
NAML : An Easy-to-Deploy Application for Time Series Analysis

A Major Qualifying Project
Submitted to the Faculty of Worcester Polytechnic Institute

In partial fulfillment of the requirements for the
Degree in Bachelor of Science

In Computer Science
By

Patrick Houlihan

Date : 4/28/2022
Project Advisors:

Professor Rodica Neamtu
Professor Erin Solovey

This report represents the work of one or more WPI undergraduate students submitted to the

faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports

on the web without editorial or peer review. For more information about the projects program at

WPI, please see https://www.wpi.edu/academics/undergraduate/major-qualifying-project.

Table of Contents

Table of Contents 1

Abstract 3

Introduction 4

Background 6
2. 1. Neuroimaging Techniques 6
2. 2. sktime 8
2. 3. Describing NAML 8

2. 3. 1. Initial State of NAML 9
2. 3. 2. NAML Documentation 11
2. 3. 3. NAML Dataset and Configurations 12
2. 3. 4. User Interface 14

2. 4. Continuous Integration 15
2. 5. Docker and Containers 16

Methodology 18
3. 1. Continuous Integration 18
3. 2. Documentation 19
3. 3. Refactoring and Cleaning 21

Results 23
4. 1. Installation Requirements 23
4. 2. Running Remotely 23
4. 3. Continuous Integration with sktime 24
4. 4. Classifier Removal 25
4. 5. Documentation 25
4. 6. User Interface 26
4. 7. Tooltips 27
4. 8. Helper Text 28

Case Study 30
5. 1. Dataset Choice and Conversion 30
5. 2. The Test Configurations 32
5. 3. Results 34
5. 4. Summary 39

Future Work 40

Conclusion 41

1

Works Cited 43

Appendix 45
Appendix. A. Classifier Table in sktime vs NAML 45
Appendix. B. NAML User Interface Guide 48

Section A. Batch Job Name and Data 48
A1. Job Name 48
A2. Target Column 48

Section B. Upload CSV Data 48
B1. CSV Upload 49

Section C. Configure Your NAML Batch Job 49
C1. Name Configuration 49
C2. Test Config Name 49
C3. Logging Enabled 50

Section D. Batch Job Classifiers 50
D1. Oversampling 50
D2. Classifier 50
D3. Plus Button 51
D4. Run Batch Classifier Job 51
D5. Save Config to Database 51

Section E. Results 52
E1. Results Port 52
E2. Save Test to Database 53
E3. Download Result 53

Section F. Header 53
F1. Help 53
F2. About 54

Appendix. C. NAML Installation Guide 55
NAML Installation 55

Windows 55
Step 1 : Windows Docker Prerequisites 55
Step 2: Installing Docker 59
Step 3: Installing NAML 59
Step 4: Running NAML 60

Linux 61
Step 1: Installing Docker 61
Step 2: Installing NAML 61
Step 3: Running NAML 62

2

Abstract
This project expanded the capabilities of NirsAutoML (NAML), an application

developed at WPI dedicated to using the sktime library for multivariate time series classification

of fNIRS data. NAML was used solely as a command line interface. It was not synced with the

sktime library, resulting in the classifiers used in NAML lacking improvements as sktime

matured. The application now exposes a remotely hosted frontend for access by researchers,

improved code quality for future maintenance, documentation for installation, use, and

development, and a Docker container that streamlines the installation and deployment process. A

case study for NAML comparing classifier efficacy by channel feature type has been performed

on the “fNIRS to Mental Workload” dataset provided by Tufts University [1].

3

Introduction

The goal of this project was to expand upon the work of prior Major Qualifying Projects

(MQP) at Worcester Polytechnic Institute (WPI) that worked on NirsAutoML (NAML), a

program made to classify time series data. This project extended the features and capabilities of

NAML to provide a user interface, a Docker container, documentation associated with changes,

and improvements to NAML from the installation, developer, and user perspectives; it also

included continuous integration with the open source Python library sktime. This library provides

a toolbox of machine learning classifiers with tunable parameters to run on time series data [2].

Researchers at WPI conduct studies on human brain activity using functional

near-infrared spectroscopy (fNIRS) data. A typical experiment will have a participant use an

fNIRS montage, a configuration of optodes placed upon the head measuring change in

concentration of micromolar hemoglobin within the brain over a selected time period. The

participant completes tasks while wearing the fNIRS montage on a cap; the data produced can

then be analyzed to detect and isolate patterns of brain activity during the task. This data is

multivariate time series data; at every interval of measurement, the changes in oxygenation of

hemoglobin from many different sections of the brain are measured by each channel. Each

channel’s measurement must be distinct as different regions of the brain will respond differently

to the task. For every experiment, there are periods of time where the participant is reacting to

some stimuli, coded in the dataset as an event.

In order to process this data, WPI students have created NirsAutoML, also referred to as

NAML. The purpose of NAML is to act as a user-friendly framework for the running of

classifiers from the powerful python library sktime [2]. The classifiers in sktime are made for

time series data, but are not explicitly made for fNIRS data, thus, the data must be preprocessed

4

https://www.sktime.org/en/stable/index.html

to bring it to a format sktime will accept, necessitating a tool like NAML. In NAML, researchers

can define a job to perform on a provided dataset, using a subset of available sktime classifiers,

specify parameters for these jobs, and receive accuracy data on the effectiveness of the

classification model created. NAML is remotely hosted on a server for easy access by

researchers. The user experience, onboarding process, and overall functionality have been greatly

improved through user interface improvements and addition of new features. The success of this

project was measured both by the completion of deliverables and a case study using a fresh

installation and testing of the application using a dataset generated outside of the WPI Human

Computer Interaction (HCI) lab. Long term success can be measured by faster maintenance

turnarounds and integration as sktime updates. NAML is currently used in research in the WPI

HCI lab, so the improvements to maintainability and user experience will have tangible impacts

on active research [3][4].

5

Background

2. 1. Neuroimaging Techniques

Functional Near Infrared Spectroscopy (fNIRS) is a non-invasive method of measuring

brain activity by observing and measuring the changes in concentration of micromolar

hemoglobin in the brain. The measurements are taken by an fNIRS montage affixed to a cap on

the participant’s head, consisting of fiber optic channels that shine non ionizing, near infrared

light into the head [5]. A picture of an fNIRS montage can be seen in Figure 1.

Figure 1: A picture of an fNIRS montage on an fNIRS cap. The montage is the series of red
and blue optodes on top of the helmet/skullcap which is the fNIRS cap.

An fNIRS montage consists of many channels, each of which consist of a detector and

emitter. Light is carried to the participant’s head by fiber optic cable in the emitter, shined into

the participant’s head, then the light absorbed by hemoglobin while refracting and scattering off

of other brain tissue which exits the head. The difference in what was deflected back to the

detector acts as an estimator of brain activity. The difference in exiting light intensity and

6

entering light intensity is then proportional to brain activity. A picture of fNIRS data can be seen

below [5].

Figure 2: The three colored lines are time series measurements of changes in blood
oxygenation observed in three channels. The green highlighted bars indicate a five second

period before and after an event occurred. Due to the test structure, there is overlap between
the event periods, identified by the areas of higher opacity green shading.

Functional Magnetic Resonance Imaging is another option for measuring the same

oxygenation changes in the brain, however the fMRI machine is stationary, giving the fNIRS cap

more versatility in measuring different tasks. Another option that can be combined with fNIRS

measurement is Electroencephalogram (EEG), which measures electric charges in the brain [6].

While fNIRS measurements need four to seven seconds for the signal to reach peak effectiveness

7

to measure changes in micromolar hemoglobin, EEG is instantaneous. EEG, unlike fNIRS can

not detect precise locations of brain activity.

2. 2. sktime

fNIRS produces multivariate time series data. At every time interval, the measurements

from many channels measuring different regions of the brain are recorded. Typical machine

learning resources are not well suited for fNIRS data because data points within a channel must

retain both sequence order and order of values within each sequence. This complexity of the data

necessitates a tool like sktime. The classification methods NAML runs on data produced from

brain data experiments come from the sktime python library. The sktime library provides a

toolbox that adapts existing machine learning capabilities to function with both univariate and

multivariate time series data. The sktime mission statement is to provide a single API that can

process any machine learning time series needed and allow extensive parameter customization

for deeper control of data analysis [2]. sktime provides many features like forecasting and

regression for time series data; however, NAML uses classification and transformation of time

series primarily. A machine learning classifier takes features of the dataset as input in order to

determine what class a target feature belongs to. Classifiers are separated into packages based on

their type composition, dictionary, distance, feature, hybrid, interval, kernel, and shapelet.

2. 3. Describing NAML

NirsAutoML (NAML) is a machine learning framework developed at WPI to work with

fNIRS time series data. It is written in Python and Javascript, with a Django backend, a React

frontend, and a Postgres database associated with it for remote access of datasets. NAML is

8

designed to make use of the sktime python library more efficiently and provide a lower barrier to

entry for researchers, allowing them more advanced tools for understanding and interpreting

experiment data. The sktime library features 27 classifiers, of which 14 are implemented in

NAML. In order to work with sktime, the data must be reformatted. fNIRS data is multivariate;

for every instance of time, there are many channels associated with the event. In order to make

effective use of the classifiers provided by sktime, NAML was created to logically order a dataset

into the structure defined in Background 2. 3. 3. This allows for classification to be run on a

channel to channel basis via ColumnEnsembleClassifier or to be run by concatenating each

channel together to run the sequence values as univariate data by row. Ensemble methods are

preferred because they maintain the data structure closer to the original format in the provided

CSV file, applying univariate methods to singular channels rather than treating multiple channels

as a single variable through concatenation [3][4].

2. 3. 1. Initial State of NAML

The initial installation process of NAML required the user to enter multiple terminal

commands as it lacked startup scripts to install the prerequisite programs automatically. In order

to install, a user would have had to meet the following prerequisites

1. A user should be running the Ubuntu 16.04 LTS operating system.

2. A user must have access to the environment variables required for the project.

3. A user must be added to the NAML private GitHub repository.

After meeting these prerequisites, a user would then install NAML on their local machine to

process configuration files in a command line application by following the steps outlined below.

1. Clone the NAML repository by following steps listed on the NAML GitHub repository.

9

2. Enter the cloned NAML repository root on the local installation.

3. Install Python 3.8.9 on the system.

4. Find the path associated with the Python installation from the previous step.

5. Run `pipenv --python <path to python>` to create a virtual Python environment.

6. Run `pipenv shell` to enter the virtual environment.

7. Run `sudo apt-get install python3.8-dev`

8. Run `pipenv install -r requirements.txt` in project root.

9. Change directories to naml_backend/naml_django/naml.

10. You can now run naml.py as a command line application in the form `python naml.py

<path to configuration file>`

The requirements outlined in the requirements.txt file, used by Python’s Pip package

manager, were outdated, and specified sktime version 0.4.2 rather than 0.7.0, the version the

program was written to use. The NAML application did not run on a remote server, and it must

have been run locally by a user that has access to the GitHub repository. NAML featured a UI,

however it contained incomplete documentation on how to run the Django backend necessary for

the UI to function. sktime had undergone a major version update to 0.10.1 which impacted some

implemented classifiers [3][4].

10

2. 3. 2. NAML Documentation

Figure 3: A snapshot of a section of the NAML Project README page generated with
Sphinx, bringing users to a description of the project with a sidebar indicating sections of the

document.

NAML had a wide variety of documentation available in the repository. There was a

seven part README for the project that covers basic background about the project structure and

information about the tools used to create it such as React, Django, sktime, and Postgres. The

README for NAML is generated with Sphinx, a python library which uses reStructured Text to

generate documentation for projects. There was initially a section describing how to write a job

configuration file for processing; this is how NAML is invoked on a specified dataset. A

comparison between algorithms supported by NAML and the algorithms on offer from sktime as

of major version 0.7.0 is provided in Appendix A.1. The function documentation format for the

project is Google Style Doctoring, which uses a string of format description, arguments, returns,

and errors [7]. An installation guide was provided which is suitable for a first time user with the

exception of the version incompatibility from the requirements file. Using this documentation, a

user should be able to install the application with minor troubleshooting after figuring out the

versions required for the requirements.txt file. The user will only be able to run the command

line application by following the guide [3]. Further documentation was provided in the form of

11

external documents in Google Docs, Slides, and PDF documents. These governed sample

workflows, lists of supported algorithms at the time of writing, and examples of configuration

files.

2. 3. 3. NAML Dataset and Configurations

Figure 4: An example dataset used with NAML demonstrating the required feature columns
and a subset of value columns. This dataset is from the “fNIRS to Mental Workload” datasets

from Tufts University [1].

NAML requires datasets containing five feature columns and at least one value column.

The feature columns in order are name, event, channel, start time, and end time. The value

columns are some amount of columns that are ordered chronologically indicating the

measurement of changes in micromolar hemoglobin in that region at that time. The headings for

these value columns are sequential, starting from one until the maximum sequence length.

Channels may also be different measurement types in the same region, though they should be

distinct from each other. NAML processes these datasets by creating a dataframe where the

participant name and start time identify rows while the channel identifies the column. The cells

contain lists of readings for a given sequence, which is the time series values recorded for a

12

given channel starting at a given time for a given participant. The values must not be zero for any

value column.

Figure 5: This image shows a sample configuration file written in JSON, featuring examples of
properties for the TimeSeriesForestClassifier.

The configuration files for NAML must be written in JSON. The top level JSON

properties that all configuration files required were: filepath or csvdata, logging, target_col, and

jobs. Filepath identifies the file location on the local machine that NAML code is being executed

on. This could be replaced by csvdata which provides the file data representing a dataset in the

form of a string to be processed by NAML as a csv file. Logging indicated to NAML whether a

logfile will be created. A logfile would, on successful completion of a NAML job, contain

information regarding the result accuracy of the classifier, the classifier parameters, and the time

it had taken to complete the classifier, for each classifier in the jobs JSON property. Target_col

indicated to NAML what column would be used as the event column. Lastly, jobs was an array

of JSON objects representing classifiers to be run in succession. A classifier was represented by

13

a JSON object with the required property classifier, and the optional properties: parameters,

oversampling, and ensemble_info. The classifier property identified the classifier being used

from the sktime library. The parameters property identified an array of properties the user sought

to override compared to the properties specified in the backend of the form [property_name,

property_value…]. The oversampling property indicated whether underrepresented classes in the

dataset would be resampled to improve dataset balancing. Lastly, ensemble_info was a JSON

array used for ColumnEnsembleMethod and stored classifier JSON objects inside it.

2. 3. 4. User Interface

The user interface for NAML was written in React as a single page application (Figure

3). It provided an interface to add and run tests. The app was not usable due to a lack of

environment variables connecting it to the Django backend. A goal of this MQP was to link the

user interface to the backend and ensure it was hosted on the server for easy access. The user

interface featured large blocky sections outlining the actions by category. The three categories

are Test Information, Test Configuration, and Results. The Test Information section highlighted

the Test Name field as a required field regardless of user input. The Test Information and Test

Configuration sections featured large blocks surrounding the buttons and text fields associated

with the section. We removed these to limit unnecessary clutter on the interface. The Test

Configuration section had many classifiers that had no exposed, tunable parameters, a major

feature of the sktime toolbox. Without tunable parameters, researchers were limited to the default

parameters set on the backend. It also featured the ColumnEnsemble classifier, which had no

default parameters on the backend, and thus always errored out.

14

Figure 6: The initial state of the NAML User Interface. This interface was non functional nor
hosted remotely before this project began.

2. 4. Continuous Integration

sktime is an actively developed python library where a stated goal is to add new

meta-estimators. This will increase the customization of jobs as more classifiers and parameters

are added to the NAML suite. Currently, in the NAML application, there is no infrastructure to

identify when there are new sktime updates. In order to accomplish this, a Continuous Integration

pipeline should be considered. Continuous Integration is the process by which changes can be

incorporated from other code sources in an automated capacity [8]. NAML currently uses

GitHub workflows to accomplish a test suite on new pull requests. GitHub workflows can run

automated procedures based on events in the repository. Another common tool used in software

development and continuous integration is Docker. Docker is a software that creates containers

for applications: a standalone image of an operating system separate from the host operating

15

system. By moving NAML to a container, it will be more portable to other platforms that may

have other programs with similar, conflicting stacks [9].

2. 5. Docker and Containers

Containers are lightweight, executable software packages that are designed with specific

softwares in mind. Application maintenance is more consistent as Docker containers are

designed to outsource as much as possible to the instruction file from which the container was

built. This is beneficial because it takes much of the installation process out of the end user’s

control. NAML is hosted on a server with another tool named BrainEx [10]. NAML and BrainEx

both have separate managers for their python environments: NAML uses Pipenv and BrainEx

uses Conda. NAML will be moved to Conda as a consistent standard to make maintenance

easier; containers allow for very fine grained management of the environment specific to that

container. The similar tech stack and environment managers allow for easy adaptation between

Dockerfiles as the two applications will share layers. In the case of NAML and BrainEx, both

use React, Conda, and Django, meaning the Dockerfile instructions to install these prerequisites

can be repeated.

While other container systems like Singularity exist, Docker has a litany of tutorials and

instructions on common tasks for the tool due to its wider support. Docker has a strong support

ecosystem featuring 2.9 million installations of the tool [11] with many available first and third

party resources for tutorials [12]. Using the most supported tool is beneficial to decrease time

spent on development and increase scope. A Docker container is built from a Dockerfile. This

Dockerfile can pull existing Docker images and iterate upon them to create a more specific

container or build a new container from scratch using shell scripts and internal package managers

16

to the Operating System being run. We used Ubuntu 16.04 as the internal operating system in the

Docker Container, as that was the original version NAML was designed for.

These managers create a virtual environment where python and python dependencies for

a program can be managed and controlled to ensure standard versions and simple addition of

new dependencies. A benefit to standardizing the environment manager was that large portions

of the Dockerfile could be reused, allowing for starter code for future applications that may be

hosted on the remote server.

17

Methodology
We used a Docker container to implement NAML on a remote server. This allows NAML

to maintain a separate environment so there is no conflict with other tools or services hosted on

the same server. We created installation scripts for NAML to streamline the installation process

through the use of shell scripts inside of the Docker container. These scripts download the correct

dependencies for a stable version of sktime, version 0.10.1, and the latest version of sktime.

3. 1. Continuous Integration

Continuous Integration was introduced to the application at two levels: 1) the GitHub

repository to the server level, and 2) the sktime library to the application level. Changes pushed

to the GitHub repository are deployed to the server. This Continuous Integration method was

already implemented in the NAML application structure, however it did not work due to a dead

SSH key. This was fixed by reimplementing the CI/CD pipeline with a fresh SSH key for

deploying changes on the server and converting the existing actions to work with the Docker

build [13].

The second Continuous Integration method was sktime to the server. This was a novel

introduction to NAML. It allowed for updates to sktime to be reflected in NAML by

automatically attempting a new build of NAML when an sktime update is detected. If the build

fails, it will roll back to a previous stable version, alert the user that the tool needs to be updated,

and keep a log of the errors encountered. This allows NAML to quickly receive the benefits of

sktime updates as the library improves over time while also avoiding any updates that would

break the tool. From the last update of the installation to the time of this report, there have been

four major version changes. Historically, major version changes have affected the library

18

package structure, thus breaking NAML’s usability upon update. These types of changes require

manual intervention to fix the advanced branch of NAML.

3. 2. Documentation

The documentation contained no information about the environment variables needed to

run the application and many links were nonfunctional. The varied formats of documentation

was a challenge, as developers needed to view multiple sources to view comprehensive NAML

documentation. Moving as much of this documentation as possible to one unified source was an

important goal of this project. The original documentation was laid out with the following

sections:

For users:

1. General README, describing the rationale behind NAML.

2. NAML Django Backend, describing the tech stack used with an example of a python test.

3. NAML API Backend & Command Line Tool, this section links to sktime information and

describes how to run the command line application.

4. NAML Dataset, describes the nature of NAML data with an explanation of packaged

datasets.

5. NAML Config Files, this section describes how to write many types of NAML jobs.

6. NAML ReactJS Frontend, this section describes React and the techniques used.

For developers:

1. A section linking to the NAML documentation sections for users.

19

2. A section containing instructions on how to expand documentation using Sphinx.

3. A section describing the installation process.

4. A section describing the existing GitHub workflow Continuous Integration pipeline.

5. A section linking back to section users:3.

6. A section describing the steps NAML takes to process a dataset.

7. A section describing potential installation issues.

The documentation was pruned to remove extraneous sections like developers:1 and

developers:5. This streamlined the documentation for easier user interaction. The users section

and developer section should not have been distinct. The section users:2 was more appropriate

for a backend maintainer of the tool, while the sections developers:3 and developers:7 needed to

be accounted for in the general users section since the tool may need to be installed by both users

and developers. In order to fix this, the documentation was separated into the following sections:

NAML Background

1. General README, describing the rationale behind NAML.

2. The NAML Tech Stack, a brief working description of

3. NAML Datasets, describing the type of data used and the requirements.

4. NAML Config Files, what needs to be written to run a job.

5. Previous Work, linking to prior MQP work.

NAML Installation

1. Prerequisites, a description of the needed prerequisites for installing NAML

2. Installing Docker, a description of the install process for Docker on Windows, MacOS

and Linux.

20

http://brainex.wpi.edu:8090/docs/index.html
http://brainex.wpi.edu:8090/docs/readme.html
http://brainex.wpi.edu:8090/docs/installation.html

3. Installing NAML using Docker, the required instructions needed to be entered to install.

4. Accessing NAML Remotely, the server to access to run NAML

5. Configuring Docker, a section on changing resource allocation to Docker to increase

processing power.

6. Potential Installation Issues, the errors that may occur during the installation process.

NAML Developer’s Guide

1. Dockerfile, a section expanding upon the Dockerfile with annotated sections describing

how it works.

2. GitHub Continuous Integration, a section describing the GitHub Workflow used to

manage testing and reflecting changes on the server.

3. sktime Continuous Integration, describing the script used to manage sktime updates.

4. Environment Variables, a description of the variables needed to run the project and where

to get them.

5. Django Backend and React Frontend, talking about how the two connect to each other.

3. 3. Refactoring and Cleaning

The classifier mapping worked previously by identifying the classifier type, setting the

default parameters for that classifier, overwriting the parameters specified by the job

configuration, then running the classifier. This code was repeated for every classifier, adding an

overhead of 6 lines of code per classifier to the NAML.py file. By creating a dictionary of key

classifier names and values of a tuple containing the function call for the classifier and the

default parameters for the classifier, the lines of code are significantly reduced.

The code was also refactored to improve error handling and error feedback. The datasets

used by NAML must fit a strict format, and must have a consistent sequence length for all

21

http://brainex.wpi.edu:8090/docs/developmentguide.html

channels and sequences. If the dataset does not have this, obtuse numpy errors from deep within

the sktime library get thrown, making the issues very difficult to track. NAML was changed to

ensure that the error type is more clear and the user is provided with advice on what to change in

the dataset in order to make it work with the NAML structure.

22

Results
4. 1. Installation Requirements

There are now three prerequisites required to run NAML as a command line application:

1) a deploy key must be provided by a NAML administrator, authorizing cloning of the

repository, 2) the environment variables file must be provided by a system administrator to

complete the Docker build, and 3) Docker must be installed on the user machine. Documentation

governing the installation of Docker on Windows and Linux is provided in Appendix 3. These

instructions should leave users with a working Docker container, in which they can run naml.py

with existing test configuration files, or create their own. Two HCI lab members tested installing

Docker and NAML using the instruction files, one with Windows 10 and one with Ubuntu 16.04,

and both were able to run a simple test configuration file. If a user would like to use the NAML

application via web browser, instructions for launching the application’s frontend and backend

have also been included in the documentation provided at http://brainex.wpi.edu:8090/docs.

4. 2. Running Remotely

By connecting to the WPI HCI lab server via SSH, a user can run a working command

line version of NAML within the Docker container. The steps to run the container are identical to

that of the local container, however the Docker installation is already completed on the server,

and the Docker container is already built. Instructions are provided to update the Docker

container with a simple two-step process. This allows end users to skip all the installation setup,

simply run the container, activate the Conda environment, and start processing datasets.

Information on moving datasets into the container is provided in the documentation in [Appendix

Item].

23

http://brainex.wpi.edu:8090/docs

The Docker container on the server can also be accessed via web browser at the address

http://brainex.wpi.edu:3030. This link brings users to an updated web application built using

React and Django to run NAML commands on server hardware as opposed to a user’s local

hardware. More information on changes and improvements made to the user interface can be

found in section 4.6. End users can store configuration files on the server, create custom jobs

with varied parameters, and access sktime documentation. The user interface is designed to be

accessible to a researcher that may be uncomfortable working with command line applications

and seeks to keep users informed of options provided in creating a custom NAML batch job.

4. 3. Continuous Integration with sktime

On creation of the Docker container, a fresh installation of NAML is run using

install_script.sh in the root of the repository. This script creates two Conda environments.

NAML_dev is an advanced version of sktime using a Conda managed sktime module, where the

dependencies are automatically updated when the script is run. NAML_stable is a stable version

which copies the advanced environment and reinstalls sktime at the static version 0.10.1, with the

dependencies specific to that version. This allows users to attempt to use sktime’s improvements

as the library updates, while also providing a safe fallback to ensure the tool can still be used. If

there are any complications in the updating process, it’s a one line command to switch between

versions, `conda activate NAML_stable`. If the entire installation breaks during usage, the

Docker container can always be rebuilt as shown in the installation guide.

24

http://brainex.wpi.edu:3030

4. 4. Classifier Removal

As sktime has updated, it has dropped support for various algorithms. MrSEQL is one

such algorithm that was removed during the update cycle of sktime. MrSEQL was deprecated in

the sktime version 0.9.0 that removed Cython from the project, replacing its use with Numba, a

different python library focused on converting python into machine code for performance

increases. The justification for this change was that Cython caused a buggy installation when

used with sktime, and the distance measured and other previously implemented methods in

Cython were replaced with Numba versions [14]. Other removed algorithms are proximity based

algorithms such as ProximityForest, ProximityTree and ProximityStump all of which have issues

in their implementation, making them inconsistent. During testing of the algorithms, errors on

existing datasets while using default parameters were recorded, suggesting that removal would

be prudent to ensure all implemented classifiers offered in NAML are functional.

4. 5. Documentation

The documentation material for NAML uses Sphinx to build easily readable HTML

documentation out of both Markdown and reStructured Text files. The documentation structure

for NAML has been expanded to include a formal installation instructions section. All

documentation referring to removed features has also been removed. A list of supported

classifiers has been included. The goal of the documentation improvements is to move as much

as possible to the documentation packaged within the NAML repository, ensuring that future

maintainers will not have to search far for necessary documentation. By moving more

documentation into the repository, it is more likely that the documentation will change as NAML

25

matures further, allowing maintainers both a place to read documentation about existing features

but also to add documentation about features in the future during further work on the project.

4. 6. User Interface

The NAML user interface has been improved and extended as the application has been

made available on the url http://brainex.wpi.edu:3030. The application UI has been improved to

extend exposure of information to the user, featuring dynamic tooltips generated for each

classifier on implementation, and helper text provided on each classifier parameter. Classifiers

and their parameter configuration fields now stack vertically, allowing use of the user interface

on a half-width browser window. The CSV reader area of the interface has been replaced with an

explicit upload icon and solid border to improve readability.

26

http://brainex.wpi.edu:3030

4. 7. Tooltips

Figure 7: Sample hoverable tooltips are shown, providing further context to the button or text
field.

27

Tooltips are hoverable icons that provide a user with extra information when using a tip.

They have been implemented in the NAML user interface using Material UI InfoIcons. By

interacting with an InfoIcon, a user can hover for more information about the adjacent user

interface element. This allows for optional information display based on user need. Consistent

iconography allows users to identify where they can get more information on their tasks while

not cluttering the interface with unnecessary static text. The color of the icon indicates the type

of information the icon provides. Blue InfoIcons indicate an external link that provides more

information on the adjacent element, while gray InfoIcons identify hoverable text information.

This distinction is important because simple text is sometimes not enough to clarify the purpose

of the element. External tooltips are used to link to the API reference page for selected classifiers

comprising the NAML Batch Job [15]. When InfoIcons are unsuitable for describing the adjacent

element, as in the classifier parameter configuration, helper text can be used to provide a user

with more context to their actions.

4. 8. Helper Text

Figure 8: Helper text is provided under each tunable parameter TextField. For
max_ensemble_size, a short description was provided while for max_win_len_prop, “Refer to

Documentation” was shown instead. For save_train_predictions, the available options were
listed below to hint to users what valid input is.

28

The API reference page on the sktime website provides brief descriptors for each

classifier tunable parameter. These descriptions have been made more clear when able in helper

text provided below the parameter entry field. This helper text is generated from a parameters

dictionary provided in the classifier frontend implementation, where parameters can either have a

helpertext value provided or not, in which case the helper text defaults to “Refer to the

Documentation”. This “Refer to the Documentation” is used for some descriptions that would

either be too long or are too complex to condense without further context. A user may click on

the InfoIcon provided next to the classifier name selector to open a new tab leading to the API

reference page for that named classifier. Examples of classifier parameters that have been

reworded in helper text are “CPU Threads, -1 for all” for the n_jobs field. By changing the CPU

thread amount, it enables parallel jobs resulting in faster runtimes for classifier jobs. This helper

text is important for providing users with example options for fields that do not have obvious

parameters such as words or negative numbers in an integer field. By displaying the helper text

when able, a user does not always need to refer to another webpage, and can instead potentially

get necessary information without disrupting their NAML-based workflow.

29

Case Study
5. 1. Dataset Choice and Conversion

In order to demonstrate the opportunity afforded to WPI researchers by the easy to access

and use NAML tool, a case study has been performed on a dataset from the “fNIRS to Mental

Workload” dataset provided by Tufts University [1]. This dataset is composed of multivariate

time series data of a different format than the WPI datasets packaged and prepared for NAML.

This dataset requires conversion into a NAML-friendly state. This dataset serves as a very large,

openly available fNIRS dataset intended for researchers looking to benchmark classifiers. The

dataset also provides for consideration of changes by demographics, as the dataset comes with

rich demographic information about the participants involved in the experiments. The brain data

of 68 participants is provided in this dataset of varying sequence lengths and fidelity, and the

case study for this is on a specific subject at a set level of fidelity. By showing the effectiveness

of NAML on a dataset with this level of user demographics information, size, and multiple

channel measurement types, researchers can ask a variety of questions. In this case study, the

effectiveness of classifying between oxygenated and deoxygenated hemoglobin differently was

asked, but researchers could easily use NAML to compare classifier ensembles trained using one

subject and those trained on other subjects. The chosen file for this test is sub_1.csv, the readings

for the first subject in the trial, with a sequence time of five seconds and sequence length of 25

measurements. This provides 2143 evenly distributed events across four labels, 0, 1, 2, 3, which

is good for machine learning while also ensuring fast results for comparison between other

classifiers and parameters.

In order to convert the dataset to a NAML-friendly version, the datasets that NAML uses

and the dataset provided must be compared. A NAML dataset must have five feature columns:

name, event, channel, start time, end time, and at least one value column, indicating the time

30

series measurement at that moment. The chosen dataset for the case study featured ten columns,

eight of which were permutations of the brain region, the measurement type, and the blood

oxygenation concentration of interest. These are equivalent to different channels in the existing

NAML datasets. The next two columns are chunk and label. Label corresponds to the event

column of a NAML dataset. Chunk indicates a sequence, and the sequence length is 25. For each

chunk of 25 rows, the readings for each of the channels are appended as a new column, the

chunk number leads to the start and end times being generated. NAML is only concerned with

differing start times when identifying rows, so as long as the chunks start at unique times, this

will ensure that the dataset will be properly nested. Finally, a column will be added identifying

the name of the subject as “sub_1”.

By converting the dataset to something that NAML can process into an sktime compliant

format, the classifiers can be run on a channel by channel basis, allowing researchers to compare

the effectiveness of algorithms if channels are included or excluded, or compare many different

combinations of classifiers. An example chosen for this case study was comparing a base case of

running only one classifier on all channels independently, to running one classifier type on

oxygenated hemoglobin and another classifier type on deoxygenated hemoglobin. This would

allow researchers to take the provided dataset and examine the strength of individual features for

prediction. Classifiers were run with set random states to ensure results were reproducible.

Classifier jobs were run within the Docker container for NAML using the command line

interface for the application. Jobs were multithreaded when able using the n_jobs parameter. To

limit the amount of testing, the default parameters were used whenever multiple classifiers were

being compared. The tests were run on a Ryzen 7 5800X processor with 32 GB RAM inside of a

Docker container with a WSLconfig file allocating 16 GB and 8 processors to the container.

31

5. 2. The Test Configurations

In order to run the tests on the dataset for benchmarking accuracy values and amount of

time spent during the training of the classifier, a few test configurations were created. For certain

algorithms, the observed runtimes during the development and testing process of NAML

necessitated running overnight as the jobs would take hours to complete. These tests were

separated by expected runtime into two files. The benefit of separating the two allows for

indicating which classifiers may be best to tune parameters while the other classifiers may

require using multiple instantiations of NAML on separate hardware to obtain results promptly.

The configuration files used the default parameters with three exceptions, the n_jobs field was

changed to two, the random_state field was changed to one, and the number of splits was set to

three. By setting n_jobs to two, sktime classifiers were able to use multiple CPU cores,

decreasing runtime at the cost of higher resource usage. Instability was observed when running

sequential jobs with n_jobs set to negative one, which indicates usage of all cores. By setting

random_state to one, it allows for reproducible results. This will allow researchers wishing to

confirm the results to do so. The increased number of n_splits results in more test/train splits

which increases the precision of the accuracy values if the random state is changed, giving a

better idea of the true performance of the algorithm on the benchmark dataset.

32

Figure 9: This chart shows the results of a large group of Classifier Ensembles using the
ColumnEnsembleClassifier. The Classifier combination indicates that the first classifier was

used on HbO data while the second was on Hb data.

Classifier Accuracy Time Time in Minutes

STSF 89.08 1736.94 28.95

TSF + STSF 85.81 884.57 14.74

STSF + TSF 85.21 852.98 14.22

STSF + RISE 83.99 1215.3 20.26

33

TSF 83.86 130.54 2.18

TSF + RISE 80.45 435.86 7.26

TSF + TDE 76.34 9544.19 159.07

RSE + STSF 75.41 1198.05 19.97

RISE + TSF 71.16 369.47 6.16

RISE 62.44 624.06 10.4

STSF + ITDE 55.53 831.38 13.86

TSF + ITDE 55.16 110.17 1.84

STSF + IBOSS 54.92 861.21 14.35

TSF + IBOSS 54.88 113.94 1.9

IBOSS + STSF 51 929.14 15.49

ITDE + STSF 50.86 922.3 15.37

IBOSS + TSF 50.4 105.61 1.76

ITDE + TSF 49.7 105.46 1.76

CBOSS 45.96 7159.08 119.32

ITDE + RISE 42.79 350.34 5.84

IBOSS + RISE 41.39 348.22 5.8

ITDE 40.46 78.69 1.31

IBOSS 38.73 78.96 1.32

CBOSS + ITDE 38.59 3603.2 60.05

CBOSS + IBOSS 37.84 3607.61 60.13

ITDE + IBOSS 37.84 79.61 1.33

Figure 7: This table indicates the raw results of the ColumnEnsembleClassifers ensembles run in
Figure 6.

5. 3. Results

In total, twenty-six classifier combinations were run on the dataset, representing seven of

the total fourteen classifiers implemented in NAML, those being ContractableBOSS (CBOSS),

IndividualBOSS (IBOSS), IndividualTDE (ITDE), RandomIntervalSpectralEnsemle (RISE),

SupervisedTimeSeriesForest (STSF), TemporalDictionaryEnsemble (TDE), and

34

TimeSeriesForest (TSF). These classifiers represent most of the interval based classifiers and

dictionary based classifiers, allowing for comparisons in the efficacy between the two categories

as a whole while also provided finer grained information about performance within the dataset

when applying different classifiers to the oxygenated and deoxygenated hemoglobin data. In

Figure 6, the different accuracy values observed for the test and the runtimes associated with

them are shown. The first classifier shown on the horizontal axis on lines with two classifiers

joined by a plus sign indicates that that classifier was used on oxygenated hemoglobin data while

the second classifier was used on deoxygenated hemoglobin data. The classifiers are sorted by

accuracy.

The most successful classifiers observed were SupervisedTimeSeriesForest, and

ensembles of TimeSeriesForest when applied to oxygenated or deoxygenated hemoglobin and

SupervisedTimeSeriesForest applied to the opposite. The accuracies of these classifier

combinations were 83.86% and 85.81% respectively with runtimes of 2.17 minutes and 14

minutes respectively. This is an important part of NAML, as it was shown that using TSF on

each channel scored within 2.3% of TSF + STSF with a 6.77 times shorter runtime. This allows

for researchers to better allocate time on creating a more accurate model by choosing to change

TSF parameters to observe changes in the accuracy values as a first step since it has a far cheaper

runtime cost associated with it, allowing more jobs with varied parameters to be run in the same

time as it would take to run fewer STSF jobs. An extreme example of this is in the difference

between TSF + TDE and TSF + RISE. By switching the second classifier, similar accuracy

values were achieved at the cost of over two hours of runtime as opposed to under eight minutes

of runtime. Since writing the configuration files for this test is so simple, researchers can do an

investigative batch job, return at a later time and then determine which classifiers may be worth

35

investigating more.

The interval based classifiers tended to outperform the dictionary based classifiers, with

the exception of TemporalDictionaryEnsemble showing promise, but at extreme cost in runtime.

As it has similar accuracy when paired with TSF as RISE, which shows strong results when run

alone or in tandem with other classifiers, it was not pursued for further comparison due to the

significant time cost associated with it. After running these tests, the two most promising

classifiers, STSF and TSF were paired with other classifiers to identify differences in

effectiveness between the two across a large range of combinations to identify which classifier

improved the model accuracy of the ensemble more. This comparison type is possible due to the

reproducibility of results afforded by setting random_state. The four channels used with a

classifier such as IndividualBOSS will fit the same and the four channels fit by TSF and STSF

will be different because they are different classifiers.

36

Figure 10: STSF and TSF classifiers used with ensembles of IBOSS, ITDE, and RISE.

STSF beat TSF by slim margins in most comparisons. The highest increase in accuracy

came from using entirely STSF over using entirely TSF on all channels, however this only

yielded a six percent increase in classification accuracy. The increase in time spent running the

classifier was very noticeable, with STSF taking 13.27 times longer to run when used on all

channels. Since TSF is significantly faster to run than STSF, a researcher may decide that this

time cost is not worth it for tuning parameters if they are hardware bottlenecked, and they may

choose to pursue tuning TSF to try and get STSF accuracy without the STSF runtime. Replacing

TSF with STSF when using RISE on deoxygenated hemoglobin channels yielded a 4.4%

37

accuracy increase while replacing the two in other classifiers yielded a difference of fewer than a

percent.

Figure 11.A: This chart shows the difference
in observed classification accuracies and
runtimes when the classifiers are run on HbO
+ HbR data then swapped. The classifier of
interest in this chart was STSF.

Figure 11.B: This chart shows the difference
in observed classification accuracies and
runtimes when the classifiers are run on HbO
+ HbR data then swapped. The classifier of
interest in this chart was TSF.

When comparing the performance of classifiers when applying the same classifiers to

oxygenated or deoxygenated data, differences are observed. STSF and TSF were used to

compare the positions because they were the most effective classifiers, implying that they may

have a bigger impact if either channel group was more significant when determining the class

with the algorithm. This was shown to be the case, with STSF scoring between 7 and 11 percent

better classification accuracy when run on oxygenated data as opposed to deoxygenated data

with the exception of TSF. TSF also scored similarly with improvements on non STSF classifiers

between 8 and 13 percent. TSF outscored STSF when run on oxygenated micromolar

hemoglobin data by less than a percent, which is not a significant change.

38

5. 4. Summary

Using the NAML application, the performance of sktime classifiers on a high quality,

publicly available benchmarking dataset was observed in a convenient and easy to write way.

The dataset was converted into a proper NAML format following the process detailed in the

Dataset Choice and Conversion Section 5.1. Though the dataset at first glance looks very

different from a dataset packaged with NAML, the 2013e dataset, the process was simple and

easily repeatable by a researcher that understands the differences in formatting. Twenty five tests

were run on this dataset using the ColumnEnsembleClassifier feature of sktime that NAML

assembles using JSON configuration files. The ColumnEnsembleClassifier is ideal for this

dataset because it features a multitude of different channels and it allows for classifiers to be run

on a per channel basis as opposed to the results for all channels at a specific time being

concatenated. These tests featured multithreading when able to improve runtime and were run

sequentially on one computer. The tests also feature set random states to allow for

reproducibility, and three validation splits to increase precision in the accuracy results.

39

Future Work

Further improvements to NAML can be pursued. Allowing saving of models after the fit

step in the NAML pipeline would allow models trained on one participant to then be applied to

other participants in an experiment to see how effective models work from user to user. It would

also save time, as a computationally expensive model to fit on a large dataset with many

participants would not have to be retrained every time a new participant is added. Expansion of

the output from NAML to include a confusion matrix would show which events tend to be

misclassified by the algorithm, which may have value to researchers. Integration with other HCI

lab tools would increase potential for NAML, as a dataset could be mined with BrainEx then

examined in NAML. The ability to generate tests with varied parameters would allow

researchers to avoid having to click and add each parameter in the User Interface or manually

type each classifier out in a configuration file. The sktime library allows researchers to change

parameters for the algorithm very easily, and this ease is reflected in NAML, but giving users a

simple workflow where many different configurations of a chosen classifier can be tested and

examined may be very helpful to push researchers towards specific parameters over others.

40

Conclusion

Through the work on this MQP, the NAML application has been improved in multiple

ways. The application has been made very simple to install, run as a command line interface, or

deploy as a webapp. As the application is now in a Docker container, it is more portable and will

work on systems where Docker works. The installation process creates an advanced Conda

environment that features dependencies for the latest version of sktime and a stable Conda

environment that has been tested throughout this MQP and used in the case study presented in

this report. The user interface has been improved to expose more information to users within the

page, while also providing users easy access to external information such as the sktime API

reference page. The classifiers implemented have been curated to ensure that users only work

with functional classifiers. A case study has been performed showing the process a researcher

might take to select a dataset, convert it, and process classifiers on it during the use of the NAML

tool. The potential of the tool was demonstrated, showing the effect different classifier

combinations had on classification accuracy, as well as demonstrating the effect of running

classifiers on different features.

41

42

Works Cited

1. Huang, Z., Wang, L., Blanley, G., Slaughter, C., McKeon, D., Zhou, Z., Jacob, R., &

Hughes, M. C. (2021). The Tufts fNIRS Mental Workload Dataset & Benchmark for

Brain-Computer Interfaces that Generalize. Neural Information Processing System Track

on Datasets and Benchmarks. https://openreview.net/pdf?id=QzNHE7QHhut

2. Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., & Király, F. J. (2019).

sktime: a unified interface for Machine Learning with Time Series. LearningSys.

https://learningsys.org/neurips19/assets/papers/sktime_ml_systems_neurips2019.pdf

3. Ikram, F. (2019). NirsAutoML: Building an automated classification platform for fNIRS

data. : Worcester Polytechnic Institute.

4. Buntel, E. (2020). Brain Wave Analysis. : Worcester Polytechnic Institute.

5. Naseer, N., & Hong, K. (2015). Fnirs-based brain-computer interfaces: A review.

Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00003

6. John Hopkins Medicine. (2021). Electroencephalogram (EEG).

https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electroencephalog

ram-eeg

7. Google. (n.d.). Pyguide. Google Styleguide.

https://google.github.io/styleguide/pyguide.html

8. Atlassian. (n.d.). What is continuous integration.

https://www.atlassian.com/continuous-delivery/continuous-integration

9. Docker. (2021, October 5). Dockerfile reference. Docker Documentation.

https://docs.docker.com/engine/reference/builder/

43

https://openreview.net/pdf?id=QzNHE7QHhut
https://learningsys.org/neurips19/assets/papers/sktime_ml_systems_neurips2019.pdf
https://learningsys.org/neurips19/assets/papers/sktime_ml_systems_neurips2019.pdf
https://doi.org/10.3389/fnhum.2015.00003
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electroencephalogram-eeg
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electroencephalogram-eeg
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electroencephalogram-eeg
https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
https://www.atlassian.com/continuous-delivery/continuous-integration
https://www.atlassian.com/continuous-delivery/continuous-integration
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

Bagnall, T. (2021). sktime. Time Series Classification Website.

https://www.timeseriesclassification.com/sktime.php

10. Clements, M., Powell, J., & Nolan, A. (2021). BrainEx: Visual Exploration and

Discovery in Time Series Data. : Worcester Polytechnic Institute.

11. Kriesa, J. (2020, July 30). Docker index: Dramatic growth in docker usage affirms the

continued rising power of developers. Docker Blog.

https://www.docker.com/blog/docker-index-dramatic-growth-in-docker-usage-affirms-th

e-continued-rising-power-of-developers/

12. Tutorialspoint. (2021). Docker tutorial. Biggest Online Tutorials Library.

https://www.tutorialspoint.com/docker/index.htm

13. GitHub. (2022). Generating a new SSH key and adding it to the ssh-agent. GitHub Docs.

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-ne

w-ssh-key-and-adding-it-to-the-ssh-agent

14. Alan Turing Institute. (2021, October 18). [ENH] remove all use of cython, use numba

instead · Issue #1538 · alan-Turing-institute/sktime. GitHub.

https://github.com/alan-turing-institute/sktime/issues/1538

15. sktime. (2021). Multivariate time series classification with sktime — sktime

documentation. Welcome to sktime — sktime documentation. Retrieved October 6,

2021, from

https://www.sktime.org/en/stable/examples/03_classification_multivariate.html

44

https://www.timeseriesclassification.com/sktime.php
https://www.timeseriesclassification.com/sktime.php
https://www.docker.com/blog/docker-index-dramatic-growth-in-docker-usage-affirms-the-continued-rising-power-of-developers/
https://www.docker.com/blog/docker-index-dramatic-growth-in-docker-usage-affirms-the-continued-rising-power-of-developers/
https://www.docker.com/blog/docker-index-dramatic-growth-in-docker-usage-affirms-the-continued-rising-power-of-developers/
https://www.tutorialspoint.com/docker/index.htm
https://www.tutorialspoint.com/docker/index.htm
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://github.com/alan-turing-institute/sktime/issues/1538
https://github.com/alan-turing-institute/sktime/issues/1538
https://www.sktime.org/en/stable/examples/03_classification_multivariate.html
https://www.sktime.org/en/stable/examples/03_classification_multivariate.html

Appendix

Appendix. A. Classifier Table in sktime vs NAML

Classifier Classifier Family Implemented in NAML?

ColumnEnsembleClassifer
(CEC)

Composition Yes

IndividualBOSS Dictionary-based Yes

BOSSEnsemble Dictionary-based Yes

ContractableBOSS Dictionary-based Yes

WEASEL Dictionary-based Yes

MUSE Dictionary-based Yes

IndividualTDE Dictionary-based Yes

TemporalDictionaryEnsemble Dictionary-based Yes

KNeighborsTimeSeriesClassifier Distance-based No, There are issues
established with the move
away from Cython towards
Numba. Distance
measurements used in this
method are not converted
yet.

ElasticEnsemble Distance-based Yes

ProximityForest Distance-based No, There are issues
established with the move
away from Cython towards
Numba. Distance
measurements used in this
method are not converted
yet.

ProximityTree Distance-based No, There are issues
established with the move
away from Cython towards
Numba. Distance
measurements used in this
method are not converted

45

yet.

ProximityStump Distance-based No, There are issues
established with the move
away from Cython towards
Numba. Distance
measurements used in this
method are not converted
yet.

HIVECOTEV1 Hybrid Yes

Catch22Classifier Feature-based No, This was never
implemented in NAML
prior to this MQP and it
did not fall into the scope
of the project.

MatrixProfileClassifier Feature-based No, This was never
implemented in NAML
prior to this MQP and it
did not fall into the scope
of the project.

TFreshClassifier Feature-based No, This was never
implemented in NAML
prior to this MQP and it
did not fall into the scope
of the project.

SignatureClassifier Feature-based No, This was never
implemented in NAML
prior to this MQP and it
did not fall into the scope
of the project.

TimeSeriesForestClassifier Interval-based Yes

RandomIntervalSpectralForest Interval-based Yes

SupervisedTimeSeriesForest Interval-based Yes

CanonicalIntervalForest Interval-based No, This was never
implemented in NAML
prior to this MQP and it
did not fall into the scope
of the project.

46

DrCIF Interval-based No, This was never
implemented in NAML
prior to this MQP and it
did not fall into the scope
of the project.

ROCKETClassifier Kernel-based No, This was never
implemented in NAML
prior to this MQP and it
did not fall into the scope
of the project.

Arsenal Kernel-based No, This was never
implemented in NAML
prior to this MQP and it
did not fall into the scope
of the project.

ShapeletTransformClassifier Shapelet-based Yes

47

Appendix. B. NAML User Interface Guide

Section A. Batch Job Name and Data

A1. Job Name

This text field allows the user to name the test results that can get saved onto the server. Every
batch job will output some results on the results port detailed in Appendix B. E. E1. This
required field associates a name with those results should a user choose to save the batch job
output.

A2. Target Column

This field allows a user to select the column being predicted by the NAML models. Currently
this should not be changed from event, as the backend can not support it.

Section B. Upload CSV Data

48

B1. CSV Upload

This section allows you to click to initiate an upload dialogue for a CSV file. By dragging and
dropping a file into the outlined field, a user may upload that file to the server. The files should
be CSV files that have the required columns detailed in the associated MQP paper linked in
Background 2. 3. 3. These columns are name, event, channel, start time, and end time. These
columns may then be followed by separated time series values that fall between the start and end
time in any number of additional columns.

Section C. Configure Your NAML Batch Job

C1. Name Configuration

This textfield allows a user to name the configuration settings of the Batch Job. In Section
Appendix A the available classifiers are detailed. This name field allows a user to load an
existing configuration or save a new configuration as a configuration of the given name for later
retrieval.

C2. Test Config Name

This textfield allows a user to search for an existing named configuration and load it into the
NAML UI application fields in Appendix B. D. D1 and Appendix B. D. D2

49

C3. Logging Enabled

This checkbox makes the server log the data from the NAML core process and save a log file for
later examination.

Section D. Batch Job Classifiers

D1. Oversampling

This yes or no dropdown menu allows a user to select if oversampling will be done for a given
method. Oversampling is the process by which underrepresented classes of results in the test
subset of the dataset are repeatedly sampled in order to balance the appearance of each class for
training an accurate model. This is a good option if you have a large number of one class and a
small number of another class of event.

D2. Classifier

This dropdown box opens a menu of all supported classifiers of NAML. These classifiers will
then allow a user to change parameters depending on the algorithm. BOSSEnsemble for example
is pictured below.

50

Changing these parameters will send them to the NAML Core backend where they will change
how the model is trained. For a detailed list of parameters, see the InfoIcon next to the Classifier
Name, which will link to the sktime documentation for that classifier.

D3. Plus Button

NAML Batch Jobs may consist of many classifiers that run in sequence. The Plus Button allows
a user to add another classifier to their batch job. To remove a classifier, a user may press the
Minus button that appears upon click of the Plus Button. The Minus Button appears at the
bottom of the classifier parameter list.

D4. Run Batch Classifier Job

This button allows a user to send their batch job configuration to the server and run it using
NAML Core. The output of the results can be seen in Appendix B. E. E1.

D5. Save Config to Database

This button allows a user to save their configuration to the database under the name specified in .
This is useful if a user has created tuned parameters to observe changes as it can reload them
much faster than individually setting each.

51

Section E. Results

E1. Results Port

This is the main output area for Batch Classifier Jobs, for each classifier, it will report on the
Classifier Name, Oversampling value, a list of parameters as set in the Classifier Parameters
section shown in Appendix B. D. D2, an accuracy value showing what percentage of events were
properly categorized, and total time in seconds. A delimiter line separates classifiers.

52

E2. Save Test to Database

This button will allow a user to save their result in the database for later retrieval or processing.
This would be useful if a user is tuning parameters and needs to compare a set of tests.

E3. Download Result

This button allows a user to download the results to a text file on their computer. The textfile is
of the same format shown in Appendix B. E. E1

Section F. Header

F1. Help

This button links a user to this document to review NAML UI functionality.

53

F2. About

This button allows a user to view the contributors to the project as well as a brief description of
the NAML project.

54

Appendix. C. NAML Installation Guide

NAML Installation

Windows

Step 1 : Windows Docker Prerequisites

Official Docker Windows Install Instructions : https://docs.docker.com/desktop/windows/install/.

Docker Desktop Install:
https://desktop.docker.com/win/main/amd64/Docker%20Desktop%20Installer.exe (link copied
from link above).

Prerequisites:

● Windows 11 64-bit: Home or Pro version 21H2 or higher, or Enterprise or Education
version 21H2 or higher.

● Windows 10 64-bit: Home or Pro 2004 (build 19041) or higher, or Enterprise or
Education 1909 (build 18363) or higher.

● Enable the WSL 2 feature on Windows. For detailed instructions, refer to the Microsoft
documentation.

● The following hardware prerequisites are required to successfully run WSL 2 on
Windows 10 or Windows 11:

○ 64-bit processor with Second Level Address Translation (SLAT)
○ 4GB system RAM
○ BIOS-level hardware virtualization support must be enabled in the BIOS settings.

For more information, see Virtualization.
● Download and install the Linux kernel update package.

Prerequisites explained

1. Check your windows version by typing run in the windows search dialog, opened by
clicking the bottom left corner windows icon.

2. Type in winver in the run dialog box and press enter.

55

https://docs.docker.com/desktop/windows/install/
https://desktop.docker.com/win/main/amd64/Docker%20Desktop%20Installer.exe
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://en.wikipedia.org/wiki/Second_Level_Address_Translation
https://docs.docker.com/desktop/windows/troubleshoot/#virtualization-must-be-enabled
https://docs.microsoft.com/windows/wsl/wsl2-kernel

a. If your version exceeds the required versions then you can continue with
installation.

b. If your version does not exceed the required versions, you must do a windows
update. Do this by typing in the Windows search bar Windows Update and
following the dialogue from that link.

3. To enable the WSL2 Feature on Windows, follow the instructions in this link
https://docs.microsoft.com/en-us/windows/wsl/install-win10.

4. To enable BIOS visualization, you must enter your BIOS menu on computer startup.
a. To enter the BIOS menu, you must enter a key on computer startup. This key is

different for different motherboard vendors, however F2 is a common one. On
computer startup it should display this key so look for it on the splash screen
when you restart your computer.

i. Look for a section in the bios entitled Virtualization Technology or
something to that effect (it is vendor specific) and turn it on.

5. You must make sure to enter the Turn Windows Features On or Off dialog menu.

56

https://docs.microsoft.com/en-us/windows/wsl/install-win10

6. Turn on Windows Subsystem for Linux, Hyper - V and Virtual Machine Platform.

57

7. In elevated windows command prompt, run the command

58

bcdedit /set hypervisorlaunchtype auto

Step 2: Installing Docker

1. Download the Docker Installation executable and run it after ensuring the prerequisites
above are completed.

Step 3: Installing NAML

1. Clone the NAML repository from https://github.com/WPIHCILab.
2. Navigate to the root of the cloned directory.
3. Run the command : “ git checkout docker-integration “
4. Open the Docker Desktop Application.
5. Copy the NAML_ssh file included in the email and place it in the root directory of the

cloned repository.
6. Open Powershell and navigate to the root of the cloned directory.
7. Run the command “ docker build -t naml . ” in the root.
8. Navigate to the images tab of the Docker Desktop application.

9. Select the image named naml and click run.
10. In the optional settings, add the name naml and click run.

59

https://github.com/WPIHCILab

Step 4: Running NAML

1. Enter the docker container named naml by hovering over the container and clicking the
terminal icon.

2. When in the CLI, type the following commands
a. /bin/bash

60

b. conda activate NAML
c. cd ~/NAML/naml_backend/naml_django/naml
d. python naml.py configFiles/column_ensemble_example.json

3. Congratulations! You have successfully executed a NAML job.
Linux

Step 1: Installing Docker

1. Installing for linux has instructions provided by Docker that are version dependent.
Navigate to this link https://docs.docker.com/engine/install/ and click on the side bar
where it says installation per distro and follow those instructions according to your distro.

Step 2: Installing NAML

1. Clone the NAML repository from : https://github.com/WPIHCILab.
a. If you do not have git follow this :

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
2. Navigate to the root of the cloned directory.
3. Run the command : “ git checkout docker-integration “ in the root of the cloned

directory
4. Run the command : “ sudo systemctl status docker “

a. If active, continue.
b. If not active, run : “ sudo systemctl docker start “

61

https://docs.docker.com/engine/install/
https://github.com/WPIHCILab
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

5. Copy the NAML_ssh file included in the email and put it in the root directory of the
cloned NAML repository.

6. Run the command : “ docker build -t naml . ” in the root.
7. Run the command : “ docker run -t naml “ while still in the root directory

Step 3: Running NAML

1. When in the naml Docker container terminal after step 2.7, type the following commands
a. /bin/bash
b. conda activate NAML
c. cd ~/NAML/naml_backend/naml_django/naml
d. python naml.py configFiles/column_ensemble_example.json

2. Congratulations! You have successfully executed a NAML job.

62

