
Communication Algorithms for Spatio-Temporal
Cooperation in Multi-Robot Systems

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Robotics Engineering

by

Nathalie Majcherczyk

December 2020

APPROVED:

Professor Giovanni Beltrame
Dissertation Committee
Polytechnique Montréal

Professor Alexander Wyglinski
Dissertation Committee
Worcester Polytechnic Institute

Professor Jie Fu
Dissertation Committee
Worcester Polytechnic Institute

Professor Carlo Pinciroli
Dissertation Advisor
Worcester Polytechnic Institute

Abstract

Swarm robotics has the potential to offer key solutions for large-scale, time-

sensitive and dangerous applications, such as wildfire fighting and disaster response.

Teams of robots promise capabilities beyond the reach of single-robot solutions by

distributing intelligence, sensing and actuation at a large scale. This opportunity

comes with the challenge of dealing with large amounts of data which are physically

distributed across robots. Therefore, a key precondition for the swarm to coordinate

successfully is the ability of the robots to store and exchange information efficiently.

This dissertation proposes a novel modular framework for organizing communi-

cation in highly mobile robotic swarms. Its first part addresses how to maintain

continuous connectivity between robots via distributed motion coordination. This

ensures that there are communication paths between any two robots to exchange

information. The second part presents the design of a distributed data structure

for low-memory, low-bandwidth, highly mobile swarms. The final part leverages

previous insights and contributions to tackle distributed learning and collective per-

ception applications.

The outcomes of this work include: (i) scalable connectivity maintenance algo-

rithms tested extensively in realistic simulation and with real robots, (ii) a general

and reusable platform for storing quantities of data that exceed the memory of

individual robots, while maintaining near-perfect data retention in high-load con-

ditions, and (iii) algorithms for collectively learning a machine learning model and

improving accuracy of predictions through cooperation.

Acknowledgements

I wish to thank my PhD advisor, Professor Carlo Pinciroli, for his invaluable guid-

ance and continued support throughout the course of my degree. I am extremely

grateful for his mentoring and encouragement.

I would also like to express my deepest appreciation to my committee, Professors

Giovanni Beltrame, Jie Fu, and Alexander Wyglinski, for their insightful comments

that helped improve my dissertation.

I had the great pleasure of collaborating with Adhavan Jayabalan, Nishan Sris-

hankhar, Daniel Jeswin, and Tim Antonelli. I am very grateful for their contribu-

tions and our research discussions.

Many thanks to all the past and present members of NEST Lab for their helpful

advice and good times in the lab.

Finally, I would like to recognize my family and friends. Their patience and

support have made this PhD possible.

i

Contents

1 Introduction 1

1.1 Multi-Robot Cooperation and Its Challenges 2

1.2 Multi-Robot Communication for Cooperation 4

1.2.1 Wireless Sensor Networks . 4

1.2.2 Robotic Networks . 6

1.3 Problem Statement . 8

1.4 Contributions . 9

1.5 Publications . 11

2 General Networking Assumptions 12

2.1 Modeling Assumptions . 12

2.2 Performance Metrics . 16

2.3 Summary . 17

I Enabling Communication 18

3 Connectivity Maintenance 19

3.1 Introduction . 19

3.2 Related Work . 21

3.3 Problem Statement . 23

ii

3.3.1 Robot Dynamics . 23

3.3.2 Robot Communication . 23

3.3.3 Objectives . 24

3.4 Approach . 25

3.4.1 Roles . 25

3.4.2 High-Level Behavior Specification 25

3.4.3 Selection of a New Root . 27

3.4.4 The Outwards Algorithm . 28

3.4.5 The Inwards Algorithm . 31

3.4.6 Spare Management . 32

3.4.7 Robot Motion . 33

3.5 Evaluation . 34

3.5.1 Parameter Setting . 34

3.5.2 Simulated Experiments . 35

3.5.3 Real-Robot Validation . 38

3.6 Summary . 39

3.7 Open Problems . 40

II Organizing Communication 41

4 Distributed Data Sharing 42

4.1 Introduction . 42

4.2 Related Work . 43

4.2.1 Peer-to-Peer Networks . 43

4.2.2 Mobile Ad-Hoc Networks . 45

4.2.3 Vehicular Ad Hoc Networks 45

iii

4.2.4 Multi-Robot Networks . 46

4.2.5 Swarm Networks . 46

4.3 Problem Setup and Challenges . 47

4.3.1 Ad-hoc Robotic Network . 47

4.3.2 Inputs . 48

4.4 Methodology . 48

4.4.1 Overall Architecture . 48

4.4.2 User-level Querying . 50

4.4.3 Queried Data Propagation . 52

4.4.4 Self-organizing Data Management 53

4.5 Evaluation . 58

4.5.1 Metrics and Parameters . 58

4.5.2 Simulated Experiments . 59

4.6 Summary . 64

4.7 Open Problems . 65

III Communication in Distributed Applications 66

5 Data-Driven Federated Learning 67

5.1 Introduction . 67

5.2 Related Work . 69

5.3 Preliminaries . 71

5.3.1 Federated Learning . 71

5.3.2 Application: Trajectory Forecasting 72

5.4 Methodology . 73

5.4.1 System Design . 73

iv

5.4.2 Datasets . 77

5.5 Evaluation . 81

5.5.1 Parameters of Interest . 81

5.5.2 Convergence Analysis . 83

5.5.3 Learning Round Timing . 86

5.5.4 Prediction Quality . 87

5.6 Summary . 89

5.7 Open Problems . 90

6 Collective Semantic Annotation 91

6.1 Introduction . 91

6.2 Related Work . 94

6.3 Problem Statement . 96

6.3.1 Assumptions . 96

6.3.2 Distributed Storage Problem Formulation 98

6.3.3 Annotation Consolidation Problem Statement 99

6.4 Methodology . 100

6.4.1 Overview . 100

6.4.2 Distributed Storage Through SwarmMesh 100

6.4.3 Annotation Consolidation Through Plurality Voting 102

6.4.4 Robot Local Routine . 105

6.5 Evaluation . 106

6.5.1 Simulation Parameters . 107

6.5.2 Mapping Performance . 109

6.5.3 Memory-Related Performance 112

6.5.4 Communication Load . 114

6.6 Summary . 115

v

6.7 Open Problems . 116

7 Conclusions 117

7.1 Summary . 117

7.2 Future Work . 119

vi

List of Figures

1.1 Wireless Sensor Networks protocol stack. 5

1.2 Thesis structure. 10

2.1 Network simulation components. 13

3.1 High-level Finite State Machine of connectivity backbone formation. . 26

3.2 Distributed centroid estimation algorithm. 30

3.3 Spare management in the outwards algorithm. 30

3.4 Spare management in the inwards algorithm. 31

3.5 Interaction between spare and non-spare robots. 32

3.6 Assessment of mission completion time in simulation. 36

3.7 Assessment of connectivity loss. 37

3.8 Tree selection complexity. 38

3.9 Experimental setup with 9 Kheperas IV robots. 39

3.10 Results of real-robot evaluation. 39

4.1 Overall architecture. 49

4.2 Visualization of queries on the distributed data structure. 52

4.3 Category-based hashing. 54

4.4 Key-space partitioning. 56

4.5 Address optimization. 57

vii

4.6 Structured replication. 57

4.7 Message format. 59

4.8 Memory performance of data structure. 62

4.9 Delivery delays of queries. 63

4.10 Bandwidth usage in bytes over time. 64

4.11 Delivery rate of spatial queries. 64

5.1 Federated Learning for collective trajectory forecasting. 68

5.2 Learning frameworks. 71

5.3 Finite State Machine of the learning framework. 75

5.4 Trajectory samples for different motion behaviors. 79

5.5 Swarm behaviors in ARGoS simulator. 80

5.6 Validation loss L(Θ) for the avoidance behavior. 86

5.7 Round timing for avoidance behavior. 87

5.8 Predicted trajectories. 89

6.1 Collective semantic annotation application with label consolidation. . 92

6.2 Collective semantic annotation. 93

6.3 Sensing model. 97

6.4 Environment adapted from the SceneNN dataset. 108

6.5 Ensemble probability of success per class of object. 109

6.6 Collective map coverage with a fixed vote threshold. 111

6.7 Collective map accuracy and coverage with a fixed number of robots. 111

6.8 VSCBPP cost over simulation time. 113

6.9 Memory performance of the data structure. 114

6.10 Load factor over time. 114

6.11 Bytes sent per second per robot with fixed number of robots. 115

viii

6.12 Bytes sent per second per robot with fixed vote threshold. 116

ix

List of Tables

3.1 Optimized design parameters. 34

4.1 Simulation parameters. 59

4.2 Tuple retention for N = 50 across load factors. 60

4.3 Tuple retention for N = 100 across load factors. 61

5.1 Experiment settings . 78

5.2 Statistics for swarm motion federated datasets. 81

5.3 Evaluation parameters . 82

5.4 Convergence for different behaviors. 85

5.5 Trajectory reconstruction for different behaviors. 88

6.1 Classifier class accuracy. 109

6.2 Simulation parameters. 110

x

Chapter 1

Introduction

Swarm robotics [1] is a branch of collective robotics that studies decentralized so-

lutions for the problem of coordinating large teams of robots. Robot swarms are

a promising technology for large-scale scenarios, in which performing spatially dis-

tributed tasks would entail prohibitive costs for single-robot solutions [1].

Multi-robot teams are advantageous over single-robot systems for a variety of

reasons. The first compelling reason is that sensing and action capabilities are bet-

ter distributed in space. As a consequence, the overall system performance can

be greatly improved with multiple robots in terms of metrics such as task comple-

tion time and energy consumption. Another advantage of multi-robot systems lies in

their inherent redundancy that can provide robustness and fault-tolerance. In terms

of physical robustness, multi-robot systems offer tolerance to hardware failures when

robots can act interchangeably to take over tasks from failed robots. Conversely,

data fusion and information sharing are two mechanisms introducing information

robustness in such systems; they allow recovering the global state from noisy or

partial information. Furthermore, multi-robot systems can unlock the automation

of complex tasks that can only be performed through the combination of simul-

1

taneous actions by multiple agents. For example, large or heavy object transport

may require collective pushing and/or pulling at different points of contact. Over-

all, robot swarms can display greater scalability, reliability and versatility. They

allow for robots to combine their abilities and computation power to tackle complex

missions, while tolerating the failure of one or more robots [2].

Despite the advantages of multi-robot systems, significant research is needed to

introduce robot swarms in real-world applications, special care is needed in designing

collective behaviors to realize the above-mentioned potential. Collective behaviors

include competitive behaviors, i.e, driven by individual interest, and cooperative

behaviors, i.e, driven by common interest [2]. In this thesis, we focus on commu-

nication between robots as a means for solving challenges arising in decentralized

cooperative behaviors.

1.1 Multi-Robot Cooperation and Its Challenges

Multi-robot cooperation [2] stems from the interaction of multiple robots to per-

form a task. When cooperating, robots are working towards a common interest

and share a joint goal which may involve balancing several subgoals [2]. Represen-

tative examples of cooperative behaviors include object transport [3], search and

rescue [4], exploration [5], and localization [6]. Effective solutions to achieve these

behaviors constitute building blocks for real-world applications such as planetary

exploration [7], deep underground mining [8], ocean restoration, and agriculture.

The above-mentioned applications present many challenges. Some challenges

are related to the stringent requirements of the real-world environment of the tar-

geted applications, while others are inherent to multi-robot cooperation. Real-world

challenges stem from harsh conditions such as dangerous terrain, ever-changing en-

2

vironment, and a lack of existing infrastructure to control robots directly. Further

operational difficulties involve the large scale of the environment and the need to

operate over long periods of time. These aspects call for solutions in which robots

are able to function and adapt to changes autonomously in a decentralized manner,

i.e., independently of external infrastructure or operators.

Multi-robot cooperation introduces challenges linked to resource conflicts [2].

One such type of conflict manifests in space sharing wherein robots need to navigate

while avoiding collisions, congestion, and deadlocks. More generally, conflicts occur

when resources, e.g. space, are limited and robots act according to their local

goal. Coordination is required to reconcile individual goals with group goals and

“overcome groupthink or individual cognitive biases” [2]. This coordination can be

achieved through communication between robots. In brief, learning information that

is inferred or observed by others can help robots cooperate more effectively [2].

Deconflicting individual goals is especially challenging in the fully decentralized

setting of robot swarms. Indeed, distributed techniques are devoid of any central

or server-like unit that could access all the information and coordinate individuals

plans. Therefore, inter-robot communication helps fulfill many functions of a server-

like entity including synchronization, task allocation, and information fusion.

In this thesis, we build around the idea of using communication as a means of

coordination. In particular, we focus on how to enable the exchange of information

for robots to gain a better knowledge of the global state. The aim is to provide a

base upon which to develop coordinated behaviors and online multi-robot planning.

In this respect, we propose a method to build shared representations of the world in

Part II. In Part III, we coordinate the training of a shared machine learning model

predicting robot trajectories (Chapter 5) and we build a collective semantic map

from aggregated information to reduce map uncertainty (Chapter 6).

3

1.2 Multi-Robot Communication for Cooperation

In order to enable multi-robot cooperation, distributed algorithms may utilize ex-

plicit communication between robots so as to align individual robot interests with

the common goal, build shared world representations, or distribute the computa-

tional burden between robots. It is a major challenge to design a suitable framework

at the intersection of communication networking, robot mobility, and distributed

computation. In the following, we examine the framework employed in Wireless

Sensor Networks at large. We highlight crucial differences with robotic systems and

frame our contributions within this broader context.

1.2.1 Wireless Sensor Networks

Extensive work exists in the fields of Wireless Sensor Networks (WSNs) and Mobile

Ad-hoc Networks (MANETs). WSNs refer to networks of static or low-mobility

sensors while MANETs refer to networks of mobile devices [9, 10]. Networking

algorithms for MANETs coordinate the exchange of data between network nodes.

However, they typically assume that an independent mobility layer controls the

trajectories of the nodes [11, 12]. This circumvents the issue of connectivity, i.e, the

existence of communication paths between any two nodes, by assuming that it is

ensured separately. These networking algorithms consider that pairs of nodes that

need to communicate are connected or eventually will come within range of each

other [13].

The fields of WSNs and MANETs have been extensively studied. Solutions have

been proposed across various layers of abstraction, allowing for the deployment

of WSNs in real-world scenarios. Figure 1.1 shows the communication protocol

stack commonly used for Wireless Networks. It includes the TCP/IP model layers

4

Figure 1.1: WSN protocol stack with protocol layers represented horizontally and
management planes represented vertically. The blue boxes indicate areas to which
this thesis provides contributions. The gray boxes indicate areas that affected some
of the design choices in our approaches.

and the management planes relevant to WSNs but orthogonal to the traditional

communication stack.

The physical layer deals with the transmission and reception of raw data be-

tween nodes through a physical communication medium [10]. This layer includes

communication hardware. There exist many wireless technologies and standards;

these technologies have different characteristics that make them suitable in different

applications. Common wireless technologies include General Packet Radio Service

(GPRS) and subsequent cellular technologies, WiFi, Bluetooth, and RFID. Some

technologies are well suited to the Internet of Things (IoT), the network of smart

devices [14], because they take into account energy consumption and are available

at a low cost. For short communication range applications, those include Bluetooth

Low Energy (BLE) [15] and ZigBee [16]. For long-range communications in that set-

ting, the Low-Power Wide-Area Network (LPWAN) [17] is particularly well suited

with technologies such as SigFox [18], NB-IoT [19], LoRa [20]. The data link layer

5

structures raw data into data frames and provides the procedure for the data trans-

fer between nodes. It includes the Medium Access Control sublayer that manages

the distributed use of the physical communication medium by the nodes [9]. The

transport layer controls the data flow in the WSN. The network layer routes data

coming through as controlled by the transport layer. Belding et al. characterize

various classes of routing approaches. They also describe and classify existing rout-

ing protocols [21]. The application layer includes software applications related to

the sensing task of the WSN [9, 10].

The power management plane enacts strategies for minimizing energy consump-

tion, which may involve pausing certain functionalities. The task management plane

allocates and plans sensing tasks for the WSN, so as to only employ the neces-

sary nodes for sensing, while other nodes can concentrate on data aggregation and

routing. In WSNs, the mobility management plane detects and adjusts for node

movements and maintains a data route to the sink at all times [9]. In an effort to

benchmark existing related work, Fang et al. developed an analytical method for

analyzing the modeling and performance of mobility management schemes [22].

1.2.2 Robotic Networks

While WSNs have similarities with networks of communicating robots, robotic net-

works differ in that: (i) robots can physically interact with each other and the en-

vironment; (ii) robots can move with an intent designed by the developer, thereby

offering the possibility to manage connectivity and information flow (mobility man-

agement); (iii) robotic networks may be self-sustained and never offload data to a

server, robots may be the only users and handlers of the information and dispose

of it as per operational needs; (iv) robots are often assigned unique identifiers to

make addressing simpler; These differences motivate the need for new methods in

6

the aspects of networking that are affected by the above-mentioned differences.

Gosh et al. [10] state that “over the last decade, a handful of researchers no-

ticed the significant disconnection between the robotics and the wireless network

research communities and its bottleneck effects in the full-fledged development of

a network of collaborative robots.” They coin the term Robotic Wireless Sensor

Networks (RWSN) to refer to the field at the intersection of robotics and wireless

networks. They motivate this choice by noting that, in many applications, the

primary task of robot teams is sensing. Relevant research also appears under the

terms of Networked Robots or Robot Ad Hoc Networks (RANETs). There are ad-

jacent fields that consider a specific type of robots such as: Flying Ad-hoc Networks

(FANETs) [23], Vehicular Ad-hoc Networks (VANETs) [24, 25], and Aquatic Ad hoc

Networks (AQNETS) [26].

We acknowledge the necessity of contributions at all levels of the communication

protocol stack. In this thesis, we mostly tackle challenges in the higher layers as

highlighted in blue in Figure 1.1. We describe related work at those levels of ab-

straction in the relevant chapters of the dissertation (Sections 3.2, 4.2, 5.2, and 6.2).

In this thesis, we do not make a specific technological choice for the physical layer.

Instead, we abstract away lower layers through simplifying assumptions discussed in

Subsection 2.1. In practice, many types of wireless communication technologies are

well suited for communication between robots. Radio Frequency (RF) technologies

such as Bluetooth, and acoustic technologies such as Sonar are predominantly used

in multi-robot systems. Aboveground communication mainly relies on RF technolo-

gies and, in particular, Bluetooth and infrared methods are used for short-range

communication in those settings. In underwater settings, Sonar is the technology of

choice as RF can not cope with turbulence that leads to high path loss and fading

at radio frequencies [10].

7

1.3 Problem Statement

The overarching problem addressed in this thesis is how to achieve cooperation

within decentralized multi-robot systems. We narrow our scope down to settings in

which robots explicitly communicate to achieve a common goal. We analyze this

topic at different levels of abstraction and study various facets of this cooperation

through communication. We study a range of questions from more fundamental

ones such as making sure any two robots can communicate, to more abstract ones

such as collectively training Machine Learning models. We limit our investigation

to decentralized systems with severe limitations discussed in the following.

Connectivity maintenance. The first research question we tackle is how to

maintain connectivity in a mobile team of robots with a finite communication range.

In particular, we study how to deploy a robot network from an initially connected

configuration of robots, while enabling connected motion to target locations.

Data sharing. The second research question in this thesis is how to manage

data in a distributed fashion given that robots are highly mobile and have limited

bandwidth. Furthermore, robots allocate a limited memory to data sharing so the

rest of the memory is available for the robots to perform complex perception and

decision-making. A particular challenge in this problem is that the amount of data

to store is much larger than this memory quota. The central aspect of this problem

is: which robot should store what data and when?

Distributed applications. In a move towards distributed applications, we

propose to study as a third research question how robots can learn collectively from

distributed data. We specifically aim to train a global machine learning model

through the cooperative action of a robot swarm with mobility and resource lim-

itations. Finally, we consider the question of how to reduce the uncertainty of

8

pre-trained ML models through collective decision-making. In particular, we study

how to realize data fusion of individual model outputs using a swarm of robots. This

poses the challenges of collectively storing model outputs and performing fusion in

a decentralized manner while coping with robot mobility and scarce resources.

1.4 Contributions

The work presented in this thesis collects several published contributions. We struc-

ture our contributions into three main parts (Figure 1.2):

Connectivity maintenance. A natural first step was to consider methods

to establish communication paths between robots. In Chapter 3, we address the

design of coordinated robot motion to maintain a connected network topology. This

falls within the mobility management plane of Figure 1.1. Our solution creates and

maintains a communication backbone through distributed policies. Our intent is not

to use the underlying logical tree as the communication routing infrastructure, but

as a method to minimally maintain global connectivity. In this work, we explicitly

deal with constraints and requirements in the realm of robotics such as line-of-

sight occlusions and realistic motion. In terms of networking, we use lightweight

short-range communication between robots and make the simplifying assumptions

described in Section 2.1.

Data sharing. While safety-critical applications require maintaining global

connectivity of the network at all times, many applications may tolerate intermittent

communication [27]. In Chapter 4, we design a shared data structure that relies

solely on local and instantaneous information, making its performance less affected

by topology changes. We address the challenge of dealing with large amounts of

data that are physically distributed across highly mobile robots. Furthermore, we

9

consider that the amount of data that the robots must store is larger than the

memory capacity of any individual robot. This contribution falls in the networking

and transport layers of Figure 1.1.

Distributed applications. In the final part of the thesis, we study applications

that rely on communication for robots to cooperate. The first application aims to

jointly train a Machine Learning (ML) model for trajectory prediction by a team of

robots through the Federated Learning [28] framework (Chapter 5). In our contri-

bution, the scheduling of learning rounds is driven by the amount of data collected

by the robots. Besides studying a server-based implementation, we also propose a

fully decentralized method where robots communicate to schedule rounds and merge

ML model weights. The second application is a problem of collective perception by

a multi-robot system: the collective annotation of a map. We propose a method

to store and fuse uncertain semantic annotations of objects proposed by the team

of robots through voting (Chapter 6). Communications happen through the dis-

tributed data structure developed in Part II. In these applications, memory usage

and communication overhead matter in evaluating overall performance. Therefore,

we included those metrics in our evaluations.

Figure 1.2: Thesis structure.

10

1.5 Publications

Some of the contributions of this dissertation have been submitted to or published

in conference proceedings and journals. The main body of this dissertation consists

of the following publications with minor changes:

1. N Majcherczyk, A Jayabalan, G Beltrame, C Pinciroli. "Decentralized

connectivity-preserving deployment of large-scale robot swarms." 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE,

2018. [29]

2. N Majcherczyk, C Pinciroli. "SwarmMesh: A Distributed Data Structure

for Cooperative Multi-Robot Applications." 2020 IEEE International Confer-

ence on Robotics and Automation (ICRA). IEEE, 2020. [30]

3. N Majcherczyk, N Srishankar, C Pinciroli. "Flow-FL: Data-Driven Fed-

erated Learning for Spatio-Temporal Predictions in Multi-Robot Systems."

Submitted to IEEE Robotics and Automation Letters. [31]

4. N Majcherczyk, D J Nallathambi, T Antonelli, C Pinciroli. "Distributed

Data Storage and Fusion for Collective Perception in Resource-Limited Mobile

Robot Swarms." Submitted to IEEE Robotics and Automation Letters. [32]

11

Chapter 2

General Networking Assumptions

2.1 Modeling Assumptions

In this section, we summarize the assumptions used in the dissertation when

simulating inter-robot communications. We organize these assumptions into the

categories represented in Figure 2.1. We adapt this figure and modeling frame-

work from Dede et al.’s review of simulation tools and models for Opportunistic

Networks [33]. We also include models and considerations from various surveys of

robotic networks [23, 26].

Mobility Models. In ad-hoc and opportunistic networks, the mobility of nodes

is controlled by external factors. Researchers use various models to simulate this

ad-hoc behavior. In our case, the motion of robots is either part of our contribution

as in Part I, or related to an application as in Part III. In Part I, the motion of

the robots is topology-based since the goal is to coordinate the movements of robots

continuously so as to maintain network connectivity constraints. In this model,

robots coordinate based on their relative positions. In Part II and Chapter 6, we

use a random-based mobility model in our simulations. In the context of swarms,

12

Figure 2.1: Network simulation components presented from the node perspective
(figure adapted from [33]).

diffusion [34] is a common motion policy in which robots move in a random direction

until they encounter an obstacle and change direction. We chose this model for

simulating a random exploratory motion. In Chapter 5, we consider several mobility

models based on well-studied swarm behaviors such as flocking [35] and foraging [36].

Radio Propagation Model. The power density of electromagnetic waves de-

creases as they travel because of various phenomena such as free-space loss, diffrac-

tion or scattering. The reduction in power density is called path loss (PL) and affects

the transmission of data between devices. In free space, the PL can be calculated

through the simplified Friis transmission formula:

PL[dB] = 20 log10

(
λ

4πd

)
(2.1)

where d is the distance between transmitter and receiver, and λ is the wavelength.

13

When there are objects in the path of the waves, i.e line of sight (LoS) conditions

are not met, the medium interrupting the waves causes either absorption losses or

diffraction if it is transparent or opaque to electromagnetic waves respectively.

In this thesis, we restrict ourselves to a simple Unit Disk Graph (UDG) radio

propagation model. We consider that two nodes are connected if they are within

a certain communication range C of each other. Within the communication range,

the path loss is assumed to be zero. Out of range, robots can not communicate and

the path loss is assumed high enough to render any transmission impossible [33]:

PL(distance)[dB] =


0, if distance ≤ C

∞, otherwise
(2.2)

In their review of tools for simulating opportunistic networks, Dede et al. [33] present

several more sophisticated synthetic propagation models including the Radio Irreg-

ularity Model, the Log Distance Path Loss and Ray Tracing. Dede et al. run

simulations with the Nakagami model [37] and compare it to the UDG model. In

that particular instance, there is an improved overall network performance with the

more sophisticated Nakagami model including lower delivery delays. The increased

model complexity requires higher computational resources for the simulation. Fur-

thermore, whether the more sophisticated model is closer to reality than the UDG

model remains an open question [33]. Given these insights and our intent to pro-

pose methods independent from any specific link technology, we elected to use the

UDG model and performed some of our experiments with random packet drops and

complete path loss in case of LoS obstruction.

Link Technology. In wireless networks, the link layer refers to the physical

layer and the data link layer described in Section 1.2.1. This layer has the role

of adapting the data from the higher layers of the protocol stack for the commu-

14

nication media used. The modeling of the link layer can potentially influence the

simulation of network performance in terms of delivery rate and delivery delays be-

cause it deals with buffer management, data retransmissions and connections [33].

We described the possible wireless technologies and their suitability for different

use cases in Section 1.2.1. In practice, it is impossible to completely and exactly

model a real communication scenario in a set-up with obstacles and moving robots.

In many studies and simulators, this leads researchers to use an ‘ideal link layer’

so as to simulate high-level protocols and data propagation [33]. In this thesis, we

use this idealized view of the link layer. We consider short-range communication

with or without modeling line-of-sight obstructions. We refresh the communica-

tion link existence every simulation time step which is typically fixed at 100ms.

Dede et al. observe that ideal and real link models yield similar results across the

various simulators surveyed (OMNET++, ns-3, Adyton, and ONE). Therefore, the

authors conclude in favor of using ideal link models as these models make simulation

computations lighter. Using ideal link models also abstracts away the specific link

technology thereby allowing the comparison of solutions regardless of the wireless

medium [33].

TrafficModel. Another important aspect in simulating a network is the amount

of data created and subsequently exchanged throughout the network. There are two

main aspects in traffic models: the traffic size and traffic frequency. The traffic size

relates to “how much data is created at once” and the traffic frequency considers

“how often data is created” [33]. In terms of performance, the creation instant of

a network message affects the message’s delivery delay since the network load may

be time-dependent. In Part II, we use a traffic model in which the creation time

for each new message is drawn from a Poisson distribution. This type of model is

commonly used for simulating user-driven network traffic such as text messaging for

15

instance [33]. In Part III, the traffic of the network is directly determined by the

underlying application.

2.2 Performance Metrics

In the following, we consider several metrics typically included in benchmarks of

networking research. In this dissertation, we include such measures at the level of

abstraction considered in each chapter.

Delivery Delays. In networks, delivery delays measure the time between when

a message is sent out and when it is delivered to its intended recipient(s). This

metric can be quantified at the level of nodes or network-wide. Factors that influence

this metric include the network topology and density, node mobility, and network

traffic [33]. In Part II, we characterize our proposed distributed data structure

in terms of delivery delays by showing distributions of time delays for write and

read operations. In Part III, we record both timings due to the traffic frequency

generated by the application and delays due to the propagation of data in the shared

data structure.

Delivery Rate. The delivery rate, also called reception ratio, characterizes the

proportion of data packets delivered to intended recipients before they are dropped

from the network. Main reasons for data and messages to be removed from a network

include expiration time (e.g. time-outs of requests) and memory overflows [33]. In

Part II, we consider the fraction of data discarded due to node memory overflows

given different network data loads. We also study how often read operations return

all the data of interest.

Overheads. Various overheads can be studied to quantify the performance of

a network with respect to a baseline. In Chapter 4, we consider the communica-

16

tion overhead associated with using a distributed storage as opposed to using a

centralized memory. In Chapter 6, we study the memory utilization overhead with

the proposed distributed data structure compared to an optimal memory usage as

defined by a Bin Packing problem.

2.3 Summary

In this chapter, we reviewed models and metrics relevant for benchmarking wireless

networks. We addressed the choice of assumptions and performance metrics made

in the remainder of this thesis. Therefore, this choice is in accordance with the level

of abstraction of our proposed contributions. We considered standard practices in

Opportunistic Network simulation and trade-offs in terms of simulation complexity

and specificity against accuracy.

17

Part I

Enabling Communication

18

Chapter 3

Connectivity Maintenance

3.1 Introduction

A common aspect in the cooperation scenarios described in Section 1.1 is the neces-

sity to maintain a coherent state across the swarm. Many basic coordination prob-

lems can be solved assuming low-bandwidth, occasional communication or even no

communication. However, global connectivity is an asset when information must be

exchanged in a timely manner, either to optimize a global performance function, or

to aggregate data in a sink. Task allocation scenarios with stringent space and time

constraints, such as warehouse organization and search-and-rescue operations [38]

are prime examples of this category of problems. In these scenarios, it is desirable for

the robot network to allow both short-range and long-range information exchange.

In this chapter, we tackle the problem of deploying a robot network in a decen-

tralized fashion, under the constraint that long-range information exchange must be

possible at any time during a mission. We assume that robots must reach a number

of distant locations. While navigating to these locations, the robots must spread

without splitting the network topology in disconnected components. The robots

19

must achieve a final configuration in which data can flow between any two target

locations, using the robots as relays.

It is important to notice that it is not required for all of the robots to take part in

the final topology. Rather, it is desirable that as few robots as possible are engaged

in connectivity maintenance, as this would free any extra robot for other tasks or to

act as occasional replacement for any damaged robot in the topology. In contrast,

the robots that are part of the final topology must form a persistent communication

backbone that can be used by any robot when necessary.

This aspect sets apart our work from existing research on connectivity main-

tenance, which generally requires all robots to be part of the connected topology.

The literature on this topic can be broadly divided in two classes: algorithms in

which the robots must attain a final, static structure to maximize coverage [39], and

algorithms in which global connectivity is enforced while navigating to a specific

location as a single unit (flocking) [40]. Our work, in contrast, aims to create a dy-

namic, decentralized communication infrastructure that connects specific locations

and uses as few robots as possible.

Our approach assumes that the robots are initially deployed in a compact, con-

nected cluster. The robots then form a logical tree over the physical network topol-

ogy. By growing the tree over time, the distribution of the robots progressively

and dynamically extends to reach the target locations. The final configuration is a

star-like topology, in which data can flow between any two target locations.

The main contributions of this work are:

1. The formalization of two algorithms to form and grow logical tree topologies

that connect multiple target locations;

2. A comparative study of the algorithms, based on extensive physics-based sim-

20

ulations;

3. The validation of our findings through a large set of real-robot experiments.

The rest of this chapter is organized as follows. In 3.3 we formalize the problem

statement. In 3.4 we present our methodology. In 3.5 we report an evaluation of

the algorithms.

3.2 Related Work

Extensive literature exists on approaches for connectivity preservation. These ap-

proaches can be generally organized in three categories: graph-theoretic methods,

edge selection methods, and

In graph-theoretic methods, the goal is to exploit a well-known node impor-

tance measure called algebraic centrality or Fiedler value. This measure indicates

how much information flows through each node of the network and thus which

nodes must are most important in connectivity maintenance. Yang et al. [41] intro-

duced a decentralized algorithm to estimate the Fiedler value and use it to maintain

connectivity while moving towards a target location. This algorithm was later re-

fined by Sabattini et al. [42] and Williams et al. [43]. Further extensions include

inter-robot collision avoidance [44] and multi-target exploration [40]. The main ad-

vantage of this family of approaches is that they allow navigation with arbitrary

topologies. However, accurate decentralized computation of the Fiedler value is not

easy in realistic settings in which messages might be lost due to communication

interference [45]. In addition, computing the Fielder value in a decentralized man-

ner involves network-wide power iteration methods [46], the slow convergence of

which makes them suitable only for small teams of robots [43, 47]. It should also be

21

noted that all of the above algorithms, with the exception of [44], have only been

demonstrated in simulated environments.

A second family of methods select a communication sub-graph and aim to pre-

serve its edges through some form of global consensus. Hsieh et al. [48] devised a

reactive control law based on radio signal and bandwidth estimation, in which links

between robots can be activated and deactivated as the topology changes over time.

Michael et al. [49] employed distributed consensus and auctions algorithms to estab-

lish which links to activate and deactivate over time. Cornejo et al. [13, 50] proposed

a distributed algorithm for link selection in which the robots undergo a number of

motion rounds, during which the selected links must be preserved. Being based on

achieving global consensus before any topology modification can be finalized, these

algorithms are not scalable and work best when teams involve a small number of

robots.

A third class of connectivity-preserving algorithms assumes that a certain struc-

ture is pre-existing. The dynamic structure is some form of logical tree, dynamically

built and updated over the physical links of the robot network. Our work falls into

this category. Krupke et al. [51] employed a Steiner tree as a pre-existing structure,

and use spring-like virtual forces to balance connectivity and cohesiveness while

reaching distant targets. A number of works, which constitute our main source of

inspiration, utilized minimum spanning trees as structures to preserve. Aragues et

al. [39] focused on a distributed coverage strategy with connectivity constraints, and

proposed a method based on maintaining a network-wide minimum spanning tree.

Analogously, Soleymani et al. [52] proposed a distributed approach that constructs

and preserves a network-wide minimum spanning tree, allowing for tree switching.

Schuresko et al. [53] studied a theoretical approach for distributed and robust switch-

ing between minimum spanning trees. All these works were only demonstrated in

22

numerical simulations. The main advantage of these methods is the ease and speed

with which spanning trees can be built and updated in a distributed manner. How-

ever, as discussed in this chapter, spanning trees do not scale well with the number

of robots involved.

3.3 Problem Statement

3.3.1 Robot Dynamics

We consider N robots with linear discrete dynamics

xi(t+ 1) = Axi(t) +Bui(t)

where xi(t) ∈ R2M is the state of robot i at time t, ui(t) ∈ R2M is the control signal,

and A,B ∈ R2M×2M . The state xi(t) is defined as [pi(t), vi(t)], where pi(t) ∈ RM

designates the position of robot i and vi(t) ∈ RM its velocity. State and controls

are subject to the convex constraints

∀t ≥ 0 xi(t) ∈ Xi ui(t) ∈ Ui.

In this work we focus on 2-dimensional navigation (M = 2).

3.3.2 Robot Communication

We assume that the robots are capable of situated communication. This is a com-

munication modality in which robots broadcast data within a limited range C, and

upon receiving data, a robot is able to estimate the relative position of the data

sender with respect to its own local reference frame.

23

We define the communication graph GC = (V , EC), where V is the set of robots

{1, . . . , N}, and EC ⊆ V×V is the set of edges connecting the robots. An edge (i, j)

between two robots exists at time t if their distance is within their communication

range C, i.e., ‖ pi(t)− pj(t) ‖≤ C.

Definition 1 (Graph connectivity) A graph is connected is there exists a path

between any two nodes.

Graph connectivity can be verified through well-known concepts in spectral graph

theory. From the definition of the graph adjacency matrix

Aij =


1 if (i, j) ∈ EC

0 otherwise

and of the graph degree matrix

Dij =


∑

k Aik if i = j

0 otherwise

we can derive the Laplacian matrix L = D − A. The graph is connected if and

only if the second smallest eigenvalue of L is greater than 0. For this reason, this

eigenvalue is called algebraic connectivity or Fiedler value [54]. We will employ

algebraic connectivity as a performance measure in the experiments of 3.5.

3.3.3 Objectives

The objective of this work can be stated as follows: we aim to create a progressive

deployment strategy that can reach an arbitrary number of geographically distant

tasks while satisfying connectivity constraints. In particular, the final configura-

24

tion of the network topology must allow communication between any two target

locations.

3.4 Approach

3.4.1 Roles

In both algorithms, we assume that the robots are initially deployed in a fully con-

nected cluster. Subsequently, the robots must form a tree by dynamically assuming

a specific role in the process.

In both tree-forming algorithms, the robots can have four possible roles: root,

worker, connector, or spare. The root robot corresponds to the tree root, and at

any time during the execution, only one robot can assume this role. The worker

robots are the tree leaves, and they correspond to robots that must reach the target

locations, forcing the tree to grow progressively. The connector robots dynamically

join the tree to support its growth, leaving the pool of available spare robots.

3.4.2 High-Level Behavior Specification

The algorithms can be formalized through a high-level state machine that encodes

the behavior of every robot, as depicted in Figure 3.1.

Every robot starts in state Init. We assume that a process that assigns the role of

worker to the robots closest to the targets has been already executed, through, e.g.,

a task allocation algorithm or a gradient-based algorithm. In addition, a random

robot is assumed assigned the role of root. The other robots are initially spare.

The Start Tree state is triggered by the root, which propagates a signal

throughout the robot network. This state signifies that a new tree must be cre-

25

Init Start
Tree

Select
Parent

parent
selected?

Grow
Tree

growth
done?

Select
Root

root
selected?

Figure 3.1: The high-level Finite State Machine that formalizes the individual robot
behaviors in the two tree-formation algorithms. Rounded rectangles denote states,
and diamonds denote barriers, i.e., conditions that all robots must meet before pro-
ceeding to the next state. States filled in white are common among both algorithms;
states and barriers filled in light gray differ across algorithms.

ated. As the message propagates throughout the network, the robots estimate their

distance from the root. This is possible because of situated communication—every

robot can estimate a relative vector to each of its immediate neighbors.

Robots receiving a “start tree” signal switch to Select Parent. In this state,

each robot must identify a new parent to attach to. The selection of a new parent

aims to create the shortest possible paths between the root robot and the worker

robots, i.e., the leaf nodes in the tree. The specifics of this state are different in the

outwards and inwards algorithms, and are explained in 3.4.4 and 3.4.5. At the end

of this state, a robot is part of two trees—the one from the previous iteration of the

algorithm (excluding the very first iteration), and a new one that reflects the new

parent.

Once every robot has selected a new parent, the robots switch to the Grow

Tree state, in which the robots forget the tree from the previous iteration and spare

robots are accepted to join an edge. The algorithms differ in the implementation of

this state, and details are reported in 3.4.4 and 3.4.5.

Once the growth state is complete, the robots switch to the Select Root

state. As the tree grows, the initial choice of the root robot (which is random) or an

26

uneven distribution of target locations might render the tree topology nonoptimal.

By selecting a new root, the swarm can balance the tree branches, thus fostering

even growth over time. The design of this state is illustrated in 3.4.3.

Finally, the new assigned root switches to state Start Tree and broadcasts a

new “start tree” signal.

In Figure 3.1, certain state transitions are marked with diamonds. These tran-

sitions, which we call barriers, are special in that they correspond to “wait states”

in which the robots must stay until a certain condition is verified for every robot.

The specific implementation of these conditions depends on the algorithms. How-

ever, the general principle is that the root aggregates the information necessary to

evaluate a certain condition, and then broadcasts a “go” signal throughout the tree.

The “go” signal triggers a state transition in the robots that receive it.

3.4.3 Selection of a New Root

The purpose selecting a new root is to balance the tree, which fosters better growth

and compensates for an uneven distribution of target locations. In addition, bal-

ancing the tree has positive effects on the scalability of our algorithms. Every state

in our algorithms involves some form of diffusion/aggregation process across the

tree, with a time complexity that is linear with the depth of the tree. By balancing

the tree, we also shorten its depth, thus lowering the time for diffusion/aggregation

processes to complete.

These considerations suggest that the best location for the root is as close as

possible to the centroid of the distribution of robots. The selection of a new root

occurs at the end of a tree configuration loop, but the data upon which the process

depends is collected in state Select Parent, when the robots select a new parent.

The algorithm provides an estimate of the centroid in the root reference frame

27

by adding up each robot contribution from the leaves to the root. The algorithm is

formalized in Algorithm 1. An intuitive explanation of this algorithm proceeds as

follows. Since each robot only knows its relative position to other robots, it must

send to its parent an accumulation vector qi which aggregates its contributions

and that of all its descendants in the tree, according to its own reference frame.

Figure 3.2 reports an example with three robots, where robot 0 is the root, robot 2

is a worker, and robot 1 is a connector.

To perform the final calculation of the centroid, Algorithm 1 needs the number

of robots in the swarm. A tree-based distributed algorithm to count the number of

robots currently committed in the tree is reported in Algorithm 2. This algorithm

requires the robots to aggregate a partial count, denoted with ci, from the tree leaves

to the root.

In our implementation, both Algorithm 1 and Algorithm 2 are executed in par-

allel in state Select Parent. In select root, the current root compares its

position and the position of its neighbors to the centroid estimate (all are expressed

in its reference frame). If the current root is the closest to the centroid, it remains

the root and restarts a new tree loop. Otherwise, it designates a new root and sends

the centroid vector and the angle to the new root. When the new root receives this

message, it sends an acknowledgment message to the old root, and then it expresses

the centroid in its own reference frame. The process is repeated until the root is the

closest robot to the centroid estimate.

3.4.4 The Outwards Algorithm

The intuition behind the outwards algorithm is to build a logical spanning tree over

the entire robot network. The process starts at the root, and robots join the tree

progressively.

28

Algorithm 1 Distributed centroid estimation algorithm executed by robot i: ai de-
notes an accumulator value; qi denotes the contribution of robot i to the estimation
algorithm; ci and di denote the number of robots in the swarm estimated by robot
i and the tree depth of robot i, respectively; and pparent

i is the vector from robot i
to its parent.
1: ai = 0
2: for all child j do
3: qij = express qj in i’s reference frame
4: ai = ai + qij

5: if robot i has a parent then
6: qi = ai − (ci − di︸ ︷︷ ︸

nb descendants

+1) · pparent
i

7: if robot i is the root then
8: qi = ai/ ci︸︷︷︸

robot count

Algorithm 2 Tree-based count algorithm for robot i. The depth of robot i in the
tree is denoted as di. The depth of the tree root is set to 1. The count calculated
by robot j is denoted as cj.
1: switch number of children do
2: case 0
3: return di
4: case 1
5: return cchild

6: default
7: return

∑
neighbors j(cj − di) + di

8: end switch

In state Select Parent, robot i considers its neighbors as potential candidates.

Viable candidates are non-workers already in the tree and at a distance smaller than

the communication range. Among these, the robot selects the closest robot. The

robot commits to the tree and starts broadcasting its parent id, which indicates to

the parent robot that robot i is a child and that i is a connector. Each connector

maintains its list of children and checks for obstructions of line-of-sight with respect

to its parent. If a robot can not receive data from its selected parent, it selects

another parent and updates its data.

29

Figure 3.2: The red triangle represents robot 0 with the root reference frame. The
blue square represents robot 1, which is a child of robot 0 and a parent of robot 2,
in turn represented by the green circle.

Figure 3.3: Spare management in the outwards algorithm. The useful tree edges
(blue nodes) are extended by pruning useless tree branches (grey nodes).

In state Grow Tree, the robots undergo two main phases: first, they discard

the information about the old tree; second, they prune tree branches that contain

no workers. To establish whether a branch contains a worker, when a worker selects

a parent (state Select Parent), the latter propagates this information upstream

towards the root.

The branches not containing a worker are considered “useless” and the robots

that are part of them take the spare role. To disband a useless branch, spare robots

leave it starting from the leaves. The leaves curl the branch back towards the root,

and upon entering in contact with another branch might decide to join it. The logic

30

Figure 3.4: Spare management in the inwards algorithm. Useful tree edges (blue
nodes) are extended by adding spare robots (purple nodes)

for spares to join a branch is explained in 3.4.6

3.4.5 The Inwards Algorithm

The intuition behind the inwards algorithm is that the robots join the tree starting

from the workers towards the root. Growth is therefore directed, and the final

topology is a sparse tree, in that only a subset of the robots takes part in it. The

spare robots, in contrast to the outwards algorithm, do not form branches; rather,

they disperse along the tree and select a robot to use as reference.

In state Select Parent, viable candidates for parent selection are non-workers

in the tree or robots not in the tree which are at a distance smaller than the com-

munication range C. Among these, a robot selects a neighbor with the smallest

distance to the root. When the robot i commits to the tree, it broadcasts its parent

id, which indicates to the parent robot that robot i is a child and that i is a connec-

tor. In the inwards algorithm, by definition, all branches are useful because they all

terminate with a worker as leaf node.

In state Grow Tree, spare robots attempt to join a branch. The logic for

branch joining is the same as in the outwards algorithm, and it is explained in 3.4.6.

31

Figure 3.5: Interaction between spare and non-spare robots.

3.4.6 Spare Management

The state machine diagram in Figure 3.5 describes the part of the Grow Tree

state that concerns the interaction between spare robots and non-spare robots (i.e.,

connectors, workers, and root).

Non-spare robots enter the no need state when they have no need for a spare

robot. They exit this state either if their distance to their parent becomes smaller

than the safe communication range S, or if at least one of their children’s state is

the need state. In the need state, each robot continuously checks if it is in an

edge selected by a spare robot, or if their parent is in the await state. If one of

these conditions is fulfilled, the robot transitions to the await state. In the await

state, the robot is waiting the insertion of a spare robot either in one of its edges or

upstream in the tree.

Spare robots enter the wait state and look for an edge to extend. They transition

to the extend edge state or the adjust position state after performing a search

for edges in need among their neighbors. In the adjust position state, spare

robots rotate around their parent if they are within the safe radius or move towards

their parent in a straight line otherwise. In the extend edge state, spare robots

head for the middle of the edge to be extended.

32

3.4.7 Robot Motion

The integrity of the tree over time is ensured by constraining the robots’ motion. We

enforce the constraints by expressing the robot motion as a sum of virtual potential

forces (we omit time dependency for brevity of notation):

ui =


utree,old
i + utree,new

i

+fi(d
parent
i)(utarget

i + uavoid
i) if di,j ≤ E

pparent
i otherwise

where di,j =‖ pi − pj ‖, E < C is the emergency range beyond which a robot is

dangerously distant from its parent, and

• utree,old
i and utree,new

i indicate the interaction law between robots (i, j) in a

parent-child relationship, in either the old or the new tree. We use the control

law

utree
i =

ε

di,j

((
δ

di,j

)2

−
(
δ

di,j

)4
)

where δ = E and ε are parameters to set at design time.

• utarget
i is a control law that attracts a robot to a target, promoting tree growth.

For workers, this is a force that points the assigned target location li and

calculated with

utarget
i = τ

li − pi
‖ li − pi ‖

where τ is a design parameter. Workers propagate to their parents the calcu-

lated utarget
i , and connectors apply it in turn.

• uavoid
i is a repulsive force for obstacle avoidance between neighbors not in a

parent-child relationship.

33

Table 3.1: Optimized design parameters.

Type Symbol Meaning Outwards Inwards Unit
Outgoing bandwidth Maximum of outgoing bytes 3 3 kB/s

Motion

S Safe range between parent and child 138.93 135.25581 cm
A Non-parent-child avoidance range 43.16 40.99 cm
δ Ideal distance between parent and child 190 154.0841 cm
ε Factor gain in parent-child interaction 10 10
τ Magnitude of attraction to target 0.49 0.2539

Tree Growth R Reconfiguration period 38.8 44.0 sec
I Information liveness period 1.2 0.5 sec

Uncommitted Management E Distance threshold for spare recruitment 132.09 132.1353 cm
J Distance threshold to switch to connector 9.79 6.6395 cm

• fi(dparent
i) is a function defined as follows:

fi(d
parent
i) =


1 if dparent

i ≤ S

0 otherwise

where dparent
i is the distance between a robot and its parent and S < E is

the safe communication range. Through this function, a robot can ignore

navigation to target and obstacle avoidance to perform emergency maneuvers

when the distance to its parent becomes unsafe.

3.5 Evaluation

3.5.1 Parameter Setting

The dynamics and the performance of our algorithms depends on the design pa-

rameters reported in 3.1. To set their value, we used a genetic algorithm. We ran

multiple instances of the optimization process for both inwards and outwards, and

3.1 reports the best values we found.

Every instance of the optimization was executed for 100 generations. We set

this number as a reasonable margin after observing that, across instances, after

34

about 50 generations the optimization process would find a plateau beyond which

no improvement was found.

Every generation consisted of trials in which 9 Khepera IV robots1 were placed

in the arena in a tight cluster. We configured two types of trials:

• 2 target locations on a circle with a radius of 2.3m at 180 ◦ from each other;

• 3 targets on a circle with a radius of 1.6m at 120 ◦ from each other.

We ran the trials in the ARGoS multi-robot simulator [55], and maximized a

two-step performance function. The first step (performance 0 to 1) promoted con-

nectivity maintenance by penalizing the time spent with disconnected robots; the

second step (performance 1 to 2) was activated when no disconnections occurred,

and higher values corresponded to lower times to reach the targets.

3.5.2 Simulated Experiments

We tested the performance of the algorithms by varying three parameters: the target

radius, the redundancy factor, and number of targets. We placed multiple targets

on a circle with equal angles between each other. The target radius is the radius of

the circle. We chose radii of 3, 6 and 9 meters corresponding to small, medium and

large scales. The redundancy factor is the factor by which we multiply the minimum

required number of robots needed to reach all the targets given our communication

range. We tested the values of 2, 3 and 4 for this parameter. The number of targets

was 2, 3, and 4. The largest configuration we considered involved 94 robots. Each

scenario was executed with 50 different random seeds. We ran all the experiments

for both algorithms with and without activating line-of-sight obstructions in the

communication models of ARGoS, to test the effect of this aspect.
1https://www.k-team.com/mobile-robotics-products/khepera-iv

35

https://www.k-team.com/mobile-robotics-products/khepera-iv

Figure 3.6: Assessment of mission completion time in simulation.

Simulation Time

We studied the time performance of both algorithms, and declared an experiment

finished when all workers reach their targets. To compare results across different

scales, we normalized the mission duration by the maximum allowed time. The

maximum allowed time was computed by considering the time for a robot to reach a

target from the center of the arena; this time was then multiplied by 10. The results

are reported in Figure 3.6. For small scales, the outwards algorithm outperforms

the inwards algorithm. However, as the scale of the experiment is increased, the

directed growth of the inwards algorithm is increasingly advantageous. In addition,

with the outwards algorithm, some missions do not reach their targets in the allotted

time limits when higher redundancy factor is employed. This is due to the increased

interference that too many useless branches create in robot navigation. This effect

is not prominent in the inwards algorithm because the robots are added to the tree

only when it is necessary.

Disconnected Time

We studied the ability to maintain connectivity by considering the following metrics:

(i) The disconnected time ratio, defined as the number of time steps (over the total

experiment time) with at least a broken edge in the tree; (ii) The Fiedler value time

36

Figure 3.7: Assessment of connectivity loss.

ratio, defined as the number of time steps (over the total experiment time) with

swarm-wide Fiedler value lower than 10−3. The results are reported in Figure 3.7. In

small-scale scenarios, in only two experiments out of 50 have positive disconnected

time, and the global communication graph always stays connected. In medium-

scale scenarios, larger numbers of redundant robots cause occasional line-of-sight

obstructions that delay messages exchanges, but connectivity is generally maintained

throughout the duration of the experiment. In large-scale scenarios, the disruptive

effect of a large number of redundant robots is prominent for both algorithms. With

fewer robots, the inwards algorithm is capable of maintaining global connectivity in

all of the experiments, despite occasional breaking of tree edges (in less than 5% of

the experiments).

Tree Selection Complexity

To understand the scalability of each algorithm we analyzed how long it takes build

a tree using both algorithms. Figure 3.8 shows the line fitting of data points for the

inwards algorithm.

37

Figure 3.8: Tree selection complexity.

3.5.3 Real-Robot Validation

To validate the simulated results simulations, we tested our algorithms with 9 Khep-

era IV robots (see Figure 3.9). A Vicon motion capture system was used to track the

position and orientation of the robots throughout the duration of the experiments,

and to simulate situated communication. We employed 2 experimental scenarios:

(i) 2 targets on a circle with a radius of 2.3 meters at approximately 180 degrees from

each other; (ii) 3 targets on a circle with a radius of 1.6 meters at approximately

120 degrees from each other. We rescaled the distance-related parameters in Ta-

ble 3.1 to fit the arena and accommodate for the small number of robots involved.

We repeated these experiments 15 times for setup (i) and 10 times for setup (ii)

with robots starting from the same positions and orientations, to allow for better

comparison. We also performed the same experiments in simulation, with the same

initial positions.

Figure 3.10 shows that real-robot and simulated experiments follow analogous

trends. In particular, we verified that for small-scale experiments with low redun-

dancy factor (in these experiments it was set to 1) the outwards algorithm has better

performance than the inwards algorithm.

38

Figure 3.9: Experimental setup with 9 Kheperas IV robots.

Figure 3.10: Results of real-robot evaluation.

3.6 Summary

In this chapter, we presented two algorithms to construct a long-range communica-

tion backbone that connects multiple distant target locations. The algorithms are

decentralized and based on the idea of constructing a logical tree over the set of

physical network links.

We performed a large set of experiments, both in simulation and with real robots,

to assess the performance of the algorithms according to various experimental con-

ditions. Our results show that, in small-scale scenarios, outwards tree growth, cor-

responding to spanning tree formation, is a viable approach. However, as the scale

of the environment and the number of robots involved increase, a more directed, in-

wards growth from target locations towards the tree root, is a preferable approach.

39

Our results also show that, as the number of unnecessary robots increases, the

benefit of redundancy is voided by the increased physical interference in navigation.

While a better spare robot strategy could diminish this phenomenon, our results

suggest that a more progressive approach to deployment might be a better idea.

3.7 Open Problems

The presence of a reasonable number of spare robots offers the opportunity to tackle

the problem of maintaining persistent long-range global connectivity despite indi-

vidual limitations in the energy supply of individual robots.

In addition, possible extensions of our work include the presence of moving tar-

gets, rather than static ones, and the presence of obstacles in the environment.

Thirdly, a future direction of study is how to make this approach robust or

resilient to robot failures. In the current implementation, individual failures have

consequences of different severity depending on the role assumed by the robot and

the swarm state at the time of failure. The most severe failure is the loss of the

current root robot and results in an unrecoverable state. The loss of other robots

is mitigated by the periodic reconfiguration of the logical tree. Special care should

therefore be paid to safeguard the root robot.

Finally, multi-robot simulations could be extended to include more sophisticated

networking models. This would reduce the gap between practical networked robotic

systems and simulated systems. To the best of our knowledge, networking libraries

are not directly available in multi-robot simulators. Some work has been proposed

to interface network simulators and multi-robot simulators. Kudelski et al. [56]

proposed a framework to interface ARGoS and ns3. This could be used to test a

particular hardware implementation of our algorithms.

40

Part II

Organizing Communication

41

Chapter 4

Distributed Data Sharing

4.1 Introduction

Recent work studies the integration of multi-robot systems with centralized compu-

tation platforms, such as databases or cloud computing systems [57]. This approach

enables one to aggregate information in a central location and perform efficient map

merging, task allocation, and global state estimation – in other words, combining

data storage with computational capabilities. This approach is particularly effec-

tive in indoor environments, such as warehouses, production chains, and hospitals,

in which communication with a central system can be expected to be reliable.

However, many applications are not easily amenable to this approach. Mapping

in remote locations, space applications, and disaster recovery are examples in which

access to a centralized infrastructure is problematic, limited, or even impossible.

In these applications, rather than envisioning a multi-robot system as part of a

larger infrastructure, it would be desirable for it to be the infrastructure. These

applications also entail the collection of large amounts of data, whose storage might

exceed the capacity of any individual robot.

42

As a step in this direction, we study the realization of a decentralized data

structure for storing, managing, and performing computation with shared data. We

make three basic assumptions:

• Every robot devotes a quota of memory and bandwidth to storing and routing

data. The amount of memory can change across robots;

• The amount of data that the robots must store is larger than the memory

capacity of any individual robot;

• The network topology is dynamic due to robot motion.

Given these assumptions, we study how to distribute the data across the swarm.

In designing a solution, we realized that in many applications certain features of the

data play an important role for mission success. For example, mission-critical data

should be stored in well-connected robots—in case of a temporary disconnection this

data would be as widely available as possible. Analogously, the physical location of

the data might suggest that certain robots are more suitable for storage than others.

The rest of this chapter is organized as follows. In Section 4.2 we discuss related

work. The design of our data structure is presented in Section 4.4. We report the

results of our performance evaluation in Section 4.5, and conclude the chapter in

Section 4.6.

4.2 Related Work

4.2.1 Peer-to-Peer Networks

In peer-to-peer networks, common implementations of data sharing involve Dis-

tributed Hash Tables (DHTs). DHTs couple a distributed key partitioning algorithm

43

and a structured overlay network to provide a self-organized data storage service.

Information is abstracted in the form of tuples which are (key, value) pairs. The

fundamental problem is to decide how to distribute tuples between nodes for storage.

The key partitioning algorithm assigns ownership of a set of keys to each node in the

network. The overlay network imposes a routing structure that makes for efficient

search across the nodes. Comparative surveys [58],[59] highlight the main features

of these protocols. The Content-Addressable Network (CAN) protocol partitions

the key space by splitting a virtual toroidal space into zones. CAN maps tuples to

points owned by nodes in the virtual space using a uniform hash function [60]. In

the Chord [61], Pastry [62], and Tapestry [63] protocols, nodes determine NodeIDs

according to the structure of the desired overlay network. Tuples are then addressed

directly to NodeIDs or partial NodeIDs. These distributed data structures provide

self-organizing, scalable and addressable storage. However, node additions and re-

movals are costly as the topology needs to be maintained through reorganization.

Furthermore, they can cause local network failures. Because they form relations

between nodes randomly, unstructured overlay networks such as Gnutella and Bit-

Torrent [64] provide alternatives when the network participant turnover is high.

These protocols offer robustness to node removals at the cost of increased degree of

centralization or loss of guarantees when locating data.

In the above mentioned protocols, the selection of neighboring nodes in the over-

lay network lacks physical grounding. This means that neighbors in the network

could be far away from each other. Since routing information over longer geograph-

ical distances increases energy consumption and latency, there has been an effort

to incorporate node location into overlay networks. Three main trends exist within

this body of research: (1) Geographic layout, which constructs the overlay network

so that neighbors are close in the physical space [65], [66], [67], [68]; (2) Proxim-

44

ity routing, which considers node proximity while routing in the existing overlay

network [69]; (3) Proximity neighbor selection, which weighs in proximity between

neighbors when constructing the overlay network [70]. These methods add a notion

of node locality. However, the network topology only changes to accommodate node

additions and removals but not motion. Therefore, they fail to capture the inherent

dynamicity of robotic systems.

4.2.2 Mobile Ad-Hoc Networks

There is a vast body of research in Mobile Ad-Hoc Networks (MANETs) that seeks

to address communication between mobile interconnected devices. Some sensor

networks have motion and fall in that category. One trend in those systems has

been to use naming and data-centric routing and storage. This means that a name

is associated to given data and that name determines to which node the data is

addressed [71]. Similarly to swarm systems, the main features of sensor networks are

that they are limited in energy, memory and computational power. Sensor networks

perform distributed data processing and storage. However, the goal is to eventually

offload the processed data to a base station. Furthermore, sensors typically do not

act on the environment or perform cooperative and autonomous decision-making.

4.2.3 Vehicular Ad Hoc Networks

Vehicular Ad Hoc Networks (VANETs) are systems of interconnected cars and road

stations. Different types of routing protocols have been studied within that field,

they can be divided into: proactive routing, reactive routing and position-based

routing which depends on beaconing and forwarding [72], [25], [24]. These systems

share some similarities with swarms but differ in that they have specific topologies

and mobility patterns. Typically, cars in the back make decisions based on cars up

45

front. The lanes and roads are narrow so the number of direct neighbors is small.

4.2.4 Multi-Robot Networks

Several papers compare and assess the use of existing databases in multi-robot ap-

plications [73], [74] and [75]. These comparisons reveal that most existing databases

rely on a central server. An exception is the work of Sun et al. [76], who adapted

Distributed Heterogeneous Hash Tables and position-based routing to propose a

solution for task allocation in a warehouse setting.

4.2.5 Swarm Networks

In the context of swarm robotics, Pinciroli et al. proposed a distributed tuple space

called virtual stigmergy [77] that copes with frequent topology changes. In this ap-

proach, each robot maintains a local time-stamped copy of the data which is only

accessed upon read and write operations. This mechanism works well with node mo-

bility and limited bandwidth but it leads to full data duplication. This means that

the collective memory of the system is under-utilized. The SOUL file sharing pro-

tocol [78] builds on virtual stigmergy and unstructured overlay networks to enable

sharing of larger-size data in the form of (key, blob) pairs. SOUL involves lo-

cally storing blob meta-data on each node and splitting blobs into datagrams across

different nodes. This decomposition uses a bidding mechanisms that minimize the

reconstruction cost at so-called processor nodes. This method addresses the prob-

lem of managing data files with a focus on how to split, distribute and recombine

them. Memory usage is improved but meta-data is still fully duplicated across nodes

for each of the files. Various update and bidding processes increase latency in the

network.

46

4.3 Problem Setup and Challenges

In this section, we describe the fundamental assumptions imposed both on the multi-

robot system and on the nature of the events to record in the physical environment.

We proceed by describing challenges of the distributed storage problem in this con-

text.

4.3.1 Ad-hoc Robotic Network

We consider an autonomous and decentralized system of N robots which act as

both the infrastructure for storing information and sole users of this information.

We define the system across the following features:

Communication Modalities We assume that the robots have the ability to

exchange data within a communication range C. This implies the existence of an

ad-hoc network with each robot acting as a node. We further assume that robot

communication is limited to gossiping, i.e., broadcasting messages to all neighbors

within C. Because we also desire to route some messages from one robot to another

using the point-to-point communication modality, we assume that the robots have

a constant unique identifier i ∈ {1, . . . , N} and a variable node identifier δi made

known to their neighbors. The knowledge of i singles out a specific robot, while δi

enables the selection of a suitable storage node for a specific tuple.

Finite Resources We impose a realistic finite bandwidth on outgoing messages.

We also limit the memory capacity Mi of each robot allotted for the self-organizing

data management process. Variable mi(t) records the amount of memory used by

robot i at a given time.

47

Dynamic Topology The robots are moving according to a logic defined by the

developer. Robot motion follows linear dynamics and has a limited speed. The

number of neighbors ngbrsi(t) of a robot changes over time.

4.3.2 Inputs

We consider inputs to the data structure to stem from events which have a position

x ∈ Rd and happen at a time t ∈ N. Such events can be, e.g., records of a

physical phenomenon sampled at a particular time and place, records of an internal

robot state, or records of swarm-wide state. To implement a data structure in which

robots can retrieve and update tuples encoding some events, each specific tuple needs

a unique identifier τ meaningful to all network nodes. In particular, for updates,

tuples need to have a notion of version. For convenience, we achieve versioning by

time-stamping tuples with a global time. Distributed synchronization algorithms

such as vector clocks [79] can be used to implement this aspect.

4.4 Methodology

4.4.1 Overall Architecture

We describe our design following the structure depicted in Figure 6.2. SwarmMesh

provides algorithms across three levels of abstraction.

User-level querying

As stated in Section 4.1, robots are at the same time the networking infrastruc-

ture and users of the data stored by the network. As a user, a robot can execute

different querying commands on the data structure. These operations are meant

48

Figure 4.1: Overall architecture.

to enable modifying and retrieving information stored globally as required by the

robot behavior. This behavior is defined by the developer and independent from

SwarmMesh.

Queried data propagation

Another layer of SwarmMesh handles the dissemination of user read and write

queries throughout the data structure. Read queries are flooded across the net-

work. This type of query requires replies from certain nodes to be routed back

to the robot emitting the query. We route write operations to a suitable node for

storage in a point-to-point fashion.

Self-organized data management

The bottom layer determines how the tuples get distributed across nodes. It also

ensures a certain degree of robustness by creating inactive replicas in other nodes in

a controlled way. The main design intuitions driving the data distribution are that:

(1) some events/tuples are more important than others (hierarchy in data hashing);

49

(2) some nodes are better suited to hold more valuable tuples than others (hierarchy

in key-space partitioning); (3) the hierarchy of nodes changes very often and should

be updated based on local information only.

4.4.2 User-level Querying

A robot user can perform the following operations:

• put(k1,v): writes a tuple into the data structure. It performs an erase(k)

to remove any potential outdated version of the tuple and a store(k,v) of

the new tuple.

• store(k,v): assigns a tuple to a particular node in the data structure.

• erase(k): removes a tuple from the data structure.

• get(k,∆): returns all the values corresponding to keys ∈ [k −∆; k + ∆].

• get(x,y,r): returns all the values for tuples located within a radius r of the

point (x, y) expressed in a global reference frame. To use this feature, we need

the added assumption of a global reference frame and the ability to locate

events in this reference frame.

Robots can also perform in-network computation:

• count(k,∆) or count(x,y,r): returns the number of tuples with keys ∈

[k −∆; k + ∆] or located within a radius r of the point (x, y).

• sum(k,∆) and sum(x,y,r): returns the sum of values corresponding to keys

∈ [k −∆; k + ∆] or located within a radius r of the point (x, y).
1The key argument k has an uniquely identifying part τ and a content-dependent part (or hash)

ρτ .

50

• average(k,∆) or average(x,y,r): returns the result of the corresponding

count() and sum() operations as a pair.

• min(x,y,r) or min(k,∆): returns the minimum value in the associated spatial

range or key range.

• max(x,y,r) or max(k,∆): returns the maximum value in the associated spa-

tial range or key range.

As explained in Section 4.3.2, a write operation should be the result of some local

information processing performed by robots in the vicinity of an event. Existing

methods in sensornets can be applied to locally synthesize low-level sensor readings

into a result describing a higher level event such as source detection [80].

In our implementation, we consider an event to be a meaningful low-level sensor

reading. In order to trigger a single data structure write in the vicinity of the event,

we locally elect a leader to perform a put(k,v) operation. The election logic can

be redefined by the developer, although the specifics of this aspect are beyond the

scope of this contribution.

The return values of the count(), sum() and average() operations percolate

across nodes. The user robot which emitted the initial query must combine the

intermediate return values into the final result. Monotonic (i.e., commutative and

associative) operations such as min() and max() do not require combining interme-

diate results.

The performance of spatial queries, i.e., operations with arguments (x, y, r), and

that of queries by key, i.e., operations with arguments (k,∆), depends heavily on the

way we distribute the data in the network. Our approach is meant to be modular

and we present two possible data hashing functions in Section 4.4.4.

51

Figure 4.2: Black dots show locations of events previously written into the data
structure. Queries of the type get(x,y,r) are drawn with black circles representing
the area covered. Queries of type get(k, ∆ = 0) are represented by colored disks
under the query source robot; the color maps to a specific key.

4.4.3 Queried Data Propagation

Read-operation flooding

Queries that aim to retrieve data from the data structure are flooded to all nodes.

Each robot emitting a read query computes the query’s unique identifier by con-

catenating the value of its query counter and its robot unique identifier.

Hop gradient

While flooding the network with a read query, we opportunistically create a gradient

to the source of the query. Upon reception, every robot increments a hop counter

included in the query message and broadcasts it further along. For each received

request, the robot stores the query unique identifier and hop count in a circular

buffer.

52

Reply gradient routing

The hop gradient gives us a convenient way to route replies back to the source node

by forwarding replies from nodes with a higher or equal hop count. For this, we

rely on the assumption that the motion of the robots preserve a gradient path to

the source for long enough, which is a realistic assumption in most settings when

comparing motion speed and information propagation speed.

Write-operation routing

When a robot writes the result of some local information processing to the data

structure, the tuple may be routed to a different robot for storage based on its key.

This algorithm is described in Section 4.4.4.

4.4.4 Self-organizing Data Management

Data Hashing

When writing a tuple using put(k,v), the robot must compute the key k. In our

protocol, a key should be in the format kτ = (τ, ρτ) where τ is a tuple unique

identifier and ρτ is a value that maps to one or multiple nodes which can store the

tuple.

The robot assigns τ by concatenating its robot unique identifier and the count

of tuples it has written into the data structure. Each field has a set number of digits

so that every τ is unique. As stated previously, our design considers that events

vary in importance and we use this property to distribute them across nodes.

Read queries described in Section 4.4.2 can either use k = ρτ or k = (τ, ρτ) for

tuple addressing. Queries for ρτ can yield multiple tuples while queries in (τ, ρτ)

relate to a specific tuple.

53

The robot computes ρτ using a function mapping a characteristic of the event

to its relative importance. We select the function such that the higher ρτ , the more

valuable the piece of information. We propose two hashing functions:

• Category-based: A robot can register different types of events. For example, it

can mean that the robot has several different on-board sensors and determines

the event type by the triggered sensor. We use a ranking function RT (sτ) that

assigns higher values to event types that we consider most important:

hC : typeτ 7→ ρτ = RT (typeτ)

.

Figure 4.3: Category-based hashing.

• Spatial: We decide that in a global reference, tuples further away from the

origin are the most desirable because they are difficult to discover by robots.

This idea can be generalized to specific areas in any reference frame: hSP :

(xτ , yτ) 7→ ρτ =
√
x2τ + y2τ .

54

Key Partitioning

Similarly to other distributed data structures such as DHTs, nodes partition the key

space to decide which one of them needs to hold tuples corresponding to specific

keys.

As stated in Section 4.4.1, we use the idea that some nodes are superior than

others. Our intuition is that a robot with more neighbors ngbrsi is less likely to

get disconnected from the swarm and is better positioned to dispatch tuples upon

query. A second insight is that the more free data memory mi(t) a robot has, the

less likely it is to overflow its memory and discard information. We also desire to

have instantaneous self-organized partitioning completely based on local informa-

tion. Therefore, we chose to make nodes assign themselves a node identifier δi as

follows:

δi(t) =


mi(t) · ngbrsi(t) if ngbrsi(t) > 0

1 otherwise

A node with node identifier δi can hold a tuple with key (τ, ρτ) if δi(t) > ρτ . We

refer to this condition as (H) in the rest of this text. The free memory variable is in

number of tuples. In order to store tuples in the data structure, we should match

the frequency distributions of data hashes and node identifiers, i.e., there should be

nodes with unique identifiers at least high enough to hold the hashed tuples. This

has implication on the design of the hashing functions. They should map to values

smaller than maxi(Mi) · (N − 1) and spread the data across likely node identifiers.

Key-based Routing

If a robot holds one or more tuples not satisfying (H), it places them in a routing

queue. It then tries to send them starting with the highest ρτ to a robot with a high

55

Figure 4.4: Key-space partitioning.

enough node identifier. If there are candidates satisfying (H) to receive the tuple,

the sender picks one at random. If none of the neighbors satisfy the condition, the

robot sends it to the neighbor of highest δi. We impose a limit on the memory

capacity Mi and divide it into routing and storage capacities. In case of overloads

on Mi, the robot discards the least important tuple, i.e., with lowest ρτ .

Address Optimization

When a robot has an empty routing queue and it stores a tuple with ρτ closer to

the node identifier of a candidate neighbor, we let the robot evict the tuple to the

corresponding neighbor. This is an optimization to ensure efficient access to a tuple

by key. We further noticed that requiring at least a half full storage memory helps

balancing the load between nodes.

Structured Replication

To ensure robustness to node failures, we make copies in neighboring nodes using

a source-replica approach. The source is the robot holding the original tuple. The

source picks a replica to hold an inactive copy of the tuple. Robots do not return

56

Figure 4.5: Address optimization. Tuples tend to be grouped by color. Each color
represents a different category of event.

inactive tuple copies upon queries; this ensures consistency. Source and replica

exchange a heartbeat signal. If the source fails to receive the heartbeat signal

within a time-out duration, it picks another replica. The source can also send a kill

signal to cancel the inactive copy. The source cancels the copy if the replica gets

outside of a safe radius of communication (� C) or if it decides to route the active

tuple to another robot. If a replica fails to receive the heartbeat within the time-out

duration from the source, it activates the tuple copy.

Figure 4.6: Structured replication.

57

4.5 Evaluation

4.5.1 Metrics and Parameters

We evaluated different aspects of our approach such as scalability, memory-related

performance, and routing protocol efficiency.

To study scalability, we performed our simulated experiments with different num-

bers of robot inside an arena sized to imposed different robot densities (see Table

4.1). These densities imply that the ad-hoc network stays often connected even

with diffuse robot motion. This enables us to study a system facing intermittent

disconnections.

In hash tables, the load factor is the number of data items over the number of

memory slots (buckets). This parameter indicates the load of the data structure

and is typically used to decide when to partition of the memory into an increased

number of buckets. For our distributed and self-organized approach, we define the

load factor as lf = number of events/(N · S), where S is the storage capacity. The

memory capacity M includes both storage and routing capacities.

To understand the performance of the key-based routing algorithm, we track the

number of hops and time steps for a tuple to be routed to a suitable node for storage

and upon query. We implemented messaging with a queue and we imposed a limit

on the bandwidth for outgoing messages. The message format is displayed in figure

4.7. The robot fills the message buffer progressively and sends the partial message

if the limit is exceeded. It attempts to send the remainder by type at the next time

step. We only send one tuple at a time.

To study availability, we considered the fraction of tuples received over the ex-

pected tuples for a get() query. We checked for consistency by confirming that

active copies of tuples were all unique.

58

Figure 4.7: Message format.

Table 4.1: Simulation parameters.

Parameter Value
Number of Robots N {10, 50, 100} robots
Communication range C 2 m
Memory capacity Mi 20 tuples ∀ i
Storage capacity S 10 tuples
Routing capacity R 10 tuples
Time step 0.1 s
Bandwidth 5.7 kB/s
Robot density {0.6, 1} robot/m2

Robot speed {0, 5} cm/s
Load factor {0.6, 0.7, 0.8, 0.9, 1}
Event sensing range 1 m
Event types 12
Events generation rate 5 events/s
Query generation rate 1 query/s

4.5.2 Simulated Experiments

We tested our system using the ARGoS multi-robot simulator [55]. We ran simula-

tions with and without robot motion. We picked a simple diffusion motion with a

maximum forward speed of 5 cm/s. For the purpose of testing all available features,

robots are equipped with a range and bearing sensor (C = 2 m), a GPS and a sen-

sor detecting colored spheres. We disabled line-of-sight obstructions. To materialize

events, we put colored spheres in the environment with each color representing a

category of event. Events were generated in time according to a Poisson distribution

and placed in space according to a uniform distribution.

Memory-Related Performance

In our simulations, we allocate limited memory and bandwidth to the data sharing

process. Upon receiving tuples that it can store, a robot progressively fills its storage

memory. The cap on bandwidth combined with the decision to route one tuple per

59

Table 4.2: Tuple retention for N = 50 across load factors.

Load Factor .6 .7 .8 .9 1

category
hashing

static
topology

min 1 1 1 .996 .95
mean 1 1 1 .999 .983
max 1 1 1 1 1

dynamic
topology

min 1 1 1 .996 .986
mean 1 1 1 .999 .992
max 1 1 1 1 1

spatial
hashing

static
topology

min .993 .932 .973 .909 .758
mean .999 .99 .987 .948 .899
max 1 1 1 .98 .954

dynamic
topology

min .997 .994 .985 .984 .94
mean .999 .999 .996 .993 .985
max 1 1 1 1 .998

time step results in some tuples being temporarily placed in a routing memory. The

goal is to keep the storage memory under a value S and the routing memory under

a value R. However, we allow either memory to temporarily cross that threshold

provided that the combined memory usage stays under the memory capacity Mi.

Any memory overflow leads to robots discarding tuples of lowest rank. To assess

the ability to retain large amounts of information in the data structure, we generate

different numbers of inputs corresponding to load factors between 0.6 and 1.0. We

repeated simulations with and without robot motion and using either the hC or hSP

hash function. Tables 4.2 and 4.3 show that the fraction of retained tuples is almost

always equal to 1, even with high load factors. This indicates that the collective

memory is properly utilized with robots sharing the data load. In comparison, an

approach that uses full duplication and the same individual memory constraints

would retain N times less tuples (excluding the routing memory).

In order to evaluate key partitioning, we show histograms of node identifiers and

data hashes across all simulations with 100 robots in Figure 4.8. In Figure 4.8a,

we use the category-based hash function hC with a mapping of 12 types of events

to values in {1, 11, 21, . . . , 121}. We generated the types of events uniformly in the

simulations which naturally leads to the white dashed bar graphs in Figure 4.8a.

Node identifiers are the product of the current node degree in the communication

60

Table 4.3: Tuple retention for N = 100 across load factors.

Load Factor .6 .7 .8 .9

category
hashing

static
topology

min 1 1 1 .997
mean 1 1 1 .999
max 1 1 1 1

dynamic
topology

min 1 1 .991 .977
mean 1 1 .999 .996
max 1 1 1 1

spatial
hashing

static
topology

min .955 .912 .841 .72
mean .982 .97 .927 .866
max 1 .999 .989 .977

dynamic
topology

min .995 .993 .994 .972
mean .999 .999 .998 .997
max 1 1 1 1

graph and the node’s remaining storage memory. Therefore, the node identifier

distribution depends on a combination of communication graph topology and load

allocation. Both situations represented for the category-based have the node iden-

tifier distribution to the right of the data hashes. In the upper graph, robots are

static and their spatial coordinates are sampled in uniform distributions. In the

bottom graph, robots diffuse in an arena sized to impose certain robot densities

(see Table 4.1). In Figure 4.8b, we use the spatial hash function hSP and we show

a situation where events are uniformly generated up to 8m from the origin of the

global reference frame. The function hSP maps the distance in cm to ρτ which yields

the Gaussian distribution represented by the white bar graphs. In both the static

and moving case, the node identifier distribution is to the left of the data keys dis-

tribution. This means that, given the key partitioning condition (H), suitable nodes

for storing tuples are scarce or non-existent. As evidenced by Table 4.3, we were

still able to retain tuples with high load factors even in this situation. The reason

is that robots shift the load from their storage memory to their routing memory.

This is apparent in Figure 4.8c in which the number of tuples in storage memory

normalized by the total number of tuples shows the difference between the use of

hC and hSP . With the latter, most tuples remain in routing and bounce between

robots with more free memory. This is not a desirable solution as it increases the

61

(a) Node identifiers δi dis-
tribution in category-based
hashing.

(b) Node identifiers δi distri-
bution in spatial hashing.

(c) Ratio of stored to routed
tuples.

Figure 4.8: Performance of key partitioning with N = 100 robots.

communication overhead. However, it demonstrates a certain tolerance and seam-

less adaptation to inappropriate node partitioning. In practice, with a guess of the

environment scale and typical distances, hSP can be scaled so as to provide mapping

to a range matching the node identifiers.

Routing Performance

In our approach, routing mechanisms depend on the type of query. A write operation

put() triggers a flooded erase() operation and a store() propagated through key-

based routing (see Section 4.4.4). The timing for storing a tuple depends on how

difficult it is to reach a suitable node given the tuple key. Figure 4.9 shows the

median routing time with 10 and 100 robots for the store() operation. The time

tends to increase with the key indicating that lower range keys find a match faster.

Read operations of any type generate a message flooded to all robots. Replies

come back through gradient routing (see Section 4.4.3). Figure 4.9 reports the

median duration between a robot emitting a spatial get() query and receiving the

last reply to the query. This duration tends to increase with the network size and

with the radius of the query.

62

1 11 21 31 41 51 61 71 81 91 101 111
Data Hash

0

2

4

6

8

10

N
u

m
b

e
r

o
f
R

o
u

ti
n

g
T

im
e

S
te

p
s

by cat. - static

by cat.- diffusion

spatial - static

spatial - diffusion

(a) N = 10.

1 11 21 31 41 51 61 71 81 91 101 111
Data Hash

0

2

4

6

8

10

N
u

m
b

e
r

o
f
R

o
u

ti
n

g
T

im
e

S
te

p
s

by cat. - static

by cat.- diffusion

spatial - static

spatial - diffusion

(b) N = 100.

-0 18 35 53 71 88 106 124 141
Radius (cm)

0

1

2

3

4

5

6

7

T
im

e
to

re
ce

iv
e

re
p

lie
s

by cat. - static

by cat.- diffusion

spatial - static

spatial - diffusion

(c) N = 10.

− 0 18 35 53 71 88 106 124 141
Radius (cm)

0

5

10

15

T
im

e
 t

o
 r

e
c
e

i
e

 r
e

p
li
e

s
by cat . - stat ic

by cat .- diffusion

spat ial - stat ic

spat ial - diffusion

(d) N = 100.

Figure 4.9: Number of time steps (100ms each) for the completion of store(k, v)
operations (a), (b) and get(x, y, r) queries (c), (d).

Message Load

The outgoing bandwidth was set to 570 bytes per time step for each robot, with a

time step covering 100ms. However, this allowance was rarely needed. Figure 4.10

shows the median bandwidth usage across simulations over time, which remains well

below the limit.

Delivery Rate

We recorded the delivery rate of replies, i.e. the fraction of received replies over the

number of expected replies. As can be seen in Figure 4.11, the delivery rate remains

close to 1.0 with very few outliers across configurations.

63

0 100 200 300 400 500 600 700 800
Tim e step

0

20

40

60

80

100

120

140

160

M
e

s
s
a

g
e

 l
o

a
d

sent

by cat . - stat ic

by cat .- diffusion

(a) N = 10

0 1000 2000 3000 4000
Tim e step

0

50

100

150

M
e

s
s
a

g
e

 l
o

a
d

sent

by cat . - stat ic

by cat .- diffusion

(b) N = 50

Figure 4.10: Bandwidth usage in bytes over time. Time is measured in time steps
(100ms).

−0 17 34 51 68 84 101 118 135
Radius (cm)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n
 o
f
re
ce
iv
e
d
 r
e
p
lie
s

Availability

by cat. - static
by cat.- diffusion
spatial - static
spatial - diffusion

(a) N = 10

−0 18 35 53 71 88 106 124 141
Radius (cm)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n
 o
f
re
ce
iv
e
d
 r
e
p
lie
s

Availability

by cat. - static
by cat.- diffusion
spatial - static
spatial - diffusion

(b) N = 100

Figure 4.11: Delivery rate of spatial queries.

4.6 Summary

We presented SwarmMesh, a distributed data structure for low-memory, low-bandwidth,

highly mobile multi-robot systems. The main insight in the design of SwarmMesh is

that the features that characterize the data items are key in deciding where to store

the items. Our design is modular, in that the logic that governs data distribution can

be chosen by the user. We proposed two methods of distributing storage responsi-

bility, one based on the category of the data items (for applications in which certain

data types are more important than others), and another based on the position of

each data item. Our evaluation shows that SwarmMesh displays near-perfect levels

64

of data retention even for extremely high load factors, adaptively switching from

static storage in the robot memory when load factors are low, to dynamic storage

through frequent data exchange when load factors are severely high.

4.7 Open Problems

Future work involves using SwarmMesh for applications such as task allocation in

dynamic environments and collaborative mapping. For the latter, a question that

remains open is how to incorporate the size of the data items as a factor in the data

redistribution logic.

Another possible extension of this work includes managing large data items that

need to be split because of bandwidth limitations. This involves finding strategies for

dividing and re-combining data packets in order to route this data to the destination

node.

Finally, our approach lends itself to privacy and security considerations, whereby

the decision on where to store certain data depends on the reputation of the robots [81].

65

Part III

Communication in Distributed

Applications

66

Chapter 5

Data-Driven Federated Learning

5.1 Introduction

Federated Learning (FL) [82] is a recent approach to distributed machine learning

that takes advantage of distributed data sets by partitioning learning on several ma-

chines. Data sets are partitioned either for excessive size, or because of the necessity

to ensure data privacy among different data sources. In FL, individual clients col-

lect data and calculate a local model update that is subsequently aggregated into a

shared model by a dedicated server.

In a multi-robot setting, FL is a natural approach because it takes advantage of

the inherently local fashion in which robots collect and process data. However, a

practical approach to realizing FL in this setting is currently missing [28].

In this chapter, we conduct a study of the design space of FL solutions in a

multi-robot setting. We compare two variants. In the first, inspired by the original

FL idea, a server aggregates the model updates calculated by the robots. In the

second, the server is replaced by a shared data structure.

In both cases, a central problem is how to synchronize the learning process.

67

Figure 5.1: Federated Learning for collective trajectory forecasting in a multi-robot
setting.

Data is typically collected at diverse rates across a team of robots. This affects the

frequency at which robots contribute to the update of the shared model. To cope

with this issue, we propose a data-driven approach in which only the robots that

have collected sufficient data calculate a model update and share it with the rest

of the system. Being dependent on the data flow, we named our fully distributed

approach Flow-FL.

We envision our approach to be effective in scenarios in which data varies across

both time and space. To validate this insight, we consider multi-robot navigation in

densely occupied environments. In these environments, the intent of other moving

entities may be unknown, and the density and motion patterns might vary over

time. Recent work focuses on the creation of machine learning approaches to model

motion trajectories that enable predictive navigation [83]. In our approach, the

robots build a shared trajectory model using locally collected data.

The main contributions of this chapter are:

• We conduct an exploration of the design space of FL in robotics settings,

comparing a variant in which models are aggregated on the server with a

variant in which data is aggregated in a serverless, shared data structure;

68

• We apply the proposed approaches to a trajectory prediction problem and

make our open-source federated dataset available for the research community;

• Using a centralized implementation as a baseline, we study the effects of stag-

gered online data collection, variations in dataflow, number of participating

robots, and time delays introduced by the decentralization of the framework

in a multi-robot setting.

The chapter is organized as follows. We formalize the problem in Section 5.3.

The design of our framework is presented in Section 5.4. We report the results of

our performance evaluation in Section 5.5, and conclude the paper in Section 5.6.

5.2 Related Work

Early attempts at distributed machine learning were based on centrally stored

datasets which were processed by multiple clients [84]. In these approaches, data

partitioning occurs through assignment mechanisms that promote desirable features

such as statistical independence and load balancing across the clients. Model up-

dates are calculated on data that is physically copied from the server to the clients.

Other early attempts applied local learning in settings in which naturally distributed

data displayed analogous properties such as statistical independence and load bal-

ancing [85].

The inception of FL was motivated by the observation that data collected in

mobile devices is often not statistically independent nor necessarily balanced across

clients. In addition, copying data is often undesirable due to privacy concerns.

The seminal paper on FL by McMahan et al. [82] proposes FedAvg, which

demonstrates the efficiency of averaging local model updates on a server when clients

deal with non i.i.d. data and experience intermittent communication.

69

An important challenge in the implementation of FL is communication with the

server. Particularly in distributed robotics, the presence of a server introduces the

potential for a single point of failure that could endanger the success of the learning

process. Therefore, decentralized approaches have surfaced which replace the server

with a distributed mechanism. Notable works include using average consensus [86]

and Bayesian methods [87, 88], which trade convergence time with resilience to

individual failures. The approach of George et al. [89] offers convergence speed

comparable to a server-based approach at the cost of assuming the communication

topology of the clients to be fixed and predetermined.

Another important challenge is orchestrating the phases of local model update

and global merging of the shared model. In traditional FL, the server takes care of

this task by sending messages to the clients [82]. In a decentralized setting, Savazzi

et al. [86] assume intermittent access to a centralized server and Lalitha et al. [87, 88]

allow for asynchronous communication under strong connectivity constraints.

A final key problem is selecting the clients that contribute to the model update at

each learning iteration. McMahan et al.’s research [82] reveals that the convergence

performance of FL depends on the significance of the client updates. The significance

is related to the quantity and age of the data that was used to calculate an update.

Ideally, an update should be based on a large enough amount of recent data.

A recent trend in decentralizing FL is the use of conflict-free replicated data

structures (CRDT) [90]. BAFFLE [91] is an approach based on a blockchain which

offers resilience to intermittent communication and the possibility to avoid global

consensus at the cost of increased computational cost and local storage requirements.

Our work furthers this line of research by using a lightweight CRDT called virtual

stigmergy [77]. In Flow-FL, this structure is used both to schedule the learning

iterations, and to store and merge the shared model.

70

(a) Centralized Machine
Learning.

(b) Federated Learning. (c) Distributed Federated
Learning.

Figure 5.2: Learning frameworks.

5.3 Preliminaries

In this section we formalize the federated learning problem and justify our applica-

tion scenario.

5.3.1 Federated Learning

In machine learning, the objective function is usually of the form:

min
Θ

L(f(x; Θ), y) :=
1

n

n∑
i=1

L(f(x(i); Θ), y(i)) (5.1)

where the aim is to train a model f(·) with weights Θ, mapping an input x ∈ RI

to an output y ∈ RO. Using a training data set of n samples (x, y) ∈ RI×O, we can

adjust the weights of the model to minimize a loss function L(·) that expresses the

error between the inferred output ŷ and the true output y.

Federated Learning. FL [82] is an optimization problem that considers a

modified version of Equation 5.1 where the training examples are now stored across

K clients and a global server attempts to minimize a loss function obtained from

aggregated local weights (Figure 5.2b). In our case, clients refer to robots that collect

data. The global function that is minimized is the summation of the local losses

71

obtained on the k-th robot, Lk(Θ), weighted by the number of samples observed nk

over the total number of samples n in the dataset:

min
Θ

L(Θ) = min
Θ

K∑
k=1

nk
n
× Lk(Θ), (5.2)

The local loss of the robot Lk(Θ) is similar to that in the traditional machine

learning case,

Lk(Θ) =
1

nk

nk∑
h=1

`(xh, yh; Θ) (5.3)

where `(xh, yh; Θ) is the loss of the predicted model over the nk samples (xh, yh)

observed by the robot k, using global model parameters Θ.

Assumptions. FL is typically based on a number of key assumptions on the

data: (i) It is non-i.i.d. (independent and identically distributed); (ii) It is stored

across several clients; and (iii) It is partitioned in an imbalanced manner, resulting in

clients that handle more data than others. In addition, communication among clients

is assumed to be intermittent. In traditional FL the presence of a server ensures

synchronization, however serverless settings are also possible. In this chapter, we

maintain all of the above assumptions. In particular, we study the effect that the

presence or absence of a server has on the performance of the learning process.

5.3.2 Application: Trajectory Forecasting

In this work we consider trajectory prediction as an application example of Flow-

FL. Trajectory forecasting is typically conducted with pedestrian data. However,

existing literature on trajectory forecasting [92, 93, 94] focuses on pedestrian data

collected from a single point of view which is usually an overhead camera. As such,

the available datasets are not easily amenable to an FL setting. To the best of

72

our knowledge, there are no federated datasets of trajectories collected by multi-

ple robots. For this reason, we generated a novel federated dataset from artificial

navigation data in four different multi-robot settings (see Section 5.4.2). In future

work, we will use real robots to collect motion data of real dynamic obstacles such

as pedestrians.

Trajectory forecasting is a compelling problem for machine learning applications.

This problem is about creating a model that allows robots to predict the trajectories

of dynamic obstacles nearby within a short time horizon. Research has shown that

navigation is significantly more efficient when using a machine learning model than

with purely reactive methods, such as ORCA and RVO [95, 96]. While numerous

neural networks have been benchmarked [92], a simple Long Short-Term Memory

(LSTM) model [97] has been shown to yield the lowest Average Displacement Error

on the standard datasets. Therefore, we use this model architecture in our evalua-

tion.

5.4 Methodology

5.4.1 System Design

In a traditional FL setting, a server communicates with data-holding clients to en-

able training of a global ML model (see Figure 5.2b). The server does not aggregate

data, as opposed to a fully centralized approach (see Figure 5.2a). However, in

traditional FL, the server has the important roles of: (i) orchestrating learning

rounds periodically by selecting a subset of learners and sending them model pa-

rameters; (ii) aggregating the results of a round of learning into a global model. In

our approach, depicted in Figures 5.2c and 5.3, we replace the central server with

a distributed algorithm. The scheduling of learning rounds is data-driven, and it

73

happens when a sufficient number of robots have collected enough data. To keep the

rounds sequential and distinct, a global state is maintained in a gossip-based shared

memory. Model weights are written to this shared memory at the end of each round.

The aggregation happens in the subsequent round, when robots with enough data

pull the weights from the shared memory to instantiate their local models.

Application scenario. We consider a scenario with K moving robots that

communicate and track each other’s relative positions within a limited range. We

tackle the problem of learning to predict the robot trajectories for a certain time

horizon (see Figure 5.1 for examples of the robot trajectories). In our setup, robots

are moving, collecting data and performing learning concurrently. This is in con-

trast with existing frameworks for multi-robot learning, which require some sort of

synchronicity in switching through these activities. To the best of our knowledge,

this is an item of novelty in our framework. In our setup, the motion behavior is

determined by a pre-programmed controller. We chose well-studied swarm behav-

iors such as flocking [35], foraging [36], and diffusion with obstacle avoidance [34].

The data collected by the robots consists of the spatial coordinates of neighboring

robots expressed in a fixed frame local to the sensing robot. A training sample is

one continuous trajectory recorded for a fixed duration at regular time steps. Each

robot builds its own dataset over time from its local observations.

State machine of the learning framework (Figure 5.3). The operation

of the robots is organized in two tiers. The learning tier runs separately from the

application tier that performs the swarm behavior. The robots start in Idle state.

Each robot has knowledge of the model architecture, but it starts with the same

random weights and no data.

The transition to the first learning round is conditioned by the flow of data.

When a robot collects a certain quota of training samples, it marks itself as ready

74

Figure 5.3: The state transition of the learning tier for the green robot is conditioned
by the data flow of its application tier and a global state tracked in the shared
memory.

in the shared memory. When a sufficient number of robots have marked themselves

ready, we say that a quorum has been reached and the ready robots collectively

transition to the learning round. These robots, the learners, perform local training

on the data they had gathered and forget their samples.

The next transition brings the robots back to the Idle state in the learning tier.

The transition happens after all the learners finish sharing their new ML model

weights with the rest of the swarm. Each learner shares its weights after performing

one training epoch on its samples.

From now on, the transitions out of the Idle state proceed in a data-driven

fashion as the first transition. However, the learning rounds start differently: in this

case, the learners must first retrieve and aggregate the most recent weights from the

shared memory.

Shared memory. The shared memory has two purposes: (i) It holds a global

list of ready robots which is used to synchronize state transitions when the quorum of

ready robots is achieved; and (ii) It stores the updated model weights in a dedicated

global list. We implemented data sharing through Virtual Stigmergy (VS) [77]. VS is

75

a lightweight, distributed tuple space designed to share a collection of (key,value)

pairs. A local Lamport-clock-stamped copy of each tuple is stored on each robot.

This copy is updated upon both read() and write() operations through network

flooding. In this way, while the network topology changes, the data structure is kept

up-to-date.

Transition mechanism. The state transitions are achieved through a barrier

mechanism making use of the VS. We outline the steps for this count-based consensus

protocol in Algorithm 3.1

ML model architecture. The ML model used for the application is a stan-

dard architecture for time series prediction. We use one Long Short-Term Memory

(LSTM) layer [97] with a hidden dimension of 16 without returning sequences, fol-

lowed by a dense layer and Dropout of 0.2 . The network looks at a history of

32 prior (x, y) observations (corresponding to 3.2 s) and directly outputs a predic-

tion for the next 48 time steps (4.8 s). We used a Mean Squared Error (MSE)

loss MSE = 1
N

∑N
i=1(xi − x̃i)2 as a training metric that is then optimized using

RMSProp [98].

ML model aggregation. Similar to the implementation in FedAvg [82] the

learners update the global list with their learned weights after performing a gradient

descent step on local data. During the next time step, the new weights for the

server are the average of all the learned weights on the list weighted by the number

of samples encountered by each learner. McMahan et al. also found that, for large

local epochs, FedAvg can plateau or diverge. They recommend either using fewer

local epochs or decaying the number of local computations over time. We do not

study this aspect, and let the learners perform only a single local epoch per iteration

and flush this data before collecting new data during the next iteration.
1A first implementation was proposed in https://the.swarming.buzz/ICRA2017/barrier/.

76

https://the.swarming.buzz/ICRA2017/barrier/

Algorithm 3 Barrier - robot k, barrier VS βk, neighbors Nk
1: procedure barrier_set
2: initialize barrier βk ← list() for robot k
3: robot state ← barrier_wait
4: activate ON_BARRIER_UPDATE

5: procedure on_barrier_update(Nk)
6: receive {i}i∈Nk

. RX from neighbors
7: if i 6∈ βk then
8: βk ← βk ∪ i
9: send (i) . TX to neighbors
10: procedure barrier_ready(Nk)
11: receive {i}i∈Nk

. RX from neighbors
12: βk ← βk ∪ k
13: if element_count(βk) ≥ threshold then
14: robot state ← next_state
15: send (∆βk) . TX to neighbors

5.4.2 Datasets

To the best of our knowledge, this contribution is the first to provide an open-source

federated dataset of swarm motion with information on the communication graph.

We generated multiple synthetic datasets of swarm motion across four distinct be-

haviors using ARGoS, a realistic physics-based simulator [99].

Data format. Each behavior dataset consists of:

• A trajectory file that records the robot’s id, neighbor id, and position across

time (robot id, neighbor id, t, x, y, z). Each robot records neighbor

trajectories for 50,000 time steps (5,000 s). A trajectory sample, within a

setup, is 100 time steps (10 s) long and is separated from other samples by

an end-of-line character. Each trajectory is expressed in the local reference

frame of the robot at the start of the sample recording. This is a fixed frame

of reference independent of subsequent robot motion.

• A communication graph file, structured as (t, robot id, neighbor id),

77

that logs information about the neighboring robot IDs that are in range at

every time step. This information encodes the communication graph at every

time step. The communication graph file is more complete than the trajectory

file because when recording the trajectory file, we drop interrupted trajecto-

ries.

Parameter setting. The experimental settings are kept consistent across

datasets as shown in Table 5.1. The settings include: (i) the trajectory sampling

period; (ii) additive noise for positional data on each robot neighbor sampled from

a normal distribution; and (iii) wheel actuation noise, also sampled from a normal

distribution. The noise parameters are rounded estimates from realistic samples

taken from real-world Khepera robots. We executed the experiments for swarms

with K = {15, 60} robots to enable the study of the effect of different swarm sizes.

Table 5.1: Experiment settings

Parameter Value
Trajectory duration 10 s
Communication range 2m
Sensing range 2m
Sensing noise nk(t) nk(t) ∼ N (0, 0.01)m
Drive bias ek ek ∼ N (0, 0.0001)m

Behavior types. We evaluate our methodology with four different swarm be-

haviors [100] (see Figure 5.5): (i) Obstacle-avoidance [34] (Figure 5.4 top row) in

a dense environment with uniformly distributed static obstacles; (ii) Foraging [36]

(Figure 5.4 bottom row) for resources in which robots decide whether to explore or

stay in the nest according to energy considerations; (iii) Phototaxis and flocking

based on artificial physics [35], with a light whose position is changed to prevent

stagnation; and (iv) A mixed behavior in which robots perform one of the previ-

ous behaviors depending on their location in the environment. The datasets and

corresponding simulation videos can be found at:

78

https://www.nestlab.net/doku.php/papers:mrs_fl_dataset. Table 5.2 pro-

vides the total number of samples in each dataset as well as statistics about the dis-

tribution of samples between robots. The table reveals diversity across the behaviors

in the number of samples collected, both total and per robot, also considering to-

tal time and 10-minute windows. In particular, the standard deviation shows how

different behaviors result is different levels of imbalance in the number of samples

collected by the robots.

Figure 5.4: Avoidance (top) and foraging (bottom) for K = 15. Left to right:
increased number of displayed samples.

79

https://www.nestlab.net/doku.php/papers:mrs_fl_dataset

(a) Obstacle avoidance (b) Flocking

(c) Foraging (d) Mixed behaviors

Figure 5.5: Swarm behaviors in ARGoS simulator.

80

Table 5.2: Statistics for swarm motion federated datasets.

Dataset Robots Samples Samples/robot Samples/robot
/10 min

Mean Stdev Mean Stdev

Avoidance 15 21,227 1,415 206 169 40
60 216,582 3,610 397 429 74

Flocking 15 49,009 3,267 427 390 78
60 333,111 5,552 436 659 112

Foraging 15 35,854 2,390 46 284 19
60 187,304 3,122 65 371 25

Mixed 15 30,627 2,042 290 242 66
60 174,863 2,914 89 346 29

5.5 Evaluation

5.5.1 Parameters of Interest

Quorum and quota. The main parameters of interest in our empirical study

are the quorum of learners and the quota of data. These parameters condition the

transition to a learning state for a subset of robots at times dictated by the data

collection flow (see Figure 5.3). We set the quorum as a fraction qF of the total

number of robots. We perform our study with datasets from experiments with a

fixed duration of 5,000 s. Quorum and quota determine the total number of learning

rounds in each study configuration as they split the data in time.

Number of robots. We also study the influence of the number of robots by

using 15- and 60-robot datasets. We expect this parameter to act on different aspects

of multi-robot communication and learning as it changes: (i) the total amount

and frequency of data collected, which changes the time between learning rounds

(Section 5.5.3); (ii) the robot communication network size and topology, which

change the latency of the shared data structure and affect the timing of learning

rounds (Section 5.5.3); (iii) the partitioning of federated data across clients, which

81

influences the convergence rate (Section 5.5.2).

Federated datasets. We use multiple federated datasets detailed in Section 5.4.2

with different behaviors (see Figure 5.4). We provide and compare results for these

8 datasets.

Learning hyperparameters. We set the learning hyperparameters for the

local machine learning model as detailed in Section 5.4.1. In terms of standard

FL hyperparameters, we set number of local epochs E to 1. Increasing E reduces

communication overhead at the cost of increased individual computational load.

McMahan et al. [82] provide an empirical study of the effect of this parameter.

They show that high values of E can lead the FL algorithm to diverge. In the

same paper, McMahan et al. also vary the quorum fraction but refer to it as client

fraction. In this chapter, we focus on the effect of controlling the data flow through

qF and quota rather than changing the amount of local computation through E.

Dataset split. To separate our data into training/validation/test samples, we

proceed in the following way: we take 80% (first 4,000 s) of the experiment data

for training and validation and keep the remaining for testing; within a learning

round, each learner splits the data into a set of training samples (the first 80% of

trajectories), and validation samples (the last 20% of trajectories). We verified that

behaviors do not change at the end of the experiment so as to have an appropriate

testing set.

Table 5.3: Evaluation parameters

Parameter Value
Number of robots K {15, 60} robots
Quorum fraction qF {0.2, 0.6}
Quorum qF ·K robots
Quota {20, 60} samples
Local epochs E 1

82

5.5.2 Convergence Analysis

An important aspect of our FL framework is the effect of scheduling rounds according

to quorum and quota on the learning convergence. We want to study the following

aspects empirically across several datasets:

• which (qF , quota) configuration requires the least learning rounds to achieve

convergence. Reducing the number of learning rounds reduces communication

rounds thereby decreasing communication overhead;

• which (qF , quota) configuration requires data spread across the least time steps

to achieve convergence. Reducing the number of steps gives us a final model

earlier on in the experiment;

• which (qF , quota) configuration gives us the best trade-off between the two

above situations.

Varying quorum and quota is effectively re-partitioning the data in time within

the same dataset. With respect to learning, this affects the rate of model updates

as well as the number of participating clients K̄ and the number of local examples

nk used for the update at each round.

We study the effect of (qF , quota) on the federated validation loss L(Θ) from

Equation 5.2. To make the comparison fair with Flow-FL, we implemented a data-

driven FL approach with a server scheduling rounds according to qF and quota,

i.e., starting a round as soon as qF · K robots have a quota of samples. In the

distributed version Flow-FL, the learning rounds are scheduled the same way, but

they occur with a delay after the quorum/quota condition is met. This delay is

due to the latency imposed by the update of the shared data structure. Thus, a

different number of learners may qualify at the same time. To compare convergence

83

in a consistent way, we define the stopping round as the round where the windowed

average of loss changes less than a threshold of 0.0001. The averaging window was

set to 5 rounds.

Discussion. Figure 5.6 shows the federated validation loss curves. We also

show the centralized validation loss as a baseline that uses all the data collected

by the end of the experiment at once. To compare the loss over iterations, we

show epochs for the centralized loss and learning rounds for the federated loss. We

include as many epochs for the baseline as the number of learning rounds in Flow-

FL. Table 5.4 reports the final loss value and stopping points for all the behaviors.

The final loss is similar across configurations, but it tends to increase as the total

number of iterations decreases. With higher (qF , quota), we have fewer learning

rounds because it takes more data to move to the next training round. We also note

fewer oscillations of the learning curve with higher (qF , quota).

Stopping rounds and times. Table 5.4 shows the lowest stopping rounds and

times across configurations in bold:

• We see that, while changing across behaviors, the lowest number of learn-

ing rounds occurs with higher thresholds of (qF , quota) than the minimum

(0.2, 20);

• We get lower numbers of time steps at stopping with lower thresholds for (qF ,

quota). However, the stopping criterion sometimes selected an early stopping

round with some oscillations occurring later in the curve. Those instances are

denoted by an asterisk.

• The best trade-off between number of rounds and time steps is at (qF , quota)

= (0.2, 60).

84

Table 5.4: Convergence data across quorums and quotas for different behaviors
(K = 60).

(qF , quota) (0.2 20) (0.2, 60) (0.6, 20) (0.6, 60)
Flocking
Validation loss C 0.002 0.002 0.002 0.002

FL 0.002 0.001 0.001 0.001
Flow-FL 0.002 0.002 0.002 0.002

Stopping round FL 17 8 16 6
Flow-FL 17 8 13 8

Stopping time(s) FL 134* 157 297 292
Flow-FL 136* 157 247 402

Foraging
Validation loss C 0.011 0.011 0.012 0.016

FL 0.014 0.013 0.017 0.014
Flow-FL 0.012 0.013 0.016 0.015

Stopping round FL 21 7 13 8
Flow-FL 15 10 16 7

Stopping time(s) FL 257 257 448 731
Flow-FL 192 326 562 636

Avoidance
Validation loss C 0.003 0.004 0.005 0.007

FL 0.006 0.004 0.006 0.007
Flow-FL 0.005 0.006 0.007 0.007

Stopping round FL 12 9 15 8
Flow-FL 16 10 15 8

Stopping time(s) FL 149* 250 421 592
Flow-FL 184* 271 435 599

Mixed
Validation loss C 0.006 0.007 0.009 0.012

FL 0.008 0.008 0.010 0.010
Flow-FL 0.010 0.009 0.012 0.011

Stopping round FL 20 8 19 8
Flow-FL 16 8 15 8

Stopping time(s) FL 232 242 611 705
Flow-FL 192 241 503 711

85

Figure 5.6: Validation loss L(Θ) for the avoidance behavior with 15 (left), 60 (right)
robots (DFL=Flow-FL).

5.5.3 Learning Round Timing

The scheduling of learning rounds is data-driven both in our version of FL and in

Flow-FL. The time between learning rounds increases when we increase either the

learner quorum or the sample quota. Figure 5.7 shows the time between rounds

over the duration of the experiment. This time depends on the flow of data in the

experiment and the length of the time series we consider as samples. The graph

shows that, for a given (quorum,quota) setting, the inter-round duration is similar

between FL and Flow-FL. This is due to the short time spent by the robots in the

barrier with Flow-FL. With K = 15, the average time spent in the barrier is 15

time steps (1.5 s) and, with K = 60, it is 51 time steps (5.1 s). A wider empirical

study of the latency of virtual stigmergy is reported in [77].

86

Figure 5.7: Timing for avoidance with 15 robots (DFL=Flow-FL).

5.5.4 Prediction Quality

We quantify the prediction quality of trajectory forecasting based on two metrics:

(i) The Average Displacement Error (ADE) in Equation 5.4, that is a summation

of the L2-norm between the ground truth yi,t and the predicted trajectory ỹi,t over

the predicted horizon T for all trajectory samples Ntraj; (ii) The Final Displacement

Error (FDE) in Equation 5.5 which is the summation of the L2-norm of the final

positions between the predicted ỹi,T and the ground truth yi,T over all trajectory

samples.

ADE =
1

Ntraj · T

Ntraj∑
i=1

T∑
t=1

‖(yi,t − ỹi,t)‖ (5.4)

FDE =
1

Ntraj

Ntraj∑
i=1

‖(yi,t=T − ỹi,t=T)‖ (5.5)

We report the ADE, FDE metric results in Table 5.5 to 2 decimal places since

this corresponds to centimeter-level granularity. We maintain consistency across

the evaluations in the case of centralized training by setting the number of epochs

trained to the number of rounds performed by Flow-FL for the (quorum, quota)

pair. We note that trajectories are forecast similarly by the three methods across

87

Table 5.5: Trajectory reconstruction across quorums and quotas for different behav-
iors. (K = 60)

(qF, (0.2, (0.2, (0.6, (0.6,
quota) 20) 60) 20) 60)
Flocking
FDE (m) Centralized 0.08±0.04 0.08±0.04 0.08±0.04 0.09±0.04

FL 0.08±0.04 0.08±0.04 0.09±0.05 0.08±0.04
Flow-FL 0.09±0.05 0.08±0.04 0.09±0.05 0.09±0.04

ADE (m) Centralized 0.05±0.03 0.05±0.03 0.05±0.03 0.05±0.03
FL 0.05±0.03 0.05±0.03 0.05±0.03 0.05±0.03
Flow-FL 0.06±0.03 0.05±0.03 0.06±0.03 0.05±0.03

Foraging
FDE (m) Centralized 0.22±0.11 0.23±0.11 0.23±0.11 0.27±0.13

FL 0.25±0.12 0.23±0.12 0.27±0.13 0.25±0.12
Flow-FL 0.24±0.12 0.23±0.12 0.27±0.13 0.25±0.12

ADE (m) Centralized 0.11±0.05 0.12±0.05 0.12±0.06 0.14±0.06
FL 0.13±0.06 0.12±0.06 0.14±0.07 0.13±0.06
Flow-FL 0.13±0.06 0.12±0.06 0.14±0.07 0.13±0.06

Avoidance
FDE (m) Centralized 0.11±0.05 0.13±0.05 0.15±0.06 0.19±0.06

FL 0.17±0.06 0.14±0.05 0.19±0.06 0.18±0.06
Flow-FL 0.16±0.06 0.14±0.05 0.19±0.06 0.18±0.07

ADE (m) Centralized 0.06±0.02 0.07±0.03 0.08±0.03 0.10±0.04
FL 0.09±0.04 0.07±0.03 0.10±0.04 0.10±0.04
Flow-FL 0.08±0.03 0.07±0.03 0.10±0.04 0.10±0.04

Mixed
FDE (m) Centralized 0.15±0.10 0.17±0.11 0.18±0.12 0.21±0.15

FL 0.21±0.14 0.18±0.13 0.24±0.17 0.21±0.15
Flow-FL 0.20±0.14 0.18±0.12 0.24±0.17 0.21±0.14

ADE (m) Centralized 0.08±0.05 0.09±0.05 0.10±0.06 0.11±0.07
FL 0.11±0.07 0.09±0.06 0.13±0.09 0.11±0.07
Flow-FL 0.11±0.07 0.09±0.06 0.13±0.09 0.11±0.07

88

all four behaviors with no notable differences. We identify that, in general, re-

constructing flocking trajectories which are goal-oriented to a light source is much

easier than reconstructing foraging or avoidance trajectories which need additional

context information from neighbors (such as distance between neighbors in the case

of obstacle avoidance, or location of resources/the nest for foraging). The generated

output trajectories are shown in Figure 5.8. Data such as a robot’s motion model,

higher-derivative information (such as velocity), or a particular agent’s goals would

help robustly predicting turning or in some cases matching the distance traveled by a

robot (even though the orientations are predicted accurately). These improvements

are out of the scope of our work.

Figure 5.8: Fifteen trajectories predicted using Flow-FL for one robot with mixed
behaviors in a swarm for K = 60.

5.6 Summary

In this work, we explore the design space of Federated Learning in a robotics setting.

Our study includes two versions of Federated Learning (one server-dependent and

89

one serverless), and one centralized approach as our baseline. We provide a prac-

tical realization of fully distributed Federated Learning, Flow-FL, in a multi-robot

setting. We propose a way to schedule model updates based on data flow by con-

sidering two parameters: the quota, i.e., the minimum number of data samples for

a robot to qualify for a model update, and the quorum, i.e., the minimum number

of robots to start a learning round.

We studied the role of several parameters of practical relevance, such as staggered

online data collection, number of participating robots, and time delays introduced

by decentralization. As we envision our approach to be useful in learning dynamic

spatio-temporal datasets, we considered a well-known case study with compelling

dynamics in both space and time: trajectory forecasting. Due to the lack of usable

datasets in the literature, we created the first federated dataset from artificial data

collected from a representative set of multi-robot behaviors.

5.7 Open Problems

In order to enable the deployment of Flow-FL in a real-world setting, its performance

should be evaluated on real-world pedestrian data collected with a team of robots.

While we studied the effect of the (quorum, quota) configuration on the learning

convergence empirically, a formal analysis of the effect of these parameters would

help inform their choice. In particular, this analysis would determine the conditions

for which the trends observed across our several datasets hold.

In addition, the role of the communication topology in keeping communication

delays limited when the number of robots increases, has yet to be determined.

Finally, the effect of aggressive communication loss on the convergence of Flow-

FL remains to be quantified and analyzed.

90

Chapter 6

Collective Semantic Annotation

6.1 Introduction

Decentralized collective perception is one of the main activities that a swarm of

robots must perform. A major challenge in collective perception is dealing with

partial and uncertain knowledge. To deploy robots in safety-critical applications,

such as disaster recovery or autonomous driving, researchers strive to increase the

reliability of the information used for decision-making. In the context of resource-

constrained robot swarms, significant effort has been devoted to solving this problem,

with particular focus on the best-of-n formulation [101], [102].

In this chapter, we deal with a collective perception scenario related to, but more

complex than, the best-of-n formulation. We assume that individual robots perform

observations, from which they individually derive annotations on the environment

through a machine learning algorithm. The algorithm, however, might produce

incorrect annotations. The aim of our work is to take advantage of the fact that

multiple robots can combine individual annotations to derive a set of more accurate

consolidated annotations.

91

Figure 6.1: Collective semantic annotation application with label consolidation.

To showcase our approach, as shown in Figure 6.1 and Figure 6.2, we consider

the case in which the robots must collectively construct and store a coherent set

of semantic annotations on features found in the environment, such as pieces of

furniture, trees, or doorways. To consider low-memory constraints, we assume that

the objects are internally stored as bounding boxes, rather than through more de-

tailed representations such as voxels or graphs. These annotated bounding boxes

constitute the essence of a distributed semantic map [103] of the environment. This

problem is different from the best-of-n problem. In the latter, the robots must agree

on a single choice for the entire swarm; in our problem, the robots must collectively

construct a coherent set of annotations.

Semantic mapping poses interesting challenges in the context of resource-constrained

collective robotics. Constructing a semantic map entails the collection and storage

of large amounts of data. This data is typically processed by the robots individually

at first. The result is then shared and fused with the results of other robots to pro-

duce a coherent representation of the environment. An effective approach to solve

92

Figure 6.2: Collective semantic annotation application with annotation consolida-
tion.

these problems is capable of coping with low memory availability, mobility, noise,

uncertainty, and bandwidth limitations [104, 105, 106].

Our approach to semantic mapping draws inspiration from research in ensem-

ble learning [107]. Ensemble learning reduces the variability of individual models

through information fusion [108]. In ensemble learning, fusion is achieved through

bagging and stacking techniques that aggregate models, typically classifiers, by com-

bining their outputs through an averaging process or through a meta-model trained

for that purpose [107, 109].

This chapter presents two main contributions. First, we present an algorithm

to store localized semantic annotations across a swarm of mobile robots, under

the form of a shared global memory. Second, we propose an approach to online

fusion of uncertain semantic annotations, formalizing the problem and deriving a

solution from first principles. We consider a scenario in which the user has already

trained a multi-class classifier on an extensive dataset with multiple annotations of

various objects [110]. This classifier is deployed on each robot and used to identify

objects for the map, which are shared with the rest of the swarm. The semantic

93

map is constructed by consolidating multiple observations of the same objects into

single ones. Through a voting mechanism, our approach copes with the fact that

classifiers are imperfect and might mislabel objects. The final result of our approach

is a semantic map whose accuracy is superior to that achievable by any individual

robot alone. We also provide a closed-form equation to assess the accuracy of a

consolidated annotation as a function of the number of votes and the individual

classifier accuracy.

This chapter is organized as follows. In Section 6.2 we discuss related work. The

components of our framework are described in Section 6.4. We report the results of

our performance evaluation in Section 6.5, and conclude the chapter in Section 6.6.

6.2 Related Work

Ensemble learning. In the context of ensemble learning, Kuncheva summarizes

existing methods for combining the outputs of classifiers and provides proof of their

optimality under certain assumptions. [109]. In particular, the book chapter presents

plurality voting, Bayesian combination (Naive Bayes), and multinomial methods

("Behavior Knowledge Space"). The plurality voting approach is the simplest and

gives the optimal accuracy in combining classifier outputs when: (i) the classifiers

give independent outputs for a given class label, (ii) the classifiers give any incor-

rect class label with the same probability, and (iii) all classes have the same prior

probabilities. The Bayesian combiner only requires assumptions (i) and (ii) to be

optimal. In practice, the amount of data available to tune the combiner also plays a

role in the performance of an approach. In particular, the more complex the method

the more data is needed to estimate its parameters. Kuncheva concludes that “the

success of a particular combiner will depend partly on the validity of the assump-

94

tions and partly on the availability of sufficient data to make reliable estimates of

the parameters” [109].

Best-of-n problem. Previous work in swarm robotics has tackled collective

classification problems for one global environmental property. These problems have

commonly been referred to as best-of-n [111]. Valentini et al. proposed a honeybee-

inspired approach for robots to collectively decide whether a black and white col-

ored environment has a majority of white or black tiles [101]. Ebert et al. applied

Bayesian estimation to the same problem with the added explicit group-wide agree-

ment on the output [102]. Robust formulations have also been studied in which

robots might be affected by noise [112] or act in an adversarial manner [113]. As

discussed in the introduction, semantic mapping is a more complex problem, in that

it can be seen as a repeated best-of-n problem in which the annotations must also

be coherent with each other.

Estimation of continuous variables. Other work has considered the col-

lective estimation of a continuous value. Early work focused on average consen-

sus [114, 115, 116], in which the robots must agree on the average of individual

initial estimates of a quantity of interest. More recently, Albani et al. proposed a

collaborative weed mapping application that considers inter-robot networking and

motion planning [117]. Robots communicate to improve the confidence interval of

weed density predictions for each cell in a discrete environment. They assume that

robots know the confidence value for each independent prediction and keep the pre-

diction with the maximum confidence. In our work, in contrast, we do not assume

the confidence of the prediction known, and resort to a voting process to identify

the most likely annotation.

Distributed mapping and semantic classification. Notable recent work in

collective perception include distributed mapping, such as DOOR-SLAM [118]. In

95

DOOR-SLAM, the robots construct a graph-based map (but not a semantic one) in a

decentralized fashion, coping with spurious observations by identifying and rejecting

outliers. In distributed semantic classification [119], effort have concentrated on

cloud-based method rather than decentralized ones, such as RoboEarth [103]. In

the work of Ruiz et al. [120], a centralized knowledge base is used to build semantic

map. Classification uncertainty is solved through Conditional Random Fields, which

estimate beliefs on the annotations by combining spatial and contextual knowledge.

6.3 Problem Statement

In this section, we explain our main modelling assumptions and formulate the dis-

tributed storage and collective annotation problems.

6.3.1 Assumptions

Multi-Robot System

We consider a system of N robots, each with a unique identifier i ∈ {1, . . . , N}.

Each robot can exchange messages within a communication range C with its neigh-

bors Ni(t). Outgoing messages are limited in size at each time step t to model a

finite broadcasting bandwidth. Furthermore, each robot has a limited memory ca-

pacity Mi devoted to the housekeeping of a shared data structure. This capacity is

subdivided into storage capacity Si and routing capacity Ri. The available memory

of a robot at a given time is denoted by mi(t). Robots move according to a diffusion

policy with obstacle avoidance [34]. We assume that each robot can localize itself in

a global frame. We further assume robots to be equipped with a perception mod-

ule. We abstract away the inner workings of the module and simulate its behavior

through the following assumptions: (i) the perception module uses a sensor with

96

physical specifications constraining its viewing frustum (see Figure 6.3); (ii) the per-

ception module is able to determine the center position of objects perfectly; (iii) the

perception module can annotate objects probabilistically (see Section 6.3.1).

Object Representation and Detection

We consider robots to be in an environment with non-uniformly distributed objects

of different types. We use 3D bounding boxes to represent these objects in space.

A bounding box is fully described by its center, dimensions, and orientation [121].

We assume that the sensor of the perception module can detect and localize objects

when their front face corners fall inside the sensor viewing frustum.

Figure 6.3: The front corners of an object are inside the sensor viewing frustum.

Simulated Classifier

Within the perception module, we simulate the statistical behavior of a trained

multi-class object classifier. We leverage the work of Carillo et al. [122] deriving

the posterior distribution of the balanced accuracy conditioned on predictions of

a trained classifier on a sample test dataset. We use this posterior distribution to

generate either correct or incorrect object annotations λν upon each object detection.

To distinguish cases of erroneous labels, we further modelled the leftover probability

97

distributions using the confusion matrices for the classifier. The statistical data used

for these probabilistic models comes from the SceneNN benchmarking data [123].

SceneNN provides raw outcomes and accuracies for several multi-class classifiers

tested extensively on a catalog of point clouds. We use the PB-T50-RS dataset with

translation, rotation and scaling perturbations of the bounding boxes to compute

the posterior distribution modelling the classifier statistical behavior.

6.3.2 Distributed Storage Problem Formulation

The first goal of our work is to distribute object annotation data across robots in

a way that makes efficient use of the collective memory. Any data item is stored

in the form of a tuple. Each robot can hold a defined number of tuples specified

by its memory capacity Mi. Besides memory constraints, we want to account for

communication-related costs.

Since we want to pack data items into bins (robots) with different properties,

we formulate the distributed storage problem as an heterogeneous bin packing op-

timization problem. In particular, we consider the variant known as the Variable

Cost and Size Bin Packing Problem (VCSBPP) [124].

Given a set of items T with different volumes vτ to be loaded into a set of

available bins I with different capacities Mi and costs ci, we aim to minimize the

98

total cost of the bins selected to store items:

min
a,s

f(a, s) =
∑
i∈I

cisi (6.1a)

s.t.
∑
i∈I

aτi = 1 ∀τ ∈ T (6.1b)

∑
τ∈T

vτaτi ≤Misi ∀i ∈ I (6.1c)

aτi ∈ {0, 1} ∀τ ∈ T , ∀i ∈ I (6.1d)

si ∈ {0, 1} ∀i ∈ I (6.1e)

with {si}i∈I denoting bin-selection variables; si equals 1 when a bin i is selected

for storing items. {aτi}t∈T ,i∈I are item-to-bin assignment variables; aτi equals 1 if

item τ is assigned to bin i. In our variant of the problem, we define bin costs ci as

follows:

ci =
1

|Ni| ·mi

=
1

|Ni| · (Mi −
∑

τ∈T ai)
(6.2)

We select bin cost to be inversely proportional to the product of the number of

neighbors and the memory left after the assignment. This is to model practical con-

siderations such as potential for disconnections and subsequent memory overflows,

which are not otherwise modelled in the VCSBPP.

6.3.3 Annotation Consolidation Problem Statement

Our second goal is to improve the map annotation accuracy by using at least V

votes for each object to identify in the environment. The ensemble probability of

success in predicting correct class pens(V, p) should therefore be greater than the

classifier per-class accuracy p for the class.

99

6.4 Methodology

6.4.1 Overview

Figure 6.2 shows the interconnection between the different components of the col-

lective semantic annotation application with label consolidation. Robots move in

an environment with objects to annotate. Upon detecting an object and decid-

ing to record an observation, each robot assigns an uncertain class annotation for

the location. It writes it to a shared memory as described in Section 6.4.2. Upon

meeting a local condition, robots query the shared memory about a certain location

to retrieve all the related observations. If they receive enough observations back

from the query, they write the most frequent label for that location into the shared

memory as a consolidated annotation. The exact voting operation and the resulting

ensemble accuracy are formalized in Section 6.4.3. Over time, as robots explore the

entire environment, the shared memory stores a full map of the annotated objects in

the form of consolidated annotations. Section 6.4.4 describes the local routine run

asynchronously by the robots to perform the various actions across components.

6.4.2 Distributed Storage Through SwarmMesh

We implement a shared memory to enable distributed storage of data by the robots.

The design of the particular underlying distributed data structure, SwarmMesh, is

detailed in Chapter 5. As part of our contribution, we provided an open-source C++

implementation of the data structure 1. SwarmMesh is a distributed online heuristic

solution to the Bin Packing problem formulated in Section 6.3.2, Equations (6.1)-

(6.2).

SwarmMesh stores data in the form of tuples, i.e (k,v) pairs, in robots with
1https://github.com/NESTLab/SwarmMeshLibrary

100

https://github.com/NESTLab/SwarmMeshLibrary

different NodeIDs, δi(t). The key enables tuple addressing and consists of two

parts: (i) a unique tuple identifier τ , (ii) a tuple hash ρτ that depends on the value

to be stored. The value can be any application-specific payload. The data structure

relies on the partitioning of robots according to δi(t) computed by them locally and

instantaneously. The main design idea lies in assigning the most important tuple

to the most desirable robots. This is achieved by matching values of tuple hashes

with values of NodeIDs. This means that in SwarmMesh, items are assigned to bins

according to a heuristic rule assuming a hierarchy among them.

In our application, when a robot writes data into the data structure, it creates

a tuple. The unique tuple identifier τ is the concatenation of the robot identifier i

and the count of tuples created so far by the robot. The value or payload of the

tuple contains the predicted object class λν , the box center, the box orientation and

the vector from the center to the front right corner of the box. These variables fully

describe an annotated 3D bounding box.

We chose a tuple hashing function that ranks the object class in increasing order

of uncertainty, i.e the more uncertain the object class the higher the tuple hash:

h : λν 7→ ρτ = R(λν)

with R(·), a staircase function with a spacing referred to as hashing bucket.

Robots compute NodeIDs as follows:

δi(t) =


mi(t) · |Ni(t)| if |Ni(t)| > 0

1 otherwise

The heuristic rule routes a tuple of hash ρτ to the first robot of NodeID δi(t) to

101

meet the condition:

δi(t) > ρτ (6.3)

In this application, we use the following data structure operations:

• store(k,v) which assigns a tuple to a suitable robot in the data structure;

• get(x,y,r), which returns all the tuples located within a radius r of the point

(x, y) expressed in a global reference frame;

• erase_except_tuple(x,y,r,τ), which removes from the data structure all

tuples located within a radius r of the point (x, y) in the global reference frame

except for the tuple with unique identifier τ .

6.4.3 Annotation Consolidation Through Plurality Voting

Plurality Vote

Upon querying the shared memory for a particular location in space, the querying

robot receives class annotations predicted by various robots. If the number of votes

n is greater than or equal to the minimum number of votes V , the robot aggregates

these votes into a consolidated annotation λ̄ for the object through plurality voting:

λ̄ = argmax
classes

n∑
ν=1

I(λν = class)

In case of ties, the consolidated annotation is selected at random from the tied

options.

Ensemble Probability of Success

We seek to derive the probability of success for n independent votes, each for one

of c categories where c ≥ n. We assume that class 1 is correct and that each vote

102

is for class 1 with probability p. The probability of an incorrect vote is then 1− p,

and we make the simplifying assumption that each incorrect class is equally likely.

We denote the total vote count for each class as a vector z = (z1, z2, . . . , zc) where

zi ∈ {0, 1, . . . , n} and z1 + z2 + · · · + zc = n. This vector follows a multinomial

distribution with probability mass function

φ(z |n, p) =

(
n

z1, . . . , zc

)
pz1
(

1− p
c− 1

)n−z1

where

(
n

z1, . . . , zc

)
=

n!

z1! · · · zc!

denotes the multinomial coefficient.

Without knowing the correct class, we can estimate it from an observed vector

as the class with the most votes, whether a majority or plurality. In the case where

several classes are tied with the highest number of votes, we select one of those

classes at random. Again considering that z1 represents the true correct class, we

use z∗ to denote a vector of vote counts for which z1 ≥ zi, for all i = 2, 3, . . . , c. The

probability of identifying the correct class with n total votes is then

pens(n, p) =
∑
z∗

φ(z∗ |n, p)P (success | z∗) (6.4)

since all other vectors z result in a success probability of zero. Because the largest

term in z∗ appears first and all incorrect classes are chosen with equal probability,

we can express (6.4) using integer partitions.

Integer Partitions An integer partition ξ is a nonincreasing sequence of positive

integers ξ1 ≥ ξ2 ≥ · · · ≥ ξω. We say that ξ is a partition of n, denoted ξ ` n, if

103

∑ω
i=1 ξi = n, and we consider the set of all such ξ to be P . The ξi are called

parts of the partition, and we define the length of the partition `(ξ) := ω. An

alternative formulation is to consider the infinite sequence of multiplicities of each

part ξ = (k1, k2, . . .) where kj ∈ {0, 1, . . .}. Here, ξ ` n if
∑∞

j=1 jkj = n, and the

length `(ξ) =
∑∞

j=1 kj = ω, since all but a finite number of kj are zero [125]. We

will refer to both the parts ξi and multiplicities kj of the same partition throughout.

Note that we can map each vector z∗ to an integer partition g(x∗) = ξ, where

ξ1 represents the number of votes for the correct class, and the other ξi represent

the positive numbers of votes for ω − 1 incorrect classes. Since all incorrect classes

are equally likely, each z∗ that maps to a particular ξ yields the same probability of

success. Thus,

pens(n, p) =
∑
ξ`n
ξ∈P

∑
z∗:g(z∗)=ξ

φ(z∗ |n, p)P (success | z∗)

=
∑
ξ`n
ξ∈P

∣∣g−1({ξ})∣∣φ(ξ |n, p)P (success | ξ) (6.5)

where
∣∣g−1({ξ})∣∣ is the cardinality of the preimage of {ξ}, i.e., the number of z∗

that map to ξ.

To determine
∣∣g−1({ξ})∣∣, we start with the

(
c−1
ω−1

)
combinations of incorrect

classes and count the ways to assign vote counts with multiplicities kj to each.

There are (
ω − 1

k1, k2, . . . , kξ1 − 1

)
such assignments, where the kξ1 − 1 derives from the fact that one of the spots for

104

the largest possible vote count is taken by the correct class. Together, we have

∣∣g−1({ξ})∣∣ =

(
c− 1

ω − 1

)(
ω − 1

k1, k2, . . . , kξ1 − 1

)

For the conditional probability P (success | ξ), when ξ1 is the strictly largest part,

it is chosen with probability 1; otherwise, there is a kξ1-way tie, from which a class

is chosen at random. In both cases, the correct class is chosen with probability

P (success | ξ) = 1/kξ1 . Substituting into (6.5) and simplifying gives

pens(n, p) =

1

c

∑
ξ`n
ξ∈P

(
n

ξ1, . . . , ξω

)(
c

ω

)(
ω

k1, . . . , kξ1

)
pξ1
(

1− p
c− 1

)n−ξ1
(6.6)

6.4.4 Robot Local Routine

Robots each run a local procedure in a loop. We refer to this procedure as the

control step and outline it from the perspective of robot i in Algorithm 4. Every

time step, the robot performs one iteration of this loop.

At the beginning of the procedure, the robot receives and deserializes messages

from its neighbors. Certain messages are meant for specific recipients only (point-to-

point) and get discarded by any other receiving robot during deserialization. The

robot then computes and performs a motion increment according to a diffusion

policy [34].

Next, the robot checks the output of its perception module if it is not in recording

timeout. The recording timeout is a delay imposed to avoid making successive

observations of the same object. If the perception module has detected an object,

the robot creates a tuple and starts a store() operation on the shared memory. The

105

payload of the tuple contains the object annotation and the bounding box location

and dimensions.

If the robot is not in a querying timeout, it reviews the tuples stored in its

memory by bounding box location. If the robot finds multiple tuples with the same

location in its own local memory, it starts a get() query on SwarmMesh to retrieve

all the tuples currently stored with that bounding box location. It then saves the

meta data for the started query.

The robot goes through the queries it has started and checks whether it has not

received replies for a period longer than a time threshold. If the number of tuples

is larger than the minimum number of votes, the robot creates and writes a tuple into

SwarmMesh with the consolidated annotation. It also start an erase_except_tuple()

request of all tuples with the given location except for the newly created tuple.

SwarmMesh routing at line 23 of Alg. 4 decides which requests and replies need

to be routed and to which robot. A robot may have to send a reply to a request and

continue propagating the request or route a neighbor’s reply or discard the request

or reply. The details of the routing process are reported in [30].

6.5 Evaluation

We performed the evaluation of our distributed map storage and fusion approach

using the physics-based ARGoS multi-robot simulator [99] with data from the Sce-

neNN benchmark [123]. The main parameters of interest are the minimum number

of votes V and the number of robots N . The former relates to the ensemble accuracy

of the map through Equation 6.6 and Figure 6.5. The latter changes the scale of

the distributed system and the degree of parallelization in collecting data.

106

Algorithm 4 Control step - message µ, neighbors Ni, requests Q, replies R
1: procedure Control_step
2: receive {µj}j∈Ni

. RX from neighbors
3: for each j ∈ Ni do
4: (j, δj ,Qj ,Rj)← µj . Deserialization
5: move() . Diffusion motion
6: if not in recording timeout then
7: v ← senseObject()
8: if object detected then
9: start recording timeout
10: k ← hash(v)
11: Qi ← Qi ∪ store(k, v) . Write label
12: if not in querying timeout then
13: if holds multiple tuples from same (x,y) then
14: start querying timeout
15: Qi ← Qi ∪ get(x, y, 0) . Ask for labels
16: save query information
17: for each started query do
18: if results ready and enough votes then
19: v ← plurality vote . Consolidated label
20: k ← hash(v)
21: Qi ← Qi ∪ store(k,v)
22: Qi ← Qi ∪ erase_expt_tuple(x,y,0,k)
23: (Q̄i, R̄i)← route(Q•,R•) . SwarmMesh routing
24: µi ← (i, δi, Q̄i, R̄i) . Serialization
25: send (µi) . TX to neighbors

6.5.1 Simulation Parameters

Robots and environment We study the influence of the number of robots N

by running experiments with 30, 60 and 90 robots. Robots have a communication

range C of 2m and are moving at a forward speed of 5 cm/s. Robots are diffusing

and avoiding obstacles in an 8x8m2 environment. Given these settings, the robot

density is such that robots are within communication range most of the time but a

significant number of intermittent disconnections occur. We do not consider line-of-

sight obstructions.

In order to run experiments representative of collective annotation in an indoors

environment, we import 40 objects of 13 types from the SceneNN dataset. There-

fore, the objects are non-uniformly distributed in space. We made the following

107

adjustments when importing scene 005 of the dataset: (i) we limited physical di-

mensions to fit in the viewing frustum; (ii) we lowered objects to the ground level;

(iii) we rotated them to face towards the center of each "room"; (iv) we removed

overlapping objects; (v) we re-labelled "unknown" objects by drawing from the list

of object classes at random. Figure 6.4 shows the imported environment with these

modifications.

Figure 6.4: Environment adapted from the SceneNN dataset.

Simulated ClassifierWe simulate the statistical behavior of the BGA-DGCNN

classifier using data from the SceneNN dataset [110, 123]. The procedure to gen-

erate a posterior distribution is described in Section 6.3.1. For the BGA-DGCNN,

the distribution is a Gaussian distribution. Each observed annotation λν in the

simulation is given by drawing from this distribution.

Ensemble Accuracy In order to set V according to a desired range of prob-

abilistic accuracy, we compute the ensemble accuracy pens(n, p) for each class of

objects for a given number of votes n using Equation 6.6. We use the per-class

accuracy p for BGA-DGCNN shown in Table 6.1, as reported in [110]. Figure 6.5

is the resulting curve. In our experiments, we vary the threshold V in the range

108

between the two vertical lines in Figure 6.5.

Table 6.1: BGA-DGCNN classifier class accuracy on SceneNN PB-T50-RS
dataset [110].

bin cabinet chair desk display door shelf
81.9 84.4 92.6 77.3 80.4 92.4 80.5
table bed pillow sink sofa toilet overall
74.1 72.7 78.1 79.2 91 79.7 75.7

Figure 6.5: Ensemble probability of success per class of object. This graph is based
on the per-class accuracies in Table 6.1.

SwarmMesh parameters We select the data structure parameters so as to

maintain a reasonable load factor i.e the ratio of data to store over the available

storage capacity. We set the memory capacity of robots Mi to 20 tuples with a a

target of 10 tuple for storage and an allowance of 10 for the routing queue. We set

the step in the hashing function to 5.

6.5.2 Mapping Performance

Effect of the number of robots. Using more robots distributes sensing spatially

and leads to a more densely connected robotic network. As a result, we expect that

109

Table 6.2: Simulation parameters.

Parameter Value
Number of Robots N {30, 60, 90} robots
Communication range C 2 m
Robot density {0.5, 0.9, 1.4} robot/m2

Robot speed 5 cm/s
Number of objects 40
Number of classes 13
Memory capacity Mi 20 tuples ∀ i
Storage capacity Si 10 tuples ∀ i
Routing capacity Ri 10 tuples ∀ i
Hashing bucket 5

increasing N speeds up the collection and aggregation of data needed to complete

the semantic map. In our setting, map coverage refers to the ratio of covered objects

to the total number of objects. We make a distinction between two types of coverage:

(i) the observation coverage which considers an object covered if at least one robot

annotated the object; (ii) the consolidation coverage which considers an object

covered if there exists a consolidated annotation λ̄ for the object in the shared

memory. Figure 6.6 shows the temporal curve of both types of coverage across

different values of N and a set threshold of votes V = 3. The curves of map coverage

over time increase faster with a higher number of robots. The consolidation coverage

rises slower than the observation coverage since it depends on the consolidation

process that queries the shared memory as described in Section 6.4.4. With N = 90,

the delay for consolidating all the annotations is merely 14 s from the time all objects

have been observed.

Effect of the number of votes. The observation coverage is independent of V .

Figure 6.7 shows the map accuracy and the consolidation coverage over time across

values of V . The experimental map accuracy is the ratio of correct consolidated

annotations to the number of consolidated annotations. We observe that the map

accuracy increases with V at the cost of a slower coverage.

110

Figure 6.6: Map coverage over time for V = 3 and N ∈ {30, 60, 90}. Cursors show
the time when the maximum coverage was first reached.

Figure 6.7: Map accuracy and coverage over time for N = 60 and V ∈ {3, 4, 5, 6}.

111

6.5.3 Memory-Related Performance

Distributed storage cost. Figure 6.8 shows the total storage cost (6.1a) of the

tuples-to-robots assignment realized in practice over time in the simulation. At

every time step, the tuple set T and the number of neighbors of each robot |Ni|

are updated. In our evaluation, we consider tuples of unit volume (vτ = 1, ∀τ)

and an homogeneous memory capacity across robots (Mi = M, ∀i). We calculate

the cost obtained in simulation using the heuristic tuple-to-robot assignment rule

of SwarmMesh. In order to tell apart cases in which tuples are assigned to robots

with null |Ni| and/or mi, we cap each term in the sum to 1. These cases result in

jumps of 1 of the cost in Figure 6.8.

The VSCBPP problem is NP-hard but our experimental settings (vτ = 1, ∀τ)

and (Mi = M, ∀i) allow for optimally solving instances of the simulation with

N = 30, V = 3. We reduce the space of the exhaustive search by noting that

permutations of the rows of (aτi) lead to equivalent solutions in terms of cost. We

enumerate integer partitions of |T | with fewer than |I| parts and such that all parts

are smaller than M . For each such partition, we determine the minimal cost using

the rearrangement inequality for the product of 1/|Ni| and 1/mi:

∑
i∈I

1

|Ni|
·

1

mi

≥
1

|Nσ(1)|
·

1

|mπ(1)|
+ · · ·+

1

|Nσ(|I|)|
·

1

|mπ(|I|)|

where σ(.) is an ascending ordering of |Ni|, and π(.) is a descending ordering of mi.

Given |Ni| and T , we compute the worst cost by assigning one tuple to each

robot with |Ni| = 0, filling the memory (mi = 0) of as many robots as possible

given the number of tuples |T | and placing the remainder of tuples in the robot of

lowest non-zero |Ni|.

SwarmMesh dimensioning. Figure 6.9 validates our selection of the Swar-

112

Figure 6.8: VSCBPP cost over simulation time for V = 3 and N = 30.

mMesh parameters. It shows that the bias of the NodeID distribution is greater

than that of the distribution of data hashes. This indicates that the key partition-

ing of the distributed data structure is appropriate given the heuristic assignment

rule (Equation 6.3), i.e it is likely to find a robot of greater NodeID than a given

tuple hash. We keep the parameters constant across numbers of robots. This means

that with higher N , the collective memory capacity N · M is over-sized and the

key partitioning matches tuples to robots randomly as they almost all meet the

condition in Equation 6.3. In practice, this means that the robot writing the tuple

typically keeps it locally which leads to reduced communication overhead at greater

N values.

113

Figure 6.9: Histograms of data hashes and NodeIDs for V = 6 and N ∈ {30, 60, 90}.

Figure 6.10: Load factor over time for N = 60.

6.5.4 Communication Load

Effect of the number of votes. We find that the number of bytes sent increases

with the minimum number of votes V (Figure 6.11). This indicates that an increase

in map accuracy comes at the cost of a higher communication overhead.

Effect of the number of robots. Figure 6.12 shows the bandwidth usage per

114

Figure 6.11: Bytes sent per second per robot over time for N = 60 and V ∈ {3, 5}.

robot across different values of N in the configuration with the largest amount of

data to be managed (V = 6). Communication overhead decreases when N increases

because we keep the same shared memory parameters across values of N . This is

consistent with the effect described in the SwarmMesh dimensioning section.

6.6 Summary

We proposed a method for the distributed storage and fusion of semantic annotations

across a swarm of robots. We consider robots with limited memory, each running a

pre-trained classifier to annotate objects in the environment. We show the costs of

storing and reducing the uncertainty of a semantic map in terms of mapping per-

formance, memory usage and communication overhead for users of this framework

to make informed decisions on the trade-offs between the key performance metrics.

115

Figure 6.12: Bytes sent per second per robot over time for V = 6 and N ∈
{30, 60, 90}.

6.7 Open Problems

In future work, we will study the aggregation of outputs of different types of clas-

sifiers to produce richer semantic maps. We will also assess the performance of our

approach on real robots.

116

Chapter 7

Conclusions

7.1 Summary

In the first part of this thesis, we dealt with creating and maintaining communication

paths for information to be exchanged between robots.

In Chapter 3, we considered how to preserve a connected communication graph

when certain robots have to reach distant targets. We contributed two decentralized

algorithms to form and preserve a communication backbone by building a logical

tree over network links between robots. We performed an extensive evaluation of

our approach in simulation and with real robots.

Outcomes of this work are a scalable strategy tested with more than 100 robots

in simulation and insights about the performance costs of enforcing connectivity.

The second part of the thesis is about organizing the ownership and flow of data

throughout the network formed by robots.

In Chapter 4, we designed a shared data structure, SwarmMesh, that facilitates

the collection and management of data in a distributed fashion in multi-robot sys-

tems. Our work targets low-memory, low-bandwidth, highly mobile teams of robots.

117

The main design idea in SwarmMesh is to rank data items and robots according to

their defining features and subsequently, distribute data items to robots according

to this hierarchy. We proposed two methods of distributing storage responsibil-

ity. We stress-tested the data structure to verify that we were able to retain large

amounts of data appearing very quickly. Besides overall good routing performance,

we recorded near-zero occurrences of robots having to discard data due to storage

memory overflows.

The result of this work is the modular design of a distributed data structure

suitable for various swarm applications. Our work can be reused and adapted easily

as the logic that defines the data distribution can be changed by the user.

In the third part of this thesis, we demonstrate the usefulness of distributed

data structures specifically suited to robot swarms. We tackle two multi-robot

applications through novel communication paradigms.

In Chapter 5, we studied the design space of the Federated Learning framework

in a robotics setting. This framework enables the training of a single ML model by

multiple learners by merging their local models rather than aggregating their local

datasets. We provided a practical realization of fully distributed Federated Learning

through the use of a shared data structure. Our contribution includes a novel way

of scheduling model updates based on the data flow. This was achieved through the

use of two parameters: the quota, i.e., the minimum number of data samples for a

robot to qualify for a model update, and the quorum, i.e., the minimum number of

robots to start a learning round.

This work advances the field of multi-robot learning by showcasing and adapting

a framework that has not been used in a similar setting before.

In Chapter 6, we developed an approach to the collective storage and fusion of

semantic annotations by a team of memory-constrained robots. We assumed that

118

robots run a pre-trained classifier to annotate objects in the environment. Aside

from adapting SwarmMesh to store these annotations, we also realized a voting

mechanism to reduce the uncertainty of classifier outputs. We evaluated the data

storage and fusion costs of this application. In particular, we considered the mapping

performance, memory usage, and communication overhead.

The outcome of this work is a framework for data fusion in an ML-perception

setting. Our evaluation intends to enable users to make informed trade-offs between

the key performance metrics of the application.

7.2 Future Work

The goal of this thesis is to provide tools and algorithms for a team of robots

to communicate in order to achieve cooperation. Our contributions abstract away

some of the implementation details. Ultimately, to deploy the proposed applications,

some technological choices will have to be made in terms of hardware and the lower

layers of the communication protocol stack. Propagation effects, communication

interference, and medium sharing will have to be accounted for.

We envision our data sharing approach to be useful for other applications that

require merging world representations while coping with limited memory. A few such

examples include multi-robot mapping, task allocation, and multi-view learning.

Finally, another direction for future work is securing inter-robot communica-

tions given a hardware implementation and a specific application. At the center of

this work is the definition of a realistic threat model. There exists many security

protocols for networked systems that ensure the confidentiality, authenticity, in-

tegrity of communications. However, multi-robot systems pose different challenges

due to their high mobility. Therefore, an open problem in designing cryptographic

119

protocols is how to handle dynamic key management in such systems. Ensuring

data privacy between robots is also a potential direction of study for settings where

robots compete with each other. The Federated Learning framework is particularly

well-suited in the data privacy aspect.

120

Bibliography

[1] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: A

review from the swarm engineering perspective,” Swarm Intelligence, vol. 7,

no. 1, pp. 1–41, 2013.

[2] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of multi-robot

coordination,” International Journal of Advanced Robotic Systems, vol. 10,

no. 12, p. 399, 2013.

[3] E. Tuci, M. H. Alkilabi, and O. Akanyeti, “Cooperative object transport in

multi-robot systems: A review of the state-of-the-art,” Frontiers in Robotics

and AI, vol. 5, p. 59, 2018.

[4] Y. Liu and G. Nejat, “Robotic urban search and rescue: A survey from the

control perspective,” Journal of Intelligent & Robotic Systems, vol. 72, no. 2,

pp. 147–165, 2013.

[5] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordinated multi-

robot exploration,” IEEE Transactions on robotics, vol. 21, no. 3, pp. 376–386,

2005.

[6] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic approach to

collaborative multi-robot localization,” Autonomous robots, vol. 8, no. 3, pp.

325–344, 2000.

121

[7] D. Goldsmith, Voyage to the Milky Way: The Future of Space Exploration.

TV Books, NY, 1999.

[8] R. F. Rubio, “Mining: The challenge knocks on our door,” Mine Water and

the Environment, vol. 31, no. 1, pp. 69–73, 2012.

[9] H. M. A. Fahmy, Protocol Stack of WSNs. Cham: Springer International

Publishing, 2021, pp. 53–66.

[10] P. Ghosh, A. Gasparri, J. Jin, and B. Krishnamachari, Robotic Wireless Sensor

Networks. Cham: Springer International Publishing, 2019, pp. 545–595.

[11] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless

networks,” in Mobile computing. Springer, 1996, pp. 153–181.

[12] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under dy-

namically changing interaction topologies,” IEEE Transactions on automatic

control, vol. 50, no. 5, pp. 655–661, 2005.

[13] A. Cornejo, “Local Distributed Algorithms for Multi-Robot Systems,” PhD

Thesis, 2012.

[14] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”

Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1389128610001568

[15] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of bluetooth

low energy: An emerging low-power wireless technology,” Sensors, vol. 12,

no. 9, pp. 11 734–11 753, 2012.

[16] S. Safaric and K. Malaric, “Zigbee wireless standard,” in Proceedings ELMAR

2006. IEEE, 2006, pp. 259–262.

122

http://www.sciencedirect.com/science/article/pii/S1389128610001568

[17] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “Overview of cellular LPWAN

technologies for IoT deployment: Sigfox, LoRaWAN, and NB-IoT,” in 2018

IEEE International Conference on Pervasive Computing and Communications

Workshops (PerCom Workshops), 2018, pp. 197–202.

[18] “Sigfox world coverage,” http://www.sigfox.com/en/coverage.

[19] S.-M. Oh and J. Shin, “An efficient small data transmission scheme in the

3GPP NB-IoT system,” IEEE Communications Letters, vol. 21, no. 3, pp.

660–663, 2016.

[20] “LoRa world coverage,” http://www.lora-alliance.org.

[21] E. M. Belding-Royer, S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic,

“Routing approaches in mobile ad hoc networks,” Mobile ad hoc networking,

vol. 1, no. 1, pp. 275–300, 2004.

[22] Y. Fang and W. Ma, “Mobility management for wireless networks: modeling

and analysis,” in Wireless communications systems and networks. Springer,

2004, pp. 473–512.

[23] O. S. Oubbati, M. Atiquzzaman, P. Lorenz, M. H. Tareque, and M. S. Hossain,

“Routing in flying ad hoc networks: Survey, constraints, and future challenge

perspectives,” IEEE Access, vol. 7, pp. 81 057–81 105, 2019.

[24] V. D. Viswacheda, A. Chekima, F. Wong, and J. A. Dargham, “A study on

vehicular ad hoc networks,” in 2015 3rd International Conference on Artificial

Intelligence, Modelling and Simulation (AIMS), Dec 2015, pp. 422–426.

[25] S. Yousefi, M. S. Mousavi, and M. Fathy, “Vehicular ad hoc networks (vanets):

123

http://www.sigfox.com/en/coverage
http://www.lora-alliance.org

Challenges and perspectives,” in 2006 6th International Conference on ITS

Telecommunications, June 2006, pp. 761–766.

[26] J. Sánchez-García, J. García-Campos, M. Arzamendia, D. G. Reina, S. Toral,

and D. Gregor, “A survey on unmanned aerial and aquatic vehicle multi-

hop networks: Wireless communications, evaluation tools and applications,”

Computer Communications, vol. 119, pp. 43–65, 2018.

[27] D. Tarapore, R. Gross, and K.-P. Zauner, “Sparse robot swarms: Moving

swarms to real world applications,” Frontiers in Robotics and AI, 2020.

[28] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,

K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances and

open problems in federated learning,” arXiv preprint arXiv:1912.04977, 2019.

[29] N. Majcherczyk, A. Jayabalan, G. Beltrame, and C. Pinciroli, “Decentral-

ized connectivity-preserving deployment of large-scale robot swarms,” in

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2018, pp. 4295–4302.

[30] N. Majcherczyk and C. Pinciroli, “SwarmMesh: A distributed data structure

for cooperative multi-robot applications,” IEEE International Conference on

Robotics and Automation, 2020.

[31] N. Majcherczyk, N. Srishankar, and C. Pinciroli, “Flow-fl: Data-driven feder-

ated learning for spatio-temporal predictions in multi-robot systems,” arXiv

preprint arXiv:2010.08595, 2020.

[32] N. Majcherczyk, D. J. Nallathambi, T. Antonelli, and C. Pinciroli, “Dis-

tributed data storage and fusion for collective perception in resource-limited

mobile robot swarms,” arXiv preprint arXiv:2012.08061, 2020.

124

[33] J. Dede, A. Förster, E. Hernández-Orallo, J. Herrera-Tapia, K. Kuladinithi,

V. Kuppusamy, P. Manzoni, A. bin Muslim, A. Udugama, and Z. Vatan-

das, “Simulating opportunistic networks: Survey and future directions,” IEEE

Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1547–1573, 2017.

[34] A. Howard, M. Mataric, and G. Sukhatme, “Mobile sensor network deployment

using potential fields: A distributed, scalable solution to the area coverage

problem,” in DARS, 2002.

[35] W. M. Spears, R. Heil, and D. Zarzhitsky, “Artificial physics for mobile robot

formations,” in 2005 IEEE International Conference on Systems, Man and

Cybernetics, vol. 3, 2005, pp. 2287–2292 Vol. 3.

[36] W. Liu, A. F. T. Winfield, J. Sa, J. Chen, and L. Dou, “Towards energy

optimization: Emergent task allocation in a swarm of foraging robots,”

Adaptive Behavior, vol. 15, no. 3, pp. 289–305, 2007. [Online]. Available:

https://doi.org/10.1177/1059712307082088

[37] M. Nakagami, “The m-distribution—a general formula of intensity distribution

of rapid fading,” in Statistical methods in radio wave propagation. Elsevier,

1960, pp. 3–36.

[38] D. P. Stormont, “Autonomous rescue robot swarms for first responders,” in

Computational Intelligence for Homeland Security and Personal Safety, 2005.

CIHSPS 2005. Proceedings of the 2005 IEEE International Conference on.

IEEE, 2005, pp. 151–157.

[39] R. Aragues, C. Sagues, and Y. Mezouar, “Triggered minimum spanning tree

for distributed coverage with connectivity maintenance,” in 2014 European

Control Conference (ECC), 2014, pp. 1881–1887.

125

https://doi.org/10.1177/1059712307082088

[40] T. Nestmeyer, P. R. Giordano, H. H. Bülthoff, and A. Franchi, “Decentralized

simultaneous multi-target exploration using a connected network of multiple

robots,” Autonomous Robots, vol. 41, no. 4, pp. 989–1011, 2017.

[41] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa, and

R. Sukthankar, “Decentralized estimation and control of graph connectivity

for mobile sensor networks,” Automatica, vol. 46, no. 2, pp. 390–396, 2010.

[42] L. Sabattini, N. Chopra, and C. Secchi, “On decentralized connectivity main-

tenance for mobile robotic systems,” Proceedings of the IEEE Conference on

Decision and Control, pp. 988–993, 2011.

[43] “Locally constrained connectivity control in mobile robot networks,” in 2013

IEEE International Conference on Robotics and Automation. IEEE, may

2013, pp. 901–906. [Online]. Available: http://ieeexplore.ieee.org/document/

6630680/

[44] P. Robuffo Giordano, A. Franchi, C. Secchi, and B. HH, “A passivity-based

decentralized strategy for generalized connectivity maintenance,” The Inter-

national Journal of Robotics Research, vol. 32, no. 3, pp. 299–323, 2013.

[45] P. Di Lorenzo and S. Barbarossa, “Distributed Estimation and Control

of Algebraic Connectivity over Random Graphs,” pp. 1–13, sep 2013.

[Online]. Available: http://arxiv.org/abs/1309.3200http://dx.doi.org/10.

1109/TSP.2014.2355778

[46] A. Bertrand and M. Moonen, “Distributed computation of the Fiedler vector

with application to topology inference in ad hoc networks,” in Signal Process-

ing, vol. 93, no. 5, 2013, pp. 1106–1117.

126

http://ieeexplore.ieee.org/document/6630680/
http://ieeexplore.ieee.org/document/6630680/
http://arxiv.org/abs/1309.3200 http://dx.doi.org/10.1109/TSP.2014.2355778
http://arxiv.org/abs/1309.3200 http://dx.doi.org/10.1109/TSP.2014.2355778

[47] T. Sahai, A. Speranzon, and A. Banaszuk, “Hearing the clusters of a graph:

A distributed algorithm,” Automatica, vol. 48, no. 1, pp. 15–24, 2012.

[48] M. A. Hsieh, A. Cowley, V. Kumar, and C. J. Taylor, “Maintaining net-

work connectivity and performance in robot teams,” Journal of Field Robotics,

vol. 25, no. 1-2, pp. 111–131, 2008.

[49] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas, “Maintaining Con-

nectivity in Mobile Robot Networks,” Springer Tracts in Advanced Robotics,

vol. 54, pp. 117–126, 2009.

[50] A. Cornejo, F. Kuhn, R. Ley-Wild, and N. Lynch, “Keeping mobile robot

swarms connected,” Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 5805 LNCS, pp. 496–511, 2009.

[51] D. Krupke, M. Ernestus, M. Hemmer, and S. P. Fekete, “Distributed cohesive

control for robot swarms: Maintaining good connectivity in the presence of

exterior forces,” in IEEE International Conference on Intelligent Robots and

Systems, vol. 2015-Decem, 2015, pp. 413–420.

[52] T. Soleymani, E. Garone, and M. Dorigo, “Distributed Predictive Connectivity

Control for Double Integrator Agents based on a Receding Horizon Scheme,”

in American Control Conference, ACC 2015, 2015, pp. 1369–1374.

[53] M. Schuresko and J. Cortés, “Distributed tree rearrangements for reachabil-

ity and robust connectivity,” SIAM Journal of Control Optimization, vol. 50,

no. 5, pp. 2588—-2620, 2012.

[54] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathematical

Journal, vol. 23, no. 98, pp. 298—-305, 1973.

127

[55] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,

N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gam-

bardella, and M. Dorigo, “ARGoS: A modular, parallel, multi-engine simulator

for multi-robot systems,” Swarm Intelligence, vol. 6, no. 4, pp. 271–295, 2012.

[56] M. Kudelski, L. M. Gambardella, and G. A. Di Caro, “RoboNetSim: An

integrated framework for multi-robot and network simulation,” Robotics and

Autonomous Systems, vol. 61, no. 5, pp. 483–496, 2013.

[57] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research on

cloud robotics and automation,” IEEE Transactions on automation science

and engineering, vol. 12, no. 2, pp. 398–409, 2015.

[58] G. Urdaneta, G. Pierre, and M. V. Steen, “A survey of DHT security

techniques,” ACM Computing Surveys, vol. 43, no. 2, pp. 1–49, 2011. [Online].

Available: http://portal.acm.org/citation.cfm?doid=1883612.1883615

[59] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and

comparison of peer-to-peer overlay network schemes,” IEEE Communications

Surveys & Tutorials, vol. 7, no. 2, pp. 72–93, 2005.

[60] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A scalable

content-addressable network. ACM, 2001, vol. 31, no. 4.

[61] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord:

A scalable peer-to-peer lookup service for internet applications,” ACM SIG-

COMM Computer Communication Review, vol. 31, no. 4, pp. 149–160, 2001.

[62] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location,

and routing for large-scale peer-to-peer systems,” in IFIP/ACM International

128

http://portal.acm.org/citation.cfm?doid=1883612.1883615

Conference on Distributed Systems Platforms and Open Distributed Process-

ing. Springer, 2001, pp. 329–350.

[63] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Ku-

biatowicz, “Tapestry: A resilient global-scale overlay for service deployment,”

IEEE Journal on selected areas in communications, vol. 22, no. 1, pp. 41–53,

2004.

[64] B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on Eco-

nomics of Peer-to-Peer systems, vol. 6, 2003, pp. 68–72.

[65] J. P. Ahulló, P. G. López, M. S. Artigas, and A. F. Gómez Skarmeta, “Sup-

porting geographical queries onto DHTs,” Proceedings - Conference on Local

Computer Networks, LCN, pp. 435–442, 2008.

[66] W. Wu, Y. Chen, X. Zhang, X. Shi, L. Cong, B. Deng, and X. Li, “Ldht:

Locality-aware distributed hash tables,” in 2008 International Conference on

Information Networking. IEEE, 2008, pp. 1–5.

[67] A. Pethalakshmi and C. Jeyabharathi, “Geo-chord: Geographical location

based chord protocol in grid computing,” International Journal of Computer

Applications, vol. 94, no. 3, 2014.

[68] S. Matsuura, K. Fujikawa, and H. Sunahara, “Mill: A geographical location

oriented overlay network managing data of ubiquitous sensors,” IEICE trans-

actions on communications, vol. 90, no. 10, pp. 2720–2728, 2007.

[69] F. Araujo, L. Rodrigues, J. Kaiser, C. Liu, and C. Mitidieri, “Chr: a dis-

tributed hash table for wireless ad hoc networks,” in 25th IEEE international

conference on distributed computing systems workshops. IEEE, 2005, pp.

407–413.

129

[70] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, “Exploiting network

proximity in distributed hash tables,” in International Workshop on Future

Directions in Distributed Computing (FuDiCo), 2002, pp. 52–55.

[71] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, Y. Li,

and Y. U. Fang, “Data-Centric Storage in Sensornets with GHT,

a Geographic Hash Table,” Tech. Rep., 2003. [Online]. Available:

https://link.springer.com/content/pdf/10.1023/A:1024591915518.pdf

[72] S. Zeadally, R. Hunt, Y.-S. Chen, A. Irwin, and A. Hassan, “Vehicular ad

hoc networks (vanets): status, results, and challenges,” Telecommunication

Systems, vol. 50, no. 4, pp. 217–241, 2012.

[73] R. Ravichandran, E. Prassler, N. Huebel, and S. Blumenthal, “A workbench

for quantitative comparison of databases in multi-robot applications,” in

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2018, pp. 3744–3750.

[74] D. Fourie, S. Claassens, S. Pillai, R. Mata, and J. Leonard, “Slamindb: Cen-

tralized graph databases for mobile robotics,” in Robotics and Automation

(ICRA), 2017 IEEE International Conference on. IEEE, 2017, pp. 6331–

6337.

[75] A. J. Fiannaca and J. Huang, “Benchmarking of relational and nosql databases

to determine constraints for querying robot execution logs,” Computer Science

& Engineering, University of Washington, USA, pp. 1–8, 2015.

[76] D. Sun, A. Kleiner, and C. Schindelhauer, “Decentralized Hash Tables For

Mobile Robot Teams Solving Intra-Logistics Tasks,” in Proc. of 9th Int. Conf.

on Autonomous Agents and Multiagent Systems. IFAAMAS, 2010, p. 10.

130

https://link.springer.com/content/pdf/10.1023/A:1024591915518.pdf

[77] C. Pinciroli, A. Lee-Brown, and G. Beltrame, “A tuple space for data sharing

in robot swarms,” in Proceedings of the 9th EAI International Conference on

Bio-inspired Information and Communications Technologies (formerly BIO-

NETICS). ICST (Institute for Computer Sciences, Social-Informatics and . . . ,

2016, pp. 287–294.

[78] V. S. Varadharajan, D. St-Onge, B. Adams, and G. Beltrame, “Soul: data

sharing for robot swarms,” Autonomous Robots, pp. 1–18, 2019.

[79] P. S. Almeida, C. Baquero, and V. Fonte, “Interval tree clocks,” in Interna-

tional Conference On Principles Of Distributed Systems. Springer, 2008, pp.

259–274.

[80] K. Yao, R. E. Hudson, C. W. Reed, D. Chen, and F. Lorenzelli, “Blind beam-

forming on a randomly distributed sensor array system,” IEEE Journal on

Selected Areas in Communications, vol. 16, no. 8, pp. 1555–1567, 1998.

[81] G. Frazier, Q. Duong, M. P. Wellman, and E. Petersen, “Incentivizing respon-

sible networking via introduction-based routing,” in International Conference

on Trust and Trustworthy Computing. Springer, 2011, pp. 277–293.

[82] B. McMahan, E. Moore, D. Ramage, and S. Hampson, “Communication-

efficient learning of deep networks from decentralized data,” in Proceedings

of the 20th International Conference on Artificial Intelligence and Statistics

(AISTATS).

[83] M. Everett, Y. F. Chen, and J. P. How, “Collision avoidance in pedestrian-rich

environments with deep reinforcement learning,” 2020.

[84] D. Peteiro-Barral and B. Guijarro-Berdiñas, “A survey of methods for dis-

131

tributed machine learning,” Progress in Artificial Intelligence, vol. 2, no. 1,

pp. 1–11, 2013.

[85] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S.

Rellermeyer, “A Survey on Distributed Machine Learning,” ACM Computing

Surveys, vol. 53, pp. 1–33.

[86] S. Savazzi, M. Nicoli, and V. Rampa, “Federated Learning with Cooperating

Devices: A Consensus Approach for Massive IoT Networks,” IEEE

Internet Things J., pp. 1–1, 2020, arXiv: 1912.13163. [Online]. Available:

http://arxiv.org/abs/1912.13163

[87] A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decentralized

federated learning,” in Third workshop on Bayesian Deep Learning (NeurIPS),

2018.

[88] A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar, “Peer-to-peer federated

learning on graphs,” arXiv preprint arXiv:1901.11173, 2019.

[89] J. George and P. Gurram, “Distributed deep learning with event-triggered

communication,” arXiv preprint arXiv:1909.05020, 2019.

[90] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free repli-

cated data types,” in Symposium on Self-Stabilizing Systems. Springer, 2011,

pp. 386–400.

[91] P. Ramanan, K. Nakayama, and R. Sharma, “Baffle: Blockchain based aggre-

gator free federated learning,” arXiv preprint arXiv:1909.07452, 2019.

[92] A. Sadeghian, V. Kosaraju, A. Gupta, S. Savarese, and A. Alahi, “Trajnet:

Towards a benchmark for human trajectory prediction,” arXiv preprint, 2018.

132

http://arxiv.org/abs/1912.13163

[93] S. Becker, R. Hug, W. Hübner, and M. Arens, “An evaluation of trajectory

prediction approaches and notes on the trajnet benchmark,” 2018.

[94] I. Gilitschenski, G. Rosman, A. Gupta, S. Karaman, and D. Rus, “Deep

context maps: Agent trajectory prediction using location-specific latent

maps,” IEEE Robotics and Automation Letters, vol. 5, no. 4, p. 5097–5104,

Oct 2020. [Online]. Available: http://dx.doi.org/10.1109/LRA.2020.3004800

[95] J. van den Berg, Ming Lin, and D. Manocha, “Reciprocal velocity obstacles

for real-time multi-agent navigation,” in 2008 IEEE International Conference

on Robotics and Automation, 2008, pp. 1928–1935.

[96] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body

collision avoidance,” in Robotics Research, C. Pradalier, R. Siegwart, and

G. Hirzinger, Eds., 2011, pp. 3–19.

[97] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997. [Online]. Available:

https://doi.org/10.1162/neco.1997.9.8.1735

[98] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude,” COURSERA: Neural networks for

machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[99] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,

N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gam-

bardella, and M. Dorigo, “ARGoS: a modular, parallel, multi-engine simulator

for multi-robot systems,” Swarm Intelligence, vol. 6, no. 4, pp. 271–295, 2012.

[100] “Argos large-scale robot simulations: examples,” https://www.argos-sim.info/

examples.php, accessed: 2020-04-15.

133

http://dx.doi.org/10.1109/LRA.2020.3004800
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.argos-sim.info/examples.php
https://www.argos-sim.info/examples.php

[101] G. Valentini, D. Brambilla, H. Hamann, and M. Dorigo, “Collective Perception

of Environmental Features in a Robot Swarm,” in Swarm Intelligence. Cham:

Springer International Publishing, 2016, pp. 65–76.

[102] J. T. Ebert, M. Gauci, F. Mallmann-Trenn, and R. Nagpal, “Bayes bots:

Collective bayesian decision-making in decentralized robot swarms,” in 2020

IEEE International Conference on Robotics and Automation (ICRA). IEEE,

2020, pp. 7186–7192.

[103] L. Riazuelo, M. Tenorth, D. Di Marco, M. Salas, D. Gálvez-López, L. Mösen-

lechner, L. Kunze, M. Beetz, J. D. Tardós, L. Montano et al., “Roboearth

semantic mapping: A cloud enabled knowledge-based approach,” IEEE Trans-

actions on Automation Science and Engineering, vol. 12, no. 2, pp. 432–443,

2015.

[104] R. Khodayi-mehr, Y. Kantaros, and M. M. Zavlanos, “Distributed state es-

timation using intermittently connected robot networks,” IEEE Transactions

on Robotics, vol. 35, no. 3, pp. 709–724, 2019.

[105] N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decentralized active

information acquisition: Theory and application to multi-robot SLAM,” in

2015 IEEE International Conference on Robotics and Automation (ICRA).

IEEE, 2015, pp. 4775–4782.

[106] K. Y. Leung, T. D. Barfoot, and H. H. Liu, “Decentralized cooperative slam for

sparsely-communicating robot networks: A centralized-equivalent approach,”

Journal of Intelligent & Robotic Systems, vol. 66, no. 3, pp. 321–342, 2012.

[107] R. Polikar, Ensemble Learning, C. Zhang and Y. Ma, Eds. Boston, MA:

Springer US, 2012.

134

[108] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Up-

croft, P. Abbeel, W. Burgard, M. Milford et al., “The limits and potentials of

deep learning for robotics,” The International Journal of Robotics Research,

vol. 37, no. 4-5, pp. 405–420, 2018.

[109] L. I. Kuncheva, Combining pattern classifiers: methods and algorithms. John

Wiley & Sons, 2014.

[110] M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung, “Revisiting

point cloud classification: A new benchmark dataset and classification model

on real-world data,” in Proceedings of the IEEE International Conference on

Computer Vision, 2019, pp. 1588–1597.

[111] G. Valentini, E. Ferrante, and M. Dorigo, “The best-of-n problem in

robot swarms: Formalization, state of the art, and novel perspectives,”

Frontiers in Robotics and AI, vol. 4, p. 9, 2017. [Online]. Available:

http://journal.frontiersin.org/article/10.3389/frobt.2017.00009

[112] M. Crosscombe, J. Lawry, S. Hauert, and M. Homer, “Robust distributed

decision-making in robot swarms: Exploiting a third truth state,” in

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2017, pp. 4326–4332.

[113] A. Mitra, J. A. Richards, S. Bagchi, and S. Sundaram, “Resilient dis-

tributed state estimation with mobile agents: overcoming byzantine adver-

saries, communication losses, and intermittent measurements,” Autonomous

Robots, vol. 43, no. 3, pp. 743–768, 2019.

[114] A. Tahbaz-Salehi and A. Jadbabaie, “On consensus over random networks,”

in 44th Annual Allerton Conference. Citeseer, 2006.

135

http://journal.frontiersin.org/article/10.3389/frobt.2017.00009

[115] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with

least-mean-square deviation,” Journal of Parallel and Distributed Computing,

vol. 67, no. 1, pp. 33–46, Jan. 2007.

[116] H. J. Leblanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient asymp-

totic consensus in robust networks,” Ieee Journal on Selected Areas in Com-

munications, vol. 31, no. 4, 2013.

[117] D. Albani, D. Nardi, and V. Trianni, “Field coverage and weed mapping by uav

swarms,” in 2017 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). Ieee, 2017, pp. 4319–4325.

[118] P.-Y. Lajoie, B. Ramtoula, Y. Chang, L. Carlone, and G. Beltrame, “DOOR-

SLAM: Distributed, online, and outlier resilient slam for robotic teams,” IEEE

Robotics and Automation Letters, vol. 5, no. 2, pp. 1656–1663, 2020.

[119] J. P. Queralta, J. Taipalmaa, B. C. Pullinen, V. K. Sarker, T. N. Gia, H. Ten-

hunen, M. Gabbouj, J. Raitoharju, and T. Westerlund, “Collaborative multi-

robot systems for search and rescue: Coordination and perception,” arXiv

preprint arXiv:2008.12610, 2020.

[120] J.-R. Ruiz-Sarmiento, C. Galindo, and J. Gonzalez-Jimenez, “Building multi-

versal semantic maps for mobile robot operation,” Knowledge-Based Systems,

vol. 119, pp. 257–272, 2017.

[121] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka, “3d bounding box

estimation using deep learning and geometry,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2017, pp. 7074–

7082.

136

[122] H. Carrillo, K. H. Brodersen, and J. A. Castellanos, “Probabilistic performance

evaluation for multiclass classification using the posterior balanced accuracy,”

in ROBOT2013: First Iberian Robotics Conference. Springer, 2014, pp. 347–

361.

[123] B.-S. Hua, Q.-H. Pham, D. T. Nguyen, M.-K. Tran, L.-F. Yu, and S.-K.

Yeung, “Scenenn: A scene meshes dataset with annotations,” in International

Conference on 3D Vision (3DV), 2016.

[124] T. G. Crainic, G. Perboli, W. Rei, and R. Tadei, “Efficient lower bounds and

heuristics for the variable cost and size bin packing problem,” Computers &

Operations Research, vol. 38, no. 11, pp. 1474–1482, 2011.

[125] G. E. Andrews, The theory of partitions. Cambridge university press, 1998,

no. 2.

137

	Introduction
	Multi-Robot Cooperation and Its Challenges
	Multi-Robot Communication for Cooperation
	Wireless Sensor Networks
	Robotic Networks

	Problem Statement
	Contributions
	Publications

	General Networking Assumptions
	Modeling Assumptions
	Performance Metrics
	Summary

	I Enabling Communication
	Connectivity Maintenance
	Introduction
	Related Work
	Problem Statement
	Robot Dynamics
	Robot Communication
	Objectives

	Approach
	Roles
	High-Level Behavior Specification
	Selection of a New Root
	The Outwards Algorithm
	The Inwards Algorithm
	Spare Management
	Robot Motion

	Evaluation
	Parameter Setting
	Simulated Experiments
	Real-Robot Validation

	Summary
	Open Problems

	II Organizing Communication
	Distributed Data Sharing
	Introduction
	Related Work
	Peer-to-Peer Networks
	Mobile Ad-Hoc Networks
	Vehicular Ad Hoc Networks
	Multi-Robot Networks
	Swarm Networks

	Problem Setup and Challenges
	Ad-hoc Robotic Network
	Inputs

	Methodology
	Overall Architecture
	User-level Querying
	Queried Data Propagation
	Self-organizing Data Management

	Evaluation
	Metrics and Parameters
	Simulated Experiments

	Summary
	Open Problems

	III Communication in Distributed Applications
	Data-Driven Federated Learning
	Introduction
	Related Work
	Preliminaries
	Federated Learning
	Application: Trajectory Forecasting

	Methodology
	System Design
	Datasets

	Evaluation
	Parameters of Interest
	Convergence Analysis
	Learning Round Timing
	Prediction Quality

	Summary
	Open Problems

	Collective Semantic Annotation
	Introduction
	Related Work
	Problem Statement
	Assumptions
	Distributed Storage Problem Formulation
	Annotation Consolidation Problem Statement

	Methodology
	Overview
	Distributed Storage Through SwarmMesh
	Annotation Consolidation Through Plurality Voting
	Robot Local Routine

	Evaluation
	Simulation Parameters
	Mapping Performance
	Memory-Related Performance
	Communication Load

	Summary
	Open Problems

	Conclusions
	Summary
	Future Work

