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Abstract

In 1913, George Pòlya published a paper describing an iterative geometric construction of a map, P , that
maps an arbitrary t ∈ [0, 1] to P (t) onto a non-isosceles right triangle, T . This mapping constructs P (t)
by producing a sequence of nested subtriangles by drawing the altitude of the current triangle at each step.
This sequence has only one point in common, P (t). In his paper, Pòlya proved that this mapping P is
continuous and surjective. In 1973, Peter Lax faced the problem of finding the derivative of P and proved
that the map’s differentiability is dependent on the smallest angle of T . In this project, we built upon their
research by investigating several properties of Pòlya’s function.

We analytically proved that the trajectory of Pòlya’s function in T is self-similar by constructing two pairs
of contractive similitudes: ψ0 and ψ1 that apply to T and φ0 and φ1 that apply to I = [0, 1]. Specifically,
we proved that

P (φi(I)) = ψi(T )

where i is an infinite sequence of 0’s and 1’s.

We plan to develop this study further and submit a paper with our own contributions to an appropriate
journal.
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1 Pòlya’s Function

Pòlya’s function is a mapping from the interval [0, 1] onto a non-isosceles right triangle. Before we discuss the
properties of this mapping, we must understand the mapping itself. Pòlya’s function is not like more normal
functions such as f(x) = x2 or sin(x). The ranges of these functions are found by specific calculations. For
Pòlya’s function, the point in a non-isosceles right triangle that corresponds to a specific value in the interval
[0, 1] is found by a simple construction. This process is illustrated below.

Let t be a value between 0 and 1. Consider its binary expansion where t = 0.d1d2d3 . . . and d1, d2, d3 . . .
are either 0 or 1. Let T be a non-isosceles right triangle. Pòlya’s function P maps t to P (t), a point inside T .
This P (t) is defined as the intersection of all of the triangles in a sequence of triangles T1, T2, T3, . . . , Tn, . . .
The sequence of triangles is defined by following these steps:

1. Consider the triangle T . Divide T into two similar triangles by drawing the altitude of T . Since T
is non-isosceles, these triangles must be of different sizes. Denote the smaller triangle by Ts and the
larger triangle by Tl (See Figure 1).

2. Consider d1, the first digit of the binary fraction representation of t. If d1 = 0, let T1 = Ts. If d1 = 1,
let T1 = Tl

3. Repeat steps 1 and 2, replacing d1 with dn and T with Tn−1 for n = 1, 2, 3, . . ..

As n → ∞, it is clear that the area of each Tn shrinks to a single point. Therefore, this sequence of
triangles has one point in common. This point is P (t).

Figure 1: The larger and smaller subtriangles resulting from the decomposition of T by drawing its altitude.

(a) T3 (b) T4 (c) T5 (d) Tn

Figure 2: Shaded triangles represent Tn after 3 iterations and 4 iterations. P (t) is shown in (d) after many
iterations.
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Now that we know how to find P (t) from a single t, we can investigate what happens when t changes. In
fact, this mapping is onto: every point in the triangle T has a preimage in the interval [0, 1]. This mapping
is also continuous. George Pólya proved these results in his paper [5].

Pólya’s Theorem. The function P maps the interval [0, 1] continuously onto the triangle T .

Proof: To prove that the map P is onto, we will show that for any point in the triangle T , we can find a
corresponding binary fraction expansion 0.d1d2d3 . . . that corresponds to that point. Let p be any point
in the triangle T . Divide T into two subtriangles by drawing the altitude. Let T1 be the subtriangle that
contains p. If T1 is the smaller of the two subtriangles, let d1 = 0. If T1 is the larger of the two triangles,
let d1 = 1. Next, divide T1 by its altitude, and let d2 = 0 or 1 in the same manner. We can continue in this
way to obtain a sequence of digits d1, d2, d3, . . . Let t = 0.d1d2d3 . . . Then it is clear that p = P (t). Since we
can perform this procedure for any p in T , the mapping P is onto. �

Now we prove that the function P is continuous. Let t and t′ be binary fraction representations of two
numbers in [0, 1]. Suppose that these numbers are contained in an interval of size 1/2N , i.e., |t− t′| ≤ 1/2N .
Then either (a) the first N digits of t and t′ are the same, or (b) there exists a t′′ = k/2N (where k is some
integer) and that t < t′′ < t′.

In case a), we assume that the first N digits of t and t′ are the same. Let TN (t) denote the N th subtriangle
in the sequence of subtriangles that contains P (t) and let TN (t′) denote the N th subtriangle that contains
P (t′). Note that since the first N digits of t and t′ are the same, TN (t) = TN (t′). Clearly, P (t) and P (t′)
are both contained in this subtriangle.

Let hN (t) denote the length of the hypotenuse of TN (t)

Then it follows that:
|P (t)− P (t′)| ≤ hN (t) (1)

In case b), we assume that there exists a t′′ = k/2N such that t < t′′ < t′. In this case, t′′ is a rational number,
so it has two binary fraction expansions (Example: 1/2 = 0.1000 . . . or 0.0111 . . .). In one expansion, the
first N digits of t′′ are the same as those of t. In the second expansion, the first N digits of t′′ are the same
as those of t′. So by (1) we have that

|P (t)− P (t′′)| ≤ hN (t)

|P (t′)− P (t′′)| ≤ hN (t′)

And, by the triangle inequality,
|P (t)− P (t′)| ≤ hN (t) + hN (t′)

Since
lim
N→∞

hN = 0

in either case, we have that
lim
N→∞

|P (t)− P (t′)| = 0.

This proves the continuity of P . Thus we have proven that the function P maps the interval [0, 1] continu-
ously onto the triangle T . �

Now that we have shown that this map is a continuous function, we can see if this curve is differentiable.
In his paper [3], Peter Lax investigated the differentiability properties of Polya’s function. We will present
his results in the following chapter.
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2 Borel’s Theorem

One of the key ideas introduced in the proof of the differentiability of Polya’s function is a theorem introduced
by Émile Borel in 1909. A summary of the proof can be found in An Introduction to the Theory of Numbers
by Hardy and Wright [2].

First we must discuss the concept of “almost everywhere.” This is a concept related to Lebesgue measure.
The Lebesgue measure, denoted µ, of any interval [a, b] is equal to the length of the interval. So,

µ([a, b]) = b− a.

The Lebesgue measure of an isolated point is 0. The Lebesgue measure also has an additive property, where
for any disjoint intervals I1, I2, . . . In,

µ

(
n⋃
i=1

Ii

)
=

n∑
i=1

µ(Ii) (2)

Therefore, if a set I is composed of isolated points p1, p2, . . . , pn,

µ(I) = µ(p1) + µ(p2) + . . .+ µ(pn) = 0 + 0 + . . .+ 0 = 0.

We will now introduce the following definition, adapted from Bauer [1].

Definition: Let η be a property of points p ∈ P : every p either has property η or not. We say that
“almost all points of P have property η” if there is a set of measure 0, denoted Q, such that all points of the
complement of Q have property η.

We will now introduce two definitions. Note that in the following definitions, we will consider x to be in
base 2, but these definitions can be applied to a number in any base r.

Let x be a number expressed in base 2. Let nb be the number of a times a particular digit b ∈ {0, 1}
occurs in the first n digits of x.

Definition: The number x is said to be simply normal in base 2 if

nb
n
→ 1

2
(3)

for each possible value of b.

Definition: The number x is said to be normal in base 2 if x is simply normal in all of the bases 2, 22, 23, . . .

Borel’s Theorem: Almost all numbers are normal.
The proof of Borel’s Theorem can be found in “An Introduction to the Theory of Numbers” [2].

Now, we introduce important notation that we will use in the following chapter. Let N be the set of
all normal numbers in [0, 1]. Let N c be the set of all non-normal numbers in [0, 1]. Then µ(N ) = 1 and
µ(N c) = 0 and is an uncountable set. Clearly, N ∪N c = [0, 1].

Let δ(j) be an arbitrary sequence of 1, 0, and -1. Let K be an integer greater than 1. Let M be the set of
all t where the digits dn of t are defined by:{

dn = 1 whenever n is of the form n = jK + δ(j), j = 1, 2, 3, . . .

dn = 0 otherwise.

Clearly, M⊂ N c and µ(M) = 0. Moreover, M is an uncountable set.
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3 Differentiability Properties

In his paper [3], Peter Lax proved that the differentiability of the Pólya curve depends on the smallest angle
of T . The statement of his theorem is as follows:

Differentiability Theorem: Let θ be the smaller angle of a non-isoceles right triangle T . Then,

1. If 30◦ < θ < 45◦, then P is nowhere differentiable.

2. If 15◦ < θ < 30◦, then P has no derivative for all t ∈ N , but has derivative zero for t ∈ M, where
M⊂ N c and M is an uncountable set.

3. If θ < 15◦, then P has derivative zero for all t ∈ N .

We will summarize this proof as presented in Lax’s paper. First, we recall important notation. h(T )
denotes the hypotenuse of the triangle T. hN (t) denotes the hypotenuse of the triangle containing t produced
by N iterations of the construction for P (t).

Lemma 1: Suppose that

• t and tN have the same first N − 1 digits.

• t and tN have different Nth digits.

• The Nth, N + 1 and N + 2 digits of tN are the same.

Then,
|P (t)− P (tN )| > const hN (t) , (4)

where const is a constant.

Comment on Lemma 1:
An alternative way to state this lemma is that if t and tN satisfy the above conditions, then the distance

between the two points P (t) and P (tN ) in the triangle T is greater than a positive constant that is related
to the hypotenuse of TN . This concept is demonstrated in the following example.

Example: For N=3, Let t = 0.100 . . . and t3 = 0.10111 . . .

Figure 3: Clearly, the minimum distance between P (t) and P (tN ) is greater than some constant multiplied
by hN (t).
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We see that t and tN have the same first two digits, they differ at the third digit, and the third, fourth,
and fifth digits of tN are equal. So t and tN satisfy the above criteria. Figure 3 demonstrates the position
of P (t) and P (tN ) in the triangle T . It is clear that the shortest possible distance between P (t) and P (tN )
is positive.

Proof of Lemma 1:
Since the first N − 1 digits of t and tN are the same, P (t) and P (tN ) are in the same triangle TN−1, but

since the Nth, (N + 1), and (N + 2) digits of tN are different from that of the Nth digit of t, P (tN ) lies in
a triangle TN+2(tN ) which has no point in common with TN (t). Therefore, the minimum distance between
TN+2(tN ) and TN (t) is greater than a constant multiplied by hN (t), denoted by const hN (t). This completes
the proof of the Lemma. �

Proof of Differentiability Theorem:

Goal 1: Prove that hN (t) ≥ h(T )(sinθ)N (5)

We start by denoting the number of zeros in the first N digits of t by ZN = ZN (t) and the number of
ones in the first N digits of t by VN = VN (t). Note that

ZN + VN = N . (6)

If we consider an appropriate triangle, Ti, then the scaling factor from Ti to Ts is sin(θ) and the scaling
factor from Ti to Tl is cos(θ). Therefore, we can find the length of the hypotenuse of TN , hN (t), by multiplying
the length of the hypotenuse of the original triangle, h(T ), by sinθ ZN (t) times and cosθ VN (t) times. So

hN (t) = h(T )(sinθ)ZN (t)(cosθ)VN (t) . (7)

Since θ is the smaller of the two acute angles, sinθ < cosθ, and it follows from (6) and (7) that

hN (t) ≥ h(T )(sinθ)ZN (t)+VN (t) = h(T )(sinθ)N .

Goal 2: Prove that
|P (t)− P (tN )|
|t− tN |

> const (2sinθ)N

First, we choose a tN that satisfies the conditions defined in Lemma 1. Since (4) states that

|P (t)− P (tN )| > const hN (t)

and (5) states that
hN (t) ≥ h(T )sN

We have that
|P (t)− P (tN )| > const (sinθ)N (8)

Additionally, since t and tN have the same first N − 1 digits,

|t− tN | < 1/2N−1 (9)

So if we divide (8) by (9), we get that

|P (t)− P (tN )|
|t− tN |

> const (2sinθ)N (10)

Note that the form of the left side of this inequality is the difference quotient. Since the difference quotient
is related to a constant that depends on the angle θ, we will look at how the value of θ affects the difference
quotient in each case as stated above.
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We will now consider the three different cases presented in the theorem.

Case 1: 30◦ < θ < 45◦

Note that tN tends to t as N tends to infinity. So we can take the limit of (10) as N →∞ to find P ′(t).
Since θ > 30◦, sinθ > 1/2. Therefore, the right side of (10) tends to infinity with N as does the difference
quotient of P . Therefore, P is nowhere differentiable when 30◦ < θ < 45◦.

Case 2a: 15◦ < θ < 30◦ , t ∈ N

To analyze this case, we consider both normal and non-normal t separately. First, we let t be a normal
number, meaning that t will, on average, have the same number of 0’s and 1’s in its binary expansion. More
formally,

lim
N→∞

(
ZN
N

)
= lim
N→∞

(
VN
N

)
=

1

2
(11)

We will denote ZN − VN = 2DN . Since ZN + VN = N , we have that

ZN =
N

2
+DN , VN =

N

2
−DN (12)

Introducing this notation into (11) we have

lim
N→∞

(
DN

N

)
= 0. (13)

Similarly, (7) becomes

hN = h(T ) (sinθ cosθ)N/2
(
sinθ

cosθ

)DN

. (14)

Now we choose a tN that satisfies Lemma 1. Then if we combine (14) with (4) we have that

|P (t)− P (tN )| > const (sinθ cosθ)N/2
(
sinθ

cosθ

)DN

(15)

Now we divide (15) by (9) to get

|P (t)− P (tN )|
|t− tN |

> const (4sinθ cosθ)N/2
(
sinθ

cosθ

)DN

(16)

Recall that in this case, θ > 15◦, so 2θ > 30◦ and 4sinθ cosθ = 2sin2θ > 1. As before, we take the
limit of (16) as N →∞. We can see that the factor (4sinθ cosθ)N/2 increases exponentially. But we know

from (13) that the second factor
(
sinθ
cosθ

)DN
decreases at a rate slower that exponential. Therefore, the right

side of (16) tends to infinity with N . Clearly, the difference quotient in (16) tends to ∞ as well. We have
shown that P is not differentiable at any normal t. According to Borel’s Theorem, P has no derivative for
all t ∈ N .

Case 2b: 15◦ < θ < 30◦ , t ∈M

Lemma 2: Let t and t′ be any two numbers whose first N − 1 digits are identical and differ in the Nth
digit. Denote M = M(N) as the smallest integer M > N such that dM (t) = dN (t). Then,

|t− t′| > 1/2M . (17)

The Proof of Lemma 2 follows directly from the definition of M . To investigate this case, we construct
an uncountable set with measure zero of non-normal t such that t has more 0’s than 1’s. Note that this same
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proof holds when we construct a set of t such that t has more 1’s than 0’s. Let K denote an integer to be
fixed later. Then define M̃ ⊂M as the set of all t where the digits of t are defined as follows:

dn(t) =

{
1 if n is a multiple of K

0 otherwise.
(18)

Goal 3: Prove that P ′(t) = 0 in case 2b for t ∈ M̃, where M̃ ⊂ N c.

Now let t′ be any number and N the smallest integer such that dN (t) 6= dN (t′). From our definition of t, it
follows that M , as defined in Lemma 2, is either N + 1, N + 2, or N +K; so by (17),

|t− t′| > 1/2N+K (19)

Since t and t′ have the same first N − 1 digits, P (t) and P (t′) are in the same triangle TN−1, and

|P (t)− P (t′)| < hN−1(t) ≤ (1/s)hN (20)

since hN (t) = sinθ hN−1(t) if N = 0 and hN (t) = cosθ hN−1(t) if N = 1, and in this case (1/cosθ) <
(1/sinθ), hN−1(t) ≤ (1/sinθ)hN . For the special t defined by (18), we have with an error < 1, approximately

ZN (t) =

(
K − 1

K

)
N, VN (t) =

N

K

Therefore, from (7), we know that

hN = (sinθ)(
K−1
K )N (cosθ)

N
K < (sinθ)(

K−1
K )N

Combining this result with (20) we get that

|P (t)− P (t′)| < const (sinθ)(
K−1
K )N

So by dividing by (19) we can look at our familiar difference quotient of P at this special point t.

|P (t)− P (tN )|
|t− tN |

< const 2K
(

2(sinθ)(
K−1
K )
)N

(21)

Since θ < 30◦, sinθ < 1/2. Fix K such that

2(sinθ)(
K−1
K ) < 1

It follows that for such K the right hand side of (21) is bounded and tends to zero as N tends to infinity.
Therefore, P ′(t) = 0 at these points.

The same analysis shows that P ′(tδ) = 0 for any tδ ∈M. So for case 2, when 15◦ < θ < 30◦ and t ∈M,
we have shown that If 15◦ < θ < 30◦, then P has no derivative for all t ∈ N , but has derivative zero for
t ∈M, where M⊂ N c.

Case 3: θ < 15◦, t ∈ N

Lemma 3: For normal t,

lim
N→∞

M(N)

N
= 1 (22)

where M(N) is defined as in Lemma 2.
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Proof of Lemma 3:
Suppose dN = 1; then by the definition of M ,

dn = 0 for N < n < M

so that
Z(M) = Z(N) +M −N.

Divide both sides by N . The resulting equation can be written as follows:(
Z(M)

M
− 1

)(
M

N

)
=

(
Z(N)

N
− 1

)
By the definition of normality, Z(N)

N and Z(M)
M both tend to 1/2 as M,N tend to infinity and (22) follows

from this relation. �

For Case 3 we let t be normal, t′ any number not equal to t and let the Nth digit be the first digit where
t and t′ differ. By dividing (20) by (17) and combining the result in (14), we can now look at our difference
quotient:

|P (t)− P (t′)|
|t− t′|

≤ const (sinθ cosθ)N/2
(
sinθ

cosθ

)DN

2M (23)

= const (4sinθ cosθ)N/22M−N
(
sinθ

cosθ

)DN

(24)

Since in this case θ < 15◦, 4sinθ cosθ < 1 and the factor (4sinθ cosθ)N/2 on the right hand side of (24)
tends to 0 exponentially as N tends to infinity. It follows from (22) and (13) that the factors 2M−N and(
sinθ
cosθ

)DN
tend to infinity at a rate which is slower than exponential. This shows that the right hand side of

(24) tends to zero as N tends to infinity as it does when t′ tends to t. Thus P ′(t) = 0 for t normal. Since
almost every t is normal and t is in the interval [0, 1], we have shown that when θ < 15◦, P ′(t) = 0 for all
t ∈ N .

This completes the proof of the theorem.
We can interpret the Pólya map as a trajectory. What does this trajectory look like? It will certainly be

more complicated than elementary curves such as a parabola or sine curve. In the next chapter, we provide
an intuitive interpretation of this trajectory so that we can begin to reveal this trajectory’s other interesting
properties.
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4 The Firefly’s Journey: An Illustration of Polya’s Function

Fireflies are arguably among the most enchanting of insects. Memories of pleasant summer evenings are
often accompanied by images of fields lit up by countless intermittent lights produced by the insects. Fireflies
generate a glow from their lower abdomen in special light-emitting organs through a chemical reaction called
bioluminescence. The glow from a firefly larvae serves to warn predators of their bad taste, but as adults,
fireflies light up to attract mates. In this way, the firefly’s nebulous glow serves the species’ most basic
evolutionary purpose.

Now suppose that one summer evening a firefly is traveling in an enclosed field; looking for a mate.
Unfortunately for the firefly, summer is almost over and he only has 16 minutes left to find a mate. In order
to ensure the survival of his species, he must search every point in the field within this time period. Since it’s
reaching the end of the evening and getting dark, we can only see the firefly when it lights up. This firefly
happens to light up at evenly-spaced intervals in time. We happen to notice another firefly flying in another
enclosed field, but flashing four times as frequently. We decide to take note of where these fireflies light
up. Then we drew lines connecting these dots to indicate the order in which we saw the fireflies flashing.

Figure 4: The lights of two fireflies in two enclosed fields.

Obviously, we don’t know where the fireflies were when they weren’t flashing, so these lines represent an
interpolated path of the firefly.

Figure 5: The lights of two fireflies in two enclosed fields.
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After much deliberation, we realized that these fireflies are following the trajectory of Pólya’s function.
Now we can think about the path of the firefly in terms of Pólya’s function.

Figure 6: The lights of two fireflies in two enclosed fields.

Perhaps it would be useful to compare the first firefly’s set of flashes with the second firefly’s set of
flashes. When we made this comparison,, we noticed that the first firefly flashed only once in the largest
subtriangle of the triangular field (its last flash) and that the second firefly flashed four times in the respective
subtriangle in its field. Since we know that the second firefly flashes four times as often as the first firefly,
the two fireflies must have taken the same amount of time to cover the same area.

There is another conclusion we can draw from this comparison. Notice that the interpolated trajectory of
the last eight flashes of the second firefly is identical to the interpolated trajectory of the eight total flashes
of the first firefly. In fact, we can split the second firefly’s trajectory into four sets of eight flashes and notice
the the same pattern exists in each. This is an intrinsic property of Pólya’s function.

The image below demonstrates this property further. Consider an interpolated trajectory of Pólya’s
function and take note of the pattern. If we chose any subtriangle and examine the interpolated trajectory
within it, we see that this trajectory follows the same pattern. We can do this as many times as we like.

Figure 7: Zooming in on smaller subtriangles demonstrates the self-similarity of the Polya curve.

We believe that this occurs due to the special properties of Polya’s function.
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5 Similarity Properties

When we divide T by its altitude, we create two similar triangles. This division can also be performed by
applying certain functions, which we will call ψ0 and ψ1, to T . These functions are similitudes. A similitude
is any transformation that preserves distances up to scaling. More formally,

Definition: Let R2 be a metric space with d(x, y) = |x−y| = ((x1−y1)2+(x2−y2)2)
1
2 . A map f : R2 → R2

is a similitude if d(f(x), f(y)) = rd(x, y) for all x, y ∈ R2 and some fixed r ∈ R.

It can be shown that any composition of an orthonormal transformation, a homothethy, and a translation is
a similitude. The orthonormal transformation will be denoted by O. We will denote a homothety, or scaling,
by µr(x) = rx, r ≥ 0. The translation will be denoted by τb(x) = (x− b).

In our case, we will consider the map Ψ : R2 → R2 where Ψ = ψ0 ∪ ψ1 and
In the following definitions of ψ0 and ψ1, we will refer to θ as the smallest angle of T , a = (a1, a2) as the

vertex of T at the angle θ, b = (b1, b2) as the vertex of T at the angle π/2− θ, and c = (c1, c2) as the vertex
of T at the right angle of T .

The result of applying ψ0 on T is the smaller of the two similar triangles formed by the altitude of T .
For an arbitrary point x = (x1, x2) ∈ T ,

ψ0(x) = ψ0(x1, x2) =

[
b1 + sinθ[(x1 − b1)sinθ + (b2 − x2)cosθ]
b2 + sinθ[(b1 − x1)cosθ + (b2 − x2)sinθ]

]
More formally, ψ0 : T → Ts through the following similtude:

ψ0 : τ ′0 ◦ µ0 ◦O0 ◦ τ0

Where

τ0(x) = x− b

O0 =

[
−sinθ cosθ
−cosθ −sinθ

] [
1 0
0 −1

] [
x1
x2

]
µ0(x) = sinθ(x)

τ ′0(x) = x+ b

The result of applying ψ1 on T is the larger of the two similar triangles formed by the altitude of T . For an
arbitrary point x = (x1, x2) ∈ T ,

ψ1(x) = ψ1(x1, x2) =

[
a1 + cosθ[(a1 − x1)cosθ + (a2 − x2)sinθ]
a2 + cosθ[(a1 − x1)sinθ + (x2 − a2)cosθ]

]
Formally,

ψ1 : τ ′1 ◦ µ1 ◦O1 ◦ τ1
and

τ1(x) = x− a

O1 =

[
cosθ sinθ
−sinθ cosθ

] [
1 0
0 −1

] [
x1
x2

]
µ1(x) = cosθ(x)

τ ′1(x) = x+ a

Now we define two contractive similitudes that operate on I = [0, 1].
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Now consider Φ : R→ R = φ0 ∪ φ1, where for any number x ∈ I,

φ0(x) =
x

2

φ1(x) =
x+ 1

2

Definition: A fractal is “a rough or fragmented geometric shape that can be split into parts, each of
which is (at least approximately) a reduced-size copy of the whole,” according to Mandelbrot [4].

Fractals often have self-similar structure. We will show that the trajectory generated by Pòlya’s function is
self-similar in a sense that is specified below.

Let S0 ⊂ R2 be nonempty. Let χ0 and χ1 be contractive similitudes. Define S1, S2, . . . by

S1 = χ0(S0) ∪ χ1(S0)

S2 = χ0(S1) ∪ χ1(S1)

...

Sn = χ0(Sn−1) ∪ χ1(Tn−1)

...

Now let S be defined by

S =

∞⋃
n=0

Sn

Then
S = χ0(S) ∪ χ1(S) (25)

and S is called the invariant set of {χ0, χ1} Now we introduce important notation:

χi/n(S) = χi1 ◦ χi2 ◦ · · · ◦ χin(S)

where i/n = i1i2 . . . is a sequence of 0’s and 1’s of fixed length n.

For the invariant set S, we have

S = χ0(S) ∪ χ1(S) all possible i/n for n = 1

= χ0 (χ0(S) ∪ χ1(S)) ∪ χ1 (χ0(S) ∪ χ1(S))

= χ00(S) ∪ χ01(S) ∪ χ10(S) ∪ χ11(S) all possible i/n for n = 2

Clearly, we can continue using (25) to construct S out of subsets of S in the following manner:

S = χ0(S) ∪ χ1(S) n = 1

= χ00(S) ∪ χ01(S) ∪ χ10(S) ∪ χ11(S) n = 2

= χ000(S) ∪ χ001(S) ∪ χ010(S) ∪ χ011(S) ∪ χ100(S) ∪ χ101(S) ∪ χ110(S) ∪ χ111(S) n = 3

...
...

So, these subsets that make up S are created by all possible compositions of χ0 and χ1 applied to S.
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Proposition 1: In general, for every i/n

S =
⋃
i/n

χi/n(S)

Then we say that S is self-similar with respect to χ0 and χ1.

Now we define what we mean by a self-similar map.

Definition: Let S be, as above, self-similar with respect to χ0 and χ1. Let S′ ∈ R2 be another set which
is self-similar with respect to two other contractive similitudes ω0 and ω1. Let F be a surjective mapping
F : S → S′ such that

F (χi/n(S)) = ωi/n(S′) (26)

Then we say that the mapping F is self-similar.

Proposition 2: Let F : S → S′ be surjective and continuous. Let χ0, χ1, ω0, and ω1 be contractive
similitudes. Then when n→∞, we have

lim
n→∞

F (χi/n(S)) = F ( lim
n→∞

χi/n(S)) = F (χi(S)) (27)

and
lim
n→∞

ωi/n(S′) = ωi(S
′) (28)

Then by (26),
F (χi(S)) = ωi(S

′) (29)

By the contraction principle, we know that χi(S) and ωi(S
′) are specific points.

Now we want to show that the map P is a self-similar.

Lemma 1:The full triangle T is self-similar with respect to ψ0 and ψ1. In particular,

T =
⋃
i/n

ψi/n(T ) for every n (30)

Proof of Lemma 1: Let ψ0 and ψ1 be contractive similitudes as defined above. Recall that if we draw the
altitude of a triangle Tn, this triangle is decomposed into two subtriangles, one larger than the other. ψ0

maps Tn to the smaller subtriangle and ψ1 maps Tn to the larger subtriangle. Therefore,

T = ψ0(T ) ∪ ψ1(T )

Then by Proposition 1, we have (30) and T is self-similar with respect to ψ0 and ψ1. �

Lemma 2: The interval I = [0, 1] is self-similar with respect to φ0 and φ1. In particular,

I =
⋃
i/n

φi/n(I) for every n (31)

Proof of Lemma 2: Let φ0 and φ1 be contractive similitudes as defined above. If we divide any interval In
into two halves, we see that φ0 maps In to first half of In and φ1 maps In to the second half of In. Therefore,

I = φ0(I) ∪ φ1(I)

Then by Proposition 1, we have (31) and I is self-similar with respect to φ0 and φ1. �

Theorem: Let P be Pólya’s Function. Then P : I → T is continuous and surjective and we have that

P (φi/n(I)) = ψi/n(T ). (32)
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Moreover,
P (φi(I)) = ψi(T ). (33)

In particular, P is self-similar according to (26).

Proof of Theorem: Let

ψi(T ) = ψi1 ◦ ψi2 ◦ · · · ◦ ψin(T )

φi(I) = φi1 ◦ φi2 ◦ · · · ◦ φin(I)

where i = i1i2 . . . is an infinite sequence of 0’s and 1’s.
Let i/n = i1i2 . . . in be the sequence i truncated after n elements. Then let

Ii/n = φi/n([0, 1]) =

[
k

2n
,
k + 1

2n

]
Then, since every point in Ii/n has the same first n digits, these points will all be mapped to the same
subtriangle of T . We can find which subtriangle of T this is if we take ψi/n(T ). ψ0 and ψ1 model the division
of T by the altitude and choosing the smaller or larger triangle, which is the process carried out by Pòlya’s
function. Then, we have that

P (φi/n(I)) = ψi/n(T )

We have now proven (32).

To prove (33), we use Proposition 2. We have

P (φi(I)) = ψi(T ).

and we know that φi(I) and ψi(T ) are specific points. Thus we have proven (33).

Now we observe that from Lemma 1 and Lemma 2, both T and I are self-similar. Since P : I → T , and P
satisfies our definition of a self-similar map, we have shown that the map P is self-similar. �

We can simplify (33) by introducing the following notation:

ti = φi(I)

Pi = ψi(T )

Then,
Pi = P (ti) (34)

Recall the original construction of Pòlya’s function in Chapter 1, where P (t) was determined by the digits
d1, d2, d3, . . . of t. Note that

If i = d1d2d3 . . ., then ti = φi(I) = t. (35)

Equation (34) is actually a parametric equation for P . If i depends on t as in (35), then Pi produces an x
and y coordinate determined by t. Then we have that Pi is a parametric equation not of a simple curve, but
of the area of a triangle.
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6 Future Work

We suspect that Lax’s proof of the differentiability of Pòlya’s Function can be simplified by using the
parametric equation Pi. We intend to revisit the proof using our new ideas.

We also developed an idea for a three-dimensional analog of Polya’s function. If we take the trajectory
Pi and rotate it around the vertical leg of T , we have a solid cone (as seen in Figures 9 - 12 below). We
propose that this process can be formulated as a constructive map Q : R2 → R3. Specifically, Q maps from
a rectangle in the tα-plane onto a solid cone, where t ∈ [0, 1] and α ∈ [0, 2π]. Moreover, we propose that this
map is surjective, continuous, and differentiable at certain points. Additionally, we think it is possible to
show that the rectangle and cone have self-similar structures and that the map Q is self-similar. Therefore,
we could create a parametric equation for Q as well, presumably Qi. Similar to Pi, Qi would be a parametric
equation of a cone.

We plan to finish and submit this work to a suitable journal.
Below are multiple images that help provide a basic understanding of Q.

Figure 8: Different views of the object generated by rotating the approximate trajectory of Pòlya’s Function
after 3 iterations through the third dimension. Left, a view of the object on the plane z = 0. Right, a
translucent view of the object.

Figure 9: Different views of the solid object generated by rotating the approximate trajectory of Pòlya’s
Function after 3 iterations through the third dimension
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Figure 10: Different views of the object generated by rotating the approximate trajectory of Pòlya’s Function
after 5 iterations through the third dimension. Left, a view of the object on the plane z = 0. Right, a
translucent view of the object.

Figure 11: Different views of the object generated by rotating the approximate trajectory of Pòlya’s Function
after 5 iterations through the third dimension
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Figure 12: Different views of the object generated by rotating the approximate trajectory of Pòlya’s Function
after 7 iterations through the third dimension. Left, a view of the object on the plane z = 0. Right, a
translucent view of the object.

Figure 13: A view of the object generated by rotating the approximate trajectory of Pòlya’s Function after
7 iterations through the third dimension
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