest experimental arrangement for 

demonstrating the interference of light was Young’s experiment, which 

employed a double slit to obtain two sources of light. The principle of double slit 

experiment is illustrated in Figure 2-1. 
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Figure 2-1: Young’s double slit Experiment 
 

 The light from a monochromatic source S falls on the two pinholes S1 

and S2, which are close together and equidistant from S. The pinholes act as 

secondary monochromatic sources, which are in phase when SS1=SS2, and the 

beams from these sources are superposed in the region beyond the pinholes. 

An interference pattern can be observed on the screen. 

 Amplitude-splitting interferometers, on the other hand, divide a wavefront 

into two beams (splitting the amplitude), which propagate through separate 

paths and are then recombined. Typically, beam splitters are used for splitting 

and recombining wavefront amplitudes.   

 One of the most important interferometers based on amplitude-splitting 

technique is the Michelson’s interferometer. Its basic arrangement is shown in 

Figure 2-2.  
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Figure 2-2: Basic Principle of Michelson and Twyman Interferometers 
 

 It consists of a partially silvered mirror B, which acts as a beam splitter, 

dividing the incident beam coming from S into two beams of equal intensity, one 

reflected and the other transmitted. These beams strike the reference mirror M1 

and the test surface M2 at normal incidence and are reflected back and meet at 

the beam splitter and combine to create interference patterns, which can be 

seen at the point of observation O. 

In Figure 2-2, the interferometer is set up with a point source, which 

would illuminate only a small part of the field of view. Hence this configuration is 

used only after further modification. If an extended source (a source with 

uniform surface brightness) is used in Michelson’s mirror arrangement, the form 

is as shown in Figure 2-3. In this arrangement utilizing an extended source, the 

rays, which reach the point of observation, leave the mirrors at various angles.  
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Figure 2-3: Michelson interferometer with an extended source 
  

A Michelson’s interferometer modified to work in collimated light is a 

Twyman-Green interferometer. In the Twyman-Green interferometer, a point 

source is placed at the focus of a high quality lens so that a plane wave front 

traverses the mirror system. On reaching the second lens, the wave front is 

again made spherical and converges on the observation screen. The Twyman-

Green interferometer is shown in Figure 2-4. In its simplest form, it can be used 

to test plane mirrors, plane-parallel windows, or prisms. Figure 2-4 illustrates its 

use in testing of a prism.  
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Figure 2-4: The Twyman-Green interferometer, as used to test a prism 

 

2.3 Interference based Measurement Techniques 

 

2.3.1 Phase Shifting Interferometry 

 The various interferometers discussed above essentially consist of one 

reference mirror and a second surface, which is the surface under test. The 

reflections from both these surfaces interfere to generate fringes, which are 

analyzed to extract information about the surface under test. 

 The key concept of phase shifting interferometry is that a relative phase 

shift is introduced between the object and reference beams, typically by varying 
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the path length, to perform the measurement. By measuring the interferogram 

intensity while changing the phase between the two beams, the phase of the 

test wavefront can be determined [4]. Figure 2-5 shows a common setup used 

in phase shifting interferometry. In this interferometer, a piezo-electric element 

has been attached to the reference mirror. When the element receives an 

electric signal from the controller, it is converted to corresponding movement of 

the element and hence the reference mirror. This induces a phase shift 

between the two paths.  A phase shift can be induced in an interferometer by 

moving a mirror, tilting a glass plate, moving a grating, rotating a half-wave 

plate or using a Zeeman laser. These methods effectively shift the frequency of 

one beam in the interferometer with respect to the other, which introduces a 

phase difference between the two beams [4]. 

 

 

Figure 2-5: Phase shifting interferometer using a moving mirror  
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 Many different algorithms are based on the concept of phase-shifting 

interferometry. Some of the popular algorithms are the three-step method, four-

step method and Carré technique [5]. From Eqn. 2.7, we can say that minimum 

three sets of recorded fringe data are needed to reconstruct the test wavefront 

and solve for the three unknowns. In the three-step technique, three intensity 

measurements are taken with phase shifts of 2
π  between each exposure. 

These three measurements at a single point in the interferogram are as below: 

 )
4

cos(II2III 2121A
π

+ϕ++=  (2.9) 

 )
4

3cos(II2III 2121B
π

+ϕ++=  (2.10) 

 )
4

5cos(II2III 2121C
π

+ϕ++=  (2.11) 

The phase at each such point can then be found as  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=φ −

BA

BC1

II
IItan  (2.12) 

Similarly, the four-step technique works on four phase shift measurements. The 

Carré technique differs from these two techniques in that the amount of phase 

shift does not need to be calibrated. 

 Phase shifting interferometry is one of the most widely used techniques 

in optical metrology because of its numerous advantages. This technique 

provides high measurement accuracy and good results even in case of low 

contrast fringes. However, the biggest disadvantage of this technique is its high 

susceptibility to vibration, as vibration can cause incorrect phase shifts between 
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data sets. Also, the presence of the PZT controller increases the cost of this 

solution significantly. 

 

2.3.2 Moiré Interferometry 

The basic concept behind Moiré interferometry is the Moiré effect. Moiré 

effect is the phenomenon that occurs when periodic structures are superposed 

or viewed against each other [6]. It consists of a new pattern of alternating dark 

and bright areas. This effect occurs due to an interaction between the overlaid 

structures. It results from the geometric distribution of dark and bright areas in 

the superposition. 

Among the various mathematical approaches to study the Moiré 

phenomenon, one of the best is the spectral approach, which is based on 

Fourier theory. This approach enables us to analyze properties not only in the 

original layers and in their superposition, but also in their spectral 

representations. 

We present here analysis of Moiré effect between monochrome, black 

and white images. Each monochrome image can be represented in the image 

domain by a reflectance function, which assigns to any point (x, y) of the image 

a value between 0 and 1, representing its light reflectance (0 for black and 1 for 

white). A superposition of such images can be obtained by means of 

overprinting, which simply means to intentionally print one layer of ink on top of 

another. Since the superposition of black and any other shade always gives 
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black, this suggests a multiplicative model for the superposition of monochrome 

images [6].  

 

Figure 2-6: Superposition of periodic black and white images 
 

Figure 2-6 presents an example of overprinting which reaffirms the 

concept of a multiplicative model for superposition. Thus, when m monochrome 

images are superposed, the reflectance of the resulting image is  

  (2.13) )y,x(r)......y,x(r)y,x(r)y,x(r m21=

Thus in the spectral Fourier domain, 

  (2.14) )v,u(R**)......v,u(R**)v,u(R)v,u(R m21=

where the Fourier transform of each function is represented by the respective 

capital letter and ** denotes two-dimensional convolution operation.  
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In Moiré interferometry, we mainly deal with periodic images. Thus the 

spectrum of the image consists of impulses, which represents the frequencies 

in the Fourier series decomposition of the image. A strong impulse in the 

spectrum indicates a dominant periodic component in the original image at the 

frequency of that impulse. The impulse at origin represents zero frequency, 

which corresponds in the image domain to the constant component of the 

image and its amplitude represents the intensity of this component image. 

Consider the case of periodic images, which are centered symmetrically about 

the origin. The images and their superposition are real valued and symmetric 

and so are their spectra. Thus each image in the spectrum is always 

accompanied by a twin impulse, symmetrically located at the other side of the 

origin (except an impulse at DC). 

The most fundamental case of images is that of gratings with a co-

sinusoidal profile. A grating is essentially a system of close equidistant and 

parallel lines or bars. As reflectance functions take value from 0 to 1, while 

cosines vary from –1 to 1, the co-sinusoidal reflectance function actually has 

the form of a raised cosine wave as in Eqn. 2.7 

 
2
1)xf2cos(

2
1)y,x(r 11 +π=  (2.15) 

This is periodic with a spatial period 
1

1
1

fD =  
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 Consider a second grating with frequency rotated by angle  2f 2θ

 [ ]
2
1)sinycosx(f2cos

2
1)y,x(r 2222 +θ+θπ=  (2.16) 

Two-dimensional Fourier transform of both of these reflectance functions yields 

three impulses, two symmetric impulses of amplitude 0.25, located at a distance 

of  from the origin in the directionif iθ  and an impulse of amplitude 0.5, at the 

origin. The spectrum of the superposition is the convolution of these two spectra 

and thus consists of nine impulses. The geometric location of the impulses in 

the convolution can be found simply by placing on top of each impulse of 

, a centered copy of or vice versa. We get all the impulse pairs 

of previous spectra and two new impulse pairs 

)v,u(R1 )v,u(R2

( ) ( )2121 ffff +−↔+  and  

( ) ( )2121 ffff −−↔−  

These new impulse pairs suggest the presence of two new periodic 

components in the superposition image, which do not exist in the original 

spectrum. The first periodic component is more visible than the other since its 

frequency is lower.  may even be significantly smaller than the individual 

frequencies and thus much more visible than the cosines of the original image. 

This prominent periodic component is the moiré effect that is seen in the 

superposition of the two original images. 

21 ff −

Moiré interferometry combines the concepts and techniques of 

geometrical moiré and optical interferometry. It is capable of measuring in-plane 

displacements with a very high sensitivity. In this method a diffraction grating is 
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produced on the specimen, so that when a stress is applied to the specimen the 

grating exactly follows its deformations. Two beams of coherent light illuminate 

the specimen grating obliquely at angles α and -α , generating constructive and 

destructive interferences, which play the role of a virtual reference grating. The 

deformed specimen grating and the virtual reference grating generate together 

a moiré effect, which reveals the strain pattern of the deformations. 

 

2.4 Projection based Measurement Techniques 

 
Fringe projection is a simple way of contouring in which interference 

fringes are projected onto the object under test at a given angle and are viewed 

from a different angle. It is a convenient technique for contouring objects with 

too great a height variation to be measured with standard interferometry. Two 

variants of fringe projection technique, namely fringe projection with coherent 

light and fringe projection with incoherent light can be implemented, based on 

the type of illumination and fringe generation technique. These are explained in 

detail in the following sections. 

 

2.4.1 Fringe Projection with Coherent Light 

When a sinusoidal intensity distribution is projected on a surface, the 

mathematical representation of the deformed grating image intensity distribution 

is similar to that obtained in conventional interferometry. The surface height 
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distribution can be translated to a phase distribution, which can be obtained by 

means of Fourier transform analysis. 

A sinusoidal intensity distribution can be projected on the surface of 

interest by generating an interference pattern between two coherent plane wave 

fronts. In coherent light fringe projection, a laser source in conjunction with an 

interferometer such as a Michelson interferometer is used to generate the 

interference fringes to be projected. The fringe spacing p is given by 

 
θ

λ
=

sin2
p  (2.17) 

Here λ  is the wavelength of illumination and θ2  is the angle between the two 

interfering beams, as shown in Figure 2-7. From Eqn. 2.17, we can see that 

simply by tilting one beam with respect to another, the fringe period can be 

changed. The larger the angle between the two beams, the smaller will be the 

fringe period.  

 For geometrical analysis of a fringe projection system [7], consider two 

plane waves with propagation vectors     and     incident on a surface S1 whose 

height distribution is to be determined. This results in an interference fringe 

pattern being projected on the surface. Let the surface height be described by a 

function z1=f1(x, y). This is shown in Figure 2-7.   

n
r
1 2n

r
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Figure 2-7: Analysis of fringes with fringe spacing p projected at an angle α  on 

the surface under test 

 

The two waves in the directions     and     lie in the xz-plane making an 

angle  to each other and the line bisectingθ2 θ2  makes an angle α  to the z axis. 

The two incident waves have equal intensity I0. The intensity distribution across 

the surface is found as  

 ⎥
⎦

⎤
⎢
⎣

⎡
α+α

π
+= )sinzcosx(

p
2cos1)y,x(I2)y,x(I 101  (2.18) 

where the distance p between the fringes is as defined in Eqn. 2.17. Eqn. 2.18 

can be obtained easily from the basic interference equation. Appendix A 

outlines the steps to obtain the above equation, as shown in Eqn. A.6. 

For moderately curved surfaces, Eqn. 2.18 can be regarded as a phase-

modulated sinusoidal grating with the spatial period 

 
α= cos

ppx  (2.19) 

1n
r

2n
r
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which corresponds to the spatial frequency 

 p
cos

p
1f

x
cx

α==  (2.20) 

and the spatial phase modulation function 

 p
sin)y,x(f

p
sinz)y,x( 111

α=α=ψ  (2.21) 

where z1=f1(x, y) describes the surface. 

Hence, Eqn. 2.18 changes to 

 
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
ψ+π+= )y,x(

p
x2cos1)y,x(I2)y,x(I 1
x

01  (2.22) 

A practical way of applying this method is sketched in Figure 2-8 where 

the two plane waves are formed in a Michelson interferometer with a small tilt of 

one of the mirrors. 

 

Figure 2-8: Fringe projection using a coherent light source 
 

 
28



The camera placed along the z-axis captures the surface with the 

projected fringe pattern. The resulting intensity I1 captured by the camera is 

given by Eqn. 2.22. The surface then undergoes a change (with progress of 

condensation in our case), after which it is described by the function z2 = f2(x, y). 

The intensity captured by the camera then changes to I2. 

 
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
ψ+π+= )y,x(

p
x2cos1)y,x(I2)y,x(I 2
x

02  (2.23) 

where 

 p
sinz)y,x( 2

2
α=ψ  (2.24) 

Thus, any change in the surface topology manifests itself in the form of 

change in the phase term. The phase )y,x(φ  which contains the surface 

change information equals the difference of arguments of the cosine terms in 

Equations 2.23 and 2.22 such that 

 )y,x()y,x()y,x( 12 ψ−ψ=φ  (2.25) 

This phase information can be obtained from spatial Fourier transform 

analysis of the image, as described in section 2.6 and can be further be used to 

obtain the height information h(x, y) as below [8]: 

 )y,x(
4

)y,x(h φ
π
λ

=  (2.26) 
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2.4.2 Fringe Projection with Incoherent Light 

In the case of incoherent light fringe projection, the light source is 

changed to a white light source. White light is the term used to describe the low 

coherence nature of the light sources, such as LEDs, used in such a technique. 

Since it is much more difficult to observe interference between waves 

generated from such sources, the fringe generation technique is modified. A 

structured light pattern is projected onto the copper surface by the use of a 

Ronchi ruling. The schematic diagram is as shown below in Figure 2-9. 

 

Figure 2-9: Fringe projection using an incoherent light source 
 

A Ronchi ruling has a square wave profile with light and dark strips of 

equal size.  
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Figure 2-10: Ronchi ruling 
 

The intensity transmittance function [9] of the ruling can be expressed in 

terms of the Fourier series in Eqn. 2.27 

 [∑
∞

]
=

φ+=
1n

1n111 )y,x(ncosba)y,x(I  (2.27) 

where  is the function describing the basic shape of the grating lines. 

For the fundamental frequency, 

)y,x(1φ

)y,x(1φ  equals  at the center of each 

bright line and  at the center of each dark line where m is a positive 

integer. The b coefficients determine the profile of the grating lines, such as 

sinusoidal, square wave etc. In case of a sinusoidal grating, only the b

m2π

)1m(2 +π

11 

coefficient is non-zero and the equation is similar to Eqn. 2.18, for the case of 

coherent light fringe projection. 

 The two main differences between incoherent and coherent light fringe 

projection are in the type of light source and as a consequence, the type of 

fringe generation mechanism. The projection mechanism remains unchanged 

and the analysis procedure also remains the same except for some adjustment 
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in the filtering parameters. This will be explained in further detail in section 2.6 

of this chapter covering the theoretical analysis procedure. 

 

2.5 Selection of Technique 

 
 The choice of the most appropriate technique for the system was based 

on our requirement for a system suitable for experiments in spaceflights. Thus, 

it was important for the technique to be such that it leads to a system which is 

compact, portable and robust to vibration. Another important requirement was 

the need to measure large height variations in the condensation film (0.5-5mm). 

Standard interferometry is able to detect surface height variations on the order 

of a few wavelengths of the laser used for measurement. For surfaces, which 

have much larger height variations, the classical interferometry techniques fail 

to perform well, and we need to utilize other techniques such as fringe 

projection, moiré interferometry etc. Among these two, we selected the fringe 

projection technique for its ease of implementation especially in the case of 

measurement of fluid film profile. 

 

2.6 Theoretical Analysis Procedure 

 
The Fourier transform method for fringe pattern analysis requires an 

added high spatial carrier frequency. In the coherent light fringe projection 

system, the straight and equally spaced sinusoidal fringes are the carriers. In 
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case of incoherent light fringe projection, we use a Ronchi ruling with a square 

wave profile to produce the carrier. Hence, we have a base carrier frequency 

and higher harmonics of the same frequency. Proper selection of the spatial 

carrier frequency enables the generation of the contour using Fourier transform 

and phase unwrapping techniques. The biggest advantage of this method is the 

requirement of only a single fringe pattern for processing. 

We explain below the analysis procedure [10] which remains same for 

both coherent and incoherent light fringe projection system. As our system 

involves the carrier fringes generated parallel to the y axis, i.e. the carrier 

frequency involves only the x-component; thus the carrier modulated fringe 

pattern can be described by 

 [ ])y,x(xf2cos)y,x(b)y,x(a)y,x(I cx ψ+π+=  (2.28) 

where a(x, y) and b(x, y) are the unwanted background and modulation terms, 

respectively, fcx is the spatial carrier frequency given by Eqn. 2.20 and )y,x(ψ   

contains the desired phase information. Eqn. 2.28 is essentially the same as 

Eqn. 2.7 using slightly different conventions for ease of Fourier analysis. It can 

be further modified to 

   (2.29) xf2j*xf2j cxcx e)y,x(ce)y,x(c)y,x(a)y,x(I π−π ++=

where 

 [ ])y,x(iexp)y,x(b
2
1)y,x(c ψ=  (2.30) 

 

 
33



The two dimensional Fourier transform of the intensity distribution in Eqn. 

2.29 yields 

  (2.31) )f,ff(C)f,ff(C)f,f(A)f,f(I ycxx
*

ycxxyxyx ++−+=

Since in most cases, a(x, y), b(x, y) and )y,x(ψ vary slowly as compared 

to fcx, all the spectra are separated from each other by the carrier frequency fcx. 

One of the side lobes is weighted down by the Hanning window and translated 

by fcx toward the origin to obtain C(fx, fy). The central lobe and either of the two 

side lobes are filtered out by the above translation.  Figure 2-11 (a) through (i) 

illustrates this process graphically. Here we present the Fourier transform of 

one of the reference fringe pattern images from our experiments (Figure 2-

11(a)) and walk through the processing aspects: 

 

 

(a) Reference image on copper surface 
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Note that the data range of the FFT image (Figure 2-11(b)) is on the 

order of 10E7. As a result, even the zoomed-in 3-D view (Figure 2-11(c)) of the 

FFT image fails to show all the details as the 2D view. 

 

(b) Unfiltered Fourier transformed image (2-D view) 

 

(c) Unfiltered Fourier transformed image (zoomed in 3-D view) 
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(d) 2-D Hanning Window in the spatial frequency domain having the same size 

as the image (2-D view) 

 
(e) 2-D Hanning Window of the same size as the image (3-D view) 

 

When the 2-D Hanning window (Figure 2-11(d)) is multiplied with the 2-D 

FFT image (Figure 2-11(b)), the resultant image is Figure 2-11(f). The 

difference between the images in 2-11(b) and (f) can be seen only in the 
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peripheral regions of the image (due to the nature of the Hanning window). The 

central part remains unchanged. This is also the reason why Figure 2-11(g), 

which is a zoomed-in 3-D view of the central part of the windowed image, 

appears same as Figure 2-11(c), which is the equivalent non-windowed image. 

 

(f) Windowed image (2-D view) 

 

(g) Windowed image (3-D view) 

 
37



Figure 2-11(h) shows the filtering out of the negative spatial frequency. 

Note that these negative frequencies are only being removed along fx and not fy, 

in accordance with the discussion following Eqn 2.31 (Note: The spatial carrier 

frequency introduced by the fringes is fx). 

 

(h) Windowed image after filtering (2-D view) 

 

(i) Windowed image after filtering (3-D view) 

Figure 2-11: (a) through (i) - Filtering and Windowing process 
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Taking two dimensional inverse Fourier transform of C(fx, fy) yields c(x, y). 

The phase distribution may then be calculated point-wise using 

 [ ]
[ ]⎟⎟⎠

⎞
⎜⎜
⎝

⎛
=ψ

)y,x(cRe
)y,x(cImarctan)y,x(  (2.32) 

where Im[c(x, y)] and Re[c(x, y)] denote the imaginary and real parts of c(x, y), 

respectively.  As this phase calculation yields values ranging from  toπ− π+ , 

the phase distribution is said to be wrapped around this range and has phase 

discontinuities. These can be corrected using phase unwrapping process. Using 

unwrapped values of and)y,x(1ψ )y,x(2ψ , we can obtain  using Eqn. 

2.25 and finally obtain the height information for the surface film from Eqn. 2.26.  

)y,x(φ

In case of incoherent light fringe projection, the above described 

technique remains the same. Since the Ronchi ruling has a square wave profile, 

there exist higher harmonics of the carrier frequency, which correspond to 

smaller side lobes. Thus, to extract the c(x, y) term, these smaller side lobes 

also need to be filtered out. Hence, in case of incoherent light fringe projection, 

there is only a small change in the area to be filtered out. 
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Chapter 3: Hardware System Setup 

 

3.1 Overall System Description 

 
The basic concept behind the surface mapping of the fluid film is the 

principle of fringe projection. The optical system has been implemented on an 

optical base plate of size 12” x 12”, consisting of a solid aluminum plate, 

anodized black and tapped with ¼-20 holes. The key optical and imaging 

components of the system are mounted on this base plate. The other important 

part of the system is the computer system in the form of a laptop containing the 

frame grabber and the optical fringe analysis software. In addition to these main 

parts, the system requires many other accessories such as power supply 

adapters for the light source, camera adapter and optionally the ultrasonic 

instrumentation. Figure 3-1 shows a photo of the test setup. 
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Figure 3-1: Fringe projection system setup  
 

3.2 Hardware Components 

 
We have considered two different implementations of fringe projection, 

one using coherent light and the other using incoherent light. The coherent light 

system was first implemented, which was found to give promising results. 

However, there was a significant amount of noise, as a consequence of the 

speckles present in coherent imaging systems. The resultant images consisting 

of the noise are presented in Chapter 5 with additional details regarding the 

experiments. An alternative approach in the form of incoherent light fringe 
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projection was then investigated. Many of the components are common in each 

of the techniques. We begin by describing the basic setup of a fringe projection 

system, followed by a description of both the coherent and incoherent light 

fringe projection systems. 

Figure 3-2 below shows the block diagram for the setup of a basic fringe 

projection system: 

 

Figure 3-2: Basic fringe projection system block diagram 
 

In any fringe projection system, the essential functional blocks include  

1. A light source  

2. A system for the generation of fringes 

3. Fringe projection optics 
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4. Image capture and analysis system 

The light generated from the light source goes into the fringe generation system. 

The fringe patterned obtained from this block is passed through some form of a 

beam expander which ensures that the beam is sufficiently big to cover the 

region of interest. Through the use of beam steering optics, the beam is 

projected onto the test surface which introduces deformation in the fringe 

pattern in accordance with the surface topology of the surface. Finally, the 

deformed pattern is captured, digitized and sent for analysis. 

Depending on the light source and accordingly the fringe generation 

technique, the system can be categorized as a coherent light fringe projection 

system and an incoherent light fringe projection system. We now explain each 

of these systems in detail. 

 

3.2.1 Coherent Light Fringe Projection System  

The system can be logically divided into two subsystems, one 

responsible for the projection of fringes and the other responsible for imaging of 

the deformed fringe pattern. The projection subsystem consists of the light 

source, which in this case is a laser. The other components in this subsystem 

are the collimator, the interferometer for the generation of fringes and the optics 

for beam expansion and beam steering. The imaging subsystem consists of the 

camera, camera lens and the frame grabber. Figure 3-3 shows the block 

diagram for coherent light fringe projection. 
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Figure 3-3: Block diagram of coherent light fringe projection system 
 

The system utilizes an Nd:YVO4 (Neodymium Doped Yttrium 

Orthvanadate crystal) frequency doubled laser as the monochromatic 

continuous wave light source. This is a diode pumped solid-state green laser 

with center wavelength 532nm. This laser provides an extremely well collimated 

beam along with a long coherence length, which is ideal for interferometry 

applications. 

The laser light is then passed through the collimator assembly where the 

beam diameter is expanded by a factor of 10. This is necessary for uniformly 

illuminating a greater area of the surface to be imaged. 
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The collimated beam of laser light falls upon the beam splitter. An ideal 

partially reflecting beam splitter would transmit one half and reflect one half of 

the incident light with constant phase change, irrespective of the polarization of 

the light. However, practically all reflecting surfaces used at angles other than 

normal incidence have properties that vary with the polarization of the radiation. 

Thus to avoid these complications, we have chosen our laser source to have 

linear polarization. Also, the beam splitter chosen is not a plate beam splitter 

but a cube beam splitter. This ensures that the beam splitter does not exhibit 

ghost reflections nor does it displace the transmitted beam as plate beam 

splitters do. It does not introduce any path difference in the system and being a 

non-polarizing beam splitter, it provides true 50/50 beam splitting without 

altering the beam polarization. 

The two beams of equal intensity, one reflected and the other transmitted, 

strike the reference mirrors at normal incidence and are reflected back and 

meet at the beam splitter and combine to create interference patterns, known 

as fringes. 

These fringes are further sent to a beam expander arrangement, formed 

by using a set of convex and plano-convex lenses, which expands the diameter 

of the fringe pattern that will illuminate the condensing fluid film. 

 The expanded beam is then projected on the copper block using a mirror. 

The camera, which looks down on the copper block captures the fringes 

deformed in accordance with the shape of fluid film on the copper surface. 
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Figure 3-4 shows a picture of the coherent light fringe projection system 

highlighting its key components.  

Camera 
Laser Collimator

Beam splitter

 

B  

Figure 3-4: Coherent light fringe projection system setu
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connect on the PCI slots of the computer. However to maintain the portability of 

the system, we have selected a PCMCIA type frame grabber. 

 The images on the computer are analyzed by the fringe analysis 

software on the laptop to obtain the surface map of the condensation film.  

We now present the detailed specifications of each of the components of 

the system. 

 

i. Laser  

The BWT-5E laser from B&W Tek Inc. is a self-contained, 

thermoelectrically cooled, diode pumped, frequency doubled Nd:YVO4 laser 

(532 nm). Nd:YVO4 is one of the most efficient laser host crystal currently 

existing for diode laser-pumped solid-state lasers. The thermoelectric cooling 

modules are advantageous as they have no moving parts and therefore they 

are inherently reliable and virtually maintenance free. They can be operated in 

any orientation and are ideal for cooling devices that may be sensitive to 

mechanical vibration. Their compact size also makes them ideal for applications 

that are size or weight limited. The laser produces a stable 5mW output over 0 

to 40°C. The excellent beam mode quality and low divergence makes the laser 

suitable for beam focusing and long distance beam positioning. The compact 

size, long life and excellent beam quality of the laser were some of the 

important factors for the choice of this laser.  

Another important characteristic of a laser is its polarization. We discuss 

here the basic concept of polarization.  
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Polarization is a phenomenon observed in transverse waves, i.e., waves 

that vibrate in a direction perpendicular to their direction of propagation. Light is 

a transverse electromagnetic wave. A light wave traveling forward can consist 

of an electric field oscillating up and down (in the vertical plane), oscillating from 

side to side (in the horizontal plane), or oscillating in an intermediate direction. 

Ordinarily a ray of light consists of a mixture of waves oscillating in all the 

directions perpendicular to its line of propagation. If for some reason the 

vibration remains constant in direction, the light is said to be polarized. Thus, 

polarized light waves are light waves in which the oscillations occur in a single 

plane. The polarization of light is determined by the time course of the direction 

of the electric field vector [11].  

Precise control of polarization behavior is necessary to obtain optimal 

performance from optical components and systems. Characteristics such as 

reflectivity and beam splitter ratios are be different for different polarizations. 

We have chosen all of our optical components optimized according to the linear 

polarization of our laser. 

The laser is powered through the adapter provided with the laser, which 

takes in an input ranging from 100V-240V AC and gives a DC output of 5V at 

4A. Table 3-1 lists detailed specifications of the laser. 

 

Specification Detail

Power output > 5mW 

Wavelength 532nm 
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Mode TEM00

Power stability < +/- 15% 

Spectral linewidth <01.nm 

Beam divergence <1.2mrad 

Operating temperature 0-40°C  

Polarization > Linear 50:1 (45°, in reference 

to base plate) 

Beam size φ<1mm 

Warm up time 15 min 

Input power 100-240VAC/50-60Hz 

Laser head dimension 30 x 30 x 66mm 

Power supply adapter  dimension 55mm H x 105mm W x 170mm L

 
Table 3-1: Specifications of the laser 

 

ii. Collimator 

The model LC-075 from Newport Corporation is a 10x laser collimator 

optimized specifically for low wavefront distortion and diffraction limited 

performance at infinity focus in the visible wavelength region. It is a Galilean 

optical system, antireflection coated with visible MgF2 for maximum 

transmission. The design principle of an optical system may be Galilean or 

based on Kepler’s principle. With Galilean principle, the beam of light first 

passes through a negative optical element which causes the beam to diverge 

and then it passes through a positive optical element which restores the beam 

to a parallel beam. 
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Specification Detail

Expansion ratio 10X 

Entrance aperture 1.9mm 

Exit aperture 19mm 

Wavelength 400–700 nm  

Wavefront distortion 
10

λ≤  at infinity focus  

Damage Threshold  100 W/cm2 CW, 2 J/cm2 with 10 

nsec pulses, typical  

 
Table 3-2: Specifications of the collimator 

 

iii. Michelson Interferometer 

 As explained in Chapter 2, a Michelson interferometer consists of a 

beam splitter, which divides the incident beam coming from the coherent light 

source into two beams of equal intensity, with one reflected and the other 

transmitted. These beams strike the two reference mirrors at normal incidence 

and are reflected back and meet at the beam splitter and combine to create 

interference patterns. Figure 2-2 in Chapter 2 illustrates the basic setup of a 

Michelson interferometer. The specifications of the beam splitter and the 

reference mirrors are presented in the following sections. 

 
(1) Beam splitter: The model 05BC16NP.3 from Newport Corporation is 

a non-polarizing cube beam splitter. In this beam splitter, the incoming beam is 

both reflected and transmitted 50% with the s (component of electric field 

perpendicular to the plane of incidence) and p (component of electric field 
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parallel to the plane of incidence) components matched to within 3% of each 

other. It consists of a pair of precision right-angle prisms carefully cemented 

together to minimize wavefront distortion. The hypotenuse of one of the prisms 

is coated with a multilayer all-dielectric non-polarizing beam splitter coating 

optimized for the wavelength of 532nm. The four faces are antireflection coated 

with a multi layer dielectric coating to minimize surface reflection losses at this 

wavelength. Another important specification considered in selection of optics is 

the surface quality. Surface quality describes the number and size of defects 

typically scratches and pits (also known as digs). Scratch-dig is specified by two 

numbers. The first number relates to the apparent size of scratches and the 

second to the apparent size of digs. A number 10 scratch indicates a 1 µm wide 

scratch, while a number 1 dig is identical to a 0.01mm diameter standard pit.  

The material used for the beam splitter and most other optics in our 

system is BK7.  BK7 is a borosilicate crown glass that is used primarily for 

shaped optics such as lenses and prisms.  BK7 is a hard glass with excellent 

homogeneity.  It is relatively resistant to chemical attack and has a 

transmittance window of approximately 350-2200 nm.  BK7 has an index of 

refraction of 1.51947 at 532 nm.  

Detailed specifications of the beam splitter are listed in Table 3-3. 

 

Specification Detail

Dimension 12.7mm 

Wavelength 532nm 
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Material  BK 7, grade A, fine annealed optical 

glass or equivalent  

Wavefront Distortion  
4

λ≤  at 632.8 nm over the clear 

aperture  

Clear Aperture  > central 80% of dimension  

Surface Quality  20-10 scratch-dig  

Transmission  50 ± 3%, independent of polarization 

Reflection  50 ± 3%, independent of polarization  

Polarization  s and p polarization components 

matched to within 3%, 

|Ts - Tp| ≤  3%, |Rs - Rp| ≤  3%  

Transmitted Beam Deviation  ≤  5 arc min  

Reflected Beam Deviation  90° ±5 arc min  

Angle of Incidence  0° ± 2°  

Dimension Tolerance  ± 0.25 mm  

Antireflection Coating  Multilayer coating, R <0.5%  

Temperature Range  -50°C to 90°C  

Damage Threshold  2 kW/cm2 CW, 1 J/cm2 with 10 nsec 

pulses, typical  

 
Table 3-3: Specifications of the beam splitter 

 

(2) Reference mirrors: The reference mirrors shown in Figures 3-3 and 3-

4 are protected Aluminum mirrors (Model PF10-03-G01) from Thorlabs. For 

general broadband use, a protected aluminum coating offers the best option. A 

SiO coating is used to protect the delicate aluminum coating making it suitable 

for laboratory and industrial use. The protected aluminum coating gives a 

reflectivity that most closely matches the reflection of a bare aluminum coating. 
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The diameter of the mirror was chosen to be large enough to accommodate the 

collimated laser beam of diameter 9mm. The two closest choices available were 

12.7mm and 25.4mm. It was decided to use the larger mirror so that the beam 

does not use more that 70% of the mirror area and is confined to central portion 

of the mirror which ensures reflection of the highest quality. 

 
Specification Detail

Diameter 25.4 mm 

Reflectivity >85% at 532 nm  

Substrate Material  Fused silica  

Surface flatness 
10

λ  at 632.8 nm over the clear 

aperture  

Clear Aperture  > central 90% of diameter  

Surface Quality  10-5 scratch-dig  

Protected silver coating RAVG > 90% for 400-10.0 µm 

Damage Threshold  0.5 J/cm2 with 10 nsec pulse 

 
Table 3-4: Specifications of the reference mirrors 

 

iv. Beam expander arrangement  

For expansion of the collimated laser beam, we use a technique known 

as “4f” or “Image Relay” solution. In this, we place two convex lenses as shown 

in Figure 3-5 at a distance |f1| + |f2| apart where f1 and f2 are the focal lengths of 

the two lenses and d1 and d2 are the initial and final beam diameters 

respectively. Note that f1 is a negative distance. 

 

 
53



 

Figure 3-5: 4f imaging solution 
 

It then holds that: 

 
1

2

1

2
d
d

f
f

=−  (3.1) 

We have the input beam diameter of 9mm and we require the output 

beam diameter around 50mm. We thus choose the lenses in the appropriate 

ratio of focal lengths. 

We need 

 55.5
9

50
f
f

1

2 =≥−  (3.2) 

We choose the following lenses. The smaller lens is KBX046AR.14, a bi-

convex lens from Newport Corporation with focal length 25.4mm and diameter 

25.4mm, while the larger lens is LA1353-A, a plano-convex lens from Thorlabs 

Inc. with focal length 200mm and diameter 75 mm.  

This gives 
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This will give an output beam diameter of about 70mm, when the input 

beam diameter is 9mm. Both the lenses are coated with antireflection coating to 

minimize reflections over the visible wavelength range. The specifications of the 

lenses are as listed in Table 3-5. 

 
Specification Detail

Diameter KBX046AR.14: 25.4mm 

LA1353-A :       75mm 

Effective focal length KBX046AR.14: 25.4mm 

LA1353-A:        200mm 

Focal Length tolerance  ±1%  

Material  BK 7 

Clear Aperture  > central 90% of dimension  

Surface Quality  40-20 scratch-dig  

Diameter Tolerance  +0/-0.1 mm  

Center Thickness (Tc) Tolerance  KBX046AR.14: ±0.1 mm  

LA1353-A :       ±1 mm  

Antireflection Coating  Broadband antireflection coating  

 
Table 3-5: Specifications of the beam expansion lenses 

 

v. Beam steering mirrors  

The two beam steering mirrors shown in Figure 3-3 are broadband 

dielectric mirrors, which have Rs and Rp (reflectivity of the s and p components) 

greater than 99%. The model 30D10 from Newport Corporation is a 3-inch 
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(76.2mm) Pyrex lens, which has good surface flatness 5
λ  and excellent 

surface quality expressed in terms of scratch dig parameter of 20-10. The 

detailed specifications are as below: 

 
Specification Detail

Diameter 76.2 mm 

Angle of incidence 0-45°  

Reflectivity Rs, Rp >99%  

S2 Surface  Ground 

Clear Aperture  > central 80% of diameter  

Surface Quality  20-10 scratch-dig  

Diameter Tolerance  +0/-0.13 mm  

Thickness Tolerance  ±0.25 mm  

Wedge  ≤3 arc min  

Chamfers  0.38–1.14 mm face width x 45° ±15° 

Damage Threshold  1000 W/cm2 CW, 10 mJ/cm2 with 10 

nsec pulses within the wavelength 

range, typical  

 
Table 3-6: Specifications of the beam steering mirrors 

We use the mirror with BD.1 coating that reflects all visible laser lines in 

the range 488–694 nm with greater than 99% efficiency for any polarization at 

0–45° angle of incidence. This is important because our laser has the 

wavelength 632.8nm. Also we use the first beam steering mirror (in the beam 

expansion setup) at an angle of 45° while the second mirror which is used to 

project the expanded beam on the copper surface is at an angle of 28.5°. A 

special mount was constructed to hold this second mirror at an angle of 28.5°. 
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The design of this mount involved the criterion that the center of the beam 

should hit the center of the reference copper surface. Figure 3-6 below shows 

the detailed specification provided to construct this angle mount.  Figure 3-7 

shows a picture of the actual mount after construction. 

 
 

Figure 3-6: Specifications of angle mount for beam steering mirror 
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Figure 3-7: Picture of angle mount for beam steering mirror 
 

  

vi. Camera 

The XC-ES50L camera from Sony is a right angle version of the popular 

XC-ES50 camera. The new XC-ES50L camera incorporates a ½” CCD 

providing 768(H) x 494(V) effective picture elements and features a C-mount 

type lens mount. A ½” type CCD essentially means that the image sensor is of 

size 6.4mm x 4.8mm. The unique L shape compact body makes the XC-ES50L 

easy to install in narrow spaces and can be built-in with a turn capability of 

approximately 180 degrees.  Figure 3-8 shows a picture the camera. 
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Figure 3-8: Right angle analog CCD camera (courtesy Sony) 
 

The XC-ES50L camera is an analog camera, ideal for machine vision 

and factory automation applications.  Detailed specifications of the camera are 

presented in Table 3-7. 

 
Specification Detail

Image Device ½” Interline Transfer CCD 

Signal System EIA Standard 

Effective Picture Elements 768 (H) x 494 (V) 

Horizontal Frequency 15.734 kHz 

Vertical Frequency 59.94 Hz 

Cell Size 8.4 x 9.8 µm 

Lens Mount C Mount 

Flange Back 17.526 mm 

Sync System Internal/External (auto) 

External Sync System HD / VD (2~5 Vp-p) 

External Sync Frequency + / - 1% 

Jitter Less than + / - 50 nsec 

Scanning System 2:1 Interlaced 

Video Output 1.0 V p-p, negative, 75ohms 
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unbalanced 

Horizontal Resolution 570 TV Lines 

Minimum Illumination 0.3 lx 

S/N Ratio 60 dB 

Gain AGC (0-18 dB) / Manual (0-18 dB) 

selectable 

Gamma ON / OFF 

External Trigger Shutter ¼ ~ 1/10,000s 

Normal Shutter 1/100 ~ 1/10,000s 

Power Requirements DC-12V (+9 ~ 16V) 

Power Consumption 1.6W 

Dimensions 29 (W) x 42.5(H) x 43.8 (D) 

Mass 110g 

Operation Temperature/Moisture -10 ~ +50° C / 20 ~ 80% 

Vibration 10 G (20 ~ 200 Hz) 

Shock Resistance 70 G 

 
Table 3-7: Specifications of the camera 

 
The camera is attached to the entire system using a custom-designed 

camera mount. This mount was constructed in accordance with the dimensions 

of the camera and the mounting holes provided on top of the camera. Care was 

taken to ensure that the mounting should not obstruct the light path or image 

capture path in any way. Figure 3-9 presents the specifications used to 

construct the camera mount and Figure 3-10 shows a picture of the mount as 

used to hold the camera in the system. 
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Figure 3-9: Specifications of the camera mount 
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Figure 3-10: Custom designed camera mount 
 

 
The DC-700/700CE from Sony is a camera adapter for all current DC 

operated XC cameras. The DC700/700CE supplies 13V, 1.3A. It is small, light 

and useful in space-limited applications. The DC-700/700CE adopts the new 

pin assignment of 12pin connector, which is based upon EIAJ.  

It takes input from the camera through the camera cable and provides 

video output, which can be taken from the adapter using video cable. The 

trigger, horizontal drive and vertical drive signals can also be given through this 

adapter to the camera. 

 
Specification Detail

Power requirements 120V AC, 50/60 Hz 
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DC output DC 13V, 1.3A 

Input/Output connectors WEN connector (BNC type) 

TRIG connector (BNC type) 

HD connector (BNC type) 

VD/SYBC connector (BNC type) 

VIDEO OUT 1 connector (BNC 

type) 

VIDEO OUT 2 connector (BNC 

type) 

CAMERA connector (BNC type) 

Mass 700 g (1 lb, 8 oz) 

Dimensions 110 (W) x 53 (H) x 160 (D) mm 

 
Table 3-8: Specifications of the camera adapter 

 

 

Figure 3-11: Rear panel of DC 700 adapter (courtesy Sony) 
 

The CCXC12P02N is a 2 m long camera cable, which is used to connect 

the camera to the adapter. The cable has a 12-pin connector on both ends.  

Figure 3-12 shows the 12-pin camera connector of the cable used to connect 

the camera and the adapter 
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Figure 3-12: 12-pin camera connector (courtesy Sony) 
 

vii. Camera lens  

We first present the calculations performed to aid the selection of the 

appropriate camera lens for our requirements, before looking into the 

specifications of the selected lens. 

The two important specifications, which play a role in the lens selection, 

are the desired magnification of the image and the working distance, i.e. the 

distance between the image and the object. 

We want to obtain an image of diameter approximately 50.8mm on the 

condensation cell. The size of our CCD is ½”. The dimensions of the sensor in a 

½” CCD are shown in Figure 3-13.  
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Figure 3-13: Sensor size of a ½” CCD 
 

Consider obtaining an image of diameter 8mm corresponding to the 

50.8mm diameter surface being inspected. This implies inscribing the CCD 

completely inside the circle without losing much information. Thus the required 

magnification can be calculated as explained further. 

 157.0
8.50

8
size_Object
size_ageImM ===  (3.4) 

Thus, if the magnification is 0.157, then for a circle of diameter 50.8mm 

(2”) on the condensation cell, we will obtain an image of size 8mm so as to 

utilize maximum CCD area.  

Further, for selection of C Mount lens and spacer, we analyze the 

working distance of the some lenses with the available space in our system. 
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Figure 3-14: Camera lens and spacer placement 
 

a) Let us select a lens of focal length 16mm, having a length of 25mm, 

and a spacer of 5mm.  

The specifications of this combination are: 

 Working distance = 90-340mm 

 Horizontal field of view = 40-130mm  

It is noted that the horizontal field of view is adequate for the largest 

image size of 50.8mm. 

Magnification obtained can be calculated using Eqn. 3.5: 

 
cetandis_Object
cetandis_ageImM =  (3.5) 

Thus, M = 30/150 = 0.2 which is a little over 0.157 and hence acceptable.   

 

b) Now we examine a lens of focal length 25mm, having a length of 

25.5mm, and a spacer of 3mm.  
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This specification cannot be met by any available combination of lens 

and spacer. However, looking at the specifications for two other spacers in 

combination with this lens, we conclude that the results with a spacer width 

lying somewhere in between these two would be most appropriate. 

i) With a spacer of 1mm, the specifications are 

 Working distance = 250-650mm 

 Horizontal field of view = 62-165mm  

ii) With a spacer of 5mm, the specifications are 

 Working distance = 88-118mm 

 Horizontal field of view = 24-31mm  

Thus it is expected that in a range between 1mm and 5mm, say 3mm, 

we will be able to achieve the required working distance of 150mm and a 

horizontal field of view of 50.8mm. 

Magnification obtained can again be calculated using Eqn. 3.5. Thus, M 

= 28.5/150 = 0.19 which is a little over 0.157 and hence acceptable.  Hence, we 

concluded that the combination of 25mm focal length lens and 3mm spacer is 

most appropriate for our requirement. 

The F56-529 from Edmund Industrial Optics is a C mount lens of focal 

length 25mm. A C mount lens is a lens in which the flange distance, which is 

the distance between the mechanical mount surface and the image sensor (in 

air), is 17.526mm. Table 3-9 presents detailed specifications of the lens. 
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Specification Detail

Focal length 25mm 

Aperture f/#  F1.6 -16C (C=closed) 

Mount C mount 

Angular Field of View (FOV) 

-Horizontal 

°6.14  

Min. working distance  0.25mm 

FOV at min. working 

distance 

64mm 

Outward dimensions φ 30.5 x 25.5mm 

Weight 40g 

 
Table 3-9: Specifications of the camera lens 

 

viii. Frame Grabber 

The range of frame grabbers available was mostly PCI based. As the 

system is intended to be a portable system, we required a PCMCIA type frame 

grabber which can be used with the laptop used for data analysis. The two 

available frame grabbers of this type are MRT VideoPortProfesional and Imperx 

VCE-B501. Among these, the VCE-B501 from Imperx Inc. is available easily 

and is well supported by the manufacturer. It is required for obtaining the 

images captured by the camera onto the laptop. The frame grabber package 

includes the cable for connection to the camera adapter and also the driver 

software and a software development kit. Figure 3-15 shows a picture of the 

VCE-B501 frame grabber. 
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Figure 3-15: PCMCIA frame grabber (courtesy Imperx) 
 

 The salient features of the frame grabber are as below: 

• PCMCIA 2.1/JEIDA 4.1 compliant  

• Plug and play PCMCIA frame grabber  

• Hot insertion and removal  

• Two Composite and one S-Video inputs with anti-alias filters 

• Adjustable image brightness, contrast, saturation and hue 

• 24 bit RGB, 24 bit Grayscale or 8 bit Grayscale display options 

• Image viewer with play, stop, pause, fast forward, reverse, step up, 

and step back options 

• Fast video capture with three standard, user selectable window 

sizes: 

o 640 x 480 pixels  

o 320 x 240 pixels  

o 160 x 120 pixels  

• PCMCIA frame grabber captures single frames, multiple frames 

and standard AVI clips:  

o Adjustable frame rates  

o Programmable capture delay up to 60 minutes  

o Programmable date and time recording  
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o BMP and adjustable compression JPEG file formats  

o TWAIN driver  

o Date and Time stamp options  

o Text overlay options  
 

The detailed specifications of the frame grabber are listed below: 

 
Specification Detail

Video source Composite or S-Video 

Square pixel and CCIR601 

resolution for NTSC, PAL and 

SECAM 

Auto NTSC/PAL format detection 

Automatic gain control 

16 bit YcrCb (4:2:2) digital output 

Operating System Windows 95, 98, NT 4.0, ME, 2000 

and XP compatible  

Electrical characteristics Operating voltage: 5V +/- 5% 

Operating current: 250mA 

Inrush current 750mA 

Dimensions PCMCIA Type II 

86mm(L) x 54mm(W) x 5mm(H)  

Mass 35g 

Operating temperature °0 C to  C °65

Relative humidity 90% non-condensing 

 
Table 3-10: Specifications of the frame grabber 
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3.2.2 Incoherent Light Fringe Projection System 

As in the case of coherent light projection, the system can be logically 

divided into two subsystems, one responsible for the projection of fringes and 

the other responsible for imaging of the deformed fringe pattern. Here, the 

projection subsystem consists of the white light source and a Ronchi ruling. The 

other components in this subsystem are the optics for beam expansion and 

beam steering. The imaging subsystem consists of the camera, camera lens 

and the frame grabber as in the case of coherent light fringe projection. Figure 

3-16 shows the block diagram for incoherent light fringe projection. 

 

 

Figure 3-16: Incoherent light fringe projection system 
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 The working of the white light based system differs from the coherent 

light system only in the source of light and as a consequence, in the mechanism 

of generation of fringes. Here, an incoherent white light source has been used 

for illumination. The coherent light system utilized the phenomenon of 

interference of the generation of fringes. Since interference produced by 

incoherent waves varies too rapidly in time to be practically observed, we use 

an alternate technique of fringe generation. In this technique, we use a 

commercially available Ronchi ruling that has a pattern of light and dark bands 

marked on it. We illuminate the ruling with the white light source and this 

causes the structured light pattern to be projected onto the beam expander. 

Beyond this step, the same process is repeated as in the case of coherent light 

system and eventually, the expanded pattern gets projected on the copper 

surface. We now explain the detailed specifications of the components of the 

white light fringe projection system. 

 

i. White light source 

 The Fiber pigtailed Luxeon III Star single LED package from Doric 

Lenses Inc. is a custom made light emitting diode (LED) based light source. 

Many of the commercially available white light sources are devised for high 

power applications and thus were unsuitable for our system. Also, because of 

space and mounting constraints, we required a compact system, preferably with 

a fiber coupled output to allow easy interchange between coherent and 
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incoherent system. Thus, we specified our power, beam diameter, center 

wavelength requirements to Doric lenses and received the white light source 

most appropriate for the system. Figure 3-17 shows a picture of the white light 

source. 

 

 

Figure 3-17: LED based white light source 
 

 The source consists of a Luxeon III star LED from Lumileds Lighting. 

Luxeon III is an energy efficient compact light source which combines the 

lifetime and reliability advantages of LEDs with the brightness of conventional 

lighting. The specifications of the LED are listed in Table 3-11. Lifetime for 

LEDs is typically defined in terms of lumen maintenance, which is the 

percentage of initial light output remaining after a specified period of time. 
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Lumileds projects that Luxeon III products will deliver, on average, 70% lumen 

maintenance at 50,000 hours of operation at a 700 mA forward current or 50% 

lumen maintenance at 20,000 hours of operation at a 1000 mA forward current.  

 

Specification Detail

Color Cyan 

Radiation pattern Lambertian 

Minimum radiometric power at 700mA 51.7 mW 

Typical radiometric power at 700mA 64 mW 

Dominant Wavelength (typical) 505 nm 

Spectral half-width 30 nm 

Forward voltage at 700mA (typical) 3.70 V 

DC forward current (maximum) 1000 mA 

Average forward current (maximum) 1000 mA 

LED junction temperature (maximum) C135°  

Storage and operating temperature  C40°−  to  C120°

 
Table 3-11: Specifications of the Luxeon LED 

 
 The beam output from the fiber goes into a 5X collimator, also provided 

by Doric lenses. This gives a beam output diameter of 10mm as desired. To 

meet the voltage and current specifications of the LED, we chose a DC supply 

of 5V and connected it to the LED in series with two 1Ω  resistors. The resistors 

chosen are power resistors with a rating of 10W. With this arrangement, the 

voltage across the LED is 3.63V and current through it is 0.61A.  It was found 

that even when the voltage and current across the LED were within specified 

limits, the heat dissipation across the LED was substantial. Aluminum housing 
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was designed to contain the resistor arrangement and also to act as a heat sink 

for the LED.  

ii. Ronchi ruling 

 High precision Ronchi ruling glass targets are excellent for evaluating 

resolution, field distortion etc. In our application, we are using a Ronchi ruling to 

project a structured light pattern on the copper surface. We have selected 

model F56597 from Edmund Industrial Optics, which has 300 lines per inch. 

The number of lines per inch required was determined experimentally from the 

coherent light fringe projection system, based on which fringe density gave 

optimum results. 

 
Specification Detail

Substrate Soda lime glass 

Lines per inch 300 

Thickness 1.5 mm 

Dimensions 1”x1” 

Coating Vacuum deposited chrome OD>3.0 

Surface flatness 1 wave per inch 

Surface quality 60-40 

Parallelism of pattern to substrate °±1  

Line to line parallelism 2≤  arc sec. 

Dimensional tolerance "02.0±  

 
Table 3-12: Specifications of the Ronchi ruling 
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iii. Beam expander 

 The beam expander arrangement remains same as in the coherent light 

fringe projection system. Refer to section 3.2.1(iv) of this chapter for details. 

iv. Beam steering mirrors 

 The beam steering mirrors are the same as in the coherent light fringe 

projection system. Refer to section 3.2.1(v) of this chapter for details. 

v. Camera 

 The camera and camera adapter are the same as in the coherent light 

fringe projection system. Refer to section 3.2.1(vi) of this chapter for details. 

vi. Camera lens 

 The camera lens chosen is the same as in the coherent light fringe 

projection system. Refer to section 3.2.1(vii) of this chapter for details. 

vii. Frame grabber 

 The frame grabber is the same as in the coherent light fringe projection 

system. Refer to section 3.2.1(viii) of this chapter for details. 

 

3.3 Condensation Cell 

 
 To study the progress of condensation using our system, it was essential 

to create a cell where the phenomenon of condensation can be reproduced. 

This required the design of a chamber in which this process can be carried out, 
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in addition to equipment for generating vapor and cooling equipment for cooling 

down the copper surface. 

 The chamber of the condensation cell was custom made by G. 

Finkenbeiner Inc. It is a Pyrex cylinder, 170mm high, and 100mm in diameter. It 

has one open end (the bottom) and one closed end made from optically-flat 

glass plate which has been fused on. The chamber has two vapor ports, which 

accept 1/2 inch tubing. Figure 3-18 shows a schematic of the condensation cell. 

 To prevent condensation from forming on the inner walls of the chamber, 

and thus interrupting the optical path for measurement of condensation patterns 

on the condensation surface, strips of heating tape have been attached to the 

outside of the chamber. This allows the temperature of the Pyrex to be raised 

above the dew-point. The power applied to the heating elements is adjusted 

using a variable transformer to adjust the AC voltage between 0V and 120V. 

Typical voltage applied is around 80V. 
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Figure 3-18: Condensation chamber 
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The surface on which the vapor condenses was chosen to be a copper block, 

due to its high thermal conductivity. To facilitate the condensation on this 

surface, 4 hollow channels were drilled through this block, which allow cold 

water to be circulated in order to cool the block. In addition, a circular groove 

was also machined out on the top surface of the block, which allows the 

condensation chamber to fit securely on the block. The ends of the cooling 

channels were fitted with brass fittings to allow 1/4 inch tubing to be connected 

to each port. Using a water pump (Model: Quiet One 1200 from Pentair 

Aquatics), ice water from a 3 gallon plastic tank is circulated through these 

channels via vinyl tubing, and fittings, which allow the flow from the pump to be 

split between the four channels. 

Vapor is produced by heating water in a flask atop a hot-plate. The 

output of the flask is attached to the condensation chamber’s upper vapor port. 

Flow of the vapor is aided by small air pump (Model: Tetratec AP100), which 

pumps air into the flask at an adjustable rate. The vapor exits the condensation 

chamber via the lower vapor port, and a short length of hose.  

Three temperature sensors monitor the state of the system. One is 

located underneath the copper block, and is thermally coupled to the block 

using thermally conductive silicon compound. The other two temperature 

sensors are located near the vapor inlet and outlet ports, to allow the 

temperature inside the chamber to be estimated.  
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Figure 3-19 shows a schematic of the entire condensation cell with the 

details of the condensation cell, the vapor production system, and the cooling 

infrastructure. 

 

Figure 3-19: Schematic of the condensation cell 
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Figure 3-20 shows a photo of the current system highlighting the 

integration of the condensation cell in the entire system. 
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Figure 3-20: Integration of the condensation cell with the optical system 
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Chapter 4: Software 

 

The software for the optical measurement system can be classified in 

two groups: 

1. Data Capture software 

2. Analysis software. 

The following sections present the details of each of the two groups. 

 

4.1 Data Capture Software  

 
The data capture software performs two major functions: 

1. Capturing the fringe pattern image data with careful control of the 

timing and duration of capture. 

2. Capturing the temperature information from the vapor inlet port, 

copper block and vapor outlet port of the system.  

Image data is captured from the frame grabber using a software interface 

for the frame grabber. This software interface has been built using the software 

development kit received with the frame grabber.  

To track the temperatures of the condensing surface and the vapor in the 

system, three representative locations are monitored with three temperature 

sensors. These locations are: a) Vapor inlet port b) Center of the copper plate 
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and c) Vapor outlet port. Figure 3-19 in Chapter 3 illustrated these locations. 

Dallas Semiconductor/Maxim provides a technology called 1-Wire®, that uses a 

single wire (plus ground) to accomplish both communication and power 

transmission. 1-Wire technology based temperature sensors (DS18S20) have 

been utilized at the three locations.  

The DS18S20 digital thermometer provides 9-bit degree Celsius 

temperature measurements and has an alarm function with nonvolatile user-

programmable upper and lower trigger points. It has an operating temperature 

range of -55°C to +125°C and is accurate to ±0.5°C over the range of -10°C to 

+85°C. In addition, the DS18S20 can derive power directly from the data line 

("parasite power"), eliminating the need for an external power supply.  

 The 1-Wire network is a low-cost bus based on a PC or microcontroller 

communicating digitally over twisted-pair cable with 1-Wire components. A 1-

Wire network-based system consists of three main elements:  

1. A bus master (DS9490R in our case) with controlling software 

such as the TMEX™ iButton® viewer. The iButton® viewer is a 

Windows program for communicating with 1-Wire Net compatible 

1-Wire devices. It integrates most of the iButton-TMEX utilities in a 

single, user-friendly piece of software. 

2. Wiring and associated connectors, and  

3. 1-Wire devices (DS1820 in our system).  

An important aspect of this technology is that every 1-Wire device has a 

globally unique digital address, also known as its ‘ROM code’. This code can be 

 
83



determined using the TMEX™ iButton® viewer, capable of controlling any 1-

Wire device.  

The data capture software has essentially been divided into several 

smaller modules which interact to perform the above two functions. Figure 4-1 

presents a block diagram of the software modules showing their interaction to 

perform various functions, which is followed by details of all the major modules. 

Appendix C includes the code for the MATLAB scripts FCap.m and 

UpdateMain.m: 

 

 

Figure 4-1: Block diagram of data capture software 
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4.1.1 Main Control script  

The process of capturing the image frames and temperature data is 

controlled using a MATLAB script, FCap.m. This file essentially displays the 

graphical user interface, which consists of:  

a) An image display area 

b) Buttons for updating the image and adjusting the horizontal offset 

of the active CCD area (i.e. panning control),  

c) A button for starting a timed capture sequence (Movie) alongside 

an input text box for specifying the desired capture duration  

d) A plot of the gathered temperature data.  

 

A screenshot of the user interface is shown in Figure 4-2: 

 

Figure 4-2: Graphical user interface displayed by the control script 
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Figure 4-3 presents a flowchart of the structure of the ‘FCap.m’ script. 

 

Figure 4-3: Flowchart of the MATLAB script FCap.m 
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The script passes control to the different sub-modules to perform 

individual functions, based on the inputs received from the graphical user 

interface. 

The frame capture time for each frame is 1.5 seconds.  Faster rates 

cause errors, because background frame grabber processes are interrupted 

mid-stream. As indicated in the flowchart, timer objects are utilized to 

coordinate the capture of sequential image frames and the corresponding 

temperature data and also for displaying the frames and for plotting the 

temperature data. The timer object represents the timer in MATLAB. The timer 

object supports properties that lets one specify the MATLAB commands that 

execute when a timer fires, and for other timer object events, such as starting, 

stopping, or when an error occurs. These are called callbacks. The timer object 

supports several execution modes that determine how it schedules the timer 

callback function (TimerFcn) for execution. The three timer objects used in the 

system are explained below: 

a) Tc: The timer for starting a temperature capture.  This timer sends a 

signal to the temperature sensors through the getTemps.c program, 

and the 1-Wire interface. The signal sent through the program causes 

the temperature sensors to start their temperature capture process, 

which takes approximately 750ms. 

b) Tr: The timer for retrieving temperature data.  This timer has the 

same period as Tc, but is offset by 750ms.  It is responsible for 
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gathering the temperature data from the three sensors. This is also 

done through the getTemps.c program and the 1-Wire interface. 

c) Ts: The timer for stopping capture process.  This timer uses the user-

specified frame duration, to assert the length of the capture sequence.  

Its action is to stop the other two timers, Tr and Tc. 

 

Image frames are automatically saved to the hard drive (in .\frames 

folder as they are collected).  This is accomplished in the UpdateMain.m 

function.  An additional utility called compilemovie.m has been developed and 

provided which can be used to create an AVI file from the collected frames.  

The compilation procedure is processor-intensive and can take quite a while, 

depending on the number of frames. Due to this reason, the decision of movie 

creation has been kept optional rather than being standardized. 

 

4.1.2 Temperature Sensor Interface  

 The getTemps program uses the DS9490R 1-Wire interface to control 

the three temperature sensors.  Each sensor’s ROM code is hard-coded into 

the main control script, FCap.m.   

The getTemps program is a C MEX file. MATLAB provides a way to call 

our own C subroutines from MATLAB as if they were built-in functions. 

MATLAB-callable C programs are referred to as MEX-files. MEX-files are 

dynamically linked subroutines that the MATLAB interpreter can automatically 

load and execute. Bottleneck computations (usually for-loops) that do not run 

 
88



fast enough in MATLAB or special applications which have interfaces available 

through only limited programming languages (such as C in our case) can be 

coded in C as MEX-files for efficiency. 

 The getTemps program accepts two input parameters.  The first is either 

a 1 or a 0.  This parameter specifies the desired command. An input of 0, which 

stands for restart, causes the all of the temperature sensors to start a new 

capture process. A 1 input, which stands for read, allows the temperature of an 

individual sensor to be read.  The second parameter allows the user to specify 

which device will be accessed (using the aforementioned ROM codes), given 

that the first parameter is 1.  If the first parameter is 0, then the second 

parameter is not required and can be set to 0.  

 

4.1.3 Frame Capture Script  

 The function UpdateMain.m is responsible for triggering a frame grab, 

updating the image display area, and saving the frame to the hard drive.  It 

accepts the following parameters: 

i. axMain – the handle to the image display area axes 

ii. xoff – the x-offset of the CCD image capture area 

iii. xact – the width of the CCD image capture area 

iv. yoff – the y-offset of the CCD image capture area 

v. yact – the height of the CCD image capture area 

vi. f – the current frame number 
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The handle “axMain” is used to update the image axes with the last 

captured image frame. The parameters “xoff” and “yoff” are used to set the 

offset of the image display area from the left bottom corner of the graphical user 

interface. These two parameters are also controllable by the user by means of 

the push buttons labeled “left” and “right” on the GUI. Parameters “xact” and 

“yact” represent the x and y dimensions of the image captured. These 

parameters have been set to the maximum image size that can be captured 

using the frame grabber (“xact” equals 640, and “yact” equals 480). The 

parameter “f” is used to keep track of the current frame number being captured. 

The function calls the mextest2 program, which is also a C MEX file, to 

capture one frame. It then retrieves the image data and reshapes the frame as 

per the specifications (640x480) and displays the image on the image display 

axes. Finally, it writes the frame to the hard drive as a BMP (bitmap) file and 

returns to the calling program. 

 

4.1.4 Frame Grabber Interface  

This program is responsible for the actual frame capture from the frame 

grabber. Frame data is captured using this frame grabber interface that 

accesses the VCE-B5A01 PCMCIA video capture card. The software performs 

all the steps to configure the frame grabber as per the desired settings of frame 

dimensions and capture modes. It accesses the low level input output routines 

for the frame grabber to initialize the frame grabber and direct it to capture a 

frame from the camera. The program returns frame data in the form of a 
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1x614400 array, containing three 640x480 frames worth of pixels.  Since the 

camera is grayscale, each of the three frames is identical. 

 

4.2 Analysis Software 

 

4.2.1 Signal Processing Steps 

The deformed fringe patterns captured by the control software need to 

be analyzed to reconstruct surface information of the condensation film from the 

data. As mentioned in Chapter 2, Fourier transform based fringe analysis 

technique has been selected in the current research. The Fourier transformed 

and processed images are then subjected to phase unwrapping to yield the 

surface information. The algorithm for the complete Fourier transform analysis 

is as follows: 

1. Compute Fourier transform of image 

2. Perform filtering to isolate the upper side lobe (positive spatial 

frequency) 

3. Take inverse Fourier transform of filtered image 

4. Compute wrapped phase as arctan(imaginary part/real part) 

5. Unwrap(Deformed wrapped phase - Reference wrapped phase) 

6. Calibrate recovered phase to obtain surface height information. 

Steps one to three of this algorithm are equivalent to computing the 

analytic signal for the captured fringe pattern image. These steps were 
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explained analytically in section 2.6 and illustrated in detail in Figures 2-11 (a) 

through (h). 

Steps one to four are simple and it was easily possible to implement 

these steps using MATLAB and/or C. However, the unwrapping process is 

extremely critical and frequently unstable and requires detailed understanding 

of the phase unwrapping algorithms. Thus, it was decided to purchase some 

reliable and well-tested software which can perform all analysis functions in a 

single package.  

The available options for the analysis software that were investigated are listed 

below. 

1. FringeProcessor: A software tool developed by BIAS, an institute for 

applied laser technology in Germany. This program has the capability 

of analyzing interferograms using a variety of techniques including 

the Fourier transform method. This is state-of-the-art software which 

has implemented industry standard algorithms for different analysis 

techniques. 

2. PXHolo: A software tool developed by Dr. Cosme Furlong of the 

Mechanical Engineering Department of WPI. This software also has 

the required functionality of Fourier transform analysis and phase 

unwrapping. The tool is written in IDE, a language unfamiliar to the 

author of this thesis. Thus, it was concluded that this will be a 

hindrance to program further during the implementation of filtering of 

captured images. 
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3. FRAN: This Fringe analysis software developed at the University of 

Warwick is available free for non-commercial use. FRAN can 

separate the phase information from a single finite fringe 

interferogram, using the Fourier Transform method, or from three 

uniformly phase shifted finite or infinite fringe images using the phase 

stepping method. The resulting wrapped map can be unwrapped 

using either simple fringe counting or minimum spanning tree 

approach. In addition to this, externally produced wrapped phase 

maps can be unwrapped into a continuous surface. The main reason 

for not selecting this software was the lack of any technical support 

that might be required in the course of analysis. Another important 

criterion was the absence of information regarding the stability and 

reliability of its algorithms.  

Thus, considering all the factors described above, it was concluded that 

FringeProcessor was clearly the best choice for our application. The following 

section presents additional details and highlights of the FringeProcessor 

software. 

 

4.2.2 FringeProcessor 

The Fringe Processor is a software tool for fringe evaluation and 

scientific image processing. It is developed by Bremer Institut für Angewandte 

Strahltechnik (BIAS), an institute for applied laser technology, located near the 
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University of Bremen in Germany. Some of the key features of this software are 

listed below: 

• Windows 9x, NT 4, 2000, XP software for automatic processing of 

fringe patterns.  

• Analysis of interferograms using Phase Shifting Interferometry, 

Fringe Tracking, Fourier Transform Method and Carrier Frequency 

Method.  

• Simulation of interferograms.  

• Integrated state of the art applications like Shearography, Digital 

Speckle Photography, Digital Holography and 3D Displacement 

Analysis.  

• Other image-processing procedures for improvement, 

segmentation, analysis, basic mathematical operations and high-

end visualization of images.  

• Ability to add one’s own image-processing algorithms to the 

system by using their software development kit (SDK).  

• Integrated interpreter allows the recording and building of simple 

procedures.  

The task to be solved in fringe analysis can be defined as the conversion 

of the fringe pattern into a continuous phase map taking into account the quasi 

sinusoidal character of the intensity distribution. The FringeProcessor is a 

Windows based software system with 32 bit performance. A main feature of 

FringeProcessor is that the exchange of results between the software and the 
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real world (e.g. frame grabber) works only offline via image and data files. This 

makes it easy to use the system in varying hardware environments without 

extensive adaptations. Figure 4-4 below shows a screenshot of the software 

interface in operation. 

 

Figure 4-4: Application interface of the FringeProcessor 
 

With respect to the processing capability, the FringeProcessor offers 

three ways of processing fringe patterns: 

a) Simulation: Allows the user to simulate the complete fringe 

formation process. 

b) Processing: Provides the most important fringe processing 

procedures. 
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c) Tool Box: Delivers typical processing tools separately. 

The processing mode is the central part of the system as it contains the 

most known fringe evaluation procedures with their sequence of processing 

steps. The FringeProcessor offers the following basic fringe analysis 

techniques: 

1) Fringe Tracking or Skeleton method 

2) Phase-sampling or Phase-Shifting method 

3) Fourier-Transform method and 

4) Carrier-Frequency method 

Further, the following two algorithms have been implemented for phase 

unwrapping: 

1) Minimum phase difference spanning tree and 

2) Maximum cross amplitude spanning tree 

 The difference between both the algorithms is how they define the 

criteria to walk through the wrapped phase map. The minimum phase difference 

spanning tree uses the phase difference between the central pixel and its 

neighbors and chooses the way with the least difference. On the other hand, 

the maximum cross amplitude spanning tree uses the amplitude of each pixel 

as the criteria to walk through the phase map. The minimum phase difference 

spanning tree algorithm has been recommended and implemented for Fourier 

transform method and is used in the fringe analysis in this research. 
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Chapter 5: Experimental Work and Results 

 

5.1 Non-Fluid Experiments 

 
In this set of experiments, three objects of known and measurable 

dimensions were chosen. These objects included a penny, a metallic washer 

and a rectangular glass slide.  The specific reason for including a glass slide 

was that the results obtained with images of the glass block would be similar to 

the results expected with a water film as their refractive indices are reasonably 

close (refractive index of glass is 1.52 and water is 1.332). These initial 

experiments were done to validate the working of the system. 

The first lesson learnt from these experiments was that the reflections 

from the copper surface added a significant amount of noise, despite the fact 

that the reference image was subtracted from the deformed image.  

The surface of the copper block was then sandblasted to reduce the 

effects of speckle noise. Sandblasting is a generic term for the process of 

smoothing, shaping and cleaning a hard surface by forcing solid particles 

across that surface at high speeds. Sandblasting can occur naturally, usually as 

a result of the particles blown by the wind, or artificially, using compressed air. 

 The experiments were repeated after sandblasting and the noise in 

images was significantly reduced, though not eliminated. Presented below are 
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the captured images and illustration of one set of images through the analysis 

process: 

 

Figure 5-1: Fringe pattern on reference copper surface 
 

 

Figure 5-2: Deformed fringe pattern with a metal washer on the copper surface 
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Figure 5-3: Deformed fringe pattern with a penny on the copper surface 
 

 

Figure 5-4: Deformed fringe pattern with a glass slide on the copper surface 
  

As explained in the algorithm in Chapter 4, these images were then 

processed using Fourier transform analysis. This involved taking the Fourier 

transforms of these images, filtering the transform to isolate the upper side lobe, 
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taking the inverse Fourier transform of the filtered image and finally computing 

the wrapped phase information. It must be noted that the Fourier transform was 

taken only after resizing the original image to size 1024x1024 and hence the 

resultant images are much larger in size that the original images. For the same 

reason, the information of interest lies in the center portion of these images. 

The following four images show the wrapped phase for the above set of images. 

 

Figure 5-5: Wrapped phase for reference copper surface 
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Figure 5-6: Wrapped phase for the metal washer on the copper surface 
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Figure 5-7: Wrapped phase for the penny on the copper surface 
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Figure 5-8: Wrapped phase for the glass slide on the copper surface 
 

The next step in the analysis was to subtract the wrapped phase of the 

reference image (Figure 5-5) from the wrapped phase of the deformed fringe 

patterns (Figure 5-6 through 5-8) to provide an accurate representation of the 

shape of the object causing the deformation in the fringes. Finally the phase 

unwrapping of this subtracted image was done which gave the final surface 

topology of the object. The images below show the phase unwrapped images 
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for the above three deformed fringe patterns along with a three dimensional 

view (both high level and close-up) of the surface topology: 

 

Figure 5-9: Unwrapped phase for the metal washer on the copper surface 
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Figure 5-10: Surface topology of the metal washer on the copper surface 
 

 
 

Figure 5-11: Close–up view of surface topology of the metal washer  
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Figure 5-12: Unwrapped phase for the penny on the copper surface 
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Figure 5-13: Surface topology of the penny on the copper surface 
 

 

Figure 5-14: Close–up view of surface topology of the penny  
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Figure 5-15: Unwrapped phase for the glass slide on the copper surface 
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Figure 5-16: Surface topology of the glass slide on the copper surface 
 

 

Figure 5-17: Close–up view of surface topology of the glass slide  
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5.2 Stationary Fluid Experiments 

 
The same set of experiments was repeated by replacing the known 

objects with droplets of water.  Figure 5-18 shows the fringe pattern captured on 

the reference copper surface. Figure 5-19 shows the fringe pattern deformed by 

the presence of the water droplet. It is important to capture the reference image 

right before the capturing the deformed image to ensure that the position of the 

camera, the fringe density etc. do not change causing errors in our result. 

 

 

Figure 5-18: Fringe pattern on reference copper surface 
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Figure 5-19: Deformed fringe pattern with a water droplet on copper surface 
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Figure 5-20: Wrapped phase for reference copper surface 
 

 Figure 5-20 shows the wrapped phase information for the reference 

fringe pattern on the copper surface, again generated using the algorithm 

explained in Chapter 4. Figure 5-21 shows the wrapped phase for the water 

droplet on the copper plate. 
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Figure 5-21: Wrapped phase for the water droplet on the copper surface 
 

Finally, subtracting the reference wrapped phase in Figure 5-20 from the 

wrapped phase in Figure 5-21 with the water droplet information and 

unwrapping the result yields the unwrapped phase in Figure 5-22. 
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Figure 5-22: Unwrapped phase for the water droplet on the copper surface 
 

 Figures 5-23 and 5-24 present a high level and a close-up three 

dimensional view of the surface topology information in the unwrapped phase 

image respectively. 
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Figure 5-23: Surface topology of the water droplet on the copper surface 
 

 

Figure 5-24: Close–up view of surface topology of the water droplet 
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5.3 Condensation Experiments 

 
The condensation cell was prepared late in the development process of 

this system.  Further, when the cell was integrated with the rest of the optical 

system, many issues were uncovered which prevented us from obtaining useful 

data with condensation in progress. There were two problems worth noting: 

1. Addition of the condensation cell led to a large amount of 

distortion in the images. 

2. The condensation in the cell led to fogging of the cell itself, 

blocking the optical path. 

These two issues are discussed in additional detail in the following 

section. 

Figure 5-25 below shows two images, one in the absence of the 

condensation cell and the other in the presence of the cell. It is clear that the 

presence of the condensation cell leads to distortion in the fringe pattern, most 

prominent being the vertical stripes.  

 

    

Figure 5-25: Distortion in fringe pattern due to condensation cell 
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 It was believed that the effects of this distortion can be minimized by the 

use of appropriate filtering techniques. Since majority of the distortion was 

periodic, this would have required eliminating certain frequency components 

corresponding to this period. However, the second problem explained below 

was so significant that we did not reach the stage of testing this hypothesis. 

 The second significant problem mentioned above was the fogging of the 

condensation cell. Due to condensation occurring on the walls of the 

condensation chamber, the optical path was obstructed. Also, condensation on 

the top of the chamber prevented us from obtaining clear pictures of the 

condensation process. The problem of condensation on the chamber was 

anticipated to some extent and measures such as adding heating elements on 

the chamber walls were taken ahead of time to prevent this problem. However, 

the heating elements could only be attached so that they did not block the path 

of the light itself and this proved inadequate in solving this problem. Figure 5-26 

provides a close-up view of the condensation chamber with the heating 

elements, clearly showing the condensation on the chamber walls and ceiling. 

 

 
117



 

Figure 5-26: Condensation on walls and ceiling of the chamber 
 

As a result of the above problem, the attempts at performing 

condensation experiments were unsuccessful. A few sample pictures acquired 

in the presence of the condensation cell when condensation was in progress 

are presented. Figure 5-27 shows a picture during the early stages of the 
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condensation process, where some visibility is maintained.  Figure 5-28 which 

was obtained only a few seconds later, is barely visible due to fogging up of the 

cell. (Note: The two images presented below are not original; they have been 

brightened using image processing techniques for easy viewing) 

 

Figure 5-27: Initial snapshot of progressing condensation  
 

 

Figure 5-28: Snapshot of condensing film at a later stage 

 
119



 
 

Chapter 6: Conclusion 

 

6.1 Fringe Projection based Measurement System 

 
This thesis has described the various stages through the development of 

an optical measurement system for characterizing the dynamics of 

condensation in reduced gravity.  A coherent light fringe projection system was 

implemented which measures the surface topology of water droplets on the test 

copper surface. Experiments were conducted with this system for the obtaining 

the surface profile of known objects such as a penny, a metallic washer etc. A 

simulation of measurement of condensation was achieved by placing a droplet 

of water on the test surface and its surface map was reconstructed. A 

condensation cell was also developed and integrated with the optical 

measurement system. Improvements in the design of the cell which will allow 

characterization of the process of condensation using the fringe projection 

system have been proposed as further research. 

 

6.2 Suggestions and Further Work 

 
The optical measurement system will greatly benefit from improvements 

in the design of the condensation cell, which currently suffers from the problem 

 
120



of fogging of the condensation cell. It may be possible to either change the 

material of the cell which may be more thermally conductive, while being 

optically flat. This will help in heating the cell uniformly to prevent condensation 

in crucial spots on the chamber walls and ceiling. Another suggestion provided 

during the thesis defense was the use of transparent electrodes to heat the cell. 

These would have the advantage of providing the ability to heat the cell as 

desired without blocking the optical path. 

An attempt was made to develop an incoherent light fringe projection 

system. However, the white light source was found to generate fringe images of 

an insufficient intensity. Thus the images captured by the camera were barely 

visible and of very poor contrast. Attempts were made to improve the LED 

brightness by feeding it at its maximum voltage and current. Also, as the 

makers of the white light source developed an improved technique for coupling 

the LED light into the fiber, we sent in the light source for these further 

improvements. However, these efforts were not adequate in obtaining good 

quality fringe patterns. One possible technique of obtaining better images was 

envisioned and could not be implemented due to lack of time. This would 

require controlling the exposure time of the camera manually. A circuit could be 

developed which can be potentially be triggered through the laptop’s serial port. 

This circuit in turn would send a trigger pulse to the camera. The width of the 

pulse would determine the exposure time of the camera. MATLAB scripts can 

be written to control the output on the serial port programmatically. These 

scripts can then be integrated with the main data capture software to ensure 
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that the triggers to the camera, the frame grabber and the temperature 

measurement system are synchronized. 
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Appendix A: Interference Equations 

 

For a plane wave with amplitude U propagating in the direction of the unit 

vector n , the expression describing the field at an arbitrary point with radius 

vector   is given by: 

r

)z,y,x(r =
r

 ( )δ+πν−⋅=ψ t2rnkcosU)t,z,y,x(
rr

 (A.1) 

The scalar product fulfilling the condition rn
rr

⋅ = constant describes a plane 

which is perpendicular to n . Equation A.1 can be rewritten as: 
r

 ]UeRe[)t,z,y,x( )t2(j πν−φ=ψ  (A.2) 

where  δ+⋅=φ rnk)z,y,x(
rr

 

In the description of wave phenomena, Eqn. A.2 is frequently used with the 

reference to ‘Re’ omitted as it is understood that the field is given by the real 

part. Thus, on factorizing the spatial and the temporal parts, we get: 

 t2j)z,y,x(j eeU)t,z,y,x( πν−φ ⋅⋅=ψ   

  t2je)z,y,x(U πν−⋅=  

where  is the complex amplitude of the wave. )z,y,x(U

In optical metrology applications, one is most often interested in the 

spatial distribution of the field. Since the time dependent part is known for each 
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frequency component, we can therefore omit the term t2je πν− of the above 

equation, yielding: 

 )z,y,x(jeU)z,y,x(U φ⋅==ψ  (A.3) 

Consider a plane wave falling obliquely on to a plane parallel to the x-y 

plane a distance z from it. The wave propagates along the unit vector n  which 

is lying in the xz –plane (defined as plane of incidence) and makes an angle 

to the z axis. The components of the n

r

θ
r

 and r
r

vectors are 

 )cos,0,(sinn θθ=
r

 

  )z,y,x(r =
r

Thus, 

 δ+⋅=φ rnk)z,y,x(
rr

 

  δ+θ+θ= ))cos(z)sin(x(k  

Substituting in Eqn. A.3 (and omitting the phase difference δ ), we get 

 ( ))cos(z)sin(xjkeU θ⋅+θ⋅⋅=ψ  (A.4)  

With the above knowledge of oblique incidence of a plane wave, we 

present an in-depth version of the analysis given in Chapter 2 (section 2.4.1). 

Consider two plane waves ,  with propagation vectors , that lie in xz 

plane making angles , to the z axis. 

1U 2U 1n
r

2n
r

1θ 2θ
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Figure A-1: Analysis of fringes with fringe spacing p projected at an angle 

α  on the surface under test 

 

We introduce the following quantities: 

 = angle between θ2 1n
r

and 2n
r

 

 = angle between the z axis and the line bisecting  α θ2

Thus, the two waves are described as: 

 1j
11 eaU φ⋅=  

 2j
22 eaU φ⋅=  

where ( ) ( )[ ]θ−α+θ−α=φ coszsinxk1  

 ( ) ( )[ ]θ+α+θ+α=φ coszsinxk2  

Now,  21 φ−φ=φ∆

 ( )( ))sin(z)cos(xsink2 α+α−θ=  
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We know that the intensity of interference beam is 

 φ∆++= cosII2III 2121  

 ( )⎥⎦
⎤

⎢⎣
⎡ α−αθ⋅

λ
π

++= )cos(x)sin(zsin
2

.2cosII2II 2121   

The interference term is of the form 

 ( ⎥
⎦

⎤
⎢
⎣

⎡
α−α⋅

π
)cos(x)sin(z

p
2

cos )   (A.5) 

where 
)sin(2

p
θ

λ
=   

Substituting above value of p , and assuming intensities of the two interfering 

beams to be equal (say ), we obtain Eqn. A.6 below: 0I

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
α−α

π
+= )cos(x)sin(z

p
2cos21II 0  (A.6) 

Comparing the interference term with the real part of Eqn A.4, we see that Eqn 

A.6 can be seen as representing a plane wave with its propagation direction in 

the xy plane making an angle αwith x axis and with a wavelength p . Eqn A.6 

is essentially same as the interference Eqn 2.18. Further, it should be noted 

that the distance between the interference fringes (i.e. the wavelength p ) is 

only dependent on the angle between 1n
r

and 2n
r

. As θ  increases,  

decreases. 

p
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Appendix B: Assembly of the System 

 

This appendix attempts to describe the process of assembling the 

system. The entire optical system is placed on an optical base plate. All the 

components are securely attached to this plate. This is useful in minimizing the 

effects of vibration on the system. By having a common base plate, vibration 

affects all parts of the system equally, thus having a less detrimental effect. 

Figure B-1 shows a picture of the base plate which has dimensions 12x12 in. 

and thickness 0.5 in. 

 

Figure B-1: Optical Base Plate  

The laser and the collimator are mounted on their individual mounts 

which in turn are mounted together on an aluminum plate held up on the base 

 
131



plate with the help of posts and post holders. Figure B-2 shows a close up view 

of this mounting arrangement. 

 

Figure B-2: Laser and Collimator Mounting Arrangement 

 

The laser mount was a custom designed aluminum block, which takes 

advantage of the mounting holes provided at the bottom of the laser while 

simultaneously acting as a heat sink to dissipate the heat generated from the 

laser. A layer of thermal heat sink compound at the interface of the laser and 

the laser mount assists in the heat dissipation. The collimator mount is model 

ULM-TILT, which provides two axes of precision angular adjustment using a 

stable kinematic three-point design for drift-free pointing of the collimator head. 
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We use the mounting holes on this mount to attach it to the aluminum mounting 

plate for the laser and the collimator assembly. Figure B-3 shows a picture of 

the collimator mount: 

 

Figure B-3: Collimator Mount 

 

Before moving on to describe the next set of components, here are some 

general tips on alignment of the laser and the collimator. It is useful to first fix 

the laser in place and observe the beam at two points, one close to the laser 

and the other farther away. The two points should be at the same height from 

the ground to make sure that the laser is not introducing any tilt in the optical 

axis. At this point the collimator should not be present in the system. Then, 

insert an iris in the path of the beam close to the laser. Place the iris so that the 

beam is centered through the iris. Observe the location of the beam passing 

through the iris and falling at a point far away. Mark this point. Later insert the 

collimator and use the previously marked point as a reference for alignment. 
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The goal of alignment is that the collimator should add no (or minimal) tilt in the 

direction of the beam. 

The next set of components is mounted on an optical rail. This includes 

the Michelson interferometer arrangement (beam splitter and two mirrors) and 

the first lens of the beam expander. The optical rail was chosen for  placing 

these components as it was the best way to obtain precise placement and 

movement of the mirrors for alignment of the interferometer (since the optical 

base plate only has mounting holes on a 25mm grid). Also, it was found very 

useful in obtaining the right amount of expansion in the beam by movement of 

the beam expansion mirror. The posts holding the mirrors, beam splitter and the 

beam expansion lens are mounted on movable rail carriers which are then 

mounted on the optical rail as shown in Figure B-4. 
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Rail carriers

Lens mount 
Mirror mount

Figure B-4: Optical Rail Assembly 

 

Following the first beam expansion mirror, mounted on

assembly, is the beam steering mirror and the second len

expansion system. The need for the beam steering mirror arose

decision of limiting the system to the optical base plate of dime

(which was important in achieving easy portability of the syste

all the components on the system, while providing sufficient d
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the two beam expansion lenses (in order to obtain the right amount of 

expansion), the beam steering mirror was introduced. Both the beam steering 

mirror and the second lens are mounted on mirror mounts, which are held on 

the base plate on posts in post holders. Figure B-5 shows a picture of these 

components. 

M  
m

B

 

 

irror
ounts
Post

Figure B-5: Beam Steering and Expansio
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The beam expansion arrangement is followed by another beam steering 

mirror used to project the fringe pattern onto the copper block. The entire 

assembly of the beam steering mirror and the copper block is built on a modular 

riser plate of dimensions 3”x3” and height 0.5”. The riser plate serves to raise 

the height of the arrangement while providing a way to securely mount this 

assembly on the optical base plate. The copper block is attached to the riser 

plate using screws. The condensation cell fits tightly into the groove on the 

copper block. On the four corners of the riser plate, four posts are attached. 

These posts are helpful in mounting of the angle mount which holds the beam 

steering mirror. The design of the angle mount allows for easy vertical 

movement on the posts for fine optical alignment.  

These posts are also used for the mounting of the camera. Using a 

series of posts and angle clamps and the custom designed camera mount, the 

camera is mounted over the condensation cell, without blocking the path of light. 

Figure B-6 shows a close up view of this section of the optical system. 
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Figure B-6: Condensation cell assembly 
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The heating elements on the condensation cell are all connected in 

parallel and then connected to the Variac which is capable of providing variable 

voltage ranging from 0-140V. Typically a voltage of about 80V is applied to the 

heating elements. 

 

Figure B-7: Variable Voltage Control 
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With all the components of the system in place, the system must be 

started as explained below: 

1) Turn on the hot plate first. Increase the heating up to maximum value to 

get the water boiling. Do not cork it initially as it may lead to fogging up of 

the condensation cell. Once the water is boiling, reduce the temperature 

to about 300-400°C. 

2) Turn on Variac connected to the heating elements and get the chamber 

heated. 

3) Put ice and water in the white plastic box and start the water pump. 

Initially, it may have trouble with the flow due to air bubbles, but press 

the pipe near the inlet and outlet to get that going. Use the strainer near 

the outlet to prevent the ice from clogging up the outlet. 

4) Finally, cork the boiling water container once the chamber has got 

heated up.  

5) The vapor inlet pipe has an additional outlet to take care of the water 

condensed along the pipe. This outlet should stay as the lowest point of 

the system, so that the water flows out into the beaker placed on the 

ground. 
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Appendix C: MATLAB code  

FCap.m 

close all; 
clear all; 
  
% Create GUI figure frame 
fig=figure('Units', 'pixels',... 
        'Position', [200 200 1100 610]); 
set(fig,'Colormap',gray); 
  
% Display blank placeholder image on GUI 
axMain = axes('Units', 'pixels',... 
        'Position', [0 0 700 610]); 
imgMain = image(zeros(480,640)); 
set(get(imgMain,'parent'), 'Units', 'normalized',... 
        'Position', [.025, .1, .6, .88],... 
        'Visible', 'off' ); 
    
xoff=20; 
xact=640; 
yoff=20; 
yact=480; 
axMain = updateMain(axMain, xoff, xact, yoff, yact, 0); 
  
% Layout buttons on GUI 
leftButton = uicontrol( 'Style', 'pushbutton',... 
                        'Units', 'normalized',... 
                        'Position', [.025, .025, .185, .05],... 
                        'String', '<--- Left ----',... 
                        'Callback', ... 
                        ['xoff = xoff-15;', ... 
                        'if xoff < 0 xoff=0; end;',... 
                        'if xoff > 140 xoff=135; end; ',... 
                        'axMain = updateMain(axMain, xoff, xact, yoff, 
yact, 0);']); 
  
updateButton = uicontrol( 'Style', 'pushbutton',... 
                          'Units', 'normalized',... 
                          'Position', [.22, .025, .21, .05],... 
                          'String', 'Update',... 
                          'Callback', ... 
                          'axMain = updateMain(axMain, xoff, xact, 
yoff, yact, 0);'); 
  
rightButton = uicontrol( 'Style', 'pushbutton',... 
                         'Units', 'normalized',... 

 
141



                         'Position', [.440, .025, .185, .05],... 
                         'String', '---- Right --->',... 
                         'Callback', ... 
                         ['xoff = xoff+15; ',... 
                         'if xoff < 0 xoff=0; end;',... 
                         'if xoff > 140 xoff=135; end;',... 
                         'axMain = updateMain(axMain, xoff, xact, 
yoff, yact, 0);']); 
  
movieButton = uicontrol( 'Style', 'pushbutton',... 
                         'Units', 'normalized',... 
                         'Position', [.65, .025, .185, .05],... 
                         'String', 'Movie!',... 
                         'Callback', ... 
                         ['start(Tc); ',... 
                         'set(Ts, ''StartDelay'', 
str2double(get(frameCount, ''String'')));',... 
                         'start(Tr); start(Ts);']); 
                           
frameCount= uicontrol( 'Style', 'edit',... 
                       'Units', 'normalized',... 
                       'Position', [.845, .025, .08, .05],... 
                       'String', 'Duration'); 
  
% Create plot for display of temperature data 
  
data(1,:)=[0 0 0]; 
data(2,:)=[0 0 0]; 
data(3,:)=[0 0 0]; 
  
tAx = axes('Units', 'normalized', 'Position', [.67, .5, .32, .48]); 
plot(1:length(data(1,:)), data(1,:),1:length(data(1,:)), 
data(2,:),1:length(data(1,:)), data(3,:)); 
  
% Initialize access codes for temperature sensors 
copper_block_ID= uint16([40 203 58 105 0 0 0 67])  ;
vapor_out_ID = uint16([40 212 21 105 0 0 0 171]); 
vapor_in_ID = uint16([40 140 80 105 0 0 0 31]); 
  
% Frame number 
t=1; 
  
% Create 2 timer objects with timer functions that capture image and 
% temperature data 
Tc = timer('TimerFcn', ... 
    'getTemps(0,0); updatemain(axMain,xoff, xact, yoff, yact, t);', 
... 
    'Period', 1.5, 'ExecutionMode', 'fixedrate'); 
  
Tr = timer('TimerFcn', ... 
    ['copper_block(t) = getTemps(1,copper_block_ID);',...  
     'vapor_out(t) = getTemps(1,vapor_out_ID); ', . ..
     'vapor_in(t) = getTemps(1,vapor_in_ID);',... 
     'axes(tAx);',... 
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     'tP=plot(1:1.5:t*1.5, copper_block(1:t),1:1.5:t*1.5, 
vapor_out(1:t), 1:1.5:t*1.5, vapor_in(1:t), ''LineWidth'' , 2);', ... 
     'axis([1 1.5*t 0 100]);',... 
     'set(tP, ''Parent'', tAx);',... 
     't=t+1;',... 
     'leg = legend(''Copper Block'', ''Vapor Outlet'', ''Vapor 
Inlet'', 0); '], ... 
    'Period', 1.5, ... 
    'ExecutionMode', 'fixedrate', 'StartDelay', .75); 
  
% Create third timer that stops the above two timers 
Ts = timer('TimerFcn', 'stop(Tc); stop(Tr);', ... 
    'Period', 0.1, 'ExecutionMode', 'singleshot'); 
set(tAx,'FontSize', 8); 
 
 

UpdateMain.m 

function axMain = UpdateMain(axMain, xoff, xact, yoff, yact, f) 
  
% Grab input parameters for image capture 
xoffset=xoff; 
yoffset=yoff; 
xactive=xact; 
yactive=yact; 
  
axes(axMain); 
  
B=mextest2(1,[xoffset,xactive,640,yoffset,yactive,480], f)'; 
  
new=zeros(3,480,640); 
new(1,:,:)=(reshape(B(1:3:640*480*3),640,480))'; 
  
bitmap=squeeze(sum(new,1)); 
imgMain=imagesc(bitmap, [0 255]); 
  
set(imgMain, 'Parent', axMain); 
set(axMain,  'Visible', 'off'); 
  
imwrite(bitmap/255,['.\frames\frame', int2str(f), '.bmp'], 'bmp'); 
return 
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