
 

 

The Genetics of Candida Infection in the Host Model 

Caenorhabditis elegans 

 

A  Major Qualifying Project Report 

submitted to the Faculty of  

Worcester Polytechnic Institute 

in partial fulfillment of the 

Degree of Bachelor of Science 

 

Submitted by: 

__________________________________ 

Elizabeth Degnall 

__________________________________ 

Ainaz FathiBitaraf 

__________________________________ 

Sabrina Sanchez 

Submitted on Wednesday April 25, 2012 

Submitted to: 

_______________________________________________ 

Professor Michael Buckholt, Major Advisor 

_______________________________________________ 

Professor Samuel Politz, Co-advisor 



2 
 

Abstract 
Candidiasis is an invasive and potentially life-threatening health condition that can be 

triggered by Candida Albicans infection in immunocompromised individuals. The significant 

increase in incidence of Candidiasis of recent years and currently ineffective drug treatments have 

motivated research into the genetics underlying Candida infection and host immune responses. To 

identify gene mutations that may confer resistance to C. albicans, we utilized the nematode C. 

elegans as a host model due to its ease of use in lab and its susceptibility to Candida infection. Our 

resistance screens isolated 2 putative mutants that displayed consistently healthy phenotype, 

movement, and production of offspring when exposed to the yeast over a period of several days.  
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Section 1: Background 

1.1: Introduction 

In humans, Candida albicans infection has the potential to develop into a serious or even life 

threatening health condition known as candidiasis. Currently, 10,500-42,000 cases of candidiasis 

occur every year in the US (Pfaller and Diekema, 2007). The basis behind this shocking number lies 

in the huge population at risk for Candida infection as this population includes every person that 

can be classified as immunocompromised, including diabetics and HIV patients (Ausubel et al., 

2011). In particular, a majority of candidiasis cases actually occur in hospital settings in people 

undergoing treatment with broad-spectrum antibiotics; in this situation alone, the mortality rate 

hovers between 45%-49% even with treatment, reflecting the emergence of antifungal-resistant C. 

albicans strains (Ausubel et al., 2011; Pfaller and Diekema, 2007). As such, the widespread 

occurrence and possibly life threatening nature of candidiasis makes research concerning the 

genetics underlying Candida infection and host response to such infection highly important to the 

field of medicine. To contribute to this body of research, our project focuses upon utilizing C. 

elegans as a model system to identify gene mutations that can confer resistance to Candida 

infections. 

We chose to use C. elegans, a soil nematode, as a model system to study Candida infection 

due to its ease of use in the lab and several similarities this organism shares with humans (Gravato-

Nobre and Hodgkin, 2005). Like humans, C. elegans is susceptible to C. albicans and, as such, can 

function as a working model of candidiasis, with most worms dying rapidly within a few days due 

to the infection (Ausubel et al., 2011). Therefore, infection of C. elegans by C. albicans can be used to 

screen for mutations in worm genes that allow for prolonged survival and, thus, confer resistance to 

yeast infection (Ewbank and Kurz, 2003). Research in this area has the potential to uncover 

information that may help in designing new, more effective treatments for Candida infection. 

1.2: Anatomy & Life Cycle of C. elegans 

C. elegans is a free-living nematode that feeds primarily on bacteria and lives in many 

temperate soil environments around the world (Atlun and Hall, 2009). The worm is covered by a 

tough exterior, known as the cuticle, to protect it from exposure to various dangers and potential 

pathogens. Like most nematodes, the body plan of C. elegans consists of an inner and outer tube, 

each of which consists of particular tissues and organs that make up the worm’s alimentary, 

reproductive, excretory, nervous, and muscle systems (Atlun and Hall, 2009). These systems allow 

the animal to display many different behaviors including, “foraging, feeding, defecation, egg laying, 



9 
 

dauer larva formation, sensory responses to touch, smell, taste, and temperature” (Atlun and Hall, 

2009). Additionally, the animal is able to participate in more complex behaviors such as “male 

mating, social behavior, and learning and memory” (Atlun and Hall, 2009). Thus, although the 

anatomy and body systems of C. elegans appear simple in comparison to other organisms, C. elegans 

is able to display and partake in many complex behaviors, making this nematode a useful model 

system. 

This nematode is primarily hermaphroditic and, through self-fertilization, a single worm is 

capable of laying approximately 300 eggs, each of which develops into worms genetically identical 

to the parent (Atlun and Hall, 2009). Male C. elegans also exist, and mating between these worms 

and hermaphrodites can result in anywhere between 1200-1400 progeny that are genetically 

unlike their parents (Atlun and Hall, 2009). Following hatching, C. elegans undergoes four larval 

stages, denoted L1-L4 (Atlun and Hall, 2009). Upon completion of the L2 stage, it is important to 

note that C. elegans may enter a different, arrested stage during which they are known as dauer 

larva. Transition to this stage 

occurs if environmental 

conditions are not favorable 

and, during this stage, the 

animal completely halts 

feeding behaviors and little to 

no movement occurs (Atlun 

and Hall, 2009). Thus, this 

stage acts as a survival 

mechanism. Worms will exit 

this dauer state upon 

appearance of more favorable 

conditions, proceeding to L4 (Atlun and Hall, 2009). In favorable conditions at about 25°C, the time 

frame for normal larval growth is about 12 hours in L1, 7 in L2, 7 in L3, and 9 hours in L4 (Brenner, 

1974). Thus, worms reach adulthood in about 3 days and adult worms typically live for about 3 

weeks, a lifespan which facilitates ease of maintenance in a laboratory setting. 

 

 

Figure 1. C. elegans in a laboratory setting. Reprinted by permission from 

Macmillan Publishers Ltd: [Nature Reviews Genetics], copyright (2001). 
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1.3: Use of C. elegans as a Model System in Research 

Study and use of C. elegans as a model organism began in the areas of molecular and 

developmental biology in 1974 by Sydney Brenner (Brenner, 1974). This nematode makes a highly 

useful model system for reasons that only continue to grow as research on C. elegans progresses. 

Among some of its benefits, this animal is very small in size – approximately 1mm in length (A Short 

History of C. elegans Research). This small size facilitates easy laboratory storage in petri dishes. 

Additionally, C. elegans has a very short life cycle 

of about 3 days under optimal conditions (Atlun 

and Hall, 2009). This makes it possible to study 

several generations of offspring. Furthermore, 

since each hermaphroditic worm produces about 

300 offspring through self fertilization, it is 

possible to maintain large worm populations in 

the lab on either solid agar or in liquid cultures. 

Other attractive qualities of this organism are its 

transparency, which allows for direct 

observation of internal structures, its compact 

genome, which is fully sequenced, and its 

completely mapped cell lineage (Atlun and Hall, 

2009). Genes in C. elegans can also be easily 

mutated either through chemical mutagenesis or 

exposure to ionizing radiation (Atlun and Hall, 

2009). In the succeeding decades since Brenner, 

use of C. elegans as a model to test various 

hypotheses and to elucidate unknown mechanisms has rapidly extended beyond just the areas of 

molecular and developmental biology. Other fields that utilize C. elegans as a model system include 

genomics, cell biology, neuroscience, aging, and innate immunity (Atlun and Hall, 2009). 

1.4: The Immune System: Innate and Adaptive Immunity 

Due to the constant challenge presented by pathogens in the environment, nearly all living 

organisms have developed some sort of strategy to defend themselves. This strategy, known in the 

form of the immune system, functions to recognize, eliminate, and in some cases, prevent 

reinfection of a particular pathogen. The two primary components of the immune system are innate 

and adaptive immunity, each of which responds differently to clear the host of infectious agents. 

Figure 2. Life Cycle Stages of C. elegans  

Taken from Kaeberlein & Sutphin, 2009. 
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Innate immunity is thought to have evolved first, with the adaptive immune system developing 

later to augment it (Baish et al., 2003). As such, the innate immune system is present in both 

vertebrates and invertebrates where it functions to recognize and rapidly raise non-specific 

defenses in response to an invading pathogen. In contrast, adaptive immunity, only present in 

vertebrates, responds slowly to infection and utilizes highly specialized cells to rid organisms of 

pathogens and to retain an immunological memory of a specific pathogen (Murphy et al., 2008).  

Although innate immunity developed long before adaptive, most current research in the 

field of immunology focuses upon adaptive immunity. The immunological memory of specific 

pathogens in adaptive immunity allows for the prevention of disease if host reinfection occurs and, 

thus, forms the basis for the development of vaccines. The clear importance of adaptive immunity 

to medicine is what initially drove researchers to overlook the innate immune system in favor of 

the adaptive (Ewbank and Kurz, 2003). However, with the discovery that innate immune 

mechanisms can initiate subsequent adaptive immune responses, immunologists have begun to 

expand research on innate immunity largely through the use of invertebrate models (Ewbank and 

Kurz, 2003). 

1.5: C. elegans, a model organism for the study of innate immunity 

 In recent years, C. elegans has become an important invertebrate model in the study of 

innate immunity. Past research on innate immunity centered mainly on Drosophila melanogaster, 

and current use of C. elegans augments these studies. Use of C. elegans began with the discovery that 

this organism does not possess an adaptive immune system and that its innate immune system 

remains capable of successfully distinguishing between pathogenic attacks and possesses inducible 

defense systems to protect the host (Gravato-Nobre and Hodgkin, 2005). These defenses are critical 

as C. elegans normally lives freely in the soil, an environment which could expose the worm to 

various physical, chemical, or biological dangers (Gravato-Nobre and Hodgkin, 2005). Thus, the 

clearly inducible defense mechanisms in C. elegans together with the relative ease of caring for this 

organism in a laboratory setting make this organism a powerful tool for studying the role of innate 

immunity in pathogen-host interactions. 

1.6: C. elegans strategies to avoid and prevent infection 

 

Although not considered part of the immune system proper, C. elegans possesses an evasion 

strategy and several physical barriers that allow it to avoid interaction with pathogens in the 

surrounding environment. The evasive strategy in C. elegans utilizes a sophisticated navigation 



12 
 

system to respond to different environmental cues and either move towards a nutritious food 

source or away from possible noxious factors (Gravato-Nobre and Hodgkin, 2005). Furthermore, 

worms are able to detect the presence of pathogens even near its food source and can move away 

or cease ingestion (Andrew and Nicholas, 1976). In addition to this strategy, the worm possesses 

several physical barriers to prevent entry of pathogens. The major protective barrier between C. 

elegans and the environment is the tough, extracellular cuticle which covers its outer surface (Atlun 

and Hall, 2009). Although not completely effective against all types of detrimental agents, the 

cuticle is able to prevent adherence and subsequent entry of many pathogens that the worm comes 

into contact with on a regular basis. Additionally, C. elegans possesses a pharyngeal grinder, an 

internal barrier against pathogen entry that functions to break up pathogens that enter through the 

mouth of the worm (Ewbank and Kurz, 2003; Gravato-Nobre and Hodgkin, 2005). The importance 

of these physical barriers in preventing pathogen entry can be clearly seen in the susceptibility of 

certain mutants such as srf-2/-3/-5, phm-2, and esp, which have impaired functioning of either the 

cuticle or the pharyngeal grinder (Hodgkin et al., 2000; Kim et al., 2002). In comparison to wild type 

worms, these mutants experience decreased survival and poor fitness when exposed to certain 

pathogens. 

1.7: Characteristics of Innate Immune Response in C. elegans 

 In cases where pathogens manage to penetrate the worms’ external defenses, innate 

immune mechanisms activate to eliminate the challenge. Of these mechanisms, several signaling 

pathways are known to function in C. elegans innate immunity.  Currently, at least six different 

signaling pathways are known to exist in C. elegans: the p38 MAP kinase pathway, the programmed 

cell death (PCD) pathway, the TGF-B-like signaling pathway, the DAF-2/DAF-16 pathway, the ERK 

pathway, and the Toll pathway (Alegado et al., 2003; Atlun and Hall, 2009). Successful activation of 

one or more of these pathways leads to the production of effector molecules, which function to 

either directly destroy or inhibit the growth of a pathogen (Alegado et al., 2003). The genes and 

pathways that activate in C. elegans in response to infection have been found to differ based on the 

intruding pathogen. Thus, activation of signaling pathways and the genes upregulated in these 

pathways allow for rapid host defense against different types of pathogens. 

The p38 MAP Kinase pathway is one of the major signaling pathways that takes part in the 

defense mechanisms of C. elegans (Kurz and Tan, 2004). Host response to pathogens by this 

pathway relies heavily upon the phosphorylation of PMK-1, the worm homologue of p38 MAPK, 

which can lead to the activation of antifungal and bacterial effectors; studies have elucidated 3 of 

these antifungal immune effectors to be fipr-22/23, cnc-4, and cnc-7 (Ausubel et al., 2011; Kurz and 
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Tan, 2004). Phosphorylation of PMK-1 has been found to be dependent upon the presence of TIR-1, 

making this element of the pathway likely to be upstream of PMK-1 (Kurz and Tan, 2004). Studies 

have also found that the interaction of TIR-1 with its partner RAB-1, another upstream element, is 

absolutely required for the induction of nlp genes when fungal infection occurs; these nlp genes 

code for neuropeptide-like proteins that have antimicrobial functions (Kurz and Tan, 2004). 

Additionally, the discovery that many members of this pathway are upregulated during C. albicans 

infection make the p38 MAPK pathway a likely candidate for mediating resistance against C. 

albicans and other fungal pathogens (Ausubel et al., 2011). Thus, the p38 MAPK pathway is an 

inducible signaling pathway whose primarily function is to increase host resistance to fungal 

pathogens by releasing antifungal effectors. 

 Two other pathways that function to increase host defenses in C. elegans are the DBL-1 and 

Toll pathways. The DBL-1 pathway is a homologue of the TGF-B signaling cascade in mammals and 

its primary functions include increasing resistance to bacterial infection as well as regulating worm 

body size and male tail formation (Kurz and Tan, 2004). The discovery that the DBL-1 pathway 

participates in resistance to bacterial infection came about due to the fact that mutant worms of the 

different elements of this signaling cascade were challenged by bacteria and were found to show a 

much lower resistance compared to WT animals (Kurz and Tan, 2004). Elements of this pathway 

include the DBL-1 ligand, the SMA-6/DAF-4 receptor kinases, and the SMA-2/SMA-3/SMA-4 

cytoplasmic components (Kurz and Tan, 2004). Phosphorylation of these cytoplasmic components 

activates the transcription of target genes in the nucleus; target genes for increasing bacterial 

resistance include lys-8 (a lysozyme encoding gene), and genes that encode proteins possessing c-

lectin domains which may assist in binding to pathogens (Kurz and Tan, 2004). Another pathway 

that helps to mediate resistance to pathogens is the Toll pathway. In contrast to the DBL-1 pathway, 

the Toll pathway does not increase host defenses by upregulating target genes. Rather, the Toll 

pathway plays a role in C. elegans’ evasion strategy by keeping the nematode away from potentially 

harmful pathogens (Alegado et al., 2003). The discovery of the Toll pathway’s role in C. elegans 

defense was made by observing a tol-1 mutant, with the tol-1 gene normally being part of the 

functional pathway, and finding that worms with this mutation possessed a behavioral defect that 

caused them to fail to avoid S. marcescens, a pathogenic bacteria that is typically avoided by wild 

type C. elegans (Alegado et al., 2003). Thus, the DBL-1 and Toll pathways both provide defense 

mechanisms – one with the upregulation of relevant genes and the other with behavioral changes - 

to protect C. elegans from infection. 
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 Another major and well-studied signaling pathway in C. elegans is the DAF-2/DAF-16 

pathway. This pathway normally regulates dauer formation and lifespan through the DAF-2 gene 

(Kurz and Tan, 2004). What makes this pathway interesting and the subject of many studies is the 

fact that loss of function of DAF-2 results in a long-lived phenotype and an increased resistance to 

gram negative and positive bacteria, suggesting a link between aging and immunity (Kurz and Tan, 

2004). Additionally, knockout studies on this pathway have found that all phenotypes associated 

with the loss of function daf-2 mutation can be completely suppressed by loss of function mutations 

in daf-16, a transcription factor and member of the pathway (Kurz and Tan, 2004). This seems to 

indicate that daf-2 mutants display resistance to pathogens because DAF-16 is normally under 

negative regulation by DAF-2; thus, loss of function in daf-2 de-represses DAF-16 (Ausubel et. al, 

2003). Analysis of the target genes that are normally regulated by DAF-16 has revealed the 

following categories: genes coding for stress response (heat shock proteins, antioxidant enzymes, a 

detoxification enzyme), genes coding for putative antimicrobial proteins (lys-7, lys-8), and a gene 

encoding a chitinase (Kurz and Tan, 2004). As such, with upregulation of all of these groups of 

genes, it is not surprising that in daf-2 mutants (in which DAF-16 is de-repressed) there is an 

increased resistance of C. elegans to pathogens. Thus, daf-2 mutants present with abnormally long 

lifespans and increased resistance to infection by pathogens, indicating a link between aging and 

immunity in the DAF-2/DAF-16 pathway. 

It is known that C. elegans mounts a rapid response towards pathogenic bacteria, and some 

studies have been done to characterize the immune response towards fungal pathogens. These 

studies use transcriptome profiling of nematodes during a C. albicans infection in comparison with 

transcriptome profiles of control, wild type worms (Ausubel et al., 2011). Such research has found 

that there is a clear, robust immune response to C. albicans, involving approximately 1.6% of the 

genome: 124 genes were upregulated 2-fold or higher and 189 genes were downregulated at least 

2-fold (Ausubel et al., 2011). Of the upregulated genes, several were identified to be putative 

antifungal immune effectors or antimicrobial peptides, which have been found to have antifungal 

activity in vivo (Ausubel et al., 2011. Additionally, chitinase genes were found to be strongly induced 

by C. albicans; these genes are thought to code for enzymes that act against chitin-containing 

organisms, such as pathogenic fungi like C. albicans (Ausubel et al., 2011). Other genes that were 

highly upregulated during C. albicans infection included genes encoding secreted proteins, 

detoxifying enzymes, and intestinally-expressed proteins (Ausubel et al., 2011). This is of 

importance as C. albicans enters the nematode through the mouth and establishes infection within 

the intestine. These more common defense genes were also found to be upregulated in C. elegans 
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response to bacterial infection. However, as a whole, the majority of C. albicans induced defense 

genes did not overlap with genes upregulated in C. elegans during bacterial infection – this suggests 

that C. elegans can recognize C. albicans as a fungal pathogen and can mount a specific immune 

response that mainly upregulates antifungal defense genes and, to a smaller extent, common 

defense genes (Ausubel et al., 2011). 

In addition to the upregulation of antifungal defense genes in C. elegans, a large number of 

genes are also downregulated during C. Albicans infection. Examination of these genes revealed a 

majority of them to be involved in binding to sugars or carbohydrates (Ausubel et al., 2011). Since 

bacterial cell walls contain sugar and carbohydrate components and these same genes were also 

upregulated in C. elegans during infection by different pathogenic bacteria, the downregulated 

genes were postulated to be “antibacterial defense effectors” (Ausubel et al., 2011). It is possible 

that this downregulation of unnecessary bacterial resistance genes when challenged by a fungal 

pathogen may be the result of an evolutionary tradeoff. This tradeoff would allow for a more 

focused immune response by C. elegans in order to produce specific antifungal effectors while 

inhibiting unneeded antibacterial defenses (Ausubel et al., 2011). Thus, C. elegans is able to 

differentiate between different groups of pathogens in order to mount a more specific and effective 

immune response to clear an infection. 

1.8: Candida Albicans, an opportunistic fungus 

Candida albicans is a commensalistic, diploid fungus that can naturally be found on the skin 

and mucosal surfaces of most humans. Under normal conditions, C. albicans exists as part of the 

natural flora present in the human digestive tract (Ausubel et al., 2011). However, this fungus has 

the potential to become pathogenic 

under altered circumstances such as 

a weakened host immune system or 

depletion of competing bacterial 

flora in the gut (Ausubel et al., 2011). 

In such cases, C. albicans can 

establish a superficial or more 

systemic infection, in which the yeast 

invades host tissues. The resulting 

fungal infection is classified broadly 

as candidiasis. The extent to which 

this infection is prevalent in the population can be seen by the fact that approximately 75% of 

Figure 3. Morphology of Candida Albicans  

Taken from Doctorfungus Corporation, 2000. 
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women will experience at least one case of Candida vaginitis, more commonly known as yeast 

infection; half of these women will experience recurring episodes throughout their lives (Ausubel et 

al., 2011). Candida infection in humans is not normally fatal; however, immunocompromised 

patients, such as AIDS patients, cannot mount a proper immune response to fend off the 

opportunistic fungi and these cases can have a 30 to 50% mortality rate (Ausubel et al., 2011; 

Lazzell et al., 2003). To exacerbate the situation, treatments for Candida infection have proven 

ineffective as this yeast has developed drug resistance to many of the common antifungal drugs 

currently in use (Anderson et. al, 2002). As such, with the incidence of drug-resistant opportunistic 

fungal infections on the rise, it is now more important than ever for research to focus upon C. 

albicans pathogenesis and host immune response to such infections (Anderson et. al, 2002). 

1.9: Pathogenesis of Candida Albicans in C. elegans 

Like most pathogenic fungi, C. albicans can exist in several different forms. As such, C. albicans 

possesses the ability to undergo “morphological transformation[s]” in order to exist as either yeast 

cells or hyphae, each of which contributes to pathogenesis in a host and which are thought to be 

triggered by different environmental conditions (Brown et al., 2002; Lazzell et al., 2003). Yeast cells 

are circular fungal cells that allow for dissemination of the fungus throughout the blood stream, 

thus enabling the pathogen to more easily spread and grow (Mylonakis et al., 2009). Following 

dissemination, the yeast cells can colonize mucosal surfaces at sites distant from point of entry and 

begin to multiply (Mylonakis et al., 2009). Hyphae are branchlike filamentous structures that also 

play an important role in host invasion and tissue destruction (Mylonakis et al., 2009). Studies 

indicate that in liquid media C. albicans undergoes a morphological change from yeast cells to 

hyphae; this fungal form is capable of piercing and destroying the nematode tissue, leading rapidly 

to death (Mylonakis et al., 2009). Although studies such as Mylonakis et al. have shown that hyphal 

formation is necessary for full virulent effect of C. albicans in C. elegans, yeast cells alone have 

proven to be sufficient to cause nematode death (Mylonakis et al., 2009). 

1.10: Interplay Between C. albicans and the C. elegans Innate Immune System 

During an active infection, C. albicans and the innate immune system of C. elegans interact 

with one another. This pathogen-host interaction pits a pathogen’s virulence (as determined by 

several factors) against a host’s defense mechanisms. In order for this interaction to occur, the host 

must first recognize that infection has occurred; in C. elegans, Candida infection has been known to 

primarily occur via ingestion of the yeast cells. Currently, studies show that C. elegans is able to 

recognize this infection by detecting factors associated with fungal virulence, such as the surface 
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molecules on a fungus, and by recognizing fungal PAMPs (pathogen-associated molecular patterns) 

(Alegado et al., 2003). PAMPs are conserved microbial molecules found in the cell wall of C. albicans 

which are usually recognized by mammalian neutrophils, monocytes, and macrophages (Alegado et 

al., 2003). In C. elegans, studies suggest that the majority of the nematode’s transcriptional response 

to infection may be mediated through a Pattern Recognition Receptors system that allows for 

fungal PAMPs detection through pathogen sensing and signaling (Alegado et al., 2003). 

Transcriptome profiling experiments and expression analyses of infected nematodes demonstrate 

that factors involved in fungal virulence also elicit a transcriptional response in C. elegans (Ausubel 

et al., 2011). However, little is known about whether these factors are derived either from the 

pathogen or from the host (such as factors resulting from injured tissue) (Ausubel et al., 2011). In 

recent studies, Moyes et al. found that “human epithelial cells integrate C. albicans PAMPs via 

pattern recognition receptors together with ‘‘danger signals’’ perceived by the host during invasive 

fungal growth” (2010). The same integration is thought to occur in the nematode to recognize a 

‘‘pattern of pathogenesis’’ that may be specific to fungal infection (Ausubel et al., 2011). In this way, 

C. elegans is able to identify a specific type of pathogen and mount an effective immune response. 

1.11: Implications for Future Research 

 

 Studies dealing with the pathogen-host interaction between C. elegans and C. albicans and, 

in particular, the identification of genes in C. elegans that confer resistance to the nematode hold 

important implications for the fields of medicine and immunology. First of all, research using C. 

elegans as the model system can help to elucidate poorly understood aspects of human innate 

immunity. This stands to be the case because most research into human immunology focuses on 

adaptive rather than innate immunity; therefore, discovery of resistance genes that may have 

analogs in humans is of particular importance since C. elegans only possesses innate immunity. 

Furthermore, this type of research may uncover valuable information necessary in designing new 

treatments for Candida infection. This is critical because Candida infection has the possibility to 

develop into a life threatening condition, particularly in immunocompromised humans. 

Additionally, current treatments for yeast infection have not proven effective and new therapies are 

necessary to combat this disease. Thus, genetic approaches and further research into the pathogen-

host interaction between C. elegans and C. albicans can lead to important developments in both the 

fields of medicine and immunology. 
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1.12: Conclusion 

Overall, our project focuses upon identifying gene mutations in C. elegans that can confer 

resistance to infection by C. albicans. Identification of such mutations can be accomplished by 

performing screenings that will kill non-resistant worms while allowing resistant worms to survive. 

The ease of use of C. elegans in these screenings, as well as easy handling, storage, and susceptibility 

to Candida infection make this nematode a powerful tool in studying pathogen-host interactions 

and innate immune responses. In this case, our project allows us to examine whether mutations to 

genes involved in C. elegans innate immunity can function to make worms more resistant to 

Candida infection or whether any other extraneous genes have a similar effect. Research in this area 

is important due to the frequency of Candida infection in the population, its increasing resistance to 

current drug treatments, and the high rate of mortality in immunocompromised patients that 

develop candidiasis. 
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Section 2: Methodology 

2.1: Stock Maintenance 

Stock plates of the N2 (wild type) strain were maintained at 20°C on NG agar dishes spotted 

with OP50 E. coli as the food source (Wood, 1988). Every five to six days, 3-4 L4 worms were 

transferred to fresh feeding dishes. Putative mutants isolated from screens were also kept at 20°C 

on NG agar feeding dishes. 

2.2: Mutagenesis Procedure 

 To stably induce mutations in the C. elegans genome, mutagenesis was performed using the 

mutagen ethyl methanesulfonate (EMS). This mutagen produces mutations through nucleotide 

substitution at a rate of 5x10-4 to 5x10-2 per gene (O’Neil, 2006). Three days before mutagenesis, 3-4 

N2 strain hermaphrodites at the L4 stage of the life cycle were transferred to five 60mm feeding 

dishes. EMS mutagenesis was carried out as described by Wood with minor changes (1988). During 

each spin down step in the procedure, centrifugation occurred at 20°C for 2 minutes with a speed of 

1,600 rpm. Following the four hour wait period and 3-4X washing with M9, EMS-treated worms 

were resuspended in 800ul M9 and pipetted to four 90mm NG agar recovery plates at 100ul each. 

These recovery plates were made following the same instructions as for feeding dishes; however, 

300ul of OP50 was spread over the plate using aseptic technique. EMS-treated worms were 

incubated overnight at 20oC.  

2.3: Preparation of Mutants for Survival Assay 

 The day after mutagenesis, 3-4 gravid animals at the L4/young adult stage were transferred 

to ten 60mm feeding dishes. These P0 worms were kept at 20oC for 3 days to allow the worms to 

produce F1 generation offspring. Worms were allowed to produce the F1 generation because some 

of these worms, if EMS mutation was successful, should have one copy of the mutation in their 

genome. Generally, such mutations are recessive (with only a small percentage being dominant) 

and, as such, a phenotype such as resistance to pathogen infection would not be visible for 

screening. Thus, all worms – F1 and P0 - were transferred to ten 90mm recovery plates using a 

small volume (0.8mL per transfer) of M9 to prevent oversoaking the plates. The worms were kept 

at 20oC for 3-4 days to allow for the production of F2 generation offspring. Some of these F2 worms, 

the offspring of the F1 generation, should have two copies of a mutation in their genome; two 

copies of a recessive mutation would allow for a visible phenotype (behavioral change, resistance to 

yeast, etc). To begin the survival assay, all worms were then transferred to approximately 30 

survival plates. Transfer of worms to these yeast plates was accomplished through use of small 
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volumes of M9 (0.8mL per plate). Survival plates were made by spreading a 1:100 dilution of 

SC5314 (C. albicans) on 90mm YPD plates. The 1:100 dilution was made by adding 100ul of an 

overnight culture of SC5314 to 900ul M9, and then transferring 100ul of this dilution to a second 

tube containing another 900ul M9. The overnight culture was kept at 30°C in the shaking incubator 

for 17 hours. Table 1 shows the weight and OD of the 1:100 dilution of an overnight SC5314 culture. 

Table 1. OD & Average Weight of Overnight Culture 

OD at 600nm Average Weight of Yeast Cells (g) 

0.03 AU (absorbance units) 0.0024 g 

 

OD was determined through the use of a spectrophotometer at 600nm. This OD was taken for the 

1:100 dilution of SC5314 overnight culture. The average weight of the yeast cells was determined 

by labeling four microfuge tubes 1-4 and weighing them on an analytical balance. These initial 

weights were recorded and microfuge tubes were then filled with overnight culture. These tubes 

were centrifuged at 13.2 rpm (x 1000) for 1 minute. The supernatant was then aspirated from each 

tube and a pipettor was used to take off the supernatant closest to the pellet. Microfuge tubes were 

reweighed and the average weight of the four pellets was determined. 

2.4: Primary Survival Assay 

 The worms present on the survival plates were incubated at 20°C and observed daily via 

microscope to monitor general worm survival. Worm survival was monitored on a subjective basis 

by looking at the approximate amount of worms on a plate that could move without stimulus 

(without being prodded by the worm pick) and the amount of worms that were either dead or 

dying (did not move without stimulus). Initial selection of putative mutants began at day four when 

approximately half of the worms plated were dead or dying; this selection continued until the death 

of approximately all the worms on a certain plate. Worms were selected based on age (L4-adult 

stage since they have been on the plate longest), phenotypically based on healthy appearance (not-

skinny or in the dauer stage), and ability to move non-sluggishly without stimulus as compared to 

the other worms on the plate. Figure 4 shows a healthy, non-dauer worm at the adult stage. 
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Figure 4. Phenotypic appearance of a selected putative mutant on a survival plate. 

Magnification Unknown. 

In comparison to the healthy appearance displayed by the worm in Figure 4, Figure 5 shows the 

appearance of a worm that would not be chosen to conduct further putative mutant screenings. 

 

Figure 5. Phenotypic appearance of a non-healthy worm on a survival plate. 

Magnification unknown. 

Figure 5 displays the phenotypic appearance of a worm that would not be selected to test for 

resistance to C. albicans. This worm, in addition to moving sluggishly on the survival plate, is not at 

the L4-adult stage and appears skinny. Following selection, worms were transferred one to a 

recovery plate and kept overnight at 20°C; the following day, these worms were transferred one to 

a feeding dish. 

2.5: Screening Putative Mutants 

2.5.1: Secondary Survival Screens 

 Following selection of putative mutants, multiple survival screens were run in order to 

determine whether the putative mutants actually possessed mutations that conferred them with 

heightened resistance to C. albicans pathogenesis. Resistant worms were classified as those which 

(during exposure to C. albicans) produced a larger amount of offspring relative to wildtype, 
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managed to survive exposure longer than wildtype worms, displayed a relatively healthy 

appearance (not skinny and in the dauer stage) and exhibited relatively wildtype movement (not 

sluggish and moving without stimulus) even after several days on survival plates. Repeated 

screenings were necessary in this case to ensure validity of initial results. A healthy phenotypic 

appearance for worms in this screen can be seen in Figure 4 and can be compared to the phenotypic 

appearance of a non-healthy worm in Figure 5. 

To accomplish these survival screens, putative mutants, each on an individual plate, were 

allowed to grow and produce offspring on feeding plates for approximately 3 days so that each 

plate consisted only of worms with the same genotype. Following this period of growth, 20 L4 

worms from each plate were transferred to 60mm survival plates. At the same time, 20 L4 worms 

from the N2 stock were also transferred to an identical survival plate to act as controls. As such, 

putative mutants were observed daily via microscope by checking for movement, production of 

offspring, general appearance, and ability to survive (relative to N2 worms). These putative 

mutants were compared to the appearance and behavior of N2 worms plated on the survival plate. 

Resistant worms, as characterized previously, were chosen to repeat the screen and to confirm 

results. 

2.5.2: Examining Resistance of Putative Mutants on C. albicans/E. coli Plates 

 To further examine resistance in putative mutants, the offspring of putative mutants were 

observed when plated in the presence of both Candida and E. coli, their normal food source. To 

carry out this experiment, a survival/E. coli plate was made by spotting C. albicans (as done 

previously for survival plates) and by adding an equal dilution (1:100) of an overnight culture of 

OP50 E. coli to the plate. The overnight culture was kept in the shaking incubator at 30°C for 15 

hours. Only one putative mutant was plated on each survival/E. coli plate and a plate containing a 

wild type worm was made as a control. The originally plated worm and its offspring were observed 

daily under a microscope, checking for both appearance and for amount of growth. 

2.6: Characterizing Putative Mutants 

2.6.1: Monitoring Lifespan 

 The lifespan of putative mutants was also monitored since some characterized mutants, 

such as daf-2, outlive N2 worms and exhibit increased resistance to certain pathogens. 

Determination of approximate lifespan was accomplished by transferring ten of each putative 

mutant at the L4 stage to separate feeding plates. At the same time, an identical feeding plate 

containing N2 worms was also set up to act as the control. Worms were kept at 20°C and every 3 
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days, the original worms plated were transferred to new plates to prevent overpopulation of young 

worms and to allow for easy monitoring. The number of original worms still alive was documented 

for each transfer. 

2.6.2: Dauer Check 

 To further attempt characterizing the putative mutants, worms were monitored for the 

temperature-sensitive dauer-constitutive (daf-c) mutation. As noted previously, worms will enter 

the dauer stage from L2 if placed under stressful environmental conditions; this dauer stage allows 

worms to resist pathogens and other stressors (Atlun and Hall, 2009). Thus, temperature-sensitive 

daf-c mutants will, at the restrictive temperature, enter the dauer stage regardless of whether 

stressors are present. To check worms for this mutation, 4-5 of each putative mutant at the L4 stage 

were transferred to separate feeding plates. At the same time, an identical feeding plate containing 

N2 worms was also set up to act as the control. Picking 4-5 L4 stage worms ensured the production 

of a large amount of offspring and plates were kept in an incubator at 25°C, the restrictive 

temperature, so as to determine whether offspring displayed the dauer phenotype. The dauer 

phenotype was identified through observation under a dissecting microscope as these worms are 

very thin, possess a thicker, ridged cuticle, and appear to have a darker coloration; comparison of 

the dauer phenotype and L1 worms can be seen in Figure 6 (Atlun and Hall, 2009).  

 

Figure 6. Comparison of Classic Dauer Phenotype and L1-stage C. elegans. Adapted from 

WormAtlas. 

Worms being tested for the daf-c mutation were kept at 25°C for 3-4 days and observed for the 

dauer-specific phenotype. 
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Section 3: Results 
 In order to begin the process of isolating putative mutants that display an increased 

resistance to C. albicans, several EMS mutagenesis procedures were run to increase the probability 

of inducing random mutations in the C. elegans genome. EMS-treated worms were then screened in 

order to isolate putative mutants and to determine whether these worms displayed consistent 

resistance characteristics to C. albicans over several trials. Characterization of possible mutations in 

putative mutants then began by determining lifespan and using differential interference contrast 

microscopy to observe for any visible phenotypic differences from wild type.  

3.1: Survival Assay for Initial Isolation of Putative Mutants 

 

3.1.1: Probability of Generating Mutation in Desired Gene 

 
To generate mutations in the C. elegans genome, worms were treated with the mutagen 

ethyl methanesulfonate. Ethyl methanesulfonate generates mutations at a rate of about 1 in 2000 

per gene and fails to alter a gene at a frequency of 1999 in 2000; as such, the probability of 

generating one mutation in a desired gene can be derived by the following calculation: 

(1/2 x 103)(1999/2 x 103)      +         (1/2 x 103)(1999/2 x 103)      +       (1/2 x 103)(1/2 x 103) 

Probability of hitting gene on 

one homologue  

Probability of hitting gene on 

other homologue  

Probability of hitting both 

homologues 

 

Thus, the probability of generating a desired mutation on either homologous chromosome can be 

seen to be 2 in 2 x 103, or 1 in 103 worms. The number of F1 worms was counted to determine 

whether enough worms were being screened to isolate putative mutants displaying resistance to C. 

albicans. Ten F1 progeny plates were made for each mutagenesis performed and it was found that 

approximately 720 F1 worms were on each plate. Thus, 720 F1 worms x 10 plates = 7200 worms. 

This indicates that approximately 7 times as many worms needed to isolate at least one putative 

mutant were being screened during each survival assay. 

3.1.2: Several putative mutants were isolated from four mutagenesis procedures. 

 Four mutagenesis procedures were performed to generate putative mutants. Selection of 

putative mutants began on day 4 of the screen and ended at day 9, when approximately all plated 

worms were dead or dying. Table 2 shows the putative mutants isolated from each survival assay, 

and the mutagenesis procedure from which they were derived. 
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Table 2. Putative Mutants isolated from each mutagenesis 

 

Mutagenesis Putative Mutants 

#1 10A, 10C, 3B, 9A, 9B, 4A, 4B, 2A, 2B, 8A, 8B 

#2 4, 5, 6, 7, 8 

#3 2-1, 7-1 
#4 1b, 7a, 3b, 10b 

 

Putative mutants were selected based on a phenotypically healthy appearance compared to other 

worms on the plate (as seen in Figures 4 & 5) and the ability to move non-sluggishly. Each putative 

mutant was placed on individual plates and labeled according to the plate they were isolated from 

as seen in Table 2. 

3.2: Secondary Screenings of Putative Mutants 

3.2.1: Isolated putative mutants were rescreened to identify true C. albicans resistance. 
To determine whether selected putative mutants displayed resistance to Candida albicans in 

a consistent and reproducible manner, we screened worms by exposing them to the yeast as 

described in Section 2.5.1: Secondary Survival Screens. Over the course of each screen, worms were 

monitored on a daily basis and observations concerning their appearance, movement, and offspring 

were recorded. To best compare putative mutants to N2, or wild type, worms, a scale was set up to 

rate putative mutants on each of the observations as seen in Table 3. 

Table 3. Rating Scale for Appearance, Movement, and Amount of Offspring 

Observation 1 2 3 4 5 
Appearance Scrawny/skinny Unhealthy Relatively 

healthy 
Moderately 

healthy 
Healthy like 

WT 
Movement Will not move 

without 
stimulus 

Sluggish Slightly 
sluggish 

Moderately 
normal 

WT-like 
movement 

Offspring None Few/small 
amount 

Some Many Abundant 

 

As seen in Table 3, ratings closer to 5 indicate that the putative mutants are displaying appearance, 

movement, and ability to produce offspring that is similar to N2 worms on a feeding dish and, thus, 

display increased Candida resistance, whereas ratings closer to 1 are indicative of poor survival on 

Candida plates. At the end of each screen, plates that were found to have high ratings on the scale 

were considered for rescreening. 
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3.2.2: Secondary Screens 1-4 for Putative Mutants Isolated from Mutagenesis 1 & 2 

 Screen 1 was run with the eleven mutants isolated from mutagenesis 1 & 2 and an N2 

control. The rating for each plate can be seen in Table 4.  

Table 4. Screen 1 of Isolated Putative Mutants from Mutagenesis 1 + 2 

Days Observations 8A 3B 4A 9A 10A 10C 4 5 6 7 8 WT 
1 Appearance 5 5 5 5 5 5 5 5 5 5 5 5 

Movement 5 5 5 5 5 5 5 5 5 5 5 5 
Offspring 1 1 1 1 1 1 1 1 1 1 1 1 

2 Appearance 5 2 4 4 5 4 3 3 2 4 2 2 
Movement 5 3 4 4 5 4 3 3 3 4 3 3 
Offspring 1 1 1 1 1 1 1 1 1 1 1 1 

3 Appearance 4 4 3 4 4 4 4 4 2 4 2 1 
Movement 4 4 2 4 4 4 4 3 3 4 3 2 
Offspring 2 1 2 1 2 1 1 2 1 1 1 1 

4 Appearance 4 3 1 3 4 3 2 3 2 3 3 1 
Movement 4 2 3 3 4 2 1 4 3 4 4 2 
Offspring 2 1 2 1 2 3 2 3 1 2 3 2 

5 Appearance 4 2 1 1 4 3 1 3 1 3 3 1 
Movement 3 2 2 2 4 3 2 4 2 4 4 2 
Offspring 2 1 2 1 2 3 2 3 1 2 3 2 

6 Appearance 3 2 1 1 4 2 1 3 1 2 3 1 
Movement 4 2 2 2 4 2 2 3 2 2 4 2 
Offspring 3 1 2 1 3 3 2 3 1 2 3 2 

7 Appearance 3 3 1 1 4 2 1 3 1 1 3 1 
Movement 4 2 2 2 3 2 2 2 2 2 2 2 
Offspring 3 1 2 1 4 3 2 3 1 2 3 2 

8 Appearance 3 2 1 1 3 2 1 2 1 1 2 1 
Movement 3 2 2 2 4 2 2 2 2 2 2 2 
Offspring 4 1 2 3 4 3 2 3 1 2 3 2 

9 Appearance 3 1 1 1 3 2 1 2 1 1 1 1 
Movement 3 2 3 3 4 3 2 2 2 2 2 2 
Offspring 4 1 3 3 4 3 2 3 1 2 3 2 

10 Appearance 3 1 1 1 3 2 1 2 1 1 1 1 
Movement 3 2 2 3 3 2 2 2 2 2 2 1 
Offspring 4 1 3 3 4 3 2 3 2 2 3 2 

11 Appearance 3 - 1 - 3 - - 2 - - 1 1 
Movement 3 - 3 - 3 - - 3 - - 2 1 
Offspring 4 - 3 - 5 - - 4 - - 3 2 

 

As seen in this table, Screen 1 was run for a longer time frame than necessary in order to determine 

when future screens could be halted while still allowing for a fairly accurate estimate of resistivity 

in comparison to N2 worms. Days 6-7 were found to be reasonable days to halt the screen as, by 

this point, plates with N2 worms were rated lowly and more than half of the N2 worms were dead.  
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 A second screen was run with the putative mutants from screen 1 that seemed to display 

the most resistivity to C. albicans. Thus, putative mutants 8A, 10A, 5, 8, and N2 worms (as a control) 

were included in the second screen as can be seen in Table 5.  

 

Table 5. Screen 2 of Putative Mutants Isolated from 
Mutagenesis 1 + 2 
Days Observations 8A 10A 5 8 WT 

1 Appearance 4 4 4 4 4 
Movement 4 4 4 4 3 
Offspring 1 1 1 1 1 

2 Appearance 4 4 4 4 3 
Movement 4 4 3 3 3 
Offspring 2 2 1 1 1 

3 Appearance 4 4 3 3 2 
Movement 4 4 3 3 3 
Offspring 3 3 2 2 2 

4 Appearance 4 4 2 2 1 
Movement 4 4 3 3 2 
Offspring 4 4 2 2 2 

5 Appearance 4 4 2 1 1 
Movement 4 4 2 3 2 
Offspring 5 5 3 2 2 

6 Appearance 4 4 1 1 1 
Movement 4 4 2 2 2 
Offspring 5 5 3 2 2 

 

Table 6. Screen 3 of Putative Mutants 
Isolated from Mutagenesis 1 + 2 
Days Observations 8A 10A WT 

1 Appearance 4 4 4 
Movement 4 4 4 
Offspring 2 2 2 

2 Appearance 4 4 4 
Movement 4 4 3 
Offspring 3 3 2 

3 Appearance 4 4 3 
Movement 3 4 3 
Offspring 3 3 2 

4 Appearance 4 3 2 
Movement 4 4 2 
Offspring 4 4 2 

5 Appearance 4 4 1 
Movement 4 4 2 
Offspring 4 4 2 

6 Appearance 4 4 1 
Movement 4 4 1 
Offspring 5 5 2 

 

By day 4 of Screen 2, the appearance, movement, and production of offspring of wild type worms 

were all rated two times lower than putative mutants 10A and 8A. At this same time point in the 

screen, putative mutants 5 and 8 were given only slightly increased ratings compared to wild type. 

By the final day of the screen, day 6, putative mutants 5, 8, and wild type worms received very 

similar low ratings whereas putative mutants 10A and 8A were given a rating of 4 for 

appearance/movement and a rating of 5 for offspring.  

The secondary screen was repeated, as seen in Table 6, to determine whether putative 

mutants were able to display resistance characteristics in a consistent manner over several trials. 

Once again, putative mutants 10A and 8A received ratings two times better than wild type worms 

by day 4 of the screen. Additionally, by day 6 of the screen putative mutants were given a rating of 4 

for appearance/movement, indicating moderately healthy phenotype/movement, and a rating of 5 
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for offspring, indicating the production of a large amount of offspring. A comparison between N2, 

8A, and 10A worms on day 4 of the screen can be seen in Figure 7. 

 

 

 

 

 

 

 

Figure 7. Comparison of 8A, 10A, and N2 growth at Day 4 on Survival Plates 

 

As seen in Figure 7, N2 worms display the scrawny/skinny phenotype by day 4 of the screen due to 

ingestion of C. albicans. In comparison, both putative mutants 10A and 8A continue to display the 

healthy phenotype, as previously characterized, even after exposure to the yeast for 4 days. As 

Figure 7 shows, 10A and 8A worms also produced a large quantity of offspring in comparison to the 

small amount of offspring produced by N2 worms.  

N2 

8A 

10A 

N2 
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A fourth screen was run with the same putative mutants as Screen 3 to further determine 

whether 10A and 8A worms were consistently displaying increased resistance to C. albicans. The 

daily ratings assigned to each survival plate can be seen in Table 7. 

Table 7. Screen 4 of Putative Mutants Isolated from Mutagenesis 1 + 2 

Days Observations 8A 10A WT 
1 Appearance 5 5 4 

Movement 5 4 4 
Offspring 1 1 1 

2 Appearance 5 5 4 
Movement 4 5 3 
Offspring 2 2 2 

3 Appearance 4 5 3 
Movement 4 5 2 
Offspring 2 3 2 

4 Appearance 4 5 3 
Movement 4 4 2 
Offspring 3 3 2 

5 Appearance 4 4 2 
Movement 4 4 2 
Offspring 4 4 2 

6 Appearance 4 4 2 
Movement 4 4 2 
Offspring 5 5 2 

 

As in previous screens, by day 4, wild type worms were given a rating two times less than 10A and 

8A worms. By day 6, putative mutants continued to be rated more highly than N2 worms, which 

displayed poor appearance, movement, and much less production of offspring. Thus, putative 

mutants 8A and 10A were found to consistently display a healthy phenotype, movement, and the 

ability to produce many offspring following extended periods of exposure to C. albicans on survival 

plates. 

3.2.3: Secondary Screen for Putative Mutants Isolated from Mutagenesis 3 & 4 

 A screen for the putative mutants isolated from mutagenesis 3 and 4 was also set up in the 

same manner as previous screens. As such, Table 8 displays the rating for each plate during the 

days the screen was run.  
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Table 8. Screen 1 of Putative Mutants Isolated from Mutagenesis 3 + 4 

Days Observations 1b 3b 7a 10b 7-1 2-1 WT 
1 Appearance 4 4 4 4 5 4 4 

Movement 5 5 5 4 4 5 4 
Offspring 1 1 1 1 1 1 1 

2 Appearance 4 4 4 4 4 4 4 
Movement 3 3 4 5 4 5 4 
Offspring 1 1 1 1 1 1 1 

3 Appearance 3 4 3 3 2 3 3 
Movement 2 2 3 3 3 3 2 
Offspring 2 2 1 1 1 2 2 

4 Appearance 3 3 3 2 2 1 2 
Movement 3 2 2 2 2 2 2 
Offspring 2 2 1 1 2 2 2 

5 Appearance 2 2 2 2 2 1 1 
Movement 3 3 2 2 2 2 2 
Offspring 2 2 1 2 2 2 2 

6 Appearance 2 2 2 2 2 1 1 
Movement 2 3 3 2 2 2 2 
Offspring 2 2 1 2 2 2 2 

 

As seen in Table 8, by day 4, the putative mutants used in this screen were rated similarly to N2 

worms.  The movement of putative mutants was found to be sluggish and their appearance ranging 

from moderately healthy to unhealthy, like wild type worms. Production of offspring was found to 

be low for all worms screened, with most plates receiving ratings of 1-2. By the final day of the 

screen, day 6, putative mutants continued to be given low ratings similar to N2 worms. Thus, 

putative mutants isolated from mutagenesis 3 and 4 were determined to not display resistivity to C. 

albicans. 

3.2.4: Resistance of Putative Mutants on E. coli/Survival Plates 

To further examine the increased resistance to Candida observed in putative mutants 10A 

and 8A, we plated one L4-stage worm on a survival plate that also contained an equal dilution of E. 

coli OP50, the normal food source for C. elegans. If the putative mutants display true resistance to 

the yeast, then the originally plated worm should be able to grow up to the adult stage with a 

healthy phenotype and produce offspring of its own. In comparison, worms that do not display 

resistance to Candida will also grow to adulthood, but their phenotype will appear skinny/scrawny 

and offspring production will be limited. E. coli was included on the survival plates because smaller 

worms are unable to ingest yeast cells (due to the large size of the yeast cells and the comparatively 

smaller size of the worm mouth). As such, by adding E. coli to the plate, the offspring of the initially 

plated worm will be able to ingest the E. coli until they are large enough to ingest the yeast cells. 
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This experiment is a good test for resistance as the offspring of truly resistant worms should be 

able to grow to adulthood and begin producing their own offspring even in the presence of Candida. 

Figure 8 shows N2, 10A, and 8A worms after 9 days on survival/E. coli plates. 

  

 

Figure 8. Putative Mutants 10A and 8A on E. coli/C. albicans plates after 9 Days 

Magnification unknown. 

 

3.3: Initial Characterization of Putative Mutants 

 

3.3.1: Differential Interference Contrast Microscopy at 400X Magnification 

To determine whether any visible phenotypic differences existed in putative mutants 10A 

and 8A compared to N2 worms, we examined all worms using differential interference contrast 

microscopy. As seen in Figure 9, these worms were examined following 3 days on survival plates 

and the intestinal lumen can be seen for all three groups of worms.  

Putative mutants 10A and 8A grew up to 

adulthood and produced many offspring that 

were also able to grow to the adult stage with a 

healthy phenotype.  

In comparison, the N2 worms grew to the adult 

stage with a skinny/scrawny phenotype and 

produced very few offspring. 

 

N2 8A 

  10A 
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Figure 9. Differential Interference Contrast Images of the C. elegans Intestine at 400X 

 

The intestine was examined in particular because it is the site for digestion and absorption of the 

yeast cells that the worms have ingested while on the survival plates. Examination of this structure 

N2 

8A 

10A 

Intestinal lumen* 

* 

* 
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does not reveal any visible phenotypic difference that may account for the increased resistance to C. 

albicans noted in putative mutants 10A and 8A. 

3.3.2: Putative mutants do not display the daf-2 phenotype. 

 The lifespan of putative mutants isolated from mutagenesis 1 and 2 was monitored in order 

to determine whether any of the worms displayed an extended lifespan, a phenotype associated 

with the daf-2 mutation. A lifespan check was conducted in order to check worms for this 

phenotype because daf-2 mutations have been known to result in increased survival in the presence 

of pathogens and other environmental stresses. As such, results of this experiment will reveal 

whether any of the putative mutants are daf-2 mutants. Lifespan monitoring was accomplished by 

plating 10 of each putative mutant to a feeding dish and transferring these worms to new dishes 

every 3-4 days. This experiment was conducted once due to its length. The lifespan for putative 

mutants 8A and 10A can be seen in relation to N2 worms in Figure 10. 

 

Figure 10. Average Lifespan for Putative Mutants 10A and 8A 

 

As seen in Figure 10, the putative mutants were found to have a lifespan almost identical to N2 

worms, which do not possess the daf-2 mutation. To statistically check this observation, a single 

factor ANOVA was run on N2 worms and putative mutants 10A and 8A as can be seen in Table 9. 
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Table 9. Single Factor ANOVA on 

10A, 8A, and N2 worms. 

     

       SUMMARY 
      Groups Count Sum Average Variance 

  10A 23 61 2.652174 13.05534 
  8A 23 65 2.826087 15.60474 
  N2 23 65 2.826087 13.96838 
  

       

       ANOVA 
      Source of 

Variation SS df MS F P-value F crit 

Between Groups 0.463768 2 0.231884 0.016319 0.983817 3.135918 

Within Groups 937.8261 66 14.20949 
   

       Total 938.2899 68         

 

As seen in Table 9, the p-value found for N2 worms and putative mutants was 0.984. This is larger 

than a p-value of 0.05 and, thus, indicates that there is no significant difference between the 

lifespans found for the groups. 

Although a daf-2 mutant was not available to act as a control in this lifespan screen, Figure 10 

shows the lifespan of such a mutant as determined by Kaberlein & Sutphin (2009). As such, the 

lifespan for daf-2 mutants can be seen to extend to day 62. In comparison, by day 20 after plating, 

less than half of the worms initially plated for 8A, 10A, and N2 worms were still alive. Thus, putative 

mutants 8A and 10A were concluded to not possess the daf-2 phenotype.  

The other putative mutants isolated from mutagenesis 1 and 2 were also examined for 

length of lifespan and can be seen in Figure 11.  
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Figure 11. Average Lifespan for Putative Mutants Derived from Mutagenesis 1 & 2 

 

As with putative mutants 10A and 8A, a majority of the other putative mutants appear to have a 

lifespan similar to N2 worms. However, three putative mutants (3B, 6, and 4) seem to have shorter 

lifespans than the other groups tested. To determine whether a significant difference between the 

putative mutants and N2 worms was present, a single factor ANOVA was run as seen in Table 10. 
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Table 10. Single Factor ANOVA on putative mutants and N2 worms. 

SUMMARY 
      Groups Count Sum Average Variance 

  5 13 75 5.769231 15.35897 
  2A 13 68 5.230769 13.02564 
  9A 13 58 4.461538 17.60256 
  10 11 23 2.090909 16.09091 
  8B 13 27 2.076923 14.24359 
  6 13 51 3.923077 18.07692 
  4 13 55 4.230769 18.85897 
  3B 13 40 3.076923 13.41026 
  4A 13 59 4.538462 19.10256 
  7 13 67 5.153846 16.64103 
  WT 13 65 5 13.83333 
  10C 13 61 4.692308 11.5641 
  

       
       ANOVA 

      Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 196.4041 11 17.85492 1.141288 0.333939 1.856652 
Within 
Groups 2221.524 142 15.64454 

   
       Total 2417.929 153         

 

The ANOVA found a p-value of 0.334, which is larger than a p-value of 0.05 and, as such, indicates 

that there is no significant difference between the groups tested. Thus, these putative mutants were 

determined to possess a lifespan not significantly different from N2 worms and, thus, putative 

mutants were determined to not possess the daf-2 phenotype. 

3.3.3: Putative mutants 8A and 10A do not display the daf-constitutive phenotype. 

 Another type of daf-2 mutation, known as daf-constitutive, allows worms to enter the dauer 

state at the restrictive temperature of 25°C. In N2 worms, entry into the dauer state is normally 

triggered by exposure to pathogens or environmental stresses and, thus, acts as a survival 

mechanism. However, daf-constitutive worms are able to enter the dauer state even in the absence 

of environmental stresses when plated at the restrictive temperature. As such, to determine 

whether isolated putative mutants possessed the daf-constitutive phenotype, worms were plated on 

new feeding dishes and incubated at 25°C. The worms were observed daily to determine whether 

their offspring displayed the dauer phenotype in response to incubation at 25°C. After 5 days, none 
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of the offspring of the putative mutants displayed the dauer phenotype and appeared similar to the 

offspring of N2 worms. 
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Section 4: Discussion 
 The main goals of this project were to isolate C. elegans putative mutants that display 

consistent resistance to Candida albicans infection and to begin the process of characterization of 

the possible mutations. These goals were accomplished by screening a significant number of EMS-

treated worms to increase the probability of finding relevant mutations and by defining Candida 

albicans resistance in terms of C. elegans characteristics such as phenotype, movement, and 

production of offspring. The isolation and later characterization of putative mutants that are 

resistant to C. albicans has the potential to uncover information that may help in designing new, 

more effective treatments for Candida infection in humans. 

4.1: Primary Screening of EMS-treated Worms 

 

Seven times the number of worms necessary to have a statistical chance of isolating at least 

one Candida resistant mutant were screened during each survival assay.   

 To ensure that enough worms were being screened that we had a statistical chance of 

isolating a putative mutant displaying resistance to C. albicans, the probability of generating a 

mutation in a relevant gene was calculated. This calculation found that statistically 1 in 103 worms 

would possess such a mutation. Thus, each primary screen needed to include 103 or more worms in 

order to increase the chance of isolating a relevant mutant. By counting the number of F1 worms, it 

was estimated that 7200 worms were being screened during each trial. As such, primary screenings 

were found to have a high probability of isolating relevant mutants since seven times the minimum 

number of worms were being screened with each trial. 

Following four days on survival plates, primary screening isolated several putative mutants 

based on healthy phenotype and movement. 

 After each mutagenesis procedure, primary screening began by plating all chemically 

treated worms on survival plates.  By day 4 of this screen approximately half of the worms on each 

survival plate were dead or dying. Dying or unhealthy worms were noted to have a scrawny/skinny 

appearance and either moved sluggishly or did not move without stimulus. As such, selection of 

putative mutants began after day 4 of the screen and continued until day 9. Putative mutants were 

selected based on two criteria: healthy appearance and good movement. Additionally, the selected 

putative mutants were at the L4 to adult stage because worms at younger larval stages are not able 

to ingest large yeast cells and, thus, these worms enter the dauer stage due to their inability to 

ingest the yeast as a food source. Because it was estimated that approximately seven relevant 

mutants were being generated per mutagenesis procedure, several candidates were isolated from 
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each primary screening as seen in Table 2. In particular, mutagenesis 1 seemed to result in the 

isolation of the most putative mutants. This most likely occurred due to inexperience in identifying 

worms that were the most likely candidates to display resistance to Candida.  

4.2: Secondary Screening of Initially Isolated Putative Mutants 

 

Putative mutants 10A and 8A were found to display consistently healthy phenotypes, 

movement, and production of offspring after extended periods on survival plates.  

 We determined whether initially isolated putative mutants displayed attributes of 

resistance against Candida albicans, by plating the worms on survival plates. This allowed the 

phenotype, movement, and production of offspring to be more easily observed in many worms of 

the same genotype. Wild type, N2, worms were plated under the same conditions as putative 

mutants to act as controls.  As such, the different characteristics of Candida resistance were rated 

on a scale from 1-5 as seen in Table 3, with 5 indicating phenotype, movement or production of 

offspring similar to N2 worms plated on normal feeding dishes. Thus, at the end of each screen, 

worms with ratings lower or very similar to the N2 worms on the survival plates were not 

considered for further screenings.  

 The results of Screen 1 of putative mutants isolated from mutagenesis procedures 1 and 2 

can be seen in Table 4. By day 6 of the screen, four isolated putative mutants were given a rating of 

3 or higher in all three categories of phenotype, movement, and production of offspring as 

compared to the wild type worms, which were given a rating of 2 or lower. These ratings indicate 

that putative mutants 8A, 10A, 5, and 8 were observed to possess a range of appearance, movement, 

and production of offspring from relatively healthy to completely healthy at day 6 of the screen, 

whereas wild type worms were observed to display unhealthy appearance, sluggish movement, and 

few offspring. Additionally, putative mutants 8A and 10A can be seen to have slightly increased 

ratings for resistance characteristics as compared to putative mutants 8 and 5. A second screen was 

run under the same conditions, with only putative mutants 8A, 10A, 5, and 8. Ratings for each day of 

screen 2 can be seen in Table 5. At the end of this screen (day 6), putative mutants 10A and 8A 

continued to display higher ratings than wild type worms, whereas putative mutants 5 and 8 were 

observed to display ratings that were more comparable to wild type.  

Two further screens were run with putative mutants 10A, 8A, and wild type worms under 

the same conditions as seen in Table 6 and Table 7; these screens yielded the same observations. 

Thus, putative mutants 10A and 8A were found to display characteristics of resistance to C. albicans 
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in a consistent manner throughout the screening process. As seen in Figure 7, the putative mutants 

displayed a healthy phenotype as compared to the scrawny/skinny phenotype observed in wild 

type worms. Additionally, 8A and 10A worms consistently produced a large number of offspring, 

indicative of health, whereas wild type worms produced many fewer offspring. Both putative 

mutants 8A and 10A also displayed consistently non-sluggish movement, resembling wild-type 

movement on a feeding dish. 

An additional screen was run with putative mutants isolated from mutagenesis procedures 

3 and 4 as seen in Table 8. However, by day 6 of the screen, none of these putative mutants were 

observed to display increased resistance to C. albicans as indicated by ratings that were comparable 

to the wild type control. Thus, none of the putative mutants isolated from mutagenesis procedures 

3 and 4 were considered for further rescreening.  

In examining the limitations of these screens, it is important to note that ratings for the 

putative mutants were primarily qualitative, as each daily rating was based on observations of each 

plate by use of a microscope. Thus, although some amount of subjectivity was involved in taking 

observations, this subjectivity was limited by defining and looking specifically for 3 main 

characteristics of C. elegans behavior and phenotype that could be indicative of resistance to 

Candida. Additionally, running the screens several times helped to ensure that the observations 

being made were consistent over several trials. 

4.3: Survival of Putative Mutants on C. albicans/E. coli Plates 

 

When plated on survival/E.coli plates, putative mutants 10A and 8A produced many 

offspring that were able to grow up to the adult stage with a healthy phenotype. 

 To further examine the resistance of putative mutants, one 10A worm and one 8A worm 

was plated on separate survival plates that also contained an equal dilution of OP50, the normal 

food source for C. elegans in the lab. The offspring of these worms were able to feed on the E. coli 

until they reached a large enough size to ingest the yeast cells. As such, the offspring of worms that 

display an actual resistance to Candida should be able to grow to adulthood on these plates, display 

a healthy phenotype, and produce their own offspring. In contrast, the offspring of non-resistant 

worms should be able to grow (due to the presence of OP50 on the plate); however, there will be a 

comparatively small amount of offspring, and these offspring will appear scrawny/skinny. As seen 

in Figure 8, 10A and 8A worms produced a large amount of offspring and were able to grow up to 

the adult stage with a healthy phenotype. In comparison, N2 worms display a skinny/scrawny 
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phenotype and had little production of offspring. This indicates that although N2 worms were 

plated with their normal food source, OP50, the presence of Candida on the plate still restricted 

their growth. Putative mutants, in contrast, were able to grow well even in the presence of the 

yeast. Thus, these results further support the observation that putative mutants 10A and 8A display 

an increased resistance to Candida. 

4.4: Differential Interference Contrast Microscopy 

 

DIC images of the intestinal lumen of 10A and 8A worms do not reveal any visible phenotypic 

differences from wild type. 

 The intestinal lumen of 10A and 8A worms was observed under 400X magnification using 

differential interference contrast (DIC) microscopy. This technique enhances the contrast of 

unstained samples and allows for visualization of the internal structures of C. elegans. As seen in 

Figure 9, the intestine of wild type worms appears as a thin tube that extends down the body cavity 

of the worm. The intestine is the location for the digestion of the food, normally bacteria, consumed 

by C. elegans. In this case, worms primarily fed on C. albicans present on the survival plates used for 

both primary and secondary screenings. Thus, the appearance of the intestinal lumen, where 

digested food is absorbed, was examined in order to determine whether the resistance to yeast 

noted in putative mutants 10A and 8A resulted from visible, phenotypic abnormalities. As seen in 

Figure 9, no major physical differences can be noted between the intestine of wild type worms and 

putative mutants 10A and 8A. This suggests that a difference in visible physical structure is not the 

means by which 10A and 8A worms are better able to survive C. albicans relative to wild type. 

However, this observation does not necessarily indicate that no differences in digestion or 

absorption of yeast cells are present.   

Further experiments should be conducted in order to monitor intake of yeast cells over 

several days in 10A and 8A worms. These types of experiments could be accomplished by use of a 

fluorescently labeled C. albicans strain. In this way, 10A and 8A worms could be kept on separate 

plates streaked with the fluorescently labeled strain and, after each 24 hour period, these worms 

could be observed under a fluorescent microscope to view accumulation of the fluorescent yeast 

cells in the intestinal lumen. Ingestion of yeast by putative mutants could be compared to N2 

worms by keeping the N2 worms on C. albicans streaked plates as well. Additionally, the intestine of 

putative mutants and N2 worms on the yeast plates should be compared to the intestine of putative 

mutants and N2 worms on feeding dishes with their normal food source. This would allow for the 

determination of whether putative mutants ingest C. albicans differently than wild type, which 
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could be the means by which 10A and 8A worms display increased resistance to the yeast. 

Furthermore, experiments with a fluorescent C. albicans strain could allow for the determination of 

when worms are large enough to ingest the yeast cells. As mentioned previously, smaller worms are 

unable to ingest yeast cells due to the size of yeast cells and the comparatively much smaller size of 

the worms’ mouth. Thus, worms at different life stages could be kept on fluorescent yeast plates 

and observed under a fluorescent microscope to determine at what size/life stage worms are large 

enough to ingest the yeast cells. 

4.5: Checking Putative Mutants for the daf-2 phenotype. 

 

Putative mutants 10A and 8A do not possess the daf-2 phenotype. 

The C. elegans gene, daf-2, is involved in a well-characterized signaling pathway that is 

thought to play a role in both aging and immunity through the regulation of worm dauer formation. 

In response to a lack of food, the presence of pathogens, or other environmental stresses, wild type 

worms are able to enter an alternative, arrested state known as dauer, which gives the worms an 

increased ability to survive the stressful conditions. Thus, mutations in the daf-2 gene often result 

in changes to dauer formation, aging, or response to pathogens. In particular, one well-known daf-2 

mutation results in both increased lifespan and ability to fend off pathogens. To determine whether 

isolated putative mutants 8A and 10A possessed this particular mutation, ten worms were plated 

on separate feeding dishes and transferred every three days to prevent overpopulation. In this way, 

the lifespan for 10A and 8A could be determined by how long worms persisted on feeding dishes. 

N2 worms were plated under the same conditions to act as controls. Following development into 

adults, N2 worms have been found to live approximately 3 weeks under normal conditions on agar 

plates with OP50 as a food source. As seen in Figure 10, more than half of the ten N2 worms 

originally plated were dead by the three week mark. This same pattern was observed for 8A and 

10A worms. To statistically determine whether a significant difference existed between putative 

mutants and N2 worms, a single factor ANOVA was run on the groups. As seen in Table 9, the 

groups were given a p-value of 0.984, which is larger than the 0.05 needed to indicate significance 

and, as such, there was no significant difference between the lifespan of 10A/8A worms and N2 

worms. Thus, initial tests suggest that putative mutants 8A and 10A do not possess the daf-2 

phenotype of increased longevity, although further DNA sequencing could verify this finding. 

Another daf-2 mutation, known as daf-constitutive or daf-c, is a temperature sensitive 

mutation that results in dauer formation at 25°C even in the absence of stressful environmental 
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stimuli. This constitutive dauer formation results in an increased ability of these worms to survive 

pathogens and other stress factors. To determine whether putative mutants 8A and 10A possess 

this mutation, each putative mutant was plated on separate feeding dishes and incubated at the 

restrictive temperature of 25°C where they were allowed to produce offspring for three days. N2 

worms were also plated under the same conditions. Offspring of 8A, 10A, and N2 worms were then 

observed under the microscope and were not found to have entered the arrested dauer stage, 

which is characterized by a darker coloration, thin appearance, and a thicker, more ridged cuticle 

(Atlun and Hall, 2009). This experiment was performed only once since the offspring of putative 

mutants will either enter the dauer stage or will fail to enter this stage when incubated at the 

restrictive temperature. Thus, putative mutants 10A and 8A were concluded to not possess the daf-

c phenotype. 

4.6: Techniques for Characterization of Putative Mutants 

 To further characterize the possible mutations present in the putative mutants, 

complementation assays and other genetic mapping techniques may be utilized to identify the 

chromosome and specific gene in which the mutation resides. 

4.6.1: Complementation Assays 

 A complementation assay is a genetic test utilized to assign genes to one of the six 

chromosomes in C. elegans. To perform a complementation test, both the isolated mutation of 

interest and the test mutation must be recessive (Yook, 2005). The test mutation is a mutation that 

has already been mapped to a particular genetic locus and whose resulting phenotype is already 

known (Yook, 2005). As such, during the complementation test, if combining the test mutation in 

trans with the mutation of interest produces a worm with wild type phenotype, then the two 

mutations are alleles of different genes (Yook, 2005). The wild type phenotype results from the fact 

that a wild type copy of each mutated gene is present. In contrast, if combining the test mutation in 

trans with the mutation of interest does not produce the wild type phenotype, then the mutations 

must be alleles of the same gene as they cannot restore the wild type phenotype (Yook, 2005). Thus, 

no wild type copy of the mutated gene is present to rescue the phenotype. A diagram of this concept 

can be seen in Figure 12. 
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Figure 12. Examples of Complementation and Non-Complementation 

Taken from Yook, 2005. 

Combining the test mutation in trans with the mutation of interest thus means that the test 

mutation should be present on one homologous chromosome and the mutation of interest should 

be present on the other. This can be accomplished by mating a homozygous hermaphrodite that 

possesses the recessive mutation of interest with a homozygous male worm that possesses the test 

mutation. As such, complementation can be a more simple and efficient means by which to assign a 

mutation to a certain genetic locus. 

4.6.2: Genetic Mapping 

 Genetic manipulation in C. elegans can be utilized to precisely determine the location of 

isolated mutations and to identify the gene products that have been affected by the mutation (Fay1, 

2006). An overview of this process can be seen in Figure 13.  
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Figure 13. Genetic Mapping in C. elegans 

Taken from Fay1, 2006. 

Following the isolation of a possible mutation, two-point mapping using standard genetic markers 

can be used to determine which of the six C. elegans chromosomes the mutation of interest is 

located on (Fay1, 2006). Three-point mapping can then be used to narrow the region in which the 

mutation must be located and then transgene rescue or RNA phenocopy can implicate a particular 

gene (Fay1, 2006). Gene sequencing can then identify the specific molecular defect that is 

responsible for the mutation and its resulting phenotype.  

Two-point mapping is a process in which the mutation of interest is mapped to a specific 

chromosome by utilizing two marker mutations which have known locations on a chromosome and 

which have known phenotypes (Fay2, 2006). Thus, a hermaphrodite worm possessing the mutation 

of interest is crossed to a male worm that possesses the marker mutations. The progeny of this 

cross can then be examined to determine whether the mutation of interest is present on the same 

chromosome as the marker mutations or if it is located on another chromosome (Fay2, 2006). A 

diagram of two-point mapping can be seen in Figure 14. 
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Figure 14. Two-point mapping with marker mutations a and b and the mutation of interest, m 

Taken from Fay2, 2006. 

The marker mutations are denoted by a and b whereas the mutation of interest is denoted by m. As 

such, Figure 14 shows the predicted genotypes of the progeny resulting from a cross in which the 

mutation of interest is located on the same chromosome as the marker mutations (outcome #1) and 

the progeny resulting from a cross in which the mutation of interest is located on a different 

chromosome from marker mutations a and b (outcome #2) (Fay2, 2006). When m is present on a 

different chromosome, there will be a much higher chance for recombination to occur between m 

and a and b such that offspring with the genotype mab will be produced (Fay2, 2006). In contrast, if 

m is present on the same chromosome as a and b, the production of offspring with the genotype 

mab would be very rare as this would require a double recombination event to occur (Fay2, 2006).  

 Following two-point mapping, three-point mapping can narrow down the area containing 

the mutation. In this process, the mutation of interest, m, is crossed into a strain that possesses the 

marker mutations a and b which are present on the same chromosome as m and which possess 

known phenotypes (Fay3, 2006). The genotypes of the progeny produced are then examined to 

determine whether the mutation is located to the left, to the right, or between the markers (Fay3, 

2006).  A diagram of three-point mapping can be seen in Figure 15. 
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Figure 15. Three-Point mapping with marker mutations a and b and mutation of interest, m 

Taken from Fay3, 2006. 

Figure 15 shows the outcome of recombination between m and markers a and b if the mutation of 

interest is located to the left or right of the markers. When m is located to the left, all progeny that 

only display the a phenotype will produce only progeny with the indicated genotypes (Fay3, 2006). 

In comparison, all progeny that only display the b phenotype will produce progeny with the listed 

genotypes (Fay3, 2006). If m resides to the right of the markers, then the opposite situation will 

exist for the genotypes of the progeny (Fay3, 2006). In this way, the region in which the mutation of 

interest resides can be narrowed down considerably.  

Once the location of the mutation of interest has been narrowed down sufficiently, 

transgene rescue or RNAi methods can be used to implicate a specific gene (Yook, 2005).  

Transgene rescue can be accomplished by creating a transgenic strain that contains the wild type 

version of the implicated gene; bacterial vectors that contain the wild type copy of the gene are then 

injected into the mutant to see if a wild type copy of the gene reverts the phenotype caused by the 

mutation of interest (Yook, 2005). If transgene insertion is successful in reverting the mutant 

phenotype back to wild type, then the gene coded on the bacterial vector is most likely the affected 

gene in the mutant. To further implicate a specific gene, double stranded RNA that is 

complementary to the gene of interest can be used to trigger the RNAi pathway which will result in 

knockdown of the gene in wild type worms (Yook, 2005). If these worms then express the known 
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mutant phenotype, it is likely that the mutation of interest is located in this gene. Following both 

transgene rescue and RNAi knockdown, DNA sequencing can then be performed to find the exact 

molecular lesion that causes the defect (Yook, 2005). 

4.7: Summary & Future Directions 

The main purpose behind this project was to isolate C. albicans resistant worms for use in 

future projects and to begin the process of characterization of the possible mutations. This was 

accomplished by means of EMS mutagenesis which increases the chance of random mutation in the 

C. elegans genome. Worms were screened multiple times in order to determine whether they 

displayed consistent resistance to the yeast over several trials. In this way, putative mutants 8A and 

10A were found to display consistent resistance to C. albicans. These putative mutants were found 

to not possess the daf-2 phenotype, the result of a mutation in the daf-2 gene which has been known 

to confer increased resistance in C. elegans to environmental stresses and pathogens. Additionally, 

DIC microscopy found that putative mutants 10A and 8A did not possess any visible phenotypic 

differences from wild type that may have conferred resistance to C. albicans. Complementation 

tests, fluorescent microscopy, and DNA sequencing will be of use in future characterization 

attempts for these putative mutants. 
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