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Abstract

Crowdsourcing has been used in many successful online applications such as Wikipedia
and Stack Overflow. In the field of educational research, many educational platforms,
such as edX, recently implemented features that improve learning by taking advantage
of crowdsourcing, such as peer grading.

In my previous work, I implemented a crowdsourcing feature called ”TeacherAS-
SIST” inside the ASSISTments online learning platform. TeacherASSIST allowed
teachers to create hints and explanations, which would be given to students on-
demand while they were working on their assignments. In that work, I used a simple
aggregation method that automatically distributed such hints and explanations cre-
ated by expert-selected teachers to all students inside ASSISTments. By using ran-
domized controlled trials, I found that crowdsourced hints and explanations improved
student learning with statistical significance.

In this work, I improved TeacherASSIST by adding more organic approaches to ag-
gregate hints and explanations using trusted teachers and hint/explanation ratings.
The first approach was allowing teachers to designate other teachers as ’trusted.’
Their students would then be able to receive hints and explanations created by the
trusted teachers. The second approach was constructing global teacher scores based
on teachers rating each other’s hints and explanations. The aggregation based on
ranking allowed the pool of globally trusted teachers to grow over time even for
teachers who do not actively search for more trusted teachers. I then ran a random-
ized controlled trial and used linear regression models to evaluate the effectiveness of
the aggregation method based on ranking. In addition, I also designed and gener-
ated prototypes of reports that would allow teachers to see how much their student
supports have helped their students and, for starred teachers, other students inside
ASSISTments.
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Chapter 1

Background

In recent years, online learning platforms and massive open online courses (MOOCs)

have gained tremendous popularity since internet access became more accessible and

less expensive. In addition, teachers can now connect to other teachers teaching the

same topics, allowing them to share and improve each other’s resources with ease.

Such a bottom-up, open, creative process where a task is completed by the people or

users, partially or entirely, and then aggregated into solutions that they can all use

is called ”crowdsourcing” [8].

Crowdsourcing has been used in many successful applications. When talking about

crowdsourcing platforms, it’s impossible to not think of Wikipedia. Wikipedia is a

crowdsourced, free, online encyclopedia. Wikipedia volunteer writers (”Wikipedi-

ans”) consist of people of a wide range of specialties, languages, and countries of

origin, allowing Wikipedia to have wide ranges of articles, written in many different

languages, and can be updated in real time. However, the crowdsourcing nature of

Wikipedia also causes several issues such as vandalism, racial, gender, and political

bias.

Another successful example of a crowdsourcing platform is Stack Overflow which

is a question-and-answer website for programmers, from learner-level to professional-

level. Stack Overflow crowdsources both questions and answers from its users, allow-

ing it to gather a large and diverse set of both questions and answers. Crowdsourced

answers have advantages that they’re not limited to the knowledge of a few experts
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employed by the site using specific programming languages and development envi-

ronments.

1.1 Stages of Crowdsourcing

The process of crowdsourcing can generally be described in 4 stages [18]:

The first stage is pre-selection of contributors. During this stage the system

or the organizer decides who could be contributors. For instance, anyone can edit

Wikipedia articles. However, for contested, controversial articles, direct edits could

be disabled for the general public, and only Wikipedians agree on certain changes

through discussion that the changes are applied to the articles. For Stack Overflow,

anyone could post to ask and answer a question.

The second stage is accessibility of peer contributions. During this stage, users

(contributors and non-contributingusers) may access other users’ contributions, which

could have varying degrees of accessibility, from full access, to read-only, and no access

at all. For instance, Wikipedia allows for full access to everyone’s contribution. In

contrast, Stack Overflow only allows regular users to view other users’ contributions.

However, users with enough reputation points are allowed to edit any questions and

answers, including ones posted by other people.

The third stage is aggregation of contribution. During this stage each contribution

is unified into a final ”product” that represents the entire pool of contribution. For

instance, the aggregation for Wikipedia articles generally happens right away, barring

articles that need special attention. For Stack Overflow, users with enough reputation

points can upvote and downvote other users’ questions and answers. The users who

posted the question can also mark and reply to the answer.

The fourth stage is the Remuneration of contributors. During this stage, the

contributors are credited for their contributions in various ways, such as having their

names credited as contributors, monetary compensation, or simply no credits (entirely

voluntary works). For Wikipedia, users who contributed to any articles can be seen

in the edit history. For Stack Overflow, the users who contributed good questions
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and answers are awarded with reputation points, which grant them privileges such as

the aforementioned edit access, upvoting, and downvoting questions and answers.

1.2 Wisdom of Crowds

Of course, not all crowds are guaranteed to be wise and rational, and not all crowd-

sourced objects (tasks, articles, resources, etc.) are as good as expert-created ones.

According to Surowiecki [51], there are four major conditions that ensure effective-

ness of crowdsourcing. First, the crowd needs to be diverse, each member of which

adding their knowledge and information. Second, the crowd needs to be independent

of each other; each crowd input should not affect others’ input. Third, the crowd

needs to be decentralized; each crowd input is created based on their unique or spe-

cialized knowledge. Fourth, all crowd inputs must be properly aggregated; each input

should be properly taken into account. Aggregation method is the key to a successful

crowdsourcing system [12]. Given the widespread usage of the internet around the

world, these four conditions are now easier than ever to satisfy. As a result, several

organizations and platforms around the worlds have shifted toward crowdsourcing,

and many have shown to be successful.

Crowdsourcing, however, is not without disadvantages. There are three major

challenges with crowdsourcing [38][14]. First, the crowds may not perform the task.

Contrary to traditionally hired experts, the crowds generally are not motivated or

incentivized to perform tasks. In addition, the crowds are concerned about intellec-

tual properties. Free-loaders, people who are only ”consumers” of tasks and never

contribute, may cause systems to fail to sustain due to lack of participation. Second,

while aggregated crowdsourced contents are almost always as good as, if not better

than, expert-created contents, most individual crowdsourced contents are not. An

individual crowd member often operates with their own limited information and bi-

ases and, as a result, is unable to provide quality contents. In addition, many may

choose to purposefully spread false information and attempt to sabotage, especially

in an anonymous environment. Third, even when every individual crowd member
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contributes with their best effort and the four conditions above are satisfied, the ag-

gregated contents may have done nothing but reinforcing what the dominant voices

in the crowds know or believe, this effect is also called an ”echo chamber.”
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Chapter 2

Examples of Crowdsourcing in

Educational Research and

Applications

There are several crowdsourcing works in educational research and applications, with

varying degree of implementation from prototypes to deployed products. In this

section, I will list some well-known problems in educational research and how crowd-

sourcing can be used as a solution for such problems.

2.1 Crowdsourcing Assessment and Grading

Feedback and assessments are generally deemed beneficial to learning. For open-

ended responses or essay questions, it’s hard for instructors to provide feedback and

assessments to all learners in MOOC environments for many reasons such as sheer

numbers of learners, who may start at different days and learn at different rates.

There are several solutions that are widely used:

1. self-assessment: self-assessment is very easy to implement, but it is often un-

reliable as learners tend to rate themselves too highly. There are works that

incorporate mechanism to discourage students from over-rate themselves such
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as [25]

2. peer-assessment: peer-assessment is when the grading is redistributed to other

learners in the same courses. Learners are often organized in pairs or small

groups for peer assessments.

3. paid freelance teaching assistant (e.g. Cloud Teaching Assistant System in Iver-

sity). In [52], they found that the grading of cloud teaching assistants is highly

correlated to that of peers (Pearson’s correlation 0.76). While cloud teach-

ing assistant is a good substitute for peer grading, neither of them simulated

instructor grading (Pearson’s correlation of 0.36 and 0.39, respectively).

4. artificial intelligence grading (e.g. AI Grading in edX [13], [30]. If the model

is trained such that it can predict instructors’ grading, AI grading would be

able to provide the feedback to the learner essays instantly, which is a huge

benefit over other methods. However, the model is also very susceptible to data

that are not represented in the training set. It could also be gamed by clever

learners. AI grading also can’t be deployed on a new course or a new topic

because the model has to be trained with graded submissions.

2.1.1 Peer assessment

In peer assessment, after learners finished their questions, they will be asked to grade

a subset of responses from other learners who worked on the same question. Peer as-

sessment not only provide feedback and assessment to learners, but the act of assessing

other learners’ response is also believed to improve learners’ ”sense of ownership and

autonomy, increased motivation, enhanced social presence, and the development of

higher-order thinking and meta-cognition skills.” [27]. Many applications also include

self-assessment as an addition step to peer assessment as well [9].

There are two main concerns of peer-assessment validity and reliability. Validity

is usually defined as the correlation between peer-assessment grading and instruc-

tors grading. Reliability is usually defined as the correlation between the grading of
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multiple different peer graders [27, 16]. There are studies that suggested that peer

grading and instructing grading are closely correlated, such as[16], and otherwise

such as [52]. Peer-assessment is also often deemed unreliable by learners and instruc-

tors, especially in MOOCs where the background knowledge of learners vary greatly

citecapuano2016improving.

2.1.2 Improving Reliability and Validity

Calibration is the most common method to improve reliability and validity of peer-

assessment. In calibrated peer assessment, learners go through an additional step

(”calibration”) right before they’re asked to grade other learners’ responses. In this

calibration steps, learners are asked to grade a few benchmark examples using spec-

ified rubric which were previously graded by instructors. In many learning systems,

learners are given feedback and asked to grade more until they reach satisfactory

accuracy (e.g. edX) [9, 3].

2.2 Crowdsourcing additional instruction from peer

Peer Instruction is one of the most widely accepted active learning pedagogical strate-

gies. A lesson with peer instruction follows steps like

1. the teacher presents a question to the class for students to answer.

2. the teacher then asks students to discuss their answer with their neighbors, and

convince each other if they disagree.

3. the teacher asks the original question to the class again, and the answer could

be the same or different, and maybe for different justification.

The process of peer instruction is hard to emulate in online learning environments,

especially in many platforms where students work asynchronously.

Peer Instruction could be considered crowdsourcing rationales from students, not

only the correct ones but also the incorrect answers and correct answers with incor-
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rect explanations as well. Erroneous examples have been shown to improve student

learning [1, 20].

2.2.1 DALITE

[6] created a system called Distributed Active Learning Integrated Technology Envi-

ronment (DALITE) that supported for peer instruction during the online learning.

DALITE focuses on multiple choice questions, as it is easier to solicit and group

rationales from students.

DALITE follows the 3 steps similar to peer instruction above.

1. DALITE displays a multiple-choice question, then prompt students to write a

few sentences explaining their answers (rationales).

2. DALITE then displays 2 sets of 4 rationales, one set for their chosen answer, and

one set for another choice. These rationales are crowd-sourced from all previous

students who answered this question before, so it can be done asynchronously.

DALITE asks students to reflect on their thinking using the provided rationales

and whether they change their mind. DALITE also asks students to vote on

which rationales they like the best.

3. DALITE shows the question with the answer students chose in step 1 and step

2, along with corresponding rationales.

This process allows DALITE to roughly understand each peer instruction without

requiring complex language model. In fact, this process itself can also be used on

problems of different languages or new problems right away without pre-training

unlike model-based approaches (though peer instructions themselves still can’t be

used across languages).

2.2.2 PeerASSIST

PeerASSIST was a feature inside ASSISTments that allowed students to receive addi-

tional instruction from their peers [48]. Unlike DALITE, PeerASSIST wasn’t limited
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to multiple choice questions, but it required ”show your work” to be enabled. ”Show

your work” was another feature inside ASSISTments that teachers can enable for

particular assignments. When this feature was enabled, when students submit their

answer, they would have to also provide ”their work” in a form of rich text, which

may include formatting, images, and videos. If the student answered incorrectly, they

could submit their new work when they re-submit an answer.

When a student answered a problem correctly on their first attempt, PeerASSIST

treated the corresponding student’s work as a possible peer instruction (called peer

explanation in PeerASSIST context). Such peer explanations were then displayed to

other students who struggled in the same problem, defined by having exhausted all

partial credits (by default, partial credits were exhausted after 3 incorrect attempts).

Such approach would allow PeerASSIST to gather a large number of peer expla-

nations. However, there were three problems. The first problem was the fact that

students’ works, while they were worked examples, were written in lesser details since

they aim only to show to their teachers that they had correct knowledge and concepts.

The second problem was the fact that peer explanations could still be erroneous even

though they had answered the problems correctly. The errors could range from minor

issues, such as incorrect terms, to major issues, such as using incorrect formula (that

incidentally gave the same answers). In addition, students’ works were unsuitable to

be distributed outside of the teachers’ own classes due to privacy, which is the third

problem. To my knowledge, PeerASSIST did not attempt to solve the last problem

and left it as a limitation.

PeerASSIST pruned such undesirable peer explanations (problem 1 and 2) by

using two methods. The first method was using bandit algorithm. After students

received peer explanations given out by PeerASSIST, PeerASSIST looked at student

performance after said problems (such as how many attempts they made and correct-

ness) compared to student prior performance (such as their average attempt count

and percent correct).This information was then used to calculated the score for each

peer explanation, allowing PeerASSIST to be smarter about which peer explanation

to be given out next time.
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A second, more teacher-driven method was to allow teachers to designate some of

their students as starred students. This is analogous to a practice that some teachers

gave tokens (generally star-shaped) to students who have made good and/or consis-

tent progress in their study. When starred student feature is enabled in PeerASSIST,

PeerASSIST would only choose and display peer explanations for starred students.

Teachers could then tell their starred students that their works would be displayed

to their struggling peer, and instruct them to write their works with more care and

clarity.

2.3 Crowdsourcing Student Supports (e.g. Hints)

During in-class practices, students could ask their teachers for help when they struggle

on their assignments or practices. In an online learning environment, this is replaced

by computer-provided student supports, such as hint messages, breaking the problems

into smaller steps, and full solutions of the problem /citerazzaq2009tutor. Several

studies shown that such student supports increased learning outcomes [33, 41, 4, 50,

5, 21].

In the field of educational research, there had been several works that attempted to

scale up such student supports, problem-specific and otherwise, such as using model-

based hint-generators for problem solving problems [28] and using crowd sourcing

[53].

2.3.1 A Crowdsourcing Approach To Collecting Tutorial Videos

– Toward Personalized Learning-at-Scale

In this work by Whitehill and Seltzer, they explored how to crowd source video expla-

nations on how to solve logarithmic problems from ”teachers” and investigated their

effectiveness. Specifically, they gathered instruction videos from Amazon Mechanical

Turk workers (”teachers”). They obtained a total of 399 videos. Of 145 videos they

sampled and investigated in the paper, 117 videos were found to be mathematically
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correct. They further randomly sampled down to 40 videos and used 200 Mechanical

Turk workers (”learners”) to find the best videos. They gave the learners pretest on

logarithm, then the video as a lesson, and posttest on logarithm.

They conducted the same experiment comparing 4 best videos from the previous

experiment to Khan Academy video on logarithm (as the control) using 250 MTurk

learners (participants were uniformly randomly assigned to one of the 5 videos). They

found that the best crowd sourced video was comparable to Khan Academy in term

of learning gain. They also noticed that, in addition to teaching experience, Khan

Academy video was substantially longer than their crowd sourced videos, and their

crowd-sourced videos were more closely aligned with their pre- and post-test.
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Chapter 3

Crowdsourcing Randomized

Controlled Trials using Experiment

Templates

3.1 Introduction

ASSISTments is a free online educational tool for teachers and students. Inside

ASSISTments, teachers can create their own problems and problem sets, assigning

problem sets, and manage grade books. At the same time, ASSISTments provides

many features that help reduce teacher workload such as automated grading and

providing a library of problem sets, which is maintained by learning scientists.

ASSISTments always strives to make its contents better. To do so, ASSISTments

always runs randomized controlled trials (RCTs) not only to improve its contents

but also the understanding of human learning in the field of learning science. While

many RCTs are proposed by the learning scientists and graduate students working

on ASSISTments and their collaborators, independent researchers can also propose

studies through the ASSISTments Test Bed [34]. Most RCTs run inside ASSISTments

are experiments embedded in skill builders, which are mastery-based problem sets. It

can be said that the ASSISTments Test Bed is a tool for crowdsourcing RCTs from

18



Figure 3-1: An experimental design of a video vs text RCT with pre-test, post-test,
and video check.

researchers.

There are many limitations and inconvenience of the ASSISTments Test Bed. For

example, embedding an experimental structure into a problem set is a complicated and

error-prone task, even for experts who had run several RCTs inside ASSISTments.

In addition, researchers, especially those who are not familiar with ASSISTments

problem set structures, such as in Figure 3-1, may misinterpret the dataset from

their experiments due to the complexity of the experimental structure in the RCT

problem set.

In order to reduce the complexity in the process of creating and analysing RCTs

inside ASSISTments, the ASSISTments team came up with several RCT designs

(”patterns”) for skill builders ([2]). Each pattern is a commonly used experimental
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design (such as video vs text, with optional pre-test and post-test).

3.2 ASSISTments Build-from-Pattern

While patterns are helpful to researchers as blueprints for experiments, it does not

necessarily mean that researchers would be able to translate that into the a function-

ing experiment inside ASSISTments, especially without the help of research scientists

working for ASSISTments.

In 2016, I created a web-based tool that automate the progress of constructing

the experiment based on such experiment pattern, shown in Figure 3-2. The tool is

form-based; researchers simply have to fill in which problems they want to show in

each section of the RCT, from pre-test, control condition, experimental condition, to

post-test. When the researchers click ”Build Problem Set,” the tool will check for the

validity of the given input and, if the given information is sufficient, build a problem

set with a specified pattern and input problems.

3.3 Result

Unfortunately, the ASSISTments Build-from-Pattern has not been used much for

various reasons.

First, there had been low number of RCTs created from when the tool was created,

especially by researchers outside of ASSISTments. Second, while patterns capture

main ideas of experimental designs, there are almost always little details that the

patterns, when the tool was created, fail to capture. For instance, in a pattern for

”Intervention After First Problem,” the intervention is supposed to show up after

the student in the experimental condition answers their first problem incorrectly.

The pattern, however, did not capture the case where researchers want to have the

intervention shown when the student makes their first incorrect problem, regardless

of whether that problem is the first problem the student encounters or not. Third,

the tool lacks the ability to save input as drafts.
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Figure 3-2: ASSISTments Build-from-Pattern: a form-based experiment builder
based on design patterns described in the ASSISTments Test Bed
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To link back to Surowiecki’s Wisdom of Crowds, it could be aside that our crowds

are diverse and decentralized, causing the experiments they want to run to differ.

Our patterns were too inflexible and thus were unable to capture the variance in the

experimental designs.
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Chapter 4

Crowdsourcing Data Mining

Solutions through Competition:

ASSISTments Longitudinal Data

Mining Competition 2017

4.1 Introduction

During the 10th International Conference on Educational Data Mining in Wuhan,

China, the ASSISTments Longitudinal Data Mining Competition was announced by

the Big Data for Education Spoke of the Big Data Northeast Innovation Hub, a

research hub funded by the U.S. National Science Foundation. This competition used

a longitudinal dataset collected on students using ASSISTments, a free online tutoring

platform, in 2004 - 2006. The ASSISTments team tracked those students to see who

graduated from high schools, who went on to college, what their majors were, and

finally if they chose a career in STEM (Science, Technology Engineering and Math) for

their first job, post-college. Several papers have shown that behavior in ASSISTments

in middle school can predict high school and college outcomes [32] [39] [45]. The task

given to the participants in this competition was to use deidentified click-stream data
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to try to predict the whether the student pursued a career in STEM or not. This

data was provided to participants to analyze before it was used by the research team

themselves, an unusual step that enabled participants in the competition to gain first

access to a cutting-edge research data set.

In recent years, there has been increasing interest by school districts and state

education agencies in predicting student success and dropout [7] [23]. These detectors

are used to give early warnings to teachers, guidance counselors, and school leaders

when students show signs that they are losing interest or experiencing difficulties.

These detectors support teachers making targeted interventions to take necessary

actions to help students before it’s too late. However, there has thus far been relatively

less work to drive K-12 early warning based on students’ risk of dropping out the

STEM pipeline. This is particularly problematic, given the current economic context.

While there is increasing demand for STEM workers, substantial numbers of students

lose interest in STEM subjects and fields or are insufficiently prepared to participate

in these careers [46]. Developing automated detection of STEM career participation

may help us to identify students who could benefit from an intervention to help to

support their interest and readiness for STEM [42].

4.2 ASSISTments Longitudinal Data Mining Com-

petition 2017

The competition ran from June 27, 2017 to December 3, 2017. Registration for the

competition and the dataset were entirely free, in line with the goals of promoting

1) STEM education, 2) educational data mining, and 3) open science. The primary

condition of accessing the dataset was to not take any action to deanonymize the

dataset. Even though the competition has already been concluded, we still welcome

interested researchers to sign up for the competition dataset.
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4.2.1 Dataset

The dataset in this competition was the ASSISTments clickstream dataset collected

during 2004 - 2006. This dataset contained actions middle-school students took while

working on their mathematics assignments. In addition to raw recorded actions, par-

ticipants were also provided with several distilled measures, for instance, measures

of the student’s affective state and disengaged behaviors (bored, concentrating, con-

fused, frustrated, off-task, and gaming). These measures were obtained by collecting

student affect observations in real classroom and then using machine learning tech-

niques to train models that replicated those judgments within a clickstream dataset

[35]. The detectors were validated to ensure that they applied effectively to unseen

students from urban, rural, and suburban settings [31]. The dataset contains 78

clickstream data predictor variables and the target variable ”isSTEM”: whether the

student’s career of choice was in the STEM fields or not, defined using the NSF guide-

lines for STEM careers. There are 942,816 action-level data rows collected from 1,709

students in total. For the competition, the dataset was split into 3 sets: the training

set, the validation set, and the test set.

Training Set

The training set contained the majority of the students from the full dataset. For

each student in this dataset, both the students’ action-level ASSISTments usage data

and their ”isSTEM” variable were available. Participants, as well as any researchers

who are interestedin STEM education, could make full use of this dataset, using any

state-of-the-art data mining technique they chose to find the relationships between

the student actions and their career choice (as long as it does not violate the terms

of use).

During the data collection, there were many students for whom we collected

ASSISTments usage data, but we were unable to retrieve their career information.

Specifically, we know the isSTEM for only 591 students out of 1,709 students. We

decided to include the ASSISTments usage data of these students in the training
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set since there are many co-training machine learning approaches that could train a

model by using unlabeled data along with labeled data. The training set contains

514 labeled students and 1,118 unlabeled students.

Validation Set

The validation set was mainly used for the public leaderboard. This leaderboard

let participants know how well they were doing compared to other participants. All

clickstream data from students in the validation set were made available to partici-

pants. Participants, however, were unable to directly access the ”isSTEM” variable

for the students in the validation set. When ready, participants could submit their

prediction for the validation set’s isSTEM students. The system would then evaluate

the predictions, inform participant of their scores, and then update the participant’s

best scores on the leaderboard. The evaluation scheme will be further discussed in

the later section.

Test Set

The only purpose of the test set was to be used to determine the winner of the compe-

tition. Like the validation set, participants could only access the clickstream data of

students in this set and not their isSTEM. The difference between the validation and

the test set was that the test set was not used to calculate the leaderboard scores; the

results were not visible until after the competition was complete. The reason we chose

to separate the test set from the validation set was to make sure that the winners of

the competition were not simply participants who overfit using the leaderboard, but

who genuinely could predict entirely unseen data.

4.2.2 Evaluation

For the evaluation of models, participants were required to submit their predictions

for students in both the validation set and the test set. Participants, however, were

not informed as to which students were in which set. Once a day at noon EST, new
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submissions were evaluated on the validation set. While participants could submit

as many predictions as they wanted, only the participant’s latest submission was

evaluated, to discourage them from overfitting to the leaderboard. The system then

updated each participant’s personal submission log with their latest submission’s

scores as well as the public leaderboard, where each participant’s best scores were

shown compared to other participants’ best scores.

Evaluation Criteria

Both the leaderboard scores and the final scores were calculated by using a linear

combination of the area under the ROC curve (AUC) and the root mean squared

error (RMSE). Since isSTEM was observed and collected as binary values, AUC was

initially chosen as the evaluation criterion. AUC captures the model’s ability to

differentiate students in the two categories from each other, based on the relative

confidence in the predictions. It is most suitable when the variable being predicted is

binary and the predictions are numerical. However, after testing, we found that AUC,

or any single metric, could be easily overfit to, especially given the small sample size.

Thus, we selected a second evaluation criterion: RMSE. While RMSE is designed

for comparing two numbers, it provides an assessment that rewards models that are

more certain when they are correct and punishes models that are uncertain with

high confidence. It also maps to a context of use where the model provides different

recommendations when it is uncertain than when it is highly confident.

For the sake of the competition, we decided to aggregate the two metrics, AUC

and RMSE, into one score so that we could determine the winners. Since AUC ranges

from 0 (reverse ranking) to 1 (perfect ranking) and RMSE, in this case, ranges from 0

(perfect predictions) to 1 (total opposite predictions), we define Aggregated Score as a

linear combination of the two metrics, with one metric inverted: 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑𝑆𝑐𝑜𝑟𝑒 =

𝐴𝑈𝐶 + (1 −𝑅𝑀𝑆𝐸)
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4.2.3 Different Population from Training to Validation and

Test Sets

In October 2017, we discovered that the distribution of isSTEM within the training

set was not the same as that of validation and test set. Specifically, the ratio of

isSTEM = true and isSTEM = false of the validation set and test set were the same,

but that ratio of the training set was more than double that of the validation set

and test set. We investigated the issue and decided to keep the three sets as they

were and announced this information to all participants. The reasons we decided to

keep the data sets unchanged were 1) it is not uncommon for models to be applied

to a context with different distribution and/or population from the training set. The

difference between the sets, while they were not intended, did emulate this possible

real application issue. 2) the isSTEM ratio of the validation set and the test set were

the same, meaning participants could use the result from the validation set to adjust

for the discrepancies between the training and the validation set, which would be

reflected in the test set, since the isSTEM distribution of the validation and test sets

were the same.

4.3 Conclusion of the Competition

The competition was concluded on December 3rd, 2017. At the conclusion of the com-

petition, 202 participants had signed up for the competition, 74 of whom submitted

predictions at least once.

4.3.1 Data Request Over Time

Most of the requests for the dataset were from August 2017 to November 2017. Since

one of our main goals is to promote research in this area, we were glad to see that

requests for the dataset continued even after the competition ended in December.
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Figure 4-1: the number of new unique emails that signed up for the competition
dataset in each month from July, 2017 to February 2018.

4.3.2 Submissions Over Time

At the first glance, the number of submissions peaked during November 2017, which

was the last full month before the competition concluded. However, since the com-

petition concluded on December 3rd, 2017, December 2017 was the month with the

most submissions per day of 19.33, more than double the rate in November 2017

(9.19 submissions per day). Among all participants who submitted predictions at

least once, about two-third of them submitted more than once, and only about one-

sixth submitted more than ten times. Only 8 participants submitted more than 20

times.

4.3.3 Submissions Scores Over Time

Overall, the quality of submitted predictions averaged across all participants appeared

to increase slightly over the months as shown in Figure 4-4. While the average

scores seemed to plateau after October, it is important to note that there were many

participants who joined later in the competition. Their scores were averaged together

with other participants who had already worked on the competition. We further
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Figure 4-2: the number of submissions evaluated by the system in each month from
July, 2017 to December 2017.

investigated by looking at the aggregated score of the 1st, 2nd, 3rd, etc. submissions

averaged across all participants, which is shown in Figure 5. A similar increasing

trend to Figure 4 can also be observed in Figure 4-5. It is important to note that

there were only 8 participants who submitted more than 20 times, which could be

one of the reasons why the graph fluctuates a lot when x > 20.

4.3.4 Winners

The three winners were announced during the NorthEast Big Data Spoke Meeting at

MIT on February 16th 2018. The first place winning team of Chun Kit Yeung, Kai

Yang, and Dit-yan Yeung is from the Hong Kong University of Science and Technol-

ogy, who participated in the workshop. The second place winner was Makhlouf Jihed

from Japan’s Kyushu University, who also participated in the workshop. The third

place honors went to the University of Michigan Data Science Team, a group that

regularly competes in data competitions like this one.
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Figure 4-3: the percentage of participants by the number of submissions they made
during the competition.
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Figure 4-4: the aggregated scores averaged across all participant predictions submit-
ted and evaluated in each month from July, 2017 to December 2017.

Figure 4-5: the aggregated scores by the submission order of each participant, aver-
aged across participants from July, 2017 to December 2017. For example, the average
aggregated scores of everyone’s second submission is the data point at x = 2.
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Chapter 5

Crowdsourcing Data Mining

Solutions through Competition:

Nation’s Report Card Data Mining

Competition 2019

5.1 Introduction

During the 20th International Conference on Artificial Intelligence in Education in

Chicago, Illinois, the Nation’s Report Card Data Mining Competition was announced

by the Big Data for Education Spoke of the Big Data Northeast Innovation Hub, a

research hub funded by the U.S. National Science Foundation. The goal of this com-

petition was to engage leading researchers and promising doctoral students in a Grand

Challenge that pushes the field of educational data mining forward, develops metrics

for measuring students’ test taking activities, and help develop and test evaluation

methods for educational analysis. Competition participants were invited to assess

data produced by students early in a test to predict students’ future activities later

in the test. Thus, competition participants would try to understand effective and

ineffective test-taking behaviors, and to determine how quickly these behaviors can
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be detected.

This competition was designed to improve the scientific understanding of student

test-taking strategies. The results of this competition show that as early as two

minutes into the test, the best of these algorithms could predict with 65% accuracy

whether or not the data was from a student student who was not as motivated in the

second half of the test.

Professor Neil Heffernan, director of the PhD program in Learning Sciences and

Technology at WPI and one of the organizers, ”The Nation’s Report Card’s mission

is to show the trend line of our nation’s progress in developing student knowledge.

This competition is one step in helping to improve our understanding of the NAEP,

as there is a concern that students might not be taking the NAEP test as seriously

as they used to. For instance, we could use this data to identify a student who

is potentially not motivated throughout the test, and between sections, invite the

student’s teacher to offer encouragement. It’s too early to know how NAEP should

use these algorithms, but this competition could be an important step in developing

appropriate interventions”

This competition concluded on December 15, 2019 at 11:59 p.m. EST. On March

11, 2020, we announced three winners and two honorary mentions based on their

aggregated scores on the test set.

5.2 Dataset

The competition used dataset provided by Educational Testing Service, with per-

mission from The Nation’s Report Card, also known as the National Assessment of

Educational Progress (NAEP). The NAEP is the only assessment that measures U.S.

student knowledge nationwide across academic subjects. The NAEP has collected

data since 1969 and measures student success in urban, suburban and rural areas.

This dataset was a deidentified compilation of actions students made during test-

ing in the 2016-2017 academic year. The students worked on ”blocks” of test math

problems, referred to as Blocks A and B. Each block contains a set number of prob-
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lems and each student had a 30 minute time limit to complete the problems in each

block. Once the 30 minutes are completed, students are automatically dismissed from

the block, regardless of how many problems they have completed. Please view several

sample questions from the 8th grade curriculum.

5.2.1 Target Variable

The Target Variable was a binary indicator of whether or not the student spent their

time in Block B efficiently. Specifically, we defined efficient usage of time as 1) being

able to complete all problems in Block B, and 2) being able to allocate a reasonable

amount of time to solve each problem.

We defined a ”reasonable amount of time” as the minimum possible time needed

to solve each problem. This threshold is very hard to define. For the sake of this

competition, we chose the threshold based on the distribution of the total amount of

time students spent on each problem in the dataset. Specifically, for each problem

in Block B, we ranked the total amount of time each student took to complete each

problem, and used the 5th percentile as the cut-off for the ”reasonable amount of

time.”

5.2.2 Training Set and Hidden Set

We separated the dataset by students into subsets: the training set and the hidden

set. The training set is provided to allow participants to build models to predict

whether students in the hidden set spent time efficiently in Block B, using only (some

of) their data from Block A.

1. Training Set: For each student in the training set, we provide all 30 minutes

of their logged actions in Block A, as well as whether they spent their time

efficiently in Block B or not (target variable)

2. Hidden Set: The target variable is not provided for any students in the hidden

set. The hidden set consists of 3 components of equal portion. For each compo-

nent, we provide different amounts of information from Block A. Specifically:
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(a) For the first component, we provide all 30 minutes of logged actions simi-

larly to the training set

(b) For the second component, we only provide the first 20 minutes of logged

actions (the last 10 minutes of logged actions were omitted from the

dataset).

(c) For the third component, we only provide the first 10 minutes of logged ac-

tions (the last 20 minutes of logged actions were omitted from the dataset).

We then created a leaderboard set and a final test set, of equal size, drawn equally

from the three components. The leaderboard set is used to provide participants with

feedback on how their models perform in comparison with other participants, when

applied to half of the hidden set. The final test set is the subset that will be used to

evaluate participants’ prediction at the end of the competition. In creating the subsets

and the leaderboard and test sets, as well as the three components, we maintain the

original distribution of the target variable in all cases.

5.3 Result

The Nation’s Report Card 2019 Data Mining Competition had 89 individual and team

participants in the competition, totaling 723 submissions. Researchers and students

from 11 countries and 24 U.S. states participated in the competition. Some of the

research teams were made up entirely of undergraduates. The organizers are pleased

that this competition inspired undergraduates to care about educational data and

become interested in its use in research.

5.3.1 Winners

Winners were judged based on the final score of their submission using the evaluation

criteria specified in our competition website.

The first place winner was Nathan Levin from Teachers College, Columbia Uni-

versity in New York City. He constructed and refined features based on student click
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data and the time students spent working on problems. He then applied XGBoost

Regressor on the final feature set.

The second place winners were Nirmal Patel, Aditya Sharma, and Tirth Shah from

Playpower Labs. They constructed a large number of features using the results of their

previous research, many of which were inspired by Process Mining and Curriculum

Pacing. They then applied Genetic Algorithm-based feature selection and modeling.

The predictions from multiple models were then assembled together to create a single

final prediction.

The third place winner was Assistant Professor Nigel Bosch from the iSchool at the

University of Illinois Urbana-Champaign. He constructed a large number of features

(> 4,000) using both domain knowledge and automatic feature engineering methods,

specifically TSFRESH and FeatureTools.

Participants of the top submissions will receive an invitation to submit their work

and findings to a special issue of the Journal of Educational Data Mining. This should

help to further improve the field’s understanding of this important work.

5.3.2 Honorary Mentions

Among all of the participating teams, two additional teams showed outstanding ef-

forts and achieved impressive results in both the leaderboard and the final test set:

KLETech B Division from KLE Technological University (Huballi, India) and LTWZ

from the Columbia University (New York City) and the University of Arizona (Tuc-

son).

KLETech B Division treated the hidden dataset as three different tasks and de-

veloped a model for each task based on the different amounts of information provided

(e.g., only the first 10 minutes, only the first 20 minutes, and all 30 minutes of log

data). LTWZ developed their model using features based on student test-taking

behaviors, such as the frequency of how often each student checks the test timer.
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Chapter 6

Effectiveness of Crowd-Sourcing

On-Demand Assistance from

Teachers in Online Learning

Platforms

6.1 Introduction

In recent years, the usage of digital learning media in K-12 classroom has grown

exponentially. From the teacher and student perspectives, online learning platforms

allow for new ways of learning that may otherwise be hard or impossible to do such as

individualized mastery learning [10, 19]. Possibly one of the most important features

of these systems is the ability to assist students as students work on their assign-

ments. The most common type of assistants is answer feedback where the students

know right away if their submitted answers are correct or not. In this work, we are

interested in on-demand assistance. This type of assistance, sometimes called ”tutor-

ing,” provides students with an option to request additional resources that would help

them solve the problems, such as hint messages or complete explanations. The ability

to provide students with additional guidance while they are outside of classrooms is
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especially valuable for homework assignments and distance learning such as during

the COVID-19 pandemic. Since on-demand assistance is problem-specific, creating

and maintaining on-demand assistance is hard and time-consuming. The cost of on-

demand assistance scales with the number of problems in the system. For instance,

out of 132,738 distinct problems assigned by all teachers inside ASSISTments in the

2017-2018 academic year, only 38,194 of them had on-demand assistance.

During a large-scale evaluation of the ASSISTments online learning platform [44],

the intervention consisted of three components, supporting their 1) textbook work 2)

skill builders (adaptive skill practice), and 3) teacher-created contents. First, related

to the textbook work, we allowed each teacher to keep using their current textbook; we

did the data entry to put the answers to the textbooks’ questions into ASSISTments

but we did not write hint message for them. When there is not a hint message, the

student can try as many times as they want to answer the problem and they are only

told if they are wright or wrong; if a student is totally stuck they can hit a button

and be told the answer. We hypothesize that just seeing the answer will not help the

student learn and hint messages will most likely be helpful. However, some studies

have shown that certain hint messages may not always be helpful.

Skill builders are the second components of the [44] study. Teachers could choose

to assign from over 200 skill builders that ranged in skills from adding whole numbers

to quadratic equation solving. A skill builder gives students practice on a topic until

they get three problems right in a row. All skill builders where built at WPI and

every problem had hint message.

One of the teachers who participated in the large-scale evaluation inspired TeacherAS-

SIST. Mr. Chris LeSiege, a teacher from Gorham, Maine, considered on-demand as-

sistance to be of utmost important to his students’ success. For the duration of the

study, he added hint messages to most problems from his textbook. Unfortunately

we did not anticipate that teachers would do this, there was no way for other teach-

ers using the same textbook to review what Mr. LeSiege created and adopt it for

their classrooms. At the time of the study, on-demand assistance was considered a

component of the problem, thus, only the owner of the problem could edit or add
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on-demand assistance. For every problem he did not own, in particular the textbook

problems created at WPI, Mr. LeSiege had to manually create his own versions of the

problem and write the on-demand assistance on his version. His valiant efforts left us

with two versions of the questions and more interestingly a larger question of how we

should move forward as an educational platform. First, how can we better facilitate

enthusiastic and diligent teachers like Mr. LeSiege. Second, since Mr. LeSiege spent

a tremendous amount of time and effort to create hint messages, could we use them to

help not only support his students but also all the other students working on the same

problems? And how effective would they be for students outside of his classrooms?

Several studies shown that on-demand assistance created by experts increased

learning outcomes [33, 41, 4, 50, 5, 21]. However, some studies suggested that on-

demand assistance may not always be beneficial. For instance, assistance that is too

detailed or provides too much information could result in less learning gain [22, 24, 49].

In addition, consistency of tones and pedagogical strategies could plays an important

role in learning. [26], giving advice for those authoring textbooks, suggested that

it is important to ”establish a consistent standard.” Lack of consistency, especially

in difficult topics, could cause learners to miss important connections between terms

and concepts across multiple learning materials. Thus its not obvious how effective

crowd-sourced assistance would be?

The idea of using crowd-sourcing in K-12 education is not new. For example,

Teachers Pay Teachers (teacherspayteachers.com) allows teachers to buy and sell

their lesson plans and teaching materials. In fact, the 2019 American Instructional

Resources Surveys showed that 56% of American Math teachers used resources from

Teachers Pay Teachers [40]. Several educational researchers such as [55] and [53] also

created proof-of-concept systems that crowd-sourced learning materials from MTurk

workers and re-distributed them to MTurk workers/learners. They found that the

learning gain from the best crowd-sourced materials was comparable to the learning

gain from materials created by experienced instructors. Crowd-sourcing has also been

used to accomplish other tasks in learning systems. For example, DALITE [6] and

Ripple Learning (ripplelearning.org) crowdsourced instructions and resources gener-
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ated by their peers. PeerWise crowdsourced multiple-choice questions from learners

and re-distributed them to their peers [11]. Crowdsourcing had also been used to

bring grading to scale such as [27], which is especially important in MOOCs. In fact,

EdX, on of the most popular MOOC providers, is also a good example of how to use

crowdsourcing to bring online MOOCs to scale.

While there are many examples of using crowdsourcing in educational platforms,

to our knowledge, there has yet to be an example of a live system that crowd-sources

contents from real teachers and redistribute this directly to real students without

teacher intervention, AND that reliably improves student learning.

In this work, we designed and implemented a feature called TeacherASSIST inside

ASSISTments to gather on-demand assistance by using crowd-sourcing. This com-

ponent would later re-distributed crowd-sourced on-demand assistance to students

outside of creators’ classes. TeacherASSIST was created to answer our three research

questions:

1. RQ1: ”How could we design and implement a crowd-sourcing system that al-

lows teachers to quickly and conveniently create on-demand assistance for their

students?”

2. RQ2: ”How effective is such crowd-sourced assistance?”

3. RQ3: ”Could we reproduce the same result if the same randomized controlled

trial is run in a different academic term?”

6.2 Background

In this work, we used ASSISTments an online tool used by teachers to support home-

work. ASSISTments (https://www.ASSISTments.org/) is a free online learning plat-

form designed to empower teachers in their classrooms by automating laborious book-

keeping [19]. ASSISTments provides a library of problems, the majority of which is

K-12 mathematics, that teachers can simple find, select, and assign to their students.

ASSISTments provide immediate feedback as students work on their assignments and
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Figure 6-1: (left) For this problem on-demand assistance (hint messages) is available.
Thus, the student may click ”Show hint 1 of 2” to request for hint messages. If no
assistance is available (right), the student will only see ”Show answer” which would
mark the student as having given up on the problem.

actionable reports to teachers. For every problem students receive instant correct-

ness feedback, which tell the student whether the submitted answer is correct or not

[17]. ASSISTments can also provide students with on-demand assistance, or ”tutor-

ing.” Contrary to instant correctness feedback, on-demand assistance does not react

to student answers. Rather, this type of assistance provides additional useful infor-

mation and resources that help student solve the problem when requested (Figure

6-1). Both types of assistance have been shown to reliably improve student learn-

ing [41, 19, 43, 56, 29]. There are many types of on-demand assistance that had

been shown to improve student learning such as step-by-step hints [19, 41], worked

examples [15, 29], erroneous examples [29, 1], and providing the full solution to the

problem [55, 53].

While many studies suggested that well-curated assistance improved student learn-

ing, there are also studies suggesting that some assistance may not be beneficial. A

comprehensive literature review on the specificity of feedback and hint messages con-

cluded that the literature is inconclusive on how specific feedback should be [49]. [24]

showed that feedback with more information had a smaller effect on students’ ability

to correct their own errors than feedback with less information, such as providing

only the correct answer. Another meta-analysis suggested that more-detailed feed-

back could result in worse learning outcome [22]. In addition, since most instances

of on-demand assistance in studies were created by either experts in learning fields
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[33, 4, 50, 5] or by the instructors themselves [21], it would be dangerous to assume

the same results for crowd-sourced on-demand assistance. In addition, since crowd-

sourced assistance was created by neither experts nor their teachers, it is possible

that the assistance could be of different tone or pedagogical strategies from those of

the teachers or curricula. This inconsistency could reduce the effectiveness of learning

materials and cause confusion [26].

There are several proof-of-concept studies on effectiveness of crowd-sourcing learn-

ing materials. For example, [53] crowd-sourced video lessons from MTurk workers and

found that the learning gain from best crowd-sourced video was comparable to the

learning gain from a popular video lesson from Khan Academy. Another system called

AXIS [55] crowd-sourced explanations on how to solve a problem from MTurk work-

ers. Then learners(other Mturkers were asked to revise and evaluate explanations

as they solve problems. As learners work on problems, AXIS used machine learning

to determine which explanations to present to to future learners. They found that

explanations selected by AXIS were comparable to ones generated by experienced

instructors, but all of this was done with Mturkers, not in authentic classrooms. To

our knowledge, there is no live system that actively gets crowd-sourced assistance

from teachers and directly redistribute them to students.

6.3 Methodology

Before we designed and implemented the crowd-sourcing system for RQ1, we first

investigated how to incentivize teachers to create on-demand assistance and designed

an algorithm to distribute it. Then, we investigated the impact of crowd-sourced

on-demand assistance on student learning. In this work, all the implementations,

data collection, and analysis were done inside ASSISTments , our methodology is

not platform-specific and should be applicable to other online learning platforms of

similar characteristics and features.
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Figure 6-2: Examples of how the students see hints (left) and explanation (middle
and right) in the ASSISTments tutor. Each yellow box in the left image represent a
hint in the series. Explanations can be non-personal (middle) or personal (right).

Figure 6-3: Teachers can choose to create a set of hints or an explanation for any
problems of their choice.
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6.3.1 Crowd-Sourcing On-Demand Assistance

For crowd-sourcing to be effective, we needed to obtain good quality on-demand

assistance. The results of [55] shown that, given enough number of crowd-sourced

on-demand assistance, we can obtain on-demand assistance of quality similar to one

created by subject-matter experts. Thus, our goal was to design the system such

that it is easy for teachers to create as much on-demand assistance as possible, as

most users may not be motivated to contribute. However, as one of the main focus

of ASSISTments and LMSs in general is to free teachers from laborious tasks, it is

also important to not increase teachers’ workload any more than needed. Thus, we

collaborated with several teachers and investigated their normal everyday routines.

The goal is to find the best approach to crowd-source on-demand assistance that are

both convenient and beneficial to teachers’ established routines for their classes and

students.

The approach we took was first to create a component called ”TeacherASSIST”

inside ASSISTments. TeacherASSIST is a component allowed teachers to create

on-demand assistance for their students as they taught the classes. Specifically, as

teachers browsed through practice materials to assign to their students, they had an

option to add their own on-demand assistance to each individual problem. This ap-

proach had many advantages. Firstly, teachers were incentivized to create on-demand

assistance since it would directly benefit their students. Secondly, teachers were pre-

sented with the option to create on-demand assistance only for the problems they

considered assigning to their students, so as not to overload them with too much to

do. Lastly, the on-demand assistance was guaranteed to be of decent quality, as they

belonged to the topics that teachers were currently teaching. Our implementation of

TeacherASSIST was shown in Figure 6-4.

We then investigated what types of on-demand assistance should be supported.

While we wanted to give teachers as much flexibility as possible, giving too many

choices to the them could be detrimental and distracting [47]. We investigated the

three types of on-demand assistance which were commonly available inside ASSIST-

45



Figure 6-4: The interface where teachers find and assign a subset of problems inside a
problem set without (left) and with (right) the option to create on-demand assistance
for their students

ments: hints, step-by-step problem-solving, and worked examples.

1. Hints are a series of helpful messages that provide students with some informa-

tion they need in order to solve a problem. Hints are usually given to students

one at a time when requested. This means after students see each hint, they

can attempt to solve the problem right away to show that they’ve learned the

materials. Many systems take away a portion of partial credits if they request

for hints.

2. Step-by-step problem solving or ”scaffolding” problems is a type of on-demand

assistance that breaks the original problems into smaller steps. The system

will walk the students through each smaller step until the students reach the

final ”step” problem, which answers the original problem. This allows students

with low prior knowledge or struggling students to learn how to solve compli-

cated problems by filling their missing knowledge as they work on scaffolding

problems. [41].

3. Worked examples provide full explanations on how to solve the similar problems,
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and sometimes the problem itself, from the beginning to the final answer. This

type of on-demand assistance is analogous to teachers teaching students how to

solve problems by demonstration.

We interviewed several teachers and educational researchers to find out the advan-

tages and disadvantages of different types of on-demand assistance. In our final de-

sign, TeacherASSIST only allowed teachers to create hints and explanations, and not

scaffolding problems. Creating scaffolding problems was complicated and time con-

suming, which is at odds with the narrative that teachers quickly create on-demand

assistance as they assign problems to their students. In addition, even when the orig-

inal problem is broken into smaller sub-problems, it is not uncommon for teachers to

find struggling students stuck inside the ”step” problems due to knowledge gaps.

The other two types of on-demand assistance, hints and explanations, have dif-

ferent advantages and disadvantages. On one hand, many teachers expressed that

explanations were the easiest and fastest to create, as they had already been doing

it while teaching. On the other hand, many educational researchers and teachers

preferred hints to explanations since hints allowed students to demonstrate learning

within a problem. However, teachers reported that it was harder to create hints in

many topics without giving away the answer itself. It is also important to note that

on-demand assistance is not limited to text; teachers were also allowed to include im-

ages, tables, and any types of formatting (Figure 6-3) and multimedia such as videos

(Figure 6-2).

6.3.2 On-Demand Assistance Distribution

Before we distributed on-demand assistance, there were three major concerns we had

to address. The first concern was privacy. While many teachers would not hesitate

to create on-demand assistance for their own students, not as many felt comfortable

sharing their on-demand assistance to students outside of their classes, especially if

they included videos of themselves. Many teachers may not want to use on-demand

assistance created by other teachers due to a different approach to solve the problems,
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which was the second concern. Lastly, as educational researchers, we wanted to be

able to measure the quality of crowd-sourced on-demand assistance and to understand

why each type of support suited different students through randomized controlled

experiments.

In addition to the three concerns, there were three additional requirements that

we considered to be most important. First, we needed to ensure that, if the teachers

created on-demand assistance, their students must be guaranteed to receive them,

regardless of what kinds of experiments were running and which other on-demand

assistance is available. Second, since our main goal was to help students by pro-

viding them on-demand assistance as they are working on their assignments, it was

important that such on-demand assistance be given out to as many students as pos-

sible. Third, we wanted to maintain the ability to conduct randomized control trials

improve content as well as better on-demand assistance strategies.

As a result, we chose an approach similar to how new users in Wikipedia are

promoted into confirmed and extended confirm users based on their activities [54].

For regular teachers, they can create any on-demand assistance for any problems. To

address the first and second concern, such on-demand assistance will only be available

to students in their own classes. Of those teachers, we searched for teachers who had

regularly created on-demand assistance for their students and corrected any mistakes

they found. With their consent, TeacherASSIST would re-distributed on-demand

assistance created by starred teachers to students outside of their classrooms. This

allowed us to scale-up on-demand assistance, addressing our second requirement.

In order to satisfy the remaining concern and requirements, we came up with the

distribution algorithm (Figure 6-5) that could run randomized controlled trials to

determine the effectiveness of starred teachers’ on-demand assistance.

6.3.3 Randomized Controlled Trials

TeacherASSIST was deployed in December 2017. We started promoting teachers to

starred teachers in June 2018. Five teachers were promoted to starred teachers in

2018. Afterward, we started distributing starred teachers’ on-demand assistance on
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Figure 6-5: The algorithm we used for selecting which on-demand assistance should
be given to a student for a given problem.
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October 10, 2018. The randomized controlled trial (named the ”pilot experiment”)

started on the same date to answer RQ2. In 2019, we increased the number of

starred teachers to nine and repeated the same randomized controlled trial (named

”the repeated experiment”) again to answer RQ3.

Specifically, the pilot experiment was conducted from August 9, 2018 to December

31, 2018 (corresponding to fall term of 2018). In this experiment, we compared

crowd-sourced on-demand assistance (experimental condition) to simply giving the

student the answer (control condition). For each problem with crowd-sourced on-

demand assistance, the students were randomly assigned to one of the conditions

at the problem-level. In other words, students could be in the control group for

one problem, and in the experimental group for the next problem. We decided to

use 9:1 as the ratio between the experimental condition and the control condition

since we wanted to provide assistance to as many students as possible, and similar

published works have shown similar on-demand assistance increases student learning.

The repeated experiment was conducted and analyzed in the exact same manner as

the pilot experiment, except it was conducted from January 1, 2019 to September 30,

2019 (corresponding to spring term and summer term of 2019).

When students worked on their assigned problems inside ASSISTments, they could

see if there were on-demand assistance available before they requested it as seen in

Figure 6-1. Specifically, if hint messages are available, students would see a button

labeled ”Show hint X of Y,” where Y is the total number of hint messages available

and X denotes which hint message will be given next. If no on-demand-assistance

is available, the ”Show answer” button will be displayed instead. Thus, we could

not choose to analyze only students who requested for on-demand assistance since

every student experienced the difference between condition, i.e. different buttons and

corresponding partial credit costs, before receiving the treatment (i.e. requesting for

on-demand assistance). Instead, we must first analyzed all students assigned to the

control conditions and the experimental condition regardless of whether they actually

requested for the assistance or not (we called this ”intention-to-treat analysis”). After

we determine that the button difference does not cause students in two conditions
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to behave significantly differently, we would then be able to analyze only students

who request for assistance in the experimental condition or the answer in the control

condition (we called this ”treated analysis”).

In the following section, we refer to the problems of where crowd-sourced on-

demand assistance appeared as ”RCT problems,” and the math problems that the

students worked on immediately after the RCT problems as ”next problems.” It is

important to note that, for different students, the next problems were not guaranteed

to be the same. In fact, for some RCT problems, the next problems may be in a

different assignment, worked on a different day by the student. We will also use

the term ”ask for help” to refer to both students requesting on-demand assistance

(experimental condition) and students requesting for the answer (control condition).

In this work, we only analyzed data where both RCT problem and the next

problem come from to the same assignment.

In order to measure the quality of crowd-sourced on-demand assistance, we looked

at 4 next-problem dependent measures.

1. ”next problem correct first try”: did the students answer the next problem

correctly on their first try without using assistance or asking for the answer?

2. ”next problem ask for help”: did the students request for assistance or the

answer during the next problem?

3. ”next problem stop out”: did the students give up solving the next problem?

4. ”next problem attempt count”: the number of attempts the student made dur-

ing the next problem.

Our hypothesis was that the crowd-sourced on-demand assistance improved stu-

dents learning. Students should be able to correctly answer the next problems more

and ask for help less as they no longer need them. We did not expect a single problem-

solving session to drastically change stop out rate or next problem attempt count.

These two measures were included in the analysis to ensure that the differences be-

tween the correctness and help usages in the control condition and the experimental
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number of
problems solved

number of problems
correctly solved

on first try (percent)

number of problems
where students

requested for assistance
or answer (percent)

teacher’s own class 29049 19709 (67.84%) 4857 (16.72%)
control 13857 9377 (67.67%) 2271 (16.38%)
experimental 128153 86877 (67.79%) 20925 (16.32%)

Table 6.1: A table showing the availability and usages of teacher-created on-demand
assistance and the crowd-sourced on-demand assistance.

condition, if detected, were not caused by one of the conditions causing students to

disproportionately give up on the next problems.

6.4 Results

6.4.1 Overall Usage of TeacherASSIST

We investigated whether TeacherASSIST was able to incentivize teachers to cre-

ate on-demand assistance. By the end of 2019-2020 academic year, three years

after TeacherASSIST was deployed, we found that 146 different teachers had used

TeacherASSIST to create 40,292 instances of on-demand assistance for 25,957 dis-

tinct problems across different curricula, 16,493 of which belong to our 9 starred

teachers. Out of 146 teachers, 29 teachers had created more than 50 instances of

assistance and 14 of those teachers created more than 1,000 instances of assistance

over three years.

To put the number in perspective, in 2017-2018 academic year, 132,738 dis-

tinct problems were assigned inside ASSISTments, only 38,194 of which had non-

TeacherASSIST on-demand assistance. Of those problems, 27,094 more instances of

on-demand assistance were created through TeacherASSIST, increasing the number

of on-demand assistance by 70%.
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6.4.2 Pilot Experiment

To measure how effective crowd-sourced on-demand assistance was (RQ2), we ana-

lyzed logged data of students who received on-demand assistance. We obtained prob-

lem log data from ASSISTments. For the duration of pilot experiment, there were

1,795 instances of on-demand assistance created for 1,787 unique problems. Out of

instances of 1,795 on-demand assistance, 1,546 were explanations and 248 were hints.

There were 142,010 problems solved in the randomized controlled trial, 128,153 of

which received crowd-sourced teacher on-demand assistance and 13,857 of which only

the answer was available. Our dataset is publicly available here [37].

Availability and Usages

Table 6.1 shows the availability and usages of teacher-created on-demand assistance

and the crowd-sourced on-demand assistance. We found no significant difference

between the percentage of students in the control condition and the experimental

condition who answered the RCT problems correctly on their first try without asking

for on-demand assistance (p < 0.05). Similarly, we found no significant difference be-

tween the percentage of students who requested crowd-sourced on-demand assistance

(experimental) and students who requested for the answer (control) (p < 0.05).

Effects on Next Problems

To analyze the effects of crowd-sourced on-demand assistance on the next problems,

we conducted the intention-to-treat (ITT) analysis. An intention-to-treat analysis

is an analysis in which everyone who participated in the RCT is included in the

analysis regardless of their scores, characteristics, and interaction with the interven-

tion inside the RCT. Since our dataset was a problem-student level (i.e., a log of

a student solving a problem), each observation was not independent (because one

student solved multiple different problems and one problem was solved by multiple

different students). Using t-test directly on the problem-student level would violate

the independence observation assumption of t-test. Instead, we aggregated observa-

53



next problem
dependent var.

ctrl
mean

exp.
mean

t-
stat

p-
value

corrected
p-value

correct first try 0.65 0.66 -0.86 0.39 0.74
ask for help 0.17 0.16 0.86 0.39 0.74
stop out 0.03 0.03 0.48 0.63 0.74
attempt count 1.53 1.52 0.33 0.74 0.74

Table 6.2: Pilot Experiment: problem-level paired t-test intention-to-treat analysis
on student next problem dependent variables using t-test and Benjamini–Hochberg.
The number of unique problems = 1293

tions into 1) problem-level and 2) student-level, applied paired t-test on the aggre-

gated observations, and reported the result of both aggregation methods for both

the intention-to-treat and treated analysis. Since we performed multiple t-tests, we

used the Benjamini–Hochberg procedure to obtain corrected p-values to reduce false

positive.

In addition to the intention-to-treat analysis, we also looked at treated analysis.

Treated analysis, in contrast with ITT analysis, only looks at participants who in-

teract with the intervention or treatment. In our work, the treated analysis means

that we would only look at students who asked for help while they worked on the

RCT problem. The reason we also conducted the treated analysis was because a

large majority of the students (67%) in both conditions were able to answer the RCT

problems on their first try without requesting any on-demand assistance. In addition,

only a small portion of the students (16.7%) asked for help. This means the main

difference between conditions (crowd-sourced on-demand assistance vs. answer) could

be observed only on a small fraction of the students. Thus, in order to detect the

effects in ITT analysis, the effects of the on-demand assistance must be very large to

avoid being overshadowed by most of the samples that were not treated.

Intention-to-Treat Analysis

Table 6.2 and 6.3 shows the problem-level and student-level intention-to-treat analysis

of the effect of crowd-sourced on-demand assistance using paired t-test. We found

no significant difference between any next problem dependent measures using 5%
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next problem
dependent var.

ctrl
mean

exp.
mean

t-
stat

p-
value

corrected
p-value

correct first try 0.63 0.63 -1.35 0.18 0.23
ask for help 0.18 0.17 2.31 0.02 0.08
stop out 0.03 0.03 -0.81 0.42 0.42
attempt count 1.57 1.53 1.90 0.06 0.11

Table 6.3: Pilot Experiment: student-level paired t-test intention-to-treat analysis
on student next problem dependent variables using t-test and Benjamini–Hochberg.
The number of unique students = 4181

false positive rate (alpha = 0.5) for Benjamini–Hochberg procedure. This is expected

according to since Table 6.1 shows that, of all logged solved problems, more than 60%

of the time students were able to solve the problems correctly on their first attempt

without using on-demand assistance. In addition, students requested for on-demand

assistance less than 20% of the time. In another word, a large majority of the students

did not experience the difference between the control condition and the experimental

condition.

Treated Analysis

Table 6.4 and Table 6.5 show the paired t-test of problem-level and student-level

treated analysis of the effect crowd-sourced on-demand assistance. We found that,

after applying Benjamini–Hochberg procedure, students who saw the on-demand as-

sistance were less likely to request for more on-demand assistance in the next problem

with statistical significance (corrected p-value < 0.01). This result can be interpret as

either a positive or a negative effect of crowd-sourced on-demand assistance on learn-

ing. Students may either 1) learned enough to be able to solve the next problem, thus

additional on-demand assistance was not needed, or 2) did not feel like on-demand

assistance helps (e.g. of poor quality) and decided that requesting for any more on-

demand assistance was not worth the partial credit cost. Using only the result data

from the pilot experiment, we hypothesize that it was more like that crowd-sourced

on-demand assistance had a positive impact on learning since, in addition to being

well-supported by literature, while not statically significant, the percent of students
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next problem
dependent var.

ctrl
mean

exp.
mean

t-
stat

p-
value

corrected
p-value

correct first try 0.39 0.40 -0.80 0.42 0.42
ask for help 0.46 0.43 2.25 0.02 0.10
stop out 0.03 0.03 -0.85 0.40 0.42
attempt count 1.86 1.91 -1.04 0.30 0.42

Table 6.4: Pilot Experiment: problem-level paired t-test treated analysis on student
next problem dependent variables using t-test and Benjamini–Hochberg. The number
of unique problems = 620

next problem
dependent var.

ctrl
mean

exp.
mean

t-
stat

p-
value

corrected
p-value

correct first try 0.39 0.41 -1.50 0.13 0.23
ask for help 0.45 0.41 3.39 <0.01 <0.01
stop out 0.03 0.04 -0.47 0.64 0.64
attempt count 1.91 1.85 1.35 0.18 0.23

Table 6.5: Pilot Experiment: student-level paired t-test treated analysis on student
next problem dependent variables using t-test and Benjamini–Hochberg. The number
of unique students = 1256

in the experimental condition who answered their problem correctly on their first try

is higher than that of the control, as well as with slightly lower attempt count.

6.4.3 Repeated Experiment

Using our data from the pilot study, we hypothesize that crowd-sourced on-demand

assistance was of acceptable quality to improve student learning, causing them to

answer more problems correctly while requiring less additional on-demand assistance.

From January 1, 2019 to September 30, 2019, there were 232,248 problems solved

in the randomized controlled trial, 208,987 of which received crowd-sourced teacher

on-demand assistance and 23,261 of which only the answer was available. In said

solved problems, 3,515 unique problems were solved with 3,698 distinct instances of

on-demand assistance. Out of said on-demand assistance, 2,475 were explanations

and 1,222 were hints. Similar to the pilot study, we found no significant difference

between the percentage of students in the control condition and the experimental

condition who answered the RCT problems correctly on their first try without asking
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next problem
dependent var.

ctrl
mean

exp.
mean

t-
stat

p-
value

corrected
p-value

correct first try 0.62 0.63 -2.29 0.02 0.04
ask for help 0.20 0.19 3.65 <0.01 <0.01
stop out 0.03 0.02 1.47 0.14 0.19
attempt count 1.60 1.58 0.85 0.39 0.39

Table 6.6: Repeated Experiment: problem-level paired t-test intention-to-treat
analysis on student next problem dependent variables using t-test and Ben-
jamini–Hochberg. The number of unique problems = 2379

next problem
dependent var.

ctrl
mean

exp.
mean

t-
stat

p-
value

corrected
p-value

correct first try 0.65 0.65 -1.59 0.11 0.15
ask for help 0.17 0.16 1.65 0.10 0.15
stop out 0.02 0.02 1.14 0.25 0.25
attempt count 1.60 1.55 2.86 <0.01 0.02

Table 6.7: Repeated Experiment: student-level paired t-test intention-to-treat
analysis on student next problem dependent variables using t-test and Ben-
jamini–Hochberg. The number of unique students = 6945

for on-demand assistance (p > 0.05). We also found no significant difference between

the percentage of students who requested for crowd-sourced on-demand assistance

(experimental) and students who requested for the answer (control) (p > 0.05).

Intention-to-Treat and Treated Analysis of the Repeated Experiment

Interestingly, several tests from the intention-to-treat analysis are statistically signif-

icant even after using Benjamini–Hochberg with alpha = 0.05. Specifically, Table

6.6 shows that when aggregated on the problem level, students in the experimental

condition were more likely to answer the next problems correctly on their first at-

tempt as well as asking for less on-demand assistance on their next problem than

students in the control condition (corrected p-value = 0.04 and <0.01, respectively).

In addition, Table 6.6 showed that when aggregated on the student level, students

in the experimental condition were more likely to have a smaller number of attempts

than students in the control (corrected p-value = 0.02). Since inside ASSISTments,

students were required to answer the problem correctly before they could move on

57



to the next problem, a lower number of attempts meant students reached the correct

answer faster on average, given there was no change in other dependent measures.

As for the treated analysis, the result aligned with the result of our pilot experi-

ment. Table 6.8 and Table 6.9 show that the students in the experimental conditions

asked for less on-demand assistance in the next problem (corrected p-value = 0.04 and

correct p-value < 0.01 for problem-level and student-level aggregation, respectively).

While not statistically significant, students in the experimental condition were more

likely to answer the next problems correctly on their first attempt as well as asking for

less on-demand assistance on their next problem than students in the control condi-

tion similar to the results we obtained from the pilot study and the intention-to-treat

analysis.

6.5 Conclusion

In this work, we designed and implemented a mechanism that allows online learning

platforms to crowd-source on-demand assistance from teachers. We developed this

scheme in close collaboration with teachers and educational researchers to ensure

that it is both convenient and beneficial to teachers, while remain open enough for

researchers to conduct meaningful research.

To answer RQ1, we interviewed teachers and subject-matter experts to find out

what are the features and requirements expected of on-demand assistance crowd-

sourcing system, TeacherASSIST. Teachers wanted the system to improve student

learning without overtaxing them and without additional work. Educational re-

searchers wanted to be able to investigate the effectiveness of different kinds of on-

demand assistance. Our ability to conduct RCTs for RQ2 and RQ3 shown that

researchers can use TeacherASSIST to investigate the effectiveness of different kinds

of on-demand assistance. While TeacherASSIST was designed and implemented in-

side ASSISTments, the core design and algorithm are applicable to other platforms

that support on-demand assistance and content creation. Originally, only 38,194 of

132,738 distinct problems assigned inside ASSISTments in 2017-2018 academic year
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next problem
dependent var.

ctrl
mean

exp.
mean

t-
stat

p-
value

corrected
p-value

correct first try 0.36 0.37 -1.41 0.16 0.32
ask for help 0.49 0.47 2.54 0.01 0.04
stop out 0.03 0.03 0.01 1.00 1.00
attempt count 1.95 1.92 1.00 0.32 0.42

Table 6.8: Repeated Experiment: problem-level paired t-test treated analysis on
student next problem dependent variables using t-test and Benjamini–Hochberg. The
number of unique problems = 1312

next problem
dependent var.

ctrl
mean

exp.
mean

t-
stat

p-
value

corrected
p-value

correct first try 0.38 0.40 -1.86 0.06 0.08
ask for help 0.46 0.42 3.25 <0.01 <0.01
stop out 0.03 0.03 -0.68 0.50 0.50
attempt count 2.06 1.97 2.15 0.03 0.06

Table 6.9: Repeated Experiment: student-level paired t-test treated analysis on stu-
dent next problem dependent variables using t-test and Benjamini–Hochberg. The
number of unique students = 1955

had on-demand assistance. By the end of 2019-2020 academic year, 27,094 instances

of on-demand assistance were created for those problems through TeacherASSIST,

starred teachers and otherwise. When we looked outside of the 2017-2018 dataset,

we found a total of 40,292 instances of on-demand assistance across 25,957 distinct

problems in different curricula, 16,493 of which belong to our 9 starred teachers. We

also found that 14 teachers used TeacherASSIST heavily, creating more than 1,000

instances of assistance over three years.

To answer RQ2, we conducted the pilot RCT from August 9, 2018 to December 31,

2018. We found that students who requested the crowd-sourced on-demand assistance

were reliably less likely to require additional assistance in the next problem. While

the effect was small, it was expected since the experiment was conducted on the

problem-level. Students who requested on-demand assistance were also more likely

to correctly answer the next problem on their first attempt with lower overall average

number of attempts, though it was not statistically significant.

To answer RQ3, we repeated the experiment we ran in RQ2 during the following

academic term from January 1, 2019 to September 30, 2019. The results of the
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repeated experiment was in the same direction as RQ2, further confirm our hypothesis

that crowd-sourced on-demand assistance is of high quality enough to improve student

learning.

We concluded that we think the future of crowd-sourcing is bright. While there

are several other crowd-sourcing applications in education such as [55] and [53], we are

the first to crowd-source directly from active users (K-12 teachers) and redistributed

crowd-sourced contents in a live environment. Our work serves as an evident that

teachers are willing and able to create and improve contents of learning management

systems, given that such contents are helpful to their students. We believed that a

major part of this success was due to the fact that the designed of TeacherASSIST

was heavily focused on teachers’ need; TeacherASSIST was nicely integrated into

teachers’ routine and the on-demand assistance will directly benefit both their current

and future students.

We also published the anonymized dataset from our large-scale randomized control

trials. In this dataset, we included the data from both our pilot and the repeated

experiments. All logged data (intention-to-treat) were included.

The code we used for analysis and datasets can be found here. https://doi.

org/10.17605/OSF.IO/EGP5F

6.6 Future Work

In this work, our analysis is limited to next problem analysis. Ideally, we would like

to measure student learning e.g. by using pre-test and post-test. However, since

our randomized controlled trial was on an individual problem-level, it was impossible

for us to have a proper pre-test and post-test. In order to solve that, we plan to

design and run a different randomized controlled trial that would allow us to have

some control over what the next and previous problems are using the problem set

structure.

Alternatively, we could measure student learning by using more history and ”fu-

ture” information. For instance, we could compare the students history 10 problem
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before and after the RCT to get a better estimate of student learning. We would like

to also look at the effects of on-demand assistance over multiples consecutive RCT

problems as opposed to a single RCT problem. We expect this approach to have

significantly bigger effect on student learning that what we have shown in this work.

In term of scalability, our method to aggregate on-demand assistance is currently

naive. With better aggregation methods, we believe that the system would be able to

select a better on-demand assistance, causing better improvement in student learning.
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Chapter 7

Improvement on Hint and

Explanation Crowdsourcing

Method for an Online Learning

Platform

One of the most important advantages for using crowdsourcing was scalability. A well-

implemented crowdsourcing feature allowed the platform to continuously scale with

users and time with minimal intervention from the administrators. TeacherASSIST,

as it stood, was able to grow the pool of student supports only by adding more starred

teachers, which required administrator intervention. While, technically, the pool also

grew as each individual starred teacher created student supports for their classes,

there’s a limit to how much it could grow, which was the curricula and teaching

materials they’re using.

By using the 4 stages mentioned in [18], I was able to identify where TeacherAS-

SIST was lacking. TeacherASSIST, as it stood, lacked greatly in stage 2, 3, and 4. For

stage 1, only starred teachers could be considered contributors as other teachers’ stu-

dent supports were only available to their students (i.e. not crowdsourced). There’s

no accessibility of peer contribution at all. The aggregation method was simple and
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naive. For the fourth stage, teachers got nothing back from creating more student

supports and they weren’t even informed of how much their student supports were

used or seen by students.

In order to take full advantage of crowdsourcing, I proposed and implemented

improvements on each of the 4 stages. For the first stage, a new feature called

”trusted teachers” was implemented. This feature allowed teachers to designate other

teachers as trusted. This, in turn, allowed their students to receive student supports

created by anyone they designated as trusted teachers. This allowed teachers who

use materials outside starred teachers’ curricula to share and compliment each others’

student supports.

For the second stage, I designed a prototype which would allow teachers to see

each others’ student supports. Teachers were asked to rate student supports they

see. Theoretically, this kind of feature, when implemented, allows teachers to tailor

student supports from various teachers to fit their classes and students. Practically,

this process would consume so much time that only a tiny fraction of teachers would

do it. So, instead, I treated this second stage as a data collection process to find out

who were good teachers in comparison to existing starred teachers.

In addition, as TeacherASSIST learned of more well-rated teachers, it could start

giving student supports based on such ranking. As a result, TeacherASSIST became

better at aggregating student supports from various teachers, which was stage 3. I ran

a randomized controlled trial to investigate the effect of such ranking with additional

non-starred teachers.

Lastly, I designed prototype reports that informed teachers of how their student

supports were used and how useful they were. These prototypes were meant to inform

teachers of what kind of information could be available to them. The main goal was

to notify them that what they created matter, in hope that they would continue to

create more student supports, which would improve stage 4.
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Figure 7-1: The ER Diagram of the tables that store TeacherASSIST-related infor-
mation.

7.1 TeacherASSIST Infrastructure

In order for TeacherASSIST to support trusted teachers, its infrastructure and database

schema needed to be updated. The updated database ER diagram is shown in figure

7-1.

Table tutoring provider creator types and tutoring provider policies were previ-

ously a single table teachassist policy. This set of tables was designed to store infor-

mation on how student supports that were given to the students were selected and

stored in assigned tutor strategies, such as randomly selected from a pool of starred

teacher student supports. With a single table, combinations of policies and creator

types have to be pre-specified in the database to be considered valid. This new ap-

proach decoupled policies and creator types, allowing new policy or creator type to be

added without having to worry about the other. When TeacherASSIST distributed

student supports to students, student supports could be separated into different prior-

ities based on the creators/owners of student supports, namely the student’s teachers,
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starred teachers, and trusted teachers which were added for this dissertation work. I

defined this information ”creator type.”

Policies, on the other hand, stored which method was used to select a student

support from all the student supports of the same priority that were available. For

instance, when only one student support was available, I ran an RCT comparing that

student support against the control in my previous work. After two successful repli-

cation studies in [36] and in 2020, there’s no more need to run such RCT, allowing all

students to receive student supports. When multiple student supports were available,

the default policy was to randomly select one. For the RCT in this dissertation work,

a student support was selected using the ranking according to student support scores.

In addition, this new separation of creator type and policy would also allow

TeacherASSIST to easily integrate with 2 other features inside ASSISTments that

were under development. One is E-TRIALS, a feature that would allow researchers

to run randomized controlled trials inside ASSISTments. E-TRIALS needed policies

such as ”preassigned during assigned time” and creator types such as ”researchers.”

Another feature is the Reinforcement Learning Service (RLS). When multiple student

supports were available, RLS would actively evaluate them using past student perfor-

mance data as well as the current student data and identify which student support

would be best for the student. RLS would need a new policy type ”RLS.”

Table legacy trusted users stored data regarding teachers who designated other

teachers as trusted teachers, wanting to allow their students to receive said teachers’

student supports. In addition, as ASSISTments was, at the time, in the process of

migration from 1.0 infrastructure to 2.0 infrastructure as of 2021, this database also

allowed students of teachers who moved to 2.0 to be able still receive student supports

their teachers created in 1.0 before the official ASSISTments data migration.

Table global teacher scores stored data regarding the average scores of student

supports of teachers. Table ranking logs stored the mapping from the students to

a ranking assigned to them (global in experimental condition, a random ranking

for control). These two tables as well as the server code were designed to support

versioning. This allowed the sets of scores and rankings to be updated as newer
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information, scores, or experiments were needed, while maintaining logs of previously

used scores and ranking.
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7.2 Trusted Teachers and Evaluation

For this work, I designed ”trusted teachers” into TeacherASSIST. This new feature

allowed teachers to designate other teachers as ”trusted,” allowing their students to

receive student supports from such teachers. This feature would allow teachers to

be able to organically grow the pool of student supports their students may receive

without intervention or maintenance. Compared to trusted teachers, starred teachers

may be considered globally trusted teachers.

In order for teachers to grow their list of trusted teachers, one natural way was to

allow the teacher to see other teachers’ student supports and mark the ones they’d

want their students to receive. When the teacher designated enough of one teacher’s

student supports as preferable then the teacher would be ”trusted.” This process of

becoming trusted may require explicit user inputs or happen automatically depending

on what the system deemed appropriate, or by teacher’s explicit requests. Inciden-

tally, this process of curating student supports implicitly created a ranking of student

support creators where supports by one creator was generally perceived as desirable

by teachers more than supports created by others.

While this process was organic and theoretically scalable, it presented one more

issue into TeacherASSIST: it created another crowdsourcing task that only benefitted

teachers who had completed the task. And, like all crowdsourcing tasks, having low

percent of contributors was inevitable. In other words, as it stands, this feature would

only benefit a small subset of users if implemented.

Thus, I took the ranking one step further from a user-level to an aggregated,

system-level ranking. In other words, this aggregated ranking presented how prefer-

able student supports from each creator is compared to other creators. This global

ranking could be used as a default ”ranking” for teachers who may not have time

to rate student supports to find their own trusted teachers. As a result, all teachers

inside the system would be able to expand their pools of student supports for their

students, whether through their own ranking or aggregated, system-wide ranking of

teachers.
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For this work, I created a proof-of-concept of the student support rating process

using the Qualtrics survey tool and implemented a fully-functional delivery policy

using global ranking. Then, I ran a randomized controlled trial in order to measure

the effectiveness of the delivery policy using global ranking.

7.2.1 Student Support Rating System

The main goal of this proof-of-concept student support rating system was to be able to

gather (crowdsource) teacher opinions on student supports created by various teach-

ers. Since my end goal was to calculate an average score of each teacher across

curricula and grades, this rating system must cover problems from all curricula and

grades of interest, while ensuring that there were enough samples of each teacher to

calculate reliable teacher scores.

For this work, I only considered Engage NY and Illustrative Mathematics, and

6th, 7th, and 8th grade as curricula and grades of interest, accordingly. This was

because they were most commonly used inside ASSISTments and had the largest

number of student supports created. Then, I selected all teachers who created more

than 100 student supports across aforementioned curricula and grades. For each

curriculum-grade, I randomly selected 16 problems that I would use in the student

support rating survey. I used the following criteria in order to select problems from

each curriculum-grade:

- Each selected problem must have at least 3 student supports created by 3 dif-

ferent teachers. - For problems with more than 3 student supports available, 3 were

chosen such that the numbers of selected student supports of teachers within the

curriculum-grade were as balanced as possible. - Each part (”sub-problem”) of a

multi-part problem counts as an individual problem. A sub-problem can be selected

only if 1) the first part was also selected 2) the sub-problem only depends on the first

part. For example, if a problem has 4 parts, only part 1, 3, and 4 (i.e. without part

2) may be selected as long as each satisfies all criteria. - The selected 16 problems

must be separable into two sets of 8 problems with matching multi-part ”signature”

i.e. if one set contained a 4-part problem, 3-part problem, and a single problem (4
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Figure 7-2: An example screenshot of the student support rating survey using the
Qualtrics survey tool.

+ 3 + 1 = 8 problems), the other 8 problems must also be a 4-part problem, 3-part

problem, and a single problem. - During Summer of 2019, ASSISTments hired several

WPI students to create student supports for several curriculum-grades, including the

curriculum-grade used in this study. For the purpose of this survey and ranking, I

considered all such students a single user/creator as they all received the same in-

structions on how to create student supports under the same supervisor as well as

how to collaborate enough to ensure that they have as little overlap as possible.

In order to create such a ranking, I created a survey using Qualtrics where vol-
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unteer teachers rate individual student support. In the survey, each teacher was

presented with 8 semi-randomly chosen problems from a curriculum and grade of

their choosing. Specifically, the 8 problems would have the signature previously used

in the criteria of choosing problems e.g. if the curriculum-grade had 2 sets of 4-3-1

problems, one teacher may see the first 4-part problem, the second 3-part problem,

and the first single problem. Another teacher may see the second 4-part, first 3-part,

and second single part.

For each problem, the teacher was presented with the problem text, the correct

answer, and a list of three student supports created by 3 different teachers. For each

student support, the teacher was asked to rate it on a Likert scale 1-5: useless (1),

somewhat useless (2), neither useful or useless (3), somewhat useful (4), and very

useful (5). An example of a student support rating item in the survey is shown in

figure 7-2.

The survey was sent out with Teachers For Research and Feedback (TFRF) AS-

SISTments newsletter on March 23, 2021, with a $150 lottery drawing as an incentive

for those who completed the survey by March 31, 2021. There were a total of 27

responses, 2 of which were deemed invalid (all student supports were rated with the

same rating). Then, I calculated the average rating for each teacher who created

student supports shown in the survey. The average scores of teachers were shown in

table 7.1.
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n mean standard error
starred teacher 1 49 4.1633 0.1734
starred teacher 2 46 4.2174 0.1671
starred teacher 3 27 4.2222 0.2285
starred teacher 4 53 3.6981 0.2182
starred teacher 5 102 4.1471 0.1265
non-starred teacher 1 9 4.0000 0.2887
non-starred teacher 2 20 4.5000 0.1147
non-starred teacher 3 45 4.2889 0.1334
non-starred teacher 4 71 4.0423 0.1396
non-starred teacher 5 23 4.1304 0.2615
hired students (combined) 155 4.0903 0.1061

Table 7.1: The average scores of each teacher included in the survey. n was the
number of times their student supports were rated across all their student supports
included in the survey.
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7.2.2 Randomized Controlled Trial

In Spring, 2021, I ran a randomized controlled trial (RCT) in order to evaluate the

effectiveness of the delivery policy using the global ranking. Students in the exper-

imental condition received student supports based on the global ranking of teachers

using data from the student support rating survey. In the control condition, students

received student supports based on a randomized ranking of starred teachers. In this

RCT, students were randomly assigned into conditions prior to the experiment and

continued to receive student supports selected using their respective policies for the

entire duration of the experiment. The randomization happened on a student-level

within each class to ensure balance between the two conditions within each class. In

the control condition, each student was assigned a random ranking of starred teachers.

This RCT was run on 2020 students (accounts) from 49 teachers who opted in

to the TeacherASSIST Beta, from April 1, 2021 to April 7, 2021. I used their data

from 1 week prior (March 25, 2021 to March 31, 2021) as their prior performance and

1 week after (April 8, 2021 to April 14, 2021) as their post performance. Standard

TeacherASSIST without ranking was enabled during their prior performance week

and post performance week. The post performance metrics of interest were 1) the

percent of times the student answered the problem correctly without mistakes or

additional supports (correct first try) 2) the percent of times the student requested

additional supports e.g. hints, explanations, answer keys (use help).

One major consideration of this RCT was that the difference between conditions

come from two factors. The first factor was that the student support pool covered

by the experimental condition was larger than the control. This was because, while

the control only included student supports from starred teachers, the experimental

condition included not only starred teachers but also other teachers who created

more than 100 student supports within curricula and grades of interest, as previously

specified. The second factor was the ranking itself. In order to identify the added

effect of the ranking itself, the experimental condition could be compared to students

in the control condition whose ranking was identical to that of the experimental
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condition barring the additional teachers introduced to the experimental condition.

7.2.3 Result

During the three weeks of the study, 77,650 problems were completed by 2,020 stu-

dents across 49 teachers who opted into the ASSISTments TeacherASSIST beta. I

found that, out of the 2,020 students, 642 did not work on any problems during the

RCT week and 405 did not work on any problems during the post performance week

(figure 7-3, 7-4, 7-5). In addition, 967 students never requested any student supports

during the RCT week (figure 7-6). My hypothesis was that this was caused by irreg-

ularity in the contents taught in classes during the 3 weeks, that caused a massive

number of students to complete no problems. This was most likely caused by Spring

break or mid terms that was delayed due to COVID pandemic. This hypothesis was

supported by how the retention of students was somewhat even across teachers as

shown in figure 7-7.

In order to be able to reliably estimate the performance of students, I decided to

filter out all students who completed fewerthan 3 problems during each of the prior

performance, RCT, and post performance week. This was mostly caused by teachers

not assigning any work to students through ASSISTments in said duration. In addi-

tion, I also filtered out students who requested for student supports fewerthan 3 times

during the RCT week since those students did not experience the difference between

conditions (student supports) enough. Only 188 students out of 2,020 students were

left after the filter. I also removed all teachers who did not have at least one student

left after the filter, which further removed 5 students from 188 students.

The filtered dataset contains 183 students, 99 of which were in the controlled con-

dition and 84 were in the experimental condition. There was no significant difference

between the percent of times students in the control and the experimental conditions

requested for supports during the RCT week (control mean = 0.243, experimental

mean = 0.238, p-value = 0.90). Unfortunately, this amount of data was insufficient to

be used to investigate the effect of additional teachers alone after isolating the effect

of ranking as students in the control condition were randomly assigned to random
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Figure 7-3: The distribution of the number of problems completed per student during
the prior performance week.

74



Figure 7-4: The distribution of the number of problems completed per student during
the RCT week.
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Figure 7-5: The distribution of the number of problems completed per student during
the post performance week.
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Figure 7-6: The distribution of the problems each student requested for student
supports in total during the RCT week.
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Figure 7-7: The distribution of the students left after the initial usage filter per
teacher. Each pair of bars represents the number of students of those teachers whose
usage exceeded the minimum usage threshold in the control condition and the exper-
imental condition.
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ranking of teachers.

Initially, I designed the RCT such that students were randomized within classes

and teachers, which allowed me to use more complex models such as hierarchical

linear models. However, the strange nature of data caused the number of students to

drop to less than one-tenth of the original number, and the number of teachers from

49 to 14 (8 if I counted only teachers with more than 3 students in each condition).

As a result, hierarchical linear models would be too complex and may give unreliable

estimates.

Instead, I fitted linear regression models using student-level prior performance

data to predict student post performance. The dependent measures of interest, i.e.

student post performance, were 1) the percent of times the student answered the

problem correctly without mistakes or additional supports (table 7.2) 2) the percent

of time the student requested for additional supports e.g. hints, explanations, answer

keys (table 7.3). Specifically, I used lm robust from the R package called estimatr.

lm robust fitted a linear regression model using ordinary least squares with robust

standard errors. In simple terms, robust standard errors are unbiased when the

variability of a predictor is uneven across the range of values (heteroscedasticity).

In each model, I used the condition (control vs experimental), the percent of times

students correctly answered problems without supports during the prior performance

week (pre correct first try avg), the percent of times students requested supports dur-

ing the prior performance week (pre use help avg), the average number of attempts

per problem during the prior performance week (pre attempt count avg), and the av-

erage number of supports requested per problem during the prior performance week

(pre support count avg).

Table 7.2 shows the estimated regression coefficients of the regression model fitted

to predict the percent of times the student answered the problem correctly without

mistakes or additional supports. I found that the effect of condition was 0.032 (not

statistically reliable, p = 0.106). Interestingly, the effect of pre correct first try avg

was also not statistically reliable (0.115, p = 0.124). This was unexpected since prior

student correctness was known to be the best predictor of future student correctness.
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Estimate Std. Error p-value CI Lower CI Upper
(Intercept) 0.324 0.081 <0.001 0.164 0.484
condition=experimental 0.032 0.020 0.106 -0.007 0.071
pre correct first try avg 0.115 0.074 0.124 -0.032 0.261
pre use help avg -0.307 0.137 0.026 -0.577 -0.038
pre attempt count avg -0.002 0.049 0.969 -0.099 0.095
pre hint count avg -0.001 0.001 0.059 -0.003 <0.001

Table 7.2: Estimated regression coefficients from a linear regression fitted to predict
percent of times the student answered the problem correctly without mistakes or
additional supports (correct first try) during the post performance week

Estimate Std. Error p-value CI Lower CI Upper
(Intercept) 0.133 0.063 0.038 0.008 0.257
condition=experimental -0.010 0.020 0.606 -0.049 0.029
pre correct first try avg -0.111 0.065 0.088 -0.239 0.017
pre use help avg 0.191 0.120 0.115 -0.047 0.428
pre attempt count avg 0.040 0.039 0.306 -0.037 0.117
pre hint count avg -0.002 0.001 0.001 -0.003 -0.001

Table 7.3: Estimated regression coefficients from a linear regression fitted to predict
percent of times the student request for additional supports e.g. hints, explanations,
answer keys (use help)

I hypothesize that this was an effect of the aforementioned anomaly in the dataset.

While the effect size, at a glance, looked promising compared to pre correct first try avg,

it was not statistically reliable and the experiment should be repeated to investigate

the effect of distribution policy using global ranking.

Table 7.3 shows the estimated regression coefficient of the regression model fitted

to predict the percent of times the student requested additional supports. Similarly,

the effect of the condition was not statistically reliable (-0.010, p = 0.606). None of the

prior performance statistics except for pre hint count avg had significant effects on

the likelihood that the students would ask for more supports. The confidence interval

of the condition coefficient suggested that students who were in the experimental

condition were between 3% more likely to 5% less likely to request student supports

afterward. The change of this likelihood could be interpreted both positively and

negatively, depending on the effect of the condition on other dependent measures.
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7.3 Feedback to Teachers who Created Student

Supports

The last step of crowdsourcing is where contributors receive something back for their

contribution: remuneration. While remuneration is in the form of monetary gains

in many crowdsourcing tasks such as Amazon’s MTurk and YouTube, remuneration

in crowdsourcing can also be something else as well depending on the contributors’

motivation to do the crowdsourcing task. For instance, StackOverflow’s remuner-

ation is called r̈eputation point.C̈ontributors with high reputation points are given

privileges based on set thresholds such as setting a ”bounty” on a question. A good

implementation of this last step incentivizes users to keep contributing more to the

crowdsourcing platform.

In this work, I chose to give ”remuneration” to teachers in the form of usage reports

for 2 reasons. First, since the ASSISTments platform’s goal is to be free for teachers

and students to use, monetary remuneration is not a sustainable solution. Reports,

however, are easy to generate and maintain, and teachers inside ASSISTments are

already used to seeing and using a variety of reports such as student assignment

reports.

Second, the incentive for teachers to create student supports in the first place was

to help their own students. In other words, they wanted what they created to be seen

and used by students. Regular student assignment reports only show the teachers

student support usages within a single assignment, but not the bigger picture. The

aim of this first report was to allow teachers to see usages of student supports, theirs

and otherwise, over each month. In addition, starred teachers currently have no way

of knowing how student supports they created had been used outside of their classes.

I designed 3 prototypes of reports based on different scopes of student support

usages 1) report of student support usage within the teacher’s classes (figure 7-8 2)

report of student support usage within the teacher’s classes and classes of teachers

who have designated you as their trusted teacher (figure 7-9) 3) report of usage of

student supports created by the teacher as a starred teacher (figure 7-10. The goal
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Figure 7-8: An example of a student support usage report within their own classes
(first iteration).

Figure 7-9: An example of a student support usage reports within their own classes
with a trusted teacher (first iteration).

of these three prototypes was to allow teachers to see what kind of information could

be available to them so that the reports could be iteratively improved upon.

The first prototype report was designed for all teachers who had created student

supports for their students. The second prototype was a variation of the first pro-

totype, with added information regarding usages of their student supports within

classes of teachers who designated them as a trusted teacher as described in section

7.2. While, at the moment, the trusted feature was not live, the infrastructure was in

place and ready to be used as soon as teachers designated other teachers as trusted.

In fact, there’s one teacher who was aware of this and informed that his two colleagues

would like to designate him as a trusted teacher. The third prototype was designed

for starred teachers so that they could see how much their student supports help other

students.

I generated the report for 2 starred teachers and asked whether they found it use-

ful. One of the teachers was unavailable due to personal reasons. The other teacher

found the report prototypes to be overwhelming, contain too much information, and

hard to digest. The only information he thought would be the most useful was how

much his hints and explanations were used and how useful they were to the students,

and would prefer to see the change week-by-week. In addition, the teacher was unfa-

miliar with the term ”student supports” (parent category of hints and explanations)
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Figure 7-10: An example of a usage report of student support they created outside
their own classes (first iteration).

and preferred calling them hints and explanations. Thus, I designed a second set

of report prototypes based on teacher feedback. Figure 7-11 and 7-12 showed the

usage and helpfulness of student supports. For starred teachers, the same set of sim-

ilar graphs could be used except the comparison would be between your hints and

explanations vs other starred teachers’ hints and explanations.
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Figure 7-11: An example of a student support usage report within their own classes
(second iteration).

Figure 7-12: An example of a student support helpfulness report within their own
classes (second iteration).
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7.4 Conclusion

Crowdsourcing tasks could be separated into 4 stages: selection, accessibility, aggre-

gation, and remuneration [18]. Without proper selection of contributors, the system

risked getting malicious contributors. Without accessibility and aggregation, the pool

of contribution would be no more than a simple accumulation of contribution. With-

out remuneration, contributors would feel unrewarded and no longer contribute.

In my previous work [36], I created a crowdsourcing system called TeacherAS-

SIST inside the ASSISTments online learning platform. This feature allowed teach-

ers to create hints and explanations, together called ”student supports,” to help their

students as they work on classwork and homework. In addition, the system also

distributed student supports created by a pre-selected group of approved teachers

(”starred teachers”) in case there were no student supports created by the teachers.

Through a randomized controlled trial and a repeated study, I found that TeacherAS-

SIST improved student learning with statistical significance.

That work solely focused on the first and third stages of crowdsourcing: allowing

teachers to create student supports for their students, and only allowing student sup-

ports by approved teachers to be distributed outside of their classes, with a random

aggregation method. In this work, I improved TeacherASSIST crowdsourcing work-

flow by improving the second (see & rate), third (ranking), and fourth stages (report

& feedback).

First, I created a proof-of-concept student support rating using the Qualtrics

survey tool, which allowed teachers to see and rate the usefulness of sampled student

supports from teachers who created sufficient amounts of student supports. The

fact that I only received 27 responses, even with monetary incentive, supported my

hypothesis that rating student supports was not a practical feature in itself. Then,

I calculated the rating per user, and used it to create a ranking of teachers. Then,

I ran a randomized controlled trial comparing this ranking (experimental) against a

random ranking of starred teachers (controlled). After filtering out students who did

not work on a minimum number of problems during the experimental weeks, there
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were 183 students, 99 of which were in the control condition. It’s important to note

that the effect of the experimental condition came from 2 factors: the additional

non-starred teachers and a ranking based on teacher rating.

Initially, the plan was to also compare the experimental condition against students

in control who were randomly assigned a ranking that mirrors that of the experimental

condition without the additional teachers. However, due to an unforeseen anomaly

in the dataset, the number of students was reduced from 2,020 initially to only 183.

This, when this experiment is rerun, should be redesigned to ensure that the effect of

added teachers and the ranking could be analyzed.

When I investigated the effect of the experimental condition on students’ perfor-

mance during the week after they receive the treatment, I found suggestive but not

statistically reliable effect of the conditions on any of the dependent measures of inter-

est. Interestingly, the effect of the prior correctness, which was known to be predictive

of subsequent correctness, was also not statistically reliable. I hypothesized that this

was caused by the strange nature of the experimental duration in combination with

COVID pandemic, and that the effect of the condition was masked by this strange

nature. To prove my hypothesis, a repeated experiment should be run for a longer

duration to increase the opportunities that the students can work on problems and

see student supports.

Lastly, I constructed prototypes for student support usages for teachers who cre-

ated them. The reports were meant to inform teachers of the fruits of their labors, that

the student supports they created had helped many of their students and, for starred

teachers, other students inside ASSISTments. After consulting with the teacher, I

found that the first set of prototypes had too much information and were not easy to

consume. After taking his comment into consideration, I made a second set of report

prototypes, containing mainly the information the teacher said he would like to see.

It should be noted that this design process should be iterative and continuously im-

proved upon as TeacherASSIST grows. What I constructed here wasn’t meant to be

the be-all-end-all report, but rather a starting point that allows teachers to see what

kind of information they could see.
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7.5 Limitation

The result of this work was restricted by several limitations. Due to the ongoing

pandemic in the 2020-2021 academic year, most classrooms had gone either fully

online or semi-online. For most teachers, this was the first time that they taught

classes in such manners. Thus, it’s unavoidable that the data collected in this work

had anomaly. It’s also possible that the anomaly was partially caused by other reasons

such as school activities and midterm exams, as many classes became absent entirely.

For the student support rating, I massively overestimated teacher interest, and

received only 27 responses. This also supported my hypothesis that rating student

supports would be practically useless to most teachers since, even with monetary in-

centive, very few teachers were interested. However, it’s undeniable that if TeacherAS-

SIST knew how each teacher would rate each student support, TeacherASSIST could

provide the most fit student support for each question and student. Practically, such

rating data could be estimated using statistical and data mining techniques. Alter-

natively, TeacherASSIST could employ methods like multi-armed bandit algorithms

that could intelligently calculate how good each student support is on the fly.

In addition to reports, there were also many other types of non-monetary remu-

nerations that were used in crowdsourcing platforms. In an online learning platform

such as ASSISTments, allowing teachers to have a teacher professional page, similar

to the Wikipedia contributor page, could serve as one. In such a page, a teacher could

display links to their school websites, folders containing teaching materials they cre-

ated, and a button that would allow other teachers to designate the teacher as trusted.

This would serve as a connection between ASSISTments and the teachers, as well as

a gateway for teachers to connect to each other.

In addition, as teachers create more student supports and as their student supports

help more students, teachers could gain contribution points that grant them privileges

inside ASSISTments, similar to Stack Overflow. For example, it could allow them to

create groups inside ASSISTments that would allow members to communicate and

share materials. Teachers with enough points may also choose to promote themselves
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to starred teachers, which in turn improves scalability of TeacherASSIST.
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