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Abstract

As the world becomes increasingly dependent on technology, it is becoming important for early

professionals to demonstrate data and computer literacy. However, barriers exist in ensuring

equitable access to these skillsets. This project seeks to combat such gaps in accessibility through

the addition of a new unit to the Bio-CS Bridge curriculum. The unit will teach high school

students the basics of statistics and data visualization using R and expose them to relevant

intersections between computer science and biology.
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1. Introduction

In a world driven by data and digital technology, universal literacy in such topics has

become a necessity in the pursuit of equity in the STEM fields. However, various factors

including socioeconomic status and demographic representation determine who has access to

such technology as well as the resources to become comfortable utilizing it. With computer

science (CS) often only being offered as an elective course and at few educational institutions,

students lack the opportunity to realize relevant overlaps between STEM and CS. Often lost is

the opportunity for students of diverse backgrounds to place themselves in such fields, creating

early inequity in opportunity for students without access to a wide range of curricular offerings.

One way of combating such inequity early and providing students everywhere access to CS

exposure is the interdisciplinary implementation of CS in required science courses. Education

researchers emphasize the use of computer science as a means of supporting literacy in data as

well as comfort in data interpretation, analysis and visualization (Kjelvik & Schultheis, 2019).

With the addition of data familiarity to a traditional STEM education, students may have the

opportunity to more comfortably visualize complex STEM topics as well as become more

confident contributing to such fields. This project seeks to develop a curriculum that supports

universal data literacy as well as combats imposter syndrome in the biological sciences by

providing support to teachers and students alike in tackling data related topics within the context

of biology.

Data literacy can be defined as “the ability to understand and evaluate the information

that can be obtained from data” (Kjelvik & Schultheis, 2019). The ability to understand and

interpret datasets as well as make predictions based on existing data serves as a stepping stone to

achievement in higher STEM education. This reach is not limited to STEM though, and is not

contingent on the implementation of in-depth computer science and data analysis. For students in

an interdisciplinary Science, Technology and Society (STS) program, basic digital literacy and

course motivation were measured predictors for later achievement in STS (Pala & Başıbüyük,

2021). However, programs such as this are rare, and the United States’ teaching frameworks

often neglect to incorporate interdisciplinary lessons to support the development of such skills

(Kafai & Proctor, 2021). Furthermore, teachers in pilot studies where similar skills are
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implemented in fundamental science courses often report feeling unsupported and uncomfortable

teaching curriculum for which they lack training (Yadav, et al., 2016). This lack of support for

educators and students alike raises concerns about ensuring that education adjusts alongside the

shift to a digital world. Thus, it is important that proposed additions to existing curriculum both

integrate what teachers are experienced with as well as provide adequate tools to support their

learning of emerging skill sets.

The Bio-CS Bridge project was developed to assist high school teachers in merging

computational thinking with standard science curricula. The project, in conjunction with

Beecology, a citizen science effort to collect ecological data on pollinator species, utilizes

computer science and computational thinking to complement understanding of biology concepts.

To date, Bio-CS Bridge has curricula involving Python, Netlogo, Starlogo and

HTML/CSS/JavaScript and engages students in creation and use of simulations and other

software, hypothesis testing, and data generation, visualization, and analysis.

The goal of this IQP project was to expand upon the existing Bio-CS Bridge curricula by

designing a unit meant to guide students in understanding, analyzing and visualizing biological

data using the programming language, R. Inspired by research on the effects of student self

perception on their performance in the STEM fields, the unit was designed to allow students to

overcome the barrier of intimidation when approaching science and programming. This included

the goal of combatting a common phenomenon known as “imposter syndrome”, which can be

characterized by “chronic self doubt” and “intellectual fraudulence” in individuals who are

otherwise qualified in an academic or professional setting or field (Corkingdale, 2008).

Furthermore, the curriculum was designed to support students in understanding and formulating

complex hypotheses in an accessible way that serves as an alternative to generating data through

wet-lab experiments. Research has shown that reasoning skills, particularly those used in STEM,

are shown to develop during adolescence (Lawson, et al., 1999), however traditional high school

teaching frameworks neglect to expand on these skills. Opportunities to develop such skillsets

become increasingly relevant as technology becomes more influential, especially those with

interdisciplinary applications like data literacy.

With these ideas in mind, early lessons were designed to support the development of a

solid background in the analysis and creation of graphs, as well as understanding how to choose

the appropriate graph for different variable interactions. Later, R is introduced as a means of
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visualizing data and students are taught syntax as well as how to read and upload a dataset to be

analyzed. Eventually, students are guided in making predictions based on Beecology data and

work through hypothesis testing using R to validate and visualize data. Together, these skills can

serve as a gateway to data literacy and provide exposure to statistics and computer science for

students at unique starting points.
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2. Background and Literature Review

As the world becomes increasingly dependent on technology, skills such as computer

literacy, programming, and an ability to interpret data become urgently relevant in the job

market. In recent years, the addition of new technologies to the workforce has caused a widening

of the income gap, with salaries increasing only for those in higher level positions that often

require advanced degrees (Poliquin, 2021). This gap is predicted to grow as the influence of data

and technology increases, making it important that education adjusts with it (Poliquin, 2021).

While not every student is destined to become a software engineer, it is important that each

individual is provided the opportunity to develop baseline data literacy and exposure to

programming. Exposure to and comfort with computer science and statistics at baseline levels

may grant students the confidence to participate in and adapt with their changing world.

However, many youth in general fail to recognize the relevance of these skill sets when exposed

to them in an isolated, academic setting. Such students might lack the confidence or engagement

necessary to fuel interest in learning technologically relevant skills due to a variety of factors

including but not limited to imposter syndrome, lack of representation in STEM, and disconnect

from the real world applications of the field. When students are solely exposed to the “what”

independently from the “why” behind a curriculum, they lack the tools necessary to fuel

engagement and drive. Thus, it is important that efforts are made to change the focus of

education in computer science and provide equal access to socially, environmentally and

scientifically relevant curriculum for students to relate to and feel willingness to participate in.

2.1 Equity and Representation in STEM Education

Studies have shown that students who are encouraged to “do science” are more

comfortable, motivated and successful when tackling Science, Technology, Engineering and

Mathematics (STEM) problems than those who are told to “be a scientist” (Archer, et.al, 2010).

Evidence suggests this disparity is related to equity and identity, especially as a result of the lack

of diversity and representation in STEM stereotypes widely ingrained in and accepted by the

public. A recent study on the effects of inclusive classroom interventions on combating

stereotypical perceptions of what it means to be a “scientist” summarizes this finding, stating that

“By including only aged, white men in our textbooks and lectures, we continue to reinforce the
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dominant, but incorrect, narrative that has existed for centuries—that white men have been the

predominant contributors to new scientific knowledge” (Sheffield, et al., 2021). The absence of

representation explored by the study has grave implications, including impacting the trajectory of

inclusion in scientific leadership as well as limiting the publishing of contributions by minority

groups (Huntington, 2000; Noordenbos, 2002; Sheffield, et al., 2021). Relevant to this project is

the impact of these same exclusions in academic settings. Studies have shown that student

identity and perception in the STEM fields as well as intellectual identity have significant

impacts on their motivation and performance in STEM classrooms. For example, a study by

Hong & Lin-Sielger (2011) revealed that teaching students about the personal struggles of

famous scientists increased their interest and success in learning physics. The finding suggests

that students who are able to relate to and connect with leaders in a topic can better envision

themselves succeeding in the same field, making it easier to learn with confidence.

Despite many attempts to improve representation and visibility in the media, performance

gaps among groups persist (Sonnenschein & Galindo, 2015). Many of the gaps seen in academic

performance are in mathematic based disciplines, which often see lower performance among

those from low socioeconomic backgrounds (Sonnenschein & Galindo, 2015). Similar trends

have been seen between gender differences as well, with girls often showing lower performance

than boys in mathematics testing, however this gap is most significant among students at higher

achievement levels (Ellison & Swanson, 2010). The continued observance of such trends makes

it even more critical that a curriculum is developed to make hands-on STEM exploration

approachable and accessible at all levels. With demographic differences like gender and

race/ethnicity showing significant effects on STEM achievement, it is important to increase

access to unique means of learning as well as promote a positive and accessible attitude towards

tackling new and intimidating topics. One recent study attempted to understand whether or not

student gender impacts how they will benefit from the implementation of a program developed to

achieve these goals (McLure, et al., 2021). The study looked at both unidisciplinary and

multidisciplinary STEM curriculum and involved a total of 413 middle and early high school

students in coeducational government and nongovernment schools. Here, the multidisciplinary

curriculum was characterized as either science, technology, engineering and math while the

unidisciplinary curriculum was one of science, technology, engineering, or math. The

multidisciplinary course included math as an integrated and necessary approach for solving
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problems in science, technology, and engineering. Researchers measured the effects of gender on

perception of classroom climate and attitudes following the addition of the program, and found

that females were most positive about such climates and their own attitudes towards STEM when

taking multidisciplinary courses at a government school. The findings suggest that access to a

multidisciplinary STEM curriculum in middle and high school could promote more positive self

perceptions in science based environments and encourage more female students to pursue related

fields at higher levels. This may be because combining science, technology and engineering with

math in an overlapping context allows girls to overcome barriers to seeing themselves in the

field, as it places the subject in the approachable and familiar context of the world around them.

The implications of this research amplify the need for a shift in state education

frameworks and emphasize the benefits of making early education flexible among subjects.

While it is important that students are exposed to a wide range of topics independently, it

becomes necessary later in education that students learn how to apply and combine knowledge

from different disciplines. Furthermore, students will continue to lack the ability to perceive

themselves in STEM if they are not exposed to how it impacts their own lives and environments

(Williams, et al., 2004). Thus, it was important that the curriculum developed for Bio-CS Bridge

allowed students to identify the interactions between the science they learned in the classroom

and the world around them through the lens of relevant social and environmental applications.

2.2 Identity and Perception as Predictors of Academic Performance

Research reveals identity and perception to be significantly influential on academic

performance of individuals from minority groups, especially in the STEM fields. One study

looked at the effects of female identity and an “unwelcoming” campus climate on undergraduate

academic burnout and attitude in STEM. The study describes a phenomenon termed

“women-scientist identity interference”, which is the internal conflict women face when

confronting the idea that their sex is incompatible with male dominated fields, such as science

(Jensen & Deemer, 2019). The results indicated that identity interference was connected to

increased cynicism, lower academic performance and greater probability of burnout and

emotional exhaustion in women studying a scientific or technological discipline (Jensen &

Deemer, 2019). Similarly, studies have shown confidence in academic performance to be
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disproportionate among genders. One study at Colorado State University found that at admission

to STEM majors, women’s perception of their qualifications was much weaker than that of their

male counterparts, despite having similar performance (MaPhee et al., 2013). Similar burnout

cynicisms were observed in other minority groups who choose to pursue STEM, and those with

minority status in both ethnicity and socioeconomic status (SES) had even lower confidence than

those with just one minority qualifier. However, following the conclusion of a mentoring

program designed for these students, their self perceptions became more positive. These results

emphasize the importance of positive support and the fostering of confident attitudes in students

entering STEM disciplines, especially those who are considered minority in their discipline.

It is evident that underrepresented groups often suffer from inaccurate feelings of

inadequacy in scientific and technological disciplines, as is the fact that these feelings of

inadequacy have the potential to impact student performance negatively. However, these

differences are often ignored and dismissed by STEM participants of non-minority status. A

study at University of Wisconsin showed that a group of primarily white male department chairs

rated the climate of their departments for women and minorities higher than the women and

minorities themselves (Pribbenow et al. unpublished). Scientific Teaching by Jo Handelsman,

Sarah Miller and Christine Pfund highlights the dangers of this widespread dismissal of inequity

in both the sciences and society as a whole. The book serves as a guide for educators in both

curricula development and instruction in STEM. It warns that by denying the existence of

discrimination and inequities in STEM education, institutions and educators are unable to fully

erect and implement the systems that might support students suffering from such differences.

Thus, in developing the new Bio-CS Bridge data literacy and R programming unit, it was

important to keep in mind students of all backgrounds and abilities.

2.3 Complex Hypothesis Testing and Contextual Barriers in STEM

The scientific method and complex hypothesis testing are foundational topics that

students frequently struggle with. These topics share that they require an understanding of

problem solving and the ability to apply biology to problems with a variety of contextual

applications. Students who struggle with these topics may find themselves unable to relate to

material that does not have any real world evidence, or if the real world evidence of the problem
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at hand is not made clear to them. The clarity of a problem’s real world context may also vary

depending on the student’s life experience and background exposure, a problem known as culture

bias. An example of culture bias is often seen in standardized testing, where minority students

fall to a disadvantage, since the context of the problems presented is grounded in “general

knowledge” shared disproportionately by the majority (Kim & Zabelina, 2015). The clarity of

real world problems may also be limited by the complexity of the topic at hand, and how

concrete the variables involved are, as this may impact how easily a student can visualize the

literal agents in the problem. A study by Lawson, et al. (1999) explores this, and demonstrates

the existence of two different means of hypothesis rationalization. The first means of

rationalization involves hypotheses with concrete variables, ie, those that can easily be visualized

as objects, and the second involves hypotheses pertaining to abstract variables such as those in

the subjects of chemistry and physics. The study showed that students struggled more with

understanding and formulating hypotheses involving variables that could not be easily visualized

due to factors limiting students from perceiving them, such as size. In summary, student success

was determined by the “abstractness” of the given hypotheses; however, the effects of student

prior experience on their perception of “abstractness” was not discussed. While the study briefly

addresses the addition of technology, such as the microscope allowing for ease of such

limitations, it does not explore the impact computer science could have as a visualization tool to

aid in STEM classes.

2.3.1 Computer Science As a Bridge to Accessibility

One potential way to confront the barriers that make it difficult for students to

contextualize complex technical and scientific concepts may be the overlap of both STEM and

CS in the classroom. Students often struggle with realizing connections between the world

around them and both STEM and CS. The key to confronting the barriers to both fields lies in

combining them, opening the door to maximum learning (Braun & Huwer, 2022). While STEM

provides real world problems for students to consider, CS provides the tools to address such

problems, and has been shown to assist students in thinking computationally when integrated

into STEM classes (Yang et al., 2021). In the absence of STEM, CS may appear dry and lacking

in meaning to students who struggle to see its potential, and vice versa. Combining the
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disciplines may offer a bridge between student and subject, as it may allow students to visualize

concepts which once appeared distant, unimportant and disengaging. Similarly, data literacy and

visualization can help apply numbers to those complex subjects, allowing students to visualize

relationships through graphs. While programming itself often appears intimidating to students,

introducing it at an early age in conjunction with its real world applications can build gradual

comfort in students. This can be achieved not solely through code, but also through the

introduction of software and tools made by code to solve a real world problem in science. An

example of this is Foldit, a game designed to teach anyone the biochemistry of protein folding.

Foldit calls on its users to discover new folding patterns through game-type challenges, and has

been effective in solving relevant problems in protein biochemistry (Kleffner et al., 2017).

Another example of this can be seen in Nova Labs, now marketed as Eterna, an interactive

crowdsourcing initiative by PBS that allows anyone to discover new RNA molecules. The site

allows users to model unique RNA folding patterns in the form of a game, and sends the data

back to researchers to be used in categorization of potential molecules (Kleffner et al., 2017). As

the tool is user friendly and designed to be easily learned by anyone, it has allowed students as

young as elementary school to identify RNA molecules with serious applications in medicine.

Students who have contributed to the discovery of such molecules have even been named in

papers about their findings. By providing an easily accessible opportunity for people of all ages

and backgrounds to contribute to research and be recognized for doing so, Nova has utilized

computer science in a way that aids in bridging the gap between science and the person.

FoldIt and PBS’ Nova Labs are not the only attempts to use technology to make science

more accessible to the public. Other non-game based attempts, particularly in ecology, seek to

crowdsource more directly, asking users to collect data about attributes of their environments to

help solve real world problems in ecology. One such effort is the Beecology and Bio-CS Bridge

collaboration, which utilizes data collected by citizen science web app users to teach students

data analysis and visualization as well as hypothesis testing.

2.3.2 The Bio-CS Bridge Initiative

By shifting the range of education from covering rigid frameworks to allowing for

flexibility in interdisciplinary instruction, schools can support student adaptation to a changing
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world. Bio-CS Bridge, a National Science Foundation funded project started in 2015, attempts to

do just this through the development, testing, and implementation of interdisciplinary computer

science and biology curriculum at the high school level. The curriculum is inspired by the

Beecology project, a citizen science effort to approach the issue of pollinator decline. Using

Beecology as its contextual connection to the real world, Bio-CS Bridge integrates

computational and biological approaches to solve real-world problems, often by means of

simulation, data analysis and visualization. While rooted in biology, the project exposes students

to a wide variety of CS material that allows students to apply their learning using real world

methods of problem solving. Currently, there exists Bio-CS Bridge material to support learning

in Python, HTML/CSS/JavaScript, Netlogo and Starlogo, as they pertain to biology and

Beecology. These lessons have collectively worked to promote the development of

computational thinking in students from participating institutions. Existing curriculum was

developed by and in consultation with a team of biology and computer science educators from

Massachusetts and consists of thematically related biology, computer science, and data

visualization units which can be used in conjunction with one another depending on student and

classroom needs.

2.3.3 Beecology

The Beecology project was designed in an effort to better understand observed declines in

pollinator species over recent years through citizen observation and data collection (Beecology

Project). The project calls on “citizen scientists” to crowdsource and log information on native

pollinator species through the use of a web app, which is accessible on most common devices. In

conjunction with Bio-CS Bridge, the Beecology team also works to communicate trends in

pollinator-plant interaction data through visualization tools available to the public and to schools

as educational material. Since Bio-CS Bridge seeks to expose students to real world applications

of computer science, it uses these visualization tools to educate about realistic and urgent

applications in ecology. This collaboration may help inspire and push for the shift to more

interdisciplinary and engaging educational pedagogy in STEM, as well as promote data literacy

among students and educators alike.
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2.3.4 Defining Computational Thinking

Since state standards in education rarely include guidance on interdisciplinary computer

science teaching, discourse exists surrounding what it means to think computationally. For the

creators of Bio-CS Bridge, this conversation was integral to developing concrete and effective

goals for their curriculum. Bio-CS Bridge promotes the idea that computational thinking can be

achieved by “engag[ing] students and teachers in scientific practices using biological data that

they collect themselves, and computational tools that they design and implement, to address a

complex real-world problem.” (Bio-CS Bridge). Previous curriculum designed for the project is

influenced by the Mathematics and Science Practices Taxonomy of Weintrop et al. (2016), which

digests computational thinking into four distinct foci (Table 1). The first focus is on data, and

involves data collection, creation, manipulation, analysis and visualization. Second is

understanding how to design, construct, assess, and use modeling and simulations to make

predictions and test hypotheses in a virtual environment. Next is general problem solving and

developing independence in the exploration of different problem solving approaches, especially

while troubleshooting. Finally, computational thinking involves what is known as “systems

thinking”. Systems thinking constitutes being capable of understanding relationships, leveled

thinking, and communicating information about relationships in a complex system (Weintrop, et

al., 2016). Shown in Table 1 below is an outline of Weintrop’s Computational Thinking.

Table 1: Weintrop’s Computational Thinking

Data Practices Modeling and
Simulation Practices

Computational
Problem Solving

Practices

Systems Thinking
Practices

Collecting Data Using Computational
Models to

Understand a
Concept

Preparing Problems
for Computational

Solutions

Investigating a
Complex System as a

Whole

Creating Data Using Computational
Models to Find and

Programming Understanding the
Relationship within a
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Test Solutions System

Manipulating Data Assessing
Computational

Models

Assessing Different
Approaches/Solutions

to a Problem

Thinking in Levels

Analyzing Data Designing
Computational

Models

Developing Modular
Computational

Solutions

Communicating
Information about a

System

Visualizing Data Constructing
Computational

Models

Creating
Computational
Abstractions

Defining Systems and
Managing
Complexity

Troubleshooting and
Debugging

Adapted from Weintrop, et al., 2016.

While people often associate computational thinking with the sciences and technological

disciplines, its reach is not restricted to such fields. Since a major component of computational

thinking involves fine critical thinking skills, many argue that computational thinking can also be

used in disciplines outside of STEM to help create a more equitable world and prevent

marginalization (Kafai & Proctor, 2021). By learning to think about the world in both an

empathetic and computational, critical manner, students may learn at an early age to solve its

problems objectively in a way that leaves behind bias and advances towards equity. Thus, it is

important that state frameworks for curriculum adjust to accommodate interdisciplinary learning

that might promote engagement in solving real problems.

2.4 Barriers to Interdisciplinary STEM Education and Making Opportunities for

Computational Thinking Accessible

The implementation of computational thinking in interdisciplinary classrooms might

assist in bridging gaps in both self perception and technological accessibility in STEM.

Furthermore, research has shown that the addition of introductory computer science and
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programming in K-12 and early undergraduate education may help enhance critical thinking

skills and problem solving abilities, especially when the programming taught is object oriented

(Dalton & Goodrum, 1991; Norris, et al., 1992). However, previous attempts at implementing

such programs have revealed shortcomings in both student and teacher preparedness (Shernoff et

al., 2017; Herro & Quigley, 2016). STEM teaching frameworks by state are often strict and leave

little room for the implementation of new means of learning, especially in AP courses (Kafai &

Proctor, 2021). Furthermore, teachers often lack the time and resources to become acclimated to

programming before teaching it. As a result, very few United States’ school systems offer

computer science to its students, with fewer offering it in conjunction with applicable STEM

courses. Between 2018 and 2021, the percentage of US schools offering computer science

jumped from 35% to 51% (State of Computer Science Education Accelerating Action through

Advocacy Advocacy Coalition, 2021). The same report reveals that in 2022, $65 million

combined was reserved for computer science education in the U.S, more than years past.

However, access to this funding isn’t always implemented in ways that are effective or equitable.

Unequal access to opportunities in computer science is not simply the result of

inadequate teacher support. The problem stems from a more general rigidness and lack of

resources in U.S education, particularly the lack of necessary technology to accommodate all

students. In 2020, the rise of the COVID-19 pandemic brought awareness of this problem, as

education underwent a sudden shift to virtual settings. During this time, the U.S. Census Bureau

conducted a Weekly Household Pulse Survey, which provided insight into how the pandemic

impacted education for students of differing household incomes. The data revealed that children

from low income households from poor states were most likely to be at technological

disadvantage in the shift to online learning, and that Black students were most likely to lack

access to learning devices and internet (U.S. Census Bureau). In households making less than

$25,000 a year, 12.2% of those surveyed reported rarely or never having access to a device for

student learning and 9.8% reported lacking reliable internet. In Detroit, 1 in 5 households that

identified as Black lacked access to such resources for student education, and in Los Angeles,

while only 0.1% of White respondents reported lack of access, the percentage rose to 13.2% for

Black respondents. In a similar study by EDWeek Research Center, only 59% of the teachers

surveyed stated that they had enough devices to provide each student access to virtual options.
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This inequity seen in access to personal learning technology contributes to the

demographic gaps observed in STEM fields such as computer science. From an early age, access

to computers is limited, making the transition to a technology based curriculum a difficult one.

This can result in the development of psychological barriers in those who choose to pursue

computer science at the college level, where students receive less one-on-one support, yet are

held to equal standards that typically assume previous technological experience. One of the

largest barriers, and not uncoincidentally, a phenomenon brought to light with the rise of

computer science, is “imposter syndrome”. Despite proven qualifications, feelings of inadequacy

persist in individuals with imposter syndrome, and can evolve to further barriers to success, as it

is often seen in conjunction with anxiety disorders and depression (Bravata, et al., 2020). A

possible explanation for imposter syndrome is the lack of representation or support in the fields

of STEM, as it is particularly evident in women and minorities (Ahmed, et al., 2020). This

hypothesis is consistent with aforementioned research, which suggests lack of representation and

separation of identity to be limiting factors in student STEM success, as students often lack the

ability to picture themselves in the position of a “scientist” (Archer, et al., 2010). Such a

separation between student and subject could be further impacted by the inequitable access to

technology in early education classrooms. Because unequal access to technology and computer

literacy has such grave implications on minority perception in STEM, it is critical that schools

provide an environment where students are exposed to the skills necessary to develop confidence

in such fields. It is possible that the addition of such a curriculum to state frameworks might

supplement the push to funding equal access to necessary technologies for all students.

3. Methodology

In order to ensure both student and teacher needs were met in the development of the

curriculum, scientific teaching was researched extensively and tested theories in curriculum

design were implemented. The book, Scientific Teaching, by Jo Handelsman, Sarah Miller and

Christine Pfund was used to support backwards design, constructing a teachable unit, and

ensuring recognition of diversity in teaching. Furthermore, local teachers were consulted during

planning and provided insight into 1) which programming platform would be both convenient

and support student privacy, 2) how to best design a curriculum appropriate for varying

achievement levels and 3) how to make content appropriate and inclusive of different skill sets.
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The overarching goal for the curriculum was to provide an engaging and impactful exposure to

the broad applications of data science through the lens of Beecology. Targeted impacts were as

follows:

1) Broaden students’ understanding of hypothesis testing through the investigation of

biological questions, accessible through data analysis using R

2) Break down the mental barrier that prevents many students from seeing themselves as

scientists capable of integrating CS and data analysis, as well as remove intimidation

from approaching code

3) Provide understanding of the expression of variables through plotting, graphing, and

descriptive statistics

4) Provide the resources for students to become data literate and to begin to build

programming and data analysis skills

3.1 Choosing R and Initially, Replit

Significant time and consideration were used in the process of deciding which

programming language and integrated development environment (IDE) to use throughout the

curriculum. While the team of educators and college students at Bio-CS Bridge previously

developed curricula in data analysis, they were lacking a unit that tied together programming,

statistics and data visualization in a way that was contextually relevant to a wide range of

students. Furthermore, direct consultation with the same educators who contributed to the

development of previous Bio-CS Bridge curriculum revealed further needs for the new unit.

First, teachers expressed frustration about the various barriers that prevent the effective

implementation of new interdisciplinary curricula in traditional K-12 academic settings. For one,

teacher pay rarely supports the time it takes to learn emerging skills expected for educators to

teach, like programming. Even with pay aside, teachers simply do not have enough time in the

day to take on additional work, like online courses in programming, as grading often also occurs

at home. Since teachers are educated in varying disciplines, it is not reasonable to expect them to

have the background to, by default, be effective at executing the instruction of foreign skills like

code. Thus, it was important that the language chosen was easy to learn from scratch both prior
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to teaching and in conjunction with students, and that existing resources for independent

exploration were financially accessible.

Next, it was important to consider choosing a language that could be explained to high

school students and was easily adaptable for a wide range of backgrounds. Ultimately, it was

important that students at unique starting points benefited from the language and platform chosen

equitably. Thus, it was decided that the language must be open sourced and have accessible IDEs

available for web-based use, as students are not guaranteed rights to download depending on the

school district and existing privacy agreements.

Following consideration of the above points, R was chosen to be used as the language

learned in the new Bio-CS Bridge unit. R is a programming language designed for computing in

statistics and data visualization (The R Foundation). With careful scaffolding, R can be

introduced smoothly and can be adjusted to fit varying levels of complexity. Furthermore, R is

available through online platforms and is open sourced, making it a cost effective and accessible

option for students and school systems.

R is commonly used in bioinformatics and most fields that require data analysis, however

most students do not gain experience with it until college or graduate school. By the time a

student is introduced, they may have already subconsciously identified themselves as someone

incapable of working with code. This mental roadblock is what often induces imposter

syndrome, preventing students from making the most of their careers and reaching their highest

professional potential (Corkingdale, 2008). Furthermore, this lack of exposure is what leads to

the belief that only certain people can be programmers or “scientists”. By implementing R as an

alternative and accessible means of hypothesis testing, the curriculum may allow students to

envision themselves in STEM roles that once appeared unachievable.

Similar considerations were taken when choosing the IDE, Replit. Replit is a free, web

based IDE that allows users to program and collaborate in 50+ programming languages. Before

choosing Replit, various other platforms were considered such as R Studio Cloud and Jupyter,

however consultation with active teachers involved in Bio-CS Bridge revealed these options to

be less than favorable. First, both platforms would require the signing of FERPA agreements to

ensure protection of student privacy. The school district in question was already in FERPA

agreement with Replit and teachers expressed both familiarity with and positive opinions of it.

Second, Jpyter would have required use of Github to save and share code, which teachers found
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to have a time consuming learning curve. In addition, Replit was already used with Bio-CS

Bridge’s Python unit. To ensure both students and educators comfort with the platform, a Replit

User Guide was designed and a master document of ‘cheat sheets’ were added to provide extra

resources for students and teachers.

3.2 Adjustment to R Studio

Late into the project, a shift from the use of Replit to R Studio was made. Unfortunately,

many challenges arose in implementing use of Replit, however these issues arose later into the

curriculum, making the shift a last minute effort to adjust. Regardless of the set back, due to the

benefits of R Studio and support provided in the lessons, teachers can feel confident and

supported with the adjustment.

Perhaps the most detrimental problem in implementing the use of Replit was the inability

of the IDE to quickly and efficiently both install and make use of required libraries and packages,

such as ggplot2. In R, packages are pre-programmed functions and code stored in a library for

ease of use. Most of R’s functionality lies in its packages, and many packages contain sample

data, making them accessible and user friendly. Unfortunately, late into the lessons, it was

discovered that Replit lacks the processing power necessary to install packages manually. After

some troubleshooting, it was discovered that Replit does in fact harbor a feature designed for

installing packages. However, it became evident after multiple attempts that the fancy UI to

replace a single line of installation code only served as a distraction from Replit’s lack of

functionality. The packages still were unable to load efficiently, if at all. On one attempt, ggplot2

did load, however Replit failed to recognize its existence when called on. Following the errors

with package installation, the decision was made to base the majority of the curriculum around

base R plotting, since this would not require packages and could allow for the use of Replit.

However, Replit failed in its ability to provide friendly graphics, as the base plots generated were

returned in a PDF that was both difficult to locate and read after each run.

While these problems greatly reduced Replit’s ability to support use of R beyond the

barebone fundamentals, a larger detriment was found in the IDE’s lack of community and

resulting lack of resources. While Replit is well known by educators for teaching Python and

some other common languages, it could be argued that this success lies in the community
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surrounding these areas. With the majority of R users being in higher education or the workforce,

few use online IDEs like Replit. As a result, it was extremely difficult to find troubleshooting

resources online, making the R learning curve a lot steeper. While it is true that the curriculum

would provide the necessary steps for students to implement the material, unanticipated errors

occur all the time and it is important that students are capable of navigating such situations

semi-independently. Additionally, with few resources online available for support using Replit

for R, choosing to use the IDE would have left teachers alone in both learning the software

themselves and supporting students. Thus, it was decided that while Replit is fantastic for

classroom use in languages that it already supports, it is not the ideal solution for those lacking

an established community.

R Studio was chosen as the alternative programming environment. R Studio is a

development environment for R with availability as both downloadable software and as a free

online cloud environment. Designed with functionality in mind, R Studio is used commonly in

education, research, and industry. This is heavily attributed to its ability to load a wide range of

packages, which allows for R implementation for a variety of applications. While R Studio is

less directed towards youth in its design and graphics than Replit, it is more accurately

representative of software used by the field and can be introduced appropriately provided

students are granted adequate support. The decision to switch to R Studio as the chosen IDE for

the Bio-CS Bridge curriculum called for increased support for both teacher and student, which

was ensured in the design of the lessons and pace of introduction to more advanced concepts in

R. Despite this setback, switching to R Studio resulted in a stronger curriculum overall and will

provide students with necessary exposure to common tools in data science and STEM.

Furthermore, this decision will allow students to overcome the intimidation speed bump often

accompanied by learning new technical skills early on, setting them up for more confident

learning later in their academic and professional careers.

3.3 Creating Approachable Datasets

While Beecology allows users to filter for variables of interest and download the data for

those variables in a csv file, it made more sense to provide students smaller, cleaned datasets that

would be easy to read and use. The datasets were created to ensure that students had just enough
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information necessary to complete the assignments without overwhelming them with

information. This would allow students to become comfortable reading a .csv file and understand

how its data translates to R. An example of a dataset can be found in Appendix A.

3.4 Supporting Both Teacher and Student

One of the greatest limitations when utilizing computer science funding effectively is

lack of support for teachers in implementing foreign curriculum (Sentance & Csizmadia, 2017).

Teachers often lack the background necessary to teach computer science and are expected to

learn such skills outside of paid work time. Because of this, the curriculum for this project was

designed with the needs of both teachers and students in mind. In developing the new Bio-CS

Bridge unit, it was critical that materials were designed to support educators so that they may be

prepared to come to class confident, with positive attitudes towards the material to be taught. As

new skills, especially in technology, can be intimidating, it is important that teachers approach

instruction with both evident positivity and empathy. By providing the materials to wholly

support teachers in learning new data skills, Bio-CS bridge may help such educators serve as

valuable resources to their students. Thus, student worksheets were designed in an easy to

follow, self-guided manner with supplemental teacher notes at specified checkpoints for each

worksheet. The combined materials allow for a flexible instruction style which grants students

the independence to work at unique paces without demanding excessive guidance from the

teacher. This flexibility allows teachers to serve more students at unique levels while feeling

balanced and confident in the material themselves. In its formatting, the curriculum allows each

student to work at a pace appropriate and beneficial to them alongside their peers, under the

same teacher.

Curriculum was designed with student engagement in mind. Studies have shown that

even when computer science is offered in schools, students are still reluctant to take it as it is

treated as an elective and not a graduation requirement (Kafai & Proctor, 2021). This is true even

at the AP level. While the number of students taking computer science in high school has

increased in recent years, reach remains limited. With barriers such as intimidation, insufficient

teacher support and lack of accessible technology in place, access remains inequitable. Thus, the

goal of this project was to design a curriculum that garners student interest while simultaneously
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making them feel supported and comfortable exploring new technological skills. Doing so was

achieved through the following efforts.

3.5 Ensuring Diversity in Curriculum

Scientific Teaching discusses the importance of recognizing, appreciating and adjusting

for student differences, as all are components of cultivating a successful and universally

beneficial classroom. As discussed earlier, Kafai and Proctor (2021) too recognize this in their

conversation on computational thinking. They express their belief that computational thinking

will expand to involve social, cultural and political dimensions, and that addressing the inequities

in the world will require leaders and society to think computationally about such problems (Kafai

& Proctor, 2021). In saying this, Kafai and Proctor reveal another aspect of why interdisciplinary

learning is so relevant. While it is important to teach some core STEM skills independently, it is

also important to guide students in recognizing how their courses overlap and can impact one

another. Thus, in developing the new Bio-CS Bridge unit, it was integral that the content of

lessons and datasets were biologically relevant and representative of real world problems, to

reveal to students that data analysis is a useful tool in solving such problems. For example, one

dataset allowed students to look at the relationship between bee tongue length and species, to

observe patterns in the trait as well as its relevance to the functional biodiversity of the

pollinators. Another prompted students to look at the relationship between Iris petal length and

width, again using real world data from Beecology. The contextually diverse nature of allowing

Biology and computer science to overlap may allow students of differing interests and

backgrounds to relate to the curriculum and stay engaged throughout. Furthermore, as the

curriculum allows for reflection on data validity and bias in general, students are prompted to

make connections to examples outside of Beecology. With the potential for students to make

connections to socially and politically relevant topics through this reflection, students are guided

in making connections to the world around them and understanding why what they are learning is

important.

In addition to diverse contextual examples, the curriculum was developed with inclusivity

in mind. Contextual information was explained to prevent bias. This was important, as studies

have shown cultural background to affect understanding of and performance on standardized
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testing, which are often unintentionally biased towards non minority populations (Dobrescu, et

al. 2021). Additionally, profiles of diverse biologists, biochemists and data scientists were added

throughout the lessons to allow students to relate more closely to the material and feel

represented.

3.6 Backwards Design

Backwards design is the practice of designing academic curriculum based on

predetermined goals for learning (Wiggins & McTighe, 2011). As stated in its name, backwards

design works backwards to ensure that the content of curriculum and supporting materials all

supplement specific objectives. This design method allows educators to maintain direction in

their lessons as well as establish clear communication with students of expectations from both

parties upfront. The four steps involved in backwards design are as follows.

Table 2: The Phases of Backwards Design

1) Identify
Desired
Outcomes

2) Assessment 3) Activities 4) Alignment

Develop appropriate
goals for learning,
aligning with
Weintrop’s
Computational
Thinking

Decide how learning
will be measured

Develop material to
build student skill
sets

Assess if activities
and assessments align
with goals. If not, go
back and revise the
material to match
goals

Adapted from Wiggins & McTighe, 2011.

Backwards design was implemented in the creation of each lesson, as it was important

that goals were in place to maintain balance between Biology and CS in the curricula. A fear was

that the interdisciplinary nature of the curriculum would leave room for confusion and feelings of

inadequate direction among students. This was prevented by ensuring that goals were

communicated from the start and that each step in the tutorials was explained, along with
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mention of connections between disciplines when necessary. Checkpoints were included

following integral technical steps, when it might be important for students to pause and reach out

for help. The lessons were revised multiple times each to ensure these goals were effectively

achieved and to prevent disproportionate skew to one area of the combined disciplines. While

frequent revision resulted in less content, the depth of the existing tutorials allows for students to

learn at a comfortable pace and learn to both troubleshoot and ask for help in a comfortable, low

risk setting.

4. Findings and Results

Despite various setbacks, this IQP allowed for the successful development of an

integrative R curriculum to supplement computational thinking alongside the existing Bio-CS

Bridge material. The curriculum was developed using Backwards Design methods with

Weintrop’s Computational Thinking in mind. These resources supplemented the pursuit of two

main goals. The first goal was to increase data literacy among high school students while

exposing them to the range of possible applications in biology. The second and perhaps most

fundamental goal was to ensure that the curriculum was structured in a friendly, informative and

approachable manner that was conducive of combatting imposter syndrome among students of

all backgrounds. The final introductory unit consists of of six thoughtfully paced lessons, titled

as follows:

1. Introduction to Programming For Biology

2. Getting Started with RStudio and R

3. Vectors and Data Frames

4. Graphing with Beecology

5. Graphing with Beecology Part Two

6. Considering Bias in Citizen Science Data

Together, these lessons work to provide support for students of diverse starting points, and are

constructed in a manner that allows for both independent and teacher supported learning. The

lessons and associated code are included in their entirety in a zipped file associated with this

document, and an example of a lesson can be found in Appendix B.
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4.1 Implementing Backwards Design For Overall Curriculum

The Bio-CS Bridge R unit was developed using a method of Backwards Design, as

outlined in Table 2. While the final curriculum is limited to six lessons total, these lessons allow

for a carefully crafted introduction to R, statistics and data visualization. The lessons are

structured to build off one another, so that students have the opportunity to become independent

in their learning as well as confident in implementing new skills. Much revision was necessary to

ensure the six lessons supplemented one another without leaving gaps. Some tutorials were

rewritten multiple times resulting in drastic but necessary changes. While the Backwards Design

process was time consuming, it was found to be necessary in the development of a truly thorough

curriculum. Below is the general outline of goals and Backwards Design methods used in

revision of the curriculum at both lesson level points and as a whole.

Table 3: Utilizing Backwards Design for Development of Overall Curriculum

Identify Desired
Outcomes

Assessment Activities Alignment

Students will be able
to think in levels and
demonstrate the
ability to make
hypotheses

Students will be able
to problem solve
common software
issues and become
comfortable
navigating
computational tools
such as R Studio

Students will
understand mean,
median, and mode as
well as other

Learning will be
measured through a
mix of written
questions and tutorial
based activities.
Students will not be
assessed through test
based measures, but
will instead log their
answers so that
teachers can provide
constructive feedback
during self paced
classroom work
sessions.

Activities will
include a mixture of
tutorial based lessons
which will promote
skill development in
R and data
visualization as well
as thought and
reflection. Six lessons
total will be created
to introduce students
to R and have them
reflect on the
importance of data
throughout.

The organization and
content of the lessons
will be revised
continuously. Lessons
will be adapted for
both functional
reasons as well as
alignment efforts.
Weekly meetings
with an advisor will
allow for
brainstorming of
solutions and
discussion of each
lesson’s efficacy as
well as the
curriculum’s
trajectory.
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summary statistics

Students will develop
an intuition of when
to use different types
of data visualizations
Students will develop
comfort with R and
programming

Students will leave
the unit with an
understanding of how
programming can be
used in Biology

Students will leave
having combatted
feelings of imposter
syndrome and see
themselves as capable
“scientists”

Adapted from Wiggins & McTighe, 2011.

4.1.1 Identifying Desired Outcomes

Early on, desired outcomes were developed for the intended trajectory of the curriculum.

The overall goal was simple: that students see themselves as capable of participating in science

and technology as a result of the unit. With imposter syndrome rampant and affecting minority

groups disproportionately (Ahmed, et al., 2020), it was important that the curriculum developed

would cater to students of all backgrounds.

At the curriculum level, it was desired that students develop data literacy as a result of

completing the unit. Early background research established that it is becoming increasingly

important in most fields for professionals to hold some degree of data literacy. By allowing the

opportunity for Bio-CS Bridge students to manipulate and visualize data themselves, it was

hoped that students would overcome any barriers in developing confidence working with data

early. Specifically, this involved designing a curriculum that would allow students to learn when
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it was appropriate to use different types of statistical measurements in describing data as well as

when to use different methods of visualization. Students were to be given practice in hypothesis

generation and testing using real world data from the Beecology project. Furthermore, they were

to be actively involved in inquiry at the intersection between data science and biology with the

goal of seeing themselves as active citizen scientists as a result.

4.1.2 Designing Effective Assessments and Activities

The final curriculum ended up containing six lessons which collectively work towards the

goal of testing hypotheses about Beecology data in R. The first lesson provides background for

the unit and is titled “Introduction to Programming for Biology”. This lesson has students

consider why data and programming may be used in biology as well as introducing the concept

of citizen science. While the first lesson is concise and contains no hard skill development, it sets

students up for success by allowing for clear communication of goals early on. This way,

students are not confused or intimidated when they are presented with a more technically heavy

software section in lesson 2.

Lesson 2 is titled “Getting Started with R Studio and R”. This lesson is a brief tutorial

which runs through downloading R Studio and setting up the workspace. Additionally, it

introduces some basic programming concepts to allow students familiarity with running code in

the environment.

Lesson 3 is titled “Vectors and Data Frames” and expands more into the skills required to

successfully navigate R. It explores the creation, manipulation and editing of vectors, the most

basic data structure in R. Additionally, the lesson introduces students to the concept of a data

frame. First, students are introduced to Iris, a built-in data frame in R which contains information

on the petal length and width of different species of the Iris flower. The lesson teaches students

how to access the data in the Iris data frame. Since the data frame contains numerical data, it is

an ideal starting point to introduce summary statistics. Leveraging this, the lesson prompts

students to consider the importance of such statistics in describing data. Students then are guided

in creating their own data frame using data manually sourced from the Beecology website. The

lesson includes a bonus activity for those who progress quickly, which allows students to plot

their data frames and test informal hypotheses about the variables within them.
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The next lesson is titled “Graphing with Beecology”, and in conjunction with its follow

up, “Graphing with Beecology: Part Two”, serves as the heart of the unit. This is the first lesson

which introduces plotting outside of a bonus activity and is the first to ask for the formal

generation of hypotheses. Additionally, the lesson is where students truly begin to see for

themselves how using R may assist them in answering biological questions about real data. Prior

to the lesson, students are provided a dataset which has been crafted from the larger Beecology

dataset to provide only the variables necessary to complete the lesson. This decision was made to

ensure that students are not overwhelmed when presented with an Excel file, as many likely will

have not been exposed to one prior. The dataset titled, beeData, contains the variables for time,

year, month, species, behavior, gender, and tongue length. The time variable includes the exact

date and time the data was collected, as this format was used with mutating data and plotting

with ggplot. While month and year could have been extracted from the time variable, they were

added separately to make graphing clearer in introductory lessons. Tongue length was selected as

a bee characteristic to be analyzed, as it allows students to make hypotheses and observations

about the functional biodiversity observed across species. Using the beeData dataset, students

learn skills including loading a dataset into R, extracting information from said dataset,

manipulating data, retrieving and interpreting statistics, plotting data, and generating and testing

hypotheses. These skills are learned within the context of real data to determine how functionally

diverse an ecosystem is, considering questions involving the distribution of functional traits

across species.

Next in the curriculum is lesson 5, which is titled “Graphing with Beecology: Part Two”.

This follows the trajectory of “Graphing with Beecology”, and prompts students to expand on

the skills that they learned in the previous lesson, but with less guidance. The lesson contains

frequent checkpoints which serve to review and reinforce skills. This format allows students to

become comfortable with independent problem solving as well as tackling tasks on their own. In

addition to having students create new plots, the lesson teaches students to customize plots to be

easier to read by moving their elements as well as changing the color scheme. Next, the lesson

introduces the concept of installing packages. Here, the packages ggplot2 and dplyr are used to

manipulate a new dataset and plot a time series showing the occurrence of bee species over a

season. Using these packages, students learn to plot the three tongue lengths over the bee season

in a step by step tutorial, allowing them to test their previous hypotheses about functional
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diversity across bee species. The second dataset contains only three bee species, which were

intentionally chosen for their different tongue lengths. The goal in doing so was to allow students

to compare the graphs and consider why the patterns shown in the two are identical. They are

guided in realizing that bee species correlates to bee tongue length, and that certain tongue

lengths (thus different species) are observed at different periods in the season. Students are also

prompted to consider why they observe such a pattern, as well as whether or not they would

observe the same pattern when using the larger data set. As a bonus, students are asked to

generate a similar time series using the larger dataset.

The sixth and final lesson in the Bio-CS Bridge R unit is titled “Considering Bias in

Citizen Science Data”. This lesson serves as a wrap up to the introductory R curriculum and puts

the unit in context of data science as a whole. Students are prompted to reflect on the hypotheses

they tested and consider what factors might have affected the validity of their results. The goal of

this lesson is to have students recognize some common flaws associated with citizen science.

Furthermore, the lesson was created to make students aware of the importance of being able to

consider what bias might exist in any data they may analyze in the future.

4.2 Developing Activities to Support Independent Problem Solving

When developing the structure of the unit, it was decided that assessments would be non

intimidating and support skill building as opposed to formal examinations. Thus, the assessment

and activity portion of Backwards Design molded together to form the six lessons. These lessons

build off one another to provide a solid foundation in R as a language as well as an

understanding of statistics and plotting. Consultation with teachers affiliated with Bio-CS Bridge

earlier in the project confirmed that students in a classroom often start at different comfort and

exposure levels in statistics and math. While one teacher requested that the unit include AP

Statistics related curriculum, other educators suggested that this might be too intimidating for

students who have not yet had such exposure. Thus, it was important that the curriculum

materials were friendly at all levels and allowed for students to work at a pace comfortable to the

individual. Bonus activities were included where applicable for students who progress more

quickly, while the lessons start at a basic level to support those who have limited background.

Examples of these bonus activities can be seen in Appendix C. It was assumed that all
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participating students have no previous, or at most limited, R exposure, so the language was

explained in depth at the very basic level with clear definitions and pauses where necessary.

In addition to providing explanation where necessary, cautious efforts were made to

ensure that the lessons provided physical stopping points for student reflection. As the

curriculum was developed by a student just four years out of high school, these stopping points

were intuitive. However, teachers are encouraged to review the lessons prior to dissemination

regardless in case they feel adjustment is necessary to meet the individual needs of each

classroom. An example of a stopping point can be seen below in Figure 1.

Figure 1: An Example of A Stopping Point

As seen in the example shown in Figure 1, notes of this nature were consistently worded

in a friendly manner that reminded students of the importance of being able to reach out for help.

Oftentimes, independent work time can result in students feeling lost or unable to speak up.

Checkpoints such as the one shown above were regularly added to avoid this and to promote

teacher involvement through independent work time.

Additionally, as seen in the example above, explanations were provided when it was

necessary for students to understand when a skill might be an important one to learn confidently.

Figures 2 and 3 below show additional examples of this. Figure 2 shows a checkpoint which

follows steps to set a working directory in R. Since failing to set a working directory correctly

often results in common errors, it was important to make students aware of the importance of

completing these steps carefully early on. Such mindfulness can also be seen in Figure 3, which

shows a note reminding students to be consistent in their use of variable names in their code.

Since many students enter the unit not having programmed before, these reminders may help to

avoid common errors.
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Figure 2: Setting a Working Directory Checkpoint

Figure 3: Consistent Variable Calling Checkpoint

4.3 Ensuring Diversity in Curriculum and Combatting Imposter Syndrome

Since imposter syndrome disproportionately affects women and minorities, it was a goal

throughout the development of the curriculum to ensure that the lessons catered to students of all

backgrounds (Ahmed, et al., 2020). This process involved making sure that the examples in the

lessons were all supplemented with contextually relevant explanations when necessary. This was

done in an attempt to prevent culture bias, as studies have shown that bias in curriculum and

assessment material can create unfair grounds for its completion by students of different

backgrounds (Dobrescu, et al. 2021). Furthermore, all activities were phrased in an “Imagine

you…” format, where the students themselves are called to envision themselves as data scientists

whose job is to test a hypothesis using Beecology data. This practice supported the goal of

allowing students not only to learn science but also to “do science”, allowing them to build self

confidence and a sense of belonging in the field.

In addition to phrasing exercises in a way that allowed students to put themselves in the

position of a “scientist”, each lesson includes a profile of a biologist, data scientist, or biochemist

of diverse backgrounds who have made significant contributions to their fields. An example can

be seen in Figure 4 of one of these profiles. The example highlights Marie Maynard Daly, an

influential biochemist and the first African American woman in the United States to earn a Ph.D.

in Chemistry. Other role models included Patricia S. Cowings, Rosalind Franklin, and Baruj
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Benacerraf. The additional profiles can be found in Appendix D, as well as a general outline that

can be used for future Bio-CS Bridge curriculum.

Figure 4: Marie Maynard Daly Profile

Ultimately, the curriculum achieved its goal of providing a solid introduction to R

programming while making clear the intersection between data science and biology. The use of

frequent checkpoints and reminders grants the unit an approachable air and allows students to

feel comfortable moving at their own unique paces. Additionally, the ability of the lessons to

build off one another creates a stable ladder for students to climb when approaching more

challenging areas of the unit. This structure promotes the development of confidence and

comfort in students and encourages fearless learning. Most importantly, the curriculum is

welcoming to students of all backgrounds and plays a role in combating imposter syndrome by

providing representation for students who often struggle most with the phenomenon. This aligns

well with the goal set early in the project to allow for students to see themselves as scientists.

Hopefully the unit can be built upon with more advanced R concepts in the future. The

conclusions and recommendations below provide some insight in moving forward with this

endeavor.

35



5. Conclusions and Recommendations

5.1 Conclusions

While the Bio-CS Bridge R unit was created with many goals in mind, it is important to

acknowledge that all educational material has its positives and negatives. Many road blocks

arose in the creation of the lessons, the most influential being the setbacks associated with Replit

early in the project. With problem solving consuming much of the IQP, curriculum development

was often found in the alignment stage of Backwards Design. Despite this, it is hoped that the

time spent revising allows for a more positively impactful unit overall. The finalized curriculum

supports the original goals set in the initial stages of the project, thus it is hoped that the unit can

achieve its purpose of allowing students to become confident in their scientific and data abilities.

With the world constantly undergoing technological expansion, it is of utmost importance that

students of all backgrounds have the opportunity to gain exposure to fields such as data science.

Furthermore, it is important that such exposures allow for real world problem solving

opportunities as well as the possibility for students to relate back to their learning. With this in

mind, the current Bio-CS Bridge R curriculum should be used to provide a solid foundation in

the basics of statistics, R and data visualization.

5.2 Recommendations

The following suggestions might serve as beneficial in both the implementation of the

new Bio-CS Bridge R unit as well as the development of lessons beyond the introductory level.

These recommendations serve as suggestions for future direction as opposed to strict guidelines.

Teachers are Encouraged to Pace The Curriculum Appropriately Based On Individual

Classroom Needs

The material in the Bio-CS Bridge R unit was developed so that students can work at a

pace that makes them comfortable. The curriculum often reinforces tasks learned in previous

lessons (e.g.. having students install new packages and repeat other basic tasks as lessons

progress) to allow students the opportunity to become independent in the work. While this can be
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effective in creating a safe environment for self paced learning, it is recommended that teachers

do not forget to be consistently involved in the process. For example, there are various notes in

the lessons that remind students when might be an appropriate time to check in with a teacher for

help. It is expected that educators remain available during classroom completion of these

activities and read all code and teacher notes prior to student exposure. That way, student

learning can be supplemented at all paces and teachers can be prepared for the unique questions

that students might develop along the way.

Additionally, it is recommended that educators stay up to date on their own continued

education. Implementing interdisciplinary curriculum effectively can be difficult when one lacks

the cross disciplinary knowledge to disseminate teaching. Thus, districts participating in the

Bio-CS Bridge Initiative are highly encouraged to develop an empathetic mindset towards

educators, and provide adequate support in allowing for such continued education. This may

include paid workshops, or time allotted in the workday to become comfortable with foreign

material, such as new programming languages.

Moving Towards More Accessible IDEs

R Studio is an excellent IDE for working with data in R, as it was designed for

visualizations of the sort and is often used in industry and academia. However, switching to R

Studio created some barriers to accessibility that were originally avoided in the decision to use

Replit. Thus, while R Studio works well for those who are able to download it, there is some

concern for classrooms that do not have access to devices that can access downloadable

software. Oftentimes, school districts do not have permission to allow teachers or students to

download new software onto school provided devices, and some devices, such as tablets, do not

have the same functionality. Thus, it is important that the developers of the Bio-CS Bridge

curriculum stay up to date on current IDEs so that an open sourced, web based option can be

made available if necessary.

Additionally, in the final weeks of developing the Bio-CS Bridge R unit, R Studio

released an announcement that they would be renaming to “Posit” and adapting their software to

also integrate Python, another language popular in data science. Currently, it is unknown if this

shift will affect the functionality of R Studio or the current R Bio-CS Bridge lessons. It is
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important that educators participating in the program as well as future Bio-CS Bridge curriculum

developers remain aware of this shift so that they may adapt if necessary. Another consideration

related to this might be to create a merged Bio-CS Bridge Python and R curriculum using the

software, depending on what the new functionality of Posit offers.

Expanding the Bio-CS Bridge R Unit

While the current Bio-CS Bridge R unit is complete at the introductory level, it would be

ideal for future Bio-CS Bridge curriculum developers to expand on the curriculum to allow it to

dive deeper into data exploration as well as R itself. One of the initial goals set out in the initial

Backwards Design process (Table 3) was that “Students will develop an intuition of when to use

different types of data visualizations” (Byrne, 28). This goal was semi-achieved, as students

created bar plots and time series line plots in the curriculum. However, the lessons were not

developed to a point that allowed for student freedom of choice in the creation of their graphs. If

setbacks with Replit had not occurred, it might have been possible to see the curriculum include

more independent challenges. Thus, advice for future curriculum developers include the

following.

Future additions to the Bio-CS Bridge R unit would benefit from including more

examples of various graph types as well as structured hypotheses to show students when use of

each graph type is appropriate. Once the material sets students up to understand each graph type

individually, it would be ideal to have students answer more open-ended questions that grant

them greater freedom in their visualizations. This might allow students to become more

independent in their understanding of how to represent data. The unit could potentially be

wrapped up with a final project that might involve having students research an interest in the

Beecology dataset, generate a hypothesis, and source the necessary data from the Beecology

website to work with in R. This would allow students to utilize the Weintrop computational

thinking skills of “Data Collection” and “Data Manipulation” as well as allow them more

independence in their work. It would also prompt students to become comfortable reading and

citing relevant literature, which they can use in comparison to the Beecology dataset.

Additionally, future paths for the curriculum might involve expanding deeper into ggplot2

graphing capabilities, as the current unit only touches on it very briefly. Other avenues might

38



include merging the curriculum with more advanced AP Statistics, which high schoolers often

complete in conjunction with biology. This would involve a more fleshed out curriculum that

aligns with the goals for AP Statistics and allows students to apply their learning in real world

applications. By expanding the curriculum to overlap at the AP level, Bio-CS Bridge students are

provided further incentive to see the applications of their learning and perhaps even to pursue

data science later on. Finally, the unit would benefit from the addition of more complete answer

sheets and teachers’ notes to ensure both educators and students receive the support necessary for

success.

Ultimately, the new Bio-CS Bridge R unit should be implemented with the goal of

supporting all students in mind. Every individual deserves an opportunity to be supported as they

enter new and intimidating fields, such as computer science. It is the job of educators, curriculum

developers, and school districts alike to create a safe and supportive environment at every level

of this process. With this conscious effort, the unit will achieve the project goal of allowing all

students to see themselves as scientists.
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Appendix A: Example of A Dataset

Appendix A shows the first ten lines of BeeData.
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Appendix B: Graphing with Beecology, Lesson Example

Graphing with Beecology
Name ________________________________ Date: ___________ Period: ______

You will now be combining your knowledge in ecology with your new R programming
skills to test hypotheses about Beecology data. The dataset contains information about
pollinator species observed by Beecology users around the New England area.

For each activity below:

✅ means to complete this task

✎ means to write an answer here

Activity #1:
Asking Questions and Making Predictions
In this section, you will be considering ecologically relevant questions that can be
explored through the generation of hypotheses and visualization of data. You will later
test your hypotheses using R and will see how programming can supplement our
understanding of biology!

a. ✅Let's start by creating a new folder on your laptop titled Beecology. Load the
dataset provided by your teacher in Excel, saving it to the Beecology folder.

★ This is important, since R requires working files to be stored in the location as any data used

in the code. We want to make sure our materials are in an organized location to prevent path

errors later. Path errors are errors relating to the path your device takes to find a file.
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b. ✅ Take a look at the top row of the Excel file; it contains the variable names.
The columns under each are the collected data for each variable by Beecology
users.

★ Note: Now is a good time to reach out to a teacher if you are having trouble understanding

the dataset. Reading files of this format can certainly be an adjustment at first glance, so don’t

hesitate to ask for clarification!

c. ✎ Below, list the variable names you see in the dataset. If you have any
confusion about what they might be, turn to the Beecology website for guidance.

d. ✎ Looking at the variables you listed, can you identify one measure of the
functional diversity of bumblebees in the dataset? Write your answer below.

e. ✎ Using your understanding of biology, do you predict that the functional
diversity of bumblebees has changed over time? If so, in what ways?

f. ✎What variables in the dataset might differ over time? Can you make any
predictions?

g. ✎ Given the variables in the dataset, make a hypothesis about the data. Give a
brief explanation for your prediction and an idea of how you may test it.

When you have finished, move to the next page for Activity #2.
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Activity #2:
Preparing R for Data Analysis
Thanks to data analysis tools such as R, we can test hypotheses right on our laptops,
so long as we have the data ready and accessible. In this section, we are going to test
some of the hypotheses you made above using R and graphing.

Setting A Working Directory

1. ✅ Open R Studio. Create a new file titled hypothesisTesting and save it to the
Beecology folder.

Next, we need to connect our working directory, or more simply, the folder in which we
will store our working materials. Setting a working directory allows R Studio to know
where to go when we request information, such as data files, from our local computer.
To set your working directory to the Beecology folder, follow the following steps.

2. ✅ Click “Session”, located on the top bar and pictured below.
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3. ✅ Next, select “Set Working Directory”, as shown below. From the drop down
menu, click “Choose Directory” and select the Beecology folder from your laptop.

4. ✅ To double check you have set the correct working directory, use the command
below and run the code. The working directory should contain the location of the
Beecology folder if set correctly.

★ Now is a good time to pause and ask your teacher for help If you are having trouble setting

the working directory. This is a crucial step in making sure your code runs smoothly later!
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Loading the Data

1. ✅ If you haven’t already, make sure both the Excel file provided by your teacher
and the R hypothesisTesting file are stored in your Beecology folder.

2. ✅ Now, it is time to load the data into R Studio. Go to R Studio and type the
following line into your hypothesisTesting file. You will need to replace the path
with the file’s location on your laptop.

3. ✅ To load the first few lines of the dataset, use the head() command, as
practiced in the previous lesson.

4. ✎ Take a look at the summary provided by head() when run. What variables are
contained in the dataset? Do these match with those you identified in the Excel
sheet?

Activity #3:
Testing Hypotheses and Building Graphs
Now, we want to test hypotheses using R and graphing. Let’s first prepare our data to
be plotted.

Preparing the Data

Next, we need to convert the variables to factors. Factors are the data objects that R
uses to store categorized data in levels, a way that can be quantified and visualized.
Because the data is categorical, we need to tell R to make a count of each category.

a. ✅ To convert the variable for bee gender to a factor, you can use the below
code.

gender <- factor(beeData$gender)
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Here,
gender is the name of the variable which you are assigning the factor to
factor() is the function being used to convert the variable to a factor
beeData$gender is the object being converted to a factor

beeData is the dataset
$ denotes that the next item is a variable in the dataset
The ‘gender’ following $ is the variable in beeData being converted to a
factor

You are setting gender equal to the value of beeData$gender after it has been
converted to a factor.

b. ✅ Now, on your own, try using this structure to convert the non numeric
variables in the Beecology dataset to factors.

c. ✎ In your own words, explain why it is important to convert non-numeric
variables into factors.

Creating Data Frame from Factors

Now, we want to create a new data frame from beeData, but this time, with all the
variables converted to the correct format. To do so, we can use the data.frame()
command. You explored this command in the previous lesson, but we will give a review
to refresh.

The data.frame() command works as follows:

df <- data.frame(column1, column2, column3)

Here, columns 1 through 3 are the columns of variables contained in the dataframe. In
our example, these would be the beeData variables converted to factors as well as the
numeric variables from beeData. The ‘df’ at the start of the code is simply the name of
the data frame. We can call ours whatever we wish so long as it is appropriate and
follows naming conventions.

49



1. ✅ Now, use the above format to make a data frame containing all the new factor
variables as well as the numeric variables from beeData. Print the data frame by
calling on the name, as you would a variable or vector name.

2. ✅ Suppose we want to see the summary statistics for the new data frame. Use
the summary() function to retrieve this.

3. ✎What information does the summary function give you about the data frame?

4. ✎Which of these data are meaningful? Is there a reason to have the same
summary statistics for categorical data, such as species and tongue_length, as
for time measurements like month and year? Why or why not?

5. ✎ Are there more male or female bees in the dataset?

6. ✎Which tongue length is predominant in the dataset? Why might this be?

Plotting A Variable

Before we begin to test hypotheses of two variables, let’s start by plotting the count of
single variables.

This can be very useful if we want to see the total counts of categorical data as
compared to one another.

To start, let’s plot the total counts of each bee species in the dataset.

1. ✎Without looking at the summary statistics, do you expect to see similar
numbers of every species in the dataset? Why or why not?
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To plot the counts for each species in a bar graph, we can use the plot function. The
previous lesson gave a brief introduction to plot() in the bonus section, but if you did not
make it there don’t fret! We will provide more explanation here.

The plot() function takes either an x and y value in the form of vectors, a data frame
containing two columns, or a vector variable that can be plotted by count. In this case,
we will be plotting a singular vector variable, as seen below:

plot(variable)

2. ✅ To plot the total counts of each species in the Beecology dataset, run the
below code.

plot(species)

★ Note: Be sure to check that you use the variable name you used for species. Errors

commonly occur when we are not consistent with variable names, so this is always important to

be mindful of!

3. ✎ Which bee species is seen most often by Beecology users?

4. ✎ Do you have any hypotheses about why this might be?

5. ✅ Now, try on your own making plots for the single variables behavior and
tongue length.

Next, let’s look at the distribution of tongue length over species. This will allow you to
look at two variables compared.

First, we will make a hypothesis.

6. ✎ Consider the following and make a hypothesis. Do you anticipate seeing a mix
of lengths among species or will bees of the same species have the same tongue
length classification? Write your hypothesis below and explain your reasoning.
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Now, we will make a table of the variables to make them easy to plot. A table in R gives
the frequency of categorical variables in the form of columns and rows. We can use this
to get the count of overlap between two variables.

A table can be created and stored using the table() function as shown below:

tableName <- table(column1, column2)

7. ✅ Create a table called speciesTongue of the variables species and tongue
length.

8. ✅ Display the table by calling its name.

9. ✎ Thus far, does your hypothesis seem to be supported by the data in the table?

Next, we will go step by step in building a bar plot. A bar plot is a plot that shows the
frequency of categorical data using rectangles, the height of which represents count.

To create a bar plot in R, we can use the barplot() function. Let’s go step by step to build
a bar plot!

10. ✅ Start by running the below code in R Studio.

barplot(speciesTongue, beside = TRUE)

Here, barplot() takes the table speciesTongue and creates a barplot showing the count
of species type for each tongue length. The ‘beside = TRUE’ portion tells R that the bars
should be grouped beside one another as opposed to stacked.

★ Feel free to play around and remove the ‘beside = TRUE’ portion to see how the graph looks

without it! Just be sure to change the code back before moving on in the tutorial.

11.✅ Now, let’s work on adding a title. To add a title, you can adjust your code to
include a ‘main =’ line, as shown below. Add the ‘main =’ line to your barplot code
and replace ‘TITLE’ with an appropriate title for the graph.

barplot(speciesTongue, main="TITLE", beside = TRUE)
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12.✅ Now, we need to add a label for the x axis. We can do this by adding ‘xlab =
“LABEL” ‘ as shown below. Replace the ‘LABEL’ in the line with an appropriate
label for the x axis and run the code.

barplot(speciesTongue, main="TITLE", xlab="LABEL",
beside = TRUE)

13. ✅ Finally, we are missing a legend. Add a legend by using the ‘legend =
rownames()’ line below.

barplot(speciesTongue, main="TITLE", xlab="LABEL", legend =
rownames(speciesTongue), beside = TRUE)

🎉 Congratulations! You just made your first bar plot in R!🎉

14. ✎ Does the plot support your hypothesis? Why or why not?

15. ✎What observations can you make about the data shown in the table and the
bar plot?
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Appendix C: Vectors and Data Frames Bonus Activities

Bonus Activity: Plotting

If you have finished the lesson, now’s the chance to get a sneak peek at graphing in R!

Suppose we want to graph the observances of B. impatiens by Beecology users across
2021 using the data frame just created. We can use the plot function to do so.

The plot function takes two variables, the first being the X values and the second being
the Y values. Its format can be seen below:

plot(x, y)

✎Which variable will be on the x axis? On the y? Does it matter for this type of data?

We can also use the plot() function by inserting the data frame in the parentheses. This
is because our data frame only contains two variables.

✅ Using the plot() formula above, plot the count of bee observances for each month
throughout the year of 2021.

Did you plot either of the following?

plot(months, beeCount)

plot(monthlyCounts)

✎ Is there a difference between the two when plotted?

Bonus Activity #2: Plotting with Iris

Now back to Iris.

Suppose we wish to see the relationship between petal width and petal length of the
flowers in the Iris dataset. First, let’s consider how our variables will be used.

✎Which variable will be on the x axis? On the y? Does it matter for this type of data?

54



Next, we need to understand how variables can be extracted from data frames. In R,
variable names from data frames and datasets are denoted as the following:

dataset$variableName

An example from Iris can be seen with the Species variable below:

iris$Species

To make the species variable easier to call on later, we can assign it the variable
“species”:

species <- iris$Species

✅ Now, using the steps above, assign petal length and width to variables PL and PW.

✅ Using the variables you just created, use the plot() formula above to plot the
relationship between PL and PW.

Congrats, you just made your first graphs in R!
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Appendix D: Highlighted Profiles of Influential Role Models
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