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Abstract 

Promensil is an over-the-counter phytoestrogen supplement, originally intended to treat 

menopause, which has been shown to decrease breast cancer proliferation. This project examined 

this effect of Promensil, based on the estrogen receptor beta (ER-β). Using T47D cells with a 

tetracycline tunable ER-β, a decrease in cell proliferation was observed, but with no correlation 

to ER-β. Rather, Promensil appeared to compete with 17β-estradiol for ER-α. For the future, the 

correlation between ER-α and the phytoestrogen components of Promensil should be studied. 
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Background 

Introduction 

 Breast cancer is a disease which impacts a substantial portion of society and has been a focus of 

scientific study for many years. Estrogen has been shown to have a strongly correlated impact on 

many breast cancers. Phytoestrogens are plant compounds which mimic estrogen in the human 

body. These compounds have been manufactured into many supplements, claiming to provide 

natural benefits. However, these supplements are largely unregulated and may have unknown 

side effects, such as an effect on breast cancer. Contradicting data have shown both positive and 

negative effects on breast cancer due to various phytoestrogen compounds, in varying conditions. 

There are many pieces to understanding fully the impact of phytoestrogens. This project aimed to 

discover a small piece of this picture, in relation to breast cancer specifically.  

 

Breast Cancer 

Breast cancer has a strong impact on society and its study has been a large focus of the scientific 

and medical communities for many years. After lung cancer, breast cancer has the highest death 

rate among cancers in women. It is also the second most commonly diagnosed cancer among 

women in the United States. It is said that about 1 in 8 women in the U.S. will develop breast 

cancer in their lifetime (Breastcancer.org, 2017).  

 

Breast cancers can be ER-positive, meaning that they express estrogen receptors, while others 

can be ER-negative if they do not express estrogen receptors. Over half of breast cancer cells 

express the ER-ɑ receptor, which has been shown to promote the growth of breast cancer upon 

binding of endogenous estrogen (Ali & Coombes, 2000). The presence of these receptors also 
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determines which treatment options are available for the cancer, such as anti-estrogen therapy. 

For the purpose of this project, ER-positive breast cancer was focused on in order to study the 

effects of estrogen mimicking phytoestrogen compounds on these cancer cells. 

 

Estrogen 

Estrogen is a term used to describe the steroidal hormones which lead to the development of the 

female sex characteristics. The most abundant of these hormones is estradiol, or 17β-estradiol. 

This hormone is an aromatic C18 compound (National Center for Biotechnology Information, 

2017). The structure of estradiol can be seen in Figure 1. 

 

Figure 1: Estradiol structure (NCBI) 

 

In its developmental function, estrogen serves to signal for the growth and development of the 

female reproductive organs. The hormone mainly affects the breasts and uterus; however it also 

binds receptors in the brain, bones, heart, and other parts of the body. Other functions of estrogen 

include bone growth, cholesterol regulation, and menstrual cycle control (Manson, 2017).    
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However, estrogen and progestin have also been shown to increase the size of breast cancers in 

postmenopausal women, suggesting that these hormones stimulate breast cancer cell 

proliferation (Chlebowski et al., 2003).  

 

A common treatment for breast cancer is hormone therapy in which the amount of estrogen 

available in the body is decreased, or estrogen receptors are antagonized. When breast cancer 

cells have a larger quantity of estrogen receptors, a greater response to hormone therapy has been 

shown (Osborne et al., 1980). This shows the highly correlated effect between estrogen, its 

receptors, and breast cancer cell proliferation, therefore making the estrogen receptors an 

important aspect to study in regard to breast cancer.  

 

Estrogen Receptors 

Estrogen receptors (ER) are found on many cells of the body. These receptors are a part of the 

steroid receptor gene super-family. In response to the binding of estrogen, these ligand bound 

receptors translocate to the nucleus and bind to specific estrogen response elements (EREs) in 

the promoter regions of target genes to activate transcription (Benassayag et al., 2002). 

 

There are two versions of the estrogen receptor, alpha and beta. These receptors are encoded by 

independent genes, on different chromosomes (Enmark, et al., 1997, NCBI, 2018). High affinity 

binding of 17β-estradiol to both receptor types has been shown (Dechering et al., 2000). 

However, these two receptors differ in their ligand binding domain, being only 53% homologous 

in this domain (Harris, 2005). This difference may explain why different estrogen mimicking 
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compounds produce different effects in regard to these receptors. The two receptors have shown 

varying effects on cell proliferation, specifically with breast cancer (Harris, 2005). 

 

ER-ɑ has been shown to promote cell proliferation. In one study of ER-ɑ, transfected via 

plasmid into HeLa cells, transcription at a classical ERE was shown to be activated by the 

binding of 17β-estradiol to the receptor. In another study, ER-ɑ was shown to be positively 

regulated by the MDM2 oncogene. When this oncogene was overexpressed in MCF-7 breast 

cancer cells, a cell growth advantage in the presence of estradiol was seen (Saji et al., 2001). 

Studies of ER-ɑ estrogen response elements, by cDNA microarray of human MCF-7 breast 

cancer cells, have shown some of the target genes of ER-ɑ to be involved in cell division, such as 

cyclin A1 and tryptophanyl1-tRNA synthetase (Hayashi, 2003).  

 

ER-β, on the other hand has shown a more conflicting impact on proliferation in various studies. 

To begin, ER-β has been shown to have negative transactivation activity against ER-ɑ. ER-β 

may play a role in inhibiting the binding of ER-ɑ to its estrogen response element. This has been 

shown with the human ER-betacx isoform which forms a heterodimer with ER- ɑ, therefore 

preventing the alpha receptor from binding the ERE (Ogawa, 1998). Another study looked at 

MCF7 breast cancer cells with an ER-β2 (beta estrogen receptor isoform) engineered to be 

inducible, and an endogenous ER-ɑ. ER-β2 was shown to inhibit ER-ɑ transactivation at the 

estrogen response element. ERβ2 expression also caused a degradation of ER-ɑ by proteasomes 

(Zhao et al., 2007). This overall indicates that ER-β may play an opposite role to ER-ɑ.  
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In one experiment, a complete inhibition of T47D cell proliferation was shown in response to 

estradiol when there were equal amounts of alpha and beta estrogen receptors present (Strom, 

2004). In another study, MCF7 breast cancer cells were engineered with an adenovirus mediated 

ER- β along with normal ER- ɑ expression. With only ER- ɑ expressed, estradiol was shown 

to increase the breast cancer cell’s proliferation in vitro. However, when ER- β was induced 

into the cells, this led to G2 cell cycle arrest and therefore caused an anti-proliferative effect 

(Paruthiyil et al., 2004).  

 

However, ER- β has also shown proliferative effects on cells. Tamoxifen is a selective estrogen 

receptor modulator (SERM), which mimics estrogen in order to block the binding of estrogen to 

the estrogen receptors. In HeLa cells transfected with ER-β and treated with tamoxifen, 

transcription was shown to be activated via a luciferase reporter gene under ERE control (Paech, 

1997). This proves that the response of the estrogen receptor can vary and may depend on the 

ligand binding.   

 

Phytoestrogens 

Phytoestrogens are estrogen mimicking compounds which are derived from plants. Some 

common plant sources of these compounds are soy, legumes, and clover (Patisaul, 2017). The 

two most common classes of phytoestrogens are isoflavones and coumestans. Phytoestrogens 

have a polyphenolic structure similar to 17β-estradiol, as seen in Figure 2.  
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Figure 2: 17β-estradiol and some common phytoestrogen structures, covering the three major 

classes of isoflavones, lignans and coumestans (Belcher & Zsarnovszky, 2001) 

 

Genistein and daidzein are two of the most common isoflavonoid phytoestrogen compounds, and 

are mostly found in soy and red clover. These compounds share the phenolic ring structure with 

estrogen, as mentioned above, but also have similarities in the distance between their hydroxyl 

groups, contributing to their ability to mimic estrogen. Genistein has shown both estrogenic and 

anti-estrogenic responses based on varying conditions, such as which receptor it binds or its 

concentration in the body. Genistein has been shown to bind both alpha and beta estrogen 

receptors, with a preferential binding to the beta receptor (Dixon, 2002). A diet high in soy, and 

therefore isoflavones, has been shown to produce many benefits, such as preventing various 

cancers, bone loss and cardiovascular diseases. Studies have proven a strong correlation between 

decreased rates of breast cancer in those who eat diets high in soy products (Lee et al., 1991).  
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Biochanin A is a closely related analog to genistein, simply being a methylated version of 

genistein (National Center for Biotechnology Information). Biochanin A is also found in red 

clover. This isoflavone has also been shown to be an inhibitor of cell growth in ER-positive 

breast cancers (Peterson et al., 1998) 

 

Formononetin is another isoflavone from red clover, and is a methylated version of daidzein 

(Setchell et al., 2001) Formononetin has also been shown to induce cell cycle arrest in MCF-7 

breast cancer cells both in vitro and in vivo, in mice models (Chen et al., 2011).  

 

Due to the phytoestrogens’ affinity to bind the estrogen receptor, these compounds are 

considered endocrine disruptors (Patisaul, 2017). It has been shown that most phytoestrogens 

bind preferably to the ER-β. Using in vitro synthesized rat estrogen receptors, a saturation ligand 

binding analysis showed genistein to have a higher binding affinity for ER-β over ER-ɑ (Kuiper 

et al., 1997). Radioligand binding assays have shown stronger binding to ER-β for the 

phytoestrogens coumestrol and genistein (Kuiper et al., 1998).    

 

Phytoestrogens are manufactured into many over the counter supplements, claiming various 

health effects. Benefits range from decreased menopausal symptoms to lowered risks of heart 

disease or cancer. These supplements, due to being derived from plants, are marketed as 

“natural” and therefore safe. However, this is not necessarily the case. Phytoestrogens have 

shown varying effects on breast cancer growth. It is unclear whether the phytoestrogens act as 

antagonists or agonists for the estrogen receptors. Different concentrations, combinations, and 



12 
 

other environmental factors also play a role in the effects, and therefore there is still a lot of 

unknowns regarding these supplements.  

 

Menopause 

Menopause occurs when a woman’s ovaries no longer produce estrogen. This leads to common 

symptoms, such as hot flashes. There is also an increased risk of long term problems, such as 

osteoporosis and cardiovascular disease. To prevent these symptoms of menopause, some 

women turn to hormone replacement therapy (HRT) to replace the estrogen which is no longer 

being produced. However, these hormone replacement therapies have been shown to increase 

risk of breast cancer in women (Ho, 2003). Phytoestrogen supplements have been introduced as a 

possible alternative to hormone replacement therapy that may not have as high of a risk of breast 

cancer. By mimicking estrogen, these supplements claim to provide a natural method to alleviate 

the symptoms of menopause. Not many studies have been carried out on these unregulated, over 

the counter supplements. Those which have been done have shown varying effects. The actual 

increased or decreased risk of breast cancer due to these supplements remains relatively 

unknown.  

 

Promensil 

Promensil is one over the counter phytoestrogen supplement, marketed to decrease menopause 

symptoms. The Promensil supplement has been sold since 1997. According to the drug’s 

website, the supplement contains four red clover isoflavones. The website claims these 

isoflavones only bind to beta estrogen receptors and not the alpha receptors (Promensil.com). 
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Label accuracy testing proved Promensil supplement to contain 40mg of phytoestrogens, 

consisting of genistein, daidzein, formononetin, and biochanin A. (Weijer et al., 2002).  

 

An additional analysis by Setchell et al. used liquid chromatography along with mass 

spectrometry to compare the isoflavone content of various dietary phytoestrogen supplements to 

the manufacturers’ labels. Their findings showed Promensil to contain 41.7mg of isoflavone per 

tablet. HPLC revealed the presence of primarily formononetin and biochanin A, along with 

daidzein and genistein (Setchell et al., 2001). This shows agreement with the manufacturer’s 

claims. 

 

This study by Setchell et al. continued with the oral administration of one Promensil tablet each 

to patients and the subsequent measurement of isoflavone levels in the blood plasma. Increases 

of genistein and daidzein concentrations in the blood were seen in much greater values than the 

concentrations of formononetin and biochanin A. This is most likely due to rapid de-methylation 

of biochanin A and formononetin by intestinal bacteria, producing genistein and daidzein, 

respectively, in the plasma (Setchell, et al., 2001)  

 

To add to this, preliminary studies, with a limited number of trials, at Worcester Polytechnic 

Institute (WPI) showed Promensil to contain primarily biochanin A and formononetin. The 

biochanin A compound was shown to have an anti-proliferative effect on breast cancer cells at 

concentrations greater than 10µM, but shown to have a proliferative effect at concentrations less 

than this amount (Gergel et al., 2010) 
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Other preliminary projects at WPI also showed Promensil to have an anti-proliferative effect on 

MCF7 breast cancer cells (Ferron et al., 2016). Promensil treatment of T47D-KBluc cells 

showed decreased PCNA, compared to estradiol treatment (Bemis & Sejour, 2013). However, in 

another study, T47D-KBluc cells treated with red clover extract showed increased proliferation, 

according to MTT assay. This red clover extract was analyzed by HPLC to contain daidzein, 

genistein and biochanin A. 

 

Another limited study showed Biochanin A, from concentrations of 0.01 µM to 10 µM, to 

increase the proliferation of T47D cells, while at concentrations above 10 µM it inhibited 

proliferation of the breast cancer cells. In the same study, Formononetin was shown to have no 

effect on T47D cell proliferation (Gergel & O’Connell, 2010).   

 

Based on this previous data showing generally consistent results for the anti-proliferative effect 

of Promensil at high enough concentrations, Promensil was chosen for this project, for further 

investigation into the anti-proliferative effect of phytoestrogens on breast cancer.  

   

T47D ER-β Cell Line 

Based on the research outlined above, it was decided to focus on the effect of Promensil, 

regarding the beta estrogen receptor, on breast cancer cells. In order to carry out this study, a 

T47D ER-β cell line was obtained. T47D-ER-β cells are an adherent breast cancer cell line with 

a tunable beta estrogen receptor. These cells are ER-ɑ positive and transfected with a 

tetracycline-dependent PBI-EGFP vector for ER-β expression (Strom et al., 2004). A tetracycline 

dose dependent increase of the ER-ɑ to ER-β ratio has been proven. As seen in Figure 3, it was 
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shown that as more tetracycline was used, the amount of beta estrogen receptor decreased, in 

relation to a steady alpha receptor level. 

 

 

Figure 3: Tetracycline dose Dependent ER-ɑ/ER-β ratio. a.) Results of cDNA PCR, after 12 

hours of exposure. Each point represents three treatments. b.) Results of western blot of whole 

cell extract with 25µg protein FLAG antibody to detect ER-β (Strom et al., 2004) 

 

The T47D ER-β cells display a slightly shortened form of the beta estrogen receptor, however it 

has shown no functional difference. Additionally, a FLAG tag has been fused to the receptor, 

such that FLAG antibody can be used to detect the level of ER-β present. GFP fluorescence due 

to co-expression on the plasmid was also an option to visualize the ER-β expression in these 

cells.   
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This cell line appeared ideal to examine the response of the beta estrogen receptor, in breast 

cancer cells, to phytoestrogens. 

 

Hypothesis 

It was hypothesized that Promensil supplement would show anti-proliferative results in T47D 

breast cancer cells when ER-β was present. The anti-proliferative effect was expected to decrease 

upon ER-β being turned down and/or off.  
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Methods 

Extraction of Promensil 

Double strength Promensil tablets were obtained over the counter. The lot number of the tablets 

obtained was 18943A. The double strength tablets contain 80 mg of red clover isoflavones, 

according to the box. Three of these tablets were used in the extraction, which represents three 

times the daily serving size of the supplement. The tablets were ground by mortar and pestle and 

then added to 100 ml methanol in a round bottom flask. This was refluxed for approximately one 

hour in a 70-degree Celsius water bath, using a reflux condenser. The solution was then filtered 

through a filter paper funnel to remove remaining solids and finally stored at -20 degrees Celsius.  

 

Cell Maintenance  

T47D cells were obtained from ATCC. T47D ER-β cells were obtained from the University of 

Houston Center for Nuclear Receptors and Cell Signaling, courtesy of Dr. Anders Strom. Cells 

were maintained in DMEM/F12 with 10% Fetal Bovine Serum and 1% PenStrep media, at 37 

degrees Celsius and 5% carbon dioxide. T75 flasks were kept with 10mL media and 10µl insulin 

(10 mg/ml in 25mM HEPEs, pH 8.2). The T47D ER- β cells were maintained in the presence of 

1µg/ml Tetracycline, except where otherwise indicated. Cell media was replaced, and cells were 

split, as needed.  

 

Cell Plating 

Cells were trypsinized and then counted, to plate in 12 or 24-well plates at a concentration of 

2.5x10^4 cells/cm2. For the 12-well plates a total working volume of 1ml per well was used, and 
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for the 24-well plates 0.5ml was used. Cells were first plated in DMEM/F12 with 10% FBS, 1% 

PenStrep media, with 1% insulin, and allowed to adhere for 24 hours.  

  

Cell Synchronization 

For experiments, cells were synchronized to be at the same point in the cell cycle. This was 

performed after allowing the cells to adhere to the plates for 24 hours. The media was replaced 

with the appropriate amount of DMEM and PenStrep media, without serum. Following 24 hours 

without serum, this media was replaced with the experimental media and the experiment 

continued.  

 

Experimental Conditions 

Following synchronization, the media in the wells was replaced with Phenol-Red free 

DMEM/F12, with 10% charcoal stripped FBS and 1% PenStrep, media along with 1% insulin. 

Cells were left to adjust to this media for another 24 hours, after which treatments were added in 

triplicate, or duplicate, as indicated in the results. For time course experiments, treatments were 

added at 72, 48 and 24-hour marks before the end of the experiment. For all other experiments, 

treatments were left for 72 hours. Methanol control treatments were used, as well as no-add, 

media only blanks to determine baseline cell growth.  

 

Tetracycline 

For experiments with the Tet-system off in the T47D ER-β cells, tetracycline was added at a 

concentration of 1µl/ml, beginning when cells were plated. Tetracycline was continually added 

in the same concentration as media was changed. 
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Cell Counts 

Following experimental treatment, media was aspirated, and the cells rinsed with PBS, 

trypsinized off the wells and counted using a Cellometer Auto T4 cell counter from Nexcelom.   

  



20 
 

Results/Discussion 

The effect of Promensil phytoestrogen extract and β-estradiol on T47D cancer cell proliferation 

was analyzed based on cell counts, following various treatments of plated cells. An initial time 

course experiment with β-estradiol at two concentrations was performed to determine the optimal 

conditions under which β-estradiol increases T47D cell proliferation. Figure 4 shows the results 

of this baseline experiment. 

 

 

Figure 4: Estrogen dose response curve. No add (blue), methanol control at 10µl/ml working 

volume (red) and 17 β-estradiol treatments at 50nM (green) and 100nM (purple) were added at 

24, 48, and 72 hours. N=2 for all points. Cell counts obtained by Cellometer. 

 

As seen in Figure 4, T47D cells treated with β-estradiol at a concentration of 100nM for 72 hours 

showed the highest proliferation when compared to the no add and methanol controls. β-estradiol 

at 50nM concentration also showed an increase in cell proliferation compared to the controls, but 
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to a lesser extent from the 100nM concentration. These results were obtained in duplicate, so the 

statistical significance cannot be stated. However, these results served as preliminary findings to 

set the conditions for the following experiments and therefore the lack of samples could be 

overlooked. It was unknown why the methanol caused an increase in proliferation compared to 

the no add control, however this result was seen consistently throughout the project. Therefore, 

all treatments were compared to methanol controls throughout the course of the project to 

account for this unexpected increase. 

 

Next, the phytoestrogen treatment (Promensil extract in methanol) was tested in various 

amounts, for 72 hours each, to determine the effect on T47D cell proliferation. Figure 5 shows 

the cell count results of these treatments. 

 

Figure 5: Phytoestrogen treatments of T47D cells. No add, β-estradiol at 100nM, methanol 

controls (15, 10 and 5µl/ml working volume), and phytoestrogen treatments (15, 10 and 5µl/ml 

working volume) were added for 72 hours before cell counts were obtained by Cellometer. N=2 

for each treatment. Error bars represent standard deviation. 
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As seen in Figure 5, Phytoestrogen treatment at 15µl/ml working volume and at 10µl/ml working 

volume showed a decrease in proliferation, when compared to the methanol controls. The 

15µl/ml working volume phytoestrogen treatment showed a 50.1% decrease in proliferation 

compared to the 15µl/ml working volume control. The 10µl/ml working volume phytoestrogen 

treatment induced a 42% decrease in proliferation compared to its respective control. However, 

phytoestrogen at 5µl/ml working volume showed no decrease in proliferation, with a 0% 

decrease compared to its respective control. While these results appear to be significant, it is to 

be noted that each data point was obtained with a sample size of two. This was still a preliminary 

experiment in the overall project, to show that the T47D cells responded to Promensil as 

expected, and therefore the small sample size could be overlooked.  

 

Moving on from this point, the T47D ER-β cells were used. First, these cells were cultured with 

Tet-on and Tet-off in order to double check the ER-β expression in relation to the Tet-system. 

GFP fluorescence was viewed in order to confirm the ER-β receptor presence, due to co-

expression with GFP off the same vector. Figure 6 shows the resultant fluorescent and regular 

images. 

Tet-off           Tet-on 

 

Figure 6: Regular and fluorescent microscopy of T47D ER-β cells. Two leftmost images show 

Tet-off with no GFP fluorescence. Two rightmost images show Tet-on with GFP fluorescence.    
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As seen in Figure 6, with the Tet-system on, green fluorescence protein was seen in the cells, 

indicating that ER-β was also expressed. This was expected according to the genetic engineering 

of the T47D ER-β cells (Strom et al., 2004). With the Tet-system off, no green fluorescent 

protein was seen, indicating that ER-β was also no longer expressed in the cells. This was also 

expected, as the tetracycline concentration of 1µg/ml was supposed to be enough to completely 

turn off ER-β, according to the graph in Figure 3 of the background section (Strom et al., 2004). 

This fluorescent imaging confirmed for the following experiments that the Tet-system was 

successfully working and that the ER-β could be turned off with 1µg/ml Tetracycline.  

 

The first experiment with the T47D ER-β cells was performed with the Tet-system on; therefore 

the cells were expressing the ER-β receptor. Results of this 72 hour experiment with various 

phytoestrogen treatments are shown in Figure 7. 

 

Figure 7: Treatments of T47D ER-β with ER-β expression on. No add, β-estradiol at 100nM, 

methanol controls (15, 10 and 5µl/ml working volume), and phytoestrogen treatments (15, 10 

and 5µl/ml working volume) were added for 72 hours before cell counts were obtained by 

Cellometer. N=3 for each treatment. Error bars represent standard deviation.  
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As seen in the graph of Figure 7, the T47D ER-β cells, with the Tet-system on, showed the same 

response to treatments as the regular T47D cells, seen in Figure 2. The 15µl/ml working volume 

phytoestrogen treatment showed a 34.3% decrease in proliferation compared to the 15µl/ml 

working volume control (n=3, p=0.3586). 10µl/ml working volume phytoestrogen treatment 

induced a 29% decrease in proliferation compared to its methanol control (n=3, p=0.4928). 

However, phytoestrogen at 5µl/ml working volume showed a 33% increase in proliferation 

compared with its respective methanol control (n=3, p=0.1376). This increase in proliferation 

with the 5µl/ml working volume phytoestrogen treatment was unexpected because in the regular 

T47D cells, the Promensil treatment at this concentration still showed a decrease in proliferation 

when compared to the control. A possible explanation for this discrepancy could be a different 

ratio of ER-α to ER-β in the T47D ER-β cells compared to the regular T47D cells. If there were a 

lower proportion of whichever receptor the Promensil treatment is working through in the T47D 

ER-β cells, then it is possible that the anti-proliferative effect could be lost at a higher treatment 

concentration. Other unknown differences between the two cell types may also explain this 

discrepancy.    

 

This experiment was then repeated with the Tet-system off, in order to suppress the ER-β 

expression. The results are seen in Figure 8. 
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Figure 8: Treatments of T47D ER-β with ER-β expression off. No add, β-estradiol at 100nM, 

methanol controls (15, 10 and 5µl/ml working volume), and phytoestrogen treatments (15, 10 

and 5µl/ml working volume) were added for 72 hours before cell counts were obtained by 

Cellometer. N=3 for each. Error bars show standard deviation.  

 

As seen in the graph of Figure 8, the T47D ER-β cells, with the Tet-system off, showed a 

decrease in cell proliferation with all tested concentrations of phytoestrogen extract. The 15µl/ml 

working volume phytoestrogen treatment showed a 56.30% decrease in proliferation compared 

to the 15µl/ml working volume methanol control (n=3, p=0.0686). 10µl/ml working volume 

phytoestrogen treatment induced a 52% decrease in proliferation compared to its respective 

methanol control (n=3, p=0.0021). And, the phytoestrogen treatment at 5µl/ml working volume 

showed a 58% decrease in proliferation compared with its respective methanol control (n=3, 

p=0.0124). These results imply that the Promensil treatment is not working through the ER-β. If 

this were the case, then the decrease in proliferation, as seen with the Tet-system on, would have 

been lost when the ER-β was turned off. It is of interest that the anti-proliferative effect of the 
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treatment at 5µl/ml working volume was seen again with the Tet-system off. This again could be 

due to a different ratio of ER-β to ER-α in the cells, or due to experimental differences.  

  

This experiment was repeated with the cells plated at half the concentration (1.25x104 cells/ml) 

to make sure no self-inhibition of growth was occurring. The results are seen in Figure 9. 

 

Figure 9: Treatments of T47D ER-β with ER-β expression off, plated at 12.5x104 cells/ml. No 

add, β-estradiol at 100nM, methanol controls (15, 10 and 5µl/ml working volume), and 

phytoestrogen treatments (15, 10 and 5µl/ml working volume) were added for 72 hours before 

cell counts were obtained by Cellometer. N=3 for all treatments. Error bars show standard 

deviation.  
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compared to its methanol control (n=3, p=0.1059). And, the phytoestrogen treatment at 5µl/ml 

working volume showed a 24% decrease in proliferation compared with its respective control 

(n=3, p=0.0021). This means that no self-inhibition was occurring with the cells plated at higher 

concentration. The results from Figure 8 were verified and further supported by these findings as 

well.  

  

Next, the phytoestrogen treatments were tested at varying concentrations of tetracycline to see if 

there was any difference due to a different ratio of ER-β to ER-α. The results are seen in Figure 

10. 

 
 

Figure 10: Treatments of T47D ER-β with Tetracycline at varying levels. No add, β-estradiol at 

100nM, methanol controls of 5µl/ml working volume, and phytoestrogen treatments of 5µl/ml 

working volume were added to cells, with varying amounts of tetracycline in the media, for 72 

hours before cell counts were obtained by Cellometer. N=2 for all treatments. Error bars show 

standard deviation.  
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As seen in Figure 10, the phytoestrogen treatments still all showed a decrease in cell proliferation 

at the three concentrations of tetracycline. With Tetracycline at 1µg/ml, the phytoestrogen 

treatment showed an 89% decrease in cell number compared to the respective methanol control 

(n=2, p=0.0410). With Tetracycline at 0.5 µg/ml, the phytoestrogen treatment showed a 66% 

decrease in cell number compared to the respective methanol control (n=2, p=0.1390). With 

Tetracycline at 0.25 µg/ml, the phytoestrogen treatment showed a 71% decrease in cell number 

compared to the respective methanol control (n=2, p=0.0061). According to Figure 3 from the 

background section of this paper, which was taken from Strom et al., concentrations of 

tetracycline above 6 ng/ml will induce cells with less ER-β than ER-α. And at 2000 ng/ml 

tetracycline, the ER-β expression will be completely off. Based off these previously determined 

tetracycline concentrations for the T47D ER-β cells, it was determined that at the three 

Tetracycline concentrations tested in Figure 10, the ER-β expression would be undetectable in 

relation to ER-α. Due to this, the results were the same as in Figure 9, as expected. This shows 

that the 1µg/ml Tetracycline concentration was sufficiently high to turn off the ER-β expression 

and therefore supports that ER-β was turned off in the experiments which used this concentration 

of Tetracycline.  

 

A final experiment was carried out to test the effect of the phytoestrogen treatment in 

combination with estradiol treatment. The results are seen in Figure 11. 
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Figure 11: Treatments of T47D ER-β with ER-β expression off. No add, β-estradiol (100nM and 

50nM), methanol (10 µl/ml working volume), phytoestrogen (5 and 2.5µl/mL working volume) 

and combination phytoestrogen/β-estradiol treatments were added for 72 hours before cell counts 

were obtained by Cellometer. N=3 for all treatments. Error bars show standard deviation.  
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The phytoestrogen treatment at 10µl/mL working volume showed a 75% decrease compared to 
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61% decrease in cell number seen, compared to the 50nM β-estradiol control (n=3, p=0.0063). 
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The phytoestrogen treatment at 5µl/mL working volume showed a 70% decrease compared to 

the 100nM β-estradiol control (n=3, p=0.0170). Again, there was no significant difference 

between the phytoestrogen and phytoestrogen/β-estradiol treatments. These results imply that the 

Promensil phytoestrogen treatment was working through the alpha estrogen receptor, rather than 

beta. ER-β expression was turned off for this experiment and the anti-proliferative effect of the 

phytoestrogen was still seen. Additionally, β-estradiol is known to work through the ER-α 

(Paech, 1997). Therefore, since the combination phytoestrogen/β-estradiol treatment showed the 

same decrease in proliferation as the phytoestrogen-only treatment, the phytoestrogen must be 

somehow inhibiting the β-estradiol effect. Possibly there is some component in the Promensil 

extract which acts as an antagonist for ER-α.  

 

Overall, the results found in this project did not support the initial hypothesis but instead pointed 

towards an opposite finding. It appears that Promensil treatment of T47D cells works through the 

alpha estrogen receptor to decrease cell proliferation.  
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Recommendations  

The findings of this study were preliminary and should be confirmed through repeated trials and 

with larger sample sizes. If it is confirmed that Promensil decreases breast cancer cell 

proliferation though the estrogen receptor alpha, then further research could be performed. The 

ER-α specific interaction with Promensil could be examined and confirmed through cells with a 

tunable alpha receptor, rather than beta. Then, it could be determined which component(s) of 

Promensil cause this anti-proliferative effect. Promensil contains genistein, daidzein, 

formononetin, and biochanin A (Weijer et al., 2002). While formononetin and biochanin A have 

shown reliable data towards an anti-proliferative effect on breast cancer cells (Peterson et al., 

1998; Setchell et al., 2001), genistein and daidzein have shown varying effects (Dixon, 2002). 

The antiproliferative effect seen in this study could be due to a single component of Promensil, 

or a combination of one or more. Additionally, the other components/phytoestrogens which 

make up Promensil could be studied separately to see if there is any interaction with the beta 

estrogen receptor, rather than the alpha receptor.  

 

The results of this project contribute to the overall Phytoestrogen Project at WPI, progressing 

further the understanding of readily available phytoestrogen supplements on the human body. 

There is much more to be determined, as this diverse group of compounds has shown varying 

effects, based on different cells and different conditions.  
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