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Abstract 

With the increased deterioration of infrastructure in this country, it has become important to find 

ways to maintain the strength and integrity of a structure over its design life. Being able to 

control the amount a structure displaces or vibrates during a seismic event, as well as being able 

to model this nonlinear behavior, provides a new challenge for structural engineers. This 

research proposes a wavelet-based adaptive neuro-fuzzy inference system for use in system 

identification and structural control of civil engineering structures. This algorithm combines 

aspects of fuzzy logic theory, neural networks, and wavelet transforms to create a new system 

that effectively reduces the number of sensors needed in a structure to capture its seismic 

response and the amount of computation time needed to model its nonlinear behavior. The 

algorithm has been tested for structural control using a three-story building equipped with a 

magnetorheological damper for system identification, an eight-story building, and a benchmark 

highway bridge. Each of these examples has been tested using a variety of earthquakes, including 

the El-Centro, Kobe, Hachinohe, Northridge, and other seismic events. 
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1. Overview 

Structural health monitoring is a growing aspect of structural engineering that allows for the 

determination of the status of a structure’s strength and stiffness capabilities. This is a growing 

and important field in structural engineering due to its ability to understand and assess the state 

of a structure, including assessing out the amount of damage it has sustained, or exploring 

strategies to control structural responses to limit damage or prevent collapse. The research 

outlined in the following thesis presents a new algorithm that can be used for structural control 

and system identification. The algorithm, a wavelet-based, adaptive neuro-fuzzy inference 

system, combines aspects of neural networks, fuzzy logic theory, and wavelet transforms to 

create a methodology that is new to the application of civil engineering structures. Using this 

methodology reduces the number of sensors required, computation times, and improves 

performances over previous systems.  

 System identification and structural control are important aspects in structural health 

monitoring. The purpose of system identification is to model the non-linear behavior of a 

structure when it is equipped with a control device. When a control device is installed on a 

structure, the behavior becomes non-linear due to the interaction effects between the device and 

structure. System identification eliminates the need for the development of a finite element 

model. This is because system identification predicts the behavior of the structure, which is 

something that is determined through the finite element modeling of a structure. Therefore, 

having an effective method for system identification allows for the bypassing of the development 

of the model. Structural control deals with improving the structural performance of a building or 

bridge by implementing control devices such as dampers and actuators to develop forces in the 

structure to counteract external forces, such as earthquakes. This is essential, as being able to 
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limit the responses of a structure can maintain the strength and integrity of the building or bridge, 

allowing for a safer structure over the course of the design life. 

This thesis combines three journal papers that are in submission to publishers. The first 

paper outlines the effectiveness of the WANFIS system as a means for system identification of a 

building employing a smart damper. The second paper details the use of the WANFIS model as a 

control algorithm to improve the structural performance of a building with both active and hybrid 

control systems. The third paper demonstrates the WANFIS model as a control algorithm to 

improve the structural performance of a benchmark highway bridge using an active control 

system. 
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2. System identification of smart structures using a wavelet 

neuro-fuzzy model
1 

2.1. Introduction 

In recent years, smart control strategies have attracted a great deal of attention from the structural 

engineering. However, a difficult problem in dealing with smart structures and structural health 

monitoring is creating an effective model of a nonlinear dynamic structure. Nonlinear systems occur 

when actuators and dampers, such as the magnetorheological (MR) dampers, are implemented into a 

structure to aid in the building’s ability to withstand destructive environmental forces such as strong 

winds and earthquake loads. Being able to mathematically model the structure and its corresponding 

nonlinear dampers is a challenging task in smart control. It is generally known that the smart system 

produces a nonlinear behavior due to the nonlinear damper devices that a structure is equipped with, even 

though the structure itself is typically assumed to behave linearly, as noted by Kim et al (2009). 

Therefore, the challenge is to create a mathematical model to develop a relationship between the input 

and output of a structure that uses a nonlinear damping device. This paper proposes a new nonlinear 

system identification for describing nonlinear behavior of a seismically excited building equipped with 

smart dampers. 

System identification (SI) is essential in smart structures to create a mathematical model from 

actual dynamic data. The goals of an effective SI is to reliably predict how a system will behave under a 

variety of dynamic loading scenarios such as far- and near-field earthquakes, as well as showing 

interactions between the system inputs and outputs. SI can be separated into two categories: parametric 

and nonparametric approaches, according to Adeli and Kim (2000). The parametric method identifies the 

structural properties of the system, including stiffness and damping systems that are intrinsically 

imbedded in the structure and its materials (Jalili-Kharaajoo 2004). The nonparametric method of SI is 

                                                           
1 This paper is currently in review for publication in the Journal of Smart Materials and Structures 



4 

 

used to train data to the input-output map of the system (Filev 1991). This nonparametric approach is 

useful to SI to bridge the gap between the linear and nonlinear parts of the system. This has successfully 

been done with neural networks as well as fuzzy logic systems. Furthermore, the incorporation of the two 

systems provides a better learning model to use for SI. 

The first system that is commonly used as a nonparametric method, a fuzzy inference system, 

uses fuzzy set theory to create a set of rules with which the system must follow. It is effective in showing 

the complexities that arise from nonlinearities and dynamic system uncertainties, described by Gu and 

Oyadiji (2008). Since the early work done by Zadeh (1965), fuzzy logic has been applied to many SI 

issues (Takagi and Sugeno 1985, Yan and Langari 1998, Kim et al 2011). A number of studies on Takagi-

Sugeno (TS) fuzzy models have been conducted in recent years, and the results provide an effective 

representation of nonlinear systems with the aid of fuzzy sets, fuzzy rules, and a set of local linear models 

(Adeli and Samant 2000, Alhanafy 2007, Astrom and Eykhoff 1971, Filev 1991, Gopalakrishnan, et al 

2010, Johansen and Babuska 2003, Karim and Adeli 2002). Fuzzy logic theory in the field of large scale 

infrastructures has been mainly used for nonlinear fuzzy control system design, described by Guo et al 

(2011).  However, determination of the inherent parameters of a fuzzy inference system includes many 

trial and errors. Therefore, incorporating neural networks allow for automated adjustments of parameters 

throughout computation. 

Neural networks were created to imitate the cognitive mechanism of the human brain. The 

network is made up of linked nodes, where each node computes an output from its own input. The output 

of one node is then used as the input for the next node, and a link is created between each node.  Neural 

networks are able to learn throughout the computation by adjusting the parameters to improve 

performance at each node. This is a useful characteristic of neural networks because it is able to recognize 

patterns and adjust these parameters in order to better the end result and create a more accurate model.  

The neural network is useful to determine some of these incomplete measurements to create a full model 
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of the structure, which can be seen through Hung et al (2003). However, it is challenging to design and 

analyze the neural networks in a transparent way because it is a black box modeling framework.  

An integration of these nonparametric SI models can be made to create a new model, an adaptive 

neuro-fuzzy inference system (ANFIS). Its application to system identification has been researched by 

Faravelli et al (1996), Gu and Oyadiji (2008), and Jang et al (1997), but the application of an ANFIS 

model to the system identification of civil engineering structures is still a relatively new research topic, 

with work being done by Alhanafy (2007), Faravelli et al (1996), Gopalakrishnan et al (2010), Jalili-

Kharaajoo (2004), and Wang (2010).  The only structural limitation of this system is that the network 

configuration must be feedforward to avoid using more complex models.  The ANFIS system is able to 

use a nonlinear system from fuzzy inference systems as well as the adaptive knowledge from neural 

networks to create a more accurate model. Advantages of the ANFIS system is its ability to create a 

nonlinear mapping, its use of adjustable parameters, including the membership function (MF) type, the 

number of MFs, step size, and number of epochs. However, the ANFIS system includes long computation 

times that can become disadvantageous when dealing in real time. 

The incorporation of wavelet transforms to the ANFIS model creates a wavelet-based ANFIS 

model, or a WANFIS model. The inclusion of the wavelet transform as a means of filtering data greatly 

reduces computation times for the model, creating a model that outputs comparable results while 

computing in a fraction of the time. Commonly, Fourier transforms can be used to look at frequency 

domain responses in dynamics, commonly used for system identification, damage detection, and control 

systems.  A major disadvantage that occurs through the use of Fourier transforms for time-frequency 

resolutions are the fixed windows, meaning Fourier transforms are allowed to be used for the full scale 

time window, postulated by Thuillard (2001). However, when using this method in structural dynamics, 

the time frame is too large to use for real-time damage detection or structural control.  Using discrete 

wavelet transforms in place of Fourier transforms allow for an adjustable window function.  It is also used 

as a filtering method, where it is possible to filter out low or high frequencies, as shown by Thuillard 
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(2001). Wavelet transforms are a relatively new transformation method that has been developed and 

studied, as well as its inclusion with other methodologies such as fuzzy logic and neural networks (Adeli, 

Hojjat, and Kim 2004, Adeli and Karim 2000, Adeli and Samant 2000, Catalao et al 2010, Daubechies 

1992, Karim and Adeli 2002, Samant and Adeli 2000, 2001, and Wu and Adeli 2001). The methodology 

uses multiple levels of discrete wavelet transforms as a means of filtering and de-noising input data. 

Incorporating discrete wavelet transforms as a means of filtering to the ANFIS system creates the 

WANFIS system. This methodology has been researched and used in other engineering fields, such as 

water resource engineering, researched by Guo et al (2011), but is new for the system identification of 

smart structures, and creates a new model to use for system identification that is computationally 

efficient. First, the WANFIS identification model is described, followed by simulation results using an 

earthquake signal excitation. 

    

2.2. Wavelet-based adaptive neuro-fuzzy inference system (WANFIS)  

The WANFIS system incorporates a hybrid system to include portions of the wavelet transform, the 

neural network and fuzzy inference systems. This system is a nonlinear learning model that uses a least-

squares method as well as back-propagation methods to train the fuzzy inference system’s membership 

function and its included parameters based on the wavelet-based filtered input and output data sets.   

 

2.2.1. Takagi-Sugeno fuzzy model 

Takagi-Sugeno (TS) fuzzy model is the backbone for the proposed WANFIS control system. In 1985, 

Takagi and Sugeno suggested an effective way for modeling complex nonlinear dynamic systems by 

introducing linear equations in consequent parts of a fuzzy model, which is called TS fuzzy model 

(Takagi and Sugeno 1985). It has led to reduction of computational cost because it does not need any 
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defuzzification procedure. The fuzzy inference system used in the WANFIS model is of the TS fuzzy 

model form. Typically, it takes the form of 
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(2-1) 
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 fuzzy rule,    is the number of fuzzy rule,      are fuzzy sets centered at the j
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 ) can be any linear equation. Note that the Eq. (2-1) represents the 

j
th
 local linear subsystem of a nonlinear system, i.e., a linear system model that is operated in only a 

limited region. All of the local subsystems are integrated by blending operating regions of each local 

subsystem using the fuzzy interpolation method as a global nonlinear system 
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where   (   
 )  ∏      
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    and      
(   

 ) is the grade of membership of    
  in    . These 

parameters are optimized by the back propagation neural network. A typical architecture of fuzzy rules 

are shown in figure 2-1, which shows four membership functions and sixteen rules, whereas the model in 

this paper uses only two membership functions and four rules. 
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Figure 2-1. Typical fuzzy rules layout [20] 
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 The main challenge in using a fuzzy model is the optimization of the parameters of the model. 

Therefore, incorporating neural networks to create an adaptive neuro-fuzzy inference system allows for 

these parameters to be optimized during computation, which is explained below. 

 

2.2.2. ANFIS architecture 

The architecture of an ANFIS model typically looks similar to figure 1-2.  

 

Figure 2-2. ANFIS architecture 

 

This figure represents a two input, one output, and three MFs system. Each layer has particular tasks to 

complete before the data moves to the next layer. In layer 1, the function of the node is represented by 
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For a Gaussian MF used in this simulation,  
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where a1 and a2 are adjustable parameters of the Gaussian function. This MF is applied to each input in 

layer 1. Layer 2 then outputs the product of all inputs into layer 2, known as the firing strength 
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Layer 3 takes a ratio of these layer 2 firing strengths in order to normalize the layer 2 outputs, such that 

 

   
   

    
   ∑ ∏      

(   
 ) 

    ⁄ . (2-6) 

            

Layer 4 then applies a node function to the normalized firing strengths 
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where a3, a4, a5 are function parameters for the consequent. The last layer summates the layer inputs 
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The output of this system is then used in a hybrid learning algorithm to create a linear combination of the 

consequent parameters, a3, a4, a5. The key parameters for this simulation include the number of iterations, 

or epochs, the number of MFs and the type of MF, as well as the step size of the function. Types of MFs 

can vary from a generalized bell function, Gaussian functions, sigmoidal functions, trapezoidal function, 

as well as other forms. Each change of variables will yield different output results, shown by Filev (1991) 

and Kim et al. (2011). The fuzzy inference system sets up rules based on the number of MFs used in 

simulation. For a four MF system, the following fuzzy rules are set up and shown in figure 2-1, where 

   
  corresponds to y. Each number represents one of the sixteen fuzzy regions that are created through the 

use of four MF s in the ANFIS model.  The fuzzy region is defined by the premise, and the output is 

generated through the consequent.  

Although the ANFIS is very effective in modeling complex nonlinear systems, it requires much 

computational loads. Such a problem can be addressed through the integration of wavelet transform-based 

multi-resolution analysis framework.  

 

2.2.3. Wavelet transform 

Wavelet analysis began during the 1980s by Morlet, who discovered the use of wavelet analysis in signal 

processing, detailed by Thuillard (2001). It was created by modifying previous mathematical concepts 

such as Fourier analyses, where the time window is fixed to include the entirety of the signal. Wavelet 

theory began by bypassing this drawback of the Fourier analysis so that wavelet analysis used a variable 

time-window, allowing for scientists and engineers to look at a specific time frame of the signal for signal 

analysis.  Mathematicians working with filter theory were able to use this concept of wavelet analysis and 
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apply it to their field, and reconstruction filters were developed.  This meant that signals were able to be 

divided into sampled signals and then reconstructed into a signal that is equivalent to the original signal. 

Mallat (1989) created a fast wavelet decomposition algorithm to compute the wavelet coefficients using 

the wavelet filters, with one algorithm for decomposition of the signal and another algorithm for the 

reconstruction to the equivalent signal. Being able to reconstruct a signal using these algorithms provides 

the ability for data compression and noise reduction, shown by Thuillard (2001).  

 Fourier transforms and its modifications, such as short-time Fourier transforms and fast Fourier 

transforms, use a fixed time-frequency resolution, causing an issue in many engineering applications, 

mainly an inability to see low or high frequency portions of the window when viewing the entire window. 

A continuous wavelet transform was developed from the Fourier analysis, such that: 

 

           √ ∫        

 

  

(
   

 
)    (2-9) 

 

where a is a scaling factor, b is the width of the window in the time domain, and   is the wavelet 

function. From the continuous wavelet transform, the discrete wavelet transform can be derived, and is 

given as: 

 

   
       ⁄  ∑     
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and the original signal,     , can be recalculated from the wavelet function using 
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  (2-11) 
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where l is the location index, s is the scale index, and   is the mother function. Using discrete wavelet 

transforms allows for the isolation of high frequency components from the signal at the time they occur. 

This results in a signal of low frequency components with continuous magnitudes. In order to look at both 

high and low frequency portions of the signal, multi-resolution analysis should be investigated. 

Multi-resolution analysis (MRA) was developed to decompose a function into slowly-varying and 

rapidly-varying segment signals, allowing for the divided function segments to be studied separately. This 

allows for a representation of the function at a single level of approximation by discretizing the function 

using the step size, and therefore significantly reducing the total number of data points needed to 

accurately represent the signal, which is also known as filtering the data signal. In essence, MRA 

decomposes a signal into multiple levels of resolution, or most commonly, into high frequency and low 

frequency resolutions.  Studying the low frequency components provides the main features of the signal, 

while features of the high frequency resolution component can be useful in fields such as damage 

detection (Thuillard 2001). The scaling function for the formulation of the wavelet transform in order to 

mathematically represent the MRA is 

        
 
 ⁄           (2-12) 

and the wavelet is given by  

        
 
 ⁄         , (2-13) 

where   is the scaling function. The scaling function is used to stretch or compress the function in the 

selected time domain. Any function       and       can be represented as the linear combination of 

        and        , respectively.  The functions               and               are developed from 

      , where Ws is called the wavelet subspace and is complimentary to As in As+1 such that the 

intersection of As and Ws does not exist and the summation of As and Ws creates As+1. A typical graphical 

representation of this MRA is shown in figure 2-3. 
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Figure 2-3. Wavelet transform-based multi-resolution analysis framework 

 

2.2.4. Wavelet-based ANFIS system identification 

The inclusion of discrete wavelet transforms allow for an effective method to rid responses of extraneous 

data, or noise.  This methodology uses Daubechie filters for low frequency decomposition in order to de-

noise response data that is then used as inputs to the ANFIS model. As mentioned earlier, the use of 

wavelet transforms allows for a fixed time-frequency resolution, meaning the window function is chosen, 

and then the resolution is fixed through processing. Representation of the function with several 

discretization steps allows for a reduction in the number of data points required for accurate 

representation of the system.  This model proposes the use of two levels of discrete wavelet transforms as 

a means of filtering as well as applying the ANFIS methodology to train to the control force of an optimal 

controller. The architecture of this proposed WANFIS system is depicted in figure 2-4.   
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Figure 2-4. WANFIS architecture 

 

Next, simulations were performed to train the WANFIS model to the nonlinear response of a three-story 

building equipped with a magnetorheological damper subjected to an artificial earthquake. Then, the 

model was validated using known earthquake signals, including the El-Centro, Kobe, Hachinohe, and 

Northridge earthquakes. 

 

2.3. Example 

To demonstrate the effectiveness of the wavelet-based adaptive neuro-fuzzy inference system (WANFIS) 

approach, a three-story building structure equipped with a magnetorheological (MR) damper is 

investigated.   

 

2.3.1 Magnetorheological (MR) Damper 

In recent years, smart structures have emerged from many engineering fields because the performance of 

structural systems can be improved without either significantly increasing the structure mass or requiring 
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high cost of control power. They may be called intelligent structures, adaptive structures, active 

structures, and the related technologies adaptronics, structronics, etc. The reason to use these 

terminologies is that a smart structure is an integration of actuators, sensors, control units, and signal 

processing units with a structural system. The materials that are commonly used to implement the smart 

structure: piezoelectrics, shape memory alloys, electrostrictive, magnetostrictive materials, polymer gels, 

magnetorheological fluid, etc., researched in detail by Hurlesbaus and Gaul (2006).  

Semiactive control systems have been applied to large structures because the semiactive control 

strategies combine favorable features of both active and passive control systems.  Semiactive control 

devices include variable-orifice dampers, variable-stiffness devices, variable-friction dampers, 

controllable-fluid dampers, shape memory alloy actuators, piezoelectrics, etc., as described by Hurlesbaus 

and Gaul (2006). In particular, one of the controllable-fluid dampers, magnetorheological (MR) damper 

has attracted attention in recent years because it has many attractive characteristics.   

In general, a MR damper consists of a hydraulic cylinder, magnetic coils, and MR fluids that 

consist of micron-sized magnetically polarizable particles floating within oil-type fluids as shown in 

figure 2-5.  

  
Figure 2-5. Schematic of the prototype 20-ton large-scale MR damper (Kim et al, 2009) 
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The MR damper is operated as a passive damper; however, when a magnetic field is applied to the MR 

fluids, the MR fluids are changed into a semi-solid state in a few milliseconds. This is one of the most 

unique aspects of the MR damper compared to active systems: the active control system malfunction 

might occur if some control feedback components, e.g., wires and sensors, are broken for some reasons 

during severe earthquake event; while a semiactive system is still operated as at least a passive damping 

system even when the control feedback components are not functioning properly. Its characteristics are 

summarized by Kim et al. (2009).  

To fully use the best features of the MR damper, a mathematical model that portrays the 

nonlinear behavior of the MR damper has to be developed first. However, this is challenging because the 

MR damper is a highly nonlinear hysteretic device. As shown in figure 2-6, determined by Spencer et al. 

(1997), the MR damper force 
MR ( )f t predicted by the modified Bouc-Wen model is governed by the 

following differential equations 

         ̇    (       )  (2-14) 

 ̇      |  ̇    ̇|   |   |        ̇    ̇ |   |      ̇    ̇  
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where     and   called evolutionary variables, describe the hysteretic behavior of the MR damper;    is 

the viscous damping parameter at high velocities;    is the viscous damping parameter for the force roll-

off at low velocities;                   ca1, and     are parameters that account for the dependence of the 

MR damper force on the voltage applied to the current driver;    controls the stiffness at large velocities; 

ka represents the accumulator stiffness;     is the initial displacement of the spring stiffness   ;  ,   and 

  are adjustable shape parameters of the hysteresis loops, i.e., the linearity in the unloading and the 

transition between pre-yielding and post-yielding regions;   and   are input and output voltages of a first-

order filter, respectively; and   is the time constant of the first-order filter.  

 

 Figure 2-6. Modified Bouc-Wen model of the MR damper 

 

Note that nonlinear phenomena occur when the highly nonlinear MR dampers are applied to structural 

systems for effective energy dissipation. Such an integrated structure-MR damper system behaves 

nonlinearly although the structure itself is usually assumed to remain linear. Therefore, the development 

of a mathematical model that portrays nonlinear behavior of the structure-MR damper system would play 

a key role in semiactive control system design. The MR damper parameters are provided in Table 2-1. 
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Table 2-1. Parameters of MR damper (Kim et all, 2009) 

Parameter Value Parameter Value 

    

 

21.0 N-s-cm
-1

 αa 140 Ncm
-1

 

    

 

3.50 N-s-cm
-1

V
-1

 αb 695 Ncm
-1

V
-1

 

   

 

46.9 Ncm
-1

 Γ 363 cm
-2

 

    

 

283 Nscm
-1

 Β 363 cm
-2

 

    

 

2.95 Nscm
-1

V
-1

 A 301 

   

 

5.00 Ncm
-1

 N 2 

    

 

14.3 cm Η 190 s
-1

 

 

 

2.3.2 Integrated structure-MR damper system 

A typical example of a building structure employing an MR damper is depicted in Figure 2-7.  
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Figure 2-7. A 3-story building employing an MR Damper 
 

Note that the MR damper can be installed at arbitrary locations within the building structure. Although 

the locations that the MR dampers are installed within the building can be optimized via optimization 

procedures, this issue is beyond the scope of this paper. The associated equation of motion is given by  

 

  ̈    ̇                  ̇          ̈   
(2-21) 

 

where:  ̈  denotes the ground acceleration,   the mass matrix,   the stiffness matrix,   the damping 

matrix, and the vector   the displacement relative to the ground,  ̇ the velocity,  ̈ the acceleration;    and 

  ̇ are the displacement and the velocity at the i
th
 floor level relative to the ground, respectively,    is the 

voltage level to be applied, and   and   are location vectors of control forces and disturbance signal, 

respectively. The second order differential equation can be converted into a state space model 
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 ̇                 ̇        ̈  

                 ̇       

 

(2-22) 

 

where 
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] (2-23) 

   [
 

    
] (2-24) 

   [
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   [
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   [
 
 
] (2-27) 

 

where   is the location matrix that Chevron braces are located within the building structure,   is the noise 

vector, and    and   ̇ are the displacement and the velocity at the i
th
 floor level of the three-story building 

structure, respectively.  Properties of the three-story building structure are adopted from Yang et al. 

(2002).  

 

2.3.3 Simulation 

To show the effectiveness of the WANFIS model for SI, a set of input-output data is generated for 

training from a seismically excited building structure equipped with an MR damper. An artificial 
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earthquake excitation signal and MR damper forces are applied to the smart structure to generate output 

data: displacement and acceleration. The parameters that affect the system are the MF type, number of 

MFs, step size, number of epochs, and the filter used.  This simulation uses a two-level wavelet filter to 

rid the signal of its noise.  

The architecture of the WANFIS model is determined via trial-and-error strategies: the number of 

MFs is chosen to be 2; Gaussian MFs are used as the design variables, with a number of epochs of 200 

and a step size of 0.001, for the artificial earthquake signal. Figure 2-8 and figure 2-9 are shown for a 

graphical representation of the input forces from the artificial earthquake signal and the MR damper, 

respectively.  

 

Figure 2-8. Artificial earthquake signal 
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Figure 2-9. MR Damper force 

 

Figures 2-10, 2-11, 2-12, and 2-13 show the earthquake signals for the four validation 

earthquakes.  

 

Figure 2-10. 1940 El-Centro earthquake signal 
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Figure 2-11. Kobe earthquake signal 
 

 

 
 Figure 2-12. Hachinohe earthquake signal 
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Figure 2-13. Northridge earthquake signal 
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Although the architecture of the WANFIS model can be optimized through an optimization procedure, it 

is beyond the scope of the present paper. The performance of the identified model can be improved by 

increasing either the number of MFs or the step size, resulting in greater accuracies between the training 

data and the dynamic signal. However, these increased parameters (i.e., overtraining) may not be an 

efficient approach for validating the developed model using other data sets.  Furthermore, it is not 

guaranteed that the larger number of MFs, the better performance of the WANFIS system. 

Figure 2-14 depicts the comparison of the dynamic response of the original simulation model 

with that of the identified WANFIS model using an artificial earthquake signal. Note that the original 

simulation model means an analytic model of the building equipped with an MR damper.  

 

Figure 2-14. Comparison of dynamic responses of simulation data and training data (Artificial 

earthquake) 
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As seen, overall good agreements between the original values and the identified WANFIS models are 

found in the dynamic responses. As discussed previously, the performance of the WANFIS model can be 

improved by increasing input parameters, which can also significantly increase computation time. Figures 

2-15. 2-16, 2-17, and 2-18 show comparisons of the actual accelerations of the third story and the 

response obtained from validation for each of the four validating earthquakes, El-Centro, Kobe, 

Hachinohe, and Northridge.  

 

Figure 2-15. Comparison of dynamic responses of simulation data and validation data (El-Centro 

earthquake) 
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Figure 2-16. Comparison of dynamic responses of simulation data and validation data (Kobe 

earthquake)  
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Figure 2-17. Comparison of dynamic responses of simulation data and validation data 

(Hachinohe earthquake) 
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Figure 2-18. Comparison of dynamic responses of simulation data and validation data 

(Northridge earthquake) 
 

It is shown from the figures that the validation responses correlate well with the actual accelerations, 

meaning that the proposed WANFIS model is effective in modeling the nonlinear dynamic response of a 

structure employing an MR damper. 

In order to quantify the error and relationship between the trained model and the actual response 

of the structure, a root mean square error (RMSE) is obtained.  It can be formulated into an equation as 

 

      ̃   ̂   (2-28) 
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where  ̂ is the estimation,  ̃ is the actual structural response data, and N is the number of data points. 

Another index to use can be formulated as 

 

   [   
 ̃   ̂

 ̃   ̅
]      (2-29) 

 

where  ̅ is the mean value of the actual structural response data,  ̃. Note that if the WANFIS model 

produces the same responses as the simulation model, the fitting rate J2 is 100. The training results of the 

artificial earthquake and responses are provided in Table 2-2.  

Table 2-2. Training errors and times 

System 
Training 

Time (sec) 

Max RMSE 

(cm/s
2
) 

Min RMSE 

(cm/s
2
) 

Mean RMSE 

(cm/s
2
) 

[    
|   |

|   |
]       

ANFIS 4815.120 1824.5 0.7203 1032.2 83.137 

WANFIS1 1392.174 1823.2 1.2704 972.2 81.193 

WANFIS2 445.812 1839.9 2.8403 1028.4 86.125 
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The WANFIS2 model is optimized using the artificial earthquake signal, with a total training time of 

7.4302 minutes, or 445.812 seconds. It is also found that the fitting rate J2 of the WANFIS model is better 

than the ANFIS model. The validation errors are provided in Table 2-3 for each earthquake.  

 

Table 2-3. Validation of the trained model 

WANFIS 2 System El-Centro Kobe Northridge Hachinohe 

Max. RMSE (cm/s
2
) 9.2476 16.4820 26.5756 3.8991 

Min. RMSE (cm/s
2
) 0.0026 0.0068 0.0084 0.0034 

Mean RMSE (cm/s
2
) 9.7961 10.1886 5.5438 0.8987 

[    
|   |

|   |
]       82.160 69.199 57.667 68.652 

 

Although for the training data, the ANFIS model resulted in a slightly better RMSE value, the WANFIS2 

model is preferred due to the more favorable computation times, quantified as roughly 90% less 

computation time. For validation purposes, the WANFIS2 model resulted in a lower RMSE value for 

each of the four validation earthquakes than the ANFIS model. 

 

2.4. Conclusion 

 

In this paper, a novel wavelet-based adaptive neuro-fuzzy inference system (WANFIS) is proposed for 

nonlinear system identification of seismically-excited smart building structures that are equipped with 

magnetorheological (MR) dampers. The WANFIS is an integrated model of Takagi- 
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Sugeno fuzzy model, wavelet transforms, and artificial neural networks. Using a WANFIS system 

combines the positive attributes of the three described methodologies to create a system that is believed to 

yield more efficient results for system identification of smart structures and shorter training times. To 

train the input-output mapping function of the WANFIS model, an artificial earthquake signal and an MR 

damper force signal are used as a disturbance input signal and a control input, respectively, while 

acceleration response is used as output data. This approach can be applied to an integrated model of a 

primary building structure and nonlinear MR devices without decoupling the identification procedure of 

the highly nonlinear MR damper from that of the primary building structure. It is demonstrated from the 

simulation that the proposed WANFIS model is effective in identifying the nonlinear behavior of the 

seismically excited building-MR damper system while shortening the training time typical of an ANFIS 

model.  

The nonlinear system identification framework for identifying nonlinear behavior of the smart 

building-MR damper systems addressed in this paper has been demonstrated numerically. Further 

research is recommended to verify the effectiveness of the proposed methodologies experimentally. 
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3. Wavelet-Neuro-Fuzzy Control of Hybrid Building-ATMD 

System under Seismic Excitations
2
 

3.1.  Introduction 

 

An important aspect of structural dynamics is the mitigation of detrimental structural responses 

when a structure is subjected to a forced excitation.  During a dynamic loading event, such as an 

earthquake or strong winds, structures may experience large displacements, velocities, and 

accelerations that can become detrimental to the integrity of the structure.  Loss of structural 

integrity in a building or a bridge, for example, may be caused by excessive cracks and strength 

degradation and could result in severe damage or collapse to local elements or the structure as a 

whole.  Because of the severe ramifications that may result from earthquake acting on a 

structure, control devices can be mounted in a building in order to reduce the structural response 

and create a system that will function adequately and safely following a seismic event. These 

devices induce a force into the structure in order to offset the internal forces and accelerations 

that the structure experiences during an earthquake. 

Control systems are typically divided into three categories: passive control systems, 

active control systems, and hybrid control systems.  Passive control systems include devices that 

are installed during the construction of the structure and may not be modified throughout the 

structure’s lifetime.  They are always on-line, meaning that the force exerted from the passive 

control device is always being used as a dissipative energy input into the structural system 

without any use of electrical power.  Examples of passive control devices include base isolation 

                                                           
2 This paper has been accepted into the Journal of Vibration and Control. 
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systems and viscous fluid dampers, which are common in structures equipped with control 

systems since they are easy to implement and cost-effective.  Active control systems typically 

include actuators to input a force into the system in real-time, meaning the force is exerted 

during a seismic event.  The actuator force placed on the structure is time-varying, meaning that 

the magnitude and/or frequencies of the force changes in time, depending on the magnitude of 

the external acceleration the structure is subjected to.  Therefore, if there is a malfunction with 

the device, the actuator will output an inappropriate force or no force at all, leaving the building 

exposed to large, uncontrolled responses, damage, or collapse.  

Due to the drawbacks of these two systems, hybrid control systems can be used to 

incorporate the positive attributes of both passive and active control systems.  These systems 

have passive control devices to constantly keep the structure on-line and provide a means of 

control if an issue arises with the active and/or semiactive control device, which uses a tuned 

mass damper with an actuator.  This system is versatile and adaptable, able to adjust in real-time 

due to a control algorithm involved in the active control system.  Such hybrid control systems 

have been studied by many investigators (Housner et al. 1994; Kareem et al. 1999; Nishitani and 

Inoue 2001; Yang and Dyke 2003; Casciati 2003; Faravelli and Spencer et al. 2003; Kim and 

Roschke 2006; Kim and Roschke 2007; Ozbulut et al. 2011). In this study, the proposed hybrid 

control system consists of a tuned mass damper, viscous liquid dampers, and an actuator. The 

system involves a passive viscous liquid damper located on each floor, along with an active 

tuned mass damper (ATMD) placed on the top floor of the building.  The ATMD includes an 

actuator to create the active control portion of the hybrid control system, and the system uses a 

Wavelet-based Adaptive Neuro-Fuzzy Inference System (WANFIS) control algorithm.  This 

algorithm combines the effects of fuzzy logic theory and neural networks to create an adaptive 
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neuro-fuzzy inference system (ANFIS) system, and then is combined with wavelet theory to 

filter the response data.  This system is detailed further below. 

A fuzzy inference system uses fuzzy set theory to create a set of rules with which the 

system must follow, and is commonly used as a nonparametric identification method. It is 

effective in showing the complexities that arise from nonlinearities and dynamic system 

uncertainties (Kim et al., 2009a; Langari, 1999). Since Zadeh’s paper (Zadeh, 1965), fuzzy logic 

has been applied to many system identification (SI) issues (Takagi and Sugeno, 1985; Zadeh, 

1965; Kim and Langari, 2007; Kim et al., 2009b; Kim et al., 2011). A number of studies on 

Takagi-Sugeno (TS) fuzzy models have been conducted in recent years, and the results provide 

an effective representation of nonlinear systems with the aid of fuzzy sets, fuzzy rules, and a set 

of local linear models (Chen et al., 2007; Du and Zhang, 2008; Faravelli and Yao, 1996; 

Johansen, 1994; Johansen and Babuška, 2003; Takagi and Sugeno, 1985; Yager and Filev, 1993; 

Yan and Zhou, 2006; Kim et al. 2010a-b). However, one challenge of the fuzzy inference system 

is optimizing the parameters of the fuzzy model.  Therefore, the use of neural networks can be 

helpful. 

Neural networks were created to imitate the cognitive mechanism of the human brain. 

The network is made up of linked nodes, where each node computes an output from its own 

input. The output of one node is then used as the input for the next node, and a link is created 

between each node.  Neural networks are able to learn throughout the computation by adjusting 

the parameters to improve performance at each node. This is a useful characteristic of neural 

networks because it is able to recognize patterns and adjust these parameters in order to improve 

the end result and create a more accurate model.  The neural network is useful to determine some 

of these incomplete measurements to create a full model of the structure (Hung et al., 2003). A 
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main challenge with using neural networks is the amount of computation time that the model can 

take.  Wavelet transforms can be used as a means of filtering data and reducing the computation 

time, and is explained further below. 

The incorporation of wavelet transforms to the ANFIS model creates a wavelet-based 

ANFIS model, or a WANFIS model. Fourier transform can be used to look at frequency domain 

responses in dynamics, commonly used for system identification, damage detection, and control 

systems.  A major disadvantage that occurs through the use of Fourier transforms for time-

frequency resolutions are the fixed windows, meaning Fourier transforms are allowed to be used 

for the full scale time window.  However, when using this method in structural dynamics, real-

time time windows are looked at, and therefore the time frame is too large to use for damage 

detection or structural control. Using discrete wavelet transforms in place of Fourier transforms 

allow for an adjustable window function. It is also used as a filtering method, where it is possible 

to filter out low or high frequencies. In this study, the methodology uses two levels of discrete 

wavelet transforms as a means of filtering and de-noising input data.   

This proposed WANFIS system as a control algorithm is new to the field of control 

systems for hazard mitigation of large infrastructures.  Previously, fuzzy logic controllers have 

been used and researched (Ahlawat and Ramaswamy, 2002). From this, ANFIS controllers were 

used (Gu and Oyadiji, 2008; Hashim et al., 2004), but using a WANFIS controller in place of 

ANFIS controllers provide much shorter computation times. The proposed WANFIS control 

algorithm has many contributions, including dramatically reducing computation times from a 

standard ANFIS system, require less feedback information compared to full state feedback 

controllers and, as a result, less sensors in the structure, and better structural performance in 
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comparison to other commonly used control systems. First, the WANFIS model is described, 

followed by simulation results using a variety of earthquake signal excitations.      

 

3.2. Wavelet-based adaptive neuro-fuzzy inference system (WANFIS)  

 

The WANFIS system incorporates a hybrid system to include portions of the wavelet transform, 

the neural network and fuzzy inference systems. This system uses a least-squares method as well 

as back-propagation methods to train the fuzzy inference system’s membership function and its 

included parameters based on the wavelet-based filtered input and output data sets.   

3.2.1. Takagi-Sugeno fuzzy model 

Takagi-Sugeno (TS) fuzzy model is the backbone for the proposed WANFIS control system. In 

1985, Takagi and Sugeno suggested an effective way for modeling complex nonlinear dynamic 

systems by introducing linear equations in consequent parts of a fuzzy model, which is called TS 

fuzzy model. It has led to reduction of computational cost because it does not need any 

defuzzification procedure. The fuzzy inference system used in the WANFIS model is of the TS 

fuzzy model form (Kim et al., 2009a). Typically, it takes the form of 

 

          
                 

                 
           

         (   
       

 )                   
(3-1) 

 

where    is the j
th

 fuzzy rule,    is the number of fuzzy rule,      are fuzzy sets centered at the j
th

 

operating point, and    
   are premise variables that can be either input or output values. The 
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equation of the consequent part    (   
       

 ) can be any linear equation. Note that the Eq. 

(1) represents the j
th

 local linear subsystem of a nonlinear system, i.e., a linear system model that 

is operated in only a limited region. All of the local subsystems are integrated by blending 

operating regions of each local subsystem using the fuzzy interpolation method as a global 

nonlinear system 
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where   (   
 )  ∏      

(   
 ) 

    and      
(   

 ) is the grade of membership of    
  in    . 

These parameters are optimized by the back propagation neural network. A typical architecture 

of fuzzy rules is shown in figure 3-1, which shows four membership functions and sixteen rules, 

whereas the model in this paper uses only two membership functions and four rules. 

 

Figure 3-1. Typical fuzzy rules layout (Jang et al., 1997) 
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 The main challenge in using a fuzzy model is the optimization of the parameters of the 

model. Therefore, incorporating neural networks to create an adaptive neuro-fuzzy inference 

system allows for these parameters to be optimized during computation, which is explained 

below. 

3.2.2. ANFIS architecture 

The architecture of an ANFIS model typically looks similar to figure 3-2.  

 

Figure 3-2. ANFIS architecture 

 

This figure represents a two input, one output, and three membership functions (MF) system. 

Each layer has particular tasks to complete before the data moves to the next layer. In layer 1, the 

function of the node is represented by 
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 )      (3-3) 

 

For a Gaussian MF used in this simulation,  

     
(   

 )      [ 
      

 

   
 ]               (3-4) 

 

where a1 and a2 are adjustable parameters of the Gaussian function.  This MF is applied to each 

input in layer 1. Layer 2 then outputs the product of all inputs into layer 2, known as the firing 

strength 
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 ).                (3-5) 

 

Layer 3 takes a ratio of these layer 2 firing strengths in order to normalize the layer 2 outputs, 

such that 
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    ⁄ . (3-6) 

           

Layer 4 then applies a node function to the normalized firing strengths 
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where a3, a4, a5 are function parameters for the consequent. The last layer summates the layer 

inputs 

 



42 

 

   
  

∑ ∏      
(   

 )[  (   
       

 )] 
    

∑ ∏      
(   

 ) 
    

             (3-8) 

 

The output of this system is then used in a hybrid learning algorithm to create a linear 

combination of the consequent parameters, a3, a4, a5. The key parameters for this simulation 

include the number of iterations, or epochs, the number of MFs and the type of MF, as well as 

the step size of the function. Types of MFs can vary from a generalized bell function, Gaussian 

functions, sigmoidal functions, trapezoidal function, as well as other forms. Each change of 

variables will yield different output results (Jang, 1993; Yang and Lin, 2005). The fuzzy 

inference system sets up rules based on the number of MFs used in simulation. For a four MF 

system, the following fuzzy rules are set up and shown in figure 3-1. Each number represents one 

of the sixteen fuzzy regions that are created through the use of four MFs in the ANFIS model.  

The fuzzy region is defined by the premise, and the output is generated through the consequent.  

Although the ANFIS is very effective in modeling complex nonlinear systems, it requires 

substantial computational loads. Such a problem can be addressed through the integration of 

wavelet transform-based multi-resolution analysis framework.  

3.2.3. Wavelet transform 

Wavelet analysis began during the 1980s by Morlet, who discovered the use of wavelet analysis 

in signal processing (Thuillard, 2001). It was created by modifying previous mathematical 

concepts such as Fourier analyses, where the time window is fixed to include the entirety of the 

signal. Wavelet theory began by bypassing this drawback of the Fourier analysis so that wavelet 

analysis used a variable time-window, allowing for scientists and engineers to look at a specific 

time frame of the signal for signal analysis.  Mathematicians working with filter theory were able 
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to use this concept of wavelet analysis and apply it to their field, and reconstruction filters were 

developed.  This meant that signals were able to be divided into sampled signals and then 

reconstructed into a signal that is equivalent to the original signal. Mallat (1989) created a fast 

wavelet decomposition algorithm to compute the wavelet coefficients using the wavelet filters, 

with one algorithm for decomposition of the signal and another algorithm for the reconstruction 

to the equivalent signal. Being able to reconstruct a signal using these algorithms provides the 

ability for data compression and noise reduction. 

 Fourier transforms and its modifications, such as short-time Fourier transforms and fast 

Fourier transforms, use a fixed time-frequency resolution, causing an issue in many engineering 

applications, mainly an inability to see low or high frequency portions of the window when 

viewing the entire window. A continuous wavelet transform was developed from the Fourier 

analysis, such that: 

 

           √ ∫         

  
(
   

 
)       (3-9) 

 

where a is a scaling factor, b is the width of the window in the time domain, and   is the wavelet 

function. From the continuous wavelet transform, the discrete wavelet transform can be derived, 

and is given as: 

 

   
       ⁄  ∑                     (3-10) 

 

and the original signal,     , can be recalculated from the wavelet function using 
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               (3-11) 

 

Using discrete wavelet transforms allows for the isolation of high frequency components from 

the signal at the time they occur. This results in a signal of low frequency components with 

continuous magnitudes. In order to look at both high and low frequency portions of the signal, 

multi-resolution analysis should be investigated (Taha and Reda, 2004). 

Multi-resolution analysis (MRA) was developed to decompose a function into slowly-

varying and rapidly-varying segment signals, allowing for the divided function segments to be 

studied separately. This allows for a representation of the function at a single level of 

approximation by discretizing the function using the step size, and therefore significantly 

reducing the total number of data points needed to accurately represent the signal, which is also 

known as filtering the data signal. In essence, MRA decomposes a signal into multiple levels of 

resolution, or most commonly, into high frequency and low frequency resolutions.  Studying the 

low frequency components provides the main features of the signal, while features of the high 

frequency resolution component can be useful in fields such as damage detection (Sharifi et al., 

(2011). The scaling function for the formulation of the wavelet transform in order to 

mathematically represent the MRA is 

        
 
 ⁄              (3-12) 

and the wavelet is given by  

        
 
 ⁄         ,          (3-13) 

where l is the location index, s is the scale index,   is the mother function, and   is the scaling 

function. The scaling function is used to stretch or compress the function in the selected time 

domain. Any function       and       can be represented as the linear combination of         
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and        , respectively.  The functions               and               are developed 

from       , where Ws is called the wavelet subspace and is complimentary to As in As+1 such 

that the intersection of As and Ws does not exist and the summation of As and Ws creates As+1. A 

typical graphical representation of this MRA is shown in figure 3-3. 

 

Figure 3-3. Wavelet transform-based multi-resolution analysis framework 

 

3.2.4. Wavelet-based ANFIS control system 

The inclusion of discrete wavelet transforms allow for an effective method to rid the control 

system of extraneous data, or noise.  This methodology uses Daubechie filters for low frequency 

decomposition in order to de-noise response data that is then used as inputs to the ANFIS model. 

As mentioned earlier, the use of wavelet transforms allows for a fixed time-frequency resolution, 

meaning the window function is chosen, and then the resolution is fixed through processing. 

Representation of the function with several discretization steps allows for a reduction in the 

number of data points required for accurate representation of the system.  This model proposes 

the use of two levels of discrete wavelet transforms as a means of filtering as well as applying 
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the ANFIS methodology to train to the control force of an optimal controller. The architecture of 

this proposed WANFIS system is depicted in figure 3-4.   

 

Figure 3-4. WANFIS architecture 

The WANFIS algorithm is a two-input, one-output system to determine the control force of an 

actuator. For this study, the inputs to the WANFIS system were displacement and acceleration 

measurements. These were determined through an iterative process to maximize the results from 

training of the system, where velocity and drift responses were also studied to find the 

combination with the most favorable results.  

The linear quadratic regulator (LQR) controller is first designed such that it guarantees 

the bounded input bounded output (BIBO) stability of the closed loop control system, and the 

WANFIS control system has been developed using a set of input and output data obtained from 

the LQR controller. It can be inferred that the proposed WANFIS control system can be BIBO 

stable if the WANFIS predicts the behavior of the LQR control system well. The proposed 
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control system can also be designed such that the structure system is globally asymptotically 

stable using parallel distribution compensation technique (Kim et al. 2009a). Next, simulations 

were performed on an eight-story building employing viscous fluid dampers and an active tuned 

mass damper to successfully reduce the seismic responses. 

3.3. Example 

 

To demonstrate the effectiveness of the wavelet-based adaptive neuro-fuzzy inference system 

(WANFIS) controller, an eight-story building structure equipped with passive fluid viscous 

dampers and an active tuned mass damper is investigated.   

3.3.1. Building equipped with ATMD and viscous liquid dampers 

In this study, an eight-story shear type building structure is investigated. The reason to choose 

this example is that it has been used as a benchmark problem by a number of researchers (Yang 

1982; Yang et al. 1987; Soong 1990; Spencer et al. 1994; Kim et al. 2010b). The structure of 

interest is equipped with viscous fluid dampers located on each floor and an active tuned mass 

damper located on the eighth story. The associated equation of motion is given by  

  ̈    ̇               ̇   ̈         ̇        ̈   (3-14) 

 

where    and    are the actuator and viscous liquid damper forces, respectively;  ̈  denotes the 

ground acceleration,   the mass matrix,   the stiffness matrix,   the damping matrix, and the 

vector   the displacement relative to the ground,  ̇ the velocity,  ̈ the acceleration;  ̇       ̈   are 

the velocity and the acceleration at the 8
th

 floor level relative to the ground, respectively,   ̇ is 

the velocity at the n
th

 floor, and   and   are location vectors of control forces and disturbance 
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signal, respectively. This equation of motion and its relation to the building structure can be seen 

in figure 3-5.  

 

Figure 3-5. Configuration of the WANFIS feedback control system 

The second order differential equation can be converted into a state space model 

 ̇             ̇   ̈        ̇     ̈ 

             ̇   ̈        ̇   , 
(3-15) 
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   [
 
 
] (3-20) 

 

  is the location matrix that locates Chevron braces within the building structure, and   is the 

noise vector.  Properties of the eight-story building structure are adopted from (Yang et al., 

2002). 

 

3.3.2. Simulation 

 

The simulations begin by determining the structural responses from an eight-story building 

structure of known parameters, shown in figure 3-6 along with the other control systems that a 

studied.  

 

(a) Viscous damping        (b) TMD system              (c) ATMD system           (d) Hybrid ATMD  

Figure 3-6. Configuration of the 8-story building equipped with different control systems 
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The building is subjected to an artificial earthquake signal that incorporates aspects of the El-

Centro, Kobe, Hachinohe, and Northridge earthquakes, shown in figure 3-7.  

 

Figure 3-7. Artificial earthquake signal 

 

Each floor of the eight-story building has the following structural properties: floor mass of 

345,600 kg, internal stiffness of 340,400 kN/m, and internal damping coefficient of 2,937 tons/s.  

The WANFIS controller is essentially used to emulate the performance of a full state 

feedback controller linear quadratic regulator (LQR) controller, without the use of all necessary 

sensors that the LQR requires. Creating the hybrid control system, the parameters of the active 

tuned mass damper (ATMD) were determined. This system was found to use an optimized mass 

of the TMD of 1.5% of the total mass of the structure, along with a stiffness of 0.47% of the 

structural stiffness of a floor. A normalization curve of the mass ratio is provided in figure 3-8.  
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Figure 3-8. Mass ratio optimization of TMD 

 

Using a genetic algorithm to determine the parameters of the TMD system was also explored 

(Cha and Kim 2012a-c). These parameters resulted in a mass ratio of 1.17%, along with a TMD 

stiffness of 1,214,217.877 kN/m and damping of 2,744.888 kN-s/m. However, it is noted that 

these parameters did not provide favorable results in the ATMD system, so the analytically 

optimized ATMD parameters of 1.5% of the total mass and 0.47% of the floor stiffness were 

used for simulations. From this, the WANFIS controller trained the input responses to the control 

force that would result from the use of the LQR controller. Membership functions prior to 

training and following training are provided in figure 3-9 to depict the training of the fuzzy 

model of the WANFIS system.  
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Figure 3-9. Membership functions before and after training 

As mentioned previously, the WANFIS controller has an advantage over the ANFIS system in 

that it results in a smaller computation time. Table 3-1 provides the resulting eighth story 

displacement and acceleration responses of the ANFIS and WANFIS systems, including their 

computation times. Comparison to an ANFIS algorithm in the same control system and building 

resulted in a more reduced displacement and acceleration, as well as a computation time of 30.67 

minutes for the ANFIS controller compared to 6.04 minutes for the WANFIS controller, 

successfully saving computation time while still maintaining comparable and adequate results. 

This structure resulted in an eighth-story displacement of 54.80 cm and an acceleration of 2330.2 

cm/s
2
 when no control system was employed, as well as a maximum interstory drift of 10.54 cm. 

As seen in Table 3-1, the WANFIS algorithm included in the hybrid control system provided an 

eighth-story displacement of 34.14 cm and an acceleration of 2177.8 cm/s
2
, as well as a 

maximum interstory drift of 6.9 cm. Comparison to an LQR controller for the same building 
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resulted in a slightly greater eighth-story displacement and slightly lesser acceleration, but uses 

only two sensors compared to the necessary sixteen sensors required for an LQR controller to be 

used. Figures 3-10 and 3-11 provide time-history responses of the top floor, as well as the 

interstory responses of the structure.   

 
Figure 3-10. Time history responses: artificial earthquake 
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Figure 3-11. Maximum interstory responses: artificial earthquake 

 

The proposed control system, WANFIS, is compared to an active and passive controller, as well 

as the uncontrolled response. It is shown from the figures that the proposed WANFIS control 

system is effective in reducing the seismic responses of high-rise building structures, which can 

be seen from the resulting values in Table 3-1.  

Table 3-1. Performance comparison of ANFIS and WANFIS on the artificial earthquake 

Hybrid Control 

System 

Top Floor Responses 
Training Time (sec) 

Displacement (cm) Acceleration (cm/s
2
) 

ANFIS 34.05 2179.0 1,840.2 

WANFIS 34.14 2177.8 362.4 

 

Validation of the WANFIS methodology was performed using the 1940 El-Centro 

earthquake, as well as signals of the Kobe, Hachinohe, and Northridge earthquakes.  Figures 3-
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12, 3-13, 3-14, and 3-15 provide the selected time-history response of eighth story displacement 

and the interstory responses of acceleration, shear, drift, and displacement for the El-Centro and 

Kobe earthquake signals.  

 

Figure 3-12. Time history responses: 1940 El-Centro earthquake 
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Figure 3-13. Maximum interstory responses: 1940 El-Centro earthquake 

 

 

Figure 3-14. Time history responses: Kobe earthquake 
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Figure 3-15. Maximum interstory responses: Kobe earthquake 

 

To further determine the effectiveness of the proposed hybrid control system, 

performance criteria, presented by Spencer et al (1998), were used and detailed below. The 

results are provided in Table 3-2 for each of the earthquakes used for validation.  
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where       is the time history of displacement of the i
th

 floor of the control system, xu,max is the 

maximum displacement of the uncontrolled system, | | denotes the absolute value,       is the 

time history of drift of the i
th

 floor of the controlled system,    is the height of the i
th

 floor,  

       is the maximum interstory drift of the uncontrolled system,   ̈    is the time history of 

acceleration of the i
th

 floor of the control system,  ̈      is the maximum acceleration of the 

uncontrolled system,    is the mass of the i
th

 floor,        is the maximum shear force of the 

uncontrolled system, and ‖ ‖ denotes the maximum normed value. 
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Table 3-2. Performance comparison of several control systems under a variety of earthquakes 

Index Artificial El-Centro Hachinohe Northridge Kobe Ave. Max 

 Dampers 0.8588 0.9031 0.8686 0.9703 0.9524 0.9106 0.9703 

J1 TMD 0.6517 0.9151 0.9884 0.9925 0.9029 0.8901 0.9925 

 WANFIS 0.6229 0.7949 0.8795 0.9622 0.8637 0.8246 0.9622 

 Dampers 0.8741 0.9064 0.8399 0.9645 0.9472 0.9064 0.9645 

J2 TMD 0.6476 0.9802 0.9734 0.9735 0.9021 0.8954 0.9802 

 WANFIS 0.6543 0.8505 0.8326 0.9376 0.8581 0.8266 0.9376 

 Dampers 0.9554 0.9320 0.9745 0.9842 0.9730 0.9638 0.9842 

J3 TMD 0.8836 0.6802 1.0137 0.9674 0.9368 0.8963 1.0137 

 WANFIS 0.8698 0.6624 0.9812 0.9529 0.9164 0.8765 0.9812 

 Dampers 0.9484 0.9528 0.9730 0.9763 0.9656 0.9632 0.9763 

J4 TMD 0.8696 0.8002 1.0188 0.9795 1.0647 0.9446 1.0647 

 WANFIS 0.8390 0.7843 0.9853 0.9596 1.0217 0.9180 1.0217 

 Dampers 0.8593 0.9040 0.8493 0.9675 0.9515 0.9063 0.9675 

J5 TMD 0.6439 0.9299 0.9838 0.9806 0.9040 0.8884 0.9838 

 WANFIS 0.6251 0.8079 0.8551 0.9479 0.8640 0.8200 0.9479 

 Dampers 0.8594 0.9038 0.8508 0.9670 0.9516 0.9065 0.9670 

J6 TMD 0.6442 0.9284 0.9837 0.9799 0.9040 0.8880 0.9837 

 WANFIS 0.6257 0.8066 0.8570 0.9467 0.8641 0.8200 0.9467 

 Dampers 0.9478 0.9482 0.9738 0.9780 0.9687 0.9633 0.9780 

J7 TMD 0.8585 0.7781 1.0179 0.9779 1.0306 0.9326 1.0306 

 WANFIS 0.8384 0.7621 0.9852 0.9594 0.9924 0.9075 0.9924 

 Dampers 0.9463 0.9458 0.9744 0.9787 0.9688 0.9628 0.9797 

J8 TMD 0.8576 0.7596 1.0177 0.9779 1.0227 0.9271 1.0227 

 WANFIS 0.8387 0.7424 0.9856 0.9601 0.9866 0.9027 0.9866 

 

 

 Using these indices, it is shown that the proposed WANFIS hybrid control system results 

in lower structural responses than the TMD system and passive control system for the artificial, 

El-Centro, Kobe, and Northridge earthquakes, as well as the lowest average index result for each 

of the eight indices taken into consideration. Through the values provided in Table 3-2, it can be 

seen that the displacement resulting from the proposed wavelet-based hybrid control system is an 

average of 9.44% and 7.36% lower than the passive and active control systems, respectively. 

Also, the accelerations of the hybrid control system are 9.06% and 2.20% lower than the passive 

and active control systems, respectively. Each index resulted in an average response lower than 
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that of the other two systems. It can also be shown from Table 3-2, the performance of Dampers 

is better than the proposed WANFIS control system in term of J4, J7, and J8, which are functions 

of accelerations. The reason would be inferred from the fact that viscous liquid dampers do not 

input external energy to closed loop control system of a structure equipped with passive control 

devices, while an ATMD systems input an external energy generated by actuators to the 

structural system. Such energy can lead to increasing acceleration responses. However, it is noted 

that WANFIS system produces better performance than Dampers for most cases, excluding the 

cases listed above. 

 

3.4. Conclusion 

 

In this paper, a novel wavelet-based adaptive neuro-fuzzy inference system (WANFIS) is 

proposed for design of a hybrid control system for vibration control of buildings subject to 

earthquake loads. It is developed through the integration of neural networks, fuzzy logic theory, 

and wavelet transform algorithms. To train the WANFIS model, an artificial earthquake is used, 

which incorporated characteristics from various earthquake signals, while four different 

earthquake records are used to validate the developed model. To demonstrate the effectiveness of 

the proposed WANFIS control system, an eight-story building equipped with an actuator, a tuned 

mass damper, and passive viscous liquid dampers is investigated. It is shown from the simulation 

that the proposed control system uses use fewer sensors in the building than full state feedback 

controllers and also experiences less computation time than the ANFIS control algorithm with 

comparable resulting responses.   
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4. Active Control of Highway Bridge Under A Variety of Seismic 

Excitations 

4.1. Introduction 

With the continued deterioration of infrastructure in the United States, the need for healthy 

structures able to maintain their strength and serviceability throughout the length of their design 

life has become very important in structural engineering. Control systems can often be employed 

as a part of a structure in order to help the bridge or building act against lateral forces, such as 

strong wind and earthquake events. These events can vary greatly over time, creating a dynamic 

loading that may cause large, time-varying displacements, velocities, and accelerations on the 

structure, and these effects can impact the structure’s health. The large structural responses can 

create or increase cracks and degrade the overall and local strength, eventually leading to 

damage or collapse.  

 Control systems are becoming increasingly researched and used on civil engineering 

structures to decrease and limit the responses of a building or bridge during a seismic event. 

Control systems utilize devices that apply a force to a structure that offsets internal forces, 

displacements, and accelerations that are created during seismic events. Two common forms of 

control systems are passive and active control. Passive control systems, such as viscous liquid 

dampers or base isolators, are devices designed and installed on a structure during construction, 

and implement a single control force during a dynamic loading event. Because they are installed 

during construction, it is very difficult and sometimes impossible to modify the device during the 

lifetime of a structure, but they are always on-line, always outputting a force when subjected to a 

loading. These devices are relatively inexpensive to design and implement, but are unable to 
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output a time-varying force during a dynamic event. Active control systems are time-dependent 

control devices, such as actuators and smart dampers. These devices are able to determine 

control forces in real-time, depending on the magnitude of the applied loadings on the structure. 

These systems are becoming more common, as being able to calculate actuator forces over time 

can provide much better results, since the force can increase as the loading increases.  

Many control algorithms have been researched in the past, and the proposed algorithm, a 

wavelet-based adaptive neuro-fuzzy inference system (WANFIS), was created by combining 

discrete wavelet transforms with fuzzy logic theory and neural networks. The inclusion of 

wavelet transforms to the previously created ANFIS algorithm allows for a filtering of input 

data. The system will be detailed below. 

 The first model used as part of ANFIS and WANFIS systems is a fuzzy inference system 

(FIS). This system was developed through the use of fuzzy logic theory to create rules that the 

system follows. The FIS has a main advantage of being used as a nonparametric method for 

identification, and has been researched previously, including use in system identification (Zadeh, 

1965; Takagi and Sugeno, 1985; Kim and Langari, 2007; Kim et al, 2009b; Kim et al, 2011), as 

well as general studies into the uncertainties and complexities due to the dynamic system 

(Langari, 1999; Kim et al, 2009a). Using a Takagi-Sugeno (TS) model for fuzzy logic theory 

allows for a representation of nonlinear systems using fuzzy rules and local linear models 

(Takagi and Sugeno, 1985; Yager and Filey, 1993; Johansen, 1994; Faravelli and Yao, 1996; 

Johansen and Babuška, 2003; Yan and Zhou, 2006; Chen et al, 2007; Du and Zhang, 2008; Kim 

et al 2010). One disadvantage of using fuzzy inference systems as a model is the optimization of 

parameters, which can be very complex and computationally intensive, leading itself to the 

inclusion of neural networks. 
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The use of a neural network is to develop a learning mechanism that emulates that of the 

human brain, such that it creates a network of interlinked nodes. These nodes, being connected, 

compute an output from the input to the node, and create a series of links between all nodes. As 

mentioned previously, the use of a fuzzy inference system can be complex and difficult in 

computations. Using a neural network in combination with a fuzzy inference system can create a 

model that is more efficient. The neural network adjusts parameters throughout the entirety of 

computation, which improve performances and decreases errors of the system. As it emulates the 

human brain and its cognitive mechanism, it is able to learn patterns and make adjustments as 

needed to further create a more improved model, and it has been studied previously to create a 

full model structure (Hung et al, 2003). However, due to the complexities of the neural networks, 

computation times can become excessive. Therefore, wavelet transforms can be used in 

conjunction with the combined fuzzy inference system and neural networks to filter input data 

and decrease computation times. 

Wavelet transforms, combined with the ANFIS model, leads to the creation of a wavelet-

filtered adaptive neuro-fuzzy inference system, or WANFIS. The wavelet transform can be used 

to filter out high or low frequency components from a data series. The wavelet transform 

improves upon previous methods due to its ability to incorporate an adjustable window function, 

allowing a user to analyze particular data points in a time series, rather than the entire time 

window, which is the case with Fourier transforms. Fourier transforms have been used 

previously for damage detection, system identification, and control systems, but require a fixed 

time-window for the entire data set. This can become difficult when analyzing data for long 

periods of time, as in the case in structural health monitoring, and can lead to missing key 

components, such as a particular damage point. The wavelet transform allows for an adjustable 
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window, and therefore provides an ability to look into any portion of a time series. Wavelet 

transforms can also be used as a means of filtering, which is critical in the use of the WANFIS 

model. As mentioned previously, the ANFIS system can require very long computation times 

due to the inclusion of neural networks and its ability to adjust and learn throughout the 

computation process. Being able to decrease the amount of data points while still maintaining the 

important components allows for a shorter computation time when compared to other systems. 

The proposed model uses two levels of discrete wavelet transforms for means of filtering data, 

which was optimized to create a balance between computation times and improved results. 

The creation of the WANFIS system for means of structural control and control force 

algorithm is innovative in its application to control systems for mitigation of structural responses 

of civil engineering structures. Fuzzy logic controllers (Ahlawat and Ramaswamy, 2002) and 

ANDIS controllers (Hashim et al., 2004; Gu and Oyadiji, 2008) have been researched previously 

but the creation of the new WANFIS system should provide for decreased computation times 

while maintaining performance. This proposed control algorithm also requires less feedback 

information from the structure in comparison to full state feedback controllers, meaning less 

sensors are required to be installed on the structure, while reducing the structural responses in 

comparison with control systems. The next section will describe the WANFIS system, followed 

by simulation results showing the effectiveness of this system when subjected to seismic 

excitations.  

 

4.2. Wavelet-based adaptive neuro-fuzzy inference system (WANFIS)  
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The WANFIS system incorporates a hybrid system to include portions of the wavelet transform, 

the neural network and fuzzy inference systems. This system uses a least-squares method as well 

as back-propagation methods to train the fuzzy inference system’s membership functions and its 

included parameters based on the wavelet-based filtered input and output data sets.   

4.2.1. Takagi-Sugeno fuzzy model 

Takagi-Sugeno (TS) fuzzy model is the backbone for the proposed WANFIS control system. In 

1985, Takagi and Sugeno suggested an effective means for modeling complex nonlinear 

dynamic systems by introducing linear equations in consequent parts of a fuzzy model, which is 

called TS fuzzy model. It has led to reduction of computational cost because it does not need any 

defuzzification procedure. The fuzzy inference system used in the WANFIS model is of the TS 

fuzzy model form (Kim et al., 2009a). Typically, it takes the form of 

          
                 

                 
           

         (   
       

 )                   
(4-1) 

 

where    is the j
th

 fuzzy rule,    is the number of fuzzy rule,      are fuzzy sets centered at the j
th

 

operating point, and    
   are premise variables that can be either input or output values. The 

equation of the consequent part    (   
       

 ) can be any linear equation. Note that the Eq. 

(4-1) represents the j
th

 local linear subsystem of a nonlinear system, i.e., a linear system model 

that is operated in only a limited region. All of the local subsystems are integrated by blending 

operating regions of each local subsystem using the fuzzy interpolation method as a global 

nonlinear system 
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where   (   
 )  ∏      

(   
 ) 

    and      
(   

 ) is the grade of membership of    
  in    . 

These parameters are optimized by the back propagation neural network. A typical architecture 

of fuzzy rules is shown in figure 4-1, which shows four membership functions and sixteen rules, 

whereas the model in this paper uses only two membership functions and four rules. 

 

Figure 4-1. Typical fuzzy rules layout (Jang et al., 1997) 

 

 The main challenge in using a fuzzy model is the optimization of the parameters of the 

model. Therefore, incorporating neural networks to create an adaptive neuro-fuzzy inference 

system allows for these parameters to be optimized during computation, which is explained 

below. 
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4.2.2. ANFIS architecture 

The architecture of an ANFIS model typically looks similar to figure 4-2.  

 

Figure 4-2. ANFIS architecture 

 

This figure represents a two input, one output, and three membership functions (MF) system. 

Each layer has particular tasks to complete before the data moves to the next layer. In layer 1, the 

function of the node is represented by 
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For a Gaussian MF used in this simulation,  
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where a1 and a2 are adjustable parameters of the Gaussian function.  This MF is applied to each 

input in layer 1. Layer 2 then outputs the product of all inputs into layer 2, known as the firing 

strength 
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Layer 3 takes a ratio of these layer 2 firing strengths in order to normalize the layer 2 outputs, 

such that 
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Layer 4 then applies a node function to the normalized firing strengths 

   
   

     
   

       
   
[  (   

       
 )]    (4-7) 

 

where a3, a4, a5 are function parameters for the consequent. The last layer summates the layer 

inputs 
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The output of this system is then used in a hybrid learning algorithm to create a linear 

combination of the consequent parameters, a3, a4, a5. The key parameters for this simulation 

include the number of iterations, or epochs, the number of MFs and the type of MF, as well as 

the step size of the function. Types of MFs can vary from a generalized bell function, Gaussian 

functions, sigmoidal functions, trapezoidal function, as well as other forms. Each change of 
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variables will yield different output results (Jang, 1993; Yang and Lin, 2005). The fuzzy 

inference system sets up rules based on the number of MFs used in simulation. For a four MF 

system, the fuzzy rules are set up, and a generalized depiction is shown in figure 4-1. Each 

number represents one of the sixteen fuzzy regions that are created through the use of four MFs 

in the ANFIS model.  The fuzzy region is defined by the premise, and the output is generated 

through the consequent.  

Although the ANFIS is very effective in modeling complex nonlinear systems, it requires 

substantial computational loads. Such a problem can be addressed through the integration of 

wavelet transform-based multi-resolution analysis framework.  

 

4.2.3. Wavelet transform 

Wavelet analysis began during the 1980s by Morlet, who discovered the use of wavelet analysis 

in signal processing (Thuillard, 2001). It was created by modifying previous mathematical 

concepts such as Fourier analyses, where the time window is fixed to include the entirety of the 

signal. Wavelet theory enabled bypassing this drawback of the Fourier analysis through use of a 

variable time-window, allowing for scientists and engineers to look at a specific time frame of 

the signal for signal analysis.  Mathematicians working with filter theory were able to use this 

concept of wavelet analysis and apply it to their field, and reconstruction filters were developed.  

This meant that signals were divisible into sampled signals and then reconstructed into a signal 

that is equivalent to the original signal. Mallat (1989) created a fast wavelet decomposition 

algorithm to compute the wavelet coefficients using the wavelet filters, with one algorithm for 

decomposition of the signal and another algorithm for the reconstruction to the equivalent signal. 
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The ability to reconstruct a signal using these algorithms provides the ability for data 

compression and noise reduction. 

 Fourier transforms and their modifications, such as short-time Fourier transforms and fast 

Fourier transforms, use a fixed time-frequency resolution, causing an issue in many engineering 

applications, mainly an inability to see low or high frequency portions of the window when 

viewing the entire window. A continuous wavelet transform was developed from the Fourier 

analysis, such that: 

           √ ∫         
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)       (4-9) 

 

where a is a scaling factor, b is the width of the window in the time domain, and   is the wavelet 

function. From the continuous wavelet transform, the discrete wavelet transform can be derived, 

and is given as: 

   
       ⁄  ∑                     (4-10) 

 

The original signal,     , can be recalculated from the wavelet function using 

        ∑ ∑    
               (4-11) 

 

Using discrete wavelet transforms allows for the isolation of high frequency components from 

the signal at the time they occur. This results in a signal of low frequency components with 

continuous magnitudes. In order to look at both high and low frequency portions of the signal, 

multi-resolution analysis should be investigated (Taha and Reda, 2004). 

Multi-resolution analysis (MRA) was developed to decompose a function into slowly-

varying and rapidly-varying segment signals, allowing for the divided function segments to be 
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studied separately. This allows for a representation of the function at a single level of 

approximation by discretizing the function using the step size, and therefore significantly 

reducing the total number of data points needed to accurately represent the signal. This process is 

also known as filtering the data signal. In essence, MRA decomposes a signal into multiple levels 

of resolution, or most commonly, into high frequency and low frequency resolutions.  Studying 

the low frequency components provides the main features of the signal, while features of the 

high frequency resolution component can be useful in fields such as damage detection (Sharifi et 

al., (2011). The scaling function for the formulation of the wavelet transform in order to 

mathematically represent the MRA is 

 

        
 
 ⁄              (4-12) 

and the wavelet is given by  

        
 
 ⁄         ,          (4-13) 

where l is the location index, s is the scale index,   is the mother function, and   is the scaling 

function. The scaling function is used to stretch or compress the function in the selected time 

domain. Any function       and       can be represented as the linear combination of         

and        , respectively.  The functions               and               are developed 

from       , where Ws is called the wavelet subspace and is complimentary to As in As+1 such 

that the intersection of As and Ws does not exist and the summation of As and Ws creates As+1. A 

typical graphical representation of this MRA is shown in figure 4-3. 
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Figure 4-3. Wavelet transform-based multi-resolution analysis framework 

 

4.2.4. Wavelet-based ANFIS control system 

The inclusion of discrete wavelet transforms allow for an effective method to rid the control 

system of extraneous data, or noise.  This methodology uses Daubechie filters for low frequency 

decomposition in order to de-noise response data that is then used as inputs to the ANFIS model. 

As mentioned earlier, the use of wavelet transforms allows for a fixed time-frequency resolution, 

meaning the window function is chosen, and then the resolution is fixed through processing. 

Representation of the function with several discretization steps allows for a reduction in the 

number of data points required for accurate representation of the system.  This model proposes 

the use of two levels of discrete wavelet transforms as a means of filtering as well as applying 

the ANFIS methodology to train to the control force of an optimal controller, which creates an 

adequate balance between computation times and effective training of the model. The 

architecture of this proposed WANFIS system is depicted in figure 4-4.   
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Figure 4-4. WANFIS architecture 

 

The WANFIS algorithm is a two-input, one-output system to determine the control force of an 

actuator. For this study, the inputs to the WANFIS system were displacement and acceleration 

measurements. These were determined through an iterative process to maximize the results from 

training of the system, where velocity and drift responses were also studied to find the 

combination with the most favorable results. Next, simulations were performed on the 

benchmark highway bridge structure to successful reduce the seismic responses and improve the 

overall performance of the structure. 

 

4.3. Example 
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The wavelet-based adaptive neuro-fuzzy inference system was tested on a benchmark highway 

bridge equipped with sixteen active control actuators to show its effectiveness in improving 

structural performance. 

 

4.3.1. Benchmark Highway Bridge 

To facilitate research in structural control, a benchmark bridge was developed based on an 

existing structure located at the crossing of the 91 and 5 highways in Orange County of 

California. The structure is a prestressed concrete box-girder, continuous over two spans of 58.5 

m. The deck has a width of 12.95 m and 15 m for the east and west spans, respectively. The 

bridge carries four lanes of traffic atop columns of 6.9 m in height. The location of the bridge is 

within 20 km of two faults, the Whittier-Ellsinore and Newport-Inglewood fault zones, showing  

a great need for structural control due to its susceptibility to seismic events. This bridge has been 

described and researched previously (Agrawal et al, 2009). Figures 4-5 and 4-6 show the bridge 

schematic and finite element model.  
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Figure 4-5. Benchmark highway bridge (Agrawal et al, 2009) 

 

 

Figure 4-6. Finite element model of the highway bridge structure (Agrawal et al, 2009) 

 

This bridge is equipped with sixteen actuators, with eight oriented in each the x- and y-

directions. Figure 4-7 shows the feedback system for the bridge structure. This system shows the 
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simulation model, including the feedback of the states into the control devices, which are then 

forwarded back into the structure to reduce the structural responses. 

 

Figure 4-7. Control system architecture (Agrawal et al, 2009) 

 

4.3.2. Simulation 

 

The bridge structure of interest uses a benchmark linear quadratic Gaussian (LQG) control 

algorithm as a means for active control. This type of control is a variation of a linear quadratic 

regular, which is a full state feedback controller, but is able to reduce states to obtain comparable 

performance without needing full state feedback. The simulations began by determining the 

control force developed for an LQG control model, and using the WANFIS controller to train to 

the LQG control forces. An artificial earthquake was developed to train the WANFIS model for, 

which encompassed aspects of all six validating earthquakes: Turkey Bolu, Northridge, North 

Palm Springs, El-Centro, Rinadi, and Kobe. This artificial earthquake was used to determine the 

control forces, and then the WANFIS model was used to train to these control forces. The 

artificial earthquake signal is provided in figure 4-8. 
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Figure 4-8. Artificial earthquake signal 

 

 From there, simulations using the WANFIS system and provided feedback system were 

performed to determine the best arrangement of control forces and actuators. It was found that 

the computation of only two control forces would be needed to calculate, one for all eight 

actuators oriented in the x-direction, and one for all eight actuators oriented in the y-direction. 

This set up was compared to using sixteen control forces, one for each individual actuator, and 

was found to yield more favorable results while using less power output and control force 

magnitudes. The training time for this model results in 187 seconds, or 3.12 minutes for a 4-

Gaussian membership function model. The resulting membership functions of this training are 

depicted in figure 4-9. 
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Figure 4-9. Membership functions before and after training  

 Another WANFIS model was examined, using the algorithm to train to the control forces 

from a genetic algorithm (Cha and Angrawal, 2011). It was found through simulations that using 

this differing control algorithm, the same set up as previously used could be used. This set up, 

described above, used only two control actuator forces, one in the x- and y-directions. The 

training time for this model results in 1368 seconds, or 22.8 minutes for each control force, using 

a 4-Gaussian membership function model. 

 As a means of validation and comparison, indices provided through the benchmark 

bridge structure were used. These indices compare structural responses and control outputs of the 

proposed system to that of the uncontrolled structure, showing how much each index was 

reduced. These indices are detailed below, and Table 4-1 provides  
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where        is the time history of shear force of the i
th

 degree of freedom of the control system, 

        is the maximum shear force of the uncontrolled structure,        is the time history of 

overturning moment,         is the maximum overturning moment of the uncontrolled 

structure,        is the time history of the midspan displacement,         is the maximum 

midspan displacement of the uncontrolled structure, | ̈     | is the time history of the midspan 

acceleration,  ̈       is the maximum acceleration of the uncontrolled structure,        is the 

time history of the abutment displacement,         is the maximum abutment displacement of 

the uncontrolled structure,       is the time history of the ductility,      is the maximum 

ductility of the uncontrolled structure,    is the dissipated energy of curvature at the column, 

     is the maximum dissipated energy of the curvature at the column of the uncontrolled 

structure,      is the number of plastic connections of the control system,    is the number of 

plastic connections of the uncontrolled system, | | denotes the absolute value, ‖ ‖ denotes the  
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normalized value,       is the time history of the control force from the control device,   is the 

seismic weight of the system,       is the stroke of the control device,         is the maximum 

bearing deformation of the uncontrolled system,       is the time history of the instantaneous 

power required for the control device,  ̇       is the maximum velocity of bearing of the 

uncontrolled system, and      is the discrete state vector for the control algorithm (Agrawal et al, 

2009). 

 Using these indices, it is shown that the proposed WANFIS control algorithms results in 

lower structural responses than the benchmark LQG control algorithm for the artificial, El-

Centro, Kobe, North Palm Springs, Turkey Bolu and Rinadi earthquakes. The system as a whole 

improved the performance on 68% of the indices when training to the LQG control force, and 

62% of the indices when training to the genetic algorithm. The LQG-trained model improved 

67% of the average index values, and the genetic algorithm-trained model improved 57% of the 

average index values. 

 

4.4. Conclusion 

 

This paper proposes a wavelet-based adaptive neuro-fuzzy inference system (WANFIS) as a 

means for active control of bridge structures. This system combines aspects of discrete wavelet 

transforms, neural networks, and fuzzy logic theory. The WANFIS system is trained using an 

artificial earthquake, which combines aspects of various earthquake accelerations. This system is 

shown to be effective in reducing structural responses of a benchmark highway bridge equipped 

with sixteen control actuators, while also reducing the power output, control force magnitude, 
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and the required number of sensors installed on the bridge. The system also greatly reduces 

computation time of control forces in comparison with other control algorithms.
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J1 0.95 0.92 0.96 0.88 0.85 0.74 0.79 0.86 0.80 0.90 0.87 0.78 0.91 0.89 0.90 0.79 0.84 0.89 0.85 0.87 0.85 0.95 0.92 0.96 

J2 0.77 0.76 0.80 0.97 0.97 0.96 0.74 0.79 0.73 0.98 0.98 0.96 0.98 0.98 0.98 0.70 0.67 0.78 0.86 0.86 0.87 0.98 0.98 0.98 

J3 0.82 0.82 0.82 0.80 0.78 0.68 0.78 0.87 0.80 0.87 0.84 0.71 0.75 0.74 0.72 0.70 0.66 0.79 0.79 0.79 0.75 0.87 0.87 0.82 

J4 0.79 0.93 0.94 0.88 0.90 0.98 0.88 0.96 1.00 0.84 0.90 0.98 0.80 0.81 0.91 0.90 0.95 0.94 0.85 0.91 0.96 0.90 0.96 1.00 

J5 0.94 0.83 0.82 0.80 0.77 0.64 0.64 0.69 0.46 0.88 0.83 0.68 0.71 0.72 0.69 0.59 0.61 0.45 0.76 0.74 0.62 0.94 0.83 0.82 

J6 0.77 0.76 0.80 0.74 0.70 0.56 0.74 0.79 0.73 0.85 0.79 0.61 0.46 0.46 0.36 0.70 0.67 0.78 0.71 0.70 0.64 0.85 0.79 0.80 

J7 0 0 0 0.51 0.44 0.35 0 0 0 0.62 0.50 0.39 0.33 0.25 0.11 0 0 0 0.24 0.20 0.14 0.62 0.50 0.39 

J8 0 0 0 0.67 0.67 0.67 0 0 0 1.00 1.00 1.00 0.33 0.33 0.33 0 0 0 0.33 0.33 0.33 1.00 1.00 1.00 

J9 0.74 0.79 0.80 0.89 0.86 0.84 0.68 0.69 0.72 0.87 0.82 0.80 0.89 0.89 0.84 0.71 0.73 0.79 0.80 0.80 0.80 0.89 0.89 0.84 

J10 0.70 0.71 0.74 0.83 0.81 0.79 0.64 0.65 0.69 0.88 0.82 0.82 0.53 0.59 0.48 0.61 0.70 0.75 0.70 0.71 0.71 0.88 0.82 0.82 

J11 0.70 0.73 0.75 0.78 0.78 0.70 0.66 0.66 0.71 0.80 0.77 0.70 0.61 0.62 0.56 0.73 0.72 0.77 0.71 0.71 0.70 0.80 0.78 0.77 

J12 0.72 0.92 0.86 0.79 0.81 0.85 0.69 0.73 0.80 0.80 0.80 0.84 0.79 0.87 0.88 0.80 0.85 0.88 0.77 0.83 0.85 0.80 0.92 0.88 

J13 0.48 0.43 0.37 0.78 0.78 0.67 0.48 0.60 0.46 0.82 0.77 0.68 0.52 0.45 0.42 0.47 0.47 0.41 0.59 0.58 0.50 0.82 0.78 0.68 

J14 0.70 0.71 0.74 0.65 0.79 0.38 0.64 0.65 0.69 0.83 0.86 0.58 0.24 0.38 0.12 0.71 0.70 0.75 0.63 0.68 0.54 0.83 0.86 0.75 

J15 0.01 0.01 0.01 0.02 0.02 0.03 0.01 0.01 0.01 0.02 0.02 0.03 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 

J16 0.90 0.79 0.79 0.77 0.74 0.62 0.59 0.63 0.42 0.80 0.76 0.62 0.71 0.71 0.69 0.51 0.60 0.44 0.71 0.71 0.60 0.90 0.79 0.79 

J17 0.05 0.04 0.05 0.11 0.11 0.16 0.02 0.02 0.03 0.11 0.10 0.12 0.07 0.06 0.08 0.07 0.03 0.03 0.07 0.06 0.08 0.11 0.11 0.16 

J18 0.01 0.01 0.01 0.02 0.02 0.02 0.00 0.00 0.00 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 

J19 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 

J20 12 4 4 12 4 4 12 4 4 12 4 4 12 4 4 12 4 4 12 4 4 12 4 4 

J21 28 20 20 28 20 20 28 20 20 28 20 20 28 20 20 28 20 20 28 20 20 28 20 20 

Table 4-1. Performance comparison of WANFIS control systems to benchmark control under a variety of earthquakes 
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5. Summary 
 

The proposed wavelet-based adaptive neuro-fuzzy inference system combines aspect of fuzzy 

logic theory, neural networks, and wavelet transforms to create a new system to be applied to 

civil engineering structures. The system benefits from being robust against uncertainties, while 

reducing computation times of previous algorithms. Two aspects of structural health monitoring 

shown that this model is shown to be effective for are system identification and structural 

control. The WANFIS system is able to adequately and efficiently model the nonlinear behavior 

that a structure encounters when control devices, such as smart dampers or actuators, are 

installed in the structure. Having a system that can effectively predict the non-linear behavior 

allows for understanding of how the system will act, as well as being able to bypass the need for 

finite element models of the structure of interest.  The WANFIS system is also an effective 

control algorithm to improve the performance of control system used on high-rise buildings and 

highway bridge structures, while also being able to reduce the number of sensors needed in a 

structure for feedback into the control device and reducing the computation time needed to 

determine the optimal control force in comparison with other control algorithms. 
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6. Recommendations and Future Work 

Through the scope of this research and thesis, the wavelet-filtered adaptive neuro-fuzzy 

inference system model has been shown to be effective for use in system identification and 

structural control of structures. The system has been tested effectively for the system 

identification of a three-story building employing a smart, magnetorheological damper, and has 

been tested as an active control algorithm for an eight-story braced frame building and a highway 

girder bridge.  

It is predicted that this system would be effective for various structures, and using it to 

look at a wide variety of structures would be desirable. This research could be expanded to 

validate this system for use in system identification and structural control of varying building 

heights, as well as testing it on a moment frame building. Also, studying different bridge 

structures, such as cable-stayed bridges or truss bridges, would provide further validity of the 

WANFIS system for structural control. To build upon the highway bridge model presented in 

this thesis, it would be interesting to look at a bridge with control devices located along the 

length of the bridge, as opposed to just the abutments. This could improve upon the 

performances provided in chapter 4 of this thesis, since the mid-span portion of a bridge that can 

be assumed to act as a simply-supported beam would have the largest responses, and the 

reduction of these responses at the mid-span point could improve the overall performance, 

essentially determining the ideal positions for control devices on a girder bridge.  
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