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Abstract 

This MQP attempts to prototype a depth camera-based vision system for the Goat Cart the 

Autonomous Golf Cart, with Microsoft Kinect. This vision system works by polling depth data 

using Microsoft Kinect and giving inputs to other modules i.e. brakes, steering module so that the 

vehicle can avoid obstacles. Based on a simple occupancy grid algorithm the vision system was 

able to give correct inputs to other modules to avoid obstacles in a lab test where movement 

decision results were printed on to the console. This MQP also explores the logistics of a LIDAR 

based vision for the Goat Cart.  
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Chapter 1: Introduction  
1.1 Motivation: 
In 2010, there were 32,999 people killed, 3.9 million were injured, and 24 million vehicles were 

damaged in motor vehicle crashes in the United States [1]. The economic costs of these crashes 

totaled $242 billion. Included in these losses are lost productivity, medical costs, legal and court 

costs, emergency service costs (EMS), insurance administration costs, congestion costs, property 

damage, and workplace losses. [1]. It is estimated that ninety percent of motor vehicle crashes are 

caused by human error [2]. Figure 1 shows the summary of accidents and human error, roadway 

issues and vehicle issues. 

 

Figure 1: Accidents due to Human Errors statistics adapted from [3] 

 Not only accidents can be reduced by implementing some sort of automation in driving but also 

fuel economy can be improved as well. Semiautonomous vehicles can reduce the mean fuel 
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consumption can reduce mean fuel consumption up to 5.3% depending on driving situation and 

speed. In the United States, a large number of conventional vehicle manufacturers are investing 

heavily in autonomous vehicle technologies [4]. According to the European Environmental 

agency’s data shown in Figure 2, road transport is one of the main polluting factors in cities with 

emissions from transportation having risen 20% in the last 2 decades. Electrical vehicles can 

dramatically reduce local greenhouse emissions significantly [5].    

 

Figure 2: Greenhouse Gas Emissions by transportation  relative to 1990s level. Data Source [5] 

Advances in autonomous vehicles technology and mass deployment of this technology depends 

on the political and economic will towards a sustainable environment, as well as the integration of 

those systems with information and communications technologies that are rapidly being introduced 

into modern passenger vehicles. Most of the advances are led by vehicle manufacturers, in addition 

to the  defense  and academic research communities [6]. Google claimed that in 2015 their cars 

experienced 272 failures and would have crashed more if their human drivers had not intervened, 

driving between 30,000 and 40,000 miles per month [6]. Additional failures are documented by 



  [MQP-AW1-GCIM] 

3 
 

all the manufacturers working in this sector, including a casualty during a Uber test in Arizona in 

2018 [7]. Public transportation can significantly benefit from the introduction of intelligent 

vehicles since they have the potential to improve safety in urban areas as well decrease the cost of 

transportation, decrease congestion, and improve service for the user overall.   

 

1.2 State of the Art Automated Vehicles:  
To understand the current state of autonomous vehicles it is important to understand a formal 

taxonomy of different autonomous systems [8] that have been laid out by the NSHTA in 2017. 

They released a guideline of automation ranging from no automation to full automation as well as 

where the current industry stands based on this taxonomy. It was referred to as the 6  Levels of 

Automation defined which is  by SAE International as the following [6]: 

1. No Automation (Level 0) – The human driver must complete all driving tasks even 

with warnings from vehicles.  

2. Driver Assistance (Level 1) – The automated system shares steering and 

acceleration/deceleration responsibility with the human driver under limited driving 

conditions (e.g., high speed cruising), and the driver handles the remaining driving 

tasks (e.g., lane change).  

3. Partial Automation (Level 2) – The automated system fully controls the steering and 

acceleration/deceleration of vehicles under limited driving conditions, and the human 

driver performs remaining driving tasks.  

4. Conditional Automation (Level 3) – The automated system handles all driving tasks 

under limited driving conditions, and expects that the human driver will respond to 

requests to intervene (i.e., resume driving).  
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5. High Automation (Level 4) – The automated system handles all driving tasks under 

limited driving conditions even if the human driver does not respond to requests to 

intervene. 

6. Full Automation (Level 5) – The automated system takes full control of all driving 

tasks under all driving conditions that can be managed by a human driver. 

 

1.3 Previous MQPs:  
The primary of objective of the work in the 2017-2018 Goat Cart’s MQP was to come up with a 

solid electromechanical base of the platform so vision can be integrated. The goal of this project 

was to integrate a vision system with this prototype platform. Unfortunately, it was not possible to 

integrate the contributions of this MQP with the results of the other MQP team due to timing of 

the two projects. Therefore, the outcomes of this work were never tested by the Goat Cart. 

Consequently, this MQP focused on developing a functional vision system that could detect 

obstacles and make decisions, which could eventually be integrated into such a platform.  

The Golf Cart MQP team of 2017-18 had made progress in formulating a modular design, but little 

to no integration. The following modular blocks were functional in the Golf Cart the way I received 

it:  A CAN bus system, a steering system, a power supply system. Other systems such as the throttle 

and brakes were not functional at the time. As a result, it was difficult to perform comprehensive 

integration with this platform.  
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1.4 MQP Goals:  
Motivated by the fact that automating safety features of a vehicle can reduce accidents 

significantly, a basic vision system for the Goat Cart was prototyped such that it can be improved 

in the future with better camera, Lidar and Vision Systems. This was a standalone system that 

should be modular to be integrated in an Automated Vehicle with little work.  

 

These are this project’s contribution to the Goat Cart System:  

1) Integration of Microsoft Xbox Kinect to Linux Server 

2) Use of Kinect successfully as a Lidar  

3) Produced Example Python Scripts for Obstacle Avoidance with Kinect 

4) Successful Communication to CAN bus from Server 

 

1.5 Report Organization and Summary:  
 

The report is structured as follows: Chapter 2 describes a background tutorial about the Goat Cart 

and Vision System for the Golf Cart in general. A Kinect based vision system and a proposed 

approach to use Lidar as tool for vision system of the Goat Cart is described in Chapter 3. Chapter 

4 describes conclusions and future works of the project.  
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Chapter 2: Background of the Golf Cart:  
The Goat Cart is supposed to have the following sub systems that will interact with each other 

with a CAN bus.  

1. Steering System  

2. Brake System 

3. CAN (Control Area Network) Bus System  

4. Vision System 

5. Server Decision System  

6. Sensors  

The ultimate goal of these subsystems is to provide an automation framework for the Golf Cart so 

the cart can achieve different levels of automation with the control of the server. A high level 

system diagram can be seen from Figure 3.  

 

Figure 3: High Level System Diagram of Goat Cart. Vision system or User input interfaces with the Server and the server then 
communicates with the CAN bus system to relay the message to different subsystem.  

All the subsystems shown in the diagram are supposed to be connected by a CAN bus. One of the 

CAN bus boards is the master board that is controlled by the server and the other boards are the 



  [MQP-AW1-GCIM] 

7 
 

slaves. The master board communicates with the server in order to give the decision engine useful 

information about the state of the vehicle. Based on the information that the decision engine get 

different decisions are made.   

2.1 Steering System:  
The steering system of the Goat Cart is steered by using a CIM motor. The motor is controlled 

by a Sabretooth 2x60 motor controller. As shown in Figure 4, these are following parts of the 

Steering System.  

1) Sabretooth 2x60 Motor Controller [9] 

2) Teensy 3.5 Controller [10] 

3) 10 k Ohm Resistor  

4) 2 Limit Switches 

5) Encoder Chip [11] for the Steering 

 

Figure 4: Steering System Diagram 
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In order to control the CIM motor, a Teensy 3.5 Board is used. The firmware code for the steering 

system is written in Arduino environment. In this instance, the teensy board talks to the motor 

controller. Motor controller is treated as a servo object in the Arduino environment. To control the 

motor controller servo.write is used.  

In order to make the steering go left, a value of 80 is written in the servo while to go right a value 

of 110 is written in the servo. To calibrate the steering system right and left limit switches along 

with an encoder is used to have a feedback system to understand where the steering is at the 

moment. Left and right limit switches are used to get feedback whether the steering has reached 

the left or right most corner. The encoder is used to figure out where the steering is at any given 

moment. 

However, it is necessary to calibrate the encoder to calculate correct encoder value based on the 

position of the steering. The following process is used to calibrate the steering encoder; go right 

all the way and get the encoder value, go left come all the way get encoder value, come half way 

of the left and right most position take the encoder value when it is in middle. 

The steering system is controlled by software only and not integrated with the CAN bus yet. 

Further calibration of the system needs to be done with another encoder to ensure the control 

software has some sort of feedback.   

Several suggestions on integrating the steering wheel include the following: 

1. Add manual override mechanism for a user to control the steering wheel.  

2. Adding another encoder to measure the turns the new wheel takes. 

3. Calibrate the turns the new steering is taking and integrate the wheel with the current 

Steering CAN bus. 
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2.2 Brake System:  

Braking is needed to slow the vehicle down and stop to avoid collisions. The braking in the Goat 

Cart is done with a motor that is controlled by a Sabretooth [9] motor controller.  The system has 

the following parts as shown in Figure 5.  

1. Brake Motor  

2. Sabretooth 2x60 Motor Controller  

3. Limit Switch (for User Induced Braking) 

 
Figure 5: Brake System Diagram 

 
The brake system consists of 2 types of braking mechanisms that are available for the Goat Cart: 

Software induced braking and user induced braking. Software braking occurs when the vision 

system detects an obstacle in front of the vehicle and sends a command to brake in the CAN bus. 

Once the firmware receives the signal, the braking motor gets started and uses the brake for the 

vehicle. The driver / user can also brake traditionally with a manual brake. Once the user presses 
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the brake it gets pressed with the limit switch once the limit switch gets pressed it signals the 

brake motor start and brake.  

2.3 Vision System:  
In order to implement a vision system for the Goat Cart, Microsoft Xbox Kinect is used. With the 

Kinect, depth image is taken and a very simple occupancy grid is created. With the occupancy 

gird, some basic autonomous decision making is done. Some examples of the autonomous decision 

making include the following:  

1) Brake/ Slow Down Stop, 

2) Turn Left, 

3) Turn Right,  

4) Go Forward, and  

5) Go Around the Obstacle.  

It is to be noted that these decisions are not full proofed yet it needs more testing to drive the cart 

autonomously. 

2.4 CAN (Control Area Network) Bus System: 
CAN (Control Area Network) is a real-time communication protocol that provides fast, simple, 

efficient, and robust communication among different subsystems [13]. CAN bus protocol is 

mandated by the Environmental Protection Agency [12], therefore it is widely used in the 

automobile industry. The 2017-18 Goat Cart MQP team implemented custom CAN bus interface 

boards. After implementing the boards, the team daisy chained the boards to communicate between 

different boards.  The intended architecture of the CAN bus system in the Goat Cart is shown in 

Figure 3. One of the CAN bus boards is the master board that is controlled by the server and the 

other boards are the slaves. The master board communicates with the server in order to give the 
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decision engine useful information about the state of the vehicle. Based on the information that the 

decision engine get different decisions are made.   

The 2017-18 Goat Cart team had a few daisy chained CAN interface boards that this project 

integrated with the server. Connection of the server with the CAN bus system was proved and 

demonstrated with a Python script in March 2018. Figure 6 shows an example script was used to 

demonstrate communication with the CAN bus. The script was a simulation to connect to different 

components in the CAN bus system that was used to light up leds; it demonstrated successful CAN 

bus was from the server. However, this achievement was modular no system eve integration was 

achieved.  

 

Figure 6:CAN bus Control Example. This example Script that was used to demonstrate successful communication with the CAN 
bus. Script sets up serial connection and sends and receives CAN messages inside a while loop as annotated in the figure.  
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2.6 Power Supply for the Peripherals: 
The 2017-18 Goat Cart MQP Team designed the power supply for the Goat Cart [13]. A brief 

description of their design is shown below. The power supply harness is divided into two parts.  

1) Power Throttle Supply 48V battery system  

2) 12 V system for Peripherals  

The 48V power system supplies power to the throttle and braking system. The 12 V power system 

supplies power to the peripheral systems. A diagram of the harness for the 12V system is shown 

in Figure 8.  

 

 

    Figure 7 : Power Supply Harness for Peripherals [14] 

  
The charging of the batteries is handled by a float battery charger, the Automatic 1.5-Amp Battery 

Charger/Maintainer. This new charger can be continually plugged into and outlet and left in the 

power system. The only maintenance is needed at this point is checking the water levels of all the 

batteries every few months. 
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2.7: Goat Cart System Diagram and with Kinect Vision System:  
The goal of the project is to automate the functionalities of the Goat Cart platform.  As it is seen 

in the system diagram in Figure 3 the objective of the platform is to automate functionalities while 

driving. A Vision system and user Input system is designed to communicate with the server.  

From user input or the inputs from the vision system, the server will be able to send and 

receive different commands and information to different parts of the Goat Cart system through a 

CAN bus. The automation system has a server which takes necessary decisions based on the 

different sensor inputs and sends decisions to the CAN bus. In this project, as the diagram shows 

there are three subsystems that are designed to work together to provide automation to the cart. 

The subsystems are vision system (Kinect), server (Decision Making Module), and CAN Bus. The 

CAN bus connects to the sub modules necessary that are to drive the cart around.  In this 

implementation, the sub modules consist of the following: 

1) Throttle (Increases speed), 

2) Brakes, 

3) Odometer, and  

4) Steering System 

The server is able to send and receive back commands to the CAN bus. The commands that are 

sent are either user input based or obstacle avoidance algorithm of the Goat Cart.  
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Figure 8: Intended Software Architecture of the Goat Cart platform is seen in the diagram here. From the Vision System or Input 
the application Layer/Obstacle Avoidance Library id intended to communicate with the CAN bus via serial port interface to send 

and receive back CAN messages.  

Referring to Figure 8, the different components of the software architecture are as follows:  

1) Vision Interface Library / User Input Library  

2) Application / Decision Making Library  

3) Serial Library   

2.8: Chapter Summary   
The vision interface library interfaces with Microsoft Xbox Kinect with the server. Depth data and 

vision data are brought back to the server by vision interface library.  The decision making library 

is supposed to take inputs from different sub systems, sensors and depth data from Kinect, and 

make decisions so the cart can drive safely. A python serial library is used to enable 

communication with the Server and the CAN Bus network; UART protocol is used to send 

commands and receive commands from the CAN bus.  
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Chapter 3: Prototype of Vision System: 
This chapter describes Kinect-based approach to develop an obstacle avoidance algorithm for the 

Goat Cart. This chapter also discusses the logistics necessary in order to prototype a Lidar based 

vision system. The fundamental concepts used in this project were: Kinect, Occupancy Grid 

Algorithm, Depth Image, and Lidar.  

3.1 What is Kinect:  
The Kinect [15] is an intelligent hardware platform manufactured by Microsoft. It has a RGB (Red, 

Green, Blue) camera, an IR (Infrared Ray) laser projector, an IR CMOS sensor, a servo to adjust 

the tilt of the device and a microphone array.  The RGB camera is basically a webcam, however 

IR emitter and depth sensor helps Kinect to view the world in 3D and see obstacles. Budget 

concerns, excellent community support and high depth image sample rate were the factors that led 

to the using of the Kinect as a vision system for the Goat Cart.  

 

 

Figure 9: Different  components of Kinect [16] 
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3.2 Vision Implementation and Integration:  
The proof of concept vision system was implemented in Python with OpenCV and Open Kinect. 

OpenCV (Open Source Computer Vision Library) is an open-source computer vision and machine 

learning software library. Open Kinect is the open-source software used to interface with Kinect 

and the Linux Server. 

 In order to implement a vision system with a Kinect depth sensor first, an interface with Linux 

and Kinect must be configured. The Kinect depth sensor is basically an IR sensor by which depth 

information can be collected at 30 frames/sec. The procedure to interface the Kinect with a Linux 

server described in Appendix 1 assumes that the user has Ubuntu or Debian-based Linux 

distribution with open cv installed in the system. Open a terminal and run the following command: 

 sudo apt –get update & upgrade  

The reason for issuing this command is that it will obtain the latest Linux package information and 

upgrade the packages based on the information. In fact, Open CV and other Kinect packages might 

not work properly if we do not have the correct package information. At this point it is necessary 

to install all the necessary dependencies for the Microsoft Kinect driver for Linux. To install the 

dependencies, we need to issue the following command:  

sudo apt-get install git-core cmake freeglut3-dev pkg-config build-

essential libxmu-dev libxi-dev libusb-1.0-0-dev  
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Table 1: Libraries installed for Kinect Interfacing with Linux  

Library Installed Reason for Installing 

Libusb-01 Libusb-01 is a generic USB device library. It is installed so that,  

Kinect can send and receive data/commands to and from the 

server. 

Build Essentials GNU compiler collection, make, g++, dpk-gdev  etc that are used 

to install build system for Kinect drivers.  

Cmake  Build system tool for installing Microsoft Kinect driver for Linux.  

git core Version control and getting source code for libfreenect.  

Freeglut-dev Graphics libraries to view depth data from Kinect.  

A description of the libraries installed and the rationale behind installing the libraries are provided 

in Table 1. After installing the libraries described in  Table 1 the Linux system has all the tools to 

install Libfreenect driver that will interface with Kinect and Linux server. First, it is needed to 

clone the libfreenect library in our local repository. Using the command:   

git clone git://github.com/OpenKinect/libfreenect.git 

After cloning the repository, the next step is to navigate to the repository with the terminal and 

configure the build system for installing libfreenect. This can be achieved by typing the command:  

cd libfreenect 
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After navigating to the repository, it is imperative to configure the build system for installing 

libfreenect Kinect Linux driver. Thus, the following commands need to be entered in the terminal: 

mkdir build 
cd build 
cmake -L .. 
make 
sudo make install 
sudo ldconfig /usr/local/lib64/ 
 

The commands will configure cmake build system and install libfreenect driver in in the location 

/usr/local/lib64/. At this point, it is important to add Kinect as a non –privileged user such that 

Python scripts can access the Kinect properly. Therefore, the following commands needs to be 

entered in the terminal:  

sudo adduser $USER video  
sudo adduser $USER plugdev 

 At this point, a file needs to be generated with the rules for the Linux device manager. In order 

to accomplish this the following command needs to be typed: 

sudo nano /etc/udev/rules.d/51-kinect.rules 

Following this step, the following code found in Appendix 2 will need to be entered.  

 Following this step, it is necessary to log out and log back in, for the installation take effect. To 

test the installation, the command “freenect-glview” needs to be entered in the terminal. This 

would cause a window to pop up showing depth and RGB images. More details are provided in 

Appendix 1. 
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3.3 Kinect Hardware and Software Interfacing challenges:  
While connecting the Kinect to the Linux server, there were several software and hardware 

issues that needed to be addressed to achieve successful connection. The Kinect power cord was 

never connected to internal power supply of the Goat Cart; rather the power supply was connected 

to the wall power supply. As a result, some consideration needed to be taken to how Kinect would 

be powered in the event of an operational mobile vehicle.  

It was observed that when the Kinect connected to the Linux server correctly, the Kinect 

connection light was typically green/red which indicated Kinect was interfacing. Most of the time 

when Kinect failed to see any data, the cases were traced back to connection light not being on. 

Another challenge that was observed while connecting Kinect USB to Linux Server was while 

going through a hub instead of connecting Kinect USB directly to Linux server our 

recommendation is that it is best not to use a hub to connect the Kinect with a Linux server as the 

Kinect USB device driver was not designed to support connections going through a USB hub. 

There were several software issues while connecting Kinect with the Linux server. For example, 

after installing the Kinect library, it is important to add the necessary links and cache for the 

installed Kinect driver using this command:  

sudo ldconfig /usr/local/lib64/ 

This creates the necessary links and cache to the most recent shared libraries found in 

/usr/local/lib64/.  The Kinect device driver rules need to be saved as a Root user since doing so 

without administrative privileges will result in the device driver settings not being saved 

effectively. To use Kinect as a non-privileged user, it is necessary to add $user to the plugdev 

group, as this group allows members to mount and unmount removable devices through pmount.  
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3.5 Calculating distance from depth map: 
After connecting the Kinect properly with the Linux server, the next step is to process the depth 

information from Kinect depth sensor. Depth information needs to be translated to distance values 

from the camera. The formula to translate the Kinect depth data to distance was found from several 

Open Kinect blogs referenced in Appendix 3. The formula that was ultimately used to calculate 

the distance from camera (using depth data) is:  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.1236 ∗  𝑑𝑑𝑑𝑑𝑑𝑑 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
2842.5

+ 1.1863� …..…….. Equation 1 

The Kinect views the world in a 640x480 grid. The grids are divided in to 3 simple grids. The 

average of the depth values of the grids are taken. Using the depth values, calculations of the 

distances of the obstacles from the camera are determined. Figure 10 (more details in Section 3.7) 

shows the depth map of the experiment in Room AK318 at 125 Salisbury St Worcester, MA, 

01609, USA. 

 

Figure 10: Depth Map with occupancy grid in WPI Wireless Innovation Lab Atwater Kent Lab Room on February 2, 2018 
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Observing the depth map shown in Figure 10, in order to avoid obstacles a basic occupancy grid 

was developed. The following algorithm detailed in Table 2 was designed to demonstrate simple 

obstruction avoidance by Microsoft Kinect.  

Table 2: Vision system Scenarios and Decisions 

Scenario  Decisions 

Depth Value of whole Frame > 5 meters Move Forward  

Depth Value of whole Frame < 1.5  Brake  

Middle Grid is less than 2.5 meters and greater 

than 3. 4 and right grid greater than 3 meters 

Turn Right  

Middle Grid is less than 2.5 meters and greater 

than 3. 4 and left grid greater than 3 meters 

Turn Left  

Since the infrastructure was not available to automate the cart, the movement decisions results 

from the vision system was printed to the console. An example of how this algorithm was 

implemented in can be found in Appendix 4. The Vision system’s integration with the CAN Bus 

was implemented modularly, where a Python serial library was used to communicate with the 

CAN Bus from the server. The data was sent from the server to the CAN Bus and the signal went 

to different buses as it can be seen in the diagram of Figure 3. 
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3.6 CAN bus and Server interfacing procedure: 
The Server and Master CAN Bus are connected at a baud rate of 9600 with a /dev/ttyACM0 interface 

with Teensy 3.5 Interface with Master CAN Bus and Server were made with pyserial library. To 

connect to the master CAN Bus implemented using Teensy 3.5 that is connected to the USB port 

of the server, it is necessary to instantiate a Python serial object with the correct port number and 

serial baud rate. For example, in the Linux server the serial object was instantiated by the 

following:  

ser  = serial.Serial('/dev/ttyACM0', 9600) 

Here /dev/ttyACM0 is the serial port that we are connecting to and 9600 is the value of baud 

rate. In the Arduino IDE, the serial port can be found by going to Tools -> Port ->. However, if 

another Arduino is connected to the server, it will be difficult to know which is the correct port to 

connect to. In this situation, the following process was defined:  

1. Disconnect the master CAN Bus USB connection from Server 

2.  Open up a terminal and type the command:  ls /dev >file1 

3. Connect the master CAN Bus USB to the server  

4. In terminal type the command   ls /dev >file2 

5. Then type the command: diff file1 file2 

6. The resulting diff or output will look something like: 

 82a83 

 >serial  

 155a157 

 >ttyACMO 

In this case, ttyACM0 is the correct port that we need to connect to. This approach is capable of 

finding the correct port because /dev is the location of special device files in Linux. Once a USB 
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device is connected, it shows up in /dev. Therefore, forming an Arduino connection and taking the 

diff of the two files gives us the correct port. From the Teensy 3.5 documentation, it was indicated 

that the serial baud rate of Teensy 3.5 was 9600. If the following command “stty /dev/Port” 

is issued in terminal, the baud rate can be extracted as well. In this case, the port will be the one 

that was disconnected. An example output of the command is the following: 

 “speed 9600 baud; line = 0; -brkint –imaxbel” 

where the speed value represents the baud rate. To demonstrate communication with the CAN Bus, 

the script shown in Figure 11 was used to attempt communication. After some testing, the script 

shown in Figure 12 was chosen:  

 

Figure 11: CAN Bus Interface demonstration 1. Demonstrates how Server and CAN bus communication was 
prototyped for the first time it in the server. This example script in the server was used to communicate with the CAN 

bus. It is seen that inside a while loop CAN bus commands are sent at half second interval to simulate real time driving 
situation 
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Figure 12 is a git diff between the script shown in Figure 11 and the next iteration of script that 

was used to prototype communications with the server and CAN bus. This script was used to stress 

test the CAN bus and the server interface. 

 

Figure 12: CAN bus Interface Demonstration 2. Demonstrates second iteration of how Server and CAN bus communication was 
prototyped in the server. This example script in the server was used to communicate with the CAN bus. It was used to stress test 

the server and CAN bus interface. As the diff shows the time between sending commands and receiving response back was 
decreased significantly.  

As observed in Figure 11, the delay between sending a command to CAN Bus and waiting for the 

response was 1 second in the first try. Since this was performed in a while loop, this process 

appeared to function properly in a simulated environment. The simulation was blinking leds when 

can bus commands were sent to different CAN Bus. To stress test the interface, the wait time 

between sending and receiving CAN Bus messages was decreased by a factor of 10 to 0.1 second. 

As a result, the blinking leds were still observed. The purpose of this experiment was to stress the 
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scenario when the CAN Bus will be functional; based on the results it can be safely concluded 

CAN interface worked correctly.  

3.7 Kinect Vision System Results: 
Due to not having sufficient infrastructure, the test results of the vision system were obtained via  

console outputs indicating what the vehicle should do based on Table 2. Scenarios of decisions 

for the vehicle to move forward, brake, turn right, and turn left were simulated by modifying the 

depth map data shown in Figure 10. As shown in Figure 10, the depth map that was converted to 

get different scenarios for obtaining outputs from the vision system it is supposed to be taken 

with a grain of salt.There are several inconsistencies with the data that was collected in from 

Room AK318 including card board walls, chairs, tables, open area and other obstacles in the 

room that does not at all represent the situation of a road where the vehicle will be driving 

around. These are annotated in Figure 13

 

Figure 13: Annotated inconsistencies in Room AK318  taken in 18th February 2018. It is seen that there are different 
inconsistencies in the depth image i.e.: chair, Monitor, Cardboard wall, free space over the wall, etc. do not necessarily represent 

the situation in a road. 
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3.7.1 Scenario 1 Move forward:  
In this scenario obstacle avoidance algorithm sends the signal to move forward as the average 

depth of the whole frame was greater than 5 meters. In Figure 14, the depth image of Room AK318 

taken in February 2018 is shown. There were several inconsistencies, i.e, Cardboard wall, chair, 

monitor, various obstacles in the room, free space over the wall are annotated in Figure 14.  

 

Figure 14:   Depth Map of Room AK318 on February 19th, 2018 it as annotated with free space over the 
cardboard wall, Cardboard wall, Chair, monitor, various obstacles. The laboratory is located at Atwater Kent Building 
3rd Floor the conditions at the lab do not represent an area where the Goat Cart will be driven around.  

Figure 15 shows the movement decision and the average depth value printed on the console. It can 

be deduced from the average depth value printed on to the console that average depth in this 

scenario was three meters. As a result the vision system printed move forward on the console based 

on Table 2. However, the results needs to be taken with a grain of salt as the lighting of the room 

and inconsistencies as depicted in Figure 14 did have an effect on the depth value.  
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Figure 15: Console output from Vision System to move forward and log of average depth in different grids. The result is 
movement decision output that the vision decision system produces when the vision system is feed with the depth map shown in 

Figure 14.  

3.7.2 Scenario 2 Turn Around Left:  
In this scenario, the obstacle avoidance algorithm sends the signal to turn around left in accordance 

to scenarios listed in Table 2. Depth of the left grid was 13 meters so the obstacle avoidance 

algorithm sends signal to go around left. Figure 16 and Figure 17 shows the depth map and console 

out from vision system respectively. This depth image was manipulated to have the left grid pixels 

annotated here to have the values so that vision system will give the vision decision to go left.  

 

Figure 16: Depth Map of Room AK318 adopted from manipulating depth image found in Figure13. Cardboard wall, chair, 
monitors, free space is there as well the pixel values in the left grid are manipulated as well. Therefore, movement decision from 

this depth image was to turn left.  
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As annotated in Figure 16, the image is manipulated to have certain depth value, so that the 

movement decision to turn left is printed on to the console in accordance with the scenarios listed 

in Table 2. This result is depicted in Figure 17 as the image is manipulated, and all the 

inconsistencies of the depth image are annotated in Figure 16.  

 

Figure 17: Console output from Vision System to turn left and log of average depth in different grids. The result is movement 
decision output that the vision decision system produces when the vision system is feed with the depth map shown in Figure 16.  

 

3.7.3 Scenario 3 Turn Around Right:  
In this scenario, depicted by the depth image in Figure 18, the vision system recommends to turn 

around right in accordance to scenarios listed in Table 2. In this scenario, the depth for the left grid 

is 5 meters so obstacle avoidance algorithm sends signal to turn around right. Figure 18 and  Figure 

19 shows the depth map and the console output from vision system, respectively. This depth image 

was manipulated to have the right grid pixels annotated here to have the values so that vision 

system recommended to turn right. 
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Figure 18: : Depth Map of Room AK318 adopted from manipulating depth image found in Figure13. Cardboard wall, chair, 
monitors, free space is there as well the pixel values in the right grid are manipulated as well. Therefore, movement decision 

from this depth image was to turn right. 

As annotated in Figure 18, the image is manipulated to have certain depth value, so that the 

movement decision to turn right is printed onto the console in accordance with the scenarios listed 

in Table 2. This result is depicted in Figure 19 and needs to be examined as the image is 

manipulated, and the inconsistencies of the depth image that are annotated in Figure 18.  

 

Figure 19: Console output from Vision System to turn Right and log of average depth in different grids. The result is movement 
decision output that the vision decision system produces when the vision system is feed with the depth map shown in Figure 18 
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3.7.4 Scenario 4 Brake:  
In this scenario, obstacle avoidance algorithm sends the signal to move brake as the average depth 

of the whole frame was lesser than 1 meter. Figure 20 and  Figure 21 shows depth map and console 

output for braking respectively. . In this scenario, depth value for the annotated grid is less than 2 

meters so obstacle avoidance algorithm recommends to brake. This depth image was manipulated 

to have the grid pixels annotated here to have the values so that vision system recommended to 

brake.   

 

Figure 20: : Depth Map of Room AK318 adopted from manipulating depth image found in Figure13. Cardboard wall, chair, 
monitors, free space is there as well the pixel values in the annotated grids are manipulated as well. Therefore, movement 

decision from this depth image was to turn right. 

As annotated in Figure 20 the image is manipulated to have certain depth value, so that the 

movement decision to brake is printed on to the console in accordance with the scenarios listed in 

Table 2. This result is depicted in Figure 21 and needs to be examined as the image is manipulated, 

and all the inconsistencies of the depth image are annotated in Figure 18.  
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Figure 21: Console output from Vision System to brake and log of average depth in different grids. The result is movement 
decision output that the vision decision system produces when the vision system is feed with the depth map shown in Figure 20 

3.8 Lidar Selection for Goat Cart: 

For the application of obstacle avoiding, a vision system it is recommended to use a RP Lidar. To 

come up with the design choice, the following Lidar specifications listed in Table 3 were evaluated 

in an evaluation matrix.  

Table 3: Lidar Evaluation Matrix 

                    
       Lidar 
 
      
 
 
Requirements         

Lidar Lite 
[17] 

Slamtec 

RPLidar A1 

[18]  

 

Tf Mini 
Lidar [19] 

Score 
Lidar 
Lite 

Score  
Slamtec  
RPLidar 
A1 

Score  
Tf 
Mini 
Lidar 

Cost $129.99 $114.95 $39.90 2 2 3 
Resolution  1 cm 0.2cm 5 mm 2 3 3 
Accuracy  +/- 2.5 cm 

for distance 
> 1 meter 

 0.2% 1 % less 
than 6 m, 2 
% 6 – 12 m  

   

Range  5 Cm to 40 
meters 

 12 meters 0.3m co– 12 
m  

4 3 2 

Operating 
Voltage  

4.75 – 5 V  5 V  4.5 – 6 V 2 2 2 

Current 
Consumption 

105mA 
idle; 
130mA 
continuous 

100 mA 800 mA ( 
peak 
current)  

2 2 2 

Interface I2C or 
PWM  

UART UART 1 3 3 

Total Score N/A N/A N/A    
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As shown in Table 3, different Lidars were selected for evaluation based on cost, resolution, 

accuracy, range, operating voltage, current consumption and interface. From the data shown in 

Table 3; the RP Lidar is within budget and has the most accuracy and range; furthermore; it has 

the capability to interface with Teensy 3.5 Boards. Therefore, RP Lidar is recommended to use for 

a Lidar based vision system for the Goat Cart. 

In the case of Lidar, the prototyped vision uses system similar kind of vision system compared to 

the Kinect vision system. It can use similar algorithms to make decisions such as go forward, turn 

left and right, or to stop. The Lidar will be used to measure distance how far the object is from the 

vehicle.  

 

Figure 22 : LIDAR Vision System as seen here will be interfacing with the CAN bus controller to send messages to throttle, 
Steering System, Brake and the Odometer System 
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Figure 23: LIDAR Circuit Diagram. Here the Arduino represents the Master CAN bus that will interface with the existing CAN bus 
infrastructure that is available in the Goat Cart Platform. In the case of a LIDAR based vision system  

A controller Arduino (see Figure 23) to interface with the Lidar so the Arduino can perform 

necessary calculations to make decisions that will be necessary for a Lidar based vision system.  

The RP Lidar has capabilities to provide substantial amount of data so any project working with 

RP Lidar should be able to process the data timely in order to use it.  In order to be able to use RP 

Lidar, it is essential to interface with the Lidar and Teensy 3.5. After interfacing with the Lidar 

and Teensy 3.5 it will be possible to send messages to different components of the CAN Bus 

system. An example to connect with RP Lidar with Arduino/ Teensy 3.5 can be found in Appendix 

5. Lidar with a controller Teensy 3.5/ Arduino will make efforts to communicate with the CAN 

Bus if any obstacle is seen. The actions can be similar to the actions that were taken in the Kinect 

based vision system. Table 2 shows some of the decisions that can be taken once Lidar will be 

detecting objects that are near the Goat Cart.  
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3.11 Chapter Summary: 
Kinect views the world in 640x360 grid. An obstacle avoidance algorithm was developed 

by dividing the 640x360 grid into 3 grids (front, left, right). The average depth values of the grids 

mapped the obstacles in front of the camera. One suggested improvement is adding more grids and 

calibrate the camera. After more testing when the system is ready to be integrated more grids can 

be added to make the decision making more robust. 
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Chapter 4 Conclusion and Future Works 
After this project, a vision system (with Microsoft Kinect) Linux server, and CAN Bus 

communication, CAN Bus control (with Teensy 3.5) were successfully prototyped. This project 

successfully achieved an operational vision system as described in Chapter 3. The vision system 

detected obstacles and was able to take different decisions for the Goat Cart shown in Chapter 3.3. 

Interface with the server and CAN Bus prototyped as described in Chapter 2.4.  

Once the hardware is integrated, the vision system along with other driving functionalities can be 

tested and improved upon. Due to resource constraints hardware integration was not performed. 

The issues that could have been improved are:  

1) Hardware integration;  

2) Autonomous turning right and left; 

3) Autonomous driving functions i.e. speed calculation, autonomous speed increase and 

decrease;    

4) Machine Learning in Vision System. 
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Appendix 1  : Configure Kinect and Linux Interface.  

Here are the steps to get started with using the kinect :- 

Note :- This tutorial assumes that you have Linux(Ubuntu or Ubuntu based Linux distro) with opencv 

installed on your system. 

1) Open a terminal and run the following commands 

sudo apt –get update & upgrade 

2) Install the necessary dependencies.  

sudo apt-get install git-core cmake freeglut3-dev pkg-config build-essential libxmu-dev libxi-dev libusb-1.0-

0-dev 

3) Clone the libfreenect repository to your file system.  

git clone git://github.com/OpenKinect/libfreenect.git 

  4)Go to the libfreenect repository and install libfreebect. 

cd libfreenect 

mkdir build 

cd build 

cmake -L .. 
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make 

sudo make install 

sudo ldconfig /usr/local/lib64/ 

 5) To use Kinect as a non-root user do the following 

 

sudo adduser $USER video 

sudo adduser $USER plugdev 

6) Also make a file with rules for the Linux device manager 

1 

sudo nano /etc/udev/rules.d/51-kinect.rules 

Then paste the following and save 

Appendix 2: Kinect Rules 

 

# ATTR{product}=="Xbox NUI Motor" 

SUBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02b0", 
MODE="0666" 

# ATTR{product}=="Xbox NUI Audio" 

SUBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02ad", 
MODE="0666" 
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# ATTR{product}=="Xbox NUI Camera" 

SUBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02ae", 
MODE="0666" 

# ATTR{product}=="Xbox NUI Motor" 

SUBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02c2", 
MODE="0666" 

# ATTR{product}=="Xbox NUI Motor" 

SUBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02be", 
MODE="0666" 

# ATTR{product}=="Xbox NUI Motor" 

SUBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02bf", 
MODE="0666" 

7) Log out and back in. Run the following command in a terminal to test if libfreenect is correctly installed 

1 

freenect-glview 

This should cause a window to pop up showing the depth and RGB images. Pressing ‘w’ on the keyboard 
causes the kinect to tilt up and pressing ‘x’ causes the kinect to tilt down. There are several other control 
options that are listed in the terminal when “freenect-glview” is run 
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8) In order to use the Kinect with opencv and python, the python wrappers for libfreenct need to be 
installed. Before doing that, install the necessary dependencies 

 

sudo apt-get install cython 

sudo apt-get install python-dev 

sudo apt-get install python-numpy 

9) Go to the directory ……./libfreenect/wrappers/python and run the following command 

 

sudo python setup.py install 

10) Save the code given below as a (.py) file say (kinect_test.py) 

#import the necessary modules 

import freenect 

import cv2 

import numpy as np 
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#function to get RGB image from kinect 

def get_video(): 

    array,_ = freenect.sync_get_video() 

    array = cv2.cvtColor(array,cv2.COLOR_RGB2BGR) 

    return array 

  

#function to get depth image from kinect 

def get_depth(): 

    array,_ = freenect.sync_get_depth() 

    array = array.astype(np.uint8) 

    return array 

  

if __name__ == "__main__": 

    while 1: 

        #get a frame from RGB camera 

        frame = get_video() 

        #get a frame from depth sensor 

        depth = get_depth() 

        #display RGB image 

        cv2.imshow('RGB image',frame) 
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        #display depth image 

        cv2.imshow('Depth image',depth) 

  

        # quit program when 'esc' key is pressed 

        k = cv2.waitKey(5) & 0xFF 

        if k == 27: 

            break 

    cv2.destroyAllWindows() 

 

11) Run the above program 

 

python kinect_test.py 

 

Hit the ‘esc’ key to quit the program. For further information, check 

1) Open kinect page :- http://openkinect.org/wiki/Main_Page 

2) libfreenect github page :- https://github.com/OpenKinect/libfreenect 

http://openkinect.org/wiki/Main_Page
https://github.com/OpenKinect/libfreenect
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Appendix 3 : Depth to distance conversion 
 

From their data, a basic first order approximation for converting the raw 11-bit disparity value to a depth 

value in centimeters is: 100/(-0.00307 * rawDisparity + 3.33). This approximation is approximately 10 

cm off at 4 m away, and less than 2 cm off within 2.5 m. 

A better approximation is given by Stéphane Magnenat in this post: distance = 0.1236 * tan(rawDisparity 

/ 2842.5 + 1.1863) in meters. Adding a final offset term of -0.037 centers the original ROS data. The tan 

approximation has a sum squared difference of .33 cm while the 1/x approximation is about 1.7 cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://groups.google.com/group/openkinect/browse_thread/thread/31351846fd33c78/e98a94ac605b9f21?lnk=gst&q=stephane&pli=1
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Appendix 4: Vision System Tutorial Python Example Script 

#import the necessary modules 

import freenect 

import cv2 

import numpy as np 

import math 

 

#function to get RGB image from kinect 

def get_video(): 

    array,_ = freenect.sync_get_video() 

    array = cv2.cvtColor(array,cv2.COLOR_RGB2BGR) 

    return array 

 

#get raw depth data from kinect 

def get_depth(): 

    array,_ = freenect.sync_get_depth() 

    array = array.astype(np.uint16) 

    return array 

 

#function to get depth image from kinect 

def get_depth_image(): 

    array,_ = freenect.sync_get_depth() 

    array = array.astype(np.uint8) 

    return array 
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def func(csv): 

    #print(type(csv)) 

    #print(csv.shape) 

    a = np.mean(csv) 

    distance = 0.1236*math.tan(a/2842.5+1.1863) 

    return distance 

 

 

 

if __name__ == "__main__": 

    print("Please press ESC key to quit:") 

    while 1: 

        #get a frame from RGB camera 

        frame = get_video() 

        #get a frame from depth sensor 

        depth = get_depth() 

        depth_image = get_depth_image() 

        #display RGB image 

        cv2.imshow('RGB image',frame) 

        #display depth image 

        cv2.imshow('Depth image',depth_image) 

        if(func(depth)<1.5): 

            print("BOOOM") 
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        else: 

            print("\n") 

            pass 

 

        # quit program when 'esc' key is pressed 

        k = cv2.waitKey(5) & 0xFF 

        if k == 27: 

            print("ESC Key pressed quiting") 

            break 

    cv2.destroyAllWindows() 
 

 

 

 

 

Appendix 5: RP LIDAR Arduino  
// This sketch code is based on the RPLIDAR driver library provided by RoboPeak 

#include <RPLidar.h> 

 

// You need to create an driver instance  

RPLidar Lidar; 

 

// Change the pin mapping based on your needs. 

///////////////////////////////////////////////////////////////////////////// 

#define LED_ENABLE  12 // The GPIO pin for the RGB led's common lead.  

                       // assumes a common positive type LED is used 
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#define LED_R       9  // The PWM pin for drive the Red LED 

#define LED_G       11 // The PWM pin for drive the Green LED 

#define LED_B       10 // The PWM pin for drive the Blue LED 

 

#define RPLIDAR_MOTOR 3 // The PWM pin for control the speed of RPLIDAR's motor. 

                        // This pin should connected with the RPLIDAR's MOTOCTRL signal  

////////////////////////////////////////////////////////////////////////////// 

                         

                         

  

#define NEO_RGBSPACE_MAX (byte)(200L*255/360) 

int _r, _g, _b; 

 

//Set current RGB with the hue: HSV(hue, x, x) 

void hue_to_rgb( _u8 hue) 

{ 

/*` 

    Hue(in Degree):  0 (RED) ----> 60 (Yello) ----> 120 (Green) --...... ----> 360 

    Hue'(fit to _u8):0       ----> 60/360*255 ----> 120/260*255 --...... ----> 255 

*/ 

     

    //convert HSV(hue,1,1) color space to RGB space 

    if (hue < 120L*255/360)   //R->G 

    { 

        _g = hue; 

        _r = NEO_RGBSPACE_MAX - hue; 

        _b = 0; 

    }else if (hue < 240L*255/360)  //G->B 

    { 
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        hue -= 120L*255/360; 

        _b = hue; 

        _g = NEO_RGBSPACE_MAX - hue; 

        _r = 0; 

    }else //B->R 

    { 

        hue -= 240L*255/360; 

        _r = hue; 

        _b = NEO_RGBSPACE_MAX - _r; 

        _g = 0; 

    } 

} 

 

void displayColor(float angle, float distance) 

{ 

    //1. map 0-350 deg to 0-255 

    byte hue = angle*255/360; 

    hue_to_rgb(hue); 

     

    //2. control the light  

     

    int lightFactor = (distance>500.0)?0:(255-distance*255/500); 

    _r *=lightFactor; 

    _g *=lightFactor; 

    _b *=lightFactor; 

     

    _r /= 255; 

    _g /= 255; 

    _b /= 255;     
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    analogWrite(LED_R, 255-_r); 

    analogWrite(LED_G, 255-_g); 

    analogWrite(LED_B, 255-_b);    

} 

 

void setup() { 

  // bind the RPLIDAR driver to the arduino hardware serial 

  Lidar.begin(Serial); 

   

  // set pin modes 

  pinMode(RPLIDAR_MOTOR, OUTPUT); 

   

  pinMode(LED_ENABLE, OUTPUT); 

  pinMode(LED_R, OUTPUT); 

  pinMode(LED_G, OUTPUT); 

  pinMode(LED_B, OUTPUT); 

   

  digitalWrite(LED_ENABLE, HIGH); 

   

  analogWrite(LED_R,255); 

  analogWrite(LED_G,255); 

  analogWrite(LED_B,255); 

} 

 

float minDistance = 100000; 

float angleAtMinDist = 0; 

 

void loop() { 
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  if (IS_OK(Lidar.waitPoint())) { 

    //perform data processing here...  

    float distance = Lidar.getCurrentPoint().distance; 

    float angle = Lidar.getCurrentPoint().angle; 

     

    if (Lidar.getCurrentPoint().startBit) { 

      // a new scan, display the previous data... 

       displayColor(angleAtMinDist, minDistance); 

       minDistance = 100000; 

       angleAtMinDist = 0; 

    } else { 

       if ( distance > 0 &&  distance < minDistance) { 

          minDistance = distance; 

          angleAtMinDist = angle; 

       } 

    } 

  } else { 

    analogWrite(RPLIDAR_MOTOR, 0); //stop the rpLidar motor 

     

    // try to detect RPLIDAR...  

    rpLidar_response_device_info_t info; 

    if (IS_OK(Lidar.getDeviceInfo(info, 100))) { 

       //detected... 

       Lidar.startScan(); 

       analogWrite(RPLIDAR_MOTOR, 255); 

       delay(1000); 

    } 

  } 

} 
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