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Abstract 

A damped random walk (DRW) is a stochastic process defined by its exponential 

covariance matrix which behaves as a normal random walk for short time scales and 

asymptotically achieves a finite variability amplitude at long time scales. The DRW is 

employed to provide a statistical description of observed Active Galactic Nuclei (AGN) 

variability in the optical wavelength range 620 to 750 nm. The best fitting DRW, 

posterior probability distributions for the fitted DRW parameters, and the binned power 

spectral density alongside its autocorrelation function are fitted for an AGN and provide 

insight into the optical variability for an AGN. 
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1 Introduction 

In 1974,1 astronomers observed a compact radio source at the center of our galaxy 

for the very first time, which they later identified as the supermassive black hole 

Sagittarius A*. Supermassive black holes (SMBH) are some of the largest types of 

black holes we have discovered to date, with their mass ranging from millions to 

billions of solar masses (𝑀☉).2  Since their discovery, astronomers have theorized that 

SMBHs lie at the center of every galaxy in our universe. Black holes tend to be invisible 

and undetectable through our telescopes, making them notoriously difficult to observe 

directly. However, when these black holes are absorbing matter that falls into their 

event horizon, they tend to emit large quantities of light and radiation, which are 

brighter than the entirety of their galaxy combined.3 These bright cores/centers are 

known as Active Galactic Nuclei (AGN) and serve as proof that SMBH exists. 

The objective of this article is to measure the optical variability of AGN’s through 

the study and analysis of ARP 151, an SMBH that is about 6.5-7 million 𝑀☉, located 

in the constellation Ursa Major.4 The light curves obtained from these AGN’s can be 

used to infer the physical parameters for a SMBH such as mass, luminosity, distance 

from Earth, and Eddington rates. The light curve of ARP 151 will be analyzed through 

the help of the power spectral density (PSD) and structure-function (SF) and modeled 

by the continuous autoregressive (CAR) models and the damped random walk (DRW) 

model. 
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2 Methods 

2.1 Methodology Outline 

Below is a simple diagram showcasing the mathematical analysis utilized in this 

paper: 

 
Figure 1: An outline of the methodology with a brief description for each analysis. 

2.2 Time Series Analysis 

A time series is a collection of well-defined data points which are indexed for some 

time period. They are classified as evenly or unevenly spaced time series. Evenly 

sampled time series are characterized by their uniform and constant time intervals, 

whereas unevenly sampled time series have irregular time intervals. In astronomy, 

most time series are unevenly sampled, with a low signal-to-noise ratio, and contain 

heteroscedastic errors.5 These occur due to the natural limitation of our current 

technology and observational abilities and can be attributed to varying weather 

conditions, observational time slots, and planetary configurations. 

The time series considered in this paper will be contained within pair of random 

variables (𝑡𝑁 , 𝑦𝑁), where 𝑦𝑁 is the observed parameter over a sampled time coordinate 

𝑡𝑁. Time series analysis characterizes the temporal correlation between the values of 

𝑦𝑁 and forecasts the future values of 𝑦. 
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2.3 Fourier Analysis 

Fourier analysis is crucial for analyzing time series. Fourier analysis allows for the 

approximation of functions through sums of simpler trigonometric functions. The 

Fourier transform of a function ℎ(𝑡) is defined as: 

𝐻(𝑓) = ∫ ℎ(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
+∞

−∞

, (1) 

with the inverse transform: 

ℎ(𝑡) = ∫ 𝐻(𝑓)𝑒𝑖2𝜋𝑓𝑡𝑑𝑓
+∞

−∞

, (2) 

where 𝑡 is time in seconds (𝑠), and 𝑓 is the frequency in hertz (𝐻𝑧). ℎ(𝑡) can have 

any input units alongside the units of 𝐻𝑧. The units for 𝐻(𝑓) are a product from the 

units of ℎ(𝑡) and 𝑠𝑒𝑐. 𝐻(𝑓) is a complex function for a real function ℎ(𝑡). If ℎ(𝑡) is an 

even function, then 𝐻(𝑓) is a real function. An application of these properties of Fourier 

pairs- ℎ(𝑡) and 𝐻(𝑓), can be seen through the Fourier transform of the probability 

density function of a zero-mean Gaussian 𝑁(𝜇 = 0, 𝜎) in the time domain is a 

Gaussian, where 𝜇 is the mean and 𝜎 is the standard deviation for a probability density 

function. In the frequency domain, the probability density function is defined as: 

𝐻(𝑓) = 𝑒−2𝜋2𝜎2𝑓2
. (3) 

For an arbitrary function ℎ(𝑡), if the time axis is shifted by ∆𝑡, the Fourier transform 

of ℎ(𝑡 + ∆𝑡) is: 

∫ ℎ(𝑡 + ∆𝑡)𝑒−𝑖2𝜋𝑓𝑡 𝑑𝑡
+∞

−∞

= 𝐻(𝑓)𝑒−𝑖2𝜋𝑓∆𝑡 , (4) 

substituting the results of Eq. 3, Eq. 4 can be represented as: 

𝐻𝐺𝑎𝑢𝑠𝑠(𝑓) = 𝑒−2𝜋2𝜎2𝑓2+𝑖2𝜋𝑓𝜇 , (5) 

which is known as the Fourier transform of a Gaussian 𝑁(𝜇, 𝜎). Since there is no 

dependency on frequency, 𝐻𝐺𝑎𝑢𝑠𝑠(𝑓) is known as Johnson’s noise or white noise.6 

2.4 Power Spectral Density 

Another important entity in time series analysis is the Power Spectral Density 

function (PSD). The PSD measures the total power contained in a frequency interval 

for a given signal.7 For the interval 0 ≤ 𝑓 < ∞, PSD is defined as: 
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𝑃𝑆𝐷(𝑓) = |𝐻(𝑓)|2 + |𝐻(−𝑓)|2. (6) 

PSD calculates the power contained within the interval 𝑓 to 𝑓 + 𝑑𝑓. The calculation 

for total power is similar for both frequency and time domain: 

𝑃𝑡𝑜𝑡 ≡ ∫ 𝑃𝑆𝐷(𝑓)𝑑𝑓
+∞

0

= ∫ |ℎ(𝑡)|2𝑑𝑡.
+∞

−∞

 (7) 

This is known as Parseval’s Theorem.8 To help analyze the PSD, Lomb–Scargle 

periodogram will be utilized.9 The uncertainties in the PSD will be estimated using the 

bootstrap technique, which allows for the estimation of the PSD for a population by 

averaging estimates from multiple small data samples.10 To estimate the 1𝜎 

uncertainty for the PSD, the 16th and 84th percentiles will be used. Then, the PSD will 

be binned for its median and errors in equal log10 𝑓 spacing. The binned PSD will be 

fitted with a broken power-law model11 using the Levenberg–Marquardt method12 for 

nonlinear least-squares minimization: 

𝑃 ∝
1

(
𝑓

𝑓𝑏𝑟
)

𝛼

+ (
𝑓

𝑓𝑏𝑟
)

𝛽
, 

(8) 

where 𝑃 is the PSD amplitude, 𝑓𝑏𝑟 is the break frequency, 𝛼 and 𝛽 are the slopes 

of the power law at high and low frequency ends respectively. 

2.5 Stochastic Variability 

The behavior of some physical systems over a period of time is considered 

stochastic if the system is indeterministic and affected by random variables, which 

introduce an element of randomness and variation.13 Systems that are not predictable 

and high in variability are known as Stochastic or Gaussian processes. AGN’s are 

considered highly variable and stochastic since they are aperiodic and have variable 

amplitudes for all observed wavelengths.14 

Due to their erratic behavior, stochastic systems and AGN’s have extremely 

complex underlying physics, and their future values and states cannot be predicted 

deterministically. However, stochastic processes can be quantified through models 

like autocorrelation, autoregressive, and random damped walks.15 
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2.6 Autocorrelation and Structure Function 

A correlation function establishes a statistical correlation between random variables 

and is defined by the temporal or spatial distance between the variables.16 An 

autocorrelation function is an application of correlation functions, where two functions 

𝑓(𝑡) and 𝑔(𝑡) are scaled by their standard deviation and defined by their time lag ∆𝑡: 

𝐴𝐶𝐹(∆𝑡) =
𝑙𝑖𝑚
𝑇→∞

1
𝑇 ∫ 𝑓(𝑡)𝑔(𝑡 + ∆𝑡)𝑑𝑡

(𝑇)

𝜎𝑓𝜎𝑔
, (9) 

where 𝜎𝑓 and 𝜎𝑔 are the standard deviations for 𝑓(𝑡) and 𝑔(𝑡), respectively. Due to 

this normalization, the correlation function for unity is ∆𝑡 = 0. Without the normalization 

via standard deviations, the correlation function 𝐶𝐹(∆𝑡) is equal to a covariance 

function. 𝑓(𝑡) and 𝑔(𝑡) are assumed to be statistically weak stationary functions, such 

that their autocorrelation function and average do not depend on time.  

The correlation function relays information about the time delay between two 

functions. If the time series are dependent and produced from each other, only to be 

differed by shifting the time axis and introducing a time lag, their correlation function 

produces a peak at  ∆𝑡 = 𝑡𝑙𝑎𝑔. With 𝑓(𝑡) = 𝑔(𝑡) = 𝑦(𝑡), the autocorrelation function of 

𝑦(𝑡) for a time lag ∆𝑡 is defined as: 

𝐴𝐶𝐹(∆𝑡) =
𝑙𝑖𝑚
𝑇→∞

1
𝑇 ∫ 𝑦(𝑡 + ∆𝑡)𝑑𝑡

(𝑇)

𝜎𝑦
2

. (10) 

This autocorrelation function provides information about the variable timescales for 

a process. If 𝑦 is uncorrelated (e.g., this could happen due to white noise without any 

signal) 𝐴𝐶𝐹(∆𝑡) = 0 (except for 𝐴𝐶𝐹(0) = 1). For a characteristic time 𝜏, if a process 

retains information of its state during this time, the autocorrelation function vanishes 

for ∆𝑡 ≫ 𝜏. 

The PSD (Eq. 6) and the autocorrelation function (Eq. 10) for a function 𝑦(𝑡) are 

Fourier pairs in the time and frequency domains. This is known as Wiener-Khinchin 

Theorem and affects the stationary random process.17 The autocorrelation function is 

an analysis method for the time domain, while the PSD is an analysis method for the 

frequency domain. 
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The structure-function (SF) analysis is a technique used to convert an AGN’s light 

curve into different spaces such as the variability amplitude-timescale space.15,18 The 

SF is related to the autocorrelation function and is defined as: 

𝑆𝐹(∆𝑡) = 𝑆𝐹∞√1 − 𝐴𝐶𝐹(∆𝑡), (11) 

where 𝑆𝐹∞ is the standard deviation of the time series over a large interval of time 

(𝑡 ≫ 𝜏). 

2.7 Autoregressive Model 

In an autoregressive (AR) model, a variable is forecasted through a linear 

combination of the previous values of that variable. The values in an AR model are 

derived from a time series that is regressed on previous values from the same series. 

A random walk is an example of an AR model, wherein every new value of the series 

is obtained by adding noise to the preceding value: 

𝑦𝑖 = 𝑦𝑖−1 + 𝑒𝑖, (12) 

where 𝑒𝑖 is the noise term and does not have to be Gaussian. If 𝑦𝑖−1 is multiplied 

by a constant, then the random walk model is known as a geometric random walk 

model and is mostly used to model stock market data.19 

The random walk can be generalized for a linear AR model with a dependency 𝑘 

on their previous values. An AR model of order 𝑘, 𝐴𝑅(𝑘) is defined as: 

𝑦𝑖 = ∑ 𝑎𝑗𝑦𝑖−𝑗 + 𝑒𝑖,
𝑘

𝑗=1
 (13) 

where 𝑎𝑗 is a constant. The values for 𝑦 are a linear combination of the previous 𝑘 

values for 𝑦, with an extra noise term. For a random walk, 𝑘 = 1 and 𝑎1 = 1, giving us 

Eq. 12. The ACF for an 𝐴𝑅(𝑘) model is nonzero for all time lags but quickly decays 

over time.  

The AR model defined in Eq. 13 is only applicable for an evenly sampled time 

series. The generalization of the AR model for any time series is called the continuous 

autoregressive [𝐶𝐴𝑅(𝑘)] model.20 𝐶𝐴𝑅(1) process is a popular model that is widely 

used in modeling quasar and AGN variability. 
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Covariance matrices are also used for modeling data alongside AR models. For the 

𝐶𝐴𝑅(1) model, the covariance matrix is defined as: 

𝑆𝑖𝑗 = 𝜎2𝑒
−|

𝑡𝑖𝑗

𝜏
|
, (14) 

where 𝜎 and 𝜏 are model parameters. 𝜎2 controls the timescale covariance for 𝑡𝑖𝑗 ≪

𝜏, which decay exponentially for a timescale 𝜏. 

2.8 Damped Random Walk 

A damped random walk (DRW) model, also known as the Ornstein-Uhlenbeck 

process,21 is used to describe 𝐶𝐴𝑅(1). The DRW stochastic model is known as a 

mean-reverting model, since over time, the model pushes a function 𝑦(𝑡) towards its 

mean.22  

Analogous to a normal random walk which is known as a drunkard’s walk23, DRW 

is known as a married drunkard’s walk, since they (the function) will always return 

home (to their mean), instead of drifting away. Following Eq. 14, the ACF for a DRW 

is given as: 

𝐴𝐶𝐹(𝑡) = 𝑒
−𝑡
𝜏 , (15) 

where 𝜏 is a characteristic/damping timescale. Given the ACF, it is apparent that 

the SF for a DRW is given by: 

𝑆𝐹(𝑡) = 𝑆𝐹∞
√1 − 𝑒

−𝑡
𝜏 , (16) 

where 𝑆𝐹∞ = 𝜎√2, and is the asymptotic variability amplitude for SF. When the SF 

is applied to the differences of the analyzed process, the PSD is defined as: 

𝑃𝑆𝐷(𝑓) =
𝑆𝐹∞

2𝜏2

1 + (2𝜋𝑓𝜏)2
. (17) 

For high enough frequencies, the DRW is a 𝑓−2 process, similar to an normal 

random walk.24 For low frequencies (𝑓 ≪
2𝜋

𝜏
)  of PSD, the damped nature of random 

walks can be observed. 

The DRW model is one of the simplest 𝐶𝐴𝑅(1) models to implement for Gaussian 

processes.25 A higher-order model 𝐶𝐴𝑅(𝑘) for any 𝑘 > 1 may provide a better fit for 

the data, but it may also be more difficult to understand the multiple features and 
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characteristic timescales associated with those models. The DRW model will be the 

primary model employed in this paper.  

2.9 Python Packages 

The modeling of a DRW is done using Python and some external packages. A 

Python package consists of a repository of codes/modules which can be easily 

accessed by a programmer, and help minimize the complexity of a program.26 

Since the DRW is a Gaussian process and is being used to fit and model the light 

curves of ARP 151, a package known as CELERITE will be employed.27 An alternate 

package that could have been used is the CARMA_PACK,28 however, the CELERITE 

is easier to implement and produces the same results as CARMA_PACK. As defined 

previously, a Gaussian process is described by its covariance/kernel function. And the 

covariance function for a DRW is given as: 

𝑘(𝑡𝑖𝑗) = 2𝜎𝐷𝑅𝑊
2 𝑒

−𝑡𝑖𝑗

𝜏𝐷𝑅𝑊 , (18) 

where 𝑡𝑖𝑗 = |𝑡𝑗 − 𝑡𝑖| is the time lag between measurements 𝑗 and 𝑖, 𝜎𝐷𝑅𝑊 is the 

amplitude factor, and 𝜏𝐷𝑅𝑊 is the damping term. This equation is similar to the SF 

defined in Eq. 16. In addition to Eq. 18, an extra white noise term needs to be added 

to the kernel to simulate the white noise often found in light curves alongside any 

measurement errors6: 

𝑘(𝑡𝑖𝑗) = 2𝜎𝐷𝑅𝑊
2 𝑒

−𝑡𝑖𝑗

𝜏𝐷𝑅𝑊 + 𝜎𝑛
2𝛿𝑖𝑗 , (19) 

where 𝜎𝑛 is the white noise amplitude term, and 𝛿𝑖𝑗 is the Kronecker 𝛿 function. 𝜎𝑛, 

𝜎𝐷𝑅𝑊, and 𝜏𝐷𝑅𝑊 are the three parameters that need to be fitted for the DRW to model 

the optical variability/light curve for ARP 151. 
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3 Analysis 

The data used for this paper is acquired from “The AGN Black Hole Mass 

Database”, a web-based interface that contains the compilation of all spectroscopic 

reverberation-mapped studies of active galaxies. Reverberation mapping (also known 

as echo mapping) is a technique used to measure the size of broad emission-line 

regions and central black holes masses for AGN’s.29 The repository containing data 

sets for ARP 151 is available at the “The AGN Black Hole Mass Database”.30  

Fig. 2 plots the red-band light curve for the apparent magnitude of ARP 151 (MBH 

= 106.67±0.05 𝑀☉) along with the best-fitted DRW model with a 1𝜎 uncertainty, 

represented by the width of the orange shaded area. The greater the vertical width of 

the shaded region is, the more uncertainty the model has. A red-band filter is used to 

capture the visible light from an AGN for wavelengths in the red spectrum (from 620 

to 750 nm). The apparent magnitude is a measurement of the brightness of a star/AGN 

as measured from Earth. The measurements for the apparent magnitude of ARP 151 

are a multi-year light curve that contains several seasonal gaps. These gaps are 

produced simply due to the orbit of Earth around the Sun and our inability to observe 

a section of the sky for roughly half a year. 

 
Figure 2: r-band light curve of ARP 151 and the best-fitting DRW model 

with 𝟏𝝈 uncertainty (orange shaded area). 

For the periods 0-120 and 200-280 days the magnitude values for densely packed, 

which helps the DRW model experience minimal uncertainty and predict the 

magnitude with a high degree of confidence since there are a lot of data points the 
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model can utilize and examine. However, for the periods 300-480 and 560-640 days 

the magnitude values are sparse and inconsistent, and while the DRW is still able to 

model this data, there is an increased level of uncertainty in the model due to this 

dispersion. While the DRW can successfully follow the general trends for the 

magnitude between the seasonal gaps, the uncertainty and variance of our model 

greatly increase during the gaps due to the lack of information. 

It is worth noting that there are several data points present throughout Fig. 2 (such 

as 15.4 mag at 220th day) which are unmodelled for by the DRW. These outliers are 

not considered significant by the model since the model attaches a lower contribution 

weight for any outlying data through the parameters outlined in Eq. 18. It is possible 

that a higher-order Gaussian model would have also fitted these outliers well, but then 

we risk decreasing the interpretability of our data and increasing computational 

complexity. Outliers may also be the result of measurement/instrumentation errors 

presented within our telescopes and observational techniques. 

There is a qualitative correlation between the uncertainty in the model and the 

number of data points available for a time period. This is a limitation for any Gaussian 

process and can only be improved upon by gathering better data and improving our 

observational techniques. However, there is a high enough correlation between the 

values for the apparent magnitude of ARP 151 and the DRW model that provides a 

sufficient approximation for the light curve of ARP 151. 

Fig 3. shows a logarithmic plot for the posterior probability distributions of the fitted 

DRW parameters and their covariances. The normal distribution graphs plot the values 

for 𝜎𝑛, 𝜎𝐷𝑅𝑊, and 𝜏𝐷𝑅𝑊 over the iterations for the light curve as per Eq. 19. These fitted 

parameters carry no significance for analysis and only serve to help model the red-

band light curve. The contours trace the 1, 2, 3𝜎 levels superimposed on the sample 

density map, with black indicating higher density. The individual samples with the 

lowest-density regions are shown as black points. The red shaded regions correspond 

to time periods greater than 20% of the total light curve from Fig. 2. 
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Figure 3: The posterior probability distributions for the fitted DRW  

parameters and their covariance contours. 

The impact of 𝜎𝐷𝑅𝑊 and 𝜏𝐷𝑅𝑊 are small in this case: the normal distribution plot for 

log10 𝜎𝐷𝑅𝑊 does not significantly differ from the log10 𝜏𝐷𝑅𝑊. For ARP 151, extending its 

light curve moves it toward the left (well-constrained) portion of the diagram, since for 

a fixed 𝜏𝐷𝑅𝑊, increasing 𝜎𝑛 decreases 𝜎𝐷𝑅𝑊, as seen by the relationship of these 

parameters in Eq. 19 and the contour plots for the fitted parameters, which highlight 

the negative covariance between these parameters. If the probability distribution 

function (PDF) peaks in the red shaded region, the light curve is not long enough due 

to the increased length of 𝜏. For these increased timescales, the results become 

unreliable as the DRW model will overfit the light curve due to the increased 

randomness and unpredictability for an AGN, and produce an inaccurate model.31 For 

characteristic timescales shorter than 𝜏, best fit 𝜏 is underestimated and becomes 

biased to 
𝑡𝑖𝑗

2
.32 The contours show the 1, 2, 3𝜎 levels (enclosing 68.3%, 95.5%, and 

99.7% of the data), with the dense black center contour indicating the 1𝜎 level. These 

contours are well defined and follow the anisotropic trends seen from the PDF function. 

The posterior probability distributions and covariance counters are similar to previous 

findings and literature available for ARP 151.33 
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Fig. 4 shows the normalized power spectral density (PSD) and binned PSD with 1𝜎 

uncertainties. The best-fitting broken power-law (PL) model is shown as a red line. 

The 1𝜎 range of the DRW PSD from the posterior prediction is the orange shaded 

area. The corresponding break frequency  𝑓𝑏𝑟 (from the broken power-law fit) and  𝑓𝜏 =

(2𝜋𝜏𝐷𝑅𝑊)−1 (from the DRW fitting) are shown as corresponding-colored arrows with 

the line segment below indicating the 1𝜎 uncertainty. The red shaded region on the 

left corresponds to a period less than the mean cadence where the PSD is not well 

sampled, and the red shaded region on the right corresponds to a period greater than 

20% of the light curve length from Fig. 2. 

 
Figure 4: The normalized PSD and binned PSD with 1𝜎 uncertainties. 

The best-fitting broken power-law model is shown as a red line. 

The broken power-law fit described in Eq. 8 is a poor fit for this data set, particularly 

around the estimated break frequency, as seen by the red and orange arrows. The 

binned PSD shows how the power for ARP 151 drops off rapidly after the break 

frequency, to a point where the broken power-law and DRW fits are unable to model 

these values. The PSD analysis shows a flattening of the PSD towards the low-

frequency end, although the location of the break frequency/timescale cannot be 

accurately determined and only approximated, especially for this multi-year light curve 

with seasonal gaps. For the low-frequency end, there exists a high degree of 

autocorrelation between adjacent and near-adjacent observations for the PSD. For the 
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high-frequency end, there is no autocorrelation between the observations for the PSD 

and indicates a higher degree of randomness for the PSD, which cannot be modeled 

accurately.34 

It is also noteworthy that after the break frequency (red arrow), there are large 

systematic deviations for the binned PSD, due to the oscillatory nature of the PSD. A 

better model for the PSD could have been developed through the creation of a function 

where multiple broken power-law could be connected to have the power-law at lower 

frequencies bend smoothly and become a steeper power-law at higher frequencies. 

This function should be able to model the sharp change in power for the higher 

frequency as seen in Fig. 4. The fitted PSD slope could deviate from the DRW model 

due to well-known effects such as red noise leakage, sampling, and windowing 

effects.35  

4 Conclusions 

Over the last decade, there has been significant progress in both data availability 

and the modeling of stochastic AGN variability. The damped random walk model 

provides a satisfactory statistical description for ARP 151. The model has a sufficient 

correlation between the values for the apparent magnitude, and it provides an 

approximate fit for the AGNs light curve. The parameters of the DRW fitted for ARP 

151 are well-defined and show that the length of the light curve is sufficient to be 

modellable for smaller characteristic timescales. For larger timescales, overfitting may 

occur, and the results would be unreliable. This conclusion is further supported by the 

analysis of the power spectral density function. For low-frequency end and shorter 

timescales, there exists a high degree of correlation between the observed values for 

the PSD, while for the high-frequency end and larger timescales, there exists a high 

degree of randomness and no correlation between the observed values for PSD. 

The scope of this paper was limited to modelling the optical variability for ARP 151. 

However, the procedure described in chapter 2 can be used to model other AGNs, 

provided they have a sufficiently large enough light curve. Through the analysis of light 

curves, PSD, and characteristic timescales for different AGNs, it may be possible to 

develop a linear regressive model to help determine their physical parameters such 
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as their mass, luminosity, distance from Earth, and Eddington rates, which cannot be 

spatially resolved due to the limitations of our current instrumentation. 

The aperiodic and variable nature of AGNs make it extremely difficult to model and 

predict their light curves. The uncertainty constrained within the DRW model is 

dependent on the quality of data available. Currently, our observational techniques 

and astronomical instruments are subpar and not extremely effective at gathering data 

from AGNs and quasars. However, observatories like the Sloan Digital Sky Survey 

(SDSS) are continuously innovating and developing new methods to gather more 

information about AGNs and quasars. Over time, the quality of data available would 

be sufficient to help model these AGNs precisely, maybe even quantify their variability 

through more deterministic methods. 
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