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Abstract 
In the design of any antenna radiator, single or multi-element, a significant amount of 

time and resources is spent on impedance matching. There are broadly two approaches to 

impedance matching; the first is the distributed impedance matching approach which 

leads to modifying the antenna geometry itself by identifying appropriate degrees of 

freedom within the structure. The second option is the lumped element approach to 

impedance matching. In this approach instead of modifying the antenna geometry a 

passive network attempts to equalize the impedance mismatch between the source and the 

antenna load.  

This thesis introduces a new technique of impedance matching using lumped circuits 

(passive, lossless) for electrically small (short) non-resonant dipole/monopole antennas. 

A closed form upper-bound on the achievable transducer gain (and therefore the 

reflection coefficient) is derived starting with the Bode-Fano criterion. A 5 element 

equalizer is proposed which can equalize all dipole/monopole like antennas. Simulation 

and experimental results confirm our hypothesis.  

The second contribution of this thesis is in the design of broadband, small size, modular 

arrays (2, 4, 8 or 16 elements) using the distributed approach to impedance matching. The 

design of arrays comprising a small number of elements cannot follow the infinite array 

design paradigm. Instead, the central idea is to find a single optimized radiator (unit cell) 

which if used to build the 2x1, 4x1, 2x2 arrays, etc. (up to a 4x4 array) will provide at 

least the 2:1 bandwidth with a VSWR of 2:1 and stable directive gain (≤ 3 dB  variation) 

in each configuration. Simulation and experimental results for a solution to the 2x1, 4x1 

and 2x2 array configurations is presented. 
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Chapter 1. Introduction to impedance 
matching of antenna radiators 
 

The Maxwell equations are truly the foundation on which much of mankind’s 

technological prowess rests on. The unification of electricity and magnetism, two very 

mysterious forces of nature in the late 1800’s, achieved by James Clerk Maxwell, has 

withstood the significant revisions in our understanding of the universe. The invariance 

of his equations to General relativity put Maxwell’s theory on a firm pedestal and being a 

part of one of the four fundamental forces of nature along with its unification to quantum 

mechanics has ensured its timelessness. 

The original Maxwell equations were in a very different format than how we recognize it 

today. They were 20 equations in total and were written with the help of ‘quaternions’, a 

four dimensional number system much like vectors. These twenty equations were recast 

into the four popular equations by Oliver Heaviside and Gibbs. In doing so, the 

quaternion representation was done away with and in its place the vector notation was 

instituted. This modification gave a far more intuitive appeal to the equations and helped 

the world of electrical engineering to develop and exploit it to its full potential. While it 

is true that to Maxwell goes the credit for unifying electricity and magnetism, we would 

be remiss in not stating that his theory rests on the work of such giants as Carl Friedrich 

Gauss, André Marie Ampère, and Michael Faraday.  

It was Heinrich Hertz, Nikola Tesla, J. C. Bose, Alexander Popov, Thomas Edison and 

others who provided the physical manifestation for these mathematical entities. The twin 

pillars of electric power and communications (both wired and wireless) on which much 
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of mankind’s current condition rests on, owes itself to the foundations laid down by these 

early pioneers. A common requirement for both is the need to ensure an efficient transfer 

of power from a source to a load. This can be succinctly stated as impedance matching. If 

the load and the source are purely resistive we can relate this to the maximum power 

transfer theorem and the need to keep the load resistance the same as the source 

resistance. In the case when there are reactive elements present in the circuit, the 

condition for maximum power transfer occurs with the use of conjugate impedance 

matching. We will delve into this topic in more detail in chapter 2 and 3. 

1.1 Impedance matching – the beginnings 

The period between 1890 and 1920 was a very significant one for experimental electrical 

engineering. It is during this fruitful period that the means for generating, delivering and 

using DC (Direct Current) power and AC (Alternating Current) power were invented. In 

addition the wireless revolution sweeping across the globe today has its technological 

underpinnings also situated during this period. While it is debatable as to the extent to 

which impedance matching was used in electric power, wired and wireless 

communications applications during this era, it undoubtedly spurred the theoretical 

investigations that soon followed.  

In [1]-[6] some of the fundamental concepts in electric network theory were presented 

and explained. There was a great deal of interest in techniques that could extract a circuit 

topology if provided with the required transfer function and the driving point impedance 

functions. The invention of the vacuum tube in the early 1900’s and its subsequent 

maturity by the 1920’s resulted in a lot of interest in RF power amplifiers. Expectedly, 

the impedance matching problem had also to be dealt with. An example of T and П 
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circuits being employed at the output stage of an RF power amplifier is shown in [7]. The 

author suggests their use and also discusses in detail the utility of such circuits to couple 

the power from the output of the power amplifier to an antenna. Note that the load and 

source are both assumed to be resistive.  Some of these concepts such as in [1] have 

undergone a great deal of scrutiny as seen by the work done by Papoulis [8] from a 

purely mathematical perspective, and more recently by Geyi et. al. and Best [9], [10] for 

specifically the antenna impedance.  

Since the design of filters was relatively well understood, it was but natural for using the 

body of work devoted to their design, in order to design impedance matching networks 

[11], [12]. Particularly, [12] has a good review of some basic lumped element filter 

building blocks and then proceeds to outline two applications which involve impedance 

matching inspired from the basic low-pass filter half-sections; one of these is an 

impedance matching problem between an RF transmission line and an antenna while the 

second one is for building coupling units between video amplifiers.  

1.2 Impedance matching categories 

In general impedance matching between an arbitrary pair of source and load can be 

classified into three categories. These are shown in Fig. 1.1 and outlined below: 

a) The resistive matching problem – source and load are both resistive and unequal 

b) The single matching problem – source is resistive and the load is complex 

c) The double matching problem – source and load are both complex 
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Here we assume that an RF voltage source Vg with an internal resistance RG or 

impedance ZG has to be impedance matched to either a resistive load RL or a complex 

impedance ZL respectively. 

 

Fig. 1. 1 The three categories of impedance matching: a) purely resistive, b) single 
matching, and c) double matching.  

The first case requires a network that will simply adjust the load resistance such that it is 

equal to the source resistance. The single matching and double matching cases however 

are a little more complicated. The single matching case is typically the most common 

impedance matching scenario encountered in antenna and RF circuit design. Since the 

load is complex and the source is resistive, there is reactance cancellation required. 

Additionally if the source and load resistances are not equal, there is the need for a step 
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up or step down network to maximize the power transfer (assuming narrowband single 

frequency). The double matching case could arise in an RFID (Radio Frequency 

IDentification) application where the tag has a chip connected to an antenna. The output 

impedance of the chip is usually complex. Ideally, the tag antenna if resonant should have 

purely resistive feed point impedance. However, such antennas are sensitive to their 

environment and can easily be detuned thus resulting in complex impedance being 

presented to the chip’s input. A non-resonant antenna might be a better solution in this 

case since it would get rid of the antenna’s sensitivity to its surrounding environment and 

we would still end up with a double matching problem. 

1.3 Bode-Fano theory and the analytic approach 

The first steps towards a theoretical basis for broadband matching were taken by Bode 

[13]. While this work considered a simple load (parallel combination of resistor and 

capacitor) under the single matching category, it was significant because for the first time 

engineers had a bound, cast in a gain-bandwidth formulation, for a given load. Central to 

Bode's work is the analytical approach which requires a circuit approximation of the load 

impedance as it uses the data in the complex frequency plane; it has been developed for 

simple load circuits only. This approach, unlike [7], [11], [14], and [15], did not provide 

the techniques to build a good impedance matching network. It did however give the 

designer a mathematical tool to compare the performance of a designed impedance 

matching network with a specified bandwidth in terms of the gain or the reflection 

coefficient. This approach was further investigated by Fano [16] and Youla [17].  
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Of particular importance is the utilization of Darlington's powerful theorem [6] (Sidney 

Darlington is arguable more famous for the transistor configuration ‘Darlington pair’) by 

Fano together with the work done earlier by Bode, to convert the broadband impedance 

matching problem into a filter design problem. This theorem states that any physically 

realizable impedance function can be decomposed into a purely reactive lossless network 

terminated into a 1Ω  resistor (done so by including a transformer in to the reactive 

network). Since the source resistance can also be changed to 1Ω  by including a 

transformer, the impedance matching problem gets converted to a filter design problem. 

As shown in Fig. 1. 2, this is a partial filter design problem pertaining to the design of the 

first network, since the second network is already discovered through application of 

Darlington's theorem.  

 

Fig. 1. 2. The broadband impedance matching problem a) as tackled by Fano, by applying 
Darlington's theorem to the load shown in b) thus converting it into a filter design 
problem seen in c). 
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As filter design was a mature art by this period, it was a tremendous boost to this nascent 

field of broadband impedance matching. Later, Chen and co-authors implemented 

Youla’s theory for LCR loads of the type (C||R) +L [18], [19], and [20]. Of special note is 

Ref. [21], where a band-pass Chebyshev equalizer was presented for a Darlington type-C 

load, i.e. for R1 + C||R2.  This load can reference the input impedance of a small dipole or 

monopole. Also to be noted are the Takahasi design formulas for wideband bandpass 

Chebyshev ladder networks, which are matching series and parallel LCR loads, see Ref. 

[22]. This method bypasses the gain – bandwidth theory and directly produces lumped 

lossless equalizers.  

1.4 The Real Frequency Technique 

The progress in analytic approaches to broadband impedance matching was tempered by 

the fact that designers needed to approximate the load with a circuit model. As noted in 

section 1.3 the analytic techniques work well for simple load types. However, for more 

complicated loads the analytic approach is too difficult. The Carlin’s Real Frequency 

Technique (RFT) based gain-bandwidth optimization approach [22]-[25] is a numerical 

technique that does not require any circuit approximation of the load impedance. Instead, 

it relies on the actual measurement data of the load. A comprehensive review has been 

recently provided by Newman [26]. Although being quite versatile, this approach, along 

with the pure optimization step, still requires non-unique operations with rational 

polynomial approximations, and further extraction of equalizer parameters using the 

Darlington procedure [26]. Moreover, a transformer is required to match the obtained 

equalizer to the fixed generator resistance of 50Ω  [26]. 
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1.5 Wideband matching of antenna radiators 

For modern wideband or multiband hand-held radios typically used in either civilian or 

military roles, it is often desired to match a non-resonant (i.e., relatively short) monopole, 

or dipole-like, antenna over a wide frequency band. Current impedance matching 

techniques involve modifying the antenna structure and are in fact quite popular. Fig. 1.3 

captures the state of the art in impedance matching (narrowband and wideband) for 

antennas.  

 

Fig. 1. 3. The impedance matching approach for typical antenna radiators.  

Both approaches to impedance matching can be implemented either by including loss 

within the structure/network, or by a completely lossless approach. In the distributed 

approach to impedance matching, loss can be included, either intentionally or by 

circumstance, through the use of dielectric materials. The lumped element approach to 

lossy matching involves the inclusion of a properly chosen resistance located strategically 

within the network of inductors and capacitors. This is to be differentiated from the 
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lossless matching networks which are designed only with inductors and capacitors. 

Naturally, these components have a finite Q (Quality factor) and therefore some degree of 

loss does exist even in otherwise lossless networks.  

This thesis makes contributions to both the lumped element and distributed approaches to 

impedance matching for antenna radiators. Two interesting and challenging problems 

have been considered; namely, the broadband impedance matching for electrically small 

(short) non-resonant dipoles/monopoles and the design of small sized resonant antenna 

arrays of a modular architecture.  The problem of wideband matching for short non-

resonant dipoles/monopoles is tackled using lumped element lossless equalizers. In 

addition we also provide insight into a lossy matching approach using lumped element 

circuits, for a blade monopole and compare it to the performance of a novel dielectrically 

loaded (truncated hemisphere) top-hat monopole antenna. The broadband modular array 

design focuses on a distributed approach to impedance matching.  

1.5.1 Motivation for wideband matching of an electrically small (short) 

dipole/monopole using a lumped circuit 

Our motivation for pursuing this goal is three-fold, namely: 

I. For electrically small, non-resonant antennas distributed impedance matching 

techniques that involve modifying the antenna structure, together with 

optimization carried out within a full-wave electromagnetic simulation 

environment, are sometimes complicated to design, build, and analyze. The 

approach suggested in this thesis would minimize the complexity in wideband 

matching of short, non-resonant antennas.  
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II. Resonant antennas are extremely sensitive to their surroundings. For hand held 

radios, smart phones etc., the antenna is usually electrically small (short) and is 

indeed resonant. These antennas are exposed to different materials such as the 

human body, wood, metal, liquids etc. on a regular basis and as a result, they get 

detuned regularly. To compensate for this, the designer must take into account the 

different conditions that maybe most often encountered by the antenna for the 

specified application and model these within the full wave EM simulator. 

Depending on the kind of objects that might be modeled, the simulation 

complexity increases. It may be a better alternative in to deploy a non-resonant 

antenna with the kind of matching network suggested in this thesis. 

III. This approach could also serve as a basis for building adaptive matching networks 

that modify the antenna response dynamically. 

The standard narrowband impedance matching techniques include L ,T , and Π  sections 

of reactive lumped circuit elements, which may also include transformers with single- 

and double-stub tuning of transmission lines [27], [28].  The ever growing trend of 

miniaturization of wireless devices ensures that size remains an important constraint to 

satisfy. In the VHF-UHF bands, where there is a high concentration of wireless services, 

lumped circuits are preferable as they have a smaller size. However, the narrowband 

matching circuits are usually non-applicable when the bandwidth is equal to 20% or 

higher.    

The notion of wideband antenna matching to a generator with a fixed generator resistance 

of 50Ω  is a classical impedance matching concept. As discussed earlier in sections 1.3 

and 1.4 respectively as well as in Ref. [29] in general, wideband matching circuit design 
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methods can be classified into two groups: the analytical approach and the Real 

Frequency Technique (RFT) numerical approach. When the load is such a well-known 

subject as a short dipole or monopole, we can capitalize on prior experience with its 

impedance matching, and thus considerably simplify the problem.  

This thesis studies the wideband matching problem for short dipoles or monopoles and 

does not use the two approaches discussed above. Instead, we prefer to introduce the 

equalizer topology up front: the equalizer’s first section is the L section with two 

inductors. This section is adopted from the analysis of whip monopoles. Its double-tuning 

version has shown excellent performance for impedance matching and tuning of a whip 

monopole antenna over a wide band of frequencies [30]. The second and last section is a 

high-pass T-section with a shunt inductor and two capacitors. This section is intended to 

broaden the narrowband response of the L-section. The equalizer has only five lumped 

elements: three inductors and two capacitors. A direct numerical optimization technique 

is then employed to find the circuit parameters for wideband impedance matching. Here, 

the antenna impedance is approximated by an accurate analytical expression [31]. This 

matching network topology can be used for all dipole-like antennas. We will show that 

the present simple circuit yields an average band gain that is virtually identical to the gain 

obtained with an improved Carlin’s equalizer [26]. This result is shown to be valid for a 

wide range of antenna lengths and radii (or widths for a blade dipole/monopole). 

1.5.2 Motivation for design of modular arrays of resonant antenna 

radiators and broadband matching using the distributed approach 

This thesis proposes a new approach to the design of small size wideband arrays of planar 

dipoles situated over a ground plane. The individual radiator which we refer to as the unit 
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cell, is resonant. The unit cell terminology is also commonly used for the individual 

radiator within large size finite arrays, and therefore not to be confused with it. 

Incidentally the design of those large arrays follows the Floquet theoretic infinite array 

simulation methodology which we propose and show to be inapplicable for the design of 

small size modular arrays. The motivation for pursuing this problem is three-fold: 

I. There is much interest in the design of small size arrays in either linear or planar 

configurations in the wireless industry. This can be seen with the advent of 

MIMO (Multiple Input Multiple Output) systems for 4G, digital TV reception and 

also wireless positioning. 

II. A modular architecture as proposed in this thesis could be a good solution as it is 

inherently flexible. Particularly, it is very easy to change the array configuration 

from a 2x2 to a 4x1 (planar to linear). 

III. The key aspect of this approach is that a single optimized unit cell could be used 

in different configurations without degrading the performance objectives.  

The modular design results in increased impedance bandwidth ( 1:2≥ ), as well as higher 

directive gain at the low frequencies. We also seek a maximum gain variation over the 

band of up to 3dB. Furthermore, we show that the careful design of the individual 

radiator may achieve such high bandwidths for the 2x1 array, 2x2 array, and 4x1 array of 

the same radiators respectively. The dipole and ground plane within each unit cell can be 

mounted on a thin, low epsilon and low loss dielectric material such as Poly methyl 

methacrylate (PMMA), commonly known as Plexiglass or on PVC (Polyvinyl Chloride). 

An analytical model for the power combiner is introduced and used during optimization 

of the arrays. Such a modular approach is well suited for low-cost large-volume small 
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broadside array design. The arrays presented here are intended for use in the UHF region 

of the spectrum but can be easily scaled and optimized for other bands. 

1.6 Thesis organization 

The thesis is organized as follows: 

In chapter 2 the theoretical limit to wideband matching of an electrically small (short) 

non-resonant dipole/monopole is introduced. The matching circuit for such antennas is 

developed in chapter 3. In chapter 4 the simulation results and the experimental results 

are provided along with a discussion on the performance. Large portions of the content in 

chapters 2- 4 have been drawn from [70]. The modular array concept is introduced in 

chapter 5 along with the design approach. A model for the power combiner is also 

introduced. In chapter 6 simulation and experimental results are presented. Chapter 7 

concludes the thesis and includes suggestions for future research efforts. 
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Chapter 2. Theoretical limit on wideband 
impedance matching for a non-resonant 
dipole/monopole 
 

To understand the limitations on wideband impedance matching for a non-resonant 

dipole/monopole, it is important to first grasp its impedance behavior. The impedance 

behavior is the variation of the resistance, denoted as R and the reactance, denoted as X, 

with frequency. The impedance behavior is directly linked (as to be expected) with the 

current and voltage standing waves that are setup over the physical extent of the antenna, 

in this case the dipole/monopole. In this chapter, we attack this question of the impedance 

behavior initially from first principles by using Maxwell's equations, and subsequently by 

the use of a semi-empirical analytical expression. Confirmation between the analytical 

formulation and a full wave EM (Electromagnetic) simulation is also provided. The 

necessary conditions upon which the model depends on will be established.  The 

reflective equalizer will be introduced and the analysis using Bode-Fano theory will be 

described. To understand the effect of geometry three different cases of the dipole will be 

considered for wideband matching. Last, but not the least, an introduction to the Chu 

limit and a discussion on the results within this context is provided. 

2.1 The electrically small dipole 

We will begin our discussion on dipoles with the small dipole. The small dipole is also 

referred to in literature as the electrically small dipole. This definition implies that the 

length of the dipole is much smaller than the wavelength at which it operates. While this 

definition is qualitatively satisfying, a quantitative justification is however required 
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regarding what constitutes the electrically small limit. There is much to be said in this 

regard. We will defer this discussion for now and simply state that for the purpose of the 

next few sections our definition of electrically small assumes that the length of the dipole, 

denoted as λ<<Al , where λ  is the free space wavelength of operation.  

A fundamental quantity of interest for any antenna is its input impedance. The input 

impedance allows us to view the antenna from a circuit theoretic perspective and 

therefore give us all the well developed circuit analysis techniques to analyze it with. 

Once the input impedance is derived, we can replace the antenna with an equivalent 

circuit representative of the impedance (at least for the small antenna case) and derive 

useful parameters such as reflection coefficient (return loss), efficiency, gain etc. To 

begin the analysis however, we will start with the Maxwell’s equations. 

2.2 Analytical solution for the input impedance of a small dipole 

Consider the cylindrical dipole shown in Fig. 1. As mentioned earlier the length of the 

dipole is specified as lA, the diameter is denoted by ad 2= , and a is the radius of the 

cylinder. The dipole is positioned at the origin of the co-ordinate system and the spherical 

co-ordinates ( θϕ,,r ) are used to identify any observation point in the surrounding space.  

 

Fig. 2. 1.Dipole in radiating configuration. 
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Our first attempt at solving for the dipole fields and hence the impedance begins with the 

current density being assumed to be constant (an infinitesimally small dipole). To do so 

we define the current density to be 

2/2/,ˆ)()()( 0 AA lzlIzyxrJ <<−∀= δδ   (2.1) 

This is shown in Fig. 2.2, graphically, 

 

Fig. 2. 2. Uniform current distribution on the infinitesimally small dipole. 
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The magnetic field is found by taking the curl of the magnetic vector potential 
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Before this is done, we first switch to the spherical coordinate system from the current 
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 rectangular coordinate system (notice the unit vector for identification). The standard 

conversion approach utilizing the matrix-vector notation, is shown in Eq. (2.5). 
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Since Eq. (2.3) has only the z-component of the magnetic vector potential, we write the 

three components in the spherical coordinate system as, 
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We now use Eq. (2.4) to calculate the magnetic field H


. The curl expansion in spherical 

coordinates is as follows: 
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Note, that from Eq. (2.6) the azimuthal component of the vector potential is zero while 

the radial and elevation component do not have any azimuthal variation. Applying this 

knowledge to Eq. (2.7) we find that only one component exists i.e. 
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The electric field is found using the expression for the magnetic field. Ampere’s law 

modified by displacement currents JH
t
E 


−×∇=
∂
∂ε  in the phasor form reads (in the 

free space where there are no currents)  
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To evaluate Eq. (2.9) we apply the similar procedure as before and recognize that the 

radial and elevation components of the magnetic field are zero. The expression for the 

curl becomes 

( ) ( )





∂
∂

−+




∂
∂

=×∇ φφ θθ
θθ

Hr
rr

H
r

rH 


 1ˆsin
sin
1ˆ  (2.10) 

Calculating the various partial derivatives in Eq. (2.10) and substituting ηωε =k we get 
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The radiated power is obtained in the form  
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which after integration yields 
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Therefore, the input resistance R  of the small dipole antenna has the form  
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The reactance of the small dipole antenna may be obtained through the reactive power, 

which yields 
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where a is the antenna radius for the cylindrical dipole. The reactance is capacitive and 

large.  The width of the blade dipole t is related to the radius of the equivalent cylindrical 

dipole by making the static capacitance equal in both the cases. This yields ([32], p. 514): 

dat 24 ==                                                                                   

2.3 Antenna impedance model 

For a wire or strip dipole, the input impedance, AZ , can be approximated with a high 

degree of accuracy [31] as 
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In Eq. (2.15a), Al  is the dipole length, a is the dipole radius, 2/Aklz = , and λπ /2=k  is 

the wavenumber. The accuracy of Eq. (2.15a) quickly degrades above the first resonance 

[31]; thus, at the high-frequency end, very small dipoles cannot be considered. At the 

lower end, Eq. (2.15a) is only valid when the dipole radiation resistance is positive and 

does not approach zero. This gives us 2 complex roots which and one real root. 

discarding the complex roots, we get the condition 
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If a strip or blade dipole of width t, is considered, then 4/eq ta =  [32]. We note here that 

a, is the radius of a cylindrical dipole, whilst eqa  is the equivalent radius of a wire 

approximation to the strip dipole.  In this study, the first result is used. Thus, Eq. (2.15a) 
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holds for relatively small non-resonant dipoles and for half-wave dipoles, i.e. in the 

frequency domain approximately given by 

2.1/05.0 res ≤≤ ffC          (2.15c) 

where )2/(0res Alcf ≡  is the resonant frequency of an idealized dipole having exactly a 

half-wave resonance (c0 is the speed of light) and Cf  is the center frequency. When a 

monopole over an infinite ground plane is studied, the impedance is half. 

2.4 Comparison of impedance model with full wave EM simulation 

To confirm the performance of the semi-analytical expression for the impedance behavior 

of a dipole, provided in Eq. (2.15a), we plot the resistance and reactance as a function of 

frequency (20 - 400 MHz) and compare it to the results from a full wave electromagnetic 

simulation model. A dipole of length mm 150=Al and resonant frequency of 1 GHz is 

considered. The full wave simulation model is of a blade dipole of appropriate width, t 

calculated using the relation dt 2= . To illustrate the difference in the impedance 

properties, four cases were considered in which the length to diameter ratios were varied, 

i.e. the cases considered were [ ]60,30,10,5.7=
d
lA .  

The resulting data for the resistance and reactance are plotted as a function of frequency 

in Fig. 2.3(a)-(d). Overall, there is excellent agreement between the analytical expression 

and the full wave simulation model for the reactance. We clearly see that the dipole 

thickness (diameter in case of cylinder or the width in the case of a planar (blade) dipole) 

has a significant impact on the reactance, namely the thicker dipoles have lower 

reactance. The resistance is primarily a function of the total length of the dipole 
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(inclusive of the feed width) and therefore doesn't display any significant variation with 

changing radii/widths. 

 

Fig. 2. 3. Comparison between the analytical expression for impedance of a 
dipole/monopole in Eq. (8a) (solid-blue curve) and the result of a full-wave EM 
simulation in Ansoft HFSS (dash-dotted red curve). The dipole is resonant at 1 GHz and 
4 geometries have been considered (a - d). 

2.5 Wideband impedance matching – the reflective equalizer 

The reactive matching network is shown in Fig. 2.4(a) [23]. The generator resistance is 

fixed at 50Ω . This network does not include transformers. Following Ref. [23], the 

reactive matching network is included into the Thévenin impedance of the circuit as 

viewed from the antenna, see Fig. 2.4(b).  

In fact, the network in Fig. 2.4(a) is not a matching network in the exact sense since it 

does not match the impedance exactly, even at a single frequency.  Rather, it is a 

reflective (but lossless) equalizer familiar to amplifier designers, which matches the 

impedance equally well (or equally “badly”) over the entire frequency band. The 
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equalizer network is reflective since a portion of the power flow is always being reflected 

back to generator and absorbed.  Following Ref. [23], we can consider the generator or 

transducer gain in the form 
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The gain T is the quantity to be uniformly maximized over the bandwidth, B. In practice, 

the minimum gain over the bandwidth is usually maximized [23], [26].  

 
Fig. 2. 4. Transformation of the matching network: a) reactive matching network 
representation, b) Thévenin-equivalent circuit representation. The matching network does 
not include transformers. 

The problem may be also formulated in terms of the power reflection coefficient 2)(ωΓ , 

viewing from the generator with the equalizer into the antenna. Obviously, the power 

reflection coefficient needs to be minimized.  Note that the transducer gain is none other 

than the square magnitude of the microwave voltage transmission coefficient. In this text, 

we follow the "generator gain" terminology in order to be consistent with the background 

research in this area. 
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2.6 Bode-Fano bandwidth limit 

The Bode-Fano bandwidth limit of broadband impedance matching ([16], [28]) only 

requires knowledge of the antenna’s input impedance; it approximates this impedance by 

one of the canonic RC, RL, or RLC loads ([16], and [28], p. 262).   The input impedance 

of a small- to moderate-size dipole or monopole is usually very similar to a series RC 

circuit, as seen from Eq. (2.15a). When  5.0/ res ≤ffC  or 75.02/ <= Aklz  (a small 

antenna or an antenna operated below the first resonance), the antenna resistance is 

usually a slowly-varying function of z (almost a constant) over the limited frequency 

band of interest whereas the antenna’s reactance is almost a pure capacitance. This 

observation is valid at a common geometry condition: ( ) 5.1)2/(ln >alA . The Bode-Fano 

bandwidth limit for such a RC circuit is written in the form [28] and restated here in Eq. 

2.17. Fig. 2.5 illustrates the equivalent circuit for the electrically short antenna and an 

appropriate matching circuit to be found so as to achieve the input reflection coefficient 

level ( )ωΓ .  

  RCd∫
∞

<












Γ0
2 )(

1ln1 πω
ωω

            (2.17) 

 

Fig. 2. 5. Low frequency RC circuit model for an electrically short dipole/monopole 
antenna. 
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Note, that Eq. (2.17) does not depend on the matching network (other than the fact that it 

is assumed to be passive and lossless) or on the source. It is purely a function of the load 

alone. For a rectangular band-pass frequency window ]2/,2/[ BfBf CC +−  of 

bandwidth B and centered at Cf , with 0TT =  within the window and 0=T  otherwise, 

Eq. (2.17) and Eq. (2.15a) allow us to estimate approximately the theoretical limit to the 

gain-bandwidth product as long as the dipole or monopole size remains smaller than 

approximately one quarter or one eight wavelength, respectively. This is shown in Fig. 

2.6 along with two other realizations that illustrate the utilization of the available 

matching area in terms of the gain and bandwidth sought.  

2.7 Gain-bandwidth product (small fractional bandwidth, small gain) 

Let us first obtain the simple closed-form estimate for the gain bandwidth product. Using 

the expression for gain, T, in terms of power reflection coefficient 2)(ωΓ , in Eq. (2.16) 

we rewrite Eq. (2.17) as, 

  RCd
T∫

∞
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
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
−0

2 1
1ln1 πω

ω
          (2.18) 

Substituting 0TT =  over the bandwidth B and applying the appropriate limits for ω  to 

the integral in Eq. (2.18) we arrive at 
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Solving the integral in (2.19) yields 
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Fig. 2. 6. Illustration of different gain-bandwidth realizations and the corresponding 
matching areas under the ideal, constant reflection coefficient/constant transducer gain 
assumption.                         

Next, we assume the fractional bandwidth CfBB /=   to be small, i.e. 1.0<B ; we also   

assume that 10 <<T . We then simplify the inequality in Eq. (2.20) by using the Taylor 

series expansion of the terms on the left hand side as follows 
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
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11ln

2
1 2

0
00   (2.21) 

 Ignoring the higher order terms and rewriting the resulting expression in terms of B  as 

follows: 
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In Eq. (2.22), we have replaced the geometric mean of the upper and lower band 

frequencies by its center frequency, which is valid when i) 25.0<B ; ii) the half-

wavelength approximation for dipole's resonant frequency is used; and iii) dipole's 

capacitance in the form 





 −×Ω≈− 1

2
ln480 res

1

a
lfC A  is chosen. The last approximation 
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follows from Eq. (2.15a) when z is at least less than one half. Thus, from Eq. (2.22) one 

obtains the upper estimate for the gain-bandwidth product in the form 
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The value of this simple equation is in the fact that the gain-bandwidth product is 

obtained and estimated explicitly. Unfortunately, Eq. (2.22a) is limited to small 

transducer gains.   

2.8 The arbitrary fractional bandwidth and gain scenario 

The only condition we will exploit here is 5.0/5.0 res <= ffz Cπ . In that case the dipole 

capacitance can still be approximately described by the formula from subsection 2.7. The 

analysis of subsection 2.7 also remains the same until Eq. (2.20). However, we now 

discard the assumption on small transducer gain.  We define the fractional bandwidth 

CfBB /=  as before.  After some manipulations Eq. (2.20) yields 
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This estimate does not contain the gain-bandwidth product BT0  explicitly, but rather 

individual contributions of 0T  and B . It is valid below the first dipole resonance, and it is 

a function of two parameters: the dimensionless antenna geometry parameter )2/( alA  

and the ratio of the matching frequency to the antenna's resonant frequency, res/ ffC .  

Frequently, the fractional bandwidth is given, and the maximum gain 0T  over this 

bandwidth is desired. In this case, Eq. (2.22b) can be transformed into 
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We note that this result does not depend on particular value of the generator’s resistance, 

Rg. Fig. 2.7 gives the maximum realizable gain according to Eq. (2.22c) obtained at 

different desired bandwidths as a function of matching frequency. In Fig. 2.7 a to c we 

have considered three different dipoles, with 50,10,5/2/ == dlal AA , where ad 2=  is 

the dipole diameter. Also, we observe that the condition ( ) 5.12/ln >alA  is satisfied for 

every case in Fig. 2.7.  

2.9 Dipole vs. monopole 

As a first example we consider a short, thick dipole of total length Al =23 cm and 

5/ =tlA  that is designed to have a passband from 250 to 400 MHz, and a center 

frequency of 325 MHz. The resonant frequency of the corresponding infinitesimally thin 

dipole is found as MHz650)2/(0res == Alcf ; thus, 5.0/ res =ffC . The fractional 

bandwidth is approximately 5.0≈B . According to Fig. 2.7c, this leads to a significant 

generator gain of 8.00 ≈T  over the frequency band; it corresponds to the squared 

reflection coefficient 2.02 =Γ , and yields a return loss of 7dB 

( 6.2)1/()1(VSWR =Γ−Γ+= ) that is uniform over the operating frequency band.  

Next, we consider a short thick monopole of total length Al =11.5 cm and 5/ =dlA , over 

an infinite ground plane; it is designed to have the same passband from 250 to 400 MHz. 

The resonant frequency of the corresponding infinitesimally thin monopole is found to be 
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MHz650)4/(0res == Alcf  so that again 5.0/ res =ffC . The fractional bandwidth 

remains the same, i.e. 5.0≈B . However, the monopole’s impedance is half of the 

dipole’s impedance. At first glance, it might therefore appear that one should halve the 

argument of the exponent in Eq. (2.22c). This is not true because the argument contains 

the product RC. While the resistance R decreases by 0.5, the capacitance C increases by 

0.5, and thus the total result remains unchanged. Consequently, the dipole consideration 

is always applicable to the monopole of half length, assuming an infinite ground plane. 

Unfortunately, the Bode-Fano theory does not answer the question of how to achieve the 

above limit, and how far this limit is from practically realizable matching circuits with 

reasonably small number of lumped elements.    

2.10 Comparison with Chu's bandwidth limit 

It is instructive to compare the above results with Chu’s antenna bandwidth limit [33] 

conveniently rewritten in Refs.[34], [35]. in terms of tolerable output VSWR of the 

antenna and the antenna ka, where a is the radius of the enclosing sphere. For this dipole 

example with VSWR=2.6 and 78.02/ == Aklka , the Chu's bandwidth limit is found as 

[33] - [35], 
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where S = VSWR. Substituting the values for ka and VSWR the bandwidth estimates are 

found to be 34 % and 79 % respectively. Note that while the first estimate is less 

optimistic, the second estimate suggests higher bandwidth achievability than the Bode-

Fano model discussed above. The key issue is that it includes an uncertainty in relating 

the antenna Q-factor to the antenna’s circuit parameters [34].  
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Fig.2. 7. Upper transducer gain limit for three dipoles (from a to c) of diameter d and 
length Al  as a function of matching frequency vs. resonant frequency of the 
infinitesimally thin dipole of the same length. The five curves correspond to five 
fractional bandwidth values 0.05, 0.1, 0.25, 0.5, and 1.0, as labeled in the figure, and have 
been generated by using Eq. (2.17c).    
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Chapter 3. Equalizer circuit development for 
the non-resonant dipole/monopole like 
antenna 
 

The theoretical limit on wideband matching derived in chapter 2 is extremely useful to 

estimate the quality of the matching network in terms of the transducer gain. However, 

this is ultimately a limit and neither it nor the theoretical background suggests ways to 

achieve this limit (much like Shannon's limit in communication theory). Within the 

sections of this chapter we will develop a wideband matching network for the non-

resonant dipole/monopole. In doing so, we first delve into the single and double tuning 

networks. The proposed wideband matching network will then be introduced and the 

investigation objectives will be stated.    

3.1 Single and double tuning for the electrically short dipole 

A small relatively-thin monopole (whip monopole) or a small dipole is frequently 

matched with a simple L-matching double-tuning section [30]. This section is shown in 

Fig. 3.1a. Ohmic losses of the matching circuit, oR ,  are mostly due to losses in the series 

inductor, which may be the larger one for very short antennas. Namely, 1L  might be on 

the order of 0.1-1.0 mH for HF and VHF antennas. In this UHF-related study, we will 

neglect those losses. The single tuning circuit is also shown as another alternative in Fig 

3.1b. In this circuit we get rid of the series inductor L1. Naturally, the expectation here is 

that this approach will step up the impedance presented by the antenna. 
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Fig. 3. 1. A whip-monopole with double tuning (L-tuning) [30] and the single tuning 
network. Ohmic resistance of the series inductor, oR , will be neglected. The matching 
network does not show the DC blocking capacitor in series with L2. 

The goal is to tune the dipole antenna to 50 Ohm or to another real impedance at a 

desired frequency of interest, Cf . This frequency is the center band frequency of the 

antenna. For tuning, it does not really matter if the antenna is in the transmitting or in the 

receiving mode.  
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3.2 Analysis of double tuning circuit (L-section) 

The tuning procedure is done with two inductors, the series inductor 1L  with the 

impedance AZ  and the parallel inductor 2L . Very roughly then, the series inductor 

essentially cancels the series capacitance whereas the parallel inductor increases the 

output resistance to 50 Ohm. The circuit analysis uses the standard impedance 

transformations known from the steady-state AC circuit theory. We need to find the 

equivalent impedance of the antenna outZ  with the tuner looking into the input terminals 

From Fig. 3.1a, 
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We need to have the real and imaginary part of outZ . Multiplying both the numerator and 

the denominator by the complex conjugate of the denominator, we get,  
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Therefore,  
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Clearly, 0)Re( >outZ . The condition of zero output reactance and 50 Ohm output 

resistance yield 
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Two unknowns are B  and 2L . We denote 2Lω  by X1. Eqs. (3.4) are transformed to the 

form 
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Further transformation gives 
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or, which is the same, 
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Inserting the negative solution for B into X1 we get, 

)50(
5021 R

RLX
−

== ω  (3.9) 

Using the relation 1LXB ω+= , we extract for the second component 
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( )RRXL −−−= 501ω  (3.10) 

Quantitatively from Eqs. 3.9 and 3.10, and referring to Fig. 3.1a, the analytical result for 

the tuning inductances has the form for Cgo RR ωω =Ω== and,50,0 , (also see Ref. 

[30]) 
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3.3 Sensitivity of the double tuning circuit 

As noted in the prior section, the double tuning circuit for the electrically short dipole 

comprises two inductors arranged in a specific configuration as shown in Fig. 3.1 (a). The 

solution for the inductor values were derived in section 3.2 and shown in Eq. (3.11). Thus 

we can calculate the inductor values in a straightforward manner, if we know the dipole 

dimensions (see chapter 2, Eq. (2.10a)) and the generator resistance to be matched 

(typically 50 Ω ). However, it is rarely the case that the inductor values predicted by 

theory can be found in the real world. In fact even the actual inductor value, if found, 

would have an associated tolerance specified.  

It is worthwhile to investigate the effect of this variability on the tuning. This is done by 

observing the effective resistance and reactance at the input to the double tuning network 

due to the variations in inductor values. We consider a 150mm long thin dipole 

( 60=dlA ), whose resonant frequency is 1 GHz. In Fig. 3.2, the reactance and resistance 

map is plotted as a function of variations from the nominal value of L1 and L2. 

Additionally, this map is shown for different choices of center frequency ( Cf ). The 

center frequencies satisfy the limiting condition 5.0/ res ≤ffC  for an antenna operated 
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below the first resonance. The nominal values for the inductors in the double tuning 

network are shown as a green circle in the plots. 

The sensitivity maps clearly reveal the difficulty in maintaining a good impedance match 

at lower frequencies with the double tuning network. The reactance and resistance maps 

and the associated 3D surface plots in Figs. 3.2 and 3.3 show that the margin of error, for 

the double tuning network improves with increasing center frequency. In Fig. 3.3 for 

the Cf  = 0.1 GHz case, the nominal values for inductance calculated by using Eq. 3.11 

are precariously positioned over the dip in the reactance surface. On either side of this 

dip, the total reactance at the input to the network becomes large very quickly. 

Expectedly, it is the opposite behavior for the resistance wherein, the nominal values for 

inductance result in a sharp peak for the input resistance. In both cases, it is the sensitivity 

to L1 that can cause more damage. At higher frequencies, the sensitivity function spreads 

out and the gradient close to the nominal values of the inductance becomes smoother in 

the case of the resistance. The reactance behavior is improved and shows some immunity 

to small variations in L1. 
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Fig. 3. 2. The reactance and resistance sensitivity maps for the double tuning network for 
an electrically short dipole (resonant at 1GHz). The values are plotted relative to Rg 
(50Ω) at four different frequencies, all within the small antenna criterion. The green 
circle indicates the nominal value for the inductors. 
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Fig. 3. 3. The three dimensional plot for reactance and resistance sensitivity of an 
electrically short dipole (resonant at 1GHz). The variation in the surface features of each 
function can be seen for four different frequencies. The green circle indicates the nominal 
value for the inductors. 
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In the case of different values of the generator resistance, the sensitivity plots in Fig. 3.4 

and 3.5 clearly show that the underlying behavior is similar. At 0.1 GHz, the center 

frequency at which the double tuning network values are calculated, the reactance and 

resistance plots do not vary drastically due to changes in the generator resistance. It is to 

be noted that changes to the generator resistance affect only L2, the shunt inductor. 

Therefore, we see that larger values of Rg, demand a bigger inductance. It is reasonable to 

expect that for higher center frequency of matching, the nominal inductance value will 

not be as large (owing to the larger antenna radiation resistance to begin with). 

Changes to the thickness of the dipoles (or width in the case of the blade dipoles), does 

change the sensitivity maps for reactance and resistance. The Figs. 3.6 and 3.7 show plots 

of this variation at a center frequency of 0.5 GHz. The thinner dipoles (e.g. 60=dlA  ) 

are again the worse of the four cases considered. The reason is clear; the thicker dipoles 

have lesser capacitive reactance and this directly affects the series inductor L1 in the 

double tuning network.  

3.4 Analysis of single tuning circuit     

The single tuning is made with the inductor 2L  in parallel. The inductance 1L  is exactly 

zero.  From Eq. (3.3) one has  

[ ]
ω

ω
X

XRLLXXR
−
+

=⇒=++
22

22
2 0                                                                      (3.12) 

and the resistance then becomes (B=X as long as 1L  is zero) 
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The result implies that the available feed point resistance of the antenna is simply stepped 

up by the factor Χ , where 

R
XR 22 +

=Χ  (3.14) 

Thus, the single degree of freedom allows for achieving either a zero input reactance and 

an arbitrary resistance transformation as given by Eq. (3.14), or a possible 50Ω  input 

resistance with an non-zero transformed input reactance (a similar transformation can be 

derived by considering the alternative case of Re{Zin}=50Ω ). 
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Fig. 3. 4. The reactance and resistance sensitivity maps for the double tuning network for 
an electrically short dipole (resonant at 1GHz). The values are plotted relative to four 
different values of Rg at fC = 100 MHz. The green circle indicates the nominal value for 
the inductors. 
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Fig. 3. 5. The three dimensional plot for reactance and resistance sensitivity of an 
electrically short dipole (resonant at 1GHz). The surface features of each function can be 
seen for four different values of generator resistance. The green circle indicates the 
nominal value for the inductors. 
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Fig. 3. 6. The reactance and resistance sensitivity maps for the double tuning network for 
an electrically short dipole (resonant at 1GHz). The values are plotted relative to four 
different values of 60=dlA   at fC = 0.5 GHz. The green circle indicates the nominal 
value for the inductors. 
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Fig. 3. 7. The three dimensional plot for reactance and resistance sensitivity of an 
electrically short dipole (resonant at 1GHz). The surface features of each function can be 
seen for four different values of generator resistance. The green circle indicates the 
nominal value for the inductors. 
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3.5 Extension of the L-section matching network 

To increase the bandwidth of the L-tuning section at some fixed values of 21 , LL , we 

suggest to consider the matching circuit shown in Fig. 3.8.  It is seen from Fig. 3.8 that 

we can simply add a high-pass T-network with three lumped components (a shunt 

inductor and two series capacitors) to the L-section or, equivalently, use two sections of 

the high-pass LC ladder and investigate the bandwidth improvement. The Thévenin 

impedance of the equalizer, as seen from the antenna, is given by  
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where ωjs = . The default values of the circuit parameters for the sole L-tuning section 

read ∞=== 543 CLC . Thus, we introduce three new lumped circuit elements, but avoid 

using transformers. Instead of using impedances, an ABCD matrix approach would be 

more beneficial when using transformers.  

 
Fig. 3. 8. An extension of the L-tuning network for certain fixed values of 21 , LL  by the 
T-match. 
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3.6 Objectives of the circuit optimization task 

We assume that the antenna is to be matched over a certain band B centered at Cf , and 

that the gain variation in Eq. (2.16) does not exceed ±25% over the band. If, for this 

given equalizer circuit, we cannot achieve such small variations at any values of the 

circuit parameters, the equalizer is not considered capable of wideband impedance 

matching over the bandwidth B. We know that a low-order equalizer (the L-matching 

section) alone is not able to provide a nearly uniform gain over a wider band. However, 

increasing the circuit order helps. Thus, two practical questions need to be answered: 

A. For a given center frequency Cf  and bandwidth B, or for a given fractional 

bandwidth CfBB /= , what are the (normalized) circuit parameters that give 

the required bandwidth? 

B. What is the gain-bandwidth product and how does it relate to the upper 

estimate given by Eq. (2.22c)?  

Yet another important question is the phase linearity over the band; this question will not 

be considered in the present study.  

3.7 Numerical method and the antenna parameters tested 

To optimize the matching circuit with 5 lumped elements we employ a direct global 

numerical search in the space of circuit parameters. The grid in 5ℜ  space includes up to 

5100  nodes. The vector implementation of the direct search is fast and simple, but it 

requires a large (64 Gbytes or higher) amount of RAM on a local machine.  

For every set of circuit parameters, the minimum gain over the bandwidth is first 

calculated [23]. The results are converted into integer form and sorted in a linear array, in 
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descending order, using fast sorting routines on integer numbers. Then, starting with the 

first array element, every result is tested with regard to ±25% acceptable gain variation. 

Among those that pass the test, the result with the highest average gain is finally retained. 

After the global maximum position found on a coarse mesh, the process is repeated 

several times on finer meshes in the vicinity of the anticipated circuit solution.   

We will consider the dipole case and assume monopole equivalency. The set of tested 

antenna parameters includes: 

]50.0:05.0:05.0[/],5.0,1.0[],5,10,50[/ res === ffBdl CA                          (3.16) 

3.8 Alternative optimizers 

A viable alternative to the direct global numerical search used in this study, which is also 

a derivative free and a global method, is the genetic algorithm [36]. The genetic 

algorithm (GA) belongs to a class of stochastic optimization algorithms that attempt to 

mimic some of the classical evolutionary processes that occur in the biological world. 

Processes such as reproduction, mutation and crossover, which are central to the 

evolution of a species in nature hold the same meaning when applied for the purpose of 

optimization. The striking feature of GA based optimization is that we begin with a 

population of possible candidates for the solution, thereby introducing an inherent 

parallelism into the process. The optimality of this population is tested by applying it to 

the fitness function (also known as the objective function to be optimized). Depending on 

the results, candidates are selected to populate the second generation by applying the 

three key processes mentioned earlier. This process repeats itself till either a good 

solution is found or a solution to the problem is deemed infeasible. GA's have been 

widely used in many fields including antenna array design [37] and electromagnetics 
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[38]. An interesting application of the GA was reported in ref. [39] wherein the authors 

have demonstrated its use in optimizing lumped component networks for an antenna 

synthesis application as well as the matching network.  

The MATLAB © based Genetic Algorithm and Direct Search toolbox™ [40], provided us 

with an excellent platform to optimize the matching circuit under consideration in this 

study. This toolbox features a vast array of choices with which we were able to tailor the 

GA solver for our requirement. The results obtained from this GA are rather close to 

those achieved by the direct global numerical search and further work may be pursued in 

this direction. While the genetic algorithm by itself is a good candidate for a global 

optimizer, a direct search technique known as 'Pattern search' can be used with it to 

improve its performance. This is known as a hybrid GA [40] and it works by taking the 

best solution arrived at by the GA as the initial point and proceeds to refine the result by 

searching along a 'pattern'. The pattern here refers to a set of vectors that define the 

parameter space (in our case the circuit parameters) for the current iteration over which 

the search is performed. Depending on the result from the objective function this set of 

vectors is expanded or contracted by specific amount and the process repeats. To use this 

method we first generated a population of random candidate solutions with a uniform 

distribution, for the circuit parameters. The GA solver then tests these candidate solutions 

based on a specified criterion, which in this particular case, is to maximize the minimum 

gain over the band. After assigning scores to the various candidate solutions, it then 

creates the next generation of solutions, referred to as the 'children', by pairing candidate 

solutions from the previous generation, referred to as the 'parents'. To ensure diversity in 

the next generation, mutations, or random changes to one of the parents in a pair are 
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introduced. These new solutions replace the current population and the process repeats. 

Several options for stopping criterion can be used such as time limit, no. of successive 

generations or even simply the change in the value objective function between two 

generations. During this study, the results obtained with the GA toolbox were found to be 

in good agreement with the results obtained with the direct global numerical search. In 

the next section a comparison of the performance of our direct search routine with the 

algorithms from the GA toolbox will be presented. 
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Chapter 4. Numerical simulation and 
experimental results 
 
In chapter 3 the wideband matching network was developed starting with the narrowband 

L-section. The circuit optimization task was identified and put forth. To solve for the 

network components a direct search based optimization scheme was used. A potential 

alternative to the direct search based approach was also proposed in the form of the 

Genetic algorithm. The results of the direct search based numerical simulations will be 

presented in this chapter. A variety of matching scenarios will be considered. The 

practicality of this network lies in whether the components can be procured easily. To 

investigate this, a comprehensive search across different antenna geometries and 

component sensitivities is made and tabulated. Also presented is a comparison between 

the performances of the network proposed in this thesis and a more advanced form of 

Carlin’s equalizer [26]. This is done using both the direct search routine and the MATLAB 

© based Genetic Algorithm and Direct Search toolbox™ [40]. Finally experimental 

results are presented together with a discussion on the same. 

4.1 Realized gain – wideband matching for 5.0=B    

Fig. 4.1 shows the realized average generator gain over the passband based on the ±25% 

gain variation rule at different matching center frequencies. Three dipole geometries with 

5,10,50/ =dlA  are considered.  The bandwidth is fixed at 5.0=B ; we again consider 

three dipoles of different radii/widths. The realized values are shown by circles; the ideal 

upper estimate from Fig. 2.7 is given by solid curves. One can see that the 5-element 

equalizer performs rather closely to the upper theoretical limit 0T  when the average gain 
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over the band, T , is substituted instead. For the majority of cases, the difference between 

0T  and T  is within 30% of 0T .  The sole L-section was not able to satisfy the ±25% gain 

variation rule in all cases except the very last center frequency for the thickest dipole.   

4.2 Gain and circuit parameters – wideband matching for 

5.0/,5.0 res == ffB C   

Table 1a reports circuit parameters of the equalizer for three dipoles with 

5,10,50/ =dlA .  In every case, matching is done for 5.0/ res =ffC , 5.0≈B . Fig. 4.2 

shows the corresponding gain variation with frequency within the passband. In Table 1, 

we have presented all circuit parameters for a 23 cm long dipole. To scale parameters to 

other antenna lengths one needs to multiply them by the factor 23.0/Al m. Table 1 also 

shows the anticipated gain tolerance error. Whilst the average gain itself does not 

significantly change when changing capacitor/inductor values, the gain uniformity may 

require extra attention for a thin dipole (second row in Table 1). For thicker dipoles (third 

and fourth row of the table) one solution to the potential tolerance problem is to slightly 

overestimate the circuit parameters for a better tolerance. Generally, the usual uncertainty 

in low-cost chip capacitors and chip inductors seems to be acceptable. Table 1 also 

indicates that the equalizer for a wideband matching of the dipole does not involve very 

large inductors (and large capacitors) and is thus potentially low-loss.  
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Table 4. 1. Circuit parameters and gain tolerance for a short dipole with the total length 
Al =23 cm. Matching is done for 5.0/ res =ffC , 5.0≈B  based on the ±25% gain 

variation rule. 

Antenna 

geometry 

dlA /  

Circuit parameters Gain/Variance 

over the band  

Gain/Variance 

over the band at 

+5% parameter 

variation 

Gain/Variance 

over the band at -

5% parameter 

variation 

 

50 

1761 =L  nH 

702 =L  nH 

9.43 =C  pF 

804 =L  nH 

3.155 =C  pF 

 

20.0=T  

%25/ <∆ TT  

 

19.0=T  

%27/ <∆ TT  

 

20.0=T  

%38/ <∆ TT  

 

10 

4.721 =L  nH 

7.482 =L  nH 

6.393 =C  pF 

1024 =L  nH 

2.105 =C  pF 

 

36.0=T  

%24/ <∆ TT  

 

35.0=T  

%19/ <∆ TT  

 

38.0=T  

%35/ <∆ TT  

 

5 

5.211 =L  nH 

6.242 =L  nH 

9.613 =C  pF 

5374 =L  nH 

3.155 =C  pF 

 

60.0=T  

%25/ <∆ TT  

 

59.0=T  

%19/ <∆ TT  

 

61.0=T  

%34/ <∆ TT  
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Fig. 4. 1. Realized average generator gain T over the band (circles) based on the ±25% 
gain variation rule at different matching center frequencies and  5.0=B  for three 
different dipoles, obtained through numerical simulation. The realized values are shown 
by circles; the ideal upper estimates of 0T  from Fig. 2.7 are given by solid curves, which 
are realized by using eqn. (2.22c). 
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4.3 Gain and circuit parameters – narrowband matching for 1.0=B  

It is not the subject of this study to discuss the narrowband matching results; however, 

they have been obtained and may be discussed briefly. When the two-element L-section 

network is able to provide us with the required match, its performance is not really 

distinguishable from that of the full 5-element equalizer. However, it does not always 

happen that the reduced L-section equalizer is able to do so. The full equalizer is the only 

solution at smaller resonant frequencies and for thinner dipoles.  

Unfortunately, the deviation from the Bode-Fano maximum gain may be higher for 

narrowband matching than for the wideband matching; in certain cases it reaches 100%. 

It is not clear whether this high degree of deviation is due to the numerical method or if it 

has a physical nature.        

4.4 Gain and circuit parameters – wideband matching 

for 15.0/,5.0 res == ffB C  

A more challenging case is a smaller wideband dipole; we consider here the case when 

15.0/ res =ffC  and refer to the corresponding theoretical curves presented in Fig. 2.7.  

Fig. 4.3 shows the transducer gain variation with frequency within the passband, after the 

equalizer has been applied based on the ±25% gain variation rule. The circuit parameters 

indicate a higher value of μH46.21 =L  for 50/ =dlA  and μH06.11 =L  for 10/ =dlA . 

For 5/ =dlA , inductance 4L attains a larger value of μH40.1 .   
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4.5 Comparison with the results of Ref. [26] 

In Ref. [26] a similar matching problem was solved for a thin dipole of length =Al 0.5 m 

and the radius a of 0.001m. Matching is carried out for 416.0/ res =ffC , 4.0=B . A 

Carlin’s equalizer with an extra LC section has been considered. Fig. 4.4 reports the 

performance of our equalizer for this problem (dashed curve). The thick solid curve 

within the passband is the corresponding result of Ref. [26] (and copied from Fig. 6). In 

our case, the optimization was done based on the ±25% gain variation rule. The 

difference between the two average band gains was found to be 5%.  The circuit 

components for our circuit are 1.06µH, 0.21 µH, 20 pF, 0.95µH, and 17 pF. Note that 

without the extra LC section, the Carlin’s equalizer may lead to a considerably lower 

passband gain than the gain shown in Fig. 4.4 [26]. Without any equalizer, the 

performance is expectedly far worse. The plot indicates that a 20 dB improvement is 

achieved at the lower edge of the band and approximately 10 dB at the upper band edge, 

when the equalizer is used.  

In Fig. 4.5 we show the performance of the MATLAB © based Genetic Algorithm and 

Direct Search toolbox™ [40] in comparison with the direct global numerical search for 

the same matching problem as in [26]. The Genetic algorithm is used in conjunction with 

the patternsearch algorithm and yields a solution with an average band gain variation of 

24.67 %. It is noted that the performance is very close to the direct global numerical 

search. The component values produced by the GADS toolbox are (in order L1 – C5): 

1.09 µH, 0.18 µH, 95.3 pF, 0.99 µH, 11.34 pF. Note, that all component values but for C3 

are very similar to that produced by the direct global numerical search.  
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Fig. 4. 2. Gain variation with frequency for a short dipole or for an equivalent monopole 
at different thicknesses/widths obtained by numerical simulation which uses Eq. (2.16). 
Matching is done for 5.0/ res =ffC , 5.0≈B  based on the ±25% gain variation rule. 
Vertical lines show the center frequency and the passband. 
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Fig. 4. 3. Gain variation with frequency for a short dipole or for an equivalent monopole 
at different thicknesses/widths obtained by numerical simulation which uses Eq. (2.16). 
Matching is done for 15.0/ res =ffC , 5.0≈B  based on the ±25% gain variation rule. 
Vertical lines show the center frequency and the passband. 
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Fig. 4. 4. Gain variation with frequency for a short dipole or for an equivalent monopole 
of length 0.5 m and radius of 0.001m, by numerical simulation of associated matching 
network. Matching is done for 416.0/ res =ffC , 4.0=B  based on the ±25% gain 
variation rule (dashed curve). The thick solid curve is the result of Ref. [25] with the 
modified Carlin’s equalizer, which was optimized over the same passband for the same 
dipole. Vertical lines show the center frequency and the passband. Transducer gain, in the 
absence of a matching network, is also shown by a dashed curve following Eq. (2.16). 

 

Fig. 4. 5. Comparison between the results from the genetic algorithm (solid blue curve), 
and the direct global numerical search algorithm (dashed blue curve) for an equivalent 
monopole of length 0.5 m and radius of 0.001m, by numerical simulation of associated 
matching network. 
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4.6 Effect of impedance transformer 

A set of numerical simulations for the same dipoles with a 4:1 ideal transformer has 

shown that the wideband matching results (achievable gain) are hardly affected by the 

presence of a transformer, even though the parameters of the matching circuit change 

considerably. For example, in the case of 5.0=B , 15.0/ res =ffC  and discussed above, 

the average gain without and with transformer is 0.0092/0.0092, 0.020/0.020, and 

0.036/0.040 for  the three dipoles with 5 ,10,50/ =dlA .   

4.7 Experiment - Short blade monopole  

We have designed, constructed, and tested a number of short blade monopole test 

antennas and the corresponding matching networks. The antenna's first resonant 

frequency is in the range 550-650 MHz. The matching is to be done over a wide, lower 

frequency band of 250-400 MHz, with the center frequency of 325 MHz. For every 

monopole, the ratio, dlA / , equal to 20 has been used in the experiment. Fig. 4.6 shows 

the generic monopole setup. 

 

Fig. 4. 6. A 10.1cm long and 2.3cm wide blade monopole over a 1×1 m ground plane 
used as a test antenna for wideband impedance matching. 
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Fig. 4. 7. A closer view of the test monopole over the ground plane. 

The brass monopole antennas have been centered in the middle of the 1×1 m aluminum 

ground plane. We then investigated the matching performance for two specific cases: i) 

the monopole is resonant at 650 MHz and; ii) monopole is resonant at a slightly lower 

frequency of 600 MHz.  The results for both cases are reported in this section.  

4.8 Experiment - Wideband equalizer 

The ubiquitous FR-4 substrate has been used for the equalizer. We have chosen two 

tunable high-Q components among the five to compensate for parasitic effects due to the 

board assembly, the finite Q of the discrete components and the manufacturing 

uncertainties. These tunable components were L1 and C5, respectively. L1 is a tunable RF 

inductor from Coilcraft's series 148 with a tuning range of 56nH - 86nH, and a nominal 

value of 73nH. This inductor has a Q of 106 at 50MHz. C5 is a Voltronics series JR 

ceramic chip trimmer capacitor with a  tuning range of 4.5pF - 20pF within a half turn. 

This capacitor has a minimum Q of 1500 at 1MHz. Apart from L1 which is a leaded 

component, all the other components are the high-Q surface mount devices.  
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Fig. 4. 8. Practical realization of the wideband equalizer for the blade monopole antenna 
following Table 2. 

Table 4.2 lists the parameter values. The designed wideband equalizer is shown in Fig. 

4.8.  

Table 4. 2. Practical component values used in the monopole equalizer for dlA / =20 and 
t =  2.3 cm. 

Component Value 

L1 56 nH - 86 nH 

L2 48 nH 

C3 39.1 pF 

L4 100 nH 

C5 4.5 pF - 20 pF 

4.9 Gain comparison – 1×1 m ground plane 

We compare the gain performance for two different modifications of the blade monopole 

dimensions in Fig. 4.9. The first modification involves a 10.1 cm long an 2.3 cm wide 

blade monopole, which is resonant at 650 MHz. In Fig. 4.9a the gain achieved by the 

unmatched monopole antenna (thin solid curve) and the gain of the monopole antenna 
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with the designed wideband equalizer (thick dotted curve), respectively are shown. The 

average transducer gain achieved in experiment is 0.262 over the bandwidth 250MHz - 

400MHz with a gain variation of 40 %. The L1 and C5 values for this particular result are 

86 nH and 7.63 pF respectively.  

Next, we consider a blade monopole antenna of length 10.8 cm and width 2.3 cm. This 

blade monopole resonates at 600MHz. Fig. 4.9b shows the matching performance with 

(thick dotted curve) and without (thin solid curve) the wideband equalizer. We see that 

the equalizer performs rather well even under this scenario and achieves a gain of 0.259 

within the bandwidth of interest. The gain variation over the band is 28.8 %. In this case 

the value of L1 is changed to 73nH while the capacitance C5 is unchanged. 

Here, we also notice an approximate 10dB improvement over the unmatched antenna, 

provided by the equalizer at the lower edge of the band. During the experiments we have 

noticed that a resonance may appear at lower frequencies below 200 MHz. The 

theoretically predicted gain is shown by thick solid curves in Fig. 4.9a and 4.9b. 

Generally the experiment follows the theory. In the case of Fig. 4.9a, the average 

experimental gain over the band is 0.262 and is slightly higher than the corresponding 

theoretical value of 0.245. In the case of Fig. 4.9b, the average experimental gain over the 

band is 0.259 versus the theoretical value of 0.245. We believe that the average gain 

difference is within the experimental uncertainty. This statement can be further confirmed 

by the results from the fourth and fifth column of Table 4.1, where we observe the quite 

similar variation when the component values of the matching circuit are varied by ±5%.    

However, for the local gain behavior, we observe somewhat larger variations. The 

experimental gain is higher in the middle of the band, but is lowered at the band edges. 
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We explain these variations by the associated tuning procedure and by the inability to 

exactly follow the requested values of inductance L1 and capacitance C5. An additional 

important mechanism is lumped-element losses at the higher band end. Yet one more 

uncertainty factor is due to a relatively small size of the measurement chamber. This 

effect becomes apparent at low frequencies as Fig. 4.9 indicates. The present results are 

preliminary and have a very significant room for improvement.   

 

Fig. 4. 9. The experimental gain data (dotted curve 1) in comparison with the theoretical 
result (thick curve 2) for two blade monopoles with the matching network from Table 2: 
a) - the blade length is 10.1 cm  and the width is 2.3 cm; b) - the blade length is 10.8 cm 
and the width is 2.3 cm. The thin solid curve 2 in this graph corresponds to the antenna 
gain (based on the measured return loss) without the matching network.    
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4.10 Gain comparison – 75×75 cm ground plane 

The effect of ground plane size on the matching performance is considered. The size of 

the ground plane for this experiment was reduced to 75×75 cm. The length of the blade 

monopole was retained to be 11.5 cm since the first resonance observed with this setup is 

approximately 650 MHz. The width of the blade monopole is 2.3 cm. The gain 

performance for this setup is shown in Fig. 4.10. The component values are the same 

except for the L1 and C5 values which are 60 nH and 12pF respectively. The average 

transducer gain achieved in this experiment is 0.2854 over the bandwidth 250MHz - 

400MHz with a gain variation of 37 %.  

 

Fig. 4. 10. The experimental gain data (dotted curve 1) in comparison with the theoretical 
result (thick curve 2) for a blade monopole of length 11.5cm and width 2.3cm over a 
reduced ground plane size with the equalizer network from Table 2: The thin solid curve 
3 in this graph corresponds to the gain (based on the measured S11) without the equalizer 
network.    

Even though the overall gain variation over the band is greater than 25%, the average 

gain is slightly higher as compared to the experiments with the larger ground plane. 

Again the inability to exactly follow the suggested tuning values is the reason for this 

large gain variation. In Fig. 4.11 the S11 for this antenna is plotted in dB scale. The tuning 
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procedure results in better S11 in the middle of the band as compared to the edges thus 

resulting in higher transducer gain in that region as observed in Fig. 4.10. 

 

Fig. 4. 11. The experimental S11 data (dotted curve 1) in comparison with the theoretical 
result (thick curve 2) for a blade monopole of length 11.5cm and width 2.3cm over a 
reduced ground plane size with the equalizer network from Table 2. The thin solid curve 
3 in this graph corresponds to the measured S11 without the equalizer network.    

4.11 Discussion on S11 

The results shown in Figs. 4.9-4.11 about the transducer gain and the S11, indicate that if 

the generator can tolerate an input VSWR in the range 7:1, then using the reflective 

equalizer approach can improve the transducer power gain for an electrically short 

antenna. However, if the input VSWR requirement needs to be restricted to lie below 4:1 

then as discussed in section 2.9 and later in Table 4.1, the dlA /  ratio for the antenna 

needs to be reduced, which would result in a thicker cylindrical dipole (or monopole) or 

alternatively a wider blade dipole (or monopole). Specifically, using an dlA / = 5 for a 

similar antenna as considered in the experiments resulted in a higher theoretical 

transducer gain and a minimum theoretical VSWR of 2.6:1. By theoretical we imply the 

upper limit predicted by using the Eq. 2.22c. In section 4.2, Table 4.1 provides the 

component values and the realized transducer gain for our 5 element equalizer. Based on 
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the experimental results for the blade monopoles with dlA / = 20 we can safely predict 

that a lower VSWR can be expected for smaller dlA / ratios as well, by using the 

reflective equalizer.  
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Chapter 5. Introduction to Modular arrays 
 

The demand for higher bandwidths and gain from antenna systems for communication 

and positioning/navigation purpose is on the rise [41]-[44]. With the advent of software 

defined radios and cognitive radios, much more will be demanded from the antenna 

systems of the future [45]-[47]. While single antenna systems do achieve bandwidths far 

greater than an octave, there is a degree of complexity in their design and construction. 

Some of the common examples of such antennas are the spiral [48], [49]and the log-

periodic antennas [50]. Antennas like the dipoles, monopoles and patches are relatively 

simpler to design and fabricate. The dipoles and monopole antennas have figured 

prominently in wide bandwidth designs [51]. Expectedly the directive gain of such 

antennas is lower than what can be achieved by using an array. 

The design of arrays comprising small number of elements requires a different approach 

as compared to the large arrays (so called infinite arrays). Antenna array design with 

large number of elements wherein the total number of elements can range anywhere from 

100-10000 and higher involves a good choice of the individual element and then 

proceeds to an infinite array based simulation. An example of such large arrays is the 

Cobra Dane phased array system located in Alaska shown in Fig. 5.1. This system was 

developed for tracking the threat of an InterContinental Ballistic Missile (ICBM) attack 

on the United States. 
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Fig. 5. 1. The Cobra Dane phased array system a) and the array face b) [52]. 

 In this approach, the individual element is considered to be part of an infinitely large 

array. The Floquet theory of periodicity is invoked and the relevant array parameters such 

as impedance bandwidth, pattern gain etc. are derived. The mutual coupling among 

individual elements is taken into account through this approach. An important 

characteristic of such arrays is that the edge elements are far smaller in number than the 

number of elements they surround. As a result, the accuracy of analysis using the infinite 

b) 

a) 
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array approach, for finite large size arrays increases with the number of elements. One 

can expect that the accuracy for a 5000 element array would be higher than one for a 100 

element array. This approach is widely used and is well documented [53], [54].  

The arrays of smaller sizes such as 2x1, 4x1, 2x2, 4x2, and 4x4 present an interesting set 

of challenges. In fact, for these arrays, the edge elements outnumber those bounded by 

them (in planar arrays 2x2 is an exception in that all elements are indeed edge elements!). 

Thus, these edge elements play a significant role in the overall performance. An infinite 

array simulation cannot be expected to accurately represent the performance of such 

small arrays. Instead, a finite array based analysis can be employed as suggested in [54]-

[59]. In [60] - [67] , various approaches for the modular design of arrays are suggested. 

These approaches however are still oriented towards large size finite arrays.  

The contribution of this thesis is to investigate the distributed impedance matching 

approach in the design of modular arrays. In doing so, the canonic planar resonant dipole 

is used to design the square unit cell (planar dipole over ground plane) such that, the 2x1, 

2x2 and 4x1 arrays attain a VSWR of at least 2:1 over a bandwidth of at least 2:1, and 

stable gain (directive gain variation ≤ 3dB) over the entire band. The bandwidth definition 

used is shown below, 

L

U

f
f

B =  (5.1) 

where, Uf and Lf  represent the upper and lower frequencies which satisfy the S11 < -10 

dB criterion. Furthermore, gain behavior at the lower frequencies in the band is of interest 

and it will be compared to the prediction by the array area rule [68]. It is the attempt of 

this thesis to show that through careful design we can exploit mutual coupling between 
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the unit cells to enhance the impedance bandwidth and provide for a stable broadside 

gain. The modular design approach is an attractive one for the following reasons: 

• It is easy to build arrays of a specific configuration, once the individual radiator 

has been optimized.  

• Individual elements in the array can be easily replaced if a problem develops in 

them.  

• Since the individual radiator satisfies multiple array configurations, it allows for 

flexibility in the deployment of different arrays without loss of performance 

The present modular approach may be used for low-cost larger-volume small broadside 

array design. The effect of scanning on such arrays has not been investigated.  

5.1 Unit Cell Geometry 

The unit cell serves as the basic building block for all the arrays and is shown in Fig. 5.2. 

It comprises of a resonant dipole of total length 2L, and width W placed over a finite 

ground plane of dimensions yx SS ×  at a height h. The x-axis is along the horizontal in the 

Fig. 5.2. A wide blade dipole is chosen since it is easier to impedance match to such 

dipoles (thick dipoles if considering cylindrical) [69], [70]. If needed a conical impedance 

matching structure could be incorporated within the dipole, providing a smoother 

transition from the feed to the wing of the blade dipole. However, this unit cell does not 

have such a structure and therefore makes it easier to build. The blade dipole as well as 

ground plane need the mechanical support. For this reason, two substrates are provided for 

the dipole element and the ground plane respectively. In addition, 4 supporting posts are 

located at the corners of the unit cell in between the dipole and the ground plane.  
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Fig. 5. 2. The unit cell geometry in plan and elevation. The feed is shown in red, and the 
ground plane is indicated with the dotted outline in the plan view. 

5.2 Analysis for 2x1 array active impedance with power combiner 

As stated previously this thesis suggests to build modular arrays of different 

configurations starting with the simplest 2x1 array to the 4x4 array. However, even the 

simplest 2x1 array consists of unit cell, the connecting RF cables (coaxial) and a 2 way 

power combiner/divider. The goal is to at least achieve a bandwidth of 2:1 with a VSWR 

of 2:1 measured at the input to the power combiner. This implies that the active array 

impedance and hence the active array reflection coefficient are well matched to the source 

impedance, typically 50Ω.  

The active array impedance/reflection coefficient is defined as the impedance/reflection 

coefficient measured when all the elements of the array are excited, and thus includes the 

effects of mutual coupling. The 2x1 array is shown in Fig. 5.3, along with the port 
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numbering scheme. The antennas are excited uniformly and are not intended to have 

scanning capability.  

 

Fig. 5. 3. The 2x1 array of planar dipoles located over a ground plane. The feed region is 
shown as the square in between the dipole wings. 

5.2.1 Active Scattering Parameters 

The array reflection coefficient behavior can be determined by firstly calculating the 

active scattering parameters (S-parameters) whereby all the array elements are radiating 

and as mentioned before are fed uniformly with the same amount of power. Thus for the 

2x1 configuration as shown in Fig. 5.3, the S-parameter equations can be written as, 
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 (5.2) 

+
1V , +

2V are the forward traveling voltage waves, and −
1V , −

2V are the reflected voltage 

waves at the port 1 and port 2 respectively. Note that S-parameters indicated in Eq. (5.2) 

are derived under standard conditions by terminating all ports except the port under 

consideration into 50 ohms. Since both elements are fed uniformly, we can assume +
1V = 

+
2V . Thus the pair of equations in Eq. (5.2) can be reduced to 
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This approach can be extended in a similar way to obtain the active reflection scattering 

parameters for larger array, i.e. the 2x2, 4x1, 4x2, 4x4 arrays and so on.    

5.2.2 Model for Power Combiner with Cables 

Arrays inherently require a power combining/dividing network to function. Typically such 

power combining networks are based on the common Wilkinson power divider [72]. 

However, since the antenna impedance is frequency dependant, we expect to see 

impedances at the output ports of the Wilkinson that are not exactly 50Ω. Therefore, we 

have to optimize the array performance by including the impedance transformation 

through the power combiner/divider. Additionally, there are cables connecting the array 

feed to the power divider and hence the active array feed point impedance is transformed 

over the length of the cable.   

The expectation is that for a well matched array, the active impedances will remain close 

to 50Ω and therefore the array performance will not degrade after the power combiner. 

Nevertheless, we carry out the analysis to confirm this aspect of the design. The analysis is 

performed for the 2x1 array configuration only. 

Consider the active impedance parameters for each array element within the 2x1 array to 

be defined as 
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The characteristic impedance Z0 is 50Ω and the coaxial cables of length L are connected 

to the elements, the transformed input impedance is given by 
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The losses in the coaxial cable are ignored and the propagation constant is defined 

as λπβ 2= . These transformed active array impedances appear at the output ports of the 

2-way Wilkinson power divider. An equivalent circuit for the 2-way Wilkinson power 

combiner is shown in Fig. 5.4. The voltages at specific nodes have been identified 

together with currents through the different branches. The source voltage and current 

phasors are V and I respectively. The combiner has load impedances active
tZZ _111 =  

and active
tZZ _222 = . The resistor Rd connected in shunt ensures that any reflected power due 

to imbalances in the two arms is dissipated before reaching the input. The value of this 

resistor is set to 2Z0 [72]. 

 
Fig. 5. 4. An equivalent circuit for the 2-way Wilkinson power combiner. 
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The two transmission lines connected between the input and output ports are identical 

and have a characteristic impedance of ZTL=√2Z0. They have a length l << L. The active 

input impedance can then be defined as, 

21 II
V

I
VZ active

in +
==

 
(5.6) 

From Fig. 5. 4, we can write down the following three equations, 
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Here, 1
*

1 ZVI z = , and 2
**

2 ZVI z = are the currents flowing through the two loads at the 

output ports respectively.  Using the ABCD matrix approach we can solve for V and I1 as 

follows 
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Similarly we can also write the equations for V and I2 as follows 
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By using the fact that since 4λ=l , 2πβ =l , from Eqs. (5.8) and (5.9) we get 
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Assuming that the excitation is 1V, we can express the branch currents and node voltages 

as, 
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Thus using Eq. (5.7) and (5.11) we get 
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Using the definition for the input impedance expressed in Eq. (5.6) 
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In addition, by using the fact that active
tZZ _111 = as well as active

tZZ _222 =  we arrive at the active 

impedance at the input to the power combiner as 
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Under matched conditions Ω== 50_22_11
active

t
active

t ZZ , we get the input 

impedance Ω= 50active
inZ . Using the active array impedance at the input to the power 

combiner we calculate the input reflection coefficient for the 2x1 array as 
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We can extend this to the 2x2, and 4x1 arrays, which use a 4 - way power divider, by 

translating the active impedances at the output ports of the power divider twice by using 

Eqs. (5.14) and obtain the input reflection coefficient as in (5.15). 
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5.3 Peak Broadside Gain 

Consider a large array located on the xy-plane as shown in Fig. 5.5.  

 

Fig. 5. 5. A large uniformly excited array located on the xy – plane. While the individual 
radiator in this figure is a dipole, the actual element itself is irrelevant since the array area 
rule is purely a function of the physical area and the wavelength. 

 
Under the uniformly excited case, and possesses no grating lobes, the peak directive gain 

is given in [53], [68] , and [71] as follows:  

22

44
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π
λ
π yxyx

d

SSNNNAG ==  (5.16) 

where Gd is the peak directive gain of the array, N is the total no. of elements in the array 

(with Nx elements along the x direction, Ny elements along the y direction), A represents 

the array area, Sx and Sy are the inter element separation within the array. The directive 

gain does not take into account the mismatch loss and the ohmic losses. For small arrays 

such as the ones being considered in this paper the peak broadside directive gain will be 
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compared against the theoretical limit given in Eq. (5.16). Of particular interest is the 

performance at the lower frequencies within the band of interest. 
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Chapter 6. Full wave modeling, simulation 
and experimental results 
 

In this chapter, the optimization based modular array design will be explained. This 

design approach will attempt to satisfy two criterions namely:  

i. The ≤active
inΓ -10 dB over at least a 2:1 bandwidth 

ii.  A maximum variation in directive gain of 3 dB over the 2:1 bandwidth 

The optimization procedure will be based on exploiting distributed reactance’s within the 

structure. The simulation results for the active reflection coefficient at the input to the 

power combiner and the directive gain will be presented for three modular array 

configurations; the 2x1, 4x1 and the 2x2 arrays. Additionally, the directive gain results 

from the optimized modular arrays will be compared with the prediction from the array 

are rule. The optimized unit cell performance in an infinite array scenario will be 

provided in the form of the active reflection coefficient and discussed. The construction 

of the experimental arrays will be described and followed by a discussion on the results 

for their active reflection coefficient. 

6.1 Optimization procedure and full wave modeling 

The design of modular arrays as described in chapter 5 is based on a simple premise: a 

single optimized unit cell should be able to achieve the two criterions mentioned earlier. 

To investigate whether this is indeed achievable, we adopt an optimization procedure that 

uses the variables within the unit cell itself. This is the distributed approach to impedance 

matching. In fact, apart from impedance matching we will also attempt to achieve gain-
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bandwidth, wherein the gain refers to the directive gain of the array. Consider the Fig. 6.1 

where we have identified 6 variables which could be potentially used for optimization. 

These are, 

• Length L and width W of the unit cell – which becomes the dimensions of the 

ground plane 

• Length LD and width WD of the dipole 

• Feed spacing s 

• Height above the ground plane h  

 

Fig. 6. 1. Optimization variables for the unit cell radiator. 

By modeling the three array configurations as shown in Fig. 6.2 and optimizing each of 

them subject to the variables, the optimum unit cell solution should be found. 
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Fig. 6. 2. Unit cell and the three array configurations to be optimized. 

6.2 Simulation setup 

Three configurations namely, the 2x1, 2x2 and the 4x1 arrays were chosen for simulation 

and experimental investigations. Ansys/Ansoft HFSS ver.12.0 was used for modeling and 

simulation of these arrays.. All the metal portions were assigned a boundary condition of 

Perfect electric conductor (PEC). A lossless substrate of relative permittivity ( rε ) 2.9 is 

provided for both the dipole and the ground plane. The feed was modeled as a lumped 

port with impedance 50 Ω. It is expected that for a first pass design we will be using a 

coaxial cable to connect the feed to the power combiner and not use a balun transformer. 

The dipole is rarely used without a balun transformer. However, to make it easier to 

design, implement as well as from an investigative point of view it was decided that the 

balun transformer would be excluded in this initial design.  For similar reasons a conical 

impedance matching section between the feed point and the dipole wings has been 
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excluded. In fact during simulations it was noted that the extra section did not change the 

impedance behavior significantly  

The computational domain was surrounded with a perfectly matched layer (PML) in 

order to minimize reflections and ensure good solution accuracy. A discrete frequency 

sweep was chosen from 0.6 – 1.8 GHz. Our design frequency range is from 0.8 GHz to 

1.6 GHz. All the elements in the arrays are uniformly excited with 1 Watt of power. The 

full wave modeling yielded a final mesh size of 30000 tetrahedra with good solution 

convergence. The optimized unit cell dimensions are shown in Fig. 6.3.  

 

Fig. 6. 3. Optimized unit cell dimensions obtained through full-wave modeling in Ansoft 
HFSS ver 12.0. 

6.3 Input reflection coefficient – Unit cell, 2x1, 4x1 and 2x2 arrays 

The optimized unit cell radiator is indeed wideband and is well matched from 0.9 GHz – 

1.8 GHz with a well defined resonance at 1 GHz. This is shown in Fig. 6.4. The 
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simulation results, for the active input reflection coefficient for the different modular array 

configurations as calculated using Eq. (5.15) are shown in Fig. 6.5.  The results for the 

active reflection coefficient suggest that the 2x1, 4x1, and the 2x2 arrays are well matched 

from 0.8 GHz to 1.6 GHz. All the three arrays show good impedance matching even 

above 1.6 GHz and upto 1.8GHz which would correspond to 2.25:1 impedance bandwidth 

as per the definition in Eq. (5.1). However, we would expect the broadside gain to drop 

drastically at the high frequency end, primarily due to the distance of separation from the 

ground plane.  

 

Fig. 6. 4. The input reflection coefficient for the optimized modular array unit cell. The 
solid green vertical lines indicate the bandwidth of interest. 
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Fig. 6. 5. The active input reflection coefficient obtained from the simulation of 2x1, 4x1 
and 2x2 arrays. The solid green vertical lines indicate the bandwidth of interest 
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6.4 Broadside gain as a function of frequency 

Although the impedance bandwidth over the desired frequency band of 0.8GHz - 1.6GHz 

has been established, it is the peak directive gain at broadside (θ=0 deg., φ=0 deg.) which 

will be crucial in determining the overall gain as well as the usable gain-bandwidth of the 

arrays. In Fig. 6.6 the peak directive gain at broadside is plotted as a function of 

frequency. The dashed curves are the simulation results from the HFSS models. Clearly 

over the band of interest the gain achieved is significantly higher than that possible by a 

single dipole over a ground plane (maximum of 7.2 dB at 0.8GHz), which is the unit cell 

radiator. To understand the behavior of such modular arrays of small sizes, it is helpful to 

compare the performance against the well established theoretical estimate for the peak 

directive array gain as expressed in Eq. (5.16). For all three arrays considered, this 

theoretical estimate is plotted as a function of frequency in Fig. 6.6(a) - (c).  Clearly, the 

peak gain is higher for the three arrays as compared to the theoretical estimate, at the 

lower frequencies. In the case of the 2x1 array, the gain is relatively stable over the band 

of interest. However, beyond 1 GHz, the gain is lower than that predicted by Eq. (5.16). 

The 2x2 array follows the theoretical prediction remarkably well over the range 1 GHz - 

1.4 GHz, before dropping off to 10dB at 1.8 GHz. In fact the behavior of the 2x2 array 

gain from simulation can be traced to the 4x1 case. Similar to the other cases the 

theoretical estimate is lesser at the low frequencies. However, at frequencies between 1 - 

1.2 GHz. the array gain is approximately equal to the theoretical value. From 1.2 - 

1.8GHz, there is a gradual drop in the gain value. Beyond 1.8 GHz, a broadside gain null 

would be present. The frequency of occurrence of this minimum can be modified by 

adjusting the height of the dipole over the ground plane.  
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Fig. 6. 6. The peak directive gain at broadside plotted as a function of frequency for the a) 
2x1 array, b) 4x1 array and c) 2x2 arrays. The theoretical estimate (solid curve) is 
compared with the simulation results (dotted red curve) over the bandwidth of interest 
(solid green vertical lines). 
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A larger height will reduce this minimum gain frequency while simultaneously improving 

the impedance matching performance. Depending on the design requirements, this 

parameter represents an important tradeoff between array gain and bandwidth. 

6.5 Optimized unit cell in an infinite array 

It is worth investigating the performance of the optimized unit cell in an infinite array 

environment. The design of small modular arrays cannot be accomplished by using the 

Floquet theory based infinite array modeling and this experiment will suitably confirm 

our hypothesis. In Fig. 6.7 we plot the active reflection coefficient of the infinite array, 

which uses the optimized radiator of the modular array as the active element. Clearly, the 

impedance bandwidth is significantly degraded. Instead of at least an octave bandwidth 

design we now have a narrowband (relative) array with less than 25% fractional 

bandwidth.  

 

Fig. 6. 7. The active reflection coefficient for an infinite array using the optimized 
modular array unit cell as the active element. The solid green vertical lines indicate the 
bandwidth of interest. 
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6.6 Experimental Unit cell, 2x1, 4x1 and 2x2 arrays 

The square unit cell radiator, used to build the 2x1, 2x2 and the 4x1 arrays, comprised of 

a 150 mm x 150 mm ground plane and a 100mm long dipole (inclusive of feed gap) 

positioned 70 mm over it. Since the planar dipoles are to be positioned at a fixed distance 

above the ground plane, we had to provide for a mechanical support to both the dipole 

and the ground plane. For this purpose we have chosen Polymethyl methacrylate 

(PMMA), also commonly known as Plexiglass, to be the substrate material. Plexiglass 

has a relative permittivity of 3.0, is low loss and easily available. The Plexiglass substrate 

for the dipole and the ground plane has a thickness of 5mm (approximately).  Supporting 

posts as shown in Fig. 6.1 made of Delrin® are provided at the four corners of the unit 

cell. Two threaded holes have been provided in orthogonal directions on each supporting 

post so as to facilitate array expansion in either linear or planar configurations. For the 

planar dipole and the ground plane, Copper foils of 10 mil thickness were glued onto the 

substrates. A hole was drilled in the center of both substrates to allow for a coaxial cable 

to be inserted and soldered to the blade dipoles. As noted earlier in this chapter, no balun 

transformer has been used for this initial design. However, subsequent designs would use 

a balun transformer. A 2-way and 4-way power divider from Mini-circuits was used as 

the power combiner of the 2x1, 4x1 and 2x2 arrays which are shown in Fig. 6.8..  

The active reflection coefficient of the unit cell is plotted in Fig. 6.9. The unit cell is 

broadband and possesses greater than 2:1 impedance bandwidth. The well defined 

resonance close to 1 GHz, as predicted from simulation and shown in Fig. 6.5, is also 

observed during measurements. Significantly, the unit cell displays a much better 

impedance match over the frequency band of interest (0.8 GHz- 1.6GHz) and beyond.  
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Fig. 6. 8. The three experimental modular arrays. 

 

Fig. 6. 9. The input reflection coefficient for the experimental unit cell radiator. The solid 
green vertical lines indicate the bandwidth of interest. 

There could be two reasons for this: 
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i. The losses within the structure at such high frequencies which includes Copper 

foils, Plexiglass substrates and 4 Delrin® posts could be significant enough to 

improve the reflection coefficient. 

ii. The absence of a balun implies that there will be a non-zero current flowing on 

the outer conductor of the coaxial cable. Given the length of this cable is larger 

than the smallest wavelength in the band of interest, there could be a traveling 

wave leaking energy via radiation and hence improving the reflection 

characteristics. If true, then the radiation pattern would be severely degraded and 

an adverse impact in the form of a larger back lobe will result. 

The effect of the cables and connectors originating from the network analyzer has been 

calibrated out.  

In Fig. 6.10 the active input reflection coefficient measurements for the 2x1, 4x1 and 2x2 

arrays is shown. All three arrays satisfy the ≤active
inΓ -10 dB requirement. However, 

unlike the simulation results shown in Fig. 6.5, there exist multiple resonances in the 

reflection curve. A possible reason for this behavior could be the power 

combiner/divider. Further investigation is required to confirm this fact. In Fig. 6.11, 

radiation pattern in the H-plane, at 1GHz, has been plotted for one of the modular arrays, 

the 2x2 array. The solid curve is the result from the Ansoft HFSS simulation, while the 

dashed curve is the measurement result from the experimental array. Overall, there is 

good agreement between simulation and measurement. We note the presence of a dip at 

boresight (0 degrees) as well as a slightly higher backlobe level (180 degrees). The gain 

measurements were performed outdoors using standard Horn antennas at the receiving 

end. 
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Fig. 6. 10. The active input reflection coefficient obtained from the experimental 2x1, 
4x1 and 2x2 arrays. The solid green vertical lines indicate the bandwidth of interest. 
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Fig. 6. 11. H-plane radiation pattern for 2 x 2 modular array at 1 GHz. The solid blue 
curve is the simulation result from HFSS, while the dashed blue curve is the experimental 
result. 
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Chapter 7. Conclusion 
 

This thesis addressed the topic of impedance matching of antenna radiators and in 

particular the problem of broadband impedance matching. The two approaches to 

impedance matching were identified, namely the distributed impedance matching 

techniques and the lumped element approach. The work described in this thesis has made 

original contributions to both approaches in the form of: 

I. Wideband impedance matching of non-resonant dipole/monopole antennas using 

the lumped element techniques 

II. Modular array design of small arrays of resonant dipoles using the distributed 

impedance matching techniques. 

The specific contributions to each will now be outlined in the next two sections. 

7.1 Thesis contributions using lumped element techniques 

1) The thesis proposes a new technique for impedance matching of short non-

resonant dipole-like antennas. Instead of constructing network topology from the 

particular antenna impedance data, we propose to use a simple network of one 

fixed topology for all dipole-like antennas. This network is the narrowband L-

section cascaded with the high-pass T-section.  

2) Matching with the network proposed in this thesis results in a performance close 

to the theoretical limit on impedance matching confirmed by Bode-Fano theory. 

3) Matching with the network proposed in this thesis results in a near identical 

performance compared to advanced matching techniques such as the Carlin's 
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equalizer. More importantly, the network proposed in this thesis is simpler to 

design and would occupy lesser area on a PCB since there are no transformers. 

4) An upper bound on the maximum achievable theoretical transducer gain as a 

function of dipole/monopole geometry, center frequency and bandwidth sought 

has been derived. 

5) Experimentally validated the theoretical and numerical simulation predictions for 

a blade monopole on a 1 m x 1 m and a 75 cm x 75 cm ground plane. 

6) A direct global numerical search routine for finding the optimum reflective 

equalizer components written in MATLAB ©. 

 7.2 Thesis contributions using distributed matching techniques 

1) This thesis introduces the concept of modular array design using the canonic 

planar resonant dipole. The unique aspect of this approach is we seek a single 

optimum unit cell radiator which will satisfy different array configurations and 

yet maintain good impedance bandwidth as well as possess stable gain variation 

over the bandwidth of interest. 

2) We establish the need to eschew infinite array simulation models in the design of 

modular arrays, by showing that the identical optimized unit cell for a 2x1, 4x1 

and 2x2 array with at least an octave bandwidth, yields less than 25 % fractional 

bandwidth in an infinite array. 

3) Using a optimization approach and full wave modeling technique, we have found 

a solution for the unit cell radiator that satisfies the VSWR of 2:1 over a 

bandwidth of 2:1 and upto 3dB local directive gain variation in the band of 

interest, for three array configurations 2x1, 4x1, and 2x2 arrays. 
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4) Experimentally verified the impedance bandwidth performance of the three 

modular array configurations mentioned in 2, and 3. 

7.3 Future research directions 

The scope for further research in each area will be now outlined 

Lumped element techniques for wideband matching of non-resonant antenna 
radiators –  

1) Investigate the phase characteristics of the proposed  5 element equalizer 

2) Digital tuning could pave the way for adaptive reflective equalizers. Dynamic 

equalization would allow for antenna response reconfigurability. 

3) Optimize the noise performance of such networks 

Distributed matching techniques for Modular arrays – 

1) Gain measurements have to be done to confirm the broadside array gain behavior. 

2) Extend the search for the optimum unit cell radiator to other configurations such 

as 3x1, 4x2, and 4x4 arrays. 

3) Related to 2, answer the fundamental question of whether a solution exists for 

larger configurations and what is the limit on size beyond which no solution 

exists. 

4) Arrays of small sizes such as the ones proposed in this thesis suffer from the finite 

ground plane size edge effects. Novel ground plane shaping strategies could be 

investigated to negate such effects. 

5) Explore modular array design for different unit cell radiators such as the 

microstrip patches. 
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Appendix A –  Impedance Matching of Small Dipole and Loop 
Antennas for Wideband RFID Operation 
 

I. INTRODUCTION 

The shrinking size of radio equipment coupled with increasingly complex signal 

structures has resulted in the need for reduction in antenna size and the demand for wider 

bandwidths. In RFID based systems, we typically encounter electrically small antennas. 

While the scope of RFID technology has been well defined in the realm of supply chain 

management, yet more novel applications are being researched in areas such as mobile 

healthcare services and surveillance [73], [74], near-field communication among wireless 

mobile devices [75], and distributed sensor networks[76], [77]. Several practical 

approaches are provided in [73], [78]-[80], for the design of RFID antennas while in [81] 

the efficiency of such small antennas is discussed. However, these designs provide 

fractional bandwidths of lesser than 20%. 

To achieve wideband operation, impedance matching of the antenna to the source/load 

has to be done.  Impedance matching techniques such as the standard L, T, and Π 

networks which comprise of either reactive lumped elements or sections of transmission 

lines using stubs, belong in the narrowband matching category [27],[28].  

In this investigation we have attempted to do wideband impedance matching i.e., higher 

than 20% fractional bandwidth, of electrically small dipole, and loop antennas using 

lumped components. The method we have used bypasses both the pure analytical [16]-

[19], and the RFT numerical approach [23]-[26], [82]-[84]. Instead, we introduce the 

equalizer topology upfront and subsequently employ a direct numerical optimization 
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technique to find the component values. In order to get an idea regarding the maximum 

achievable gain for the matching network the Bode-Fano criterion will be used and this 

analysis will be presented in section II. Section III describes the two equalizer circuits to 

be used for the dipole and the loop respectively. An upper bound on the system efficiency 

for will be discussed in Section IV. Section V will present the simulation results. Finally, 

section VI provides the conclusions. 

II. THEORETICAL LIMIT ON WIDEBAND IMPEDANCE MATCHING OF 

SMALL DIPOLE AND LOOP 

A. Antenna Impedance Model – Small Dipole, Small Circular Loop 

The input impedance, of a small dipole, dpZ  can be expressed as dpdpdp jXRZ += [32], 

where, the radiation resistance is given by 

( ) ∀= 2220 λπ Adp lR 1050 λλ ≤≤ Al   (1) 

and, the input reactance 

( )[ ]
( )2tan

12ln120
A

A
dp kl

alX −
−= .  (2) 

In (1), (2), Al is the dipole length, a, is the dipole radius, and λπ2=k  is the 

wavenumber. The small dipole condition can be expressed in the frequency domain as 

2.004.0 ≤< resc ff , where, Ares lcf 20≡ is the resonant frequency of a half wave 

resonant ideal dipole, 0c is the speed of light and cf  is the center frequency.  The input 

impedance is predominantly capacitive. In the case of a monopole over an infinite ground 

plane the impedance Zdp is halved.  
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For the small circular loop, the impedance, lpZ can be expressed as lplplp jXRZ +=  [32],  

where, the loop radiation resistance can be expressed as, 

( ) ∀= 4220 λπ CRlp 10λ<C   (3) 

and the loop inductance is, 

( )[ ]28ln0 −= brrL µ    (4) 

In (3), (4) r is the radius of the loop, b the radius of the conductor and rC π2= , is the 

circumference of the loop. The internal reactance of the loop conductor has been ignored. 

The thickness of the conductor is chosen by using ( )brπρ 2ln2= , such that 

9<ρ represents moderately thick loops [32]. Since we consider the small circular loop, 

in the frequency domain the condition to be met is, 1.0<resc ff , where Ccfres 0≡ , is 

the resonant frequency of the electrically large loop, and cf is the center frequency. The 

input impedance for the small circular loop is predominantly inductive. 

B. Wideband Impedance Matching - The Reflective Equalizer 

The reactive matching network and the Thévenin equivalent circuit when viewed from 

the antenna is shown in Fig. A.1a and A.1b, respectively [23]. This network can be 

considered to be a reflective equalizer which always reflects a portion of the power back 

to the generator over the bandwidth of interest. The transducer gain is [23], 
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Fig. A. 1. Matching network: a) reactive matching network representation. b) Thévenin-
equivalent circuit. 
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The problem can therefore be summarized as one of maximizing the minimum gain over 

a specified wide bandwidth B [23], [26]. 

C. Bode-Fano Bandwidth Limit 

We can approximate the antenna model for these two antennas as series RC and RL 

networks respectively. The Bode-Fano relations pertaining to the small dipole and the 

small loop in terms of the reflection coefficient )(ωΓ  at the input to the matching 

network is expressed as [28], 
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These integral relations will be solved over a rectangular band-pass frequency window of 

bandwidth B and centered at cf . The transducer gain within this window is T = T0 and T 

= 0 outside of it.  

D. Arbitrary Fractional Bandwidth and Transducer Gain 

The first case we will consider is the small dipole. To reference Fig. 1, ZA=Zdp is the load 

impedance under consideration. From (2), we extract the capacitance of the small dipole. 

Let us define, 2Aklz = , which is restricted to 10/50 ππ ≤< z . Therefore, we can rewrite 

(2) as, 

( )[ ]
z

alX A
dp

12ln120 −
−= .  (7) 

The capacitance, C is then found to be from (7), 

( )[ ]( ) 112ln480 −−= alfC Ares .  (8) 

Solving the Bode-Fano integral for the small dipole from (6) by using (8), and by 

defining the fractional bandwidth as cfBB = , we arrive at, 

( ) ( )
( )( )









−

−
−−<

12ln24
41(

exp1 3

234

0 alfB
Bf

T
Ares

cdp π
 . (9) 

Hence, given the desired fractional bandwidth from a small dipole, the maximum 

achievable transducer gain ( )dpT0 over this bandwidth can be predicted by (9).  

In a similar approach, solving the integral relation for the small circular loop with ZA=Zlp 

and using (3) and (4) in (6), we get, 
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which represents the upper limit on transducer gain for the small circular loop, over a 

desired fractional bandwidth.  

III. MATCHING CIRCUITS 

Conventional impedance matching technique such as the 2 element L or C-section match 

for a given load is narrowband since the match occurs exactly only at a single frequency. 

To increase the bandwidths of these sections we suggest a high-pass network be cascaded 

to the 2-element matching sections as shown in Fig. A.2 and A.3. The Thévenin 

impedance for the equalizer as seen from the antenna for both, the small dipole and loop 

circuits is given as,  
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where s=jω. The upper limit in (9), (10) will be used for the sake of comparison. 

 

Fig. A. 2. Extension of the L-tuning network for certain fixed values of L1, L2 by the T- 
section for small dipole. 
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Fig. A. 3. Extension of the L-tuning network for certain fixed values of C1, C2 by a high 
pass section for small loop. 

IV. UPPER BOUND ON SYSTEM EFFICIENCY 

The upper bound on efficiency for a system comprising an electrically small antenna with 

a corresponding impedance matching network, as shown in Fig. A.2 and Fig. A.3, is 

sought. Let Rin(ω), be the input resistance at the antenna feed point. The input resistance 

can be expressed in terms of the radiation resistance, Rr(ω), and the loss resistance, 

Rloss(ω),  as, 

)()()( ωωω lossrin RRR += .  (13) 

In [85]  it is suggested that the system efficiency of the antenna-matching network 

combination would be maximum if the network has no storage elements that store energy 

of the same form as the antenna. Thus, the system efficiency sη , has been defined as, 

Q
Qa

a
mas

′+
==

)(1

)(
)()()(

ω
ωη

ωηωηωη  (14) 

where, mη , is the efficiency of the matching network, aη  is the efficiency of the antenna, 

Q′  is the Quality factor of the network elements that store energy in the form opposite to 

that of the antenna, and aQ  is the antenna quality factor. We can therefore deduce that the 
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simple L - section or the C - section matching network comprising of only inductors or 

capacitors, as shown in Fig. A.2 and Fig. A.3, for a dipole or loop antenna respectively, 

would achieve the highest possible system efficiency. The antenna Quality factor, Qa is 

approximated as, 

( ) ( )
( )cin

c
Ca R

X
Q

ωω
ωω

ωω
=

=
== .  (15) 

Using (13) we can rewrite (15) as, 

( ) ( )
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c
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X
Q

ωωωω
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ωω
=+=

=
== .  (16) 

We can use this approximation since we are clearly below the first resonance of the 

antenna. Since, losses in antenna structure have been assumed to be small, we set the 

term Rloss(ω) ≈ 0 to obtain, 

( ) ( )
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ωω
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The efficiency of the antenna is defined in the standard way as follows, 

( )
( ) ( )ωω

ω
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r
a RR

R
+

=    (18) 

Since the loss resistance is assumed to be negligible in the antenna structure, the 

efficiency of the antenna aη ≈1.  Therefore, a simple expression for the upper bound on 

system efficiency for the case of an electrically small antenna in combination with a 

matching network is obtained from (14) as 
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V. NUMERICAL SIMULATION AND RESULTS 

A. Simulation Setup 

The set of tested antenna parameters for small dipole and loop are shown in Table A.1. 

The resonant frequency of both the small dipole and circular loop was chosen as 1 GHz. 

For the small dipole, d refers to the diameter. The matching network components are 

obtained through optimization. This is done by using a direct global numerical search in 

the space of circuit parameters. The minimum gain achieved over the band is calculated 

[23] for every circuit parameter set and only the ones that satisfy the ±25% gain variation 

criterion are retained.  

Table A. 1. SIMULATION PARAMETERS 

Parameter Small Dipole Small Loop 

Geometry 10=dlA  10=ρ  

B  0.5           0.5 

resC ff /  [0.05:0.2] [0.05:0.1] 

B. Realized Gain – Small Dipole, 5.0,10 == Bdl A  

Fig. A. 4 shows the realized average generator gain for the small dipole. The solid line is 

the upper limit derived from Bode-Fano theory in Eq. (9) and the realized values are 

shown by squares. The network performs rather closely to the upper limit T0 if we 
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consider the average gain over the band. The deviation from the upper limit is 33%. The 

component values for resc ff = 0.15 are, [L1, L2, C3, L4, C5] = [762.8nH, 175.8nH, 

49.6pF, 837.4nH, 10.5pF]. 

C. Realized Gain – Small Circular Loop, ρ=10, 5.0=B  

In Fig. A.5 the realized average generator gains for a small circular loop are plotted for 

different center frequencies. As before the solid line corresponds to the theoretical upper 

limit derived from the Bode-Fano criterion in Eq. (10). The small loop requires one less 

component in the matching network as compared to the small dipole. The generator gain 

approaches this upper limit, with the average deviation between the two being 34%. The 

component values for resc ff = 0.0875 are, [C1, C2, C3, L4] = [23.1pF, 94.08pF, 

571.5pF, 40.7nH]. 

D. System Efficiency – Small Dipole and Small Loop  

The upper bound on system efficiency for the small dipole and loop has been calculated 

at various center frequencies using Eq. (19).  For the case of the small dipole, the L-

section matching network uses two inductors, L1 and L2. The Q factor for these 

components is assumed to be 55. Similarly the C-section matching network for the small 

loop uses two capacitors C1 and C2 with Q-factor of 1000. Fig. A.6. shows the upper 

bound on system efficiency for the small dipole. 
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Fig. A. 4. Realized average generator gain ( )dpT0 (squares) for a small dipole with 
10=dlA . 

 

Fig. A. 5. Realized average generator gain ( )lpT0 (squares) for a loop with ρ=10. 
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Fig. A. 6. Upper bound on system efficiency for the small dipole with lA/d=10. 

Similarly, Fig. A.7 shows the upper bound on system efficiency for a small loop. 

 

Fig. A. 7. Upper bound on system efficiency for the small loop with ρ=10 

VI. CONCLUSION 

In this study we have presented a wideband impedance matching approach for the 

electrically small dipole and loop antennas. The Bode-Fano theoretical limit for 

maximum transducer gain has been derived and used for comparison of the proposed 
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networks. It has been shown that the average deviation between the realized gain and the 

theoretical upper limit is approximately 33% for both types of antennas. In doing so a 

gain variation criterion of ±25% over the band of interest has been applied while 

calculating the transducer gain. The system efficiency for the small antenna in 

combination with the matching network was discussed; an upper bound was derived and 

plotted at different center frequencies.  

It is observed that the realized generator gain and the efficiencies are low. This is 

primarily because of the low value of radiation resistance of the small antenna. Even so, 

the small loop is capable of higher efficiency than the small dipole. Modifying the 

antenna structure to increase the radiation resistance would potentially alleviate this issue 

and increase generator gain. Of course, it is then possible that the antenna efficiency 

might decrease. 
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Appendix B –  ADS analysis of a monopole with reflective equalizer 
 

I. MODELING THE WIDEBAND IMPEDANCE MATCHING OF MONOPOLE 

ANTENNA IN AGILENT - ADS 

Goal: To analyze the behavior of the lumped component based equalizer, designed to do 

wideband impedance matching for a 11.5 cm monopole antenna over ground plane, by 

simulating it in Agilent ADS. 

Solution

Our goal is to build a model of the system comprising of the wideband matching network 

and the monopole antenna to effectively mirror the real system.  

: 

 

Fig. B. 1. ADS simulation set up. 

In Fig. B.1 and Fig. B.2, the S-parameter simulation set up is shown in ADS along with 

the substrate parameters corresponding to the FR-4 board that was used as substrate for 

the wideband matching network PCB. The results of this simulation are seen in Fig. B.3. 
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Fig. B. 2. ADS simulation set up of the wideband reflective equalizer. 
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Case I : - L = 11.5 cm, W = 2.3 cm 

Results 

Eqn T = 10*log(1-sqr(abs(S(1,1))))
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Fig. B. 3. Simulation result, for L1 = 56nH, C5 = 7.63pF. 

 

 

 

 

 

 

 

 

 

 

 



113 
 

Appendix C – Comparison of input impedance of the electrically small 
dipole and loop antennas using analytical, Method of Moments (MoM) 
and Ansoft HFSS solutions 

 
The input resistance R  of an electrically small (this means small compared to the 

wavelength at the center frequency) dipole antenna has the form  

2

2
0

2

2
0

6

~

3
2

λ
πη

λ
πη AA llR ==                                                            (1) 

where Al
~  is the antenna half length and fc /0=λ  is the wavelength.  

The blade dipole antenna has total length Al =150mm and the width of 5 mm, 15mm 

respectively  

Table C. 1. Input resistance of a small dipole antenna (Ω ), 30=tl . 

Frequency 20 MHz 

100/λ  

40 MHz 

50/λ  

100 MHz 

20/λ  

200 MHz 

10/λ  

400 MHz 

5/λ  

R- Analytical 1.97 e-2 

 

7.9 e-2 4.94 e-1 1.97 7.90 

R-MoM, t = 5mm 1.449 e-2 5.8 e-2 3.65e-1 1.497 6.63 

R-FEM, t = 5mm 

PML, 
1000x1000x1000mm 

15 passes, 1GHz 

4.15 e-2 7.8 e-2 3.9 e-1 1.56 6.94 
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Table C. 2. Input resistance of a small dipole antenna (Ω ), 10=tl  

Frequency 20 MHz 

100/λ  

40 MHz 

50/λ  

100 MHz 

20/λ  

200 MHz 

10/λ  

400 MHz 

5/λ  

R- Analytical 1.97 e-2 

 

7.9 e-2 4.94 e-1 1.97 7.90 

R-MoM, t = 15mm 1.122 e-2 4.49 e-2 2.84 e-1 1.175 5.42 

R-FEM, t = 15mm 

PML, 
1000x1000x1000mm 

15 passes, 1GHz 

2.64 e-2 5.9 e-2 3.1 e-1 1.27 5.88 

 

 

 

 

 

 

 

 

 

 



115 
 

The input reactance X of an electrically small (this means small compared to the 

wavelength at the center frequency) dipole antenna has the form  















 −−=

A

A

la
lX λ

π
η

1
2

ln2
0                                                                   (2) 

4/ta =   where a is the (equivalent) wire radius and t is the (equivalent) blade width. 

Table C. 3. Input reactance of a small dipole antenna (Ω ), 30=tl . 

Frequency 20 MHz 

100/λ  

40 MHz 

50/λ  

100 MHz 

20/λ  

200 MHz 

10/λ  

400 MHz 

5/λ  

X- Analytical -11807.45 -5897.89 -2342.78 -1141.96 -510.61 

X-MoM, t = 5 mm -10811.13 -5400.21 -2145.05 -1045.33 -465.36 

X-FEM, t = 5 mm 

PML 
1000x1000x1000mm 

15 passes, 1 GHz 

-10717.6 -5353.37 -2126.02 -1035.27 -459.33 
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Table C. 4. Input reactance of a small dipole antenna (Ω ), l/t = 10. 

Frequency 20 MHz 

100/λ  

40 MHz 

50/λ  

100 MHz 

20/λ  

200 MHz 

10/λ  

400 MHz 

5/λ  

X- Analytical -7615.35 -3803.9 -1511.00 -736.52 -329.32 

X-MoM, t = 15 mm -6395.01 -3194.55 -1269.52 -619.66 -277.38 

X-FEM, t = 15 mm 

PML 
1000x1000x1000mm 

15 passes, 1 GHz 

-6541.54 -3267.60 -1298.12 -632.84 -281.74 
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The input resistance R  of an electrically small (this means small compared to the 

wavelength at the center frequency) loop antenna has the form (Balanis, p. 238) 

2

2
0 )(

3
2

λ
πη AkSR =                                                                        (3) 

where 
π

π
4

2
2 A
AA

CrS ==  is the loop area; AC  is the loop circumference; λπ /2=k  is the 

wavenumber. In other words (see Balanis, p. 238), 
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πη

λ
λπη AA CCR ==                                                (4) 

For the blade loop antenna of the total circumference (drawn through the center of the 

blade ) AC =150mm and the width of 5 mm, 15mm respectively. 

Table C. 5. Input resistance of a small loop antenna (Ω ) 30=tC . 

Frequency 20 MHz 

100/λ  

40 MHz 

50/λ  

100 MHz 

20/λ  

200 MHz 

10/λ  

400 MHz 

5/λ  

R- Analytical 1.97 e-6 3.167 e-5 1.23 e-3 1.97 e-2 3.167 e-1 

R-MoM, t = 5mm 1.90 e-6 3.05 e-5 1.2 e-3 2.18 e-2 5.58 e-1 

R-FEM, t = 5mm 

PML,  
1000x1000x1000mm 

12 passes, 1 GHz 

2 e-6 3 e-5 1.198 e-3 2.13 e-2 5.3 e-1 
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Table C. 6. Input resistance of a small loop antenna (Ω ) 10=tC . 

Frequency 20 MHz 

100/λ  

40 MHz 

50/λ  

100 MHz 

20/λ  

200 MHz 

10/λ  

400 MHz 

5/λ  

R- Analytical 1.97 e-6 3.167 e-5 1.23 e-3 1.97 e-2 3.167 e-1 

R-MoM, t = 15mm 1.46 e-6 2.35 e-5 9.49 e-4 1.72 e-2 4.7 e-1 

R-FEM, t = 15mm 

PML,  
1000x1000x1000mm 

12 passes, 1 GHz 

1.37 e-6 2.26 e-5 9.1 e-4  1.65 e-2 4.3 e-1 
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The input reactance X of an electrically small (this means small compared to the 

wavelength at the center frequency) loop antenna has the form (Balanis, p. 245) 









−






==≈ 28ln,2 0 a

RRLfLLX A
AA µπω              (5) 

where AR  is the loop radius; 4/ta =   where a is the (equivalent) wire radius and t is the 

(equivalent) blade width. 

Table C. 7. Input reactance of a small loop antenna (Ω ) 30=tC . 

Frequency 20 MHz 

100/λ  

40 MHz 

50/λ  

100 MHz 

20/λ  

200 MHz 

10/λ  

400 MHz 

5/λ  

X- Analytical 11.42 22.83 57.09 141.92 228.38 

X-MoM, t = 5mm 11.59 23.22 58.69 122.15 292.37 

X-FEM, t = 5mm 

PML 
1000x1000x1000mm 

12 passes, 1 GHz 

11.21 22.46 56.72 117.73 278.05 
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Table C. 8. Input reactance of a small loop antenna (Ω ) 10=tC .  

Frequency 20 MHz 

100/λ  

40 MHz 

50/λ  

100 MHz 

20/λ  

200 MHz 

10/λ  

400 MHz 

5/λ  

X- Analytical 7.27 14.55 36.38 72.77 145.55 

X-MoM, t = 15mm 6.8 13.63 34.51 72.31 179.12 

X-FEM, t = 15mm 

PML 
1000x1000x1000mm 

12 passes, 1 GHz 

6.63 13.29 33.62 70.10 169.47 
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Appendix D – Example design of single and dual band matching 
networks 

I. LLNL – HANDSET MATCHING NETWORK SPECIFICATIONS 

Handset Specifications

Dimensions: - W X D X H = 7cm X 5cm X 15cm 

: - 

Frequency: - 250MHz – 400MHz 

Bandwidth: - 150MHz 

Antenna specifications

Type: - Blade 

: - 

Length: - 11.5cm 

Width: - 2.3cm  

Thickness: - 0.25mm 

II. FULL WAVE MODELING 

These specifications were used to model the structure in ANSOFT – HFSS. The entire 

structure consisting of the blade and the handset is considered to be the antenna. A 

lumped port feed with a feed gap of 1mm was used for the excitation source. The 

radiation boundary was located at 0.325λ from the structure on all sides. Fig. D.1 shows 

the final model built using HFSS. The blade and the handset are modeled as Perfect 

electric conductors (PEC). The blade and the corresponding feed are located off of the 

edge of the top surface on the handset. A total of 15 passes were used for mesh 

generation which resulted in about 16,500 tetrahedra being generated.  
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Fig. D. 1. Handset model in ANSOFT- HFSS. 

III. MATCHING NETWORK 

The device is being operated below the first resonance of the blade-handset structure. The 

input impedance of this structure is shown in Fig. D.2 over the operating bandwidth of 

150MHz. 

 

Fig. D. 2. Input impedance of blade-handset antenna. 
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As observed, the antenna impedance is predominantly capacitive with a resistive part that 

varies from approximately 5 - 25Ω across 250MHz – 400MHz. The maximum directivity 

of this antenna is close to that of an ideal dipole in free space (~2.2dB) and is shown in 

Fig. D.3. There is a slight tilt observed in the pattern wherein the null is no longer exactly 

at zenith. This structure is essentially an offset center fed dipole, wherein the the handset 

body is also contributing to the radiation. Since, the gain is the important parameter of 

interest, we must attempt to make this antenna efficient as well as reduce the mismatch 

loss. Assuming a highly efficient structure, we focus on reducing the mismatch losses 

that would occur due to this antenna being driven by a purely resistive 50Ω source.  

 

Fig. D. 3. Directivity of the blade-handset antenna. 

Our approach is to design a 5 element matching network built entirely out of reactive 

components. We extend the traditional L-section matching used for narrowband 

impedance matching and cascade a highpass T-section comprising of two series 
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capacitors and a shunt inductor as shown in Fig. D.4. A direct search based technique is 

used to obtain the component values in the matching network. 

 

Fig. D. 4. Extension of the L-tuning section for fixed values of L1, L2 by the T-section. 

Results 

A 5 element matching network was obtained from the optimization procedure and the 

component values are shown in Table D.1. 

Table D. 1. Circuit parameters for the matching network used to match the blade-handset 
antenna to resistive 50Ω source. 

COMPONENT VALUE (nH/pF) 
L1 47.24 
L2 31.49 
C3 16.12 
L4 466.66 
C5 13.33 

 

The transducer gain obtained across the operating bandwidth due to the matching 

network is shown in Fig. D.5. The average transducer gain can be translated to an average 

return loss as follows, 22 )(1)( ωω Γ−=T where T is the transducer gain and Γ  is the 

reflection coefficient. Thus, the avg. gain of 0.42871 translates to approximately 2.43dB 

average return loss across the 150MHz bandwidth. This is an improvement and we can 

compare it to the return loss of the blade-handset antenna without the matching network 
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which is shown in Fig. D.6. As seen in this plot, the S11 varies from about 0dB to roughly 

-3dB at the higher end of the frequency range.  

 

Fig. D. 5. Average transducer gain. 

 

Fig. D. 6. S11 of blade-handset antenna without matching network. 
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The antenna resistance should be increased in order to improve this return loss across the 

required operating frequency range.  

II. COMPONENT VALUES FOR REFLECTIVE EQUALIZERS IN HF-VHF BAND 

Antenna - Dipole 

Length - 2m 

Resonant frequency - 75 MHz 

Bandwidth - 50 % 

Band 1 - 14.625 MHz - 24.375 MHz 

Band 2 - 22.5 MHz - 37.5 MHz 

The antenna geometry chosen is dlA / =10, lA is the total dipole length and d is the 

diameter of the dipole 

Table D. 2. Component values for a 5 element reflective equalizer in two different bands 
along with the average theoretical transducer gain. 

Band Component value Gain 
                 
 
 

cf = 19.5 MHz 
 

14.625 MHz - 24.375 MHz 

 
 
92.21 =L  µH 
09.12 =L  µH 
54.33 =C  nF 
43.54 =L  µH 

8.945 =C  pF 

 
 
 
 

072.0=T  

 
 

cf = 30.0 MHz 
 
       22.5 MHz - 37.5 MHz 

 
 
 
05.11 =L  µH 

9.6342 =L  nH 
1.3443 =C  pF 

77.14 =L  µH 
9.885 =C  pF 

 
 
 

2094.0=T  
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Appendix E – Upper Limit on System Efficiency for Electrically Small 
Dipole and Loop Antennas with Matching Networks 
 

The efficiency of a system comprising of an electrically small antenna with a 

corresponding impedance matching network is considered in this study. This system is 

connected to generator whose internal impedance is GG RZ = and thus no energy is stored. 

Fig E.1 shows this setup 

 

Fig. E. 1. Reactive matching network representation 

The impedance of electrically small antennas such as the dipole and the loop comprises 

of a very small radiation resistance and a large reactance, either capacitive or inductive 

respectively. The overall resistance at the antenna feed can be therefore expressed as, 

( ) ( ) ( )ωωω Lossr RRR +=  (1)  

Let us assume that the loss resistance in the antenna is very small and therefore can be 

approximated such that ( ) 0≈ωLossR . The efficiency for this antenna ( )ωηa  is, 

( ) ( )
( ) ( ) 1=

+
=

ωω
ω

ωη
Lossr

r
a RR

R
  (2) 

In [85] it is suggested that the system efficiency of the antenna-matching network 

combination would be maximum if the network has no storage elements that store energy 

of the same form as the antenna. Thus, the system efficiency ( )ωη s , has been defined as, 
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where, mη , is the efficiency of the matching network, Q′  is the Quality factor of the 

network elements that store energy in the form opposite to that of the antenna, and aQ  is 

the antenna Quality factor. We can therefore deduce that the L section matching network 

comprising of all inductors or all capacitors, as shown in Fig. E.2 for a dipole or loop 

antenna respectively would achieve the highest possible system efficiency.  

 

Fig. E. 2. L - Section matching network. 

The antenna Quality factor, Qa is approximated as, 
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We can use this approximation since we are clearly below the first resonance of the 

antenna. Since, losses in antenna structure have been assumed to be small, we get, 

( ) ( )
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ωω
=
=

==   (5) 

From [32], the radiation resistance of a small dipole is given to be, 

( ) ∀= 2220 λπ Adp lR 1050 λλ ≤≤ Al   (6)  
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and reactance can be derived as, 
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In Eq. (6), lA is the dipole length, a, is the dipole radius, and λπ2=k  is the 

wavenumber.. In the case of a strip or blade dipole of width t, the equivalent radius is  

4taeq =  [32]. The small dipole condition can be expressed in the frequency domain 

as 2.004.0 ≤< resc ff , where, Ares lcf 20≡ is the resonant frequency of a half wave 

resonant ideal dipole, 0c is the speed of light and cf is the center frequency. Note that the 

expression for reactance holds only within the dimension limits specified in Eq. (6). 

Similarly, for the circular loop, we have

 ( ) ∀= 4220 λπ CRlp 10λ<C   (8) 

and the loop inductance is, 

( )[ ]28ln0 −= brrL µ   (9) 
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RESULTS 

We consider the following parameters for our numerical simulation. 

Case I: Electrically small dipole 

Table E. 1. Simulation Parameters. 

PARAMETER VALUE 

resf  1 GHz 

dlA  [5 10 50] 

Q {L1,L2} 55 

resc ff  [0.05:0.2] 

 

Fig.E. 3. Upper bound on achievable system efficiency for small dipole. 
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Case II: Short dipole 

Considering a short dipole below the first resonance, such that the model for the 

impedance of the dipole is changed to, 

32

32
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 (10)   

Table E. 2. Simulation parameters 

PARAMETER VALUE 

resf  1 GHz 

dlA  [5 10 50] 

Q {L1,L2} 55 

resc ff  [0.05:0.5] 

 

 
Fig. E. 4. The achievable system efficiency for short dipole. 
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Case III: Electrically small circular loop 

Table E. 3. Simulation Parameters. 

PARAMETER VALUE 

resf  1 GHz 

Ω(thickness factor[2]) [8 10 12] 

Q {C1,C2} 1000 

resc ff  [0.05:0.1] 

 

 

Fig. E. 5. The achievable system efficiency for an electrically small loop.  
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Case IV: Electrically small circular loop 

The small loop approximation is changed to r < λ/6π [32], and the results of the 

numerical simulation using the following parameters is shown, 

Table E. 4. Simulation Parameters. 

PARAMETER VALUE 

resf  1GHz 

Ω(thickness factor[2]) [8 10 12] 

Q {C1,C2} 1000 

resc ff  [0.1:0.25] 

 

 

Fig. E. 6. The achievable system efficiency for small loop using approximation on radius 

These results suggest that the small loop is capable of higher efficiency than the dipole 
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The predicted efficiencies are close to 80- 95% for dipole and loop, at the upper 

frequencies. This can be explained by observing the Q factor of the antennas, 

A look at the Q-factor approximation for dipole and loop antenna 

 

Fig. E. 7. The dipole quality factor as a function of center frequency of operation. 

 

Fig. E. 8. The loop quality factor as a function of center frequency of operation. 

The lower antenna Q implies a better radiation mechanism and hence improved 
efficiency. 
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Appendix F – Reflectionless equalizers for an electrically small 
monopole and a dielectrically (truncated hemisphere) loaded top-hat 
monopole antenna 
 

I. ANTENNA TYPE 

The antenna geometry is shown in Fig. F.1. The metal structure includes the feed, which 

protrudes the entire dielectric hemisphere and is closed by a metal top hat. The geometry 

and the feed position support the δ01TM  mode of the dielectric resonator (DR) with the 

electric field in the vertical direction.  Simultaneously, it supports the monopole field of 

the standard top-hat monopole above the ground plane. Therefore, the present antenna is 

likely a mix of the short monopole and a  δ01TM  dielectric resonator. It might be also 

viewed as a variation of the dielectric-loaded monopole. However, the dielectric body 

now extends further away from the monopole.  

 

Fig. F. 1. A DR antenna in the form of a spherical sector (height - 150mm; width - 
458mm) with a metal hat. 
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II. RADIATION PATTERN 

The radiation pattern of the DR antenna as seen in Fig. F.2, indicates a monopole like 

behavior. 

 

Fig. F. 2. The radiation pattern of the dielectrically loaded (truncated hemisphere) top-hat 
monopole antenna at 110 MHz. Note, that mismatch loss is not taken into account. 

III. RESONANT FREQUENCY 

The antenna shown in Fig. F. 1 has an interesting performance. It does resonate at about 

50 MHz as Fig. F. 3 shows. The corresponding simulations in Ansoft HFSS have been 

done with a large PML box on the size of 5m×5m×5m (the PML thickness was 2.5m),  

with the lowest frequency of 30 MHz, and on fine meshes with about 100,000 tetrahedra 

and better. Note that the wavelength at resonant frequency of 50 MHz is 6m. Thus, the 

selected PML size guarantees us the good accuracy at low frequencies up to 30 MHz. 
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Only the discrete frequency sweep has been used. The computed resonant frequency of 

50 MHz is  

i. much lower than the resonant frequency of a stand-alone equivalent cylindrical 

dielectric resonator antenna in the δ01TM  mode (230 MHz) and;  

ii. much lower than the resonant frequency of the stand-alone quarter-wave unloaded 

monopole (500MHz).  

Therefore, it appears that we have a new combined effect of two basic resonant 

structures.    

 

Fig. F. 3. Input impedance of the spherical-sector antenna. The resonance is observed at 
50 MHz. 



138 
 

At the same time, the radiation resistance of the antenna in Fig. F.1 is very small, on the 

order of 0.1Ω and less at the resonance.  Therefore, the antenna should be matched over 

the band using a dedicated lumped circuit - the equalizer. 

IV. EXTRACTING MODEL PARAMETERS FOR A RESONANT ELECTRICALLY 

SMALL TOP-HAT DIELECTRICALLY (TRUNCATED HEMISPHERE) LOADED 

MONOPOLE ANTENNA 

The LCR parameters of the series resonant circuit must be extracted for proper 

impedance matching and efficient equalizer design. The input impedance of the dipole 

using a series RLC circuit as the model is given by  

( ) sCsLRZ 1++=ω
 

(1) 

Here, s = jω is the complex frequency. Therefore we rewrite Eq. (1) in terms of ω shown 

in Eq. (2) 

( ) ( )CLjRZ ωωω 1−+=
 

(2) 

Our goal is to extract the parameters R, L and C given the frequency dependent 

impedance Z (ω). In this case, the impedance data has been obtained through simulation 

of the antenna in Ansoft HFSS - see Fig. F.3. The impedance data is obtained in complex 

form, i.e.  Z (ω) = R + jX at N frequency points. In order to extract L and C, we consider 

the following set of equations for the reactance obtained from Eq. (2), 
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If we expand this equation out we obtain 

( ) NnCXLC nnn 1012 =∀=−− ωωω  (4) 

For each frequency point, this equation needs to be satisfied, i.e. 
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This can be written in matrix-vector notation as, 
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Eq. 6 is an overdetermined matrix equation that shall be solved by SVD. It can be written 

as  

0


=xW  (7) 

This implies that the solution x  belongs to the null-space of W. If W were square, we 

could have computed the eigen-decomposition and this would have given us the 

necessary eigenvector solution. However, here we have a tall matrix, and so we use the 

SVD (Singular Value Decomposition) instead. The result of the SVD on the matrix W is 

shown in Eq. (8) 

VUW Σ=  (8) 
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where, U and V are the matrices and the diagonal matrix Σ comprises the singular values 

of W. Out of this result we need the right singular vector only, since this is the desired 

solution to Eq. 7. The column vectors of V are this exactly and we choose the vector that 

has all positive values and has its final entry closest to 1. The resistance value for this 

model is chosen to be the average value of resistance from the simulated impedance data. 

The model parameters are given below in Table 1 that follows. 

Table F. 1. Model parameters of the input impedance. 

R 0.07 Ω 

L 83.688 pF 

C 114.41 nH 

 

The corresponding parameter approximation is given in Fig. F. 4.  

 

Fig. F. 4. Comparison between the extracted and exact antenna parameters - see Table 
F.1.  
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Note that the average resistance approximation might be good enough since the actual 

value are small enough. 

V. IMPEDANCE MATCHING AT 30-80 MHZ FOR THE BLADE MONOPOLE  

Geometry 

In Fig. F.5 – a variation of the standard blade monopole, used commonly on aircraft, 

from Ref. [88] is shown and Fig. F.6 shows its radiation pattern. 

 

Fig. F. 5. The blade monopole from [88]. 

Radiation pattern 

 

Fig. F. 6. Radiation pattern of the blade monopole at 110 MHz. 
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Matching network 

A 4-component impedance-matching network [86], [87] shown in Fig. F.7, is used for the 

blade monopole geometry shown in Fig. F.5. The network is composed of a series 

inductor, a tank circuit in shunt, and a resistor. This network provides a consistent VSWR 

over the band. At the same time, the matching network is lossy: it includes a tank circuit 

in series with a resistor. The required resistor value is approximately equal to AR . 

 

Fig. F. 7. Antenna matching: the impedance-matching network and a step-up transformer. 

An equivalent circuit for such an antenna is the series LCR circuit. The DR antenna as 

well as the blade monopole introduced above in Fig. F. 4 belongs to exactly this type.    

The matching network outputs a real, but still small impedance on the order of AR  

uniformly over the band. Therefore, it should be followed by a step-up impedance 

transformer as shown in Fig. F.7.  An alternative may be to switch the matching network 

and the low-loss transformer in the RX mode at least, which might, under certain 

conditions, result in a better overall power efficiency.  
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We calculate the transducer gain for this network as follows 

2
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+
=    

Here, we calculate the Thevenin equivalent for the network as shown in Fig. F.8. The 

antenna resistance R = RA from Fig. F. 7. 

 

Fig. F.8. Transformation of the matching network: a) lossy matching network 
representation, b) Thévenin-equivalent circuit representation. The matching network does 
not include transformers. 

Since the network in Fig. F. 7 is lossy, the one to one relationship between the transducer 

gain and the reflection coefficient doesn't exist. Therefore we calculate the reflection 

coefficient and hence, VSWR at the input to the network cascaded with the antenna's 

impedance. 

The result of model parameter extraction for the blade monopole yielded the results 

shown in Fig. F. 9. Here we see that an acceptable agreement is present for the reactance 
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data while the resistance has been approximated to be constant over the band. This 

resistance value is indeed quite low and hence we determined a matching impedance of 

1Ω to match for prior to the transformer. We note the presence of a resonance within the 

band at approximately 47 MHz. This resonance essentially validates the LCR model for 

the antenna as well. 

 

Fig. F. 9. Comparison of the impedance data from simulation and the extracted LCR 
model for the blade monopole. 

Results 

By using the appropriate matching network, we calculate the VSWR and the transducer 

gain as a function of frequency. The band to be matched over is 30 - 80 MHz. The use of 

the reflection-less equalizer gives a flat VSWR profile, while the transcuer gain behavior 

over the band shows the narrowband response.  
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Fig. F. 10. VSWR at the input to the reflection less equalizer and transducer gain for the 
blade monopole antenna. 
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Appendix G – Code  
function [ZA] = dipole(f, dipole_x, dipole_y); 

%   Dipole self-impedance: analytical solution for the cylindrical or 
strip dipole 

%   C.-T. Tai and S. A. Long, “Dipoles and monopoles,” in: Antenna 
Engineering Handbook,  

%   John L. Volakis, Ed., Mc Graw Hill, 2007, fourth edition, pp. 4-3 
to 

%   4-32. 

%   EM data 

const.epsilon       = 8.85418782e-012;  %  ANSOFT HFSS value  

const.mu            = 1.25663706e-006;  %  ANSOFT HFSS value 

const.c             = 1/sqrt(const.epsilon*const.mu); 

const.eta           = sqrt(const.mu/const.epsilon); 

k   = 2*pi*f/const.c; 

kl  = k*dipole_y/2; 

a   = dipole_x/2;       %   equivalent radius 

l   = dipole_y/2; 

R   = -0.4787 + 7.3246*kl   + 0.3963*kl.^2 + 15.6131*kl.^3; 

R(find(R < 0)) = 0; 

X   = -0.4456 + 17.00826*kl - 8.6793*kl.^2 + 9.6031*kl.^3; 

ZA  = R - j*(120*(log(l/a)-1)*cot(kl)-X);   %   Antenna impedance 
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function [ZA,L] = smallLoop(f,loop_a,loop_b) 

% This function calculates the Impedance of a small circular loop based 

on input parameters which are the frequency, loop radius and loop 

conductor width. 

  

%   EM data 

const.epsilon       = 8.85418782e-012;  %  ANSOFT HFSS value  

const.mu            = 1.25663706e-006;  %  ANSOFT HFSS value 

const.c             = 1/sqrt(const.epsilon*const.mu); 

const.eta           = sqrt(const.mu/const.epsilon); 

  

lambda    = const.c./f; 

Circ_umf  = 2*pi*loop_a;                   % loop circumference   

  

Rr       = 20*(pi^2)*((Circ_umf./lambda).^4);    % Radiation resistance 

of a small circular loop 

L          = const.mu*loop_a*(log(8*loop_a/loop_b) - 2);   % Inductance 

of small circular loop 

Xl          = 2*pi.*f*L; 

  

ZA          = Rr + 1i.*Xl;  
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%   A script for matching circuit estimation at different center 
frequencies fc and bandwidths B. Saves the matching circuit parameters 
and optimized performance dataset for every parameter set.  

% S. Makarov and V. Iyer, ECE Dept., WPI Aug. 2008 

dipole_y  = 230e-3;            %   dipole length (m) 

Rg        = 50;                %   generator resistance      

f_res    = 3e8/(2*dipole_y);  %   resonant frequency (ideal; half-wave 
resonance)  

Ls = [1 1 1 1 1]*eps;         %  lower initial bounds for the parameter 
search 

Us = [2e-6 1e-6 100e-12 1e-6 100e-12];  % upper initial bounds for the 
parameter search  

                                % (optimized for 150mm length) 

Us = Us*(dipole_y/150e-3);      %  good for any length  

dipole_lt   = [20];             %   length to width ratio 

DCF         = [0.5];            %   relative center frequency vs. f_res  

FB          = [0.5];                    %   fractional bandwidth 

  

MeanGain    = zeros(   length(dipole_lt), length(DCF), length(FB)); 

VarGain     = zeros(   length(dipole_lt), length(DCF), length(FB)); 

CP_nHpF     = zeros(5, length(dipole_lt), length(DCF), length(FB)); 

  

for ilt = 1:length(dipole_lt) 

    for iDCF = 1:length(DCF) 

        for iFB = 1:length(FB) 

            dcf = DCF(iDCF); fb  = FB(iFB); 

            run.center_freq     = dcf; 

            run.bandwidth       = fb; 

            run.dipole_lt       = dipole_lt(ilt);  

       %--------------------------------------------------------------- 
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            [temp1  temp2 CP] = ... 

            optimizer02_function(dipole_y, dipole_lt(ilt), Rg, dcf, fb, 
Ls, Us); 

            MeanGain(ilt, iDCF, iFB)    = temp1; 

            VarGain (ilt, iDCF, iFB)    = temp2; 

            CP_nHpF(:, ilt, iDCF, iFB)  = CP.*[1e9 1e9 1e12 1e9 1e12]'; 

            run.gain = temp1; run 

            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

            %   Post-processing (plot) 

            thisfile = strcat('fig_lt_', num2str(dipole_lt(ilt)), ... 

                              '_FB_', num2str(fb), '_DCF_' ,                     
num2str(dcf)); 

            if temp1 >0                 

                dipole_x    = dipole_y/dipole_lt(ilt); %dipole width 
(m) 

                F           = linspace(0.01*f_res, 1.0*f_res, 2e5);  %   
full spectrum 

                ZA          = dipole(F, dipole_x, dipole_y); RL = 
real(ZA);  

                s           = j*2*pi*F;  

%------------------------------------------------------------------   

                Zg  = s*CP(4).*(Rg + 1./(s*CP(5)))./(s*CP(4) + (Rg + 
1./(s*CP(5)))) +... 

                                                         1./(s*CP(3));         

                ZT  = s*CP(2).*Zg./(s*CP(2) + Zg) + s*CP(1); 

%------------------------------------------------------------------   

                Gain = (4*RL).*real(ZT)./((abs(ZA+ZT)).^2);         

                ind  = find(abs(F/f_res-dcf)<fb*dcf/2 + 0.5*(F(2)-
F(1))/f_res); 

                GM   = mean(Gain(ind)); GV = 100*max(abs(Gain(ind)-
GM)/GM);  %  just checking on a finer grid               
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                h = figure; semilogy(F/f_res, Gain, 'LineWidth', 2); 
grid on; hold on;         

                line([dcf-fb*dcf/2    dcf-fb*dcf/2], [1e-4 1], 'Color', 
'g'); 

                line([dcf+fb*dcf/2    dcf+fb*dcf/2], [1e-4 1], 'Color', 
'g');         

                line([dcf,            dcf],          [1e-4 1], 
'LineWidth', 2, 'Color', 'r');         

                title(strcat('Average gain, a.u. = ', num2str(GM), '; 
Variation(%) =', num2str(GV))); 

                xlabel('f/f_{res}'); ylabel('Gain, a.u.'); 
axis([min(F/f_res) max(F/f_res) 1e-4, 1]); 

                saveas(h, strcat(thisfile, '.fig'));             

            end 

            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%             

            close all; 

        end 

    end 

end 

save;  
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function [MeanGain VarGain CP] = optimizer02_function(dipole_y, 
dipole_lt, Rg, DCF, FB, Ls, Us); 

%   Matching circuit optimizer for a dipole - a reflective equalizer 

%   Direct search on 1D arrays; the search here is limited to 5 circuit 

%   elements  

% 

%   dipole_y  - dipole length 

%   dipole_lt - length-to-width or length-to-radius ratio 

%   DCF       - relative center frequency fc/f_res 

%   FB        - fractional bandwidth vs. center frequency 

%   Ls        - lower bound of search parameters 

%   Us        - upper bound of search parameters 

%   There are no output arguments; the function saves all data in a mat 

%   file. 

% 

%   1D Array assembly in parameter space:  

%   (M(1) = 3; M(2) = 2; M(3) = 2; M(4) = 2; M(5) = 1) 

%   [1 2 3][1 2 3][1 2 3][1 2 3][1 2 3][1 2 3][1 2 3][1 2 3]    M(1) 
A(1, :) 

%   [1 1 1][2 2 2][1 1 1][2 2 2][1 1 1][2 2 2][1 1 1][2 2 2]    M(2) 
A(2, :) 

%   [1 1 1][1 1 1][2 2 2][2 2 2][1 1 1][1 1 1][2 2 2][2 2 2]    M(3) 
A(3, :) 

%   [1 1 1][1 1 1][1 1 1][1 1 1][2 2 2][2 2 2][2 2 2][2 2 2]    M(4) 
A(4, :) 

%   [1 1 1][1 1 1][1 1 1][1 1 1][1 1 1][1 1 1][1 1 1][1 1 1]    M(5) 
A(5, :) 

%   S. Makarov and V. Iyer, ECE Dept., WPI Aug. 2008 
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%   Antenna/generator/bandwidth 

dipole_x        = dipole_y/dipole_lt;   %   dipole width (m) 

f_res           = 3e8/(2*dipole_y);     %   resonant frequency (ideal; 
half-wave resonance)    

B               = 4;                    %   number of frequency 
observation points over the bandwidth 

f_center        = DCF*f_res;            %   absolute center frequency 
vs. f_res 

bandwidth       = FB*f_center;          %   absolute bandwidth     

  

%   Bandwidth  discretization for initial and final search 

f     = linspace(f_center-bandwidth/2, f_center+bandwidth/2, B);    %    
initial search 

s     = j*2*pi*f;                                                   %    
initial search 

ZA    = dipole(f, dipole_x, dipole_y); RL = real(ZA);               %    
initial search 

f1    = linspace(f_center-bandwidth/2, f_center+bandwidth/2, 16*B); %    
final search   

s1    = j*2*pi*f1;                                                  %    
final search       

ZA1   = dipole(f1, dipole_x, dipole_y); RL1 = real(ZA1);            %    
final search        

  

%   Equalizer circuit 

M(1) = 128;                          %   first parameter search space 

M(2) = 064;                          %   second parameter search space 

M(3) = 032;                          %   third parameter search space 

M(4) = 016;                          %   fourth parameter search space 

M(5) = 016;                          %   fifth parameter search space 

A    = complex(zeros(5, prod(M)));   %   all parameter values assembled 
in linear arrays  
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Gain = zeros(1, prod(M));            %   the generator gain  

Par_min = Ls;                        %   lower initial bounds for the 
parameter search 

Par_max = Us;                        %   upper initial bounds for the 
parameter search  

%   main loop over the seach domains (the domain is refined at every 
step) 

VarGain         = 0;                    %   controls gain variation 
over the band (global) 

MeanGain        = 0;                    %   controls mean gain over the 
band (global)   

TGain           = 0;                    %   controls max mean gain over 
the band (loop) 

TGain_plot      = TGain;                %   visualize gain improvement 
over the seach  

CP              = zeros(length(M), 1);  %   circuit parameters to be 
found (global) 

search_domains  = 7;                    %   number of domain iterations 

for search_domains_ind = 1:search_domains 

    StopGain = 0; tic                   %   controls the current 
iteration 

    %   Circuit parameters (cell arrays) 

    par(1)   = {linspace(Par_min(1), Par_max(1),  M(1))};  %   L1 here 
(0) 

    par(2)   = {linspace(Par_min(2), Par_max(2),  M(2))};  %   L2 here 
(inf) 

    par(3)   = {linspace(Par_min(3), Par_max(3),  M(3))};  %   C3 here 
(inf) 

    par(4)   = {linspace(Par_min(4), Par_max(4),  M(4))};  %   L4 here 
(inf) 

    par(5)   = {linspace(Par_min(5), Par_max(5),  M(5))};  %   C5 here 
(inf) 

    %   Fill out the 1D arrays 

    temp  = 1; 
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    for m = 1:length(M)         

        if m >1  

            temp = prod(M(1:m-1)); 

        end 

        block_length  = temp; 

        no_of_blocks  = prod(M(m+1:end)); 

        A(m, :)       = reshape(repmat(par{m}, block_length, 
no_of_blocks), 1, prod(M)); 

    end 

    %   Find min power over the entire frequency band for every 
particular parameter set     

    for m = 1:length(s)  

        %--------------------------------------------------------------
----        

        Zg  = s(m)*A(4, :).*(Rg + 1./(s(m)*A(5, :)))./( s(m)*A(4, :) + 
(Rg+1./(s(m)*A(5, :))) ) +... 

                                                 1./(s(m)*A(3, :)); 

        ZT  = s(m)*A(2, :).*Zg./(s(m)*A(2, :) + Zg) + s(m)*A(1, :);     

        %--------------------------------------------------------------
----         

        if m ==1 

            Gain =(4*RL(m))*real(ZT)./((abs(ZA(m)+ZT)).^2); 

        else 

            Gain = min(Gain,(4*RL(m))*real(ZT)./((abs(ZA(m)+ZT)).^2)); 

        end 

    end 

    %   Sort that power (most CPU time-involved step)   

    [dummy index] = sort(uint16(1e6*Gain), 'descend'); 

    %   Check if the +/-25% criterion of gain variation is really 
satisfied on a finer grid   
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    for p = 1:round(prod(M)/128)    %   a critical point: only initial 
values are examined 

        temp    = index(p);         %   index into arrays  

        a       = A(:, temp);       %   obtain particular circuit 
parameters         

        %--------------------------------------------------                  

        Zg_       = s1*a(4).*(Rg + 1./(s1*a(5)))./( s1*a(4) + 
(Rg+1./(s1*a(5))) ) +... 

                                             1./(s1*a(3)); 

        ZT_       = s1*a(2).*Zg_./(s1*a(2) + Zg_) + s1*a(1);                 

        %--------------------------------------------------    

        Gain_ = (4*RL1).*real(ZT_)./((abs(ZA1+ZT_)).^2); 

        MGain = mean(Gain_);                                    %   
local mean gain   

        VGain = 100*max(abs(Gain_-MGain)/MGain);                %   
local gain variation 

        if  (VGain <= 25)                                       %   +/-
25% satisfied 

            if (MGain> TGain)                                   %   
search for a higher average gain   

                VarGain = VGain; MeanGain = MGain; CP = a;             

                TGain      = MGain;                             %   
TGain controls the loop                 

                StopGain   = MGain;                             %   
StopGain controls the loop iteration 

                TGain_plot = [TGain_plot TGain];                %   
Convergence history                 

                plot(TGain_plot, '-bs',...;                     %   
Plot converegence history 

                'MarkerEdgeColor', 'k', 'MarkerFaceColor', 'g', 
'MarkerSize',10); 

                title('Gain convergence'); hold on; grid on; drawnow; 

            end 
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        end    

    end 

    if TGain    == 0 return; end;                     %   found none - 
exit this function 

    if StopGain == 0 break; end;                      %   found none 
for this iteration (no more iterations)      

    %   Find the bettter search range based on the found circuit 
parameters (+/- 50%) 

    Par_min   = 0.50*CP; 

    Par_max   = 1.50*CP; toc 

End 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



157 
 

 

%   Bode-Fano criterion for the dipole  

 

%   Dipole parameters 

dipole_y        = 230e-3;             %   dipole length (m) 

dipole_lt       = 10; 

dipole_x        = dipole_y/dipole_lt; %   dipole width (m) 

f_res           = 3e8/(2*dipole_y)         

f_center        = [0.05:0.01:0.5]*f_res; 

  

b = figure; 

z   = pi/2*f_center/f_res; 

a   = dipole_x/2;       %   equivalent radius 

l   = dipole_y/2;       %   half-length 

R   = -0.4787 + 7.3246*z   + 0.3963*z.^2 + 15.6131*z.^3; 

R = R./2; % Monopole impedance is half of dipole 

GBP = 4*pi^2*R./480.*(f_center/f_res)/(log(l/a)-1); 

  

B = 0.50; 

G   = 1- exp(-GBP*(1-(B^2)/4)/B); 

semilogy(f_center/f_res, G, 'r', 'LineWidth', 2); 

grid on;  

hold on 

  

axis([min(f_center/f_res), max(f_center/f_res), 1e-3, 1]) 
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% This script calculates the upper bound on system efficiency for 

antennas (below first resonance) and matching network combination. The 

antenna is assumed to be lossless and its Q is approximated using 

Q(w=w_0) = X(w=w_0)/R_r(w=w_0). This upper bound holds under the 

following conditions 

%  

% 1. All elements in network of the same type electric/magnetic have 

equal Q 

% 2. These elements store energy in a form opposite to the antenna 

% 3. Generator  is lossless 

 

% Author: V. Iyer, S. Makarov, WPI, Oct.2008 

%  

  

%%  SMALL DIPOLE CALCULATION  

dipole_y        = 150e-3;               %   dipole length (m) 

Rg              = 50;                   %   generator resistance      

f_res           = 3e8/(2*dipole_y);     %   resonant frequency (ideal; 

half-wave resonance)  

dipole_lt       = [5 10 50];                %   length to width ratio 

DCF             = [0.05:0.05:0.5];          %   relative center 

frequency vs. f_res  

f_center        = DCF*f_res;            %   absolute center frequency 

vs. f_res 

f    = linspace(f_center(1), f_center(end), 64);    

figure 

Antenna_Q = zeros(3,length(f)); 

  

for loop = 1:length(dipole_lt) 

    dipole_x = dipole_y/dipole_lt(loop); 

    ZA  = dipole(f, dipole_x, dipole_y); 

    R   = real(ZA); 

    X   = imag(ZA); 

    % Q approximation for antenna 

    Q_a  = abs(X)./R; 

    eta_a = 1; 
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    % component Q - Matching Network  comprising of L section L1, L2 - 

% CHANGE TO 55 

    Q_mn    = 55; 

    eta_mn  = 1./(1 + (Q_a./Q_mn)); 

    % System Efficiency 

    eta_s = eta_a*eta_mn*100; 

    Antenna_Q(loop,:)  = Q_a; 

    semilogy(f/f_res, eta_s,'LineWidth',2) 

    grid on 

    xlabel('f_c/f_r_e_s') 

    ylabel('% System Efficiency - \eta_s') 

    title('Efficiency bound at center of band for short dipole -  3 

geometries') 

    hold all 

end 

legend('l_A/d = 5','l_A/d = 10','l_A/d = 50') 

 

axis([min(f/f_res) max(f/f_res) 1e-2 1e2]) 

figure 

for loop = 1:length(dipole_lt) 

    plot(f/f_res,Antenna_Q(loop,:)); 

    hold all 

end 

grid on 

xlabel('f_c/f_r_e_s') 

ylabel('Q_A_N_T') 

title('Antenna Q factor -  Dipole') 

legend('l_A/d = 5','l_A/d = 10','l_A/d = 50') 

  

%% SMALL CIRCULAR LOOP CALCULATION 

  

f_res           = 1e9; 

loop_a          = 3e8/(2*pi*f_res);     % loop radius 

Circ_umf        = 2*pi*loop_a;          % loop circumference   

Rg              = 50;                   %   generator resistance      

Omega           = [8 10 12];               % Conductor thickness factor 

f_min           = 3e8/(10*Circ_umf); 

f_max           = 3e8/(4*Circ_umf); 
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f_min           = f_min/f_res;f_max = f_max/f_res;  

DCF             = f_min:f_min/2:f_max;            %   relative center 

frequency vs. f_res 

f_center        = DCF*f_res;            %   absolute center frequency 

vs. f_res 

% Set of Center Frequencies 

f               = linspace(f_center(1), f_center(end), 64); %    final 

search   

figure 

Antenna_Q = zeros(3,length(f)); 

for loop = 1:length(Omega) 

    loop_b      = Circ_umf*exp(-Omega(loop)/2);   %   loop conductor 

width (m) 

    ZA          = smallLoop(f, loop_a, loop_b); 

    R           = real(ZA);            %    final search 

    X           = imag(ZA); 

    % Q approximation for antenna 

    Q_a  = abs(X)./R; 

    eta_a = 1; 

  

    % component Q - Matching Network  comprising of C section C1, C2 

    Q_mn    = 1000; 

    eta_mn  = 1./(1 + (Q_a./Q_mn)); 

    % System Efficiency 

    eta_s = eta_a*eta_mn*100; 

    % Plots 

    semilogy(f/f_res, eta_s,'LineWidth',2) 

    grid on 

    xlabel('f_c/f_r_e_s') 

    ylabel('% System Efficiency - \eta_s') 

    title('Efficiency bound at center of band for small Loop -  3 

geometries') 

    hold all 

    Antenna_Q(loop,:) = Q_a; 

end 

  

legend('\Omega = 8','\Omega = 10','\Omega = 12') 

axis([min(f/f_res) max(f/f_res) 1 1e2]) 
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figure 

for loop = 1:length(dipole_lt) 

    plot(f/f_res,Antenna_Q(loop,:)); 

    hold all 

end 

grid on 

xlabel('f_c/f_r_e_s') 

ylabel('Q_A_N_T') 

title('Antenna Q factor -  Loop') 

legend('\Omega = 8','\Omega = 10','\Omega = 12') 
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% Matching Circuit design for a dipole -  Reflective Equalizer 
% HYBRID GA 
    %   Using Genetic Algorithm -  Vectorized 
    %   Using Pattern Search to refine 
% Both Low pass and High pass + L - section are available for design 
% The population size has been reduced and a no. of independent GA runs 

are used to determine the best candidate 
% STATUS : Currently, it uses pattern search on the best starting 
% point candidate after a certain number of GA runs have occurred. 
%  
% Authors : - Vishwanath Iyer, Sergey Makarov, ECE Dept.,WPI,Aug. 2008 
%  

 

%%   Antenna/generator/bandwidth 
DCF             = 5/12;                 %   relative center frequency 

vs. f_res  
FB              = 0.4;                 %   fractional bandwidth 
dipole_y        = 500e-3;               %   dipole length (m) 
dipole_lt       = 0.5/0.001;            %   length to width ratio 
dipole_x        = dipole_y/dipole_lt;   %   dipole width (m) 
f_res           = 3e8/(2*dipole_y);     %   resonant frequency (ideal; 

half-wave resonance)  
Rg              = 50;                   %   generator resistance        
B               = 32;                    %   number of frequency 

observation points over the bandwidth 
f_center        = DCF*f_res;            %   absolute center frequency 

vs. f_res 
bandwidth       = FB*f_center;          %   absolute bandwidth    

  

%   Bandwidth  discretization for initial and final search 
f     = linspace(f_center-bandwidth/2, f_center+bandwidth/2, B);    %    

initial search 
s     = j*2*pi*f;                                                   %    

initial search 
ZA    = dipole(f, dipole_x, dipole_y); RL = real(ZA);               %    

initial search 
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%% GA SECTION - Read Genetic algorithm examples in help 
M  = 5;                                % no. of elements in matching 

network 
nw_choices = {'LP' 'HP'};              % choose between Low pass and 

High pass network 
nw_choice = 2; 
LB = eps*ones(1,M);                    % lower bound on component 

values 
if strcmp(nw_choices(nw_choice),'LP') 
    UB = [2e-6 1e-6 1e-6 100e-12 1e-6];     % upper bound on component 

values - LP (L1 L2 L3 C4 L5) 
else 
    UB = [2e-6 1e-6 100e-12 1e-6 100e-12];  % upper bound on component 

values - HP (L1 L2 C3 L4 C5) 
end 
popinitRange = [LB;UB];                % initial range for component 

values 
N  = 50;                               % search space -  Population 

Size 
GAruns = 30;                           % number of independent GA runs      

  

%% For vectorized fitness function 
RLvec     = RL.'*ones(1,N); 
ZAvec     = ZA.'*ones(1,N); 
ZAvec     = ZAvec.'; 

  

%% Allocate Memory 
LCvals          = zeros(GAruns,M);      % candidate component values in 

each run 
tempfval        = zeros(1,GAruns);      % to store fitness function 

value at each run 
tempfinalpop    = zeros(N,M,GAruns);    % to store final population at 

each run 
%% Core      -  test crossover function choices 
% Set options structure for GA 
gaoptions = gaoptimset('PopInitRange',popinitRange,... 
                        'Generations',100,... 
                        'PopulationSize',N,... 
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                        'EliteCount',round(N/2),... 
                        'MutationFcn',{@mutationadaptfeasible},... 
                        'MigrationDirection','forward',... 
                        'MigrationInterval',2,... 
                        'MigrationFraction',0.35,... 
                        'SelectionFcn',@selectionremainder,... 
                        'PenaltyFactor',20000,... 
                        'TolFun',1e-9,... 
                        'StallTimeLimit',inf,... 
                        'StallGenLimit',inf,... 
                        'Display','iter',... 
                        'Vectorized','on',... 
                        'PlotFcns', @gaplotbestf);  

                     

% Set options structure for Pattern Search 
afterN_GA_runs = 5;                             % No. of GA runs after 

which to refine result 
PSoptions = psoptimset('CompletePoll','on',... 
                       'CompleteSearch','on',... 
                       'SearchMethod',{@MADSPositiveBasisNp1},... 
                       'InitialMeshSize',1e-14,... 
                       'MaxIter',30*M,... 
                       'TolMesh',1e-16,... 
                       'TolCon',1e-16,... 
                       'TolX',1e-16,... 
                       'TolFun',1e-16,... 
                       'PenaltyFactor',100,... 
                       'Cache','on',... 
                       'PlotFcns',{@psplotbestf},... 
                       'Vectorized','off'); 

  

FitnessFunction     = @(tempLCvals) 

GAfitnessFunc_Vec(tempLCvals,s,Rg,ZAvec,RLvec,nw_choice); 
numberOfVariables   = M; 
indx_prev = 0; 
tic 
for loop2 = 1:GAruns 
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    [tempLCvals,fval,exitflag,output,final_pop]    = 

ga(FitnessFunction,numberOfVariables,[],[],[],[],LB,UB,[],gaoptions); 
    tempfval(loop2) = fval; 
    tempfinalpop(:,:,loop2) = final_pop; 
    LCvals(loop2,:) = tempLCvals; 

     

%     Refinement loop -  Pattern Search is used to obtain a better 

result by taking the best GA candidate point as initial point. 
    if (mod(loop2,afterN_GA_runs)==0) 
        indx = max(find(tempfval(1:loop2)==min(tempfval(1:loop2)))); 
        if(indx~=indx_prev) 
            initial_pt = LCvals(indx,:); 
            RLps     = RL.'*ones(1,size(initial_pt,1)); 
            ZAps     = ZA.'*ones(1,size(initial_pt,1)); 
            ZAps     = ZAps.'; 
            [tempLCvals, fvalps] = patternsearch(@(initial_pt) 

GAfitnessFunc_Vec(initial_pt,s,Rg,ZAps,RLps,nw_choice),... 
                                                               

initial_pt,[],[],[],[],LB,UB,[],PSoptions); 
            LCvals(loop2,:) = tempLCvals; 
            indx_prev = indx; 
        end 
    end 
end 
toc 
close all; 

  

%----------------------------------------------------------------------

--- 
%% Post Processing 
%----------------------------------------------------------------------

--- 
disp('-----------GA RESULT---------') 
[m,n] = size(LCvals); 
F       = linspace(0.01*f_res, 1.0*f_res, 2e5);  %   full spectrum 
ind1    = min(find(F>min(f))); ind2 =  max(find(F<max(f))); 
ind     = [ind1:ind2]; 
ind     = find(abs(F/f_res-DCF)<FB*DCF/2 + 0.5*(F(2)-F(1))/f_res); 
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[ZA]    = dipole(F, dipole_x, dipole_y); 
RL      = real(ZA); 
s       = j*2*pi*F; 
tempGain = zeros(m,length(F)); 
GainInfo = zeros(m,2); 
% Compute the response of the Equalizer across the full spectrum for 

each 
% case of GA run 
for loop = 1:m 
    if strcmp(nw_choices(nw_choice),'LP') 
        %--------------------------------------------------------------

---- 
        k1     = 1./(LCvals(loop,4)*s); 
        k2     = LCvals(loop,5)*s; 
        k3     = LCvals(loop,3)*s; 
        Zg     = ((k1.*(Rg+k2))./(k1+(Rg+k2))) + k3; 
        ZT      = s*LCvals(loop,2).*Zg./(s*LCvals(loop,2) + Zg) + 

s*LCvals(loop,1); 
        %--------------------------------------------------------------

---- 
    else 
        %--------------------------------------------------------------

---- 
        Zg      = s.*LCvals(loop,4).*(Rg+1./(s.*LCvals(loop,3)))./( 

s.*LCvals(loop,4) +... 
            (Rg+1./(s.*LCvals(loop,3))) ) + 1./(s.*LCvals(loop,5)); 
        ZT      = s*LCvals(loop,2).*Zg./(s*LCvals(loop,2) + Zg) + 

s*LCvals(loop,1); 
        %--------------------------------------------------------------

---- 
    end 
    tempGain(loop,:)  = 4*RL.*real(ZT)./((abs(ZA+ZT)).^2); 
    Gain = tempGain(loop,:); 
    GainInfo(loop,1)  = mean(Gain(ind)); 
    GainInfo(loop,2)  = 100*max(abs(Gain(ind)-

mean(Gain(ind)))/mean(Gain(ind)));  % percentage 

  

end 
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% Find which cases satisfy Gain Variation criterion 
best_cases      = find(GainInfo(:,2)<25); 
GainData        = GainInfo(best_cases,:); 
Gainbest        = tempGain(best_cases,:); 
LCval_best      = LCvals(best_cases,:); 

  

% Plot 2 cases and save important parameters to file 
if (GainData(:)) 

    

%-------- Find the best case for least average gain variation ---------

---------- 
    ind = find(GainData(:,2)==min(GainData(:,2))); 
    Gain1 = GainData(ind,1) 
    leastGainVar = GainData(ind,2) 

  

% ------- Find the highest acheived average gain (less than 25% still 

valid) -------------------------------- 
    ind2 = find(GainData(:,1)==max(GainData(:,1))); 
    highestGain = GainData(ind2,1) 
    GainVar2 = GainData(ind2,2) 

  

  

% -------Plot both cases ----------------------------------------------

-- 
    figure 
    plot(F/f_res, 10*log10(Gainbest(ind,:)),'LineWidth', 2); grid on; 
    title(strcat('Average Gain, a.u. for ',' ',nw_choices(nw_choice),' 

n/w -(Least variation) = ' ,num2str(Gain1) ,' ;Gain variation (%) = 

',num2str(leastGainVar)));  
    line([DCF-FB*DCF/2 DCF-FB*DCF/2], [-30 0], 'Color', 'g'); 
    line([DCF+FB*DCF/2 DCF+FB*DCF/2], [-30 0], 'Color', 'g');         
    line([DCF,         DCF],          [-30 0], 'LineWidth', 2, 'Color', 

'r');         
    xlabel('f/f_res');  
    ylabel('Gain, dB');  
    axis([min(F/f_res) max(F/f_res) -30, 0]); 
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    figure 
    plot(F/f_res, 10*log10(Gainbest(ind2,:)),'LineWidth', 2); grid on; 
    title(strcat('Average gain, a.u. for ',' ',nw_choices(nw_choice),' 

n/w -(Highest avg. gain) = ',num2str(highestGain), ' ;Gain variation(%) 

= ', num2str(GainVar2)));  
    line([DCF-FB*DCF/2 DCF-FB*DCF/2], [-30 0], 'Color', 'g'); 
    line([DCF+FB*DCF/2 DCF+FB*DCF/2], [-30 0], 'Color', 'g');         
    line([DCF,         DCF],          [-30 0], 'LineWidth', 2, 'Color', 

'r');         
    xlabel('f/f_res');  
    ylabel('Gain, dB');  
    axis([min(F/f_res) max(F/f_res) -30, 0]); 

     

% -----------------------Display circuit parameters and Save File -----

---------------------------------- 
if strcmp(nw_choices(nw_choice),'LP') 

     

    % Component values 
    circuit.L1 = LCval_best(ind,1)*1e6; 
    circuit.L2 = LCval_best(ind,2)*1e6; 
    circuit.L3 = LCval_best(ind,3)*1e6; 
    circuit.C4 = LCval_best(ind,4)*1e12; 
    circuit.L5 = LCval_best(ind,5)*1e6; 
    disp(strcat('------Component values for LP n/w with least avg gain 

variation')) 
    circuit 

     

        % Component values 
    circuit2.L1 = LCval_best(ind2,1)*1e6; 
    circuit2.L2 = LCval_best(ind2,2)*1e6; 
    circuit2.L3 = LCval_best(ind2,3)*1e6; 
    circuit2.C4 = LCval_best(ind2,4)*1e12; 
    circuit2.L5 = LCval_best(ind2,5)*1e6; 
    disp(strcat('------Component values for LP n/w with highest avg 

gain')) 
    circuit2 
    filename = strcat('GA_circuit5LP_DCF=',num2str(DCF)); 
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    filename = strcat(filename,'_FB='); 
    filename = strcat(filename,num2str(FB)); 
    filename = strcat(filename,'.mat'); 
    save(filename, 'DCF', 'FB', 'GainData', 'Gainbest', 'LCval_best', 

'F','gaoptions','PSoptions'); 
else 
    % Component values 
    circuit.L1 = LCval_best(ind,1)*1e6; 
    circuit.L2 = LCval_best(ind,2)*1e6; 
    circuit.C3 = LCval_best(ind,3)*1e12; 
    circuit.L4 = LCval_best(ind,4)*1e6; 
    circuit.C5 = LCval_best(ind,5)*1e12; 
    disp(strcat('------Component values for HP n/w with least avg gain 

variation')) 
    circuit 
        % Component values 
    circuit2.L1 = LCval_best(ind2,1)*1e6; 
    circuit2.L2 = LCval_best(ind2,2)*1e6; 
    circuit2.C3 = LCval_best(ind2,3)*1e12; 
    circuit2.L4 = LCval_best(ind2,4)*1e6; 
    circuit2.C5 = LCval_best(ind2,5)*1e12; 
    disp('------Component values for HP n/w with highest avg gain') 
    circuit2 

     

    filename = strcat('GA_circuit5HP_DCF=',num2str(DCF)); 
    filename = strcat(filename,'_FB='); 
    filename = strcat(filename,num2str(FB)); 
    filename = strcat(filename,'.mat'); 
    save(filename, 'DCF', 'FB', 'GainData', 'Gainbest', 'LCval_best', 

'F','gaoptions','PSoptions'); 
end 
else 
    disp('---------No Matching network found------') 
end 
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function output = GAfitnessFunc_Vec(LCvals,s,Rg,ZA,RL,nw_choice) 
% Handles both Low pass and high pass cascades to the L- section. 
% Vectorized fitness function;  
% LCvals - is of the population size, s is a vector 
% ZA and RL have to be supplied as matrices of size NX popsize where N 

% is no. of freq points when used by GA 

 

if (nw_choice==1) 
    % Impedance calculation for Low pass T network 
    k1     = 1./(LCvals(:,4)*s); 
    k3     = LCvals(:,3)*s; 
    k2     = LCvals(:,5)*s; 

  

    Zg     = ((k1.*(Rg+k2))./(k1+(Rg+k2))) + k3; 

  

    ZT     = (LCvals(:,2)*s).*Zg./((LCvals(:,2)*s) + Zg) + 

(LCvals(:,1)*s); 

  

else 
    % Impedance calculation for high pass T network 
    k1     = (LCvals(:,4)*s); 
    k2     = (Rg + 1./(LCvals(:,3)*s)); 
    k3     = 1./(LCvals(:,5)*s); 

  

    Zg     = ((k1.*k2)./(k1+k2)) + k3; 

  

    ZT     = (LCvals(:,2)*s).*Zg./((LCvals(:,2)*s) + Zg) + 

(LCvals(:,1)*s); 
end 

  

% Gain calculations 
tempZ       = real(ZT)./((abs(ZA+ZT)).^2); 
Gain        = 4*RL.*tempZ.'; 
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%% COST FUNCTION CHOICES 

  

% Average reflection coefficient in passband 
% output = max(10.*log10(abs((ZT - conj(ZA))./(ZT + ZA))));      % 

Works 
% output = max((abs((ZT - conj(ZA))./(ZT + ZA))));               % 

Works 
output = -min(Gain);                                             % 

Works 
% output = -mean(Gain);                                          % No 

  

% From Cuthbert 
refl_coeffMag = abs((ZT - conj(ZA))./(ZT + ZA)); 

  

% Choice - 1 (SWR) 
SWR = (1 + refl_coeffMag)./(1 - refl_coeffMag); 

  

% Choice - 2 (SWR^2) 
% SWR2 = (1 + (refl_coeffMag.^2))./((1 - (refl_coeffMag.^2))); 

  

% Choice -3 Poincare Metric 
P = atanh(refl_coeffMag); 

  

% Choice - 4  
% Tx_gain = 10.*log(1 - (refl_coeffMag.^2)); 
%  
% output = max(refl_coeffMag.'); 
% output = max(SWR');                                               % 

Works 
% output = max(P');                                                 % 

Works 
% output = max(SWR2');                                             % 

works 
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% This script attempts to calculate the R,L and C values of a antenna 
model directly from the simulated impedance data 

% Author: Vishwanath Iyer, Antenna Lab, WPI, 2008 

%% 

% Load csv data from file 

strip4Z     = 
csvread('Z:\Vishwanath\DRA_materials\DR_deepSearch\Brian_DR\strip4.csv'
); 

%%%%%%%%%%%%%%%%%%%%%%%%%% Strip 4  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

freq        = strip4Z(:,1); 

Z_A4        = strip4Z(:,2) + 1i.*strip4Z(:,3); 

% Set up matching band and extract data 

f_min       = 28;                   % MHz 

f_max       = 78;                   % MHz 

f_c         = (f_min + f_max)/2; 

indx_min    = find(freq>=f_min);indx_min = indx_min(1); 

indx_max    = find(freq>=f_max);indx_max = indx_max(1); 

freqs       = freq(indx_min:indx_max); 

Z_A         = Z_A4(indx_min:indx_max); 

omega       = 2*pi*freqs.*1e6; 

s           = 1i.*omega;                % Complex frequency 

%% Form the spectral matrix with reactance data from simulation and 
compute SVD 

A           = [omega.^2 -imag(Z_A).*omega -
1.*ones(length(freqs),1).*1]; 

[U,S,V]     = svd(A); 

%% Picking the third column of V  (all positive values and last is 
close to 1) 

% This column is one of the right singular vectors and spans the null 
space of S.  

coeffs        = V(:,3) 
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params.R      = mean(real(Z_A)); 

params.C      = coeffs(2); 

params.L      = coeffs(1)./params.C; 

params 

%% Verifying the model 

% Impedance of model 

Z_model     = params.R + s.*params.L + 1./(s.*params.C); 

figure 

subplot(211) 

plot(freqs,real(Z_A),'LineWidth',3) 

hold on 

plot(freqs,real(Z_model),'k--','LineWidth',3) 

grid on 

xlabel('Frequency (MHz)') 

ylabel('Resistance(\Omega)') 

title('Comparison between simulated impedance data and series RLC 
model-STRIP 4') 

legend('R - simulation','R - series RLC model','Location','NorthWest') 

subplot(212) 

plot(freqs,imag(Z_A),'LineWidth',3) 

hold on 

plot(freqs,imag(Z_model),'k--','LineWidth',3) 

xlabel('Frequency (MHz)') 

ylabel('Reactance (\Omega)') 

legend('X - simulation','X - series RLC model','Location','NorthWest') 

grid on 

hold off 

hold on 
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%% This script finds the component value for a reflectionless 
matching circuit using the impedance data from HFSS. 

% Author: V. Iyer, S. Makarov Antenna Lab, WPI, 2009 

%%  

f_min       = 30;                   % MHz 

f_max       = 80;                   % MHz 

f_c         = (f_min + f_max)/2; 

freqs       = linspace(f_min,f_max,10000); 

omega       = 2*pi*freqs.*1e6; 

s           = 1i.*omega;                % Complex frequency 

params.R= 0.1592 

params.C= 5.5502e-011 

params.L= 1.9772e-007 

 %% Matching Network  values 

L_s        = 1e-9; 

L_m        = params.C*(params.R^2); 

C_m        = (L_s + params.L)./(params.R^2); 

%% Sweep radiation resistance to see change in Transducer gain 

res        = 1; 

% params.R   = linspace(params.R,100,res); 

%% Main 

Rg         = 1; 

gamma      = zeros(res,length(freqs)); 

Gain       = zeros(res,length(freqs)); 

for loop    = 1:res 

    % Impedance of model 
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    Z_model             = params.R(loop) + s.*params.L + 
1./(s.*params.C); 

    RL                  = real(Z_model); 

    % Input Impedance with matching network 

    tank_Z              = s.*L_m.*(1./(s.*C_m))./(s.*L_m + 
1./(s.*C_m)); 

    shunt_Z             = tank_Z + params.R(loop);                                                
% shunt LC tank + R in series 

    Z_in                = shunt_Z.*(Z_model + s.*L_s)./(shunt_Z + 
Z_model + s.*L_s); 

   

    gamma(loop,:)       = (Z_in - Rg(loop))./(Z_in + Rg(loop)); 

 

% ----------------VSWR and Transducer Gain ----------------------
--- % 

    Zg                  = Rg(loop).*shunt_Z./(Rg(loop) + 
shunt_Z); 

    ZT                  = Zg + s.*L_s; 

    Gain(loop,:)        = 
((4*RL).*real(ZT)./((abs(Z_model+ZT)).^2)); 

    GaindB(loop,:)      = 10*log10(Gain(loop,:)); 

    VSWR(loop,:)        = (1 + abs(gamma(loop,:)))./(1 - 
abs(gamma(loop,:))); 

    

    % -----------------------------------------------------------
---------- 

    % Plot 

    hold on 

    subplot(211) 

    plot(freqs,VSWR(loop,:),'k','LineWidth',2) 
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    hold on 

    xlabel('freq (MHz)') 

    ylabel('VSWR') 

    title('VSWR ') 

    axis([min(freqs) max(freqs) 1 8]) 

    grid on 

    subplot(212) 

    plot(freqs,GaindB(loop,:),'k','LineWidth',2) 

    xlabel('freq (MHz)') 

    ylabel('Gain dB') 

    title('Gain ') 

%     axis([min(freqs) max(freqs) -30 0]) 

    grid on 

    drawnow; 

    pause(0.3) 

    hold on 

end 
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