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ABSTRACT 

This project focused on the localization of small RNAs as well as certain proteins 

in mammalian cells grown in culture. Immunofluorescence and confocal microscopy 

were used to locate signal recognition particle (SRP) RNA and three associated protein 

subunits, and also telomerase RNA and two associated proteins.  Several different cell 

types were used to study the molecules, as well as multiple techniques for locating these 

molecules including fluorescence in situ nucleic acid hybridization, immunostaining, and 

fluorescent protein gene transfection and expression. The results from the SRP study 

demonstrate that there is colocalization in the nucleolus between the SRP RNA and the 

three protein subunits studied. The results from the study on telomerase demonstrate that 

further modifications need to be made to the techniques used because of the difficulty of 

localizing this small RNA and its associated proteins in the cell.  
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BACKGROUND 

Introduction 

 Molecular biology can be described as the study of Biology at the molecular level 

and is associated with many fields like chemistry, biochemistry, and genetics.  The 

molecules of significant importance to molecular biology are DNA, RNA, and proteins. 

These molecules are studied to a great extent with respect to their assembly, structure, 

and function. The roles of many molecules of the cell and the relationships between them 

are still poorly understood. Understanding the structure and interaction among certain 

molecules will aid in the understanding of their roles in the context of a living organism 

(1).  

 There are many different stable cellular structures that need to be assembled, 

disassembled, moved, and reorganized during different stages of the cell cycle. There are 

also structures that rapidly move and reorganize themselves in response to the cell�s 

environment, independent of the cell cycle. Some molecules have the complex task of 

moving other molecular components around the cell, in and out of the nucleus, from one 

organelle to another, and in and out of the cell. There are very dynamic processes in cells 

that are well understood, while there are other processes that are poorly understood. One 

major reason why certain processes are still poorly understood is because of the available 

techniques. As more and more new techniques are discovered for studying the dynamic 

processes of the cell, roles of certain molecules in the context of a living organism will be 

better understood (2).  
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Signal Recognition Particle 

Function 

The signal recognition particle (SRP) is a protein/RNA complex, a 

ribonucleprotein, and it recognizes certain nascent polypeptides and transports the 

polypeptide bound to a ribosome to the endoplasmic reticulum (ER) in eukaryotes and 

the plasma membrane in prokaryotes. In humans, the SRP translocates only secretory or 

membrane proteins into the ER (3). As seen in Figure 1, the SRP starts by associating 

with a ribosome in the cytosol that is in the process of translating an mRNA that encodes 

for a secretory or membrane protein. The SRP is able to recognize these types of proteins 

because of a short signal sequence at the N-terminus of the nascent peptides. The SRP 

bound to the ribosome travels and interacts with a SRP receptor that is located in the 

membrane of the ER. The ribosome then continues translation of the protein through a 

channel called the translocon and into the endoplasmic reticulum. The released SRP is 

then able to go and find another protein destined for the ER (4).  

 
Figure 1. Diagram of SRP function (4). 
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Structure 

The human SRP is composed of six different proteins that are bound to one RNA. 

Interestingly, the SRP RNA has a secondary structure that has been conserved during the 

evolution of bacteria, archaea, and eukarya. The human SRP RNA contains two domains, 

the translational arrest activity located in the Alu domain and the nascent polypeptide 

signal sequence recognition and protein translocation activity located in the S domain. 

This RNA is bound to the proteins: SRP9, SRP14, SRP19, SRP54, SRP68, and SRP72, 

named according to their approximate  in kDa. Two pairs of proteins, SRP9/SRP14 and 

SRP68/SRP72, are present as heterodimers in the SRP (3). Shown in Figure 2 is a basic 

diagram of the components of the eukaryotic SRP. The  of the RNA molecule  shown in 

light blue, the six proteins are numbered in red, and the signal peptide of the protein is 

shown in pink. The overall structure of the SRP particle resembles a dumbbell and is 

roughly 240 Å long (4). Remarkably, purified SRP can be disassembled into its 

constituents and subsequently reassembled to form a functional particle. It has been 

demonstrated that the constituents of the SRP come together in a step-wise pathway in 

which different conformational changes allow subsequent binding of additional proteins 

(3).  
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Figure 2. Components of the eukaryotic SRP (4). 

Interestingly, though the SRP complex has been studied in great detail and much is 

known about its structure and function, much less is known about how the complex is 

assembled in the cell. Studies using yeast and mammalian cells have shown that the 

nucleolus might be the initial site of SRP assembly, as SRP components have been 

located in the nucleoli of these cells (5).  It has been shown that when fluorescent SRP 

RNA is microinjected into the nucleus of mammalian cells, the RNA rapidly localizes in 

the nucleolus. It was also shown that through the microinjection of mutant SRP RNAs, 

the Alu domain and helix 8 are required for nucleolar localization (3). 

Telomerase 

Telomeres 

Telomeres are special DNA sequence elements at the termini of eukaryotic 

chromosomes. In vertebrates, telomeres consist of DNA repeats of the nucleotides 

TTAGGG. Telomere repeats have been observed to be between 10-50 kilobases in 
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different organisms (6). There are telomere specific proteins that bind directly to the 

telomeres to form a complex that caps the end of chromosomes and protects them from 

degradation, recombination, and end-joining reactions. Some examples of telomere 

specific proteins are protection of telomeres-1 (POT1), and telomeric repeat factors 1 and 

2 (TRF-1 and TRF-2). If the structure or the DNA sequence of telomeres is distorted in 

some way or the telomere specific proteins are altered or lowered, chromosomes could 

possibly undergo end associations and fusions that could result in cell senescence or 

apoptosis (7). There because DNA replication (8). Figure 3 is a diagram of telomere 

shortening during DNA replication. It can be noticed that during replication, an RNA 

primer is left at the 5� end of each RNA strand being replicated. This primer then will get 

degraded by a 5� � 3� exonuclease, which results in the formation of a 3� overhang 

structure that is rich in the nucleotide guanine. This resulting 3� overhang structure plays 

an important role in the formation of certain DNA structures at the termini (9). 
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Figure 3. Telomere shortening during DNA replication (9). 

 Human telomeres are approximately 15-20 kbp of the nucleotides TTAGGG, 

followed by area on the 3� overhang that is very Guanine-rich. A structure that resembles 

a lariat, the telomere loop (T � loop), is formed by the double-stranded region and the 3� 

overhang (7). Figure 4 below is a diagram of a mammalian telomere structure with 

various telomere binding proteins.  As shown in the Figure, there is a large telomere T � 

loop that forms from the telomere region folding back on itself and a small displacement 

loop (D �loop) that forms when the 3� overhang binds to the double-stranded telomere 

repeat sequence of the 5' end strand (9).  
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Figure 4. Diagram of mammalian telomere structure with various telomere binding proteins (9). 

 
Telomere length can play a significant role in how a cell functions. For example, 

if telomeres are shortened to a certain critical length, the cell could be triggered to enter a 

state of cellular senescence or apoptosis. That is why telomeres can be described as 

molecular clocks that count the number of times a cell divides and determines the 

occurrence of the mortality stages M1 (cellular senescence) and M2 (crisis). The 

pathways that are initiated by telomere shortening can be seen in Figure 5.  Figure 5 a cell 

that does not have any telomerase activity, which means that the amount of telomere 

sequence is lowered during each round of replication. Once the telomere repeats are 

shortened to a certain amount, the cell will enter crisis stage involving cellular senescence, 

meaning that the cell will not be able to divide. The cell could also enter a another crisis 

stage, where the cell will enter cellular apoptosis or, rarely, become cancerous, if the 

telomere repeats shorten to another certain critical amount (10). 
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Figure 5. The pathways initiated by telomere shortening that leads to the M1 or M2 stage (7). 

Structure 

Telomerase is a ribonucleoprotein (RNP) enzyme that synthesizes telomeres (11). 

Human telomerase has a reverse transcriptase (hTERT) component that catalyzes the 

repeated addition of telomeres de novo, and also has a RNA (hTR) component that is 

used as a template to synthesize the telomeres. These two components of telomerase are 

essential for synthesis of telomeres, which starts early in development (8). The hTERT 

component of telomerase contains reverse transcriptase motifs that are essential for 

enzymatic activity as well as a T motif specific for telomerase.  Several motifs near the 

N-terminus of hTERT are conserved across species. It has also been observed that both 

hTERT and hTR localize to nucleolus in certain cell lines (12).  
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Even though sequences and lengths of telomerase RNA may vary considerably 

across species, there are many features of the structure that appear to be conserved. In 

vertebrates, there are four highly conserved telomerase RNA domains that contribute to 

very similar secondary structures. These domains are essential for the 3� terminal 

formation of the established telomerase RNA, nucleolar localization of telomerase RNA, 

and catalytic activity. Through phylogenic and biochemical footprinting analysis in 

human cells, the secondary structure of the 451 nucleotide hTR was recognized. The 

templating region is 11 nucleotides (5�-CUAACCCUAAC-3�) and is located near the 5� 

terminus. The region is comprised of the template sequence for the synthesis of telomeres 

and has an alignment domain. Certain nucleotides on hTR contain hTERT binding sites 

are essential for telomerase activity. The stable association between hTR and hTERT is 

also a unique feature (13). 

Interestingly, nearly all adult human somatic cells have no significant telomerase 

activity because of the transcriptional silencing of its protein component. The silencing of 

telomerase components leads to the shortening of telomeres. The shortening of telomeric 

sequences to certain critical points can lead to a decrease in the ability of a cell to go 

through cell division. So when and if telomeres are synthesized, it is during the S phase in 

the human cell cycle, although it is not known how the activity of telomerase is 

constrained to the specific stage of the cell cycle (8). It is also interesting that the 

introduction of the protein component (hTERT) into cells that are telomerase inactive but 

have telomerase RNA, can lead to the reactivation of telomerase, which results in the 

bypass of the mortality stages M1 and M2 (7). 
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 It is thought that the regulation of telomere synthesis through telomerase activity 

could serve as a very powerful tumor suppressor mechanism. If there were a way to block 

the production of telomeres in just cancerous cells and not the surrounding tissue, then 

the cancerous cells could possibly be triggered to enter cellular senescence or apoptosis. 

There are also several diseases involving telomere dysfunction, and research has shown 

that individuals born with reduced levels of telomerase activity have a shorter telomeric 

sequence, which leads to telomere dysfunction in highly proliferating cells. Telomeres 

are very vital structures inside the cell and that means knowledge about telomerase and 

telomeres could provide insights into several human diseases (7). 

Cancer Cells, Stem Cells, Progenitor Cells 

 In the majority of human cancers, telomerase activity is amplified and provides an 

increase in proliferation capacity for the cancerous cells. Thus, telomerase biology has 

significant implications for cancer (8). In advanced stages of most cancers, telomerase 

allows proliferation of transformed cells by replenishing telomeres. There are also 

possibilities that telomerase could contribute to tumor growth through other unknown 

functions that promote cell growth (14).  

 The activity of telomerase could be the rate-limiting step required for the 

continued proliferation of progressing cancers. It is known that the majority of human 

tumors have telomerase activity and nearby normal human somatic cells do not. So, since 

cancer cells have considerably shorter telomeres than the surrounding normal telomerase-

expressing cells, such as stem and germline cells, there is a possibility that cancer cells 

could be effectively targeted by telomerase inhibitors. This is because normal telomerase-

expressing cells have longer telomere lengths and divide at slower rates than cancer cells. 
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The cancer cells would eventually enter a crisis stage if their telomeric sequence shortens 

enough. The treatment would have to be extensively monitored so that when the cancer 

cells die, the treatment can be stopped immediately so that normal telomerase-expressing 

cells remain unaffected. An overview of telomerase inhibition in normal telomerase-

expressing cells and cancer cells is shown in Figure 6. The figure shows how only cancer 

cells will be triggered to enter apoptosis while normal telomerase-expressing cells remain 

healthy (7). 

 
Figure 6. Telomerase inhibition in normal telomerase expressing cells and cancer cells (7). 

A study was performed that involved inhibiting telomerase activity through RNA 

interference (RNAi) of hTERT in two human glioblastoma cell lines (10). Although the 

results showed that there was no effect on cell growth in vitro, tumors  subcutaneously 

and intracranially grafted mice were considerably inhibited by anti-telomerase RNAi. 

Even though telomerase inhibition is strongly dependent on the context of the cell, the 
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inhibition is a potential therapeutic approach for cancer (10). There have also been 

investigations into the localization of telomerase hTR in several cancer cell lines. Studies 

using fluorescence in situ hybridization (FISH) on several cancerous cells and normal 

somatic cells were performed. Accumulation of hTR at nuclear foci was observed in the 

cancerous cells, but not in the normal cell lines that were studied (15). 

 In normal regenerating tissues, telomerase is expressed by stem cells and 

progenitor cells. The activity is required for intact telomere function and tissue 

homeostasis. It has been observed that in telomerase-knockout mice, the shortening of 

telomeres to a critical length induces programmed cell death. It was also noted that the 

shortening impairs the function of actively dividing tissue such as bone marrow, testis, 

and the gastrinointestinal tract. The requirement of telomeres in tissue maintenance could 

possibly be related to the role of intact telomeres in stem cell self-renewal, and this idea 

has been most evidently demonstrated through transplantation experiments using 

hematopoietic stem cells. It also has been found that telomerase was active in stem cells 

through a mechanism not related to the maintenance of telomeres (14). 

Techniques 

Fluorescence In Situ Nucleic Acid Hybridization 

One approach to localizing small RNAs in a cell culture is through fluorescence 

in situ hybridization (FISH). FISH can be described as the labeling of a piece of a nucleic 

acid strand, called a probe, that is complementary to a specific DNA or RNA strand of 

interest, and then the exposure of that complementary nucleic acid  strand to a specific 

cell sample, hoping that it hybridizes and shows the localization of a molecule of interest. 

The hybridized probe  can be observed by using a fluorescent microscope or by using a 
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higher resolution microscope and a  technique called confocal microscopy which allows 

for three-dimensional imaging (16). FISH using complementary nucleic acid strands to 

DNA can be used to analyze chromosomes, while complementary nucleic acid strands to 

RNA can be used to analyze a wide variety of types of RNA in the cell (17).  

Before FISH can be applied to samples, the cell  usually go through a chemical 

fixation procedure to keep the target DNAs and RNAs in place, as well as a 

permeabilization step to allow access for the probe. During FISH, when the labeled probe 

is exposed to the sample, the temperature is usually increased to allow denaturation of 

base-paired DNA or RNA to occur, and then the temperature is decreased to allow 

hybridization to occur. The sample is then washed so that the excess probe is washed 

away. Interestingly, two or more probes can be labeled with dyes of different colors and 

used on one sample to show the localization of two or more molecules of interest. FISH 

can also be used in combination with a technique called immunostaining, which is used 

mostly for the detection of protein, to show the colocalization of a protein and RNA or 

DNA of interest. Colocalization studies can be performed on molecules that have a 

protein component and an RNA component (16).  

Immunostaining 

Immunostaining is an approach to localizing protein components in a cell. It can 

be described as the labeling of antibodies with fluorescent molecules, and then the 

exposure of those antibodies to a sample of interest hoping that they show the localization 

of a molecule of interest. There are two main types of antibodies used during 

immunostaining. The first type is the primary antibody and it is specific for the antigen of 

interest. The second antibody, called the secondary antibody, is fluorescently labeled and 
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is specific for the primary antibody. That way, researchers can choose to show the 

localization of a certain molecule, obtain a primary antibody to bind to that molecule, and 

then obtain a fluorescently labeled secondary antibody to bind to the primary antibody to 

show the localization of that molecule (18). Figure 7 is the general structure of an 

antibody, showing the stem and the arms of the molecule. The stem of the antibody is a 

so-called �constant� region that is composed of heavy chains, and it defines the class of 

antibody and organism it is present in. The arms of the antibody are the so-called 

�variable� regions and are part heavy and part light chains. Each arm has the ability to 

bind an antigen, so one antibody has the ability to bind two antigens (19). 

 
Figure 7. The structure of an antibody showing: Heavy and light chains, variable regions, and antigen 

binding sites (19). 
 

Before immunostaining can be performed on a sample, the cells usually go 

through a fixation and permeabilization procedure to keep proteins in place and to allow 
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access for the antibodies. The primary antibody is then applied to the sample and allowed 

to incubate, and the sample is washed so that the excess antibody is washed away. The 

secondary antibody is then applied and allowed to incubate, and the samples are then 

washed again so that the excess antibody is washed away. The labeled samples can then 

be observed by using a fluorescent microscope or by using confocal microscopy (18). 

Fluorescent Protein Gene Transfection and Expression  

Fluorescent protein gene transfection and expression is also an approach for 

localizing protein components in a cell and it involves incorporating a piece of foreign 

DNA that encodes a fluorescent protein fused to the coding region of the protein of 

interest. The techniques that are used to allow foreign DNA uptake are lipofection, virus 

mediated delivery, electroporation, and microinjection. The foreign DNA does not have 

to get incorporated into the host genome as long as the foreign DNA has specific control 

and coding regions that allow for transient expression. Figure 8 shows how nanoparticles, 

typically liposomes are used,  through the cell membrane and either release foreign DNA 

into the cell cytoplasm or fuse with the nucleus of the cell and thereby  the DNA into it. 

The foreign DNA can then be expressed and studies performed (20).  
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Figure 8. Mechanisms for incorporating and transiently expressing foreign DNA in a host cell (21). 

 
The cell culture sample that gets transfected is left to sit for a number of hours to 

allow for the expression of the fluorescent protein. The cell sample then goes through a 

fixing procedure to keep the fluorescent proteins in their place. The labeled samples can 

be observed by using a fluorescent microscope or by confocal microscopy. Transfection 

can also be used with FISH, to show the colocalization of a protein and RNA or DNA of 

interest. Colocalization studies can be performed on molecules that have a protein 

component and an RNA component (20). 
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MATERIALS AND METHODS 

Cell Lines 

 The cell lines used in this project were Normal Rat Kidney (NRK) cells, HeLa 

cells, U2OS cells, GM00847 cells, and VA13 cells. All of the cells except for the 

GM00847 cells were grown using DMEM low glucose 1X medium with 10% fetal 

bovine serum added. The GM00847 cell line was grown using MEM 1X medium with 

10% fetal bovine serum added. The NRK cells were used for the study on the signal 

recognition particle, and the HeLa, U2O3, VA13, and GM00847 cell lines were used for 

the study on telomerase. Table 1 below shows descriptions of all the cell lines used in this 

report and the presence or absence of the cell component of interest. This information 

was gathered from the cell line characteristics and information guide that came with the 

cell lines from various resources.  

Signal Recognition Particle 
Cell line Description RNA Proteins 
NRK Normal rat epithelial kidney cells Present  Present 

Telomerase 
Cell line Description RNA Proteins 
HeLa Human, 31 year old African 

American female, epithelial cervical 
cancer cells 

Present Present 

U2OS Human, 15 year old Caucasian 
female, epithelial-like osteosarcoma 
cells 

Present  Present 

VA13 Human, 3 months gestation 
Caucasian female, normal lung 
fibroblast cells   

Not present Not Present 

GM00847 Human, 5 year old African 
American male, skin fibroblast cells  

Not present Not present 

Table 1. Descriptions of all the cell lines used in this report. 
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Plasmids, Probes, Antibodies 

 There were many plasmids, probes, and antibodies used in this report and a 

summary can be viewed in Table 2. The plasmids that were used in this report encode an 

SRP protein as a green fluorescent protein (GFP) fusion molecule. There were two types 

of probes used in this report, LNAs and PNAs. Locked nucleic acids (LNAs) are 

modified RNAs that have an extra bridge connecting 2� and 4� carbons, which allows for 

enhanced base stacking and backbone pre-organization for enhanced specificity. All of 

the LNAs used in this report are approximately 15 nucleotides long. Peptide nucleic acids 

(PNAs) are nucleic acids with repeating N-(2-aminoethyl)-glycine units linked by peptide 

bonds in place of the usual phosphodiester backbone. Thus the PNA  contain no charged 

phosphate groups which allows for enhanced binding due to less electrostatic . The PNAs 

used in this report are a little longer averaging 20 nucleotides. Along with the primary 

probes in Table 2, there were also scrambled sense and scrambled anti-sense probes that 

were used as control probes and are approximately the same length with respect to the 

primary probe. There were also two types of antibodies used, primary and secondary 

antibodies. The two types of primary antibodies used were the telomerase protein 

(hTERT) specific antibody and thetelomeric repeat factor-2 (TRF-2) specific antibody. 

The one secondary antibody that was used was a Cy3 � conjugated donkey anti-rabbit 

antibody. 
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Plasmids 
Name Description Obtained From 
SRP-19 
GFP 

4,642 base pair plasmid that encodes for human 
SRP-19 fused to a green fluorescent molecule 

University of Texas Health Center, 
Department of Molecular Biology 

SRP-68 
GFP 

6,633 base pair plasmid that encodes for human 
SRP-68 fused to a green fluorescent molecule 

University of Texas Health Center, 
Department of Molecular Biology 

SRP-72 
GFP 

6,773 base pair plasmid that encodes for human 
SRP-72 fused to a green fluorescent molecule 

University of Texas Health Center, 
Department of Molecular Biology 

Probes 
SRP LNA A LNA probe specific for a site on SRP RNA 

SRP-2 PNA A PNA probe specific for a site on SRP RNA 
TH1 PNA A PNA probe specific for a site on telomerase RNA 
TH4 PNA A PNA probe specific for a site on telomerase RNA 
TH1 LNA A LNA probe specific for a site on telomerase RNA 
TH4 LNA A LNA probe specific for a site on telomerase RNA 
TERNS  A LNA probe specific for a site on telomerase RNA 
Yeast PNA A PNA probe specific for a yeast cell component 

Pederson Lab, University of 
Massachusetts Medical 
School, Department of 
Biology and Molecular 
Pharmacology 

Antibodies 
TRF-2  Primary telomeric repeat factor-2 (TRF-2) specific 

antibody 
Calbiochem Inc. 

hTERT Primary telomerase protein (hTERT) specific 
antibody 

Rockland Immunochemicals Inc. 

DAR Secondary Cy3 � conjugated donkey anti-rabbit 
antibody 

Jackson ImmunoResearch 
Laboratories Inc. 

Table 2. Summary of all the plasmids, probes, and antibodies used in this report. 
 

Cell Restoring 

 The NRK, HeLa, U20S, and Va13 cell lines were thawed from a stock in a liquid 

nitrogen tank, and the GM00847 cell line was obtained as a live culture from Coriell Cell 

Repositories. Frozen cell lines were taken out of a liquid nitrogen tank and immediately 

placed on a floating rack in a 37°C water bath for 1-2 minutes. During that time, 5 m of 

the growing medium was added into new 25cm2 flasks. Once the cells were thawed, 1 mL 

of medium with cells was transferred into the new flasks and observed under a 

microscope. Once the cells were observed, the flasks were labelled and placed into a 

37°C, 5% CO2 incubator.  
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Cell Culture 

 When cells needed to be split, the media and STE buffer for the cells were 

warmed in a 37°C water bath for 15 � 60 minutes before the cells were cultured. The 

trypsin buffer, which is used to release the cells that adhered to the flasks, was allowed to 

warm in the cell culture hood. Media from the old growing cell flask was removed and 

2.5 m of STE buffer was added, covering the cells. The STE buffer contained 10mM 

Tris-HCl at pH7.5, 10mM NaCl, and 1mM EDTA. The STE buffer was then removed 

and 0.5 m of 2.5% (w/v) trypsin in PBS was added. The flask was then incubated in a 

37°C, 5% CO2 incubator for 1 � 2 minutes. During that time, 5 m of medium was added 

to the new 25cm2 flask. The old flask was then observed under a microscope to make sure 

the cells had come off the surface. Once the cells looked ready to be divided, 5 m of 

medium was added to the flask and pipetted over the area where the cells had been 

growing 7 � 8 times. An average of 0.5 m of medium from the old flask was transferred 

to the new flask. The new flasks were observed under a microscope, labelled, and placed 

into a 37°C, 5% CO2 incubator until the cultures needed to be split again. 

Cell Plating  

 2.0 m of ted cells was added to 18 msof medium and that mixture was used to 

seed coverslips in 6-well culture dishes. 3 m of the diluted cell resuspension was added to 

each well. The 6-well culture dishes were placed in a 37°C, 5% CO2 incubator until cells 

were ready to be fixed. 

Fluorescent Protein Gene Transfection and Expression   

Cells were transfected 24 hours after the cells were plated in a sterile environment. 

There are several mixtures that were needed for the transfection. There is a plasmid 
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mixture, which contained 2µg/well plate of the plasmid of interest. There is a control 

mixture, which contained RNAse-free H2O instead of the plasmid. There is also a 

lipofectamine mixture, which contained 5µL/well plate of lipofectamine. All these 

mixtures contained Opti-MEM in them, which is a medium that optimizes the 

transfection procedure so that the plasmid can get incorporated into the cells. Once the 

cells were ready to be transfected, equal amounts of both the plasmid mixture and control 

mixture were mixed separately with the lipofectamine mixture and allowed to sit for 20 

minutes. The medium was removed from the culture dishes that contained the cells, and 

2.5 m of Opti-MEM was added to each well. Then, 500 µL of the plasmid or control 

mixture with the lipofectamine was added to the corresponding wells, and the culture 

dishes were then swirled. The dishes were placed in a 37°C, 5% CO2 incubator for 3 

hours. The medium was then changed back to the normal growth medium and the cells 

were allowed to incubate in a 37°C, 5% CO2 incubator until they were ready to be fixed. 

Cell Fixation  

 Cells were fixed depending on what type of experiment they were going to be 

used in, and this procedure did not require a sterile environment. For cells that were 

transfected, the cells were fixed 24 hours after transfection. For fluorescence in situ 

hybridization experiments, the cells needed to be fixed before the cells occupied more 

than 50% of the total area. For immunostaining experiments, cell occupancy of the total 

area should be between 50% and 90% for optimal results.  

 Cells used for immunostaining experiments were first washed with 1X PBS, and 

then incubated with a 4% paraformaldehyde solution for 12 minutes at room temperature. 

The 4% paraformaldehyde solution was then removed and the cells were washed twice 
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with 1X PBS. The cells could then be used immediately for an experiment, or stored in a 

1X PBS/5mM MgCl2 solution in a 4°C room for no more than a month before performing 

an experiment. 

 Cells used for in situ hybridization experiments were first washed with 1X PBS, 

and then were incubated with a 4% paraformaldehyde solution for 15 minutes at room 

temperature. The 4% paraformaldehyde solution was then removed and the cells were 

washed twice with 70% ethanol. The cells then had to be stored overnight in 70% ethanol 

in a 4°C room before being used in an experiment, and had to be used within a month 

after the cells were fixed.  

Fluorescence in Situ Nucleic Acid Hybridization 

 First, cells that were fixed for the in situ hybridization procedure were taken out 

of the 4°C room and the 6-well culture dishes were marked according to what probe were 

going to be added to each well. The 70% ethanol was then removed, and 1X PBS/5mM 

MgCl2 was added to each well and the culture dishes were allowed to gently be stirred on 

a gyratory platform for 10 minutes at room temperature. During that time, the probes, 

hybridization buffer, and 2X SSC/40% formamide solution were prepared.  1X SSC is 

0.15M NaCl and 0.015M sodium citrate at pH 7.0. All of the probes for the in situ 

hybridization experiments were used at a 20 ng/uL concentration. The 1X PBS/5mM 

MgCl2 was then removed and 2X SSC/40% formamide was added to each well and the 

culture dishes were allowed to stir for 10 minutes at room temperature. During that time, 

a layer of parafilm was placed on a coverglass (12� X 12�). When there was two minutes 

left, the probe solutions were placed in a 95°C heat block for at least two minutes and no 

longer than ten minutes. When the cells were done rotating in 2X SSC/40% formamide 
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and the probes were in the heat block for at least two minutes, the probe solutions were 

mixed with equal amounts of hybridization buffer. Those solutions were then pipetted at 

20 µ per coverslip onto the corresponding area of the first layer of parafilm on the 

coverglass. The coverslips from the culture dishes were then immediately placed face 

down with tweezers onto the corresponding mixture. The first layer of parafilm was then 

covered with another layer of parafilm and the coverglass was placed into a 37°C 

incubator for 3 hours, along with the well plates that contain the 2X SSC/40% formamide 

solution. During that time, a 1X SSC/40% formamide solution was made and placed in a 

37°C water bath until needed. When the 3 hours expired, tweezers were used to place the 

coverslips back into their original wells with the 2X SSC/40% formamide, cells facing up. 

The plate was allowed to sit for 10 minutes in a 37°C incubator. The 2X SSC/40% 

formamide solution was then removed, and the cells were washed twice with 1X 

SSC/40% formamide for 30-45 minutes in a 37°C incubator. The 1X SSC/40% 

formamide was then removed and 1X SSC was added to each well and allowed to rotate 

for 15 minutes at room temperature. The 1X SSC was then removed and 1X PBS was 

added to each well and allowed to rotate for 15 minutes at room temperature. The 

coverslips were then mounted onto slides using tweezers and a solution called a 

�prolonged antifade reagent� that acts like a seal and preserves fluorescence by excluding 

air (oxygen promotes fading). The slides were kept in a folder in a dark drawer until 

observed with a microscope.  

Immunostaining 

 First, the 6-well culture dishes that contained cells that were fixed for the 

immunostaining procedure were either taken right after the fixing procedure or taken out 
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of the 4°C room.  The culture dishes were then marked according to what antibodies were 

going to be added to each well. If the cells were stored in the 4°C room, the 1X 

PBS/5mM MgCl2 was removed and the cells were washed twice with 1X PBS. If the cells 

were taken right after the fixing procedure, the cells were already washed with 1X PBS 

and were ready to be subjected to the rest of the procedure. The cells then had to be 

washed twice with 1X PBS/1 % BSA for 5 minutes at room temperature with rotation. 

The cells were then permeabilized with 0.5% Triton-100X for 5 min at room temperature. 

The cells were then washed twice again with 1X PBS/1 % BSA for 5 minutes at room 

temperature with rotation. During that time, a layer of parafilm was placed on a 

coverglass (12� X 12�). The primary antibodies were then applied to the first layer of 

parafilm, at different dilutions depending on which antibody was used. The coverslips 

from the culture dishes were then immediately placed face down with tweezers onto the 

corresponding antibody. The first layer of parafilm was then covered with another layer 

of parafilm and the coverglass was placed into a humidity chamber for 1 hour. After the 

incubation, tweezers were used to place the coverslips back into their original wells with 

the 1X PBS/1 % BSA, cells facing up, and allowed to rotate at room temperature for 7 

minutes. The cells were then washed twice again with 1X PBS/1 % BSA for 7 minutes at 

room temperature with rotation. During that time, a layer of parafilm was placed on a 

coverglass. The secondary antibodies were then applied to the first layer of parafilm. The 

coverslips from the culture dishes were then immediately placed face down with tweezers 

onto the corresponding antibody. The first layer of parafilm was then covered with 

another layer of parafilm and the coverglass was placed into a humidity chamber for 1 

hour. After the incubation, tweezers were used to place the coverslips back into their 
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original wells with the 1X PBS/1 % BSA, cells facing up, and allowed to rotate at room 

temperature for 7 minutes. The cells were then washed twice again with 1X PBS/1 % 

BSA for 7 minutes at room temperature with rotation. The cells were then washed twice 

with 1X PBS and the coverslips were mounted onto slides using tweezers and the 

�prolonged antifade reagent.� The slides were kept in a folder in a dark drawer until 

observed with a microscope. 

Imaging 

 All of the slides in this report were imaged using a fluorescence microscope and a 

100X objective lens. The observed fluorescent molecules either showed green or red 

fluorescence.  For the SRP colocalization analysis, three-dimensional images were 

generated by capturing different planes of focus through the cell. These images had their 

background light subtracted and had their green (protein) and red (RNA) fluorescence 

combined. A computer program was used to register as yellow those sites at which both 

red and green signal were present, as would result from any overlap of the SRP RNA and 

SRP protein components. Different planes could then be analyzed to show the spatial 

arrangement of the SRP RNA and protein components in the cell. For the telomerase 

localization studies, only one plane of the cell was imaged to show the localization of 

either RNA or protein.  
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RESULTS 

 The SRP was the first molecule examined in this report. NRK cells were chosen 

as a cell line for this study because they are easily cultured, can endure the experimental 

techniques applied to them, and have known SRP components. To localize the SRP 

proteins (SRP19, SRP68, SRP72), plasmids that encode each SRP protein as a green 

fluorescent protein (GFP) fusion protein were transfected into the NRK cells and were 

expressed. To localize the SRP RNA, a LNA probe was used during the FISH procedure. 

Images were captured using a using a fluorescence microscope and a 100X objective lens. 

Multiple planes of the cell were captured so a three dimensional construct could be 

generated and background light subtracted, to analyze the spatial arrangement of the SRP 

proteins and the SRP RNA.  

 The colocalization of SRP19 and SRP RNA was studied first. The SRP19-GFP 

fusion proteins showed prominent nucleolar signal and also more diffuse nucleoplasmic 

and cytoplasmic signal, indicating that the nucleolus is a spot where SRP19 localizes and 

that it also exists in the nucleoplasm and cytoplasm (Figure 9A and 9E). The SRP RNA 

probes also showed prominent nucleolar signal and also diffuse nucleoplasmic and 

cytoplasmic signal, which also indicates that the nucleolus is a spot where SRP RNA 

localizes and that it also exists in the nucleoplasm and cytoplasm (Figure 9C and 9G). 

When the fluorescence signals from Figure 9A and 9C were combined to examine 

colocalization, the nucleolus showed the strongest signal overlap while there was also 

signal overlap in the nucleoplasm and cytoplasm (Figure 9B and 9F).  
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Figure 9. Results from the SRP19 and SRP RNA colocalization study in a NRK cell. This figure displays 
an example of an NRK cell on a slide that has gone through transfection with SRP19 GFP plasmids and 

then FISH using  LNA probes for SRP RNA. The images have their intensity scaled the same as the 
controls in Figure 10 and are in the middle plane of the cell. (A) displays green fluorescence from SRP19-
GFP fusion proteins. (C) displays red fluorescence from SRP RNA probe. (B) displays the combination of 

the green fluorescence from (A) and red fluorescence from (C). (D) displays the phase image from the 
NRK cell. (E), (F), and (G) display magnifications of the nucleoli in the cell in (A), (B), and (C) 

respectively. 
 

 Similarly to the results in Figure 9A and 9E, SRP19-GFP fusion proteins again 

showed prominent nucleolar signal, moderate nucleoplasmic signal, and some 

cytoplasmic signal (Figure 10A and 10D).  Similarly to the results in Figure 9C and 9G, 

SRP RNA probes showed prominent nucleolar and cytoplasmic signal and some 

nucleoplasmic signal (Figure 10H and 10N). There was only autofluorescence detected in 

cells that were transfected with control plasmids (Figure 10G and 10J) and cells that were 

not transfected (Figure 10M and 10P). There was also only autofluorescence detected in 

cells that went through FISH using SRP RNA anti-sense scramble probes (Figure 10B 

and 10K) and in cells that went through FISH using control probes (Figure 10E and 10Q).  
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Figure 10. Controls from the SRP19 and SRP RNA colocalization study in NRK cells. Each row in the 

figure displays an example of an NRK cell on a slide that was either not transfected or transfected with a 
SRP19 GFP plasmid or control mixture and then had FISH performed using different types of probes. (A) 
and (D) display green fluorescence from SRP19 GFP plasmid transfected cells, (G) and (J) display green 

fluorescence from control mixture transfected cells, and (M) and (P) display green fluorescence from non-
transfected cells. (H) and (N) display red fluorescence from FISH using SRP RNA probes, (B) and (K) 

display red fluorescence from FISH using SRP RNA anti-sense scrambled probes, and (E) and (Q) display 
red fluorescence from FISH using a control mixture. (C), (F), (I), (L), (Q), and (R) are the phase images of 

the control NRK cells used. 
 

The colocalization of SRP68 and SRP RNA was studied next. The SRP68-GFP 

fusion proteins showed prominent nucleolar signal and also nucleoplasmic and 

cytoplasmic signal, which was very similar to the signal pattern from the SRP19-GFP 

fusion proteins (Figure 11A and 11E). As seen previously, the SRP RNA probes 

displayed a prominent nucleolar signal and also nucleoplasmic and cytoplasmic signal 
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(Figure 11C and 11G). When the fluorescence from Figure 11A and 11C were combined 

to examine colocalization, the nucleolus showed the strongest signal overlap while there 

was also signal overlap in the nucleoplasm and cytoplasm (Figure 11B and 11F). 

 
Figure 11. Results from the SRP68 and SRP RNA colocalization study in a NRK cell. This figure displays 

an example of an NRK cell on a slide that has gone through transfection with SRP68 GFP plasmids and 
then FISH using LNA probes for SRP RNA. The images have their intensity scaled the same as the controls 

in Figure 12 and are in the middle plane of the cell. (A) displays green fluorescence from SRP68 GFP 
fusion proteins. (C) displays red fluorescence from SRP RNA probes. (B) displays the combination of the 
green fluorescence from (A) and red fluorescence from (C). (D) displays the phase image from the NRK 
cell. (E), (F), and (G) display magnifications of the nucleoli in the cell in (A), (B), and (C) respectively. 

 
Similarly to the results in Figure 11A and 11E, the SRP68 GFP fusion proteins 

again showed prominent nucleolar signal and also nucleoplasmic and cytoplasmic signal 

(Figure 12A and 12D).  Similarly to the results in Figure 11C and 11G, SRP RNA probes 

showed prominent nucleolar and cytoplasmic signal and some nucleoplasmic signal 

(Figure 12H and 12N). There was onlyautofluorescence detected in cells that were 

transfected with control plasmids (Figure 12G and 12J) and cells that were not 

transfected (Figure 12M and 12P). There was also only  autofluorescence detected in 

cells that went through FISH using SRP RNA anti-sense scramble probes (Figure 12B 

and 12K) and cells that went through FISH using control probes (Figure 12E and 12Q).   
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Figure 12. Controls from the SRP68 and SRP RNA colocalization study in NRK cells. Each row in the 

figure displays an example of an NRK cell on a slide that was either not transfected or transfected with a 
SRP68-GFP plasmid or control mixture and then had FISH performed using different types of probes. (A) 
and (D) display green fluorescence from SRP68-GFP plasmid transfected cells, (G) and (J) display green 

fluorescence from control mixture transfected cells, and (M) and (P) display green fluorescence from non-
transfected cells. (H) and (N) display red fluorescence from FISH using LNA probes for SRP RNA, (B) 

and (K) display red fluorescence from FISH using SRP RNA scrambled anti-sense probes, and (E) and (Q) 
display red fluorescence from FISH using a control mixture. (C), (F), (I), (L), (Q), and (R) are the phase 

images of the control NRK cells used. 
 

The colocalization of SRP72 and SRP RNA was the last localization study 

performed on SRP components. Like the SRP 19 GFP and SRP 68 GFP fusion proteins, 

the SRP 72 GFP fusion proteins showed prominent nucleolar signal and also some 

cytoplasmic and nucleoplasmic signal (Figure 13A and 13E). Also like the SRP RNA 

probes used in the previous experiments, SRP RNA probes showed prominent nucleolar 

signal and also nucleoplasmic and cytoplasmic signal (Figure 13C and 13G). When the 
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fluorescence from Figure 13A and 13C were combined to examine colocalization, the 

nucleolus showed the strongest signal overlap while there was also signal overlap in the 

cytoplasm and nucleoplasm (Figure 13B and 13F). 

 
Figure 13. Results from the SRP72 and SRP RNA colocalization study in a NRK cell. This figure displays 
an example of an NRK cell on a slide that has gone through transfection with SRP72-GFP plasmids and 

then FISH using SRP  probes for SRP RNA. The images have their intensity scaled the same as the controls 
in Figure 14 and are in the middle plane of the cell. (A) displays green fluorescence from SRP72-GFP 

fusion proteins. (C) displays red fluorescence from SRP RNA probes. (B) displays the combination of the 
green fluorescence from (A) and red fluorescence from (C). (D) displays the phase image from the NRK 
cell. (E), (F), and (G) display magnifications of the nucleoli in the cell in (A), (B), and (C) respectively. 

 
Similarly to the results in Figure 13A and 13E, SRP72-GFP fusion molecules 

showed prominent nucleolar signal and also nucleoplasmic and cytoplasmic signal 

(Figure 14A and 14D). SRP RNA probes again showed prominent nucleolar and 

cytoplasmic signal and some nucleoplasmic signal (Figure 14H and 14N). There was 

onlyautofluorescence detected in cells that were transfected with control plasmids (Figure 

14G and 14J) and cells that were not transfected (Figure 14M and 14P). There was also 

only autofluorescence detected in cells that went through FISH using SRP RNA anti-

sense scrambled probes (Figure 14B and 14K) and cells that went through FISH using 

control probes (Figure 14E and 14Q). 
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Figure 14. Controls from the SRP72 and SRP RNA colocalization study in NRK cells. Each row in the 

figure displays an example of an NRK cell on a slide that was either not transfected or transfected with a 
SRP72-GFP plasmid or control mixture and then had FISH performed using different types of probes. (A) 
and (D) display green fluorescence from SRP72-GFP plasmid transfected cells, (G) and (J) display green 

fluorescence from control mixture transfected cells, and (M) and (P) display green fluorescence from non-
transfected cells. (H) and (N) display red fluorescence from FISH using SRP RNA probes, (B) and (K) 

display red fluorescence from FISH using SRP RNA anti-sense scrambled probes, and (E) and (Q) display 
red fluorescence from FISH using a control mixture. (C), (F), (I), (L), (Q), and (R) are the phase images of 

the control NRK cells used. 
 

 Telomerase was the next cellular component studied, and the first objective was 

to determine the localization of the telomerase RNA (hTR) in mammalian cells. The 

HeLa cell line was chosen to study the localization hTR because these cells have known 

hTR in them, and the GM00847 cell line was chosen as a control cell line because they 

are known to not contain hTR. To localize hTR, either hTR LNA or hTR PNA probes 

were used during the FISH procedure. Images were captured using a fluorescence 
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microscope and a 100X objective lens. Only one plane of the cell was captured to show 

the localization of hTR.  

 When the TH1 PNA was used during the FISH procedure, there was mostly signal 

in the nucleoli and cytoplasm and some in the nucleoplasm in both HeLa and GM00847 

cells. Since the latter cells do not contain hTR, these results suggest that this probe had 

non-specific binding to other cellular components (Figure 15A and 15C). When TH4 

PNA was used during the FISH procedure, there was mostlyautofluorescence and maybe 

some non-specific binding detected (Figure 15E and 15G). A positive control, SRP-2 

PNA, was used to show specific binding to SRP RNA, which revealedsignal in the 

nucleoli, cytoplasm, and nucleoplasm (Figure 15I and 15K).  This means that the FISH 

method was working correctly.  There was onlyautofluorescence detected in cells that 

had yeast PNA and control probes used during the FISH procedure (Figure 15M, 15O, 

15Q, and 15S).  
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Figure 15. Results and controls from the telomerase RNA (hTR) localization in HeLa and GM00847 cells 
using TH1 PNA, TH4 PNA, SRP-2 PNA, yeast PNA, and control probes. This figure displays examples of 
the middle plane of HeLa and GM00847 cells on a slide that have their intensity scaled the same and have 

gone through FISH using telomerase hTR (TH1 and TH4 PNA) probes and control probes. (A) and (C) 
display red fluorescence from FISH using TH1 PNA probes in HeLa and GM00847 cells respectively.  (E) 

and (G) display red fluorescence from FISH using TH4 PNA probes in HeLa and GM00847 cells 
respectively. (I) and (K) display red fluorescence from FISH using SRP-2 PNA probes in HeLa and 

GM00847 cells respectively. (M) and (O) display red fluorescence from FISH using yeast PNA probes in 
HeLa and GM00847 cells respectively. (Q) and (S) display red fluorescence from FISH using control 

probes in HeLa and GM00847 cells respectively. (B), (F), (J), (N), and (R) are phase images of the HeLa 
cells used, while (D), (H), (L), (P), and (T) are phase images of the GM00847 cells used. 

 
 Since the PNA probes didn�t produce results that showed localization of hTR in 

HeLa and not in GM00847 cells, it was thought that a LNA probe to hTR would be 

beneficial to try. When TH1 LNA was used during the FISH procedure, there was mostly 

signal in the nucleoli and cytoplasm and some in the nucleoplasm in both HeLa and 
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GM00847 cells, suggesting that this probe, like its PNA counterpart, also had non-

specific binding to other cellular components (Figure 16A and 16C). There was so much 

signal that when all the images were scaled to the same intensity, there was no signal 

showing in any of the positive or negative controls, further suggesting that there had to 

have been non-specific binding to other cellular components (Figure 16E, 16G, 16I, 16K, 

16M, and 16O).  
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Figure 16. Results and controls from the telomerase RNA (hTR) localization in HeLa and GM00847 cells 

using TH1 LNA, SRP LNA, TH1 anti-sensescrambled LNA, and control probes. This figure displays 
examples of the middle plane of HeLa and GM00847 cells on a slide that have their intensity scaled the 

same and have gone through FISH using a telomerase hTR (TH1 LNA) probe and control probes. (A) and 
(C) display red fluorescence from FISH using TH1 LNA probes in HeLa and GM00847 cells respectively. 

(E) and (G) display red fluorescence from FISH using SRP LNA probes in HeLa and GM00847 cells 
respectively. (I) and (K) display red fluorescence from FISH using TH1 anti-sense scrambled LNA probes 
in HeLa and GM00847 cells respectively. (M) and (O) display red fluorescence from FISH using control 
probes in HeLa and GM00847 cells respectively. (B), (F), (J), and (N) are phase images of the HeLa cells 

used, while (D), (H), (L), and (P) are phase images of the GM00847 cells used. 
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 Since the previous PNA and LNA probes didn�t produce results that showed 

localization of hTR in HeLa and not in GM00847 cells, another LNA probe called the 

�TERNS� probe was used during FISH. The probe displayed prominent nucleolar signal 

and also nucleoplasmic and cytoplasmic signals in HeLa cells and less of those signals in 

GM00847 cells (Figure 17A and 17C). When scrambled probes were used during FISH, 

there was prominent nucleolar signal and also nucleoplasmic and cytoplasmic signal in 

both HeLa and GM00847 cells (Figure 17E and 17G).  When anti-sensed probes and 

control probes were used during FISH, only autofluorescence was detected (Figure 17I, 

17K, 17M and 17O). 
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Figure 17. Results and controls from the telomerase RNA (hTR) localization in HeLa and GM00847 cells 

using TERNS LNA, TERNS sensescrambled LNA, TERNS anti-sense scrambled LNA, and control probes. 
This figure displays examples of the middle plane of HeLa and GM00847 cells on a slide that have their 
intensity scaled the same and have gone through FISH using a telomerase hTR (TERNS LNA) probe and 

control probes. (A) and (C) display green fluorescence from FISH using TERNS LNA probes in HeLa and 
GM00847 cells respectively. (E) and (G) display green fluorescence from FISH using the TERNS sense 
scrambled LNA probes in HeLa and GM00847 cells respectively. (I) and (K) display green fluorescence 
from FISH using the TERNS antisense scrambled LNA probes in HeLa and GM00847 cells respectively. 

(M) and (O) display green fluorescence from FISH using control probes in HeLa and GM00847 cells 
respectively. (B), (F), (J), and (N) are phase images of the HeLa cells used, while (D), (H), (L), and (P) are 

phase images of the GM00847 cells used. 
 

Telomerase-associated proteins were the last cellular components studied in this 

project. The HeLa and U2OS cell lines were chosen to study the localization of  and 

TRF-2 because they are known to have those components in them, and the VA13 and 

GM00847 cell lines were chosen as controls because they are known to not have the 

those components in them.  To localize  and TRF-2, antibodies specific for those proteins 

and a fluorescently labeled donkey  anti-rabbit (DAR) secondary antibody were used 
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during the immunostaining procedure. Images were captured using a fluorescence 

microscope and a 100X objective lens. Only one plane of the cell was captured to show 

the localization of hTERT.  

 The first of two telomerase-associated proteins studied was TRF-2, and it was 

thought to localize to the nucleolus. When theTRF-2  antibody was used during the 

immnunostaining procedure, there was mostly signal detected in the nucleoplasm in both 

HeLa and U2OS cells (Figure 18A and 18C).  When just the secondary antibodies were 

applied to the cells, onlyautofluorescence was detected in both of the cell types (Figure 

18E and 18G). Since there was no clear signal detected in the nucleolus, dilutions were 

made to the primary antibody to see in lowering the concentration will affect the pattern 

of the signal detected.  
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Figure 18. Results and controls from the TRF-2 ocalization in HeLa and U2OS cells using a primary TRF-2 

antibody and a fluorescently labeled donkey  anti-rabbit (DAR) secondary antibody. This figure displays 
examples of the middle plane of HeLa and U2OS cells on a slide that have their intensity scaled the same. 
(A) and (C) display red fluorescence from immunostaining using TRF-2 (1:100 dilution) and DAR (1:200 

dilution) antibodies in HeLa and U2OS cells respectively. (E) and (G) display red fluorescence from 
immunostaining using just DAR (1:200 dilution) antibodies in HeLa and U2OS cells respectively. (B) and 
(F) are phase images of the HeLa cells used, while (D) and (H) are phase images of the U2OS cells used. 



 45

Dilutions (1:100, 1:250, and 1:500) were made for TRF-2 antibodies and then 

used during the immnunostaining procedure on just HeLa cells. There was mostly signal, 

which corresponded well to the dilutions, in the nucleoplasm in the cells (Figure 19A, 

19C, and 19E). When just the secondary antibody was applied to these cells, only 

autofluorescence was detected (Figure 19G). Along with the results from Figure 18, these 

results demonstrate that the nucleoplasm is a region in the cell where TRF-2 might 

localize.  

 
Figure 19. Results and controls from theTRF-2 localization in HeLa cells using a primary TRF-2 antibody 
(TRF-2) and a fluorescently labeled donkey  anti-rabbit (DAR) secondary antibody. This figure displays 

examples of the middle plane of HeLa cells on a slide that have their intensity scaled the same. (A) displays 
red fluorescence from immunostaining using TRF-2 (1:100 dilution) and DAR (1:200 dilution) antibodies 
in a HeLa cell. (C) displays red fluorescence from immunostaining using TRF-2 (1:250 dilution) and DAR 
(1:200 dilution) antibodies in a HeLa cell. (E) displays red fluorescence from immunostaining using TRF-2 

(1:500 dilution) and DAR (1:200 dilution) antibodies in a HeLa cell. (G) displays red fluorescence from 
immunostaining using just DAR (1:200 dilution) antibodies in a HeLa cell. (B), (D), (F), and (H) are phase 

images of the HeLa cells used. 
 



 46

When the antibody (hTERT) was used during the immnunostaining procedure, it 

was thought the results would indicate localization in the nucleolus. When different 

dilutions (1:250, 1:500, and 1:750) were used during the immunostaining procedure, 

there was mostly signal detected in the nucleoplasm in HeLa cells (Figure 20A, 20C, and 

20E). When just the secondary antibody was applied to these cells, only autofluorescence 

was detected in the cells (Figure 20G). Like the TRF-2 results, since there was no clear 

signal detected in the nucleolus, dilutions were made to the primary antibody to see in 

lowering the concentration will affect the pattern of the signal detected. Two negative 

control cell lines were also used to see if the antibody is binding to a different cellular 

component. 

 
Figure 20. Results and controls from the hTERT localization in HeLa cells using a primary telomerase 

hTERT antibody and a fluorescently labeled donkey  anti-rabbit (DAR) secondary antibody. This figure 
displays examples of the middle plane of HeLa cells on a slide that have their intensity scaled the same. (A) 

displays red fluorescence from immunostaining using hTERT (1:250 dilution) and DAR (1:200 dilution) 
antibodies in a HeLa cell. (C) displays red fluorescence from immunostaining using hTERT (1:500 dilution) 

and DAR (1:200 dilution) antibodies in a HeLa cell. (E) displays red fluorescence from immunostaining 
using hTERT (1:750 dilution) and DAR (1:200 dilution) antibodies in a HeLa cell. (G) displays red 

fluorescence from immunostaining using just DAR (1:200 dilution) antibodies in a HeLa cell. (B), (D), (F), 
and (H) are phase images of the HeLa cells used. 
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Dilutions (1:750 and 1:1500) of the hTERT antibody were used during the 

immnunostaining procedure on HeLa, Va13, and GM00847 cells, and there was mostly 

signal in the nucleoplasm that was barely aboveautofluorescence in all of the cells 

(Figure 21A, 21C, 21E, 21G, 21I, and 21K). When just the secondary antibody was 

applied to these cells, onlyautofluorescence was detected (Figure 21M, 21O, and 21Q). 

These results indicate that there was there was no clear signal detected in the nucleolus 

and that the primary antibody could either be binding weakly to hTERT in the 

nucleoplasm or that it is binding to another cellular protein. 

 
Figure 21. Results and controls from the hTERT localization in HeLa, VA13, and GM00847 cells using a 

primary telomerase hTERT antibody and a fluorescently labeled donkey anti-rabbit (DAR) secondary 
antibody. This figure displays examples of the middle plane of HeLa, VA13, and GM00847 cells on a slide 
that have their intensity scaled the same. (A), (C), and (E) display red fluorescence from immunostaining 
using hTERT (1:750 dilution) and DAR (1:200 dilution) antibodies in HeLa, VA13, and GM00847 cells 

respectively. (G), (I), and (K) display red fluorescence from immunostaining using hTERT (1:1500 dilution) 
and DAR (1:200 dilution) antibodies in HeLa, VA13, and GM00847 cells respectively. (M), (O), and (Q) 

display red fluorescence from immunostaining using just DAR (1:200 dilution) antibodies in HeLa, VA13, 
and GM00847 cells respectively. (B), (H), and (N) are phase images of the HeLa cells used. (D), (J), and (P) 

are phase images of the VA13 cells used. (F), (L), and (R) are phase images of the GM00847 cells used. 
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Discussion 

The results from the SRP study demonstrate that there is colocalization in the 

nucleolus between the SRP RNA and three protein subunits. By using fluorescence and 

confocal microscopy, three-dimensional images were created to show the overlap of the 

SRP proteins and the SRP RNA. This finding is consistent with the idea the SRP complex 

is partially assembled in the nucleolus and then exported through the nucleoplasm and 

into the cytoplasm where SRP function is located. Further studies need to be done on 

SRP protein and SRP RNA colocalization to more fully understand where SRP subunits 

travel in the cell.  

To further study the results produced in this report on SRP, one would first want 

to examine the effect of exogenous SRP-GFP fusion proteins in certain cells. There is a 

possibility the SRP-GFP fusion proteins create an environment where the cell would want 

to localize them to nucleoli.  However, in at least frog oocytes, Dr. Pederson�s lab 

previously showed that endogenous SRP19 protein (i.e. not a GFP fusion protein) is 

localized in the nucleoli (5).  There is also the possibility that the SRP RNA probe is 

cross reacting with other cellular RNAs that localize in the nucleolus, but this is less 

likely due to the controls producing consistent images and the overlap between SRP-GFP 

proteins and the SRP RNA probe. Though these results are very promising, more studies 

need to be performed to further solidify the nucleolus being the colocalization site 

between certain SRP proteins and SRP RNA. 

As for telomerase, it was first thought the telomerase hTR and hTERT would 

colocalize in the nucleolus, and that TRF-2 would localize in the nucleolus. After FISH 

procedures were performed on HeLa and GM00847 cells using various hTR specific 
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probes, it was demonstrated that there was signal in the nucleolus both in HeLa cells and 

in the telomerase deficient cell line GM00847.  These findings suggest that either the 

probe was hybridizing to a different cellular component or that there is some hTR in the 

GM00847 cells.  The latter possibility seems unlikely because the cells were obtained 

from a well regarded national cell repository and used directly. The results from the FISH 

using the TERNS probe could lead to another conclusion. There is a possibility that the 

signal in HeLa cells is hTR hybridization and the signal in GM00847 cells is just 

background compared to HeLa.  

The results for the two telomerase-associated proteins, TRF-2 and hTERT, were 

inconclusive There was no nucleolar localization like expected, but instead there was 

nucleoplasmic localization with concentrated signals that looked like speckles. One way 

to interpret these results is to say that TRF-2 and  could possibly localize to specific 

structures in the nucleoplasm. Another way to interpret these results is to say that the 

antibodies weren�t specific enough. In retrospect, a positive immunostaining control 

should have been included in my experimental design, which would involve using an 

antibody that did give a positive reaction for some particular nuclear protein to assure that 

the immunostaining protocol was working in my hands. 

To conclude, the results from the SRP study demonstrate that there is 

colocalization in the nucleolus between the SRP RNA and the three SRP protein subunits 

studied. The results from the study on telomerase demonstrate that further modifications 

need to be made to the techniques used because of the difficulty of localizing this small 

RNA and its associated proteins in the cell. The results obtained will be refined to further 

study the localization of these molecules and other molecules in the cell. Particular 
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molecules that are of current interest in molecular biology are miRNAs, and their 

localization patterns are starting to be examined. The techniques used in this report could 

be modified and applied to further study miRNAs and other RNAs and proteins whose 

presence and function are just starting to be acknowledged.  
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