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Abstract

Virtual reality (VR) headsets are becoming more common and will require evolving input

mechanisms to support a growing range of applications. Because VR devices require users to

wear head-mounted displays, there are accomodations that must be made in order to support

specific input devices. One such device, a keyboard, serves as a useful tool for text entry. Many

users will require assistance towards using a keyboard when wearing a head-mounted display.

Developers have explored new mechanisms to overcome the challenges of text-entry for virtual

reality. Several games have toyed with the idea of using motion controllers to provide a text entry

mechanism, however few investigations have made on how to assist users in using a physical

keyboard while wearing a head-mounted display.

As an alternative to controller based text input, I propose that a software tool could facilitate

the use of a physical keyboard in virtual reality. Using computer vision, a user’s hands could be

projected into the virtual world. With the ability to see the location of their hands relative to the

keyboard, users will be able to type despite the obstruction caused by the head-mounted display

(HMD). The viability of this approach was tested and the tool released as a plugin for the Unity

development platform. The potential uses for the plugin go beyond text entry, and the project can

be expanded to include many physical input devices.
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1 Introduction to Virtual Reality Interfaces

Virtual reality (VR) technology presents new problems concerning keyboard use and text

entry. Virtual reality devices currently make use of a head-mounted display (HMD).

Head-mounted displays are computer displays built into headsets. While there are some

“see-through” HMDs, HMDs used for virtual reality tend to be opaque, such that users only see

the contents of the display. The inablity for users to see their surroundings poses challenges to the

use of destop computer input devices, such as keyboards. Desktop computing devices provide

users with responsive, familiar feedback. Keyboards can be designed with deliberate goals in

mind, for example keyboards designed for gaming and keyboards designed for high-speed text

entry. The design of keyboards is something that can be improved upon along with advances in

VR technology to create new novel interfaces for computing. Outside of gaming, computational

tasks often utilize the keyboard in some way. Newer apps, such as Virtual Desktop (created by

Oculus), allow users to use the HMD like a standard display, performing general computing tasks

such as emailing or word processing. For more traditional desktop applications ported to virtual

reality, a keyboard remains a high-utility device since not all computing tasks will be easily done

using motion-based controls.

Many computer users require some degree of vision of the keyboard [6, 16, 14] in order to

properly make use of the device. The visual obstruction caused by an HMD can interfere with a

user’s ability to use the keyboard and a user’s typing speed and accuracy could decrease as a

result [14]. Facilitating keyboard use will help to prevent user frustration when engaged with

virtual reality applications that make use of keyboards.

Virtual reality applications make use of gaze for input. The rotation of the head is tracked by

the headset and allows for a direct mapping between the actions of the user and the view into the

digital world. There are two subcategories of virtual reality games with unique input

requirements: room-scale VR and seated VR. In Room-Scale experiences, users are able to use

their entire body as an input mechanism. Holding a tracked-controller in each hand, users have

the freedom to move about a sectioned off space in the real world - the experience encompassing
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them completely. In Figure 1.1, the kinetic motion involved in room-scale VR applications is

advertised.

Figure 1.1: Room Scale VR involves more bodily
movement than seated VR, as shown in this
advertisement for the HTC Vive [29]

Seated VR games, as the name implies, involve sitting in a chair and wearing an HMD.

Seated VR is well suited for driving or flight simulation games but has also been used for a wide

variety of games. Seated VR games are popular for users that do not have the space available for

a room-scale system. Games made for the Oculus Rift and HTC Vive typically support both room

scale or seated environments. The games themselves make adjustments based on space

limitations to accomodate these differences. While seated VR games can make use of tracked

controllers in each hand, seated experiences can also be integrated with desktop input devices

such as gamepad controllers, keyboard and mouse, or HOTAS (Hands On Throttle-and-Stick).

Both kinds of VR experiences have been rated highly as feeling “realer” to users than

traditional desktop games [15]. The differences between both categories of VR applications lies

primarily in input design. Room-scale VR requires a prepared space with no detritus or

obstructions. Instead of the classical desktop paradigm, input devices for room-scale VR are

often held or worn by the player at all times. Figure 1.1 shows an advertisement for the HTC

Vive. In the image, a player holds a wireless control in each hand while wearing the headset. The

freedom of movement afforded by room-scale technology diminishes the utility of a traditional

keyboard. Because seated VR applications are played in a stationary position, there is the

potential to integrate the keyboard as an input device for these kinds of games and applications.
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How can keyboard use be facilitated despite the challenges presented by an HMD? I propose

a solution to the problem using a web-camera pointed at the keyboard. Using computer vision, a

projection of the user’s hands can be created and displayed over a virtual keyboard. The visual

guide will help users employ the hunt-and-peck strategy, and allow touch-typists to reposition

their fingers if necessary. The position of the user, camera, and keyboard is demonstrated in

Figure 1.2. To test this, a physical keyboard and a web-camera are required and both devices will

Figure 1.2: A user sits wearing an HMD. The
camera on the monitor will facilitate his use of the
keyboard

remain stationary during use. Due to the restriction the devices, the camera based tracking

solution is targeted at stationary VR experiences only. Alternative text-entry devices have been

proposed for room-scale VR. One proposal uses a virtual keyboard model that is struck using the

motion controllers, as though each key was a drumhead. An assessment of the drum keyboard

typing approach will aid developers in designing VR experiences (seated or otherwise) with

text-based chat in mind. This thesis intends to answer the following research questions:

1. Can markerless hand tracking provide enough visual information to aid users in keyboard use?

2. How does typing on a keyboard differ from using a controller interface for typing?
Virtual reality devices, such as the Oculus Rift and the HTC Vive, attempt to provide a more

immersive user experience, making them a good fit for gaming applications. The popularity of

these devices stems from their ability to augment important aspects of gameplay and user
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experience, including flow, immersion, and presence. Flow, immersion, and presence are game

concepts that are positively correlated with user enjoyment and percieved quality of a game [31,

27]. A 2006 study recognized immersion as one of five factors of user motivation in gaming [34].

These factors combined with ever improving virtual reality technology have likely increased the

incentives for developers to create virtual reality games. In fact, the Game Developers

Conference 2016 State of the Industry Report [2] recognized that the number of developers

planning to release games for virtual reality doubled from 2015 to 2016. The tools developers

have access to will help to improve the variety and quality of many virtual reality games.

While many VR games do not require a keyboard at all, some games and applications

developed for virtual reality will require use of a keyboard for a variety of reasons. One use case

serves as the primary focus of this project: text chat. Text based chat is a popular form of

computer-mediated communication (CMC) in online multiplayer games. There are already

hundreds of virtual reality games on Steam, many of which are also tagged as multiplayer games

(SteamSpy.com). Games that offer communication tools for players such as text or voice chat

may encounter new challenges posed by virtual reality development. Facilitating keyboard use in

virtual reality therefore becomes a challenge worth overcoming.

Text-based chat is an important tool for synchronous and asynchronous communication,

wherease voice chat is less suited to asynchronous communication. Online games have, for a

long time, used text as a communication mechanism between players [11, 19]. In games, chat has

been used for both goal-based and social communication [11]. While voice chat is becoming

increasingly popular in video games [30], there are still many reasons players can benefit from

text chat. Studies of online games, for example, have identified several utilities of text-based chat

that make text preferable to voice-based communication. One such benefit is the ability to hear

other audio sources (e.g. game audio) while still being able to communicate [8]. Additionally,

voice chat can be prone to annoyances, for example, background noise, crosstalk, or griefing.

Subjects in another study also found it more difficult to identify speakers in relation to in-game

avatars when using voice chat [30].

4



Users can also have need for a physical keyboard in games where text chat is not a priority.

In many games, it can be useful to be able to find specific keys on a keyboard in order to perform

certain inputs. The ability to position your fingers visually on the keyboard could be useful for

VR games with more complex control schemes. The game Elite Dangerous is a popular sci-fi

flight simulator that has virtual reality support. While playing the games, players might need to

press specific keys on the keyboard in order to activate game-related functions, such as deploying

landing gear or adjusting their speed. Outside of virtual reality, users must reposition their fingers

either tactiley or visually in order to press the proper keys.

It is likely that as human-computer interactions evolve, head-mounted displays may replace

traditional desktop monitors as a comfortable display device for work, travel, and leisure.

Understanding the current limitations of the technology and efforts towards a solutions will

contribute to the advancement and adoption of virtual reality technology.

The specific contributions of this report are

1. A low cost solution to the impairment of keyboard use caused by a head-mounted display.

2. Results from a study on the effectiveness of a web camera utility for helping users type

while wearing a headset.

3. Results from a study on the effectiveness of a “Drum Keyboard” for text-entry in room-

scale VR.

4. Feedback from users on the viability of each approach as it relates to certain typing tasks

and user skill gaps.

The sections of this paper are organized as follows: In the background chapter I provide

information on the current understanding of how people type on physical keyboards as well as

reviews of other typing studies specific to virtual reality text input. In the methodology, I explain

the design goals and programming methods used to achieve these goals. An in depth explanation

of the experimental methods used to assess the software in this thesis is also provided. In the
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results chapter, data proving that users prefer having a visual aide when typing are presented.

Additional results, such as the efficiency of a more kinetic typing strategy for virtual reality are

presented. In the conclusions chapter I will present the improvements made to the tool

post-assessment, and present possibilities for future work surrounding both the specific utility and

physical interfaces for VR.

Ultimately this work will explore the possibility for physical interfaces to remain relevant for

use with head-mounted displays. Future applications that make use of virtual reality can benefit

from interfaces that have been adapted for use with VR. Finally, this work explores computer

vision to functionally overcome several challenges presented by virtual reality head-mounted

displays, which isolate users from their real world surroundings.
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2 Background: A Review of Typing in Virtual Reality

In order to have the necessary background needed to conduct this work I examine the utility

of computer keyboards and the affordances that facilitate effective text-entry. I present a closer

look at answering the following question related to virtual reality input devices. What input

mechanisms have been studied for use with VR technology?

Throughout the development of commercial virtual reality hardware, interface challenges

have been identified, and have inspired many studies and projects, including this thesis. To evolve

and grow as a technology, virtual reality games may require the adaptation of input devices such

as the keyboard. Adaptation of traditional input devices affords designers the opportunity to

design a broad scope of interactions.

Virtual reality is rapidly growing as a technology of interest and integration with

well-understood interfaces is important. For example, advances in speech-to-text software allow

for fast and clear text input using speech [30, 11, 8]. Additionally, voice-chat is becoming more

efficent and is commonplace in online video games. Because of trade-offs between voice and

text-based chat, keyboards remain an important tool for communication in games. Keyboards

should still be considered a viable input device for virtual reality since they are commonplace.

2.1 How People Type

When using a physical keyboard for text-entry, there are two commonly agreed upon

strategies: Touch typing and hunt-and-peck. The simple definition of touch typing is a user that

can correctly type using only their sense of touch. Touch typing is more rigidly viewed as the

explicitly taught method through which all fingers are used to type. Touch typists do not require

sight of the keyboard in order to accurately position their fingers or in order to find the intended

keys. Touch typists typically recalibrate their finger position using the nubs on the “j” and “k”

keys. The hunt-and-peck method typically involves fewer fingers; at least two, but sometimes

more. The hunt-and-peck method has traditionally been thought of as being slower and requiring
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a view of the keyboard [5]. However these views are being refuted by more modern studies.

Despite the fact that non-touch typists (called “everyday typists” by Feit) are not formally trained,

they can achieve comparable speeds as trained touch-typists [6]. Everyday users generally require

a view of the keyboard in order ensure that they are entering the correct keys [6, 16].

Because everyday typists are not formally taught, there tends to be a variety of different

strategies employed when typing. For example, the fingers used to hit certain keys will vary from

user to user [6, 17]. The high degree of individual variance [17, 26] in how people type makes it

difficult to determine which factors affect a typist’s ability. Of particular interest to this study is

vision of the keyboard. Occlusion of the keyboard from the user has been shown to descrease

typing speed and increase error rate, as has wearing an HMD [14].

In a broad study about typing methodology, Anna Maria Feit and her coworkers presented

three relevant findings.

1. The number of fingers used while typing is not a large component of typing speed.

2. Trained typists are not necessarily faster than self-taught typists.

3. Irrespective of typing speed, non-touch typists spent more time looking towards their

fingers, and the keyboard, when performing the typing tasks.

The first two points here are corroborated in an older paper that investigated why users trained

to touch-type sometimes ameliorated typing effectiveness by reverting to a visually based hunt-

and-peck approach [33]. Another paper [16] provided a deeper analysis of users that looked at

the keyboard while typing. Instead of separating users into two group (touch-typists and hunt-

and-peck typists) this study used eye tracking technology to separate users based on time spent

looking at the keyboard. The study grouped users into “keyboard gazers”, “monitor gazers”, or

“mixed-strategy writers” depending on gaze behavior. In the experimental trial, the majority of

users exibited mixed-strategy or keyboard gazing tendencies. It was rare for users to type while

looking at the monitor alone [16].
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Feit’s, Johansson’s and other’s investigations into keyboard use behavior are particularly

important to this research since the studies note that some form of visual feedback is often

necessary for typing tasks. Additionally, these papers provide some information about the

possible distribution of touch and non-touch typists. Feit’s study had 43% touch-typists, with the

rest being classified as non-touch typists. Another study found 57% touch-typists [17] compared

with hunt-and-peck typists or mixed strategy users. The sample sizes in these studies were small

but suggest that somewhere around 50% of computer users can touch-type. For everyday typists,

touch typing is a difficult skill to learn [33, 5] so alternatives should be considered in order to

promote wider adoption of virtual reality devices. The statistics on typing strategies provided

insight into what form the virtual reality typing mechanism would take. For example, some users

would require minimal guidance to use a physical keyboard. Everyday typists would potentially

prefer tools that do not require the memorization of a keyboard layout or the repetetive training

necessary for touch-typing.

2.2 Interfaces for Text Entry in Virtual Reality

This work does not seek to provide a “best” solution for text-entry in virtual reality. The

choice to facilitate use of a physical keyboard, using computer vision, comes from an

understanding of additional work done in this field. There is abundant research into overcoming

the challenges presented by HMDs. The following section summarizes some of the research in

the overlapping areas of virtual reality, text-entry, and human-computer interactions.

2.2.1 Speech-To-Text

A possible text-entry strategy for virtual reality is speech-to-text. There are many useful

applications for speech-to-text software, but there is still a case to be made for keyboard-based

input in contemporary virtual reality applications. Voice input is often viewed as the ideal

mechanism for text entry. A Stanford study compared text-input speeds for voice input and

touch-screen keyboards. The study found that voice entry could be much faster than using a
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touch-screen keyboard [25]. Speech recognition software has advanced considerably in the past

few years, allowing for high entry speeds and accuracy. Speech has also been used as a game

input device. Experiments with the Xbox Kinect, indicated players were able to successfully

provide game input through voice commands. Additionally, in 2014, IBM made a prototype for a

game that is played almost entirely using voice commands [4]. The introduction of speech-to-text

software did not remove the necessity for a keyboard as a means of text-entry. Text messaging,

for example, is a prominent form of computer-mediated-communication that can be done either

using a phone’s digital keyboard, or through speech-to-text. Familiarity helps to ease into transitis

in hardware and software.

Instead of using speech-to-text, direct voice chat is another option for online communication.

As mentioned in the introduction, there are tradeoffs between voice and text-chat including the

ability to hear game audio [8]. Before online voice-chat became wide-spread, text was the de-

facto tool for communicating with other video game users [11, 19]. Players can also benefit from

text chat. Wadley and his team found that voice chat can result in unpleasant interactions, such as

griefing. Voice chat is also prone to background noise and cross-talk [30]. Additionally, privacy

becomes a concern when using speech-to-text software.

Another application is to combine the two approaches. It is possible to use speech-to-text

software to take in a users speech, convert this input to text, then broadcast the message to other

players. Little (if any) work has been done on synchronous speech-to-text communication within

games, but it is not unlike text-messaging using speech to compose messages. Work in this area

has primarily focussed on inclusion and accessibilility for players with hearing disablities.

Microsoft has implemented a speech-to-text system in several games that converts voice chat to

text to make communication between hard of hearing or deaf players possible [28]. Other use

cases for speech-to-text have focused on autonomous agents, like chat bots [22] or chat-log

transcription [28].
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2.2.2 Reducing Typing Errors While Wearing an HMD

Once developers recognized that typing with a head-mounted display may prove difficult to

many users, several projects investigated ways to reduce error rate and improve the keyboard

interface for VR. A study by Walker et al. utilizes a text decoder to correct user error while

typing with an HMD. The decoder study looked at decreasing this error rate through automated

error correction for entire sentences. Decoding complete sentences took non-trivial computation

time, and as a result there is some delay in when the message is typed and when it is corrected

and finally sent. To study the effect of the decoder on user error rate, these researchers analyzed

users typing ability across three conditions: visible keyboard, occluded keyboard, and while

wearing an HMD.

Walker’s work supports the idea that head-mounted displays will disrupt keyboard use. In

this work, a similar methodology is used to study the impact of facilitating keyboard use through

computer vision. This work differs in its focus on real-time keyboard use as well as text entry.

Once the text has been entered by the user it should be possible to autocorrect words similar to

software found on many mobile devices. Text-prediction is a valuable tool for error correction

and would certainly be useful for VR keyboards [21]. However, text correction is not the focus of

the software tool and so is beyond the scope of this project.

Another mechanism for reducing error rate was explored by using a web-camera to open a

window within virtual reality to the outside world. In the study, the video feed from a webcamera

was mapped to a texture in the virtual world. The camera feed - showing the keyboard, users

hands, and desk space - allowed for a reduction in error rate [20] when typing. Users in this

experiment were able to quickly identify the position of the keyboard in the real world and begin

typing. The study provided a clear starting point for further research. If a complete image of the

space surrounding the user aided in typing performance, it seemed possible that abstracting this

view, by creating a virtual keyboard model, would still help a user type accurately.

The possibility for abstracting a virtual keyboard has been explored in several ways. Two

companion studies provided important considerations which influenced the design of the virtual
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keyboard for this work. Each study investigated different aspects regarding virtual keyboard

representations for use with head-mounted displays.

1. Where the virtual keyboard is positioned relative to the HMD user [10].

2. How to virtually represent the hands [9].

These papers argued that the physical keyboard remains an important tool for virtual reality

applications.

2.3 Alternative Methods for Text-Entry

Virtual reality headsets sometimes include specialized input devices. The HTC Vive and the

Oculus Rift both have handheld controllers that are tracked relative to the head-mounted display.

These devices have already been used in several games requiring text input. To facilitate text

input in these games, virtual keyboards have been created. Users then type by using the tracked

controllers to hit the keys on the virtual keyboard as though they were playing the drums [32, 10].

An example of a drum keyboard is seen in Figure 2.1 Other forms of the drum approach could be

Figure 2.1: A drum based keyboard utilizes two
tracked controllers to hit keys like drumheads

created using tracked gloves, or specialized cameras like the Leap Motion controller. The Leap

Motion Contoller can track the hands of a user directly - turning the users’ hands alone into the

input device. A drum keyboard that makes use of the Leap Motion Controller is pictured in

Figure 2.2. The Leap Motion Controller tracks hand position well, and can be useful for
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recognizing gestures. Gesture based input presents its own share of challenges including the lack

of haptic feedback. Also, the Leap Motion Camera is typically attached to the HMD, meaning

that users must face their hands in order to track them properly.

Figure 2.2: An implementation of a VR keyboard
that uses the Leap Motion Controller [3]

Text input and keyboard use in virtual reality are both important components of HCI research.

Alternate typing mechanisms that have been developed for some apps have not been extensively

studied. Editor VR and Fantastic Contraption are two example games that have used drum

keyboards. An understanding of the benefits of a drum keyboard would be helpful to developers

that plan to include such interfaces in their games. The company, Normal.VR, has created an

open-source version of a drum keyboard and encourages developers to test and modify it to suit

their needs.

Keyboards that work entirely by tracking the user’s fingers are another interesting piece of

technology. One such keyboard, the Canesta Keyboard [Figure 2.3], projects an image of a

keyboard on a flat surface [24]. Users type by hitting keys on the surface. In the Canesta study,

touch-typists felt at a disadvantage since there was nowhere to rest their palms while typing [24].

Future work could study the effectiveness of these devices, which may prove more portable than

traditional keyboards. Typing on flat surfaces, such as touchscreen or the Canesta Keyboard has

been shown to be slower than typing on a physical keyboard. This may be in part due to many

users typing with fewer fingers [10].

The analysis and utility of drum keyboards has not been extensively studied. In this work, the

Leap Motion’s tracking was found to be too inaccurate for input on a virtual keyboard. However,
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Figure 2.3: The Canesta keyboard uses hand
recognition to allow for typing on any surface [13]

.

a decision was made to test a drum keyboard as a point of comparison with the physical

keyboard. A comparison of these systems is useful to designers since they may want to include a

specific text-entry system or chat approach in order to facilitate certain kinds of interactions. As a

result, it is important to compare these systems and identify which system is better suited for

specific typing tasks.

Another hand tracking solution used a phone capable of finger tracking [18]. The phone is

able to track the nearby position of the user’s fingers using its “Hover-Touch” capability. Within

the HMD, the user is able to see a representation of the phone, with a touch keyboard that

correctly displayed which keys the user was hovering over. Similar finger tracking technology

could be added to a keyboard in order to make keyboards feasible input devices for virtual reality.

Tracking the keyboard position in this way would allow users to use their physical keyboard,

despite the head-mounted display. Input devices that use hand tracking, such as the Canesta

keyboard and drum keyboards could potentially be useful for augmented reality applications as

well. Augmented Reality (AR) devices do not inhibit a user’s view of the outside world so the

computer vision tool presented here is less applicable to AR. Despite the growth of the

augmented reality field, virtual reality still provides immersive experiences that cannot be

replicated with other kinds of headsets.
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There is documented commercial viability in virtual reality keyboards. In November 2017,

Logitech sent out development kits for a virtual reality keyboard that tracked a user’s hand.

Additionally, the keyboard was wireless and could be moved and positioned in room-scale

applications using a tracker on the controller [23]. The Logitech BRIDGE (as the keyboard is

called) uses the HTC Vive’s tracking to mark user’s hand position and draw a 3D hand model in

VR. The hand tracking code used in the Logitech BRIDGE is unpublished, and the mechanism

for tracking the hand is proprietary information held by the company.

Keyboards have evolved over one-hundred and fifty years and are recognized as a dominant

form of text entry. Virtual reality presents a new domain for keyboard use and the device’s

potential should not be outright dismissed. There are several mechanisms already employed for

text-entry in virtual reality but each solution presents certain obstacles. It is clear in this

background that keyboard interaction will remain important to users as virtual reality develops.

Additionally, comparisons are necessary between standard keyboard use and other virtual

keyboard designs for optimizing the user experience.
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3 Methods for Creating and Testing the Computer Vision Tool

Before development could begin, a review of the current literature was completed.

Observations from the literature review showed that a markerless approach to hand tracking

would be of potential use. Other virtual reality studies exhibited repeatable experimental

techniques co-opted for this thesis. After gaining an understanding of keyboard dynamics and

typing strategies the development of the typing solution began.

3.1 Design Goals

The final application was designed with several goals in mind. The first goal, was to have an

optimized finger tracking solution that would allow for users to understand how their fingers are

positioned over the physical keyboard. Maximizing performance was the second goal.

Maintaining a high frame rate is a requirement for virtual reality applications as a measure to

prevent motion sickness [7, 12]. In order to avoid constraining other developers, the proposed

solution must have little to no impact on the performance of any VR game. Another goal for the

project was to provide a low-cost, minimal setup utility, done without markers (tracking points

placed on the hands). Instead, users would only need a webcamera, in essence making the system

”plug and play” for keyboard facilitation. Reducing the barriers to entry for this tool would aid in

wider adoption of the tool for virtual reality apps.

Finally it is also important that the tool supports users of varying skin tones as well as

different types of webcameras and keyboards. Many computer vision tools have failed in regards

to diversity and only work for white-skinned users. In the same vein, hand accessories such as

jewelry, nail polish, or tattoos, should not limit a user’s ability to use the tool. Unity is a premiere

tool for the development of VR applications, and the solution was designed for simple integration

into the engine. As a Unity plugin, the tool is available to all developers. Clear documentation is

also provided for the tool. Additional smaller goals included an understandable setup interface,

and utilities to modify the virtual keyboard to suit developer needs.
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The goals outlined here work to support and fulfill the research questions of this project. In

order to answer the research questions presented in the introduction, more specific questions were

investigated in an experiment.

1. How much faster can users type when using the visual aid?

2. Do users make fewer errors when given a visual aid?

3. Do users feel comfortable using handheld controllers to type?

4. Are there reasons users might prefer typing on a physical keyboard, even while wearing a

HMD?

5. Can users comfortably adapt to input devices that require more bodily movement?

6. Can users type accurately with a controller interface?

3.2 Development of a Unity Plugin for Hand Imaging

3.2.1 Software Dependencies

This project is composed solely of appropriately licensed open-source code and personally

created code. The keyboard facilitation tool makes use of Unity, a software platform for game

development. A Unity GameObject provides the tool’s functionality to any Unity Developer that

downloads the plugin. Hand tracking is done using a dynamically linked library (DLL) written in

C++. The DLL was created using OpenCV, an open-source computer vision libary. OpenCV

supports many platforms, including Windows, Mac, Linux, as well as Android and iOS for

mobile devices.

Through the inclusion of managed plugins, Unity’s scripting language, C# allows for the

calling of external C++ functions and the transmission of data between the game engine and

dynamically linked library. A C# script within Unity passes finger detection data between the

DLL and the Unity GameObject. Figure 3.1 shows how the physical and digital components fit
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together. The diagram emphasizes that any developer that wishes to use the tool can include the

keyboard Gameobject in their unity scene. The required OpenCV libraries will be included with

the Unity plugin making the tool widely available. Installation is possible with as few steps as

possible because the components are linearly arranged.

Figure 3.1: A diagram illustrates the components of
the system implemented and how they fit together.

Once the programming tools were selected, the next steps explored how to make support for

many users and keyboard types possible. For a time we considered building a custom keyboard

that could track fingers through capacitive sensing. This approach was abandoned in favor of a

more universal approach, leading to the decision to use computer vision to track a users hands.

Any standard USB webcamera could potentially serve as a facilitation device. Computer vision

software offers several advantages including portability and more general support for many

keyboards. A webcamera provided a much more affordable solution than other devices like the

Leap Motion or Logitech BRIDGE. Developers familiar with virtual reality may already own
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their own webcameras. Exploring the viablity of a low-cost tracking solution was also a major

focus of this thesis.

The next development steps of the project involved tracking a users hands. A standalone C++

project was created could familiarize myself with the OpenCV library as well as computer vision

techniques. In the course of this learning phase I followed a guide on passing data from a DLL

and Unity GameObjects. After I learned the mechanism for communicating between Unity and

OpenCV the next challenge, isolating a user’s hands from a video stream, was addressed.

3.2.2 Programming the Tool

A significant amount of time on this project was spent investigating the multiple approaches

that can be implemented to isolate, track, and process a user’s hands over a keyboard. At first,

attempts were made to locate both the keyboard and a user’s hands using computer vision.

Creating an algorithm to identify the bounds of a keyboard proved difficult and was in fact

unnecessary to the functionality of the tool. This approach was abandoned in favor of solely

tracking a user’s hands. Instead of requiring the webcamera to identify the keyboard outline,

users were able to crop the webcamera’s image in order to square the keyboard in a frame.

Allowing for the user’s to manually select the keyboard bounds made the program more general,

as the keyboard does not need to remain directly below the camera. Figure 3.2 shows two

example configurations where the webcamera is positioned at different distances from the

keyboard. Whether or not the camera is distant or proximal, the utility still functions. The hand

Figure 3.2: The setup for the utility does not require
the keyboard to be centered in the frame, or of a
specific distance from the camera.

detection pipeline used to track a users fingers consisted of a sequence of image transformations

common in computer vision applications. After opening an image stream from the webcamera a

series of steps is followed:
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1. Orient the image as desired.

2. Convert image to binary.

3. Isolate the hands.

4. Detect edges of hands.

5. Edge data is stored in a Matrix.

6. Matrix is converted to list of points.

7. List of points is shared with Unity, and rendered.

For hand tracking, the critical step in this pipeline was isolation of the hands from the

keyboard. What initially appeared to be an easy problem, removing the static keyboard, and

filtering out only the hands from an image proved to be quite difficult I faced several problems

including, noise, speed, and sensitivity to lighting changes. Three different approaches were

tested to resolve this challenge before settling on the PMOG foreground segregation algorithm

[36, 35].

In initial attempts at isolating the hands, image thresholding was used in order to highlight

specific regions of color within the image. See Figure 3.3 for an example of image thresholding

for the color green. This approach failed on two counts. Primarily, thresholding skin-tones

requires a non-trivial amount of fine tuning on an individual basis. Fine-tuning during setup of

the application would present a barrier to new users. Second, thresholding the hands did not work

unless a high degree of contrast existed between the user’s hands and the keyboard color.

Reflections from overhead lights on both the keyboard and the user’s hands posed an additional

challenge to a threshold-only approach.
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(a) The source image
(b) A mask created by thresholding the image for the
color green.

Figure 3.3: Example of a thresholding operation
performed on an image of an apple.

The second approach for isolating a users hands tested if it was possible to remove pixels

from the image that closely matched an image of the keyboard taken from the webcamera. By

subtracting portions of the image that matched the keyboard, only the hands would remain.

During the setup of the camera, an image of the keyboard was taken. Each frame of the

web-camera’s video was then compared, pixel-to-pixel, against the original keyboard image. A

series of additional transformations, blurring and thresholding the image, resulted in a well

isolated hand [see Figure 3.4].

Figure 3.4: A mask of the hand created by the
second isolation technique

Unfortunately, this approach was sensitive to changes in the lighting and reliance on specific

threshold values meant that different skin-tones or keyboard colors were unsupported. Another

problem with the second approach was keyboard movement. If the keyboard was moved or

bumped accidentally by the user, then the tracking would be disrupted.

More advanced algorithms provided the solution. Another utility provided by the OpenCV

library is a background subtraction mechanism called PMOG. Similar to other approaches, the
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PMOG function attempts to segregate the background and foreground, allowing the hands to be

isolated. First, the algorithm captures several frames of video input and establishes an idea of

the background. Establishing the background model was similar to taking the initial image of

the keyboard in the previous technique. Where this technique differs is in its ability to combine

several frames of input into a background model using a Guassian Mixture Model [36, 35].

The background model is used to compare against the current frame of input such that any

new visual information, such as a user’s hands can be isolated. In the call to the PMOG function,

a threshold value is specified, adding some flexibility to the amount of ”new” information that

will be selected as part of the foreground. Finally, the PMOG algorithm can be set to update the

background model over time. In application here, updating the background model is not

necessary since keyboard placement is static. However, the function call in OpenCV can be

modified to allow for keyboard repositioning.

Once the hands were isolated, the Canny [1] edge detection algorithm [see Figure 3.5b] was

run in order to aggregate position data into a matrix. The FindHands function makes use of the

PMOG and Canny algorithms to isolate a user’s hand from the static keyboard background.

Output from each step of the FindHands algorithm is shown in figure 3.5.
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(a) Output of the PMOG function. White pixels show the foreground mask, pixels in the background were
rendered black. Grey pixels represent portions of the image interpreted as shadows

(b) The Canny algorithm detects edges in the segmented image

Figure 3.5: The steps in the ”FindHands” function

Figure 3.5b shows that some odd edges are detected in places where they are not expected.

Most noticibly, some key edges are marked despite being blocked by the hand. Fortunately, it

proved easy to establish more deliberate edges by an additional layer of processing. After the

edges were detected, the list of points was analyzed and contours of small size are removed.

Retaining only the largest contours eliminates the small outlines of the keyboard keys and letters,

leaving only the hand outlines.

Figure 3.8b shows the hand outlines as they appear in Unity. The thickness of the outlines

was adjustable but the outlines were not filled. A benefit of the transparency of the outlines
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served as an augmentation of the physical body. Through the projection of a users hands, less of

the keyboard was blocked and users could search for the intended keys more easily.

3.2.3 Interactions with Unity

Once the hands could be successfully isolated, the next step of the process involved moving

data between the library and Unity. Initially I worked to calculate finger-tip position in the vision

application. Because keyboard users employ their finger tips to hit the keys, visualisation of the

fingertips alone would allow for keyboard use.

The initial plan was to pass only finger-tip position upwards to the Unity application. Within

Unity, spheres (or some other object) could be placed over a virtual keyboard to indicate where

the users actual fingers rested above the keybaord. Fingertip representation proved difficult

without a marker based approach and while some limited tip detection was achieved it was far too

inaccurate. At this point an alpha version of the project was shared with several other students

and professors. Feedback from the alpha version seen in Figure 3.6 was valuable to the

improvement of the final product. Testers of the alpha found it difficult to identify their exact

finger position due to noise. This limited preliminary testing of the application proved the model

was insufficient. Additionally, the default spheres used to represent finger tips were unattractive

and as a whole, the system lacked sufficient visual information.

Figure 3.6: An alpha version of the software shows
the less accurate tracking, as well as a seperate
interface adjustment and setup

The next segment of the project was launched with renewed vigor to improve the polish and
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appearance of the virtual keyboard. A decision was made that the fingertip tracking was too

inconsistent to explore further. Instead, the virtual hand would be recreated by redrawing the

outlines of the hands in Unity. Unity has a built-in GameObject called a LineRenderer that

accepts a series of points and draws lines between the points, creating a polygon. The list of

points output by the hand detection functions is unordered, a single line render connecting all of

the points did not result in a polygon of the hand, but rather a mess of horizontal lines. In Figure

3.7 are shown large linear segments that spread from points on the hand to the edges of the

screen.

Figure 3.7: Incorrect hand rendering is caused by
data that is not passed correctly to Unity

The cause of the distortion had to do with how the hand outline was stored. To prevent this

undesirable result, I wrote new functions to store the line segments based on the OpenCV

library’s source code. The edge data was aggregated by as a list of line segments, not a whole

polygon. Drawing line segments is harder to do in Unity than drawing polygons so I wrote more

custom code to best render the hands in Unity. A $30 Unity Package is available for drawing line

segments but using the 3rd party package would have restricted the ability to release the tool as a

standalone package. The solution to this challenge proved easier than anticipated. The list of

points created by the DLL was in the same coordinate system as the camera. This meant that

showing the hand outlines in Unity was as easy as creating a new image made up of black pixels

in all places except the listed points. The resulting image was applied as a texture to a plane, and

updated every frame [Figure 3.8].
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(a) The texture created is made up of two colors

(b) The black pixels are rendered transparent, allowing for users to see the virtual keyboard

Figure 3.8: The texture applied to the plane
provides a mapping between finger position, and
the position of the lines drawn. Notice that the
outline is made up of a series of short line segments

3.3 Preperation for Testing

To answer the research questions posed by this project, an experiment was designed and

executed. In addition to answering the research questions, the study conducted helped to improve
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upon the final design of the tool.

The experiment would perform a multivariate analysis of three typing interfaces for use with

virtual reality devices. Two trials of A/B testing would be conducted in order to facilitate multiple

comparisons between different typing strategies. One series of trials would look at comparing

typing while wearing a head-mounted display with and without the computer vision tool. The

second series of trials would study users typing abilities with a novel interface device - the drum

keyboard. The typing abilities of users using the drum keyboard would be compared against

those users ability to type on a keyboard while wearing an HMD. For the experiments, the control

trial refers to the test conducted on a physical keyboard with no visual aid. The two experimental

trials differ in which typing mechanism was measured. The “Camera” experimental trial refers to

the computer vision tool that facilitates keyboard use. The “Drum” experimental trial refers to the

study of the drum keyboard.

An experimental testing environment was created in Unity and made use of the SteamVR

plugin. The testing environment was designed, tested, and targeted for the HTC Vive. The testing

environment was a Unity scene with several cubes placed around the player in order to create a

virtual space for the player to be present in while participating in the test. The minimal game-

world environment was created, so that subjects would feel grounded and have reference frames

when moving their heads.

In the control trial the testing scene displayed only a user interface (UI) element with a text

input field and typing prompts. A virtual keyboard model was displayed in the experimental

conditions but for different purposes. For the Camera trial, the virtual keyboard GameObject was

placed in the scene just below the UI panel. In the drum trial, the keyboard visualization was

identical to the camera trial except for the hand outlines. In place of the hand outlines, the user

held the HTC Vive controllers and can see the virtual drumsticks in each hand. The virtual space

can be seen in Figure 3.8b.

For the experiment, two groups of 30 typing prompts were created, one for the control trials

and one for the experimental trials. Typing prompts were created in the following ranges:
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• Short: Less than 20 characters —“Hooray”, “Thank you”, “talk soon”.

• Medium: 20 – 60 characters —“Kevin has been busy all day”, “When the bus came, she

got on”.

• Long: 60 – 90 characters —“The two boys collected twigs outside, for over an hour, in the

freezing cold!”.

These prompts can be found in Appendix C. Some prompts were complete sentences and

others were fragments. Message lengths were decided based on sentence length given in English

writing readability guidelines. In game communication is typically focused on short sentences

[11] but in order to get an accurate measure of user typing abilities, longer sentences were also

tested. Sentence prompts were collected from online typing tests and created by myself.

3.4 Methodology for Testing

Subjects were recruited via email from students enrolled in courses in the Interactive Media

and Game Development program at WPI. Recruitment of individuals with an interest in game

development and virtual reality was done since the target audience for the tool will have similar

interests, needs, and skills. The test was approved by WPI’s IRB: HHS IRB # 00007374.

Users volunteered thirty minutes of their time to participate in the trial. Each time slot was

randomly assigned either the camera category or the drum category. Only one subject was tested

at a time, and I supervised each test. Before the test, subjects were given informed consent forms

explaining the experience. The IRB approved forms can be found in Appendix D. Once the

experiment had been explained, subjects filled out the printed pre-test survey. The pre-test

questionnaire (Appendix A) allowed users to self-report their typing ability, and past experience

with virtual reality.

Subjects were given the opportunity to wear the head-mounted display and to adjust the fit for

comfort. While wearing the display, the virtual keyboard was brought up and subjects

familiarized themselves with the setup of the tool and the positioning of the keyboard. Subjects in
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the drum keyboard condition were shown how the keyboard worked and given a few minutes to

grow familiar with the task of typing using that mechanism. Users in the camera keyboard

condition were allowed to position the keyboard on the desktop as comfortably as possible, then

the tracking utility was set up by the supervisor, using a second keyboard connected to the testing

computer.

The executable test was then re-launched, and users sat in front of a desk, wearing the

head-mounted display. The supervisor filled in the subjects ID, age, and area of study that the

subject reported on the pre-test questionnaire. This information was output by the typing program

in order to match a subjects typing results with their survey responses. For users of the camera

category, the supervisor aligned the camera with the keyboard that would be used by the subject.

This was done so that subject could position the keyboard comfortably and so the setup of the

keyboard was controlled by the supervisor, instead of depending on each subject to set up the

camera for tracking.

In the virtual reality environment, subjects were also shown a paragraph of instructions that

were also read aloud by the supervisor.
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Your instructions are to type quickly and accurately.

You may make corrections using backspace, but

remember that both speed and accuracy are

important.

If you have questions complete the sentence first

and push enter. Then ask the question.

You will be finished when you see the phrase

”Done”

Pay careful attention to capitilization and

punctuation. Not all sentences end in a punctuation

mark.

After reading these rules, let the instructor know

you are ready to begin. ”

Figure 3.9: The script users for instructing the
subjects in the experiment

Primarily these instructions served to instruct the subject to focus on both speed and accuracy.

The instructions informed subjects that all sentences were not consistent in capitilazation or

punctuation.

The computerized test collected typing data from users. The scripts used in the testing and to

collect results are available on the author’s github page - https://github.com/KeenanGray/. The

following keyboard data was collected for each of the 30 typing prompts completed by the user:

1. Number of words in the prompt.

2. Number of letters submitted.

3. Time to complete prompt from first keystroke.

4. Words per minute.
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5. Percent error (Levenshtein Distance).

6. Number of times the backspace key was pressed.

These values were outputed to a file of comma-seperated values and demarcated by subject

ID. During the test, users saw a canvas with a text field, indicating the prompt, as well as an input

field, where text they typed would be displayed. For longer sentences, the text would appear on

two lines, however, the input field was a single line, and scrolled to accomodate more text. Using

the assigned text-entry method, user typed the prompts one at a time until 30 prompts had been

entered (10 prompts for each length range). Incorrect text input was not highlighted by the

system. Users had to rely on comparing the input field with the given prompt to determine

correctness.

When the user completed the test in the control condition, they were given the post-test

questionnaire (Appendix B) to complete. After the control trial, the test was repeated for the

experimental category assigned. Subjects filled out a second questionnaire based on the second

interface. The post-test responses served as guidance for future changes to the tool and helped to

understand each user’s feelings about the technology. For example, users reported in the

post-assessment whether or not they felt the HMD had interfered with their ability to type

accurately.

3.5 Subject Demographics

The experiment outlined here was conducted with a total of fourteen subjects. The subjects

were randomly assigned an experimental group: either the camera keyboard or the drum

keyboard. Seven subjects were tested in each category. The camera group was made up of four

non-touch typists and three touch-typists. In the drum category, five subjects identified as

non-touch typists and two as touch-typists. Three women and eleven men were tested, in ages

ranging from nineteen - twenty-nine years old. The inclusion of trained and everyday typists was

meant to investigate how users of different ability levels responded to the different interfaces.
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For virtual reality, it was important to measure the user experience beyond just typing

performance. Interface design in virtual reality has a focus on user comfort and it often helps if

the virtual interactions mimic the real world. The comfort of the typing solution and the affect of

the interface on subjects was assessed through the surveys given to each subject. The main

objective measures for typing were speed and accuracy. Typing speed was measured in

words-per-minute (WPM) and typing accuracy was measured by calculating Levenshtein

distance; the number of additions, deletions, and replacements required to transform one sentence

into another.
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4 Project Outcomes & Discussion

A large amount of data was collected in the course of the study. Each subject answered seven

questions in the pre-test and completed two typing tests of thirty prompts each. There was also a

nine question post-test for each subject. The data was corrected and aggregated in order to

identify significant results. Despite flaws in the study, there were noticable differences in how

subjects performed when typing with and without a virtual keyboard. Most valuably, the results

of this study informed future design decisions and showed that there was potential for computer

vision and physical devices like keyboards to remain relevant in the age of virtual reality.

4.1 Correcting and Combining Experimental Data

In order to compare each user independently, it was necessary to combine an individual users

performance results across the thirty sentences. The comma-seperated data output by the testing

program was imported to Microsoft Excel for further processing. From the collection of

sentences several new data points were calculated. Each user’s median WPM and median error

rate was measured along with the average number of backspaces.

Correction of the data was necessary in some cases. For example, when users accidentally

submitted a sentence without typing any text, the calcuations for that prompt would be

inaccurate. Rows where users typed zero characters were removed from the data set. In total a

dozen rows were removed across all users ( 1% of total) and no user had fewer than twenty-seven

prompt results. Additionally, for one user information regarding backspace input was not

recorded. The backspace value was used in the calculation of error so this user was excluded

when analyzing error rate in the drum category.

4.2 Result 1: User Prediction of Typing Ability

The first results of interest came from pre-test survey data. Users self-reported their typing

ability during the pre-test. Figure 4.1 shows the results of two specific questions in the
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pre-questionnaire compared to the results of the control trials. In the first chart [Figure 4.1b], the

WPM of a user is compared with the typing ability claimed by the user in the pre-test. A reported

value of three indicates a user types “kind of slowly”, a value of six indicates a user types “very

fast”. When the values are compared, it is clear that users self-reported ability correlated strongly

with their actual typing ability in the control trial. Similarly, Figure 4.1a indicates how often

users reported they made mistakes when typing relative to their correctness when completing

sentences while wearing the HMD. In the questionairre, a value of one meant “makes mistakes

often” and six meant “makes mistakes rarely”.

Finally, users reported how often they required glances at the keyboard while typing. While

no measurement was taken to see how often users actually looked at the keyboard, it is interesting

to see how users assessed themselves. There is some correlation between the reported need to

look at the keyboard and the outcomes of the typing test. The relationship is seen in both charts

in Figure 4.1. In the questionairre, a value of three indicated a user who reported glancing at the

keyboard “somewhat often”, and a value of six meant a user did not feel they needed to look at

the keyboard in order to type. Figure 4.1a correlates error rate and the user’s reported need to see

the keyboard. Figure 4.1b correlates typing speed and the user’s reported need to see the

keyboard. Users reporting that they required more glances at the keyboard in order to type,

performed less well in terms of accuracy and speed, while wearing the head-mounted display.

(a) A comparison between users self reported typing
skill and their actual correctness.

(b) A comparison between users self reported typing
speed and their actual speed.

caption[Table Entry]Caption

Figure 4.1: Users’ Self-Assessed performance lined
up fairly nicely with resulting data.
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No typing baseline was recorded outside of virtual reality. Instead, typing was compared

between guided and non-guided interfaces. Instead of a baseline, the user reported data was used

to assess how much of an impact the HMD had on users ability to type. The correlation here

proves that users are capable of reporting their own typing skills.

4.3 Result 2: Typing Speed Measured Across Trials

The next graphs describes user typing speed recorded in each condition. Figure 4.2 shows the

differences between the WPM measured in the control and experimental trials. Figure 4.2a

shows the results of each subject assigned to the camera group. Little noticable difference was

observed between the control trial and the experimental trial. There is a slight overall increase in

performance (a median difference of 2.5 words-per-minute) in the experimental group, but this

may have resulted from the order of the trials remaining constant. By the time users began the

experimental trial they may have become more adept at typing without a direct view of the

keyboard. The p value of this result is quite high (0.9), implying that the results may have

occured by chance.

The results seen in the second graph compare a users speed when typing in the control trial

with their speed using the drum keyboard. Figure 4.2b, indicate a more substantial difference

between typing speeds on a physical keyboard and on the drum keyboard. The difference here is

statistically significant (p <0.1) and can be explained by the fact that users had not trained

previously on the drum keyboard. The drum keyboard also required greater bodily movement to

use so in general was much slower, by about fifteen words-per-minute.
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(a) (b)

Figure 4.2: Control and experimental results for the
computer vision aid

4.4 Result 3: Typing Correctness Measured Across Trials

The final objective measure of the experiment was correctness. Correctness was calculated

by combining two of the pieces of information collected from the typing test. The percent error

(CER), or Levenshtein Distance, between the sentence prompt and the sentence typed by the user

was added to the percentage of the sentence corrected by the user (indicated by the number of

backspace inputs / prompt length). Figure 4.3 shows the graphs for median correctness.

(a) (b)

Figure 4.3: Control and experimental results for the
drum keyboard typing tool

In the case of correctness, both experimental groups showed improvement. Again, because

the control trial was conducted first, users may have been adapting to typing with the HMD,

hence the improvement. However, subjects frequently reported that being able to see their hands
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and the virtual keyboard aided in finding the correct keys, as opposed to relying on memory. The

reduction in error rate likely stems from the ability to see the position of the keys users intend to

hit, bu there may be other factors as well. Another untested factor was the utility provided simply

by having the image of a keyboard available. Some users may have memorized the position of

frequently used keys, but may not have known the entire keyboard layout by memory. Having a

visual guide showing the spatial relationship between keys may have helped users even without

the hand-tracking tool.

4.5 Result 4: Post-Assessment Responses

The final portion of data worthy of discussion addresses the user experience of each typing

mechanism. Subjective results are often important when designing human-computer interfaces.

The post-survey results are presented in figures 4.4a and 4.4b. Figure 4.4a - “Post-Assessment -

Difficulty” shows how users felt typing in virtual reality compared to typing with a standard

monitor. For the computer vision based tool, users felt that they had typed faster and more

accurately when the visual aid was provided. Additionally they found completing the task easier

when their hands were tracked. For the drum category, the most notable difference was the level

of difficulty of its use. Completing the task using the drum keyboard was harder for many users.

Again, the difficulty of the task may have come from the requirement that more of a user’s body

needed to remain active to use the drum keyboard. The second graph [Figure 4.4b], “Post

(a) Diffulty of approaches compared to control trials (b) Preference for particular use cases

Figure 4.4: Results of post-questionaire presents
information on user favorability of the interfaces
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Assessment - Use Cases” collected responses on potential applications for the typing mechanism.

The most significant finding from the use case assessment shows that using a physical keyboard

was highly preferable to the drum keyboard for common typing tasks. The drum keyboard seems

to be too slow and uncomfortable for many users. Extended use of the drum keyboard was ound

to be exhausting.

Because training on a new device is a major factor in a user’s ability to type using these tools

[5], the assessment of the drum keyboard was incomplete. As it is a fairly new technology, most

users were unfamiliar with hand tracked controllers and some users had not used virtual reality

devices previously. Nonetheless, the data collected here was valuable. Users provided feedback

on the post-questionnaires about how to improve the project and many of these suggestions were

implemented before the project concluded.

4.6 Result 5: Written Feedback Findings

Subjects were given space to provide written likes and dislikes after completing each trial.

The feedback was evenly divided between positive and negative responses. Feedback from the

control trial reflected frustrations that users had with the virtual reality headset as well as the

testing environment. For example, several users complained about the text being hard to read, or

the headset being uncomfortable with glasses. Subjects cited two problems with the positioning

of the text prompts: the angle of the prompts, and the size. Another dislike read “The distance

between my typed words and the message to be copied.” referring to the gap between the

sentence input field and the prompt text. The user reported that he had to move his head back and

forth a lot in order to check that his input matched the text he needed to copy.

Other respones to the control trial addressed the difficulty of being unable to see the

keyboard. Over half of the fourteen subjects indicated that not knowing where specific keys were

affected their correctness. Users had more difficulty remembering where certain keys were, one

user wrote “Disliked not being able to check where keys were” and another “Couldn’t remember

where keys were”. This result was unanticipated since the most common challenges users would
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face with keyboard use was thought to be hand positioning. However, in this study, even

everyday typists performed fairly well while wearing a head-mounted display. Another challenge

that users faced in the control trial was submitting text with the enter key, and making corrections

with the backspace key. Responses included, “Tough to adjust to mistakes” and sometimes users

inadvertantly pressed “enter” when the intended another key.

For the camera trial these results were inverted. Users that struggled to find keys with no

virtual keyboard liked the additional guidance provided by the tool. A particularly nice response

said that the camera based keyboard “Really helps adjusting to new environment”.

The drum keyboard was positively reviewed with one major exception. Users greatly disliked

that typing on the drum keyboard was cumbersome. After typing thirty prompts, users wrote that

their hands, arms, or backs hurt. On a positive note, the drum keyboard was viewed as a “cool”

innovation. Users enjoyed trying out new technology and practicing input with a novel tool. The

haptic feedback provided by the handheld controllers was well reviewed and one user said they

easily fell into a rhythm as they typed.

4.7 Result 6: Post Experiment Iteration

Several changes were made to the keyboard facilitation tool after the experiment was

conducted. These changes were made based on user feedback during the test and comments left

on the post-questionairre. In response to complaints that the text prompts were difficult to read,

the angle of the text field and the font size were modified. The UI was repositioned and the scale

of the text was increased in order to improve the legibility.

Another common complaint during testing was a lack of feedback from the on-screen

keyboard. For users that touch-typed, the virtual keyboard provided little benefit. To increase the

appeal of the on-screen keyboard, an animation was added to the virtual keys. When the

corresponding physical key was pressed the virtual key was programmed to descend and spring

back, mimicking a real keyboard. The benefits of the animation are two-fold. First, the keyboard

felt more responsive since the virtual keyboard mimicked the physical behavior of the desktop
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keyboard. Second, the keyboard became more interactive. Instead of being a static prop, the

movement hopefully engages users, making them feel less detached. Finally, the virtual keyboard

model was expanded to include more keys, including ‘caps lock’,‘return’, and ‘backspace’. In

hindsight it was an oversight to exclude these keys on the initial version of the keyboard used for

experimental purposes. Figure 4.5 shows the tool after these changes were put into effect. T

Figure 4.5: The final tool included more keys.

4.8 Properties of the Final Plugin

The resulting tool has minimal (close to zero) impact on the performance of the application in

which it is included. The computer vision functions run in a seperate thread that is kept in sync

with Unity’s game thread. The tool requires approximately 15 megabytes of space, making it

sufficiently small to be included in nearly any video game project. The tool requires several

dynamic libraries from OpenCV to be either installed or linked to Unity. Developers should have

sufficient technical expertise to make use of the tool in their own projects fairly easily.
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5 Conclusions

The final phases of this project emphasized refinement of the keyboard facilitation tool based

on user feedback. Several users requested the same feature or had similar dislikes about the tested

system. In some cases even a small degree of modification could have vastly improved a user’s

experience.

Time was a preventative factor in acquiring additional test subjects as a single test took

approximately half an hour to complete. Ideally more subjects could have been tested, but the

amount of testing and feedback gathered allowed for improvements to be identified and executed.

The future potential of this tool or similar computer vison based interfaces appears viable. Seated

experiences are a seperate category of virtual reality and offer as much potential for innovation as

room-scale experiences. The VR platform is a proving ground for novel HCI designs and the

keyboard can still serve an important role in the polymorphic VR space.

When looking at the directions for this project, there are avenues for future work in hardware

development, software engineering, and user studies. First and foremost, finer hand tracking is

likely achievable with different technology. At the moment, the software performs well, but users

complained about feeling removed from the 2D projection on screen. The virtual hands felt

detached and unnatural. Partial explanation of this phenomonon could be attributed to latency

from the camera or the representation of the hands in the Unity program. Updating the software

to be more efficient presents a solution. Additionally, a 3D model of the hands could reasonably

be created dynamically from the contour data produced by the OpenCV library. Tracking markers

or specialized gloves could also provide simpler means to more completely map and render a

physical hand, instead of a 2D-outline, which may prove beneficial to potential users. Higher

resolution stereoscopic cameras, like the Leap Motion or new sensory devices could be used to

more precisely track a user’s hands and improve the experience of using a tool such as this one.

Another potential area for future work could investigate the relationship between user hand

placement and projection into virtual reality. One example of the way hand placement can be

manipuled using virtual reality is the potential for more comfortable typing positions. An
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ergonomically designed keyboard could be split and located at the sides of a user’s body. In VR,

users will still be able to see a projection of their hand positions in their field of vision. An

interface setup in this way uses virtual reality to manipulate the spaces around a user body and

provide more comfortable computer interactions, without requiring a retraining of user skils.

The greatest boon of the webcamera turned out to be its portability. By applying loose

constraints, the tool can be expanded to many different use cases. Text entry was the primary use

case of the keyboard in this study. Future work could explore different applications for the

keyboard. For example, a virtual keyboard with non-standard layout could be more easily used

with the computer vision aid. Virtual Emoji keyboards, or keyboard layouts that connect more

deeply with game functionality could enhance the gaming experience for many players. A

character’s skill bar could be displayed on the virtual keyboard, aiding in gameplay. Another

example might be direct input mapping so keys on the keyboard could be used as an in-game

menu system. Other desktop peripherals can easily be implemented and will function with the

webcamera tracking solution. Flight joysticks for more immersive piloting games similar to Elite

Dangerous. There’s even potential for pad controllers or other computer peripherals that would

be challenging to use while wearing an HMD. The scope of Unity’s capabilities broadens rapidly

and this tool will hopefully see use in a variety of projects.
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Appendix A Pre Questionnaire

Facilitating Keyboard Use While Wearing a Head-Mounted Display  

Interactive Media and Game Development, Worcester Polytechnic Institute 

{krgray, jpkesselman}@wpi.edu 

 

General Information 

Subject #: _____ 

Please answer the following questions. 

Gender:  Male   Female    Other    Decline to answer                         

Age (years):               Major:                           

 

1. How often do you play video games? 

Never Very Rarely Rarely Occasionally Frequently Everyday 

1 2 3 4 5 6 

2. Which platform do you mostly use for playing games? (Select as many as appropriate.) 

 Desktop/Laptop    Tablet    Mobile Phones    Gaming Console    Other                 

3. Are you trained in touch-typing? (i.e. without looking at keyboard) 

 Yes    No 

4.  How often do you look/glance at the keyboard while typing? 

Very Often Often 
Somewhat 

Often 

Somewhat 

Infrequently 
Infrequently Never 

1 2 3 4 5 6 

3. How often do you use virtual reality systems (e.g., Oculus Rift, HTC Vive, PSVR)?  

Never Very Rarely Rarely Occasionally Frequently Everyday 

1 2 3 4 5 6 

4.  How fast can you type? 

Extremely 

Slowly 
Slowly Kind of Slowly Kind of Fast Fast Very Fast 

1 2 3 4 5 6 

5.  How often do you make mistakes while typing? 

Very Often Often 
Somewhat 

Often 

Somewhat 

Infrequently 
Infrequently Never 

1 2 3 4 5 6 
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Appendix B Post Questionairre

Facilitating Keyboard Use While Wearing a Head-Mounted Display  

Interactive Media and Game Development, Worcester Polytechnic Institute 

{krgray, jpkesselman}@wpi.edu 

Post Questionnaire for Each Condition 

Subject #: ____   Condition #: ____ 

1. To what extent did you feel this experience compared to typing with a keyboard & monitor with regard to speed 

Not at all Very little Somewhat Quite a bit Very much Extremely 

1 2 3 4 5 6 

2. To what extent did you feel this experience compared to typing with a keyboard & monitor with regard to 

accuracy 

Not at all Very little Somewhat Quite a bit Very much Extremely 

1 2 3 4 5 6 

3. Rate the difficulty of completing the typing tasks in this condition 

Very Easy Easy Somewhat Easy Somewhat Hard Hard Very Hard 

1 2 3 4 5 6 

4. Rate the responsiveness of the typing mechanism, from input action to text output 

Extremely Poor Poor Somewhat Poor Somewhat Good Good Extremely Good 

1 2 3 4 5 6 

5. How well suited do you think this mechanism is for the following typing applications 

Email composition: 

Extremely Poor Poor Somewhat Poor Somewhat Good Good Extremely Good 

1 2 3 4 5 6 

Conversations in an online game: 

Extremely Poor Poor Somewhat Poor Somewhat Good Good Extremely Good 

1 2 3 4 5 6 

Real-time information sharing in an online game: 

Extremely Poor Poor Somewhat Poor Somewhat Good Good Extremely Good 

1 2 3 4 5 6 

Document preparation (essays, homework, etc): 

Extremely Poor Poor Somewhat Poor Somewhat Good Good Extremely Good 

1 2 3 4 5 6 
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Facilitating Keyboard Use While Wearing a Head-Mounted Display  

Interactive Media and Game Development, Worcester Polytechnic Institute 

{krgray, jpkesselman}@wpi.edu 

What did you like and dislike about the typing mechanism in this condition for the typing task? 

Like 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dislike 
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Appendix C Testing Sentences

C.1 Control Test Sentences
Chat 4
Go go! 6
Thanks 6
Typing 6
Help me 7
You rock 8
Join ACM! 9
That hurt 9
I feel sick 11
Do you know her? 16
Is she in America now? 22
My son studies computers. 25
Don’t leave it up to chance 27
Which bed do you want to use 28
There has been a car accident 30
Do you think I am made of money? 32
He will finish the job by tomorrow 34
He is afraid to fly in an airplane 34
The baby was fast asleep in her mother’s arms 45
I will either write to you or phone you next week 50
In December, I went sledding every day because I could. 55
When I go swimming, I have to keep my eyes closed underwater. 61
He was evidently so busy that he even forgot to be polite to the cashier 68
You need to have a basic understanding of how things work in biology 69
All the grandfather clocks in that store were set at exactly 3 o’clock 72
That herd of bison seems to be moving quickly; does that seem normal to you? 76
Rex Quinfrey, a renowned scientist, created plans for an invisibility machine. 78
I’d like to visit Quebec, but I will have to start learning French for my trip there. 85
He continued testing the tension on his bike chain, wiping the grease on a paper napkin. 88
Despite living farther away from my family now, I make a greater effort to see them once a month 97
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C.2 Experimental Test Sentences
Test 4
Goats 5
Hooray 6
I won! 6
Gotta go 8
I lost... 8
Thank you 9
talk soon 10
Are you happy? 14
Virtual Reality 15
She sang pretty well 21
Give me a bottle of wine 24
She refused my invitation 25
Kevin has been busy all day 28
When the bus came, she got on 30
Take this medicine after meals 31
She walked around looking for him 33
You talk as if you knew everything 34
They have English lessons three times a week 44
She told me which clothes would be good to wear 47
Their vocabulary is far more formal than the others. 52
This book is too expensive, I will pick out a different one 60
Those diamonds and rubies will make a beautiful piece of jewelry. 65
The London underground subway system is very efficient and easy to use. 71
Do you know why all those chemicals are so hazardous to the environment 72
Please take your dog, Cali, out for a walk, he really needs some exercise. 75
The two boys collected twigs outside, for over an hour, in the freezing cold! 77
I have three things to do today: wash my car, call my mother, and feed my dog. 79
Tom was charged with drunken drivnig after he was involved in a car accident in Boston 86
Deciding to use the sun to orient herself, she detoured around several dense patches of bushes. 96
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Appendix D IRB Approved Consent Form

Informed Consent Agreement for Participation in a Research Study 
 
Investigator: Jeffrey Kesselman, Keenan Gray 

Contact Information: WPI / Department of Computer Science 
               100 Institute Road 

   Worcester, MA 01609 
   Tel: +1-508-831-5000 
   E-Mail: jpkesselman@wpi.edu; krgray@wpi.edu 
 

Title of Research Study: Facilitating Keyboard Use While Wearing a Head-Mounted 
Display 
 
Introduction 
You are being asked to participate in a research study.  Before you agree, however, you 
must be fully informed about the purpose of the study, the procedures to be followed, and 
any benefits, risks or discomfort that you may experience as a result of your participation.  
This form presents information about the study so that you may make a fully informed 
decision regarding your participation.  
 

Purpose of the study:  For this experiment, your ability to type while wearing a head-
mounted display will be measured. You will be given several typing tasks and will make 
use of a novel typing approach designed for virtual reality.  

 

Procedures to be followed:  In this study, you will perform several typing tasks. You 
will sit on a chair, wearing a head-mounted display, type according to the instructions 
provided. In each trial, you will complete 30 typing prompts ranging in length from 10-
300 characters.  

Before the experimental task, you will be asked to fill out a form indicating age, gender, 
handedness, and experiences related to video games and virtual reality. Then you will 
take a pre-test which will measure your ability to type, unaided, while wearing a head-
mounted display. 

During the experimental task, you will first complete a basic training session where you 
will get familiar with the equipment, interaction methods, and the experimental task. 
Then you will be asked to perform several typing trials. 

After each condition the experimenter will ask you about your experience of playing the 
game in that condition. Finally, you will be interviewed to comment on the overall 
experiment at the end of the user study. 

 

Risks to study participants:  The risks to you in participating in this study are minimal. 
Some users experience motion sickness when interacting with virtual reality. Should you 
feel dizzy or nauseous during the experiment, you are allowed to take a break or quit the 
study at any time. 
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Benefits to research participants and others:  None 
 
Record keeping and confidentiality:  
Records of your participation in this study will be held confidential so far as permitted by 
law.  However, the study investigators, the sponsor or it’s designee and, under certain 
circumstances, the Worcester Polytechnic Institute Institutional Review Board (WPI IRB) 
will be able to inspect and have access to confidential data that identify you by name.  
Any publication or presentation of the data will not identify you. 
 
Compensation or treatment in the event of injury: Risk of illness or injury as a result 
of this study is minimal.  Be aware that in any event of injury or illness, you do not give 
up any of your legal rights by signing this statement. 
 
For more information about this research or about the rights of research 
participants, or in case of research-related injury, contact: Contact the investigators 
Jeff Kesselman (jpkesselman@wpi.edu) or Keenan Gray (krgray@wpi.edu). Additional 
information can be found by contacting the IRB Chair (Professor Kent Rissmiller, Tel. 
508-831-5019, Email:  kjr@wpi.edu) and the University Compliance Officer (Jon 
Bartelson, Tel. 508-831-5725, Email:  jonb@wpi.edu). 
 
Your participation in this research is voluntary.  Your refusal to participate will not 
result in any penalty to you or any loss of benefits to which you may otherwise be 
entitled.  You may decide to stop participating in the research at any time without penalty 
or loss of other benefits.  The project investigators retain the right to cancel or postpone 
the experimental procedures at any time they see fit.  
 
By signing below, you acknowledge that you have been informed about and consent to 
be a participant in the study described above.  Make sure that your questions are 
answered to your satisfaction before signing.  You are entitled to retain a copy of this 
consent agreement. 
 
___________________________   Date:  ___________________ 
Study Participant Signature 
 
 
 
 
___________________________                                
Study Participant Name (Please print)    
 
 
 
 
____________________________________ Date:  ___________________ 
Signature of Person who explained this study 

APPROVED  
WPI IRB 1 

2/19/18 to 2/18/19 
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