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Abstract 
In this project we design a system to beam steer the soundwaves being outputted by a speaker 

based upon the location of a listener in the room. The concept is modeled after a phased array 

system which uses a progressive time delay calculated based upon the distance between 

speakers and the desired steering angle. The desired angle will be determined using infrared 

sensors to track an individual in front of the speaker and obtain the required delay to steer the 

sound towards them using the sensor’s voltage output. Each time delay value will have a 

corresponding, unique, resulting steering angle of the beam. The microcontroller chosen to 

process this information is the Arduino Mega 2560 which will be used to sample the audio and 

apply the chosen time delays as well as obtain the sensor output voltage and calculate the 

corresponding delay using a second Arduino Mega. The basic implementation of the system 

starts with a circuit to obtain the analog audio input from the source which is then sampled and 

converted to a digital value using the on board ADC. The Arduino then manipulates when the 

samples are played out of each speaker in order to delay them properly. The samples are sent 

through an 8-bit DAC which converts the samples back to an analog waveform. The waveform 

is then low pass filtered and amplified before being played through the speaker. For the testing 

of the audio quality we created a MATLAB program for purposes of audio testing. The program 

generates a sine sweep signal and sends the signal to testing speaker and records the 

speaker’s response. The recorded signal is then filtered and analyzed at different frequency 

points and a plot of the average peak values at different points versus frequency is obtained. 

 

1. Introduction 
The audio and sound market today is one of the largest and most valuable market in the world. 

The wireless audio market size is expected to almost double from USD 16.13 Billion in 2016 to 

USD 31.80 Billion by 2023. Looking at the current market, there seemed to be a lack of 

speakers that could be thin enough to hang on a wall similar to that of a television. Furthermore, 

there were very few affordable sound systems that could dynamically steer the sound to a 

desired angle. The goal of this project was to design and implement a system that will track an 

individual in front of the speaker unit using passive infrared sensors, process that location, and 

adjust the audio output to steer the sound waves accordingly. Steering the sound waves 

requires a unique, frequency independent time delay to be added to the output of each radiating 

element which will cause the wave to sum and cancel different locations resulting in an offset 

main lobe. The value of the time delay will control the exact angle the sound is steered at. The 

final system will provide an affordable way for consumers to purchase a non-obtrusive, high 

quality sound system which can provide features that are currently not present in most products 

on the market. The design of the steering array of speakers is modeled after phased arrays 

which are used very frequently in radar applications. Since radar applications usually use one 

constant frequency it can be easier to control and know where the main lobe is going. Phased 

arrays are designed with a thorough knowledge of diffraction theory, specifically N-slit 

diffraction. N-slit diffraction models how waves interact with each other when they pass through 

adjacent slits. These interactions, such as where they sum and cancel, are all dependent upon 

the size of the slits, the distance they are apart, and the frequency of the wave traveling through 

it. These concepts, how they were implemented, and how they performed in the system are 

discussed more thoroughly in the sections following. 
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2. Background 
2.1 Cornell Phased Array 

A recent project completed at Cornell [8] is very similar to our goal. They fabricated a 

unit that consisted of 12 speakers in a single row that is able to steer sound by adjusting a 

potentiometer. In order to steer the sound they derived an equation for the angle the sound is 

steered that is only dependent upon the time delay for each speaker. In the following equation, 

vs represents the speed of sound, d is the distance between elements, and td is the time delay. 

𝜃 = sin-1(-
𝑣𝑠

2𝜋𝑑
𝑡𝑑) 

This allows them to simplify the adjustment that needs to be made to a single time delay for 

each angle. This function was tested in MATLAB to show how adjusting the time delay will shift 

the main lobe of the sound wave. These test results are shown in the next section. 

            The report also details some of the electrical work that needed to be done for the system 

to work properly. The main elements of the system are an input buffer to amplify and re-bias the 

signal. That signal is then processed by an ADC to produce a digital value that can then be sent 

to the microcontroller. The microcontroller then performs the necessary operations to apply the 

time delay to each speaker. Each channel is then sent to a DAC to switch to the corresponding 

analog voltage and into the amplifier which contains a low pass filter to remove any noise from 

the DAC. A buffer is also needed to reduce the impedance of the DAC as the speaker has an 

impedance of just 8 ohms. 

The first input amplifier is designed to bias the input voltage from -1V to +1V to 0V to 5V. 

This is necessary in order for the ADC to function properly and assign the appropriate digital 

value to each signal. A high pass filter is used to stop the low frequencies below the speaker’s 

frequency response. A voltage divider is designed to lower the voltage from 12 down to as close 

to 2.5 as possible. An op-amp circuit is then used to amplify the -1V to 1V swing to a swing that 

is approximately 5V. 

The ADC is needed to communicate the analog signal to the microcontroller in digital 

format. The ADC will have a range of 0-5V, which is why the signal needed to be biased in the 

previous step, and should be able to sample and communicate at a rate of 44.1 kHz. The 

microcontroller should be able to run the serial peripheral interface (SPI) at the same rate. The 

SPI is an interface bus that can be used to send data between microcontrollers and small 

peripherals such as an ADC. This rate is chosen since it is twice the 22 kHz is the range of 

human hearing so 44.1 kHz is slightly higher than double for a sampling frequency. 

The DAC must take the output from the microcontroller and convert it into an analog voltage that 

can be amplified in the next step. The DAC needs to be able to write to all the speakers at least 

at the rate of 44.1 kHz in order to ensure the entire array will receive its time delay and execute 

it in order to steer the sound lobe. An efficient way to do this is using a parallel-input DAC as 

opposed to a serial-input as parallel takes less time to write. Another amplifier is implemented in 

order to undo the DC bias and filter out any quantization noise. An op-amp is used to implement 

a low pass filter that is applied to each of the DAC channels while a high pass filter is designed 

to cancel out the DC-bias and lower the output impedance to improve the efficiency. Since the 
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speaker impedance is very low, a high impedance into it will create a large voltage drop, 

wasting energy. 

The report also goes into detail about the configuration of the microcontroller and how it 

runs the system. The microcontroller in this design was set to have an interrupt every 44.1 kHz 

since that is the standard Nyquist rate for audio. Upon every interrupt, the microcontroller would 

sample the input audio and convert the analog voltage to a digital value. The microcontroller will 

then check the current time delay value and write to the DAC the sampled digital value with the 

added time delay in order to produce the correct output signal. In this design the current time 

delay value is simply controlled by a potentiometer which the user adjusts.  This application 

needs a that microcontroller has enough ports for each channel and obviously has the capability 

to perform sampling and calculations this fast. That can be made easier with efficient coding but 

will certainly be something to be careful of. 

 

2.2 Diffraction Theory 

The Cornell design references diffraction theory and more specifically, N-slit diffraction, 

in obtaining the wave intensity equation. To better understand the principles and derivations 

behind that equation, research on diffraction [1] and multiple slit diffraction [5] was conducted. 

When looking at multiple slit diffraction, the basic rule is the peak intensity of a wave is 

proportional to the square of the number of slits and the more slits that are added will result in a 

more narrow maximum beam as well as a much higher maximum intensity. Certain parts of the 

derivation involved Huygen’s Principle, so in an effort to fully understand the concepts that 

principle was investigated [7]. 

Huygens principle states every point on a wavefront (surface containing points affected 

in the same way by a wave at a given time) is a source of spherical wavelet (oscillation that 

starts at zero, increases, decreases, and returns to zero, “brief oscillation”). An example of this 

is two rooms connected by a doorway. If the speaker is radiating in the corner of one room, 

someone listening in the other room will think the sound is originating from the doorway. 

Amplitude at point Q which is a distance r0 from origin point P0 represented by: 

𝑈(𝑟0)  =  
𝑈0𝑒𝑖𝑘𝑟0

𝑟0
   k = wavenumber which is equal to 

2𝜋

𝜆
 

   U0 = starting amplitude 

 
Figure 2.2.1 - Huygens Principle  

To find amplitude at point P the contributions from all the points along the sphere are summed. 

Constants -
𝑖

𝜆
 and K(x) are added in order for the following equation to hold true. Originally these 

constants were assumed but later emerged when Kirchoff derived diffraction. The first -
𝑖

𝜆
 term is 
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needed because secondary waves will be a quarter out of phase with the primary wave and that 

the magnitude is equal to 
1

𝜆
. K(x) is assumed to have a maximum value when x = 0, K(x) = 

.5(1+cos(x)). 

 

N-Slit Diffraction Derivation: 

Using Huygens principle an equation can be modeled for a monochromatic plane wave (general 

sine wave) passing through N slits and generates complex wave. The wave is modeled using 

huygens principle and represented as: 

ψ =  ∫
𝑖

𝑟𝜆
ψ′𝑒−𝑖𝑘𝑟𝑑𝑠𝑙𝑖𝑡

 

𝑠𝑙𝑖𝑡
 , Where ψ’ is the monochromatic wave 

The distance r is derived to an equation dependent upon the xyz coordinates of both the slit and 

the distance from the slit. The equation is then modified to  

𝑟𝑗  = 𝑧 (1 +
(𝑥 − 𝑥′ − 𝑗𝑑)2 + 𝑦2

𝑧2 )

1
2

 

  

Using this equation the sum of the N contributions to the wave can be modeled using a 

summation of the complex amplitude from each slit. This is represented with the following 

equation. 

𝛹 = ∑  𝑁−1
𝑗=0 𝐶 ∫  

𝑎

2

−
𝑎

2

𝑒
𝑖𝑘𝑥(𝑥′−𝑗𝑑)

𝑧 𝑒
−𝑖𝑘(𝑥′−𝑗𝑑)2

2𝑧 𝑑𝑥′,  C is equivalent to 𝛹′√
𝑖

𝑧𝜆
 . 

The above equation is then simplified to because the term 
𝑘(𝑥′−𝑗𝑑)2

𝑧
is considered very small so 

the second exponential term is equivalent to 1.  Equation 1 below represents the modified result 

and equation 2 shows the same equation manipulated to be able to apply a specific identity.  

Eq. 1: 𝛹 = 𝐶 ∑  𝑁−1
𝑗=0 ∫  

𝑎

2

−
𝑎

2

𝑒
𝑖𝑘𝑥(𝑥′−𝑗𝑑)

𝑧 𝑑𝑥′,                           Eq. 2: = 𝑎𝐶
𝑠𝑖𝑛

𝑘𝑎 𝑠𝑖𝑛𝜃

2
𝑘𝑎 𝑠𝑖𝑛𝜃

2

∑  𝑁−1
𝑗=0 𝑒𝑖𝑗𝑘𝑑 𝑠𝑖𝑛𝜃 

Using the identity below the summation can be substituted out so the second term is now a 

fraction similar to the first sine term. The identity will remove the ‘j’ term and take the remaining 

exponential and subtract it from 1. The result will be the divisor which is will divide a similar 

exponential only the ‘j’ is now replaced with the value of N. The equation is shown below to 

clarify.  This will be the foundation of the wave intensity equation.  

Identity: ∑  𝑁−1
𝑗=0 𝑒𝑥𝑗 =

1−𝑒𝑁𝑥

1−𝑒𝑥                           Equation: 𝛹 = 𝑎𝐶
𝑠𝑖𝑛

𝑘𝑎 𝑠𝑖𝑛𝜃

2
𝑘𝑎 𝑠𝑖𝑛𝜃

2

(
1−𝑒𝑖𝑁𝑘𝑑 𝑠𝑖𝑛𝜃

1−𝑒𝑖𝑘𝑑 𝑠𝑖𝑛𝜃 )    

Using trigonometry the equation is manipulated into sine functions and a remaining exponential. 

Euler’s formula is used to convert the subtracting exponential equations to sine functions. The 

result is show below  

𝛹 =  𝑎𝐶
𝑠𝑖𝑛 (

𝑘𝑎 𝑠𝑖𝑛𝜃
2 )

𝑘𝑎 𝑠𝑖𝑛𝜃
2

𝑠𝑖𝑛 (
𝑁𝑘𝑑 𝑠𝑖𝑛𝜃

2 )

𝑠𝑖𝑛 (
𝑘𝑑 𝑠𝑖𝑛𝜃

2 )
𝑒𝑖(𝑁−1)𝑘𝑑

𝑠𝑖𝑛𝜃
2  

The last exponential is dropped as it is equivalent to e0 which equals 1 due to (𝑒𝑖𝑥|𝑒𝑖𝑥) = 𝑒0. By 

then squaring this result the equation for the intensity of the total wave in relation to the angle 

theta is found. The value of k defined above is substituted in as well as I0 for all necessary 
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constants. The first term can be converted to a sinc function as that is defined as 
𝑠𝑖𝑛(𝑥)

𝑥
. The 

equation is represented below. 

𝐼(𝜃) = 𝐼0 [𝑠𝑖𝑛𝑐 (
𝜋𝑎

𝜆
𝑠𝑖𝑛𝜃)]

2

⋅ [
𝑠𝑖𝑛 (

𝑁𝜋𝑑
𝜆

𝑠𝑖𝑛𝜃)

𝑠𝑖𝑛 (
𝜋𝑑
𝜆

𝑠𝑖𝑛𝜃)
]

2

 

In order to change the angle at which the maximum intensity will be found, a phase offset needs 

to be added to the fringe effect term or the 𝑘𝑑 ∗ 𝑠𝑖𝑛(𝜃). The phase offset can be manipulated to 

be controlled by a time delay since for any frequency a time delay is equal to td = ɸ/f. This 

results in the following equation where ɸ = td/f: 

𝐼 = 𝐼0 (
𝑠𝑖𝑛(

𝜋𝑎
𝜆

𝑠𝑖𝑛𝜃)

𝜋𝑎
𝜆

𝑠𝑖𝑛𝜃
)

2

(
𝑠𝑖𝑛 (

𝜋
𝜆

𝑁𝑑 𝑠𝑖𝑛𝜃 +
𝑁
2 𝜙)

𝑠𝑖𝑛 (
𝜋𝑑
𝜆

𝑠𝑖𝑛𝜃 + 𝜙)
)

2

 

The next step is to isolate theta in order to find what time delays will result a shift of a certain 

angle. Since only the second term is dependent on theta, the numerator of the second term is 

set to equal to its maximum value of 1 to find the maximum angle. This results in the equation 

𝜃 = sin-1(-
𝜆

2𝜋𝑑
ɸ). Substituting 𝜆 for 

𝑣𝑠

𝑓
 yields 𝜃 = sin-1(-

𝑣𝑠

2𝜋𝑑

ɸ

𝑓
) which then becomes  

𝜃 = sin-1(-
𝑣𝑠

2𝜋𝑑
td) by substitution. This gives an equation that relates the time delay to the angle of 

maximum intensity that can be used to find correct delay in order to steer the wave in the 

desired direction. Using this model we can apply this to our audio output to control where the 

most sound intensity will be directed. 

 

2.3 Hawksford Smart Loudspeaker 

Designing a filter to apply to the audio signal is another approach to dynamically steering 

sound. The approach detailed in a report by Malcolm Hawksford [4] requires updateable FIR 

filters located between each speaker and the input signal. However, unlike most FIR filters, in 

this design the signal frequency will be considered constant and the sampling frequency will be 

dynamic. The overall approach is to design a number of filters for a discrete set of frequencies 

and then use interpolation to approximate the filter specifications for the remaining frequencies. 

Spline interpolation is recommended which involve constructing a piecewise polynomial using 

different low degree polynomials to find the best curve fit. The curve will represent the filter 

coefficients as a function of frequency and new coefficients will be interpolated in between the 

discrete set of calculated coefficients.  Using this approach, one can ideally control both the 

beam width as well as the direction. 

 When designing the dynamic low pass filters, each is designed for a specific frequency. 

The cutoff frequency of these filters will affect only the width of the beam but not the angle in 

which the beam is directed. The first step in designing these filters is to determine the desired 

width of the beam. This width will affect the effective sampling rate of the filter. The following 

equation presented in the report shows the relationship between the beam width, Lx, and the 

effective sampling rate, fsx. 
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𝑓𝑠𝑥 =
𝑐

𝑔 𝑠𝑖𝑛(
𝐿𝑥
2

)
 

In the equation above, c represents the speed of sound and g represents the spacing between 

each speaker element. Using the value of fsx, the cutoff frequency can be obtained using a 

rounding function ‘ceil’ which rounds up to the nearest integer. The following equation shows the 

relationship where N is the number of elements and ‘ncf’ is the harmonic cutoff frequency. 

𝑛𝑐𝑓 = 𝑐𝑒𝑖𝑙 (
𝑓

𝑓𝑠𝑥
𝑁) = 𝑐𝑒𝑖𝑙 [0.5𝑁

𝑓

𝑓ℎ𝑖𝑔ℎ

𝑔

𝑔𝑜𝑝𝑡
𝑠𝑖𝑛 (

𝐿𝑥

2
)] 

A sinc function is then applied in order to obtain a rectangular window function in the frequency 

domain. The rectangular window is needed to smooth the FIR filter response. 

 The next aspect to designing this system is to investigate how to steer the output beam. 

The approach presented to do this requires introducing progressive time delays to each element 

in order to offset the beam from its original symmetrical position about the normal. To find the 

time delay for each element, path lengths need to be derived first. The figure below shows the 

path delays for a 4 element array where elements to the right of the center are positive numbers 

and negative numbers for elements to the left. 

 
Figure 2.3.1 - Path Delays 

The path length for element ‘r’ with a desired beam offset of 𝛽x can be represented by the 

following equation presented by Hawksford,  

𝑑𝑟 = 𝑔(0.5 + 𝑟) 𝑠𝑖𝑛𝛽𝑥 
Using these delay values the required time delay Tr, can be found. That value is then 

transferred into the frequency domain to obtain the transfer function of the delay. The delay 

transfer function differs slightly for elements to the right of the normal as opposed to the left of 

the normal as a simple negative sign is introduced. The time domain time delay equation as well 

as both frequency domain equations are shown below. 

Time domain:  𝑇𝑟 =
𝑔(0.5+𝑟) 𝑠𝑖𝑛𝛽𝑥

𝑐
 

 

Frequency domain, Left side:   𝑑𝑒𝑙𝑎𝑦𝑟𝑙 = 𝑒𝑥𝑝 [+𝑗
2𝜋𝑓

𝑐
(0.5 + 𝑟) 𝑠𝑖𝑛𝛽𝑥] 
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Frequency domain, Right side: 𝑑𝑒𝑙𝑎𝑦𝑟𝑟 = 𝑒𝑥𝑝 [−𝑗
2𝜋𝑓

𝑐
(0.5 + 𝑟) 𝑠𝑖𝑛𝛽𝑥] 

 

Applying these time delays to signal will effectively steer it but it will cause undesired changes to 

the beam width as the angle changes. This is because as the steering angle changes, the inter 

element spacing, g, is now observed to be different than it was when the beam was centered 

about the normal. Therefore in order to maintain a constant beam width, this must be 

compensated for. This requires modifying the original harmonic cutoff frequency equation by 

simply changing ‘g’ to ‘g*(cos𝛽x).’ 

 To complete the process of designing these filters, a frequency selective mask ‘scf’ is 

applied in terms of the harmonic cutoff frequency. This mask is used to represent the ideal brick 

wall response of the filter which is depicted in figure 2.3.2 below. 

 
Figure 2.3.2 - Brick wall filter mask 

The value ncf represents the cutoff harmonic which depends upon the selected frequency (f), 

the effective sampling frequency (fsx), and the number of coefficients (N) which is also 

equivalent to the number of speaker elements. The equation for ncf was stated previously 

where “ceil” is a rounding function that will always round up to the next integer. This is the 

starting point for deriving the element channel transfer function (ECTF) filter that will apply both 

amplitude weighting and phase shifting for the selected frequency. Next, the fourier transform of 

the unit impulse which is equivalent to 1 is multiplied by the frequency mask and then the 

inverse fourier transform is applied to the result. The resulting time domain value is then 

multiplied by the rectangular window function defined above in order to limit the coefficients to 

the number of elements in the array.  

In order to implement the desired offset, the calculated delay value for each element is 

multiplied by the corresponding coefficient. To clarify, the resulting filter will have the same 

number of coefficients as the array does speaker elements. Applying the rth delay requires that 

value to be multiplied by the rth coefficient in the vector. This will result in a filter that can beam 

steer a single frequency over a range of angles while keeping the beam width constant. This 

process is repeated for a discrete frequency set and then interpolated to approximate this 

process for the remaining frequencies in the desired bandwidth. 

 

2.4 Audio Testing Software Options 

Once we have  a working prototype for the speaker, it will be important to perform audio testing 

on the speaker to measure its performance. We researched multiple software options for the 
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project as well as some open-source options. The front-runner for an affordable and reliable 

option for audio testing was a program called TrueRTA, a Real Time Audio Spectrum Analyzer. 

The website advertises the product as giving the user a “a detailed picture of you’re hearing in 

real-time”. All that is needed, besides the software, is a windows PC with just basic sound 

capability. For the purposes of our project a nice microphone or preamp would be useful in 

maximizing the potential for our product but is not essential to testing. TrueRTA includes 

multiple test instruments that could be useful to testing the sound quality of our speaker. Among 

many of the features, it comes with a High Resolution Real Time Analyzer, a Low Distortion 

Signal Generator, and an TrueRTA Oscilloscope. 

 

The feature we felt would be the most helpful for the project is the High Resolution Real Time 

Analyzer. We was able to download the free version and while it lacked all the features of the 

paid version, we got great first-hand experience using the analyzer using different features 

including showing the distortion characteristics. With a speaker it would be able to measure the 

little intricacies in the sound quality and give us an idea of how it fares against competition. This 

audio spectrum analyzer can give us the changing spectrum, in real-time, of signals up to 48Khz 

which should be more than enough. This spectrum analyzer can also be used in conjunction 

with the signal generator. 

 

The TrueRTA also has a QuickSweep feature which we felt would assist the team in measuring 

the sound quality of our speaker. Essentially what is does is give off a small, computer 

generated sweep (or a little chirp basically) in order to measure the frequency response of the 

acoustic system. You can mess around with the system by adding in a high pass filter and 

generating a test loop. Overall the design for the audio-testing software was ideally going to look 

something like the following diagram: 

                                 
 

In addition to looking through existing software options for the audio testing, we also analyzed 

matlab options for a similar purpose which we analyzed as a comparison to the spectrum 

analyzer as well as a resource if we choose to edit these files to utilize in our project. The signal 

generator in the MatLab files might suffice with some tweaks, and that way we wouldn’t have to 
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purchase this add-on in TrueRTA. We were able to test with the Matlab files and it too has a 

spectrum analyzer function. 

 

We then wanted to analyze and test Koohyar Pooladvand’s code and see if it could be used for 

our project. The code first reads the audio file. This audio file might not be able to be in real time 

which could be the issue but it would read the file and the define the audio recording object. 

 

info = audiodevinfo; 

recorder1 = audiorecorder(48000,16,info.input(end).ID); 

[f1, fs1] = audioread('f1.wav'); 

 

In this case the f1 and fs1 are inputs that had been imported into the work space so for the use 

case of this project we would need to get a recording of our speaker with a precise microphone. 

The program then returns a structure array containing all the input and output audio on the 

system. 

 

if (Continious_paly) while Continious_paly 

sound(y,sample_rate,nBits) Continious_paly=0; 

Continious_paly=get(handles.Continuous,'value'); end 

tic ; 

 

FS = stoploop({'Stop me before', ' 60 seconds have elapsed'}) ; 

% Display elapsed time 

while(~FS.Stop() && toc < 60), % Check if the loop has to be stopped 

Start_button_Callback(hObject, eventdata, handles) tic 

record(recorder1); sound(y,sample_rate,nBits) pause(duration) 

toc 

end 

 

It then checks to see if the spectrum analyzer is on or not. 

 

if  (Spectrum_status) signal = myRecObj(:,1); 

  

If it is turned on, it begins to plot the spectrum of the recorded sound. 

 

freq_range_rec=linspace(freq_min,freq,length(signal)); 

freq_range_sig=linspace(freq_min,freq,round(length(y(:,1)))); 

freq_range_rec=linspace(freq_min,freq,48000);  

freq_range_sig=linspace(freq_min,freq,fs); 

 

As you can see, similar to the TrueRTA Analyzer, the matlab code is made to give signals of up 

to 48Khz. After testing the Matlab code, there seemed to be some issues with it. Most of them 

were resolved after meeting with the code’s author, however, that meeting wasn’t able to be set 

up for some time so in the meantime we worked on our own code for plotting the frequency 

response of the speaker.  
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We was able to figure out how to accurately plot a wav file (for purposes of this project it would 

be a recording on the speaker). For this part you need to first import the data (the wave file) into 

your matlab workspace. You then need to change the directory to the one where the wavfile 

exists and call all the wav files in that folder.  

 

The code below is listed in the appendix (Appendix B). The code utilizes the audioread function 

in order to read the data from the wave file. It then returns that sampled data, here known as “s” 

(for speaker), and a sample rate for the data it reads (fs).  

 

[s,fs] = audioread('f4.wav'); 

 

We decided to utilize the fft command in order to eventually get the magnitude and phase 

responses plotted separately. Essentially what this function does is compute the discrete 

Fourier transform of the function defined (in this case “s”) using the fft algorithm in matlab. We 

felt that utilizing the discrete Fourier transform would help because it is useful in finding the 

frequency components of signals buried in noise.  
 

sdft = fft(s); 

 

Then, under the assumption the y has an even length, we set up a frequency vector. Then, 

using the fs, or the sampling data that is read from the wav file, we can plot the magnitude using 

the frequency vector we utilized the subplot function in order create both figures side-by-side. 

The following 3 lines of code completed this: 

 

sdft = sdft(1:length(y)/2+1); 

freq = 0:fs/length(y):fs/2; 

subplot(2,3,1); 

 

Then, utilizing the same frequency vector from earlier, we were able to plot the phase response 

of the wav file. We utilized the unwrap function in order to do this. The unwrap function 

essentially corrects the phase angles and makes the phase plot cleaner by altering the phase 

angles. 

 

plot(freq,abs(sdft)); 

subplot(2,2,2); 

plot(freq,unwrap(angle(sdft)));  

xlabel('Hz'); 

 

Another measure we felt would be useful is seeing the amplitude plotted against the time in the 

frequency. In order to do this we set up the function similar to how we did for the magnitude and 

the phase response.  One thing that was different is that we needed to define the time 

increment. For this it was the seconds per sample (with that sample coming from the data 

received from importing the wave file into the matlab workspace). 

 

dt = 1/fs; 

t = 0:dt:(length(y)*dt)-dt; 



12 

 

In the matlab forums where we were researching about different measures of sound analysis, 

we came upon a great program that we felt might be useful for our project [9]. While some of the 

measures it creates aren’t as useful for audio testing, the code acts as a signal analysis of any 

given sound file. Within the code we found multiple interesting features that we was able to play 

around with to have it work with the current version of matlab (the code was originally written on 

an earlier version on matlab).  

 

The program begins by utilizing the audioread function in order to load in the audiofile. It then 

defines a couple of variables: the first channel and the length of that channel. Using these 

variables it creates a time vector which is then used to plot the signal waveform: 

 

[x, fs] = audioread('f3.wav'); 

x = x(:, 1); 

N = length(x); 

t = (0:N-1)/fs; 

 
Figure 3: Signal Waveform 

 

The program then plots the signal spectrogram. This is done using the spectrogram function. 

What the function does is essentially return a short-time domain Fourier transform of the given 

signal.  

 

spectrogram(x,'yaxis') 

 

The type of spectrogram function given means that it uses the actual frequency of the signal in 

hertz and the sampling frequency found from the wave file. In this case the signal is the variable 

x which was earlier defined as the first channel of the given wav file. 
 

 

spectrogram(x, 1024, 3/4*1024, [], fs, 'yaxis') 
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Figure 4: Signal Spectrogram 

 

The next measure the program defines was the signal spectrum. For this spectrum, it plotted 

the magnitude in dB against the frequency in Hz. To do this the program utilized a function 

called semilogx. Essentially what the function does is create a plot based on given input 

values using a base 10 log scale as the x axis, and your choice of a linear scale for the y-

axis. Below is the found amplitude spectrum of the wave file: 

 

  
Figure 5: Amplitude Spectrum of Signal 
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3. Methods 
3.1. MATLAB Simulations 

The intensity equation which was derived from multiple slit diffraction needed to be tested to 

ensure that applying only a time delay will cause the main lobe to shift. Using MATLAB, a script 

was developed that would plot the intensity of a certain frequency wave against the listening 

angle. The resulting plots would describe the behavior of the wave intensity for the desired time 

delay. Two scripts were developed in order to observe a single frequency as well as how 

multiple frequencies are affected. 

The first simulation is for applying a time delay to a single frequency and plotting the intensity of 

that sound wave. The MATLAB function that runs this takes 5 inputs to run. The five inputs are 

represented by ‘N’, ‘d’, ‘a’, ‘f’, and ‘td’ where ‘N’ is the number of elements, ‘d’ is the distance 

between adjacent elements, ‘a’ is the width of each element, ‘f’ is the desired frequency, and ‘td’ 

is the time delay applied. The function definition as well as an example function call are shown 

in the following two lines 

          

Definition Function: function I = IntensityPlot(N,d,a,f,td)   

Example Function Call: IntensityPlot(6,.085,.05,1000,-0.0003) 

  

Inside the function, the first section is dedicated to declaring variables that will be needed later. 

The following four lines make up this section in the function: 

v_s = 343.3 

lambda = v_s/f; 

theta = linspace(-90,90,10000);    

phi = td/lambda*v_s; 

The first line declares ‘v_s’ to be the value of the speed of sound, 343.3 m/s. The second line 

converts the desired frequency from the function call to its corresponding wavelength. A vector 

from -90 to 90 called theta is created in the third line to represent the range of angles the wave 

intensity will be plotted over. Finally, the variable ‘phi’ is defined in the last line as the time delay 

divided by the wavelength multiplied by the speed of sound. 

         

The function then begins to calculate the intensity of the desired sound wave using the wave 

intensity equation shown below which is derived from the principles of N-slit diffraction. 

Since this equation is rather detailed, each main term was defined and those definitions were 

then used to calculate the full equation. Letters A and B represent the numerator and 

denominator of the first term and letters C, D, and E represent the second term. Using these 

letters the wave intensity can be calculated and stored in I. The MATLAB code for this 

implementation is shown below. 

%Intensity equation -- Each letter equals a certain term 

A = sin(pi*a.*sind(theta)/lambda); 

B = pi*a.*sind(theta)/lambda; 

C = ((2*pi*d.*sind(theta)/lambda)+phi); 

D = sin((N/2).*C); 

E = sin(C); 

%Full equation 

I = ((A./B).^2).*((D./E).^2); 
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The results of running this simulation show that a frequency can be steered in different 

directions due to a time delay. In the plots shown below a 1kHz frequency can be seen centered 

on zero when there is no time delay and shifted along the axis as a delay is applied. For these 

simulations the number of element was set to 6, the distance between elements was set to 

0.085m, and the element width was 0.05m.  As the number of elements is increased, the lobe 

will become more narrow and greater in amplitude than the side lobes. If the number of 

elements is set two 2 the frequency does not seem to shift no matter the time delay applied. 

  

  
1khz wave, no time delay 

    
    1kHz wave, 0.0005s delay                                1kHz wave, -0.0005s delay 

  

The second script was a MATLAB function that modified the single frequency approach to show 

how the intensity plot of multiple frequencies with the same time delay changes. The function is 

very similar to the single frequency function as it takes the same 5 input arguments. The 

changes come in the function where now a lambda vector and a phi vector are created to store 

the corresponding value for each frequency being observed. A vector of zeros is also defined to 

store the intensity of each frequency. The vectors defined in MATLAB are shown below. 

  

lambda_vect = [lambda;lambda/2;lambda/4;lambda/8;lambda/16];             

phi = 

[td/lambda_vect(1)*v_s;td/lambda_vect(2)*v_s;td/lambda_vect(3)*v_s;td/lambda_

vect(4)*v_s;td/lambda_vect(5)*v_s];   

I = zeros(5,length(theta)); 
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The lamba vector creates 5 waves to be plotted by dividing the ‘lamda’ value derived from the 

input frequency by 2, 4, 8, and 16. The phi vector then calculates the corresponding phi value 

for each wavelength. 

        

The calculation of the wave intensity is done the same way it is in the prior function except now 

it loops in order to calculate each frequency. In this case the loop was set to run five times since 

that is how many frequencies were being plotted. The implementation is shown below. 

%loop to calculate for 5 frequencies 

for k = 1:5 

 %Intensity equation -- Each letter equals a certain term 

 A = sin(pi*a.*sind(theta)/lambda_vect(k)); 

 B = pi*a.*sind(theta)/lambda_vect(k); 

 C = ((2*pi*d.*sind(theta)/lambda_vect(k))+phi(k)); 

 D = sin((N/2).*C); 

 E = sin(C); 

 %Full equation 

 I(k,:) = ((A./B).^2).*((D./E).^2); 

End 

  

Each wave intensity that is calculated replaces a zero in the I vector defined above. The 

intensity for each frequency is then plotted against the angle vector on the same figure to show 

the position of the main lobe of each frequency. For the most part, the main lobe of the 

frequencies all seem to occur at the same angle, however the lobe location of higher 

frequencies seems to be more difficult to predict.The following plots show the main lobe of each 

frequency shift together along the axis when a time delay is applied and center of zero when no 

delay is present. 

  
Multi-freq., no time delay  
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     Multi-freq., -0.0005s delay                                                     Multi-freq., 0.0005s delay 
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4. Implementation  
4.1 Arduino Generated Sine Wave to One Speaker 

The implementation process for this project went through numerous stages before the final 

product was reached. The first milestone was to construct a circuit using the Arduino Mega 

2560, the TLC7528 8-bit DAC, a Sparkfun amplifier, and a speaker to play a sine wave 

generated in the Arduino out through the speaker. This required minimal work with the Sparkfun 

amplifier and the speaker driver as they just needed to be connected. However, for the Arduino, 

code needed to be written to generate the sine wave and also also needed to be compatible 

with the requirements of the DAC in order for the digital output to be converted to analog. A 

circuit for connecting the Arduino to the DAC input and then the output to the Sparkfun amplifier 

also needed to be designed and built. A simple block diagram for this implementation can be 

seen in figure 4.1.1 

 
Figure 4.1.1 - Generated Sine Wave Single Speaker Block Diagram 

 

The Arduino code that needed to be written for this stage would serve as a solid foundation that 

could be built upon later for more complex stages. The first task was to generate a sine wave 

internally so the DAC circuit could be tested without having to simultaneously test an audio input 

circuit. To do this, 100 values ranging from 0-255 were chosen in an order that started at 127 

and progressively climbed to 255 and then progressively declined back down to 0 and back up 

again to 127. The buffer starts at 127 because a sine wave starts at 0 then oscillated between 1 

and -1 so 127 is the middle point representing 0,  255 will represent +1, and 0 will represent -1.  

The reason this range of values of chosen is because our DAC is 8-bits meaning it is able 

providing a corresponding analog voltage for values up to 2n where n represents the number of 

bits. With n being 8, that means 28 values can be converted or 256 so therefore values 0-255. 

The code for generating the sine wave is shown below 

 

byte sine[] = {127, 134, 142, 150, 158, 166, 173,181, 188, 195, 201, 207, 

213, 219, 224, 229, 234,238, 241, 245, 247, 250, 251, 252, 253, 254, 253, 

252, 251, 250, 247, 245, 241, 238,234, 229, 224, 219, 213, 207, 201, 195, 

188,181, 173, 166, 158, 150, 142, 134, 127, 119, 111, 103, 95, 87, 80, 72, 

65, 58, 52, 46, 40, 34, 29, 24, 19, 15, 12, 8, 6, 3, 2, 1, 0, 0, 0, 1, 2, 3, 

6, 8, 12, 15, 19, 24, 29, 34, 40, 46, 52, 58, 65, 72, 80, 87,95, 103, 111, 

119, 126, 134, 142, 150, 158, 166, 173, 181, 188, 195, 201, 207, 213, 219, 

224, 229, 234, 238, 241, 245, 247, 250, 251, 252, 253, 254, 253, 252, 

               }; 

 

The next task was to configure a timer interrupt to grab a value from the sine buffer and output it 

at the proper rate. Since the common Nyquist rate for sampling audio is 44kHz, the timer 

interrupts were configured at a 40kHz frequency since that would align better with our ADC 
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configuration in the future. This results in a new sample or value from the internally generated 

sine buffer to be outputted every 22.7μs. This was done using the following block of code: 

 

 cli(); 

  // initialize Timer1 ~ 40kHz 

  TCCR1A = 0;     // set entire TCCR1A register to 0 

  TCCR1B = 0;     // same for TCCR1B 

  // set compare match register to desired timer count: 

  OCR1A = 399; 

  // CTC mode on: 

  TCCR1B |= (1 << WGM12); 

  // Set CS10 bit for 1 prescaler: 

  TCCR1B |= (1 << CS10); 

  // enable timer compare interrupt: 

  TIMSK1 |= (1 << OCIE1A); 

  //enable global interrupts 

  sei(); 

 

The first and last lines disable and enable global interrupts, respectively, in order for the 

interrupt to be configured. The timer interrupt in this program is configured to CTC mode or 

Clear Timer on Compare Match. This means that one of the Arduino Mega’s internal timers is 

incremented until it reaches a specified value where it well then trigger an interrupt, reset back 

to 0 and begin counting again. By default, the arduino clock runs at 16MHz meaning each clock 

tick occurs every 63ns. However, using prescaler values, the clock ticks can be configured to 

happen slower therefore allowing the user to set slower interrupt frequencies. When setting a 

40kHz timer interrupt, a prescaler of 1 was used meaning the clock would still tick every 63ns 

and a compare match register value of 399 was used to set an interrupt to trigger every 40kHz. 

The following equation was used to find the compare match register value. 

 

interrupt frequency (Hz) = (16,000,000Hz) / (prescaler * (compare match register + 1)) 

 

Setting the prescaler is done in the line “TCCR1B |= (1 << CS10);” which in this case turns 

tells the arduino to use timer one with no prescaler or a value of 1. If a higher prescale value 

was desired, a combination of other bits such as CS11 or CS12 can be set to 1 in order to 

achieve this. The match value is set in the line “OCR1A = 399;” telling the timer to count 400 

ticks then trigger an interrupt. 

 

The next aspect of the program was setting the pins for chip select, write, and DACA as well as 

the pins which would output the 8-bit number to the DAC. The chip select pin used to signal 

when the DAC should start operating. When this is pulled low, the DAC will then look for which 

specific DAC, A or B, is being used since the chip in this design requires that. Lastly, the write 

pin is pulled low to allow data to be written to the DAC, in this case the values in the sine buffer. 

Each digital output pin on an arduino is capable of outputting either a ‘1’(high) or a ‘0’(low) so 

one 8 bit DAC will use 8 pins from the arduino to essentially have an 8-bit binary number given 

to it. The 8 pins on the arduino will individually be set to high or low to create the binary 

representation of the number between 0 and 255. The Arduino Mega has convenient feature 
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where specific groups of 8 pins can be referenced as a port when writing a program. Using this 

feature, the sine value can be outputted to a port as it indexes through the buffer as shown in 

the following line of code. 

 

 PORTK = sine[t&0x7F]; 

 

The variable ‘t’ is used to index through the buffer and is incremented after each value is 

outputted. The “&0x7F” is the modulo addressing used to prevent the index value ‘t’ from 

exceeding the total number of elements in the buffer which would result in an error. The sine 

buffer used in this program contains 128 elements and the value of 7F converted from hex to 

decimal is 127. When current value of the index t (0-127) is anded with the 7F value it will give 

the current index value as a result until the value of ‘t’ reaches 128 where it will not result in 0 

when anded with the 7F. The pattern continues as the result of 129 & 0x7F is 1 and this is how 

the buffer will wrap around and avoid overflow. The full program for this stage can be found in 

Appendix 4.1. 

 

After the code was written, the DAC circuit needed to be constructed. The DAC in this design 

contains 20 pins, in which pins 7 through 14 were dedicated to the 8-bit value being inputted. 

The DAC’s power supply was +5 volts and ground (GND). Pins 2, 3, and 17 were given +5 volts 

and pins 5 and 1 were connected to ground. Chip select(CS), write(WR), and DACA 

corresponded to pins 15, 16, and 6, respectively, and the DAC output to the sparkfun amplifier 

came from pin 4. A circuit diagram of the DAC circuit is shown in figure 4.1.2 below. 

 
Figure 4.1.2 - DAC Circuit Diagram 

 

4.2 Arduino Generated Sine Wave to Six Speakers with Phasing 

After the generated sine wave was able to be played cleanly through one speaker, five more 

needed to be added in order to test the effectiveness of steering sound with time delays. In 

order to do this, 5 more sparkfun amplifiers and 5 more dac circuits needed to be built as well as 

modifications to the arduino program. The block diagram for this stage is shown in figure 4.2.1. 

It is essentially the same as the previous stage but has 5 more speakers and DACs as well as 

more processing in the Arduino. 
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Figure 4.2.1 - Generated Sine Wave to Six Speakers Block Diagram 

The main modification that needed to be added to the arduino code was adding five other ports 

to output to. Using figure 4.2.2 below, which detailed which 8 pins each port consisted of, the 

remaining 40 output pins were set. This was done by writing a for loop to iterate through the 

desired pins and set them to “OUTPUT”. An example of this is as following: 

  for (int i = 22; i < 54; i++) 

  { 

    pinMode(i, OUTPUT); 

  } 

The figure shows each pin number in yellow and which port it belongs to as well as what bit  

 
Figure 4.2.2 - Arduino Mega 2560 Pin/Port Layout 

 

(0-7) in white.  For simplicity sake, ports that were made up of consecutive pins were chosen 

when possible. The final ports selected were Port K, B, L, C and A as well as a port consisting 

of portions of E, G, and H using a bitmask in an effort to simplify the wiring. This port was 

referred to as Port EGH and the mask used to create it is shown in the code below. 

  PORTE = ((sine[(t)&0x7F] & 0x03) << 3) | (PORTE & (~0x38)); 
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  PORTG = ((sine[(t)&0x7F] & 0x08) << 2) | (PORTG & (~0x20)); 

  PORTH = ((sine[(t)&0x7F] & 0xF0) >> 1) | (PORTH & (~0x78)); 

The mask works by using the and operator to only keep a specific section of the 8-bit value and 

then shifting it either left or right. The and operator works by comparing two bits from binary 

representations of the value in the buffer and the hexadecimal value 0x7F. If the bits are both 

“1” then the resulting bit will be a “1” as well. Any other combinations will result in a “0” being the 

output for that bit. A simple example of this can be seen below. 

        1 0 1 1 0 1 

    & 1 1 1 0 1 1 

       1 0 1 0 0 1 

The values chose for the mask will set only the wanted pins to “1” and the rest to “0”. The high 

pins will then be shifted using the << operator to put them in the proper place of the 8-bit output. 

When the three are combined they will form the 8-bit value which will be fed into the DAC using 

part of each port. 

The next aspect of modifying the arduino code involved introducing the phasing. The basic 

concept behind this was introducing a time delay that became progressively longer as it went 

down the speaker array. Which speaker had the longest or shortest delay was dependent upon 

at which angle the sound was being steered. The initial delay ranged anywhere from -0.3ms to 

+0.3ms which would then get larger for the elements with the longer delays. This concept was 

implemented by controlling the sample each speaker would output. Since our system had an 

interrupt frequency of 40kHz, a new sample was played every 25μs. A port can then be told to 

output sample [t+4] while another port is told to just output sample [t] meaning the former port 

will be 4 samples or 0.1ms ahead of the latter port. Using simple multiplication, the specific 

number of samples to shift can be found for the full range of delay values. This value will be 

stored in a variable “td” which can be updated by changing the code, but will be capable of 

changing in real time in later implementations. The “td” value will be doubled, tripled and so on 

as it moves down the speaker array. The code implementing this can be seen below and the full 

code can be found in Appendix 4.2. 

  PORTK = sine[t&0x7F];  

  PORTB = sine[(t + td)&0x7F]; 

  PORTL = sine[(t + td*2)&0x7F]; 

  PORTC = sine[(t + td*3)&0x7F]; 

  PORTE = ((sine[(t + td*4)&0x7F] & 0x03) << 3) | (PORTE & (~0x38)); 

  PORTG = ((sine[(t + td*4)&0x7F] & 0x08) << 2) | (PORTG & (~0x20)); 

  PORTH = ((sine[(t + td*4)&0x7F] & 0xF0) >> 1) | (PORTH & (~0x78)); 

  PORTA = sine[(t + td*5)&0x7F]; 

The DAC circuit remained the same but just needed to be recreated 5 more times for the 

additional 5 speakers. The +5 volts and ground were run to a common rail and then connected 

to each DAC. Chip select, write, and DACA were daisy chained through all 6 DACs to allow 

them to share the same three pins as opposed to each DAC getting an individual set. When 

originally testing the six speaker output, three of the six channels sounded clean while the other 

three sounded very distorted. After debugging and troubleshooting both the code and the 

circuitry, a voltage leak was found at the DAC. The DAC should have been getting +5 volts 

however it was only measuring around 2.5 to 3 volts. The problem stemmed from loose 

connections that just needed to be found and adjusted due to the significant amount of wires in 
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the system. The next stage is to construct a circuit to input an analog waveform, either a simple 

sine wave or audio, into the Arduino. 

 

4.3 Audio Input Circuit 

The audio input circuit was the next feature that needed to be added in order to process actual 

analog waveforms that were being inputted as opposed to a digitally generated sine wave. The 

circuit shown in figure 4.3.1 depicts the circuit constructed for this stage. The op amp used is 

the TLC072CP which takes +9 volts and -9 volts. The input goes in to the non inverting pin of 

the op amp as well as a 10kΩ potentiometer to control the gain of the amplifier by varying the 

resistance. This can be adjusted up to increase the volume until the signal begins clipping. A 

100kΩ is put in the feedback loop between the output pin and the inverting pin to control the 

output voltage based upon the equation Vout = Vin * (R2 / R1) where R2 is the 100kΩ resistor and 

the variable 10kΩ potentiometer is R1. The next stage of the input circuit is the DC offset to 

 
Figure 4.3.1 - Audio Input Circuit 

shift the voltage up to be centered around 2.5V therefore giving the range of voltages to be 0 to 

5V. The main components of the DC offset section are the capacitor and the voltage divider. 

The voltage divider is made up of two 100kΩ resistors connected in series from a 5V source 

meaing the voltage at the junction will be half of the input voltage. In this circuit, 5V comes in to 

the voltage divider and 2.5V is left at the junction. The 10μF capacitor that is connected to the 

junction and the output of the amplifier will have charge accumulate in it depending on the 

amplifier output. When this charge varies on one end of the capacitor it will repel from the side 

connected to the 2.5V junction causing it to vary up and down centered around 2.5V. A 47nF 

capacitor is also added between 2.5V and ground to reduce noise. 

 

4.4 Configuring Arduino ADC 

After the audio input circuit was constructed and working properly, the next step was to 

configure the ADC in the Arduino Mega to sample analog waveform and store the samples in a 

buffer. The samples need to be stored in a buffer in order for the same sample shifting concept 

discussed in section 4.2 to be utilized. The resulting block diagram for this section is shown in 

figure 4.4.1. 
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Figure 4.4.1 - Analog Audio Input with Six Speaker Output Block Diagram 

 

The Arduino library contains a built in function called analogRead() which takes a pin number as 

the input and will sample the analog waveform connected to that pin. This function is acceptable 

for many applications however with the very high sampling rate required for audio, this was not 

sufficient. The analogRead function only has a sampling rate of 8kHz meaning it takes a sample 

every 125μs which is far too slow for the 25μs achieved using a 40kHz interrupt. To increase 

this sampling rate the analogRead function needed to be bypassed and the ADC needed to be 

configured manually. This was done in a similar way as the interrupts done in sections 4.1 and 

4.2 when the ADC was not being used. The internal ADC counter was set to 500kHz and set to 

read off of analog input pin 0 (pin A0). The ADC takes 13 clock cycles to fully sample a new 

analog value so 500kHz clock speed was chosen because (500kHz / 13) = 38.5kHz which is 

close to our target of 40kHz. A sample rate of 38.5kHz will result in a sample being taken every 

26μs. The reading from pin A0 would be converted into a 10-bit value as the Arduino’s ADC is 

10-bits. Since the DACs in this system are only 8-bit, only the most significant 8-bits of the 10-bit 

ADC reading are stored in the ADCH register and the last two are ignored. The code to 

configure the ADC is shown below. It contains similar concepts to configuring a timer interrupt 

as clears registers first and it uses prescalers to set the counter speed. It also left aligns the 

ADC value to ensure the most significant 8-bits are taken.  

  ADCSRA = 0;  //clear ADCSRA and ADCSRB registers 

  ADCSRB = 0; 

  ADMUX |= (1 << REFS0); //set reference voltage 

  ADMUX |= (1 << ADLAR); //left align the ADC value- read highest 8-bits 

  ADCSRA |= (1 << ADPS2) | (1 << ADPS0); //set ADC clock with 32 prescaler 

  ADCSRA |= (1 << ADATE); //enable auto trigger 

  ADCSRA |= (1 << ADIE); //enable interrupts when measurement complete 

  ADCSRA |= (1 << ADEN); //enable ADC 

  ADCSRA |= (1 << ADSC); //start ADC measurements 

After the ADC is configured the output value will be contained in “ADCH”. In order to output this 

straight to the DAC, the code would simply be PORTK = ADCH; using port k as an example. 

However, the ADCH value will need to be stored in a buffer in order to use the sample shifting 

for phasing the speaker array. This is done by creating an index variable “data” similar to the 

index “t” described in section 4.1 used to iterate through the buffer. The index “data” will also 

iterate through the buffer, but will place the current ADCH value in that spot. The index value “t” 

is used to iterate through the buffer as well but it instead takes the value in that place of the 

buffer and outputs it through a port to the DAC. The code for this is only four lines and is shown 

below. 

  PORTC = sample[(t) & 0x7FF]; 

  t++; 

  sample[data & 0x7FF] = ADCH; 

  Data++; 
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This code, which will also include five more port outputs, is all encompassed in an ADC 

interrupt. The code inside the ADC interrupt will run every time the ADC samples which is 

configured to 26μs. The other commands included in this interrupt is pulling the chip select, 

write, and DACA low to activate the DACs, then setting them back high after all the other 

commands have been done. A flow chart of the program is depicted in figure 4.4.2 and the full 

program code for this stage can be found in Appendix 4.4.  

 
Figure 4.4.2 - Audio Processing Flow Chart 

 

4.5 Addition of Low Pass Filter After DAC 

The low pass filter addition was crucial as without it the speaker output was severely distorted 

and most of the time incomprehensible. Originally, this problem was thought to be related to the 

ADC not being able to sample fast enough for the audio. Then the idea of adding a simple filter 

to the output would help fix the issue. After some testing and looking at the fast Fourier 

transform (FFT) of both the clean audio from the source and the distorted signal out of the DAC, 

it could be seen that there was a significant amount of unwanted frequencies being outputted. 

The FFT oscilloscope plots from both the source and the DAC output can be seen in figures 

4.5.1(a) and (b). 

 
                4.5.1(a) - Source Audio FFT                                                  4.5.1(a) - DAC Output FFT 

When examining the two plots it can be seen that there is much more activity in the higher 

frequencies of the plot as opposed to at the source audio waveform. The low pass filter circuit 

shown in figure 4.5.1 was then implemented in the system after the DAC output. The filter 
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consists of the LT1115 Audio Op Amp and a basic RC filter where the resistor value is 3kΩ and 

the capacitor value is 0.01μF. The output of the filter will go into the Sparkfun amplifier which will 

then be played through the speaker. 

 
Figure 4.5.1 - Low Pass Filter Circuit 

Applying the low pass filter greatly improved the sound output as there was no longer distortion 

present. The audio came out very clear with only a small amount of white noise in the 

background. A full block diagram of the entire audio system is provided in figure 4.5.2. 

 
Figure 4.5.2 - Full Audio System Block Diagram 

 

4.6 PIR Sensors 

The PIR sensors are a crucial aspect of the project as this is how the time delay values for the 

phased array will be chosen. There will be 5 PIR sensors mounted on the top of the unit that will 

all be connected to an Arduino. An LED light will be mounted below them which will turn off 

when the sensor detects something in front of it. The LED light is not necessarily needed in the 

system however they are a useful visual to show when a sensor is turned on. The PIR sensor is 

powered by 5 volts, connects to ground through a 22kΩ resistor, and outputs to a TM082 op 

amp. The feedback loop contains a voltage divider comprised of two 1kΩ resistors effectively 

halving the output voltage that is fed back into the op amp to stabilize the gain. The output if the 

op amp is connected to the Arduino as well as the simple LED circuit to illuminate it when 

needed. The full PIR sensor circuit can be seen in figure 4.6.1 below. 

 
Figure 4.6.1 - PIR Sensor Circuit 
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Each sensor is connected to the master Arduino through a single digital pin, in this case digital 

pins 2 through 6. When the sensor detects a person in front of it, it will send a “low” signal to the 

Arduino. The Arduino will be reading each pin and when it receives a low signal from a pin it will 

set a variable “x” to the appropriate value of 0 through 5. This is done with a series of if 

statements that each compare the current state of one digital pins. When a pin is low, it enters 

into that statement which will tell the motors to move to a specific position and set the value of 

“x” to the appropriate value. This x value will be sent to the slave Arduino, using the built in wire 

library that allows connected Arduinos to communicate with each other. The two Arduinos are 

connected using 3 wires which connect the SDA pin (Communication pin 20) on each board, the 

SCL pin (Communication pin 21), and the ground. 

 
Figure 4.6.2 - Arduino Connection Diagram 

Figure 4.6.2 above shows a simple diagram of how the Arduinos are connected physically. The 

SDA and SCL pins are where the information is sent and received between the slave and 

master. In the program, the master sends information to the slave using the following lines of 

code. 

  Wire.beginTransmission(8); // transmit to device #8 

  Wire.write(x);              // sends one byte 

  Wire.endTransmission();    // stop transmitting 

When this value is received at the slave Arduino, each x value will have its own corresponding 

number of sample shifts that will be applied to the output to create the time delay. A table 

describing the relationship between each sensor pin, x value, and the number of samples 

shifted in the buffer to create the time delay value is shown below in figure 4.6.2. 

Sensor Pin X Samples 

2 0 -40 

3 1 -20 

4 2 0 

5 4 20 

6 5 40 

Figure 4.6.3 - Sensor Pin Table 
 

In the table, there is no condition where x is equal to 3. This value is reserved for when none of 

the sensors are set to high so the speaker array will play the sound straight with no steering. 

The slave Arduino will also need code modifications as it will now have to read in the x value 

from the master Arduino. As stated above, this is done using the wire library that Arduino 

provides. The wire communication is initialized in the set up by choosing the bus and stating 
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what function should be called when the slave receives information from the master. The code 

is shown below. 

 //Communication Setup 

  Wire.begin(8);                // join i2c bus with address #8 

  Wire.onReceive(receiveEvent); // register event 

When the slave receives an event from the master it calls the receiveEvent function, which is 

shown below. This function accepts the number of how many sensors were on and then 

receives the x values as integers.  

void receiveEvent(int howMany) { 

  x = Wire.read();    // receive byte as an integer 

  Serial.println(x);         // print the integer 

} 

The last step is to convert the received x value into the corresponding number of samples to 

shift in the buffer. This is done by comparing the current x value with the values in the table 

above using an if statement until the correct one is found. Once the value is found, the sample 

shift value “td” is then set with the corresponding value from the table. The if statements that 

perform this can be seen in the code below. 

  if (x == 0) 

    td = 0; 

  else if (x == 1) 

    td = -40; 

  else if (x == 2) 

    td = -20; 

  else if (x == 3) 

    td = 0; 

  else if (x == 4) 

    td = 20; 

  else if (x == 5) 

    td = 40; 

  else 

 td = 0;} 

This value is then applied to the buffer being outputted to the DACs in order to properly delay 

the audio output. Both the master and the slave code can be found in their entirety in Appendix 

4.6 and a simple diagram of how the Arduinos are connected can be seen below.  

 

4.7 Stepper Motors 

In order to manually steer two of the speakers we decided to utilize stepper motors to manually 

shift the speakers direction to point in the direction where motion was detected. For this we 

utilized the Unipolar Stepper Motor (28-BYJ48) which was a relatively inexpensive option that 

used only 5 volts. We also utilized the ULN2003 stepper motor driver which was compatible with 

out Arduino board. We wired this up to the BYJ48 Stepper and the Arduino in order to easily 

control the motor from the Mega. The following diagram helped us with the wiring of the stepper 

motor driver: 
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Figure 4.7.1 - ULN2003 Stepper Motor Driver board set-up 

 

First we hooked up the stepper motor to the ULN2003 Driver on the side that also has the 4 

LED’s (top of the image). The LED’s are used in order to indicate which of the coils are powered 

at the time. There were also a couple resistors and the side which takes the stepper motor 

on/off jumper which is for allowing power to the stepper motor. Our research found that it was 

not recommended to power the stepper from the Arduino itself so we used a battery pack 

instead for the power to the motor. The Arduino code we used, which can be found Appendix 

4.6, first sets up and initializes the pin sequence for use with the stepper motor. The library we 

used for this was the AccelStepper library which runs the stepper motors most efficiently and 

had the least issues from most. It also moved the stepper motors in a reasonable pace, not 

jolting them back and forth or moving them too slowly. The following lines of code show how we 

incorporated the motion sensing into the stepper motor movement: 

 

 if (digitalRead(2) == HIGH) 

  { 

    stepper1.moveTo(-150); 

    stepper2.moveTo(-150); 

   /* while (stepper1.distanceToGo() != 0 && stepper2.distanceToGo() != 0) 

    { 

      stepper1.run(); 

      stepper2.run(); 

    } 

 

4.7.2 - Block Diagram of Stepper Motor System 

 

The stepper motors were the last feature to be added to the product. The full system now has 

an audio source and an input circuit to input an analog waveform the Arduino ADC. The 
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waveform is then sampled and a time delay is applied determined upon the output of the PIR 

sensor circuit into a second Arduino which then converts that value into the corresponding 

delay. The second Arduino also uses that delay to steer the stepper motors accordingly and the 

first Arduino delays the audio signal and outputs it to the six DACS which are then filtered, 

amplified, and played through the speakers. Figure 4.7.2 depicts the full system in a block 

diagram. 

 

 
4.7.3 

 - Full System Block Diagram 
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5. Recommendations/Conclusions 
 

This project as whole provided a good foundation for the signal processing needed to 

produce a phased array speaker. While many aspects of the project performed properly and 

reliably, there were many areas that could be improved in future design iterations that would 

result in a better final product. 

 The most notable feature that could be enhanced is the beam steering of the array. 

While the beam steering design that was implemented in this project worked sufficiently, more 

intricate and computationally heavy concepts could certainly improve the effect. As described in 

section 2.3, the Hawksford loudspeaker incorporates FIR filters that our designed depending on 

how many speakers are being used as well as frequency unique time delays as opposed to a 

time delay that encompasses a broad range of frequencies. The system uses FFTs to derive the 

filters for a discrete set of frequency values and then uses interpolation to approximate the 

values in between. An design like this proved to be too complex and also needed more 

processing power than an Arduino was capable of so it was not used in this iteration. A 

successful implementation of this could provide the user with much more control over the angle 

the sound beam is steered and can also provide control over the width of the main beam by 

applying advanced trigonometry principles. 

 The current beam steering implementation which is given variable time delays based 

upon the output of the PIR sensor circuit could also be improved by interpolating from the 

current delay value to the new one. Currently, when the time delay value being applied to the 

output signal changes there is a noticeable jump in the audio being played. While the main 

scope of this project was proving a phased array speaker system could be constructed and 

programed, it was also to provide a more enjoyable and immersive listening experience for the 

user. An audio system that has noticeable jumps as a person moves about the room is not ideal 

for a pleasant listening experience. Improving this would not be overly complex and could be 

done in multiple ways. One possible solution to this problem would simply be adding a function 

into the program to increment or decrement the delay value from the current value to the new 

updated value. The speed the delay value would be incremented would have to be determined 

using some trial and error and observing the quality of the audio as the delay gets changed. 

However, if this was implemented successfully the sound would gradually follow the listener 

ideally without them even noticing.  

 Other changes that would improve the project involve replacing the some of the 

hardware components with more powerful ones. The Arduino Mega could easily be replaced 

with a microcontroller that is designed to handle audio signals and has a much more processing 

power in order to manipulate the input signals more efficiently and effectively. A microcontroller 

geared for audio would allow a implementation similar the the Hawksford loudspeaker to 

become a possibility in future designs. Along with the microcontroller, and external ADC could 

be implemented using SPI in order to increase the sampling rate up to 44.1 kHz and the 

resolution on both the ADC and DACs could be increased to 12-bit or even 16-bit. This would 

allow for a much cleaner audio signal as the difference between quantization levels on a 0-5V 

scale would decrease dramatically. A 16-bit DAC would have 65536 quantization levels where 

an 8-bit DAC has only 256. Lastly, a printed circuit board would decrease the amount of noise 
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generated from wire connections and also eliminate the risk of a connection coming loose. This 

would be the next step after having perfboarded circuit work properly and consistently. 

This project required research into phased arrays and signal processing in order to 

transfer that into the home speaker field and successfully steer sound. Sensors also needed to 

be studied as well as basic audio concepts in order to design circuits to identify listeners in the 

room and provide the proper time delay to the audio circuit. The final product this project 

produced has many improvements that can be made in future iterations but provides a 

framework and starting point for them.   
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7. Appendix 
2.4 Audio Testing Matlab Code 

clear all 

 

timing=5; 

fs=48000; %sampling frequency 

startfreq=20; %starting frequency 

endfreq=1000;    %ending frequency 

 

t=1/fs:1/fs:timing; 

f=startfreq:(endfreq-startfreq)/length(t):endfreq-(endfreq-

startfreq)/length(t);  

 

y = sin(2*pi*f.*t); 

 

audiowrite('test100.wav', y, fs); %writesfile to the folder 

 

info = audiodevinfo; %gets information about the input and output audio 

devices (allows for program to play and record audio) 

 

recorder1 = audiorecorder(48000,16,2); %creates a recording object, sample 

rate of 48000, 16 bit and 2 channels 

 

record(recorder1); %begins recording 

sound(y,fs)%begins to play sound out of speaker 

pause(timing)%recording stops after the variable timing - set earlier and 

depends on how long the sweep signal is 

stop(recorder1);%stops recording 

myRecObj = getaudiodata(recorder1); %stores the recording and returns the 

recorded audio data as an array which could be analyzed 

 

filename = 'sweepaudiofile2.wav'; %sets file name for the recording of the 

sound coming from the speaker 

audiowrite( 'sweepaudiofile2.wav', myRecObj, fs); %writes the audiofile to 

the current file 

 

[y,fs] = audioread('sweepaudiofile2.wav'); %reads data from wave file and 

returns that data as y array 

 

%each of these segments calculates the range for samples at 10 different 

%points throughout the sweep. Each range is for 20 cycles at every point 

so 

%the ending sample corresponds to whenever 20 cycles is done (roughly) 

 

%first section of the audio signal 

out = 1; %begin at sample 1 

Tsamp = out*0.0002; %time is takes for 1 

f2 = (Tsamp/0.0222)+ 20; %the 20 represents the number of cycles we want 

to see, f2 is the starting frequency 

out2 = out + (1/f2)*20*(4800); %ending sample number (calculated variable) 

y1 = y(out:out2); %sets the range for the y, it goes from sample 1 to 

whenever 20 cycles is done 
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out3 = 5500; 

Tsamp1 = out3*0.0002; 

f3 = (Tsamp1/0.0222)+ 20; %starting frequency calculation 

out4 = out3 + (1/f3)*20*(4800);%ending sample number (calculated variable) 

y2 = y(out3:out4);%sets the range for the y, it goes from sample 1 to 

whenever 20 cycles is done 

 

out5 = 11000; 

Tsamp2 = out5*0.0002; 

f4 = (Tsamp2/0.0222)+ 20;%starting frequency calculation 

out6 = out5 + (1/f4)*20*(48000);%ending sample number (calculated 

variable) 

y3 = y(out5:out6);%sets the range for the y, it goes from sample 1 to 

whenever 20 cycles is done 

 

out7 = 16500; 

Tsamp3 = out7*0.0002; 

f5 = (Tsamp3/0.0222)+ 20;%starting frequency calculation 

out8 = out7 + (1/f5)*20*(48000);%ending sample number (calculated 

variable) 

y4 = y(out7:out8);%sets the range for the y, it goes from sample 1 to 

whenever 20 cycles is done 

 

out9 = 23100; 

Tsamp4 = out9*0.0002; 

f6 = (Tsamp4/0.0222)+ 20;%starting frequency calculation 

out_a = out9 + (1/f6)*20*(48000);%ending sample number (calculated 

variable) 

y5 = y(out9:out_a);%sets the range for the y, it goes from sample 1 to 

whenever 20 cycles is done 

 

out_b = 28600; 

Tsamp5 = out_b*0.0002; 

f7 = (Tsamp4/0.0222)+ 20; 

out_c = out_b + (1/f7)*20*(48000);%ending sample number (calculated 

variable) 

y6 = y(out_b:out_c);%sets the range for the y, it goes from sample 1 to 

whenever 20 cycles is done 

 

out_d = 34100; 

Tsamp6 = out_d*0.0002; 

f8 = (Tsamp6/0.0222)+ 20;%starting frequency calculation 

out_e = out_d + (1/f8)*40*(48000);%ending sample number (calculated 

variable) 

y7 = y(out_d:out_e);%sets the range for the y, it goes from sample 1 to 

whenever 20 cycles is done 

 

out_f = 39600; 

Tsamp7 = out_f*0.0002; 

f9 = (Tsamp7/0.0222)+ 20;%starting frequency calculation 

out_g = out_f + (1/f9)*40*(48000);%ending sample number (calculated 

variable) 

y8 = y(out_f:out_g);%sets the range for the y, it goes from sample 1 to 

whenever 20 cycles is done 
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out_h = 45100; 

Tsamp8 = out_h*0.0002; 

f_a = (Tsamp8/0.0222)+ 20;%starting frequency calculation 

out_i = out_h + (1/f_a)*40*(48000);%ending sample number (calculated 

variable) 

y9 = y(out_h:out_i);%sets the range for the y, it goes from sample 1 to 

whenever 20 cycles is done 

 

%vectors created with the data for each of the 10 segments 

yb = y(out:out2); 

L = length(y1); 

L2 = length(y2); 

L3 = length(y3); 

L4 = length(y4); 

L5 = length(y5); 

L6 = length(y6); 

L7 = length(y7); 

L8 = length(y8); 

L9 = length(y9); 

Lb = length(yb); 

T = 1/fs; 

 

%time vectors for each of the 10 segments 

t = ((0:L-1)/fs); 

t2 = ((0:L2-1)/fs); 

t3 = ((0:L3-1)/fs); 

t4 = ((0:L4-1)/fs); 

t5 = ((0:L5-1)/fs); 

t6 = ((0:L6-1)/fs); 

t7 = ((0:L7-1)/fs); 

t8 = ((0:L8-1)/fs); 

t9 = ((0:L9-1)/fs); 

tb = ((0:Lb-1)/fs); 

 

%each of these calculate the ending frequency of the section that is 

%displayed on the graphs/figures which pop up 

Tsamp = out*0.0002; 

f2 = (Tsamp/0.0222)+ 20 

 

Tsampf = out2*0.0002; 

ff = (Tsampf/0.0222)+ 20 ; 

 

Tsampf2 = out4*0.0002; 

ff2 = (Tsampf2/0.0222)+ 20 ; 

 

Tsampf3 = out6*0.0002; 

ff3 = (Tsampf3/0.0222)+ 20; 

 

Tsampf4 = out8*0.0002; 

ff4 = (Tsampf4/0.0222)+ 20; 

 

Tsampf5 = out_a*0.0002; 

ff5 = (Tsampf5/0.0222)+ 20;  
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Tsampf6 = out_c*0.0002; 

ff6 = (Tsampf6/0.0222)+ 20; 

 

Tsampf7 = out_e*0.0002; 

ff7 = (Tsampf7/0.0222)+ 20; 

 

Tsampf8 = out_g*0.0002; 

ff8 = (Tsampf8/0.0222)+ 20;  

 

Tsampf9 = out_i*0.0002; 

ff9 = (Tsampf9/0.0222)+ 20;  

 

%Filtering 

 

NFFT=2^16; 

fastf = fft(y1,NFFT)/NFFT; 

f =fs/2*linspace(0,1,NFFT/2); 

Z=2*abs(fastf(1:NFFT/2)); 

[b,a]=butter(3,[f2,ff]/(fs/2),'bandpass'); %bandpass filter is designed 

with a high and low cutoff frequency depending on the sweep range at 

specific point 

 

LP = filter(b,a,y1);%implementation of filter and assigning it to seperate 

array to be displayed as daya 

 

NFFT=2^16; 

fastf = fft(y2,NFFT)/NFFT; 

f =fs/2*linspace(0,1,NFFT/2); 

Z=2*abs(fastf(1:NFFT/2)); 

[b2,a2]=butter(3,[f3,ff2]/(fs/2),'bandpass');%bandpass filter is designed 

with a high and low cutoff frequency depending on the sweep range at 

specific point 

 

LP2 = filter(b2,a2,y2);%implementation of filter and assigning it to 

seperate array to be displayed as daya 

 

NFFT=2^16; 

fastf = fft(y3,NFFT)/NFFT; 

f =fs/2*linspace(0,1,NFFT/2); 

Z=2*abs(fastf(1:NFFT/2)); 

[b3,a3]=butter(3,[f4,ff3]/(fs/2),'bandpass');%bandpass filter is designed 

with a high and low cutoff frequency depending on the sweep range at 

specific point 

 

LP3 = filter(b3,a3,y3);%implementation of filter and assigning it to 

seperate array to be displayed as daya 

 

NFFT=2^16; 

fastf = fft(y4,NFFT)/NFFT; 

f =fs/2*linspace(0,1,NFFT/2); 

Z=2*abs(fastf(1:NFFT/2)); 
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[b4,a4]=butter(3,[f5,ff4]/(fs/2),'bandpass');%bandpass filter is designed 

with a high and low cutoff frequency depending on the sweep range at 

specific point 

 

LP4 = filter(b4,a4,y4);%implementation of filter and assigning it to 

seperate array to be displayed as daya 

 

NFFT=2^16; 

fastf = fft(y5,NFFT)/NFFT; 

f =fs/2*linspace(0,1,NFFT/2); 

Z=2*abs(fastf(1:NFFT/2)); 

[b5,a5]=butter(3,[f6,ff5]/(fs/2),'bandpass');%bandpass filter is designed 

with a high and low cutoff frequency depending on the sweep range at 

specific point 

 

LP5 = filter(b5,a5,y5);%implementation of filter and assigning it to 

seperate array to be displayed as daya 

 

NFFT=2^16; 

fastf = fft(y6,NFFT)/NFFT; 

f =fs/2*linspace(0,1,NFFT/2); 

Z=2*abs(fastf(1:NFFT/2)); 

[b6,a6]=butter(3,[f7,ff6]/(fs/2),'bandpass');%bandpass filter is designed 

with a high and low cutoff frequency depending on the sweep range at 

specific point 

 

LP6 = filter(b6,a6,y6);%implementation of filter and assigning it to 

seperate array to be displayed as daya 

 

NFFT=2^16; 

fastf = fft(y7,NFFT)/NFFT; 

f =fs/2*linspace(0,1,NFFT/2); 

Z=2*abs(fastf(1:NFFT/2)); 

[b7,a7]=butter(3,[f8,ff7]/(fs/2),'bandpass');%bandpass filter is designed 

with a high and low cutoff frequency depending on the sweep range at 

specific point 

 

LP7 = filter(b7,a7,y7);%implementation of filter and assigning it to 

seperate array to be displayed as daya 

 

NFFT=2^16; 

fastf = fft(y8,NFFT)/NFFT; 

f =fs/2*linspace(0,1,NFFT/2); 

Z=2*abs(fastf(1:NFFT/2)); 

[b8,a8]=butter(3,[f9,ff8]/(fs/2),'bandpass');%bandpass filter is designed 

with a high and low cutoff frequency depending on the sweep range at 

specific point 

 

LP8 = filter(b8,a8,y8);%implementation of filter and assigning it to 

seperate array to be displayed as daya 

 

NFFT=2^16; 

fastf = fft(y9,NFFT)/NFFT; 

f =fs/2*linspace(0,1,NFFT/2); 
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Z=2*abs(fastf(1:NFFT/2)); 

[b9,a9]=butter(3,[f_a,ff9]/(fs/2),'bandpass');%bandpass filter is designed 

with a high and low cutoff frequency depending on the sweep range at 

specific point 

 

LP9 = filter(b9,a9,y9);%implementation of filter and assigning it to 

seperate array to be displayed as daya 

 

%each of these sections is a graph for both the input and output amplitude 

%spectrum 

figure(1) 

subplot(2,1,1); % allows both graphs to be shown 

plot(t,LP); grid; %plots the data from the post-filtered signal                                             

title('Output Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f2),'   endfreq =' num2str(ff)]); %displays 

starting and ending frequency 

 

subplot(2,1,2);  % allows both graphs to be shown 

plot(t,y1); grid;%plots the data from the pre-filtered signal 

title('Input Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f2),'   endfreq =' num2str(ff)]);%displays 

starting and ending frequency 

 

 

figure(2) 

subplot(2,1,1); 

plot(t2,LP2); grid;                                             

title('Output Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f3),'   endfreq =' num2str(ff2)]); 

 

subplot(2,1,2); 

plot(t2,y2); grid; 

title('Input Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f3),'   endfreq =' num2str(ff2)]); 

 

figure(3) 

subplot(2,1,1); 

plot(t3,LP3); grid;                                             

title('Output Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f4),'   endfreq =' num2str(ff3)]); 

 

subplot(2,1,2); 

plot(t3,y3); grid; 

title('Input Amplitude Spectrum') 
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xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f4),'   endfreq =' num2str(ff3)]); 

    

figure(4) 

subplot(2,1,1); 

plot(t4,LP4); grid;                                             

title('Output Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f5),'   endfreq =' num2str(ff4)]); 

 

subplot(2,1,2); 

plot(t4,y4); grid; 

title('Input Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f5),'   endfreq =' num2str(ff4)]); 

 

figure(5) 

subplot(2,1,1); 

plot(t5,LP5);grid;                                             

title('Output Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f6),'   endfreq =' num2str(ff5)]); 

 

subplot(2,1,2); 

plot(t5,y5);grid;                                             

title('Input Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f6),'   endfreq =' num2str(ff5)]); 

 

figure(6) 

subplot(2,1,1); 

plot(t6,LP6);grid;                                             

title('Output Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f7),'   endfreq =' num2str(ff6)]); 

 

subplot(2,1,2); 

plot(t6,y6);grid;                                             

title('Input Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f7),'   endfreq =' num2str(ff6)]); 

 

figure(7) 

subplot(2,1,1); 

plot(t7,LP7);grid;                                             

title('Output Amplitude Spectrum') 

xlabel('Time (s)') 
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ylabel('Amplitude') 

legend(['startfreq =' num2str(f8),'   endfreq =' num2str(ff7)]); 

 

subplot(2,1,2); 

plot(t7,y7);grid;                                             

title('Input Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f8),'   endfreq =' num2str(ff7)]); 

 

figure(8) 

subplot(2,1,1); 

plot(t8,LP8);grid;                                             

title('Output Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f9),'   endfreq =' num2str(ff8)]); 

 

subplot(2,1,2); 

plot(t8,y8);grid;                                             

title('Input Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f9),'   endfreq =' num2str(ff8)]); 

 

figure(9) 

subplot(2,1,1); 

plot(t9,LP9); grid;                                             

title('Output Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f_a),'   endfreq =' num2str(ff9)]); 

 

subplot(2,1,2); 

plot(t9,y9); grid;                                             

title('Input Amplitude Spectrum') 

xlabel('Time (s)') 

ylabel('Amplitude') 

legend(['startfreq =' num2str(f_a),'   endfreq =' num2str(ff9)]); 

 

 

%zci = @(v) find(v(:).*circshift(v(:), [-1 0]) <= 0);                    % 

Returns Zero-Crossing Indices Of Argument Vector 

%zx = zci(LP);                                                            

% Approximate Zero-Crossing Indices 

%figure(5) 

%plot(t, LP, '-r') 

%hold on 

%plot(t(zx), LP(zx), 'bp') 

%hold off 

%grid 

%legend('Signal', 'Approximate Zero-Crossings') 

%figure(3) 

%plot(f,2*abs(LP(1:NFFT/2)))  
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%functions that find the peak of each of the values 

 

pksb = findpeaks(yb,fs,'MinPeakDistance',0.005) 

Mb = mean(pksb) 

 

pks = findpeaks(LP,fs,'MinPeakDistance',0.005) 

M = mean(pks) 

 

pks2 = findpeaks(LP2,fs,'MinPeakDistance',0.005) 

M2 = mean(pks2) 

 

pks3 = findpeaks(LP3,fs,'MinPeakDistance',0.005) 

M3 = mean(pks3) 

 

pks4 = findpeaks(LP4,fs,'MinPeakDistance',0.005) 

M4 = mean(pks4) 

 

pks5 = findpeaks(LP5,fs,'MinPeakDistance',0.005) 

M5 = mean(pks5) 

 

pks6 = findpeaks(LP6,fs,'MinPeakDistance',0.005) 

M6 = mean(pks6) 

 

pks7 = findpeaks(LP7,fs,'MinPeakDistance',0.005) 

M7 = mean(pks7) 

 

pks8 = findpeaks(LP8,fs,'MinPeakDistance',0.005) 

M8 = mean(pks8) 

 

pks9 = findpeaks(LP9,fs,'MinPeakDistance',0.005) 

M9 = mean(pks9) 

 

%plots the peak values vs the frequency 

x = [f2, f3, f4, f5, f6, f7, f8, f9, f_a]; %x values are the frequency 

y = [M, M2, M3, M4, M5, M6, M7, M8, M9]; %y values are the peak values 

figure(10); 

plot(x,y,'x'); %plots the point with a 'x' as the point 

title('Average Peak Value vs. Frequency') 

xlabel('Frequency') 

ylabel('Average Peak Value') 

 

4.1 One Speaker Full Code 

// avr-libc library includes 

#include <avr/io.h> 

#include <avr/interrupt.h> 

 

//global variables 

int t = 0; 

 

//sine wave to output 

byte sine[] = {127, 134, 142, 150, 158, 166, 173, 181, 188, 195, 201, 207, 
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213, 219, 224, 229, 234, 238, 241, 245, 247, 250, 251, 252, 253, 254, 253, 

252, 251, 250, 247, 245, 241, 238, 234, 229, 224, 219, 213, 207, 201, 195, 

188, 181, 173, 166, 158, 150, 142, 134, 127, 119, 111, 103, 95, 87, 80, 

72, 65, 58, 52, 46, 40, 34, 29, 24, 19, 15, 12, 8, 6, 3, 2, 1, 0, 0, 0, 1, 

2, 3, 6, 8, 12, 15, 19, 24, 29, 34, 40, 46, 52, 58, 65, 72, 80, 87, 95, 

103, 111, 119, 126, 134, 142, 150, 158, 166, 173, 181, 188, 195, 201, 207, 

213, 219, 224, 229, 234, 238, 241, 245, 247, 250, 251, 252, 253, 254, 253, 

252, 

               }; 

void setup() 

{ 

  Serial.begin(115200); 

  //set CS, WR, DACA to output 

  pinMode(A5, OUTPUT); 

  pinMode(A6, OUTPUT); 

  pinMode(A7, OUTPUT); 

  //set PORTK to ouput 

  pinMode(A8, OUTPUT); 

  pinMode(A9, OUTPUT); 

  pinMode(A10, OUTPUT); 

  pinMode(A11, OUTPUT); 

  pinMode(A12, OUTPUT); 

  pinMode(A13, OUTPUT); 

  pinMode(A14, OUTPUT); 

  pinMode(A15, OUTPUT); 

 

 //disable global interrupts 

  cli(); 

  // initialize Timer1 ~ 40kHz 

  TCCR1A = 0;     // set entire TCCR1A register to 0 

  TCCR1B = 0;     // same for TCCR1B 

  // set compare match register to desired timer count: 

  OCR1A = 400; 

  // CTC mode on: 

  TCCR1B |= (1 << WGM12); 

  // Set CS10 and CS12 bits for 1024 prescaler: 

  TCCR1B |= (1 << CS10); 

  //TCCR1B |= (1 << CS12); 

  // enable timer compare interrupt: 

  TIMSK1 |= (1 << OCIE1A); 

  //enable global interrupts 

  sei(); 

 

ISR(TIMER1_COMPA_vect) 

{ 

  //set CS, WR, DACA low 

  digitalWrite(A5, LOW); 
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  digitalWrite(A6, LOW); 

  digitalWrite(A7, LOW); 

  //send sine wave to DAC, centered around (127/255)*5 = 2.5V 

  PORTK = sine[t&0x7F]; 

  //set CS, WR, DACA high 

  digitalWrite(A5, HIGH); 

  digitalWrite(A6, HIGH); 

  digitalWrite(A7, HIGH); 

  //increment t 

  t++; 

} 

 

4.2 Full 6 Speaker Program 

// avr-libc library includes 

#include <avr/io.h> 

#include <avr/interrupt.h> 

 

//global variables 

int t = 0; 

int td = 25; 

 

//sine wave to output 

byte sine[] = {127, 134, 142, 150, 158, 166, 173, 181, 188, 195, 201, 207, 

213, 219, 224, 229, 234, 238, 241, 245, 247, 250, 251, 252, 253, 254, 253, 

252, 251, 250, 247, 245, 241, 238, 234, 229, 224, 219, 213, 207, 201, 195, 

188, 181, 173, 166, 158, 150, 142, 134, 127, 119, 111, 103, 95, 87, 80, 

72, 65, 58, 52, 46, 40, 34, 29, 24, 19, 15, 12, 8, 6, 3, 2, 1, 0, 0, 0, 1, 

2, 3, 6, 8, 12, 15, 19, 24, 29, 34, 40, 46, 52, 58, 65, 72, 80, 87, 95, 

103, 111, 119, 126, 134, 142, 150, 158, 166, 173, 181, 188, 195, 201, 207, 

213, 219, 224, 229, 234, 238, 241, 245, 247, 250, 251, 252, 253, 254, 253, 

252, 

               }; 

void setup() 

{ 

  Serial.begin(115200); 

  //set CS, WR, DACA to output 

  pinMode(A5, OUTPUT); 

  pinMode(A6, OUTPUT); 

  pinMode(A7, OUTPUT); 

  //set PORTK to ouput 

  pinMode(A8, OUTPUT); 

  pinMode(A9, OUTPUT); 

  pinMode(A10, OUTPUT); 

  pinMode(A11, OUTPUT); 

  pinMode(A12, OUTPUT); 

  pinMode(A13, OUTPUT); 
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  pinMode(A14, OUTPUT); 

  pinMode(A15, OUTPUT); 

  //set PORTE,G,H,B to output 

  for (int i = 2; i < 14; i++) 

  { 

    pinMode(i, OUTPUT); 

  } 

  //set PORTA,B,C,L to output 

  for (int i = 22; i < 54; i++) 

  { 

    pinMode(i, OUTPUT); 

  } 

 

 

 //disable global interrupts 

  cli(); 

  // initialize Timer1 ~ 40kHz 

  TCCR1A = 0;     // set entire TCCR1A register to 0 

  TCCR1B = 0;     // same for TCCR1B 

  // set compare match register to desired timer count: 

  OCR1A = 400; 

  // CTC mode on: 

  TCCR1B |= (1 << WGM12); 

  // Set CS10 and CS12 bits for 1024 prescaler: 

  TCCR1B |= (1 << CS10); 

  //TCCR1B |= (1 << CS12); 

  // enable timer compare interrupt: 

  TIMSK1 |= (1 << OCIE1A); 

  //enable global interrupts 

  sei(); 

 

ISR(TIMER1_COMPA_vect) 

{ 

  //set CS, WR, DACA low 

  digitalWrite(A5, LOW); 

  digitalWrite(A6, LOW); 

  digitalWrite(A7, LOW); 

  //send sine wave to DAC, centered around (127/255)*5 = 2.5V 

  PORTK = sine[t&0x7F]; 

  PORTB = sine[(t + td)&0x7F]; 

  PORTA = sine[(t + td*2)&0x7F]; 

  PORTL = sine[(t + td*3)&0x7F]; 

  PORTC = sine[(t + td*4)&0x7F]; 

  PORTE = ((sine[(t + td*5)&0x7F] & 0x03) << 3) | (PORTE & (~0x38)); 

  PORTG = ((sine[(t + td*5)&0x7F] & 0x08) << 2) | (PORTG & (~0x20)); 

  PORTH = ((sine[(t + td*5)&0x7F] & 0xF0) >> 1) | (PORTH & (~0x78)); 
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  //set CS, WR, DACA high 

  digitalWrite(A5, HIGH); 

  digitalWrite(A6, HIGH); 

  digitalWrite(A7, HIGH); 

  //increment t 

  t++; 

} 

 

4.4 Program with using ADC 

//global variables 

uint16_t t = 0; 

uint16_t data = 0; 

byte sample[2048]; 

int td = 25; 

 

 

void setup() { 

 

  Serial.begin(9600); 

  //set WR, CS, DACA to output 

  pinMode(A5, OUTPUT); 

  pinMode(A6, OUTPUT); 

  pinMode(A7, OUTPUT); 

 

  //set PORTK to ouput 

  pinMode(A8, OUTPUT); 

  pinMode(A9, OUTPUT); 

  pinMode(A10, OUTPUT); 

  pinMode(A11, OUTPUT); 

  pinMode(A12, OUTPUT); 

  pinMode(A13, OUTPUT); 

  pinMode(A14, OUTPUT); 

  pinMode(A15, OUTPUT); 

 

  //set PORTE,G,H,B to output 

  for (int i = 2; i < 14; i++) 

  { 

    pinMode(i, OUTPUT); 

  } 

 

  //set PORTA,B,C,L to output 

  for (int i = 22; i < 54; i++) 

  { 

    pinMode(i, OUTPUT); 

  } 

 

  cli();//disable interrupts 

  //set up continuous sampling of analog pin 0 
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  //clear ADCSRA and ADCSRB registers 

  ADCSRA = 0; 

  ADCSRB = 0; 

  ADMUX |= (1 << REFS0); //set reference voltage 

  ADMUX |= (1 << ADLAR); //left align the ADC value 

  ADCSRA |= (1 << ADPS2) | (1 << ADPS0); //set ADC clock with 32 prescaler 

  ADCSRA |= (1 << ADATE); //enabble auto trigger 

  ADCSRA |= (1 << ADIE); //enable interrupts when measurement complete 

  ADCSRA |= (1 << ADEN); //enable ADC 

  ADCSRA |= (1 << ADSC); //start ADC measurements 

  sei();//enable interrupts 

} 

 

ISR(ADC_vect) {//when new ADC value ready 

  //set CS, WR, DACA low 

  digitalWrite(A5, LOW); 

  digitalWrite(A6, LOW); 

  digitalWrite(A7, LOW); 

 

  PORTK = sample[t&0x7F]; 

  PORTB = sample[(t + td)&0x7F]; 

  PORTA = sample[(t + td*2)&0x7F]; 

  PORTL = sample[(t + td*3)&0x7F]; 

  PORTC = sample[(t + td*4)&0x7F]; 

  PORTE = ((sample[(t + td*5)&0x7F] & 0x03) << 3) | (PORTE & (~0x38)); 

  PORTG = ((sample[(t + td*5)&0x7F] & 0x08) << 2) | (PORTG & (~0x20)); 

  PORTH = ((sample[(t + td*5)&0x7F] & 0xF0) >> 1) | (PORTH & (~0x78)); 

  t++;//update the variable incomingAudio with new value from A0 (between 0 

and 255) 

  sample[data & 0x7FF] = ADCH; 

  data++; 

 

   digitalWrite(A5, HIGH); 

   digitalWrite(A6, HIGH); 

   digitalWrite(A7, HIGH); 

} 

 

 

4.6 PIR Sensor and Stepper Motor Code 

Master 

/* 

   Team Epsilon: 

   Mark, Corey, Avik, Suilio 

   ---------------------------- 

   Sources: 

   

http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2012/tcj26_

ecs227/tcj26_ecs227/index.html 

   http://www.instructables.com/id/Arduino-Audio-Output/ 
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   http://www.instructables.com/id/Arduino-Audio-Input/ 

   https://playground.arduino.cc/Code/Filters 

   https://www.arduino.cc/en/Tutorial/MasterWriter 

   http://42bots.com/tutorials/28byj-48-stepper-motor-with-uln2003-driver-

and-arduino-uno/ 

*/ 

 

#include <Wire.h> 

#include <AccelStepper.h> 

#define HALFSTEP 8 

 

// Motor pin definitions 

#define motorPin1  11     // IN1 on the ULN2003 driver 1 

#define motorPin2  10     // IN2 on the ULN2003 driver 1 

#define motorPin3  9     // IN3 on the ULN2003 driver 1 

#define motorPin4  8     // IN4 on the ULN2003 driver 1 

 

#define motorPin5  22     // IN1 on the ULN2003 driver 2 

#define motorPin6  23     // IN2 on the ULN2003 driver 2 

#define motorPin7  24    // IN3 on the ULN2003 driver 2 

#define motorPin8  25    // IN4 on the ULN2003 driver 2 

 

// Initialize with pin sequence IN1-IN3-IN2-IN4 for using the AccelStepper 

with 28BYJ-48 

AccelStepper stepper1(HALFSTEP, motorPin1, motorPin3, motorPin2, motorPin4); 

AccelStepper stepper2(HALFSTEP, motorPin5, motorPin7, motorPin6, motorPin8); 

 

// Transmission Variable 

byte x = 0; 

 

void setup() { 

  Serial.begin(9600); 

   

  // PIR pins 

  for (int i = 2; i <= 6; i++) 

  { 

    pinMode(i, INPUT); 

  } 

 

  // Communication Setup 

  Wire.begin(); // join i2c bus (address optional for master) 

  stepper1.setMaxSpeed(1000.0); 

  stepper1.setAcceleration(200.0); 

  stepper1.setSpeed(200); 

  stepper1.moveTo(0); 

 

  stepper2.setMaxSpeed(1000.0); 

  stepper2.setAcceleration(200.0); 

  stepper2.setSpeed(200); 
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  stepper2.moveTo(0); 

 

  while (stepper1.distanceToGo() != 0) 

  { 

    stepper1.run(); 

  } 

  while (stepper2.distanceToGo() != 0) 

  { 

    stepper2.run(); 

  } 

} 

 

void loop() { 

 

  Wire.beginTransmission(8); // transmit to device #8 

  Wire.write(x);              // sends one byte 

  Wire.endTransmission();    // stop transmitting 

  Serial.println(x); 

 

  delay(1000); 

 

  if (digitalRead(2) == LOW) 

  { 

    stepper1.moveTo(-150); 

    stepper2.moveTo(-150); 

    x = 0; 

  } 

  else if (digitalRead(3) == LOW) 

  { 

    stepper1.moveTo(-90); 

    stepper2.moveTo(-90); 

    x = 1; 

  } 

  else if (digitalRead(4) == LOW) 

  { 

    stepper1.moveTo(-30); 

    stepper2.moveTo(-30); 

    x = 2; 

  } 

 

  else if (digitalRead(5) == LOW) 

  { 

    stepper1.moveTo(90); 

    stepper2.moveTo(90); 

    x = 4; 

  } 

 

  else if (digitalRead(6) == LOW) 

  { 
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    stepper1.moveTo(150); 

    stepper2.moveTo(150); 

    x = 5; 

  } 

 

  else 

  { 

    stepper1.moveTo(30); 

    stepper2.moveTo(30); 

    x = 3; 

  } 

} 

 

Slave 

/* 

   Team Epsilon: 

   Mark, Corey, Avik, Suilio 

   ---------------------------- 

   Sources: 

   

http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2012/tcj26_

ecs227/tcj26_ecs227/index.html 

   http://www.instructables.com/id/Arduino-Audio-Output/ 

   http://www.instructables.com/id/Arduino-Audio-Input/ 

   https://playground.arduino.cc/Code/Filters 

   https://www.arduino.cc/en/Tutorial/MasterWriter 

   http://42bots.com/tutorials/28byj-48-stepper-motor-with-uln2003-driver-

and-arduino-uno/ 

*/ 

 

#include <avr/io.h> 

#include <avr/interrupt.h> 

#include <Wire.h> 

//#include <Filters.h> 

 

//global variables + buffers 

int incomingAudio; 

uint16_t t = 0; 

uint16_t data = 0; 

byte sample[2048];  

int td = 15; 

int x = 0; 

 

void setup() { 

 

  Serial.begin(9600); 

  //set WR, CS, DACA to output 

  pinMode(A5, OUTPUT); 

  pinMode(A6, OUTPUT); 
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  pinMode(A7, OUTPUT); 

 

  //set PORTK to ouput 

  pinMode(A8, OUTPUT); 

  pinMode(A9, OUTPUT); 

  pinMode(A10, OUTPUT); 

  pinMode(A11, OUTPUT); 

  pinMode(A12, OUTPUT); 

  pinMode(A13, OUTPUT); 

  pinMode(A14, OUTPUT); 

  pinMode(A15, OUTPUT); 

 

  //set PORTE,G,H,B to output 

  for (int i = 2; i < 14; i++) 

  { 

    pinMode(i, OUTPUT); 

  } 

 

  //set PORTA,B,C,L to output 

  for (int i = 22; i < 54; i++) 

  { 

    pinMode(i, OUTPUT); 

  } 

 

  //set CS, DACA, WR low 

  digitalWrite(A5, LOW); 

  digitalWrite(A6, LOW); 

  digitalWrite(A7, LOW); 

 

  cli();//disable interrupts 

 

  //set up continuous sampling of analog pin 0 

 

  //clear ADCSRA and ADCSRB registers 

  ADCSRA = 0; 

  ADCSRB = 0; 

 

  ADMUX |= (1 << REFS0); //set reference voltage 

  ADMUX |= (1 << ADLAR); //left align the ADC value 

  ADCSRA |= (1 << ADPS2) | (1 << ADPS0); //set ADC clock with 32 prescaler 

  ADCSRA |= (1 << ADATE); //enabble auto trigger 

  ADCSRA |= (1 << ADIE); //enable interrupts when measurement complete 

  ADCSRA |= (1 << ADEN); //enable ADC 

  ADCSRA |= (1 << ADSC); //start ADC measurements 

 

  sei();//enable interrupts 

 

  //Communication Setup 

  Wire.begin(8);                // join i2c bus with address #8 
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  Wire.onReceive(receiveEvent); // register event 

  Serial.begin(9600);           // start serial for output 

} 

 

ISR(ADC_vect) {//when new ADC value ready 

 

  PORTK = sample[t & 0x7FF]; 

  PORTB = sample[(t + td) & 0x7FF]; 

  PORTL = sample[(t + td * 2) & 0x7FF]; 

  PORTC = sample[(t + td * 3) & 0x7FF]; 

  PORTE = ((sample[(t + td * 4) & 0x7FF] & 0x03) << 3) | (PORTE & (~0x38)); 

  PORTG = ((sample[(t + td * 4) & 0x7FF] & 0x08) << 2) | (PORTG & (~0x20)); 

  PORTH = ((sample[(t + td * 4) & 0x7FF] & 0xF0) >> 1) | (PORTH & (~0x78)); 

  PORTA = sample[(t + td * 5) & 0x7FF]; 

 

  t++; 

  sample[data & 0x7FF] = ADCH; 

  data++; 

} 

 

void loop() { 

  if (x == 0) 

    td = 0; 

  else if (x == 1) 

    td = -40; 

  else if (x == 2) 

    td = -20; 

  else if (x == 3) 

    td = 0; 

  else if (x == 4) 

    td = 20; 

  else if (x == 5) 

    td = 40; 

  else 

 td = 0; 

} 

 

// function that executes whenever data is received from master 

// this function is registered as an event, see setup() 

void receiveEvent(int howMany) { 

  x = Wire.read();    // receive byte as an integer 

  Serial.println(x);         // print the integer 

} 
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