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Abstract 

The purpose of this Major Qualifying Project (MQP) was to create a successful methodology for a 

calcined eggshell biodiesel reaction and apply the same methodology to other forms of natural calcium 

carbonate, such as clam shells, seashells, and snail shells. This was achieved through troubleshooting steps 

that compared the effect of catalyst mass, mixing environment, calcining conditions, and methanol vs. 

ethanol on the biodiesel production process. The methodology that worked best for the egg shell reactions 

was then applied to other catalysts in a scaled up reaction.   

                  The catalysts being considered were calcium oxide and calcined calcium carbonate, clam shells, 

seashells, and snail shells. All catalysts passed the majority of qualitative 3/27 tests proving that to some 

extent these catalysts allow a reaction to occur. It was hoped that these catalysts would be a more 

economical alternative to the common alkali metal catalysts, but on a one liter scale the calcining costs 

alone in the oven available prove to be more expensive than the catalyst. There were also concerns 

considering large scale production due to the difficulty associated with separating the biodiesel product and 

cleaning the equipment.   

                  As it stands, using calcined calcium carbonate catalysts is a reasonable small scale biodiesel 

production method, but further testing is needed to determine how it quantitatively compares to more 

traditional methods and what additional costs would be associated with scaling up.   
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Executive Summary 

Introduction 

 In recent years, the drive to become more environmentally conscious has led to the search for 

fuels with a lesser impact than traditional fossil fuels. One promising option is biodiesel, which is a diesel 

like fuel derived from biomass. Biodiesel is a relatively versatile fuel to produce, as it can be derived from 

both plant and animal lipids. Past projects at WPI have explored the production of biodiesel with different 

reagents and catalysts. This project qualitatively explored the effectiveness and viability of calcium 

carbonate based catalysts, such as eggshells, clamshells, seashells, snail shells, pure calcium carbonate, 

and pure calcium oxide. 

 In the 1930s, scientists determined the transesterification process that is used for most 

commercial biodiesel production and the product is largely compatible with conventional diesel engines. 

The feedstock for biodiesel can be any type of triglyceride, usually in the form of plant oils such as 

canola, corn, peanut, or vegetable oil. The transesterification process, as shown in Figure 1, is typically 

catalyzed using an alkali metal hydroxide such as KOH or NaOH to produce fatty acid methyl esters 

(FAME). 

 

Figure 1: Biodiesel Transesterification Reaction 

 While alkali metal hydroxides are currently the dominant catalyst for biodiesel production, 

calcium oxide (CaO) catalysts are readily available from the thermal decomposition of CaCO3, commonly 

found in eggshells, sea shells, and snail shells. To create these catalysts, the source of the CaCO3 is heated 

to high temperatures in a process known as calcination, which decomposes the CaCO3 into CO2 and the 

desired CaO. Previous research has produced a process for eggshell preparation, which involves washing, 

blending, and calcining between 600-900˚C for ranges of 2.5-12 hours.  
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 Typically, methanol is used as a reagent to process the oils, but ethanol can be used as a safer 

alternative. Factors to consider when deciding between the use of MeOH and EtOH include price, safety, 

and energy potential. Although methanol is cheaper, it is more toxic and less energy dense than ethanol.  

Objectives 

The objects of this project were to:  

I. Develop a methodology for biodiesel reaction that uses calcined egg shell catalyst  

II. Replicate objective I with various natural forms of calcium carbonate, lab grade calcium 

carbonate, and calcium oxide 

Methodology 

 The first testing steps involved calcining the catalysts. For this project, calcining involved 

subjecting washed, crushed calcium carbonate based catalysts to 900˚C temps for 6 hours. This allowed 

the calcium carbonate catalysts to thermally decompose into calcium oxide.  

 The reactions took place in small (250 mL) and large (500ml) glass reactors maintained at 35˚C 

and stirred continuously. The reactants included 30 mL methanol, 75.2 mL canola oil and 10 g of catalyst. 

This reaction was allowed to proceed for 24 hours at constant conditions. Reactions with each catalyst 

took place in each reactor 3 times for a total of 36 runs.  

 The 3/27 test was conducted to qualitatively determine the purity of the biodiesel produced in the 

above reaction. 3 mL of the “biodiesel” sample was added to 27 mL of methanol. If the mixture 

separated, that meant there was still a large amount of triglycerides remaining in the “biodiesel”, which 

implied the reaction had not proceeded far enough. If the mixture was uniform, it meant the “biodiesel” 

had converted enough to probably meet quality standards and dissolve in the methanol.  

Results and Discussion 

 Prior to establishing the above methodology, a large period was spent determining the optimum 

procedures. During this time, experiments with both MeOH and EtOH were conducted using eggshells 

catalyst to determine whether a difference could be noted in their performance. It was found that EtOH 

did not consistently produce a biodiesel product and would therefore make test results less reliable, thus it 

was decided that testing would proceed with MeOH only. A well-defined ratio for the mixing of reactants 

was also developed.  

 Different environments for conducting the reactions were also tested. Reactions in an oscillating 

water bath, the larger self-contained reactors, and small beakers using stir bars were tested. The beakers 

and stir bars showed the best bench-scale results because they most effectively kept the reaction “well-
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mixed”, but it was decided that using the larger, self-contained reactors would provide a more controlled 

reaction space while properly mixing reactants. 

 Calcining methods were tested first on eggshells between 400 and 900 C and 4-12 hours. The 

results showed that 900C for 6 hours best calcined the catalyst.   

 Each other calcium carbonate based catalyst was reacted and tested 6 times; 3 times in both the 

small and large sized reactor. The calcium oxide was unique as it did not require any calcination as it was 

already in the desired state. The calcium oxide performed well, passing in all 6 of the tests. The calcium 

carbonate was tested in the same way following calcination. It had the worst results of any of the 

catalysts, passing the 3/27 test 4 times and failing twice. It is worth noting, however, that the catalyst in 

failed tests was calcined over two weeks prior to their usage in the testing, alluding to a time criterion for 

catalyst usage. Clamshells were calcined generally whole and then crushed following the calcining 

process. They displayed 4 passes, 1 near pass, and 1 fail. The testing displayed a preference for the larger 

vessel, as both the near pass and the fail occurred in the smaller vessel. The seashell testing very closely 

mirrored the clamshell testing with 1 failure in the large reactor and 1 near pass in the small reactor. The 

other 4 tests resulted in passes. The calcining of the snail shells resulted in a color change from brown to 

white. For the testing, 5 of the 6 passed with the only failure occurring in the large reactor. Overall, these 

tests qualitatively indicate that when properly calcined any of the calcium carbonate based catalysts can 

work in the production of biodiesel.  

 Cost analyses on both a small and large scale were conducted in order to determine if there was 

economic potential in the utilization of these materials. For the small scale, the alkali metal hydroxides 

handily beat the calcium carbonate based catalysts due to cost of calcining and cost of purchase. This 

largely holds up within the large scale cost analysis as well. However, it it worth noting that the calcium 

carbon based catalysts have the potential to be reused, leaving the possibility that they could be more cost 

effective over a greater period of time.  

Conclusion 

 Unless there are specific incentives or the catalysts prove themselves to be extensively reusable, 

the catalysts are less cost efficient as their conventional competition. Additionally, the calcium carbonate 

based competition raises new issues with manufacturing, separation of product, and cleaning of 

production equipment.  
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Introduction 

As fossil fuels become increasingly scarce and their impact on the planet becomes evident, 

alternative energy sources become more appealing but necessary to ensure our future. Fossil fuels are 

responsible for 98% of annual carbon emissions, encouraging not only the pursuit of energy sources that 

are both more efficient and less environmentally impactful. Biodiesel is a promising energy source because 

it is nonflammable, biodegradable, and nontoxic (Balat, 2010). This alternative also has significantly fewer 

emissions when burned in comparison to petroleum based energy sources. Compared to regular diesel, 

biodiesel contains a higher level of oxygen and lower levels of nitrogen and sulfur, thus releasing fewer 

toxins into the air during combustion (Tica et al., 2010). Biodiesel is a viable energy source not only for 

developed countries but also for their less developed counterparts as their greater land availability, lower 

labor costs and favorable climates all lend themselves to biodiesel production (Balat, 2010).    

Biodiesel fuels have been successfully incorporated into petro diesel blends used by vehicles in 

many countries, including Germany, France, and Brazil. These blends include 5%, 20%, and 100% 

biodiesel by volume, and are named B5, B20, and B100 corresponding to these compositions (Janjuan, 

Ellis, 2010). Blends up to B20 can be used in almost all diesel equipment with few to no engine 

modifications being necessary. Higher blends, such as B100, can be used in many pieces of diesel 

equipment after minor engine modifications. (Balat, 2010).   

Raw materials for biodiesel production come from a variety of sources. Current research focuses 

mainly on ethanol production derived from major crops. The most widely studied crops used for this 

purpose are corn, sugar cane, and soybeans. These crops serve as the raw materials for ethanol that is 

eventually used as a gasoline additive. While their established infrastructure and proliferation of academic 

resources on the subject make these crops an excellent option, soil resource depletion, water requirements 

and availability, and the diversion of agricultural and food resources in the face of food shortages around 

the world discourage large scale biodiesel production by these means. Algae is another possible source of 

biodiesel that is being researched. Oil and alcohol can be produced by and extracted from algae to then be 

converted into biodiesel. However, the oils that are harvested are not always stable, resulting in a product 

that cannot be used as an energy source (Lin Chen, Wei Zhang, Xiaolin Chen, 2011). The complexity and 

relatively low yield of large scale bio-reactors to harvest algal products is a major inhibiting factor in 

producing biodiesel by this method. Biofuel production has yet to be perfected and many other options are 

being explored in order to find an alternative that can replace fossil fuels.     

Biodiesel is produced via an acid or base catalyzed esterification reaction of vegetable oil and 

alcohol, which is most commonly methanol. This Major Qualifying Project (MQP) explored several 

different methods of making biodiesel from canola oil such as with ethanol (EtOH) in place of methanol 

(MeOH) and various catalysts. The goal of this project was to qualitatively compare the effectiveness and 
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viability of various catalysts while also taking into consideration the hazard associated with certain 

materials used in biodiesel production. Different catalysts were explored with the hopes of seeing if a 

nontraditional catalyst such as calcined egg shell could produce a high quality biofuel. The development of 

a safe, easily accessible biodiesel catalyst could make biofuels much more practical around the world and 

decrease dependency on fossil fuels.  
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Background 

Biodiesel History and Relevance  

People have been trying to utilize naturally formed fuels for engine power since the mid-19th 

century. These fuels were largely derived directly from the plant oils with little to no processing involved. 

This did not change until the 1930s when Belgian scientists discovered the transesterification process that 

allows for biodiesel as it is known today. (History of Biodiesel Fuels, 2016) Biodiesel enthusiasts have long 

found that biodiesel is similar enough to petroleum derived diesel to be used in most conventional diesel 

engines. Many European nations now mix biodiesel with regular diesel fuel as a way to reduce foreign oil 

dependence. Biodiesel is commonly available in 5%, 20% and 100% variants. Since 1993, nearly all new 

diesel vehicles have been made compatible with 100% biodiesel fuels, commonly known as B100. 

However, recent additions to certain vehicle lines of a diesel particulate filter (DPF) have made some 

vehicles incompatible with pure biodiesel requiring lower percentage mixtures.  

In recent years there has been increased exploration of green, low cost biodiesel production 

methods. This area of study ranges from alternative catalysts to varied temperatures and pressures to the 

use of waste vegetable oil. One representative study used egg shell catalyst to produce biodiesel from waste 

cooking oil at ambient temperature and pressure without any esterification treatment of the oil (Piker et al, 

2016). The study demonstrated a 97 weight percent yield of fatty acid methyl ester as well as the ability to 

reuse the egg shells for 5 cycles (Piker et al, 2016). This unorthodox process inspires further investigation 

of alternative biodiesel production methods. 

 

Biodiesel Reaction  

Biodiesel can be produced from a multitude of products including vegetable oil, waste cooking oil, 

and animal fats. The starting materials can be produced indefinitely, thus production of biodiesel is more 

favorable from a sustainability standpoint than petroleum diesels (University of Strathclyde, n.d.).   

Biodiesel is the product of a triglyceride that has undergone transesterification. Although there are 

several methods of transesterification for biodiesel purposes, the most common is base catalyzed 

transesterification, which is the reaction method used throughout this study. The most common form of 

biodiesel production is illustrated in Figure 1, which summarizes the reaction of vegetable oil with methanol 

in the presence of NaOH or KOH to produce fatty acid methyl esters (FAME) and crude glycerol. Due to 

the difference in densities, the glycerol can be removed by phase separation if left undisturbed in a 

separating flask (University of Strathclyde, n.d.).  
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Figure 1: Biodiesel Transesterification Reaction 

 

Although there were many potential variables to be studied in this process, this MQP considered 

the use of EtOH in place of MeOH and calcined sources of calcium carbonate (CaCO3) in place of the alkali 

metal catalyst as a means to make the production of biodiesel safer and less expensive.  

 

Relevant Major Qualifying Projects 

Biodiesel studies and production are nothing new to WPI. A previous MQP developed the biodiesel 

reaction lab for the Unit Operations II class (see Appendix A). In this lab, students study the pseudo second 

order transesterification reaction and the effect of temperature on the reaction. MeOH and vegetable oil are 

used in a 6:1 weight percent ratio at 35°C using a KOH catalyst. Samples are removed from the reactor at 

timed intervals and tested for glycerol content using an enzyme assay to determine the extent of the reaction 

(see Appendix B). Due to the toxic nature of the MeOH in this reaction, the reactor is controlled by the 

laboratory computer (Clark, 2016).  

Although the computer helps eliminate some of the dangers of working with MeOH, studies were 

conducted in 2016 to compare the methanolysis reaction to a similar ethanolysis reaction. In both the 

methanolysis and ethanolysis reactions, “glycerol overshoot” was observed. This meant that the glycerol 

readings from the enzyme assay were higher than stoichiometrically possible. However, the “S” shape curve 

for time vs. Glycerol concentration was still modeled. The study also found that the calculated activation 

energy for methanolysis, 59.9 kJ/mol, and ethanolysis, 46.9 kJ/mol, fell within the literature values of 26.8-

61.5 kJ/mol and 3.4-51 kJ/mol, respectively. The main difference between using MeOH and EtOH is 

observed when comparing the mass transfer capabilities of the two reactions: unlike MeOH, EtOH is not 

limited by mass transfer, allowing the reaction to be less inhibited. It was concluded in this study that 

ethanolysis is favorable at higher temperatures and has a higher heating value relative to petroleum diesel 

(Boule, Gallagher, Zonfrelli, 2016).   
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Biodiesel Catalysts  

A number of catalysts exist to process vegetable oil into biodiesel. The one most often used 

commercially is KOH, although similar alkali metal hydroxides are used as well. These are useful due to 

their strong basicity, low cost, and relative abundance. They do have certain drawbacks however; at the end 

of the reaction, it is not economically advantageous to separate and recover the catalyst and it therefore 

must be neutralized out. Additionally, feedstocks with high concentrations of free fatty acids will readily 

consume the catalyst, leading to much higher catalyst requirements. Other catalysts include 1,5,7-

triazabicyclo[4.4.0]dec-5-ene (TBD), tertramethylammonium hydroxide (TMAH), as well as common egg 

shells that have been calcined to convert calcium carbonate to calcium oxide. Notable advantages of these 

catalysts include the ability to reduce unwanted side reactions (TBD), the ability to operate well in waste 

vegetable oil (TMAH), and the easy abundance of fresh material (egg shells). A major limitation with some 

of these catalysts is cost. While alkali metal catalysts are widely available and can be purchased cheaply 

for around $0.01/gram other catalysts like TBD cost approximately $12/gram, and TMAH costs over 

$6/gram. This makes TBD and TMAH roughly 5,400 and 2,700 times, respectively, more expensive than 

their alkali metal competition.   

Heterogeneous catalysts have been thoroughly studied in the context of biodiesel production. These 

catalysts are either acids or bases. Acids, while capable of esterifying rapeseed, or canola oil, require high 

temperatures and long reaction times for only relatively low rates of catalytic activity. In contrast, basic 

catalysts have shown high catalytic activities without the aforementioned limitations. Calcium oxide (CaO) 

is one such catalyst. It is well researched due to its advantages over KOH, namely its higher basicity, lower 

solubility, lower price, and greater safety (Lin Chen, Wei Zhang, Xiaolin Chen, 2011). Its catalytic activity 

is improved with calcination and pretreatment with MeOH. CaO is readily obtained by thermal 

decomposition of CaCO3. This allows use of natural sources of CaCO3 to decrease the material cost of the 

catalyst and therefore the cost of biodiesel production.  

 

Calcining 

The purpose of calcining is to heat and transform a chemical without the occurrence of fusion 

(Lenntech, 2017). In the case of CaO, calcining is used to oxidize the substance, specifically, as seen in 

Figure 2, converting CaCO3 into CaO and carbon dioxide (CO2) gas. It is important to note, however, that 

this reaction is reversible and exposure to CO2 runs the risk of turning the CaO back into CaCO3 

(Shakharhiri). Calcium carbonate is naturally abundant and is a major component of egg shells, seashells, 

and snail shells (Industrial Minerals Solution-North America). The forward reaction allows forms of 

naturally occurring calcium carbonate that often go to waste to be repurposed into a catalyst. Previous 
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studies have shown that calcining eggshells effectively oxidizes CaCO3 into CaO, which can then be used 

as a catalyst for the transesterification biodiesel reaction.  

 

Figure 2: Oxidation Reaction of CaCO3 
There are several ways to prepare egg shells for calcination, but all start with washing and rinsing 

the egg shells in water (sometimes more than once) to remove any impurities and unwanted materials, such 

as leftover shell membrane. After washing the egg shells, they must be dried between 100-105˚C for 

approximately 24 hours. Once they are dried, the shells are broken into smaller pieces. This can be done by 

simply crushing them, or they can be ground in a blender. While this is the end of egg shell preparation for 

some methods, others are more involved. These more thorough methods involve more heating and rinsing 

of the shell pieces. The additional heating helps transform the CaCO3 in the egg shells into CaO, the desired 

catalyst.   

In a study performed by Viriya-empikul et al, the egg shells were heated at 800˚C for 4 hours and 

then kept sealed until the biodiesel reaction was performed to avoid the egg shells reacting with the air 

(Viriya-empikul, Krasae, Puttasawat, et al). Niju et al performed several more steps to prepare their shells. 

After the initial heating, they calcined the egg shells at 900˚C for 2.5 hours. Next, the egg shells were 

refluxed in 60˚C water for 6 hours and dried at 120˚C overnight. Finally, the product was calcined once 

more at 600˚C for 3 hours to change the hydroxide form to oxide (Niju, Meera, Begum, Anantharaman). 

While more thorough preparation may yield a more effective catalyst, one run of calcination would be a 

more cost effective solution. One run of calcination would also be more time efficient, as it can be finished 

in less than a day after the initial drying.  

 

Use of Methanol vs. Ethanol  

MeOH is commonly used in biodiesel production, however, EtOH is a viable option as well. 

Despite being cheaper ($1 per gallon MeOH versus $1.60 per gallon EtOH), MeOH is less desirable due 

to hazardous properties such as its ability to cause blindness, vomiting, and if not used carefully, it can 

result in death. MeOH is irritating to the lungs and, when ingested, is metabolized to formaldehyde. When 

using MeOH, sodium hydroxide (NaOH) is often the catalyst of choice. However, the heat evolved in 

disolving NaOH in MeOH can cause the MeOH to boil, causing dangerous working conditions. (Rapier, 

2010).   
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Despite being more expensive, EtOH is easier to obtain as it is produced by the fermentation of 

corn and other foodstuffs. The plethora of vegetable oils also means there are minimal environmental waste 

disposal problems. The catalysts used with EtOH are safer and the reactions take place at room temperature, 

requiring no additional heating. Catalysts, such as alkali metal, are commercially available making them 

easy to purchase and find. EtOH has a higher energy density than MeOH. 1 gallon of EtOH (E85) contains 

about 73-83% of the energy that is in one gallon of gasoline, while 1 gallon of MeOH contains 49% of the 

energy in the equivalent amount of gasoline. The energy content of E100 is 76,330 BTU/gal, and the energy 

content found in methanol is 57,250 BTU/gal. Another advantage to using EtOH is that its associated 

industrial practices are often similar or identical to those of conventionally fueled operations. Therefore, 

special lubricants are only sometimes necessary, but for MeOH special lubricants are always required. 

(Alternative Fuel Data Center, 2014). 
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Methodology 

Objectives 

The objects of this project were to:  

III. Develop a methodology for biodiesel reaction that uses calcined egg shell catalyst  

IV. Replicate objective I with various natural forms of calcium carbonate, lab grade calcium 

carbonate, and calcium oxide 

 

The first objective for the project was to develop a repeatable method for testing CaCO3 based catalysts. 

Egg shells were the most studied catalyst found and were thus chosen as the base case. Several conditions 

were studied and evaluated for this test including temperature, alcohol, method of agitation, and vessel. The 

evaluations can be found in the Troubleshooting section below.    

The second objective entailed utilizing the set conditions found in the first objective to test alternative 

catalysts to see if they performed similarly. This meant replicating the conditions from the egg shell trials 

and testing quality under similar conditions. This allowed for an objective assessment of the performance 

of these catalysts relative to the more studied egg shells.  

 

Introduction to Methodology 

Although there was eventually a uniform reaction procedure, several other methods for reaction 

environment, calcining procedures, and analysis were attempted. Stated below are the final methodologies 

for calcining, reaction, and analysis. Additionally, the troubleshooting section describes the path taken to 

achieve the final methods.  
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Calcining  

As previously discussed, calcining is the process in which CaCO3 converts into CaO. Catalysts 

such as CaCO3 (figure 3), egg shells (figure 4), seashells (figure 5), snail shells (figure 6), and clam shells 

(figure 7). A mortar and pestle was required for crushing the materials. A furnace (figure 8) capable of 

reaching 900ºC and holding for at least 6 hours was necessary for the calcining process to occur.  

 

Figure 3: Calcium Carbonate Before and After Calcining 

 

Figure 4: Egg Shells Before and After Calcining 

 

Figure 5: Seashells Before and After Calcining 

 

 

Figure 6: Snail Shells Before and After Calcining 
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Figure 7: Clam Shells Before and After Calcining 

 

Figure 8: Furnace  in Goddard Hall 

Procedure 

1. Wash catalyst material to remove any unwanted material 

2. Dry catalyst for 10-15 minutes in 100ºC oven 

3. Crush catalyst material in mortar and pestle 

4. Place crushed catalyst in crucible. Use enough material to ensure approximately 60 g after calcining 

5. Place crucible in 900ºC oven 

6. Remove from oven after 6 hours and allow to cool in fume hood 

7. Cover once cooled to prevent reaction of catalyst with air 
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Reaction  

The reaction to produce biodiesel was done in a heated reactor with an impeller (figure 9) to 

maintain the reaction at 35C and proper mixing. The reaction was done with catalysts including calcium 

oxide and calcined catlysts such as CaCO3, egg shells, seashells, snail shells, and clam shells. The catalysts 

were run in the reactor with MeOH and virgin canola oil. 

 

Figure 9: Biodiesel Reactor in Unit Operations Lab 

 

Procedure 

1. Ensure all equipment is dry. Place crucibles and graduated cylinders in drying oven at 100ºC if 

necessary 

2. Set 250 mL reactor temperature to 35°C  

3. Using graduated cylinder measure 30 mL of MeOH and place in reactor  

4. Measure 10 g of catalyst and add to reactor  

5. Set impeller speed to 670 rpm 

6. Once catalyst is mostly dissolved in the methanol add 75.2 mL of canola Oil to the reactor  

7. Wait 24 hours for reaction to run to completion  

8. Remove product from reactor and place in separatory funnel 

9. Clean reactor chamber with MeOH (Use brush if necessary) 

10. Repeat steps 1-7 twice  

11. Repeat steps 1-8 in 500 mL reactor 
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3/27 Analysis 

 The reactions were qualitatively analyzed using a method referred to as 3/27 Analysis. This requires 

a 9:1 ratio of MeOH to reaction product. If there are two visible layers, that means the reaction still has 

unconverted tri-glycerides and the reaction was considered unsuccessful.  

Procedure 

1. Reactor products are placed in flask and covered for approximately 24 hours to allow phase 

separation via gravity  

2. 27 mL of methanol is pipetted into centrifuge tube 

3. 3 mL of the separated biodiesel product is removed from the top layer of flask and placed in 

centrifuge tube with methanol  

4. Centrifuge tube is capped and shaken lightly to allow complete mixture 

5. After 10 minutes the contents are observed to see whether two layers have formed 

 

Troubleshooting Steps 
The initial step before designing a procedure was to replicate the biodiesel unit operations lab 

experiment. This reaction took place in the same 500 mL heated reactor mentioned in previous sections. It 

involved mixing MeOH, canola oil, and KOH catalyst at 35ºC for roughly 2 hours. The final reaction 

procedure and glycerol assay procedure can be seen in Appendix C. The reaction was also attempted with 

EtOH in place of MeOH, where the same amount of EtOH and MeOH were used in their respective 

reactions.  

Bench-scale reactions were also done to find a proper reaction mechanism. The first tests compared 

an oscillating water bath seen in figure 10 to magnetic stir bars. The expected advantage of the oscillating 

water bath was the ability to run the reaction at 35ºC and not room temperature. Like the unit operations 

reaction, the bench-scale reactions were also done to compare MeOH and EtOH. Additionally, reactions 

were run with 0.5 g, 1.0 g, and 1.5 g calcined egg shell catalyst.  

 There were also comparisons of the calcining procedure to find a temperature and duration 

necessary to comvert CaCO3 present into CaO. To achieve this the CaCO3 was heated at high 

temperatures for certain periods. The first attempt to calcine egg shells was at 400°C for 6 hours. Further, 

the temperature was increased to 900°C for both 6 and 12 hours. Additionally, conversion was attempted 

using eggshells in bleach (NaClO) and eggshells in hydrogen peroxide (H2O2).  

 A summary of these reactions can be found in Appendix E.  
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Figure 10: Oscillating Water Bath 
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Results and Discussion 

Troubleshooting Steps 

Initial Unit Operations Reaction with Potassium Hydroxide Catalyst and Glycerol Assay 

Analysis 

The reaction was also done with EtOH in place of MeOH. However, the EtOH samples did not 

result in an obvious glycerol layer when put in the separatory funnel so visual qualitative analysis was not 

able to be completed. In addition, the assay proved to be particularly troublesome as it required very precise 

liquid measurements to determine how the concentration of glycerol changed over time. As this project 

progressed further from determining the kinetics of given reactions and more towards qualitative analysis, 

it was decided that the visual separation would suffice while working on the bench-scale egg shell reactions 

and the assay would not be used. Due to the evolution of this project throughout the course, the initial KOH 

reactions did not play a role in the final results; the results to these specific reactions can be referenced in 

Appendix D.  

At this stage of the project, it was determined that this methodology worked well for pre-established 

experiments, such as the unit operations reaction, but running at such high volumes and using the glycerol 

assay while trying to build a methodology for the egg-shell biodiesel production reaction would be wasteful 

and time consuming with unreliable quantitative results. The chosen amount of catalyst was derived from 

the series of tests on the bench top comparing 0.5 g, 1.0 g, and 1.5 g of calcined egg shell. Tests showed 

that 1.0 g allowed the reaction to yield the best results without excess of catalyst. 

 

Bench-Scale Calcined Eggshell Catalyst Reaction with Qualitative Analysis 

Oscillating Bath vs. Stir Plate with Magnetic Stir Bars 

When comparing the magnetic stir bar and oscillating water bath, the reaction only proceeded when 

using the stir bar. The stir bar had the advantage because the bar was inside the beaker during the reaction 

and allowed the catalyst to disperse throughout the mixture. The oscillating bath moved the beaker around, 

but the mixture stayed separated in its initial layers. In other words, the catalyst remained on the bottom of 

the beaker instead of mixing with the alcohol and oil. The egg shell catalyst tended to form its own layer, 

so one of the keys to running the reaction was ensuring the catalyst would interact with the reactants. 
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Use of Methanol vs. Ethanol  

The MeOH runs resulted in two different layers excluding the layer of catalyst at the bottom of the 

container while the EtOH runs resulted in no visible varying layers. Due to the lack of qualitative results, 

the experiments that followed were not done using EtOH. Additionally, EtOH had difficulty with CaCO3 

based catalysts.  

 

Mass of Calcined Eggshell Catalyst 

Each reaction with varying amounts of catalyst yielded similar qualitative results, producing 

comparable amounts of biodiesel. It was decided that 1.0 g catalyst would be the standard used throughout 

following experiments as it was equally effective to using 1.5 g with easier separation of product at the end 

of the experiment and found in literature. 

 

Calcining process  

The first attempt to calcine egg shells was at 400°C for 6 hours and yielded a product that was an 

ashy grey color indicating it did not fully burn off many organics present. Trials with the product showed 

it was not useful as a catalyst. Further, the temperature was increased to 900°C for both 6 and 12 hours. 

No detectable difference was found between the 6 and 12 hour times so the 6-hour time period at 900°C 

was adopted as the standard calcining process. Additionally, the attempts done using eggshells in bleach 

(NaClO) and eggshells in hydrogen peroxide (H2O2) did not show signs of desired product formation.  

 

Reasoning for Modifications to Unit Operations Procedure 

The catalyst material is washed in order to remove any organic material such as dirt or inner 

membrane (in the case of egg shells) and placed in an oven to remove any excess water remaining from 

washing. The catalyst material was crushed to improve surface area interactions and mixing during the 

reaction. Catalysts were calcined in an oven located in the fume hood then cooled in the fume hood to avoid 

any strong odors from the heating of the catalyst.  

The heated reactor was necessary to maintain a temperature of 35ºC as it is more favorable for the 

reaction kinetics. Although the initial troubleshooting eggshell reactions were done at 25ºC (room 

temperature) without regulation, it was observed during the Unit Operations lab that increased temperature 

allows the transesterification reaction to run to completion. The impeller allows for the reaction to keep 

conditions close to “well-mixed”. Even with the increased temperature, the reaction time was set to 

approximately 24 hours, as seen in literature, to ensure that the reaction will ran to completion. Testing in 

the 250 mL reactor and the 500 mL reactor was done to see whether or not the decreased surface area would 

affect the reaction extent.   
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Alkaline catalysts, such as KOH, are the most commonly used in this transesterification reactions; 

however, it is known that CaO works similarly as a catalyst for this reaction. Thus, this series of reactions 

examined CaO catalysts derived from various forms of naturally occurring CaCO3 including egg shells, 

seashells, snail shells, and clam shells as well as CaCO3 through calcining to examine if they will work as 

well as KOH.  

Following the biodiesel reaction, the reactor potentially contained the following: solid catalyst, 

methanol, glycerin, converted biodiesel, and unconverted and partially converted glycerides. In allowing 

the reactor products to sit, the mixture separated into two phases with the catalyst and glycerin forming one 

phase and the MeOH, biodiesel, and glycerides forming the top phase.  

For the 3/27 Test, a 3 mL sample is taken from this top layer. The test relies on the solubility of 

biodiesel, MeOH and monoglycerides in MeOH. The large amount is so no material gets saturated in the 

MeOH. The key is that while the above soluble components dissolve, unconverted di- and triglycerides 

form a separate phase at the bottom. The test is designed so that a clear (one phase) test should indicate that 

the biodiesel would typically pass quality control.  

 

Egg Shells  

The egg shell tests were completed on a smaller scale than the Unit Operations Reactor. These tests 

were run in 20 mL beakers using varying forms of alcohol, calcination procedures, and using an oscillating 

water bath or a stirring plate with a stir bar. The success or failure of the reaction was largely dependent on 

the mixing process employed. The first round of trials was conducted in an oscillating water bath where the 

temperature was set to 35°C. Although the amount of catalyst used was varied, the outcomes were 

consistent. Whether 0.5 g, 1.0 g, or 1.5 g of egg shell catalyst was used, the end product did not separate 

into 2 different layers (excluding the layer of catalyst) thus qualitatively concluding a reaction did not occur 

in any of the 6 beakers after 19 hours. The failure of this test run of the egg shell catalyst can be attributed 

to the water bath not stirring the catalyst as much as necessary for the reaction to occur. After these tests 

did not achieve the desired results, the exact same reaction was attempted but using a stir plate and placing 

a stir bar into the beakers. Although these reactions were run at room temperature, after 22-24 hours 6 of 

the 6 reactions using methanol resulted in 2 visible layers (again excluding the layer of catalyst). The 

catalysts for these successful reactions were all calcined at different times within a 9-day range and for 

varying durations but days and this did not have any effect on the completion of a reaction thus from these 

results it was concluded that although the catalyst for the water bath tests sat for 7 days this was not a factor 

for the incompletion of the water bath reactions.    

Stir-bar tests were also conducted using ethanol opposed to methanol and varying the calcination 

process of the catalysts used in methanol. The ethanol tests had the same procedures as the tests using 
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methanol but had different outcomes. All 4 solutions using ethanol did not separate into two distinct layers. 

As previously mentioned, the amount of time the catalyst sat was not taken into consideration as a factor in 

the completion of the reaction, thus concluding that ethanol in this case was not ideal for making biodiesel. 

Moving forward from these results, ethanol was not used with any other catalysts due to its lack of desired 

biodiesel production. Other inconclusive tests were completed using different calcination processes. In 

these trials, the eggs were placed in bleach or peroxide and allowed to soak for a day. These eggs were then 

removed and rinsed, they were not however, calcined using heat. It was hoped the chemical treatments 

would calcine the egg shells. After allowing the 4 reactions (2 bleach, 2 peroxide) to run for 27 hours, all 4 

solutions that resulted, although having two visibly different layers, did not contain biodiesel. The two 

layers clearly presented the separation of the methanol from the canola oil. It was concluded from these 

tests that the bleach and peroxide calcination process did not properly convert the egg shells into CaO 

resulting in a product that did not contain biodiesel. A summary of these reactions and pictures can be seen 

in Appendix E and Appendix F, respectively.  

 

X-Ray Powder Diffraction 

 

Figure 11: Egg Shell XRD 
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Figure 12: Calcium Oxide XRD 

 

Figure 13: Clamshell XRD 

 

Figure 14: Calcium Carbonate XRD 
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Figure 15: Seashell XRD 

 

Figure 16: Snail Shell XRD 

 

Figures 11 through 16 were obtained through the technique of x-ray powder diffraction (XRD). 

This technique is used to identify crystalline material or provide information on unit cell dimensions. D-

spacing can be determined using the Bragg’s Equation and each material has specific d-spacing. The space 

between the diffracting planes of the atoms is what determines or leads to the peaks in the graphs. From 

these graphs you can see the similar peaks, for example none of the peaks split. The peaks are of comparable 

heights and widths. Any differences could be attributed to differences in the arrangement of their lattices 

or variations of crystallite size. 
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Table 1: Presence of Compounds other than Calcium Oxide retrieved from Jade 9 Software 

 CaO CaCO3 Ca(OH)2 C2Ca C2H2O4I2H2O 

Egg Shell X X X   

Calcium Oxide X  X   

Calcium 

Carbonate 

X  X  X 

Seashells X X X   

Clam Shells X    X 

Snail Shells X  X X  

  

From the Jade 9 software, results showed the chemical composition and content percentage of the 

different samples. This is a search and match software. Observed were nearly identical peaks that were 

formed when all the given materials matched with CaO. The different samples matched with other 

materials. Eggshells and seashells matched with CaCO3. While CaCO3 and clamshells matched with 

hydrogen oxalate hydrate (C2H2O4I2H2O). Eggshells, seashells, CaCO3, snail shells, and CaO all matched 

with Ca(OH)2. Lastly, snail shells were the only to match with calcium carbide (C2Ca). Most of the different 

calcined materials had different percentages due to having slightly different make-ups, however, egg and 

seashells were identical in make-up as well as percentage. A summary of these results can be seen in Table 

1. A reason for the presence of compounds other than CaO as would be expected could be due to the time 

the powders were allowed to sit after calcination. Interaction with the air is a possibility for the impure 

CaO. 

 

Calcium Oxide 

The CaO tests were unique in that the powder required no preparation; this meant that there was no 

waiting period due to calcination. All six trials passed. The point of calcining the other catalysts was to 

produce CaO, so it stands to reason that lab grade CaO would perform well. The calcination reaction is 

reversible, so exposure to the air will convert CaO back to CaCO3. Due to the tight seal on the container 

and the nonexistent wait time, there was virtually no risk of the CaO reacting with the air. Another 

advantage of not calcining the CaO was mass loss. The various forms of CaCO3 all lost some mass through 
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the calcining process, so additional catalyst would be required to achieve the desired amounts. This issue 

is not present with pure CaO, so all purchased catalyst could be used for reactions. 

 

.  

 

Figure 17: Calcium Oxide 3/27 Tests (Top Row Small Reactor, Bottom Row Large Reactor) 

 

Calcium Carbonate 

The calcined CaCO3 tests made a few considerations apparent. At face value, this test arguably had 

the worst results with two failures and only four passes. There are, however, possible explanations for this. 

(1) The failures all occurred when the reaction took place in a large reactor. This could imply that the 

reaction was not well-mixed or the heat was not distributed evenly enough for a complete reaction to take 

place. However, this trend did not occur for other catalysts.  (2) The reactions failed due to length since the 

catalyst had been calcined. The catalyst used failed reactions were calcined 16 and 17 days opposed to 1, 
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7, 8, and 9 days for the "passed" reactions. This is significantly longer than another catalyst sat. This can 

be attributed to two things: the catalyst degrades over time or the catalyst was exposed to water and CO2 

and converted back to CaCO3. It is believed that the age of catalyst had more to do with these failures than 

reactor size, and future tests should be done to determine what can be attributed to the aging process. 

 

 

Figure 18: Calcium Carbonate 3/27 Tests  (Top Row Small Reactor, Bottom Row Large Reactor) 

Clam Shells 

For the clam shells, the calcining process yielded a product that was largely still in the shape of the 

original clam shell chunks. They had turned white and begun to flake apart. They were soft however, and 

easy to grind in the mortar and pestle. The results of the testing yielded one fail and one near pass among 

six tests. The fail and near pass both occurred during the testing in the smaller vessel with the larger vessel 

exhibiting all passes.  
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Figure 19: Clam Shell 3/27 Tests (Top Row Small Reactor, Bottom Row Large Reactor) 

  



 38 

Seashells 

The seashells were broken into approximately quarter-sized pieces before being calcined. After 

calcining, the shells mostly kept their shape with some flaking apart. The shells required much more effort 

in reducing them to powder using a mortar and pestle than was required for the egg shells. In order to 

completely break down the calcined shells, only a small amount was placed in the mortar and pestle at a 

time. While powdering likely did not have an impact on the calcining process it was done prior to calcining. 

The results of the 6 biodiesel tests yielded only one failure in the large reactor and one near pass in the 

small reactor. The near pass, which corresponded to the first run in the small reactor, yielded a biodiesel 

product that was much more yellow than any of the other seashell products. The failure corresponded to the 

first run in the large reactor, although the remaining two trials in the large reactor were both successful. 

Trials 2, 3, and 5, corresponding to the second and third trials in the small reactor and the second trial in 

the large reactor, each displayed a cloudy, bubbly-textured film above the settled catalyst in the collected 

product.  

 

 

Figure 20: Seashell 3/27 Tests (Top Row Small Reactor, Bottom Row Large Reactor) 
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Snail Shells  

The snail shells color and hardness changed through calcination; originally a brown, hard shell, the 

shells turned white, flaked, and were easily crushed. The reactions using the snail shells were run in a large 

and small reactor simultaneously. From this, it would be presumed that the biodiesel resulting from these 

two runs, using the same MeOH, canola oil, and shells which sat exposed to air, should be identical. From 

these runs, 5 of the 6 passed. The failure was in the large reactor on the second trial day, with only 2 days 

between calcination and the start of the reaction. Due to the catalysts being the same and the reaction passing 

in the small reactor, the time the catalyst sat was not taken into consideration. Instead, possible explanations 

for failure could be the reactor not being completely, properly cleaned before use These reactions led to 

accumulation of old catalyst and possibly liquids within the reactor and if not all were flushed out during 

cleaning, it is possible these hindered the reaction. The liquid resulting from this failed reaction was 

different from those of the reactions that passed. It was cloudier, white liquid and bubbles seemed to be 

present while the other reactions all concluded with a clear yellow liquid. 

   

 

Figure 21: Snail Shell 3/27 Tests  (Top Row Small Reactor, Bottom Row Large Reactor) 
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Small Scale Cost Analysis 

It is not only important that these catalysts work, but that they are also less expensive than what is 

currently being used. Due to the scale of this project, the cost to produce only 1 liter of biodiesel was 

analyzed. Considered in this analysis were the costs of raw catalyst and calcining, but not universal costs 

such as jacket heating, impeller electricity, or MeOH and canola oil.    

Based on the 1800W output of the oven and the assumption that roughly 400g of uncalcined catalyst 

can fit in the oven for any given batch, it would cost roughly $3.89 to calcine 1kg of catalyst for 6 hours. 

However, it was observed that each catalyst experienced a loss of mass during the calcining process which 

resulted in different costs of electricity per hour. One element not added in this analysis is reusability which 

is an advantage the organically derived catalysts might have. As the products were difficult to separate and 

no techniques exist to do so easily it was not made a part of this analysis but could potentially make those 

catalysts more economic. Table 1 was developed using the prices paid for catalysts, electrical costs, and the 

equations available in Appendix F. It was determined that KOH is still by far the cheapest catalyst. Even 

for the catalysts that do not need to be purchased, like the eggshells, clam shells, and seashells, the electrical 

costs alone are still higher per liter of biodiesel than the cost of KOH. Notably, all the calcined catalyst 

loses between 40 and 50% of the mass through the process meaning even more catalyst would need to be 

purchased than anticipated. However, the fact that most retentions are in the same ballpark means that if 

purchasing costs are actually similar the prices will be more equivalent. Based on the numbers seen in Table 

1, eggshells, clam shells, and seashells are the most economical option that is not KOH, even when 

compared to the lab grade chemicals.  
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Table 2: Small-Scale Estimated Cost 

Catalyst  Catalyst 

Cost 

[$/kg]  

Catalyst lost 

Calcining 

[%]  

Catalyst per 

Liter MeOH 

[kg/L]   

Catalyst Cost 

per Liter 

Biodiesel 

[$/L]  

Electrical Cost 

per Liter 

Biodiesel [$/L]  

Total 

Cost 

[$/L]  

KOH  6.59  -  0.0175  0.01  -  0.01  

CaO  39.64  -  0.333  1.61  -  1.61  

CaCO3  13.23  41  0.333  0.92  0.27  1.18  

Eggshells  0.00  46  0.333  0.00  0.29  0.29  

Clam 

shells  

0.00  46  0.333  0.00  0.29  0.29  

Seashells  0.00  45  0.333  0.00  0.29  0.29  

Snail 

Shells  

123.02  47  0.333  9.50  0.30  9.80  

Importantly, this is a very rough estimate for pricing. There are more things that need to be taken 

into consideration when working in larger scales that could potentially lower or raise the price per liter. The 

benefit to working on this sort of scale is that it is reasonable to collect the naturally available catalysts. 

Finding a kilogram of eggshells or seashells is relatively reasonable for one or a few people to do because 

it can easily be a byproduct of personal consumption. However, as scale increases, this only gets more 

difficult and raises potential sourcing costs.    

  

Large Scale Cost Analysis 

The large scale cost analysis was done to determine the magnitude of difficulty in using alternative 

catalysts vs conventional catalysts (KOH, NaOH) for a mid to large size producer. For this analysis, a 

producer produces >100 liters of biodiesel a week. There are three main components where extra cost can 

be applied: sourcing, cleaning and preparation, and separation. Sourcing costs vary heavily on the size of 

the producer, with larger producers able to work with commercial partners to secure supplies at little to no 

cost as some catalysts are seen as waste products. Cleaning and preparation of the incoming catalyst 

material is likely to be the most expensive step in both capital investment and operation cost. While cleaning 

can be done to the extent as desired by the producer and is not likely to dramatically increase costs the 

calcining process will require an oven capable of 900ºC. This is likely the largest cost to any alternative 

system. Separation systems would involve holding tanks which would add some capital cost but minimal 

maintenance. They potentially are already involved in the conventional process and might not add any 
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additional cost. One cost saving measure is likely to be the reusability of the organically derived catalysts 

which do not need to be discarded after use unlike alkali metal catalysts. For firms looking to investigate 

alternative biodiesel manufacture it is recommended location selection be considered in detail as proximity 

to suppliers (food processing centers) and cheap energy could greatly reduce costs. 

 

Issues with Cleaning and Manufacturing 

One of the largest issues found with the testing was the difficulty of cleaning the glassware and 

ensuring proper mixing of the reactor. The CaO based catalysts would clump and settle out quickly, making 

emptying the reactor vessels, separating the products, and cleaning the glassware quite difficult.   

The reactor products were found to be impossible to forcibly separate. Centrifuging the products 

yielded a gel within the product which consumed most of the desirable biodiesel. This made using 

separatory funnels the best way to divide the products, but yielded new problems as the catalyst, once settled 

to the bottom of the separatory flask, would solidify and become lodged in the bottom.    

Once the testing was complete, the greatest issue found was the difficulty of cleaning out glassware 

and other vessels. When the catalyst was mixed with either the biodiesel or the unconverted oil, it formed 

a paste that was resistant to most solvents. Against soap, this paste would merely smear and spread. The 

best solution found for dealing with this was a mild (5-10% by volume) acetic acid (AcOH) bath. This 

generally dissolved the catalyst and allowed for easier cleaning of the glassware. Additional solutions were 

to cook off the reaction product in an oven and then soak in the bath for better cleaning.   

All of these issues pose significant challenges for mass production. The tendency to form deposits 

would make continuous agitation of solution a necessity. Separation issues would necessitate large 

separation vessels, which would accumulate material as the catalyst builds up. Lastly, cleaning out the 

separation and reaction vessels, would require potentially caustic chemicals, ease of access to internals, and 

regular maintenance time. The solution to these issues was not extensively researched however and could 

potentially be abated by other means.   
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Conclusion and Recommendations 

As seen in the Results and Discussion section, all of the calcined CaCO3 qualitatively produced 

biodiesel. The majority of the ‘failures’ can be accounted to other factors. Unfortunately, the 3/27 test is 

only a qualitative analysis. Although it proved calcined catalyst worked, there is no guarantee that it works 

to the same extent as the KOH reactions. Further testing needs to be done to compare how much biodiesel 

each catalyst is producing and exactly how much calcined CaCO3 catalyst is necessary. Due to the results 

of this project, it is recommended that a quantitative analysis be done; this could be done in a handful of 

ways: 1) using the previously mentioned glycerol assay analysis to determine how much glycerol is 

produced to calculate the extent of the reaction or 2) evaporating the alcohol off the product and measuring 

the volume of unconverted alcohol to calculate extent. Both accomplish the same goal, but the first option 

is better if the change in concentration over time is important. Additionally, either gas chromatography or 

high pressure liquid chromatography could be better methods if quantifying all of the reaction components 

is important, rather than just the biodiesel product.   

Although it was hypothesized that using calcined catalyst would be a cheaper alternative than the 

KOH catalyst, the cost of calcining alone is more than the cost of catalyst. Although recycling the catalysts, 

such as eggshells, seashells, and snail shells, would be a more environmentally conscious option, they could 

potentially be difficult to collect in bulk. Another major concern is that the equipment is extremely difficult 

to clean and the separation of biodiesel from catalyst and glycerol is very difficult. This does not lend itself 

to being mass produced. As it stands, using calcined CaCO3 works well in small scale, but using KOH is 

judged to be more practical for large scale.    
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Appendix  

A. Unit Operations II Lab Document 

Biodiesel Reaction Safety and Kinetics 

Renewable fuels such as ethanol and biodiesel are becoming increasingly popular alternatives to 

petroleum based fuels.  In this laboratory exercise, you will study temperature and mass transfer 

effects on the base-catalyzed transesterification reaction used to produce biodiesel from vegetable oil.  

In addition to studying the fundamental chemical engineering principles required to optimize the 

reaction, you will study the safety requirements for this process and gain experience with following a 

standard operating procedure and maintaining an electronic batch record.  

The overall reaction for production of biodiesel from vegetable oil using methanol is shown in Figure 

1.  When ethanol is used instead of methanol, three ethanol molecules react with the triglyceride to 

form 3 molecules of ethyl esters.                            

                           
                            TG (or O)     +     3 M                     G     +    3 BD                    

Figure 1.  Overall biodiesel production reaction [1].  

Vegetable oil is primarily composed of triglycerides with long chain aliphatic R groups of the form 

CH3(CH2)7CH=CH(CH2)7, but different types of oils have different amounts of saturated and 

unsaturated fats of various types in the R groups [2].  The methyl (or ethyl) esters, also called fatty 

acid methyl (or ethyl) esters (FAMEs or FAEEs), are the biodiesel products we seek.  The reaction 

can be either base-catalyzed or acid-catalyzed.  Vegetable oil can be burned directly but is not a good 

engine fuel due to its high viscosity.  Transesterification converts the high viscosity oil into 3 

biodiesel molecules with viscosity and other properties similar to those of petroleum diesel fuel [3]. 

 

The apparent simplicity of the process along with the readily available supply of waste vegetable oil 

from deep fry food preparation has given rise to a large number of small scale and “home brew” 

processors who usually use potassium hydroxide as catalyst.  As you will learn in this laboratory 

experiment, this base-catalyzed biodiesel process is neither particularly simple nor particularly safe.  

Methanol and ethanol are toxic and highly flammable. KOH is caustic and when mixed with 

methanol (or ethanol) forms an extremely dangerous potassium methoxide (or ethoxide) solution.  

Your first objective for the pre-lab exercise will be to obtain and read the MSDS information for 

KOH, methanol, ethanol, potassium methoxide, and potassium ethoxide.  You will need to write a 

brief discussion of the safety precautions required for handling and processing these materials and the 

safeguards we have included in the lab.  Your second objective for the pre-lab will be to locate (on 

the web or elsewhere) a report of an accident involving a fire with this process.  You will need to 

write a brief summary of the accident and a discussion of what could have been done to prevent it.  
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We have converted a 5 ft wide fume hood into a mini biodiesel pilot plant.  Our computer controlled 

reactor system consists of a 250 ml jacketed glass catalyst preparation reactor and a 500 ml jacketed 

glass process reactor connected to feed and product vessels and each other via peristaltic pumps [4].  

Sparkless and brushless overhead electronic stirrers are used to control and monitor the stirrer rpms 

and torque in each reactor.   A constant temperature is maintained with a separate temperature bath 

circulating water through the jacket of each reactor.  A third circulating temperature bath is used to 

circulate chilled water through condensers attached to each reactor vessel to minimize evaporation 

losses at elevated process temperatures.  Using a computer control panel outside of the hood to 

operate the process gives it the feel of a larger scale industrial process and minimizes some of the 

dangers from the hazardous and flammable materials involved.  

 

For a typical experiment, methanol (or ethanol) and vegetable oil are introduced into the catalyst prep 

reactor and process reactor, respectively, by computer controlled gravimetric dosing from feed 

vessels on electronic balances working together with the peristaltic pumps.  Once both reactors reach 

the target temperature, solid KOH catalyst is manually added and dissolved in the catalyst prep 

reactor.  The process reaction is initiated by pumping the contents of the catalyst prep reactor into the 

process reactor.  Samples are withdrawn from the process reactor at regular intervals and analyzed for 

glycerol content via an enzymatic assay to follow the reaction progress [5].  At the end of the 

experiment all samples can be analyzed at once using a 96 well plate reader at a wavelength of 570 

nm. The reactor system is washed with methanol (or ethanol) and allowed to air dry between 

experimental runs. The ReactorMaster software [4] that controls the process also collects data on each 

piece of equipment, allows for pauses to insert comments, and effectively keeps an electronic batch 

record of everything that happens in each experimental run.  You will be required to input comments 

into the batch record indicating that you have either performed or witnessed various aspects of the 

standard operating procedure as is often required in the bioprocess industry.   

 

As noted above, the biodiesel production process is more complex than it may seem from looking at 

Figure 1.  It has been observed that the production process depends on the type of oil used, the water 

and free fatty acid content of the oil, the type and amount of catalyst, the alcohol to oil ratio, and 

operating conditions such as temperature, pressure, and mixing rate [6, 7].  The methanolysis reaction 

is believed to involve multiple steps as indicated in Figure 2 where it can be seen that triglyceride 

(TG) is first attacked by the methoxide ion CH3O- (present in the basic KOH/methanol solution) to 

produce one biodiesel (BD) and a di-glyceride (DG).  The DG is next converted to a second BD and a 

mono-glyceride (MG).  Finally, in a third reaction step, the MG is converted to a third BD and 

glycerol (G).  Each of these reactions can be considered reversible, giving rise to a forward and a 

reverse rate constant for each of the three reactions.  Side reactions that produce soap (via 

saponification) instead of biodiesel often occur, especially if water is present in the mixture, but we 

will neglect side reactions in our analysis.  To complicate matters further, methanol and oil are 

essentially insoluble in one another requiring good stirring to bring them into contact.  The reaction 

mixture begins as two phases, then goes to one phase, and finally back to two phases because the 

glycerol and biodiesel are also essentially insoluble in one another.   This has caused many 

researchers to believe that the reaction cannot be properly modeled without understanding the phase 

behavior and droplet size changes that occur during the course of the reaction [8, 9].  Others have 

shown that in cases with sufficient stirring, experimental data can be modeled using only the 

reversible reactions shown in Figure 2.                            

  TG + M  < - >     BD + DG                     (1) 

  DG + M  < - >     BD + MG                    (2)                      
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        MG + M  < - >    BD + G                       (3) 

Figure 2.  Multiple step biodiesel reaction mechanism. 

 

For example, Vicente et al [10] studied base-catalyzed transesterification of sunflower oil with 6:1 

mole ratio of methanol to oil and stirring rates that they believed were sufficient to avoid mass 

transfer limitations. They varied the KOH catalyst concentration and the process temperature and 

measured the concentration of TG, DG, MG, BD, M, and G with time during the reaction.  Assuming 

that the forward rate constants for reactions 1, 2, and 3 are given by k1, k3, and k5, while the reverse 

rate constants for the three reactions are given by k2, k4, and k6, they found the values of the rate 

constants that fit their data according to the mathematical model shown in Figure 3. 

 

 

 

 

 

 

Figure 3.  Mathematical model equations for multistep biodiesel reaction shown in Figure 2. 

Note that in the mathematical model, the symbol TG’(t) represents the time derivative of the triglyceride 

concentration, dTG(t)/dt.  At 35 oC and 0.5 weight percent KOH (on a percent weight of oil basis) they 

found the following rate constants with units of L/(mol min):  k1 = 0.20, k2 = 0.98, k3 = 1.67, k4 = 2.18, 

k5 = 0.27, and k6 = 0.01 (sufficiently small that it has been omitted in the model).  A Mathcad file that 

solves this model is available on the course website for your use.  

In your experiments you will use canola oil rather than sunflower oil and will only be able to follow 

overall reaction conversion by following the glycerol concentration with time.  It will, therefore, be 

difficult, if not impossible; to fit all six rate constants to your data.  Some researchers have suggested that 

it is advantageous to consider the reaction in three stages: a brief initial mixing/mass transfer limited 

stage, an irreversible chemical reaction controlled stage, and a reversible equilibrium reaction controlled 

stage near the end [11].  These authors have further suggested that the pseudo 2nd order reaction:   

                                                    O’(t)= dO(t)/dt = - k O(t)2                                  ( 4 ) 

provides an approximate model for the overall reaction shown in Figure 1, at least in the middle stage. 

You will want to test this hypothesis using the Mathcad model of the reaction at 35 oC.  That is, use the 

multistep model results for concentration with time to test if a 2nd order model could fit those results and 

determine the pseudo 2nd order rate constant, k.  You should consult a chemical reaction engineering text 

for information on how to fit reaction data to a 2nd order model.   Note that in the 2nd order model for oil 

(O) of Equation 4 there is no accounting for DG or MG, and the oil concentration, O, is used instead of 

TG.  To compare results of this simple model to those of the multistep Mathcad model that solves the 

      

 

 

 

 

 

 

TG0( ) TGo M 0( ) Mo DG 0( ) 0 MG 0( ) 0 BD 0( ) 0 G 0( ) Go

TG't( ) k1 TGt( ) M t( ) k2BD t( ) DG t( )

DG' t( ) k1TGt( ) M t( ) k2BD t( ) DG t( ) k3DG t( ) M t( ) k4BD t( ) MG t( )

MG' t( ) k3DG t( ) M t( ) k4BD t( ) MG t( ) k5MG t( ) M t( )

M' t( ) k1 TGt( ) M t( ) k2BD t( ) DG t( ) k3DG t( ) M t( ) k4BD t( ) MG t( ) k5MG t( ) M t( )

BD' t( ) k1TGt( ) M t( ) k2BD t( ) DG t( ) k3DG t( ) M t( ) k4BD t( ) MG t( ) k5MG t( ) M t( )

G' t( ) k5MG t( ) M t( )
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equations in Figure 3, you will need to follow total oil, O = TG + DG + MG, as indicated in the multistep 

Mathcad model.  To test the hypothesis, once you find the rate constant k, you will want to solve 

Equation 4 to generate a plot of O(t) vs time and compare that to the (TG + DG + MG) vs time results 

from the multistep mathematical model.  

Some studies [12] using ethanol instead of methanol with sunflower oil have also found that the reaction 

can be modeled with an irreversible 2nd order reaction followed by a reversible 2nd order reaction as the 

process nears completion.  Interestingly, these studies didn’t observe any initial mass transfer limited lag 

phase when using ethanol.   

Others studies [13] using ethanol with castor oil also found no mass transfer limited lag phase, but found 

that the reaction followed 1st order kinetics.      

For your lab exercise, you will want to use ethanol with canola oil and determine if the results can be 

described with either a first order or second order reaction.  You will also want to study the temperature 

dependence and evaluate an activation energy for canola oil conversion to BD with 0.5 weight % KOH 

and 6:1 ethanol to oil ratio.  You will also want to discuss possible mass transfer limitations of the 

reaction.  For the pre-lab you should explain how you will study the T dependence, evaluate the activation 

energy, and how you could study the mass transfer limitations if there was sufficient time in the lab. 

Densities and molecular weights for reactants and products are given in Table 1. 

Table 1.  Densities and molecular weights of canola biodiesel reactants and products [14]. 

component density (g/ml) molecular weight (g/mol) 

canola oil 0.92 887.3 

methanol/ethanol 0.792/0.789 32.0/46.1 

glycerol 1.26 92.1 

biodiesel 0.88 297.1 

 

Summary of deliverables for your pre-lab report: 

1) Locate, copy, and read the MSDS for methanol, ethanol, KOH, potassium methoxide, and potassium 

ethoxide. 

2) Write a brief discussion of the safety precautions needed in handling and processing these materials 

and include a brief discussion of the safeguards we have included to conduct this reaction safely.   

3) Locate (on the web or elsewhere) a report of an accident involving a fire in biodiesel production.  Write 

a brief summary of the accident and a discussion of what could have been done to prevent it. 

4) Use the data generated in the Mathcad file that solves the multistep biodiesel reaction mathematical 

model to test the validity of using a pseudo 2nd order rate equation for sunflower oil at 35 oC, 0.5 weight 

% KOH, and 6:1 methanol to oil ratio.  Report the pseudo 2nd order rate constant and compare the 

predicted O vs time curve from Equation 4 to the TG+DG+MG vs time curve from the multistep model.   

5) Explain how you can test whether the results from your ethanolysis experiments follow 1st order or 2nd 

order kinetics. 
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6) Explain how you will study the T dependence and evaluate the activation energy for ethanolysis of 

canola oil in the lab. 

7) Explain how you could investigate mass transfer limitations of the transesterification reaction in the 

lab.  (You will probably not have time to do actually do the investigation, but you should discuss what 

could be done to study this).  
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B. Glycerol Assay Product Sheet 
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C. Summarized Unit Operations Reaction and Glycerol Assay Procedures 
Reaction 

1. 100 mL Methanol put in catalyst prep reactor and 400 mL Vegetable oil put in process reactor 

using “computer controlled gravimetric dosing from feed vessels on electronic balances working 

with peristaltic pumps.”  

2. Reactors are heated up to 35ºC  

3. 1.75 g of KOH is manually added and dissolved to catalyst reactor  

4. Contents from catalyst reactor are pumped to process reactor  

5. Samples are drawn at intervals of 0.5, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 90, and 120 minutes 

and placed in plastic centrifuge tubes.  

6. Remove Biodiesel glycerol mixture into seperatory funnel.  

7. Wait for two distinct layers to be present to qualitatively signify reaction occurrence and drain off 

glycerol portion from the bottom.  

Glycerol Assay (As Specified from Product Sheet)  

1. Before reaction, remove enzyme kit from freezer.  

2. Dilute standards as specified in the table below  

No  STD + H2O  Total Volume (µL)  Glycerol (mM)  

1  10 µL+ 990 µL  1000  1.0  

2    6 µL+ 994 µL  1000  0.6  

3    3 µL+ 997 µL  1000  0.3  

4    0 µL+ 1000 µL  1000  0.0  

 

3. Transfer standards to well plate  

4. For each sample taken from reactor, mix 100 µL Assay Buffer, 2 µL Enzyme Mix, 1 µL ATP and 

1 µL Dye Reagent in a clean tube  

5. Transfer 100 µL Working Reagent into each reaction well  

6. Incubate samples for 20 minutes at room temperature  

7. Place in machine and read at optical density of 570 nm (550-585nm)  

8. Subtract blank No. 4 from the standard OD values  

9. Plot OD against standard concentrations  

10. Measure slope using linear regression fitting  

11. Calculate using:  

[Glycerol] =
ODSample − ODH2O

Slope
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D. Unit Operations repeated reaction with KOH and Glycerol Assay Results 
Table 3: MeOH  Linear Regression 

  

Optical 

Density 

Correlating Std 

4 Optical 

Density 

Adjusted 

Optical 

Density 

[Glycerol] 

(mM) Slope R2 

Run 1 Std1 1.4928 0.1146 1.3782 1 1.0563 0.44734 

 Std2 1.0206 0.1139 0.9067 0.6   

 Std3 1.5902 0.1127 1.4775 0.3   

 Std4 0.1127 0.1127 0 0   

Run 2 Std1 1.4454 0.0813 1.3641 1 1.5006 0.85643 

 Std2 1.4142 0.0806 1.3336 0.6   

 Std3 0.4309 0.0808 0.3501 0.3   

 Std4 0.0808 0.0808 0 0   

Run 3 Std1 1.5535 0.0826 1.4709 1 1.2633 0.58094 

 Std2 1.4269 0.0817 1.3452 0.6   

 Std3 1.5031 0.082 1.4211 0.3   

 Std4 0.082 0.082 0 0   

Run 4 Std1 1.7232 0.1895 1.5337 1 1.3678 0.70426 

 Std2 1.508 0.1873 1.3207 0.6   

 Std3 1.4523 0.1871 1.2652 0.3   

 Std4 0.1871 0.1871 0 0   
 

Table 2 shows the optical density values for the glycerol standards. The most important column in this table 

is the slope. In this case, slope comes from the line of best fit created by the four standard optical densities. 

It is used to convert optical densities into concentrations by dividing the optical density at each point by the 

slope. This allows the user to observe the results in terms of concentration vs. time, rather than the less 

meaningful optical density. 
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Figure 22: MeOH Linear Regression 
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Table 4: MeOH Run 1 

Time 

(min) 

Optical 

Density 

Correlating 

Std 4 Optical 

Density 

Adjusted 

Optical 

Density 

[Glycerol] 

(mM) 

0.5 0.1297 0.1146 0.0151 0.0143 

1 0.1459 0.1146 0.0313 0.0296 

2 0.1691 0.1146 0.0545 0.0516 

5 0.1583 0.1146 0.0437 0.0414 

10 0.1256 0.1139 0.0117 0.0111 

15 0.1993 0.1139 0.0854 0.0808 

20 0.1772 0.1139 0.0633 0.0599 

25 0.1525 0.1139 0.0386 0.0365 

30 0.1807 0.1139 0.0668 0.0632 

40 0.1373 0.1139 0.0234 0.0222 

50 0.1382 0.1127 0.0255 0.0241 

60 0.1345 0.1127 0.0218 0.0206 

90 0.0996 0.1127 -0.0131 -0.0124 

120 0.1101 0.1127 -0.0026 -0.0025 

Slope 1.0563    
 

Table 5: MeOH Run 2 

Time 

(min) 

Optical 

Density 

Correlating 

Std 4 

Optical 

Density 

Adjusted 

Optical 

Density 

[Glycerol] 

(mM) 

0.5 0.0909 0.0813 0.0096 0.0064 

1 0.0986 0.0813 0.0173 0.0115 

2 0.1335 0.0813 0.0522 0.0348 

5 0.4923 0.0813 0.411 0.2739 

10 1.0548 0.0813 0.9735 0.6487 

15 0.8485 0.0806 0.7679 0.5117 

20 0.9171 0.0806 0.8365 0.5574 

25 1.1118 0.0806 1.0312 0.6872 

30 0.8231 0.0806 0.7425 0.4948 

40 1.0132 0.0806 0.9326 0.6215 

50 0.9962 0.0808 0.9154 0.6100 

60 0.9349 0.0808 0.8541 0.5692 

90 0.0375 0.0808 -0.0433 -0.0289 

120  0.0808 -0.0808 -0.0538 

Slope 1.5006    
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Table 6: MeOH Run 3 

Time 

(min) 

Optical 

Density 

Correlating 

Std 4 

Optical 

Density 

Adjusted 

Optical 

Density 

[Glycerol] 

(mM) 

0.5 0.077 0.0826 -0.0056 -0.004 

1 0.1015 0.0826 0.0189 0.015 

2 0.1228 0.0826 0.0402 0.032 

5 0.5469 0.0826 0.4643 0.368 

10 0.8755 0.0826 0.7929 0.628 

15 1.262 0.0817 1.1803 0.934 

20 0.7699 0.0817 0.6882 0.545 

25 0.9633 0.0817 0.8816 0.698 

30 0.6452 0.0817 0.5635 0.446 

40 0.7313 0.0817 0.6496 0.514 

50 0.9363 0.082 0.8543 0.676 

60 1.0325 0.082 0.9505 0.752 

90 0.9471 0.082 0.8651 0.685 

120 0.9679 0.082 0.8859 0.701 

Slope 1.2633    
 

Table 7: MeOH Run 4 

Time 

(min) 

Optical 

Density 

Correlating 

Std 4 

Optical 

Density 

Adjusted 

Optical 

Density 

[Glycerol] 

(mM) 

0.5 0.0876 0.1895 -0.1019 -0.0745 

1 0.0903 0.1895 -0.0992 -0.0725 

2 0.1725 0.1895 -0.017 -0.0124 

5 0.6807 0.1895 0.4912 0.3591 

10 1.0903 0.1895 0.9008 0.6586 

15 1.4777 0.1873 1.2904 0.9434 

20 0.9439 0.1873 0.7566 0.5532 

5 1.4551 0.1873 1.2678 0.9269 

30 1.5106 0.1873 1.3233 0.9675 

40 1.4015 0.1873 1.2142 0.8877 

50 1.0526 0.1871 0.8655 0.6328 

60 1.4922 0.1871 1.3051 0.9542 

90     

120     

Slope 1.3678    



 57 

 

 

Figure 23: MeOH - [Glycerol] vs. Time 

 

Table 8: EtOH Linear Regression 

   

Correlating Std 

4 Adjusted  

[Glycerol] 

(mM) Slope R2 

Run 1 Std1 0.0729 0.0488 0.0241 1 -0.014 0.00442 

 Std2 0.1627 0.0492 0.1135 0.6   

 Std3 0.2463 0.0491 0.1972 0.3   

 Std4 0.0491 0.0491 0 0   

Run 2 Std1 2.395 0.0662 2.3288 1 2.3774 0.99204 

 Std2 1.6391 0.0656 1.5735 0.6   

 Std3 0.7377 0.0653 0.6724 0.3   

 Std4 0.0653 0.0653 0 0   
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Figure 24: EtOH Linear Regression 

 

Table 9: EtOH Run 1 

Time 

(min) 

Optical 

Density 

Correlating 

Std 4 

Optical 

Density 

Adjusted 

Optical 

Density 

[Glycerol] 

(mM) 

0.5 0.1067 0.0488 0.0579 -4.135714 

1 0.1224 0.0488 0.0736 -5.257143 

2 0.2088 0.0488 0.16 -11.42857 

5 0.2198 0.0488 0.171 -12.21429 

10 0.3336 0.0488 0.2848 -20.34286 

15 0.417 0.0492 0.3678 -26.27143 

20 0.4962 0.0492 0.447 -31.92857 

25 0.4639 0.0492 0.4147 -29.62143 

30 0.5284 0.0492 0.4792 -34.22857 

40 0.4588 0.0492 0.4096 -29.25714 

50 0.6153 0.0491 0.5662 -40.44286 

60 0.7513 0.0491 0.7022 -50.15714 

Slope -0.014    
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Table 10: EtOH Run 2 

Time 

(min) 

Optical 

Density 

Correlating 

Std 4 

Optical 

Density 

Adjusted 

Optical 

Density 

[Glycerol] 

(mM) 

0.5 0.127 0.0662 0.0608 0.0255742 

1 0.1462 0.0662 0.08 0.0336502 

2 0.1896 0.0662 0.1234 0.0519054 

5 0.3841 0.0662 0.3179 0.1337175 

10 0.4676 0.0662 0.4014 0.1688399 

15 0.554 0.0656 0.4884 0.2054345 

20 0.6517 0.0656 0.5861 0.2465298 

25 0.6269 0.0656 0.5613 0.2360983 

30 0.6064 0.0656 0.5408 0.2274754 

40 0.6489 0.0656 0.5833 0.2453521 

50 0.6414 0.0653 0.5761 0.2423235 

60 0.6152 0.0653 0.5499 0.2313031 

Slope 2.3774    

 

Figure 25: EtOH - [Glycerol] vs. Time 

Figure 18 shows the change in glycerol concentration vs. time, with each data point representing a sample. 

The general trend of the curve is as expected, with glycerol concentration decreasing as time elapses, but 
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there are a few discrepancies where the concentration increases at later times as well as the fact that the 

concentration is negative which is impossible.  
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E. Troubleshooting Reactions 
Table 11: Bench-scale Reactions 
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Table 10 shows a summary of the bench-scale reactions involving a calcined egg shell catalyst. A more in 

depth discussion of these trials can be found in the Results and Discussion section under “Egg Shells”. 

Calcining details, reactants, and reaction details are all included in the table, along with a column to say 

whether or not the reaction was successful in passing the qualitative test that was employed. The following 

figures are examples of the reactions.  
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Figure 26: Eggshells, 900°C, 6 hours, 1.0 g catalyst, MeOH, Stirred, 24 hours.  

2 phases present, reaction considered “passed” 
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Figure 27: Eggshells, 400°C, 6 hours, 900°C, 6 hours, 1.5 g catalyst, MeOH, Stirred, 22 hours.  

2 phases present, reaction considered “passed” 
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Figure 28: Eggshells, 900°, 1.0 g catalyst, MeOH, Oscillating Water bath (35°C), 19 hour.  

1 phase present, reaction considered “failed.” 
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Figure 29: Eggshells, 400°, 6 hours, 1.5 g catalyst, MeOH, Oscillating  Oscillating Water bath (35°C), 19 hours.  

2 phases present, reaction considered “passed” 
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Figure 30: Eggshells, 900°, 3 hours, 1.5 g catalyst, MeOH, Oscillating Water bath (35°C), 19 hours 

1 phase present, reaction considered “failed.” 
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Figure 31: Eggshells, 900°C, 3 hours, 0.5 g catalyst, MeOH, Oscillating Water bath (35°C), 19 hours 

1 phase present, reaction considered “failed.” 
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Figure 32: Eggshells, Bleach, 24 hours, 1.0 g catalyst, MeOH, Stirred, 27 hours.  

1 phase present, reaction considered “failed.” 
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Figure 33: Eggshells, Peroxide, 24 hours, 1.0 g catalyst, EtOH, Stirred, 27 hours 

1 phase present, reaction considered “failed.” 
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Figure 34: Eggshells, Bleach, 24 hours, 1.0 g catalyst, EtOH, Stirred, 27 hours.  

1 phase present, reaction considered “failed.” 
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Figure 35: Eggshells, Peroxide, 24 hours, 1.0 g catalyst, MeOH, Stirred, 27 hours 

1 phase present, reaction considered “failed.” 
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Figure 36: Eggshells, 900°C, 3 hours, 1.0 g catalyst, EtOH, Stirred, 24 hours.  

1 phase present, reaction considered “failed.” 
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Figure 37: KOH, 1.0 g catalyst, MeOH, Stirred, 24 hours.  

2 phases present, reaction considered “passed” 



 75 

 

Figure 38: Eggshells, 400°C, 6 hours, 900°C, 6 hours, 0.5 g catalyst, MeOH, Stirred, 22 hours.  

2 phases present, reaction considered “passed” 
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Figure 39: Eggshells, 400°C, 6 hours, 0.5 g catalyst, MeOH, Oscillating Water bath (35°C), 19 hours.  

1 phase present, reaction considered “failed.” 
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. 

 

Figure 40: Eggshells, 400°C, 6 hours, 900°C, 6 hours, 1.0 g catalyst, MeOH, Stirred, 22 hours.  

2 phases present, reaction considered “passed” 
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Figure 41: Eggshells, 900°C, 3 hours, 1.0 g catalyst, MeOH, Stirred, 24 hours 

2 phases present, reaction considered “passed” 
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Figure 42: Eggshells, 400°C, 6 hours, 1.0 g catalyst, MeOH, Oscillating Water bath (35°C), 24 hour.  

2 phases present, reaction considered “passed” 
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F. Calculations/Equations 
Equation 1 

𝐶𝑎𝑙𝑐𝑖𝑛𝑒𝑑 𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝐿𝑖𝑡𝑒𝑟 𝑜𝑓 𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙

= 𝑃𝑟𝑖𝑐𝑒 𝑈𝑛𝑐𝑎𝑙𝑐𝑖𝑛𝑒𝑑 𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 [
$

𝑘𝑔
] ∗

𝑚𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑜𝑣𝑒𝑛,𝑖𝑛[𝑘𝑔]

𝑚𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑜𝑣𝑒𝑛,𝑜𝑢𝑡[𝑘𝑔]

∗ 𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑝𝑒𝑟 𝐿𝑖𝑡𝑒𝑟 𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 [
𝑘𝑔

𝐿
] ∗

𝑉𝑀𝑒𝑂𝐻,𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑡 [𝐿]

𝑉𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙,𝑃𝑟𝑜𝑑𝑢𝑐𝑡 [𝐿]
 

Equation 2 

𝑉𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙

 𝐿 𝑀𝑒𝑂𝐻
=

𝜌𝑀𝑒𝑂𝐻

𝑀𝑊𝑀𝑒𝑂𝐻
∗

1 𝑚𝑜𝑙𝑒 𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙

1 𝑚𝑜𝑙𝑒 𝑀𝑒𝑂𝐻
∗

𝑀𝑊𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙  

𝜌𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙
 

𝑉𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙

 𝐿 𝑀𝑒𝑂𝐻
=

792 𝑔/𝐿

32.04 𝑔/𝑚𝑜𝑙
∗

1 𝑚𝑜𝑙𝑒 𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙

1 𝑚𝑜𝑙𝑒 𝑀𝑒𝑂𝐻
∗

297.1
𝑔

𝑚𝑜𝑙
880𝑔

𝐿

= 8.21 𝐿𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙/𝐿𝑀𝑒𝑂𝐻 

Density Values from Clark, 2016 

 

Equation 3 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑘𝑔 𝑜𝑓 𝑢𝑛𝑐𝑎𝑙𝑐𝑖𝑛𝑒𝑑 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 = 𝑘𝑊𝑂𝑣𝑒𝑛 ∗ 6ℎ𝑟 ∗
$0.12

𝑘𝑤ℎ
∗

333𝑔

𝑐𝑦𝑐𝑙𝑒
∗ 3

𝑐𝑦𝑐𝑙𝑒

𝑘𝑔
 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑘𝑔 𝑜𝑓 𝑢𝑛𝑐𝑎𝑙𝑐𝑖𝑛𝑒𝑑 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 = 1.8𝑘𝑊 ∗ 6ℎ𝑟 ∗
$0.12

𝑘𝑤ℎ
∗

333𝑔

𝑐𝑦𝑐𝑙𝑒
∗ 3

𝑐𝑦𝑐𝑙𝑒

𝑘𝑔
=

$3.89

𝑘𝑔
 

 

$0.12/kwh based on national average 

Equation 4 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝐿𝑖𝑡𝑒𝑟 𝑜𝑓 𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙

= 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑘𝑔 𝑜𝑓 𝑢𝑛𝑐𝑎𝑙𝑐𝑖𝑛𝑒𝑑 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 ∗
𝑚𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑜𝑣𝑒𝑛,𝑖𝑛[𝑘𝑔]

𝑚𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑜𝑣𝑒𝑛,𝑜𝑢𝑡[𝑘𝑔]

∗ 𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑝𝑒𝑟 𝐿𝑖𝑡𝑒𝑟 𝑀𝑒𝑡ℎ𝑎𝑛𝑜𝑙 [
𝑘𝑔

𝐿
] ∗

𝑉𝑀𝑒𝑂𝐻,𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑡 [𝐿]

𝑉𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙,𝑃𝑟𝑜𝑑𝑢𝑐𝑡 [𝐿]
 

Equation 5 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝐿𝑖𝑡𝑒𝑟 𝑜𝑓 𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙 + 𝐶𝑎𝑙𝑐𝑖𝑛𝑒𝑑 𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝐿𝑖𝑡𝑒𝑟 𝑜𝑓 𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙 

Equation 6 

% =
𝑚𝐼𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑚𝐹𝑖𝑛𝑎𝑙

𝑚𝐼𝑛𝑖𝑡𝑖𝑎𝑙
∗ 100 
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Table 12: Catalyst Lost through Calcining 

Catalyst 

Initial Amount (g) Final Amount (g) Amount Lost (g) Percentage Lost 

(%) 

KOH - - - - 

CaO - - - - 

CaCO3 8.91 5.23 3.68 0.41 

Eggshells 10.84 5.81 5.03 0.46 

Clams 10.06 5.44 4.62 0.46 

Seashells 15.70 8.56 7.14 0.45 

Snails 13.54 7.12 6.42 0.47 

 

G. Pass/Fails Results 
Table 13: Biodiesel Reactor Pass/Fail 

 Reactor CaO Days 

since 

calcining 

CaCO3 Days 

since 

calcining 

Clam 

Shells 

Days 

since 

calcining 

Seashells  Days 

since 

calcining 

Snails 

Shells 

Days 

since 

calcining 

Run 1 Small P - P 7 NP 1 NP 0 P 0 

Run 2 Small P - P 8 P 2 P 1 P 2 

Run 3 Small P - P 9 F 3 P 2 P 4 

Run 4 Large P - F 16 P 4 F 3 P 0 

Run 5 Large P - F 17 P 5 P 4 F 2 

Run 6 Large P - P 0 P 6 P 5 P 4 

Pass%  100%  66.7%  75%  75%  83.3%  

P: Pass NP: Near Pass  F: Fail 
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Table 14: Biodiesel Reactions 

Catalyst Reactor 

Oven Reactor Sep. Funnel 3/27 

Test ID In Out In Out In Out 

CaCO3 Small 1/18/2017 11:00 

1/18/2017 

5:00 1/25 1/26 1/27 1/27 CaCO3-1 

CaCO3 Small " " 1/26 1/27 1/28 1/28 CaCO3-2 

CaCO3 Small " " 1/27 1/28 1/30 1/30 CaCO3-3 

CaCO3 Large " " 2/3 2/4 2/5 2/5 CaCO3-4 

CaCO3 Large " " 2/4 2/5 2/6 2/6 CaCO3-5 

CaCO3 Large 2/5/2017 15:00 

2/6/2017 

10:00 2/6 2/7 2/8 2/8 CaCO3-6 

CaO Small - - 1/30 1/31 2/1 2/1 CaO-1 

CaO Small - - 1/31 2/1 2/2 2/2 CaO-2 

CaO Small - - 2/1 2/2 2/3 2/3 CaO-3 

CaO Large - - 1/31 2/1 2/2 2/2 CaO-4 

CaO Large - - 2/1 2/2 2/3 2/3 CaO-5 

CaO Large - - 2/2 2/3 2/4 2/4 CaO-6 

Clam Shells Small 2/1/17 10:00 2/1/17 16:00 2/2 2/3 2/4 2/4 Clam-1 

Clam Shells Small " " 2/3 2/4 2/5 2/5 Clam-2 

Clam Shells Small " " 2/4 2/5 2/6 2/6 Clam-3 

Clam Shells Large " " 2/7 2/8 2/9 2/9 Clam-4 

Clam Shells Large " " 2/8 2/9 2/10 2/10 Clam-5 

Clam Shells Large " " 2/9 2/10 2/13 2/13 Clam-6 

Seashells Small 2/7/2017 9:30 

2/7/2017 

16:00 2/7 2/8 2/13 2/13 Sea-1 

Seashells Small     2/8 2/9 2/13 2/13 Sea-2 

Seashells Small     2/9 2/10 2/13 2/13 Sea-3 

Seashells Large     2/10 2/11 2/13 2/13 Sea-4 

Seashells Large     2/11 2/12 2/13 2/13 Sea-5 

Seashells Large     2/12 2/13 2/14 2/15 Sea-6 

Snail Shells Small 

2/16/2017 

15:00 

2/17/2017 

10:00 2/17 2/18 2/19 2/19 Snail-1 

Snail Shells Small " " 2/19 2/20 2/21 2/21 Snail-2 

Snail Shells Small " " 2/21 2/22 2/23 2/23 Snail-3 

Snail Shells Large " " 2/17 2/18 2/19 2/19 Snail-4 

Snail Shells Large " " 2/19 2/20 2/21 2/21 Snail-5 

Snail Shells Large " " 2/21 2/22 2/23 2/23 Snail-6 
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H. Methanol MSDS 

Hazards Identification:  

Potential Acute Health Effects: Hazardous in case of skin contact (irritant), of eye contact (irritant), of 

ingestion, of inhalation. Slightly hazardous in case of skin contact (permeator). Severe over-exposure can 

result in death.  

Potential Chronic Health Effects: Slightly hazardous in case of skin contact (sensitizer). CARCINOGENIC 

EFFECTS: Not available.  

MUTAGENIC EFFECTS: Mutagenic for mammalian somatic cells. Mutagenic for bacteria and/or yeast. 

TERATOGENIC EFFECTS: Classified POSSIBLE for human.  

DEVELOPMENTAL TOXICITY: Not available. The substance is toxic to eyes. The substance may be 

toxic to blood, kidneys, liver, brain, peripheral nervous system, upper respiratory tract, skin, central nervous 

system (CNS), optic nerve. Repeated or prolonged exposure to the substance can produce target organs 

damage. Repeated exposure to a highly toxic material may produce general deterioration of health by an 

accumulation in one or many human organs. 

First Aid Measures: 

Eye Contact: Check for and remove any contact lenses. Immediately flush eyes with running water for at 

least 15 minutes, keeping eyelids open. Cold water may be used. Get medical attention.  

Skin Contact: In case of contact, immediately flush skin with plenty of water for at least 15 minutes while 

removing contaminated clothing and shoes. Cover the irritated skin with an emollient. Cold water may be 

used. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get medical attention immediately. 

Serious Skin Contact: Wash with a disinfectant soap and cover the contaminated skin with an anti-bacterial 

cream. Seek immediate medical attention.  

Inhalation: If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, 

give oxygen. Get medical attention immediately.  

Serious Inhalation: Evacuate the victim to a safe area as soon as possible. Loosen tight clothing such as a 

collar, tie, belt or waistband. If breathing is difficult, administer oxygen. If the victim is not breathing, 

perform mouth-to-mouth resuscitation. WARNING: It may be hazardous to the person providing aid to 

give mouth-to-mouth resuscitation when the inhaled material is toxic, infectious or corrosive. Seek 

immediate medical attention.  
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Ingestion: If swallowed, do not induce vomiting unless directed to do so by medical personnel. Never give 

anything by mouth to an unconscious person. Loosen tight clothing such as a collar, tie, belt or waistband. 

Get medical attention immediately. 

Fire and Explosion Data: 

Flammability of the Product: Flammable.  

Auto-Ignition Temperature: 464°C (867.2°F)  

Flash Points: CLOSED CUP: 12°C (53.6°F). OPEN CUP: 16°C (60.8°F).  

Flammable Limits: LOWER: 6% UPPER: 36.5%  

Products of Combustion: These products are carbon oxides (CO, CO2).  

Fire Hazards in Presence of Various Substances: Highly flammable in presence of open flames and sparks, 

of heat. Non-flammable in presence of shocks.  

Explosion Hazards in Presence of Various Substances: Risks of explosion of the product in presence of 

mechanical impact: Not available. Explosive in presence of open flames and sparks, of heat.  

Fire Fighting Media and Instructions: Flammable liquid, soluble or dispersed in water.  

SMALL FIRE: Use DRY chemical powder.  

LARGE FIRE: Use alcohol foam, water spray or fog.  

Special Remarks on Fire Hazards: Explosive in the form of vapor when exposed to heat or flame. Vapor 

may travel considerable distance to source of ignition and flash back. When heated to decomposition, it 

emits acrid smoke and irritating fumes. CAUTION: MAY BURN WITH NEAR INVISIBLE FLAME  

Special Remarks on Explosion Hazards: Forms an explosive mixture with air due to its low flash point. 

Explosive when mixed with Choroform + sodium methoxide and diethyl zinc. It boils violently and 

explodes. 

Accidental Release Measures: 

Small Spill: Dilute with water and mop up, or absorb with an inert dry material and place in an appropriate 

waste disposal container.  

Large Spill: Flammable liquid. Poisonous liquid. Keep away from heat. Keep away from sources of ignition. 

Stop leak if without risk. Absorb with DRY earth, sand or other non-combustible material. Do not get water 
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inside container. Do not touch spilled material. Use water spray to reduce vapors. Prevent entry into sewers, 

basements or confined areas; dike if needed. Call for assistance on disposal. Be careful that the product is 

not present at a concentration level above TLV. Check TLV on the MSDS and with local authorities. 

Handling and Storage: 

Precautions: Keep locked up. Keep away from heat. Keep away from sources of ignition. Ground all 

equipment containing material. Do not ingest. Do not breathe gas/fumes/ vapor/spray. Wear suitable 

protective clothing. In case of insufficient ventilation, wear suitable respiratory equipment. If ingested, seek 

medical advice immediately and show the container or the label. Avoid contact with skin and eyes. Keep 

away from incompatibles such as oxidizing agents, metals, acids.  

Storage: Store in a segregated and approved area. Keep container in a cool, well-ventilated area. Keep 

container tightly closed and sealed until ready for use. Avoid all possible sources of ignition (spark or 

flame). 

 


