
DOCUMENTATION REPORT

Science ASSISTments: Creation of Engaging Visual Objects for Microworlds

An Interactive Qualifying Project Report

Submitted to the Faculty

of the

Worcester Polytechnic Institute

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By:

David Embree

June 2, 2009

Approved By:

Professor Janice Gobert

This report represents the work of one or more WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement. WPI routinely publishes these reports on its web site

without editorial or peer review

2 | P a g e

Abstract

 This document describes programming effort and instructional documentation contributing to

the goals of the Science ASSISTments project. An existing spreadsheet containing past MCAS test

question numbers was updated with an improved system for viewing the questions in the ASSISTments

server. New graphics for a Microworld under development were created, and a detailed tutorial was

written to assist future efforts in visual object construction.

Table of Contents

1.0.0 Introduction 3

2.0.0 My Role in the Project 6

 2.1.0 MCAS Problem Classification 6

 2.2.0 Development of Visual Objects 6

3.0.0 Materials Development 7

 3.1.0 MCAS Problem Classification 7

 3.2.0 Development of Visual Objects 10

 3.3.0 Expected Pedagogical Utilization 12

 3.3.1 Strand 1: Hypothesizing and Forming Predictions 12

 3.3.2 Strand 2: Designing and Conducting Experiments 12

 3.3.3 Strand 3: Representing and Analyzing Data 13

 3.3.4 Strand 4: Abstraction and Mathematical Modeling 14

 3.3.5 Strand 5: Communicating and Defending Ideas 14

 3.4.0 Documentation for Future Development of Microworlds 15

 3.5.0 Concluding Remarks 15

Appendix A - Documentation for Future Development of Microworlds 16

References 25

3 | P a g e

1.0.0 Introduction

 In early 2000 through 2004, Neil Heffernan of Worcester Polytechnic Institute worked with

colleagues at Carnegie Mellon University to create and test an intelligent tutoring system to assist

middle and high school students with mathematics. It featured hints, scaffolding responses to incorrect

answers, and “buggy” messages to help guide students toward the correct answer. An entirely web-

based interface was used for compatibility with the wide range of computers used at public schools,

with reports automatically recorded and distributed to teachers and researchers. To keep the

bandwidth requirements as low as possible, a data transmission language, namely XML

(http://www.w3.org/XML/) was selected that minimized traffic between the student computers and the

ASSISTment servers.

 One of sources of data used along with the math ASSISTments program is the Massachusetts

Comprehensive Assessment System (MCAS) for Math, a state-wide test administered to all students

beginning in 5th grade. The full set of MCAS tests cover mathematics, science and technology, history

and social science, and English language arts, and school-level results are easily accessible at a statewide

level. Many of the example questions presented to students for practice in the Math ASSISTments

project were derived from past MCAS questions. However, while a valuable tool, the MCAS has the

limitation of testing only content knowledge, and like many standardized tests it does not evaluate the

student’s skills in critical thinking or skills at conducting inquiry, the latter of which are necessary in

science literacy (Rutherford, J. & Algren, A, 1990).

 In 2007, Neil Heffernan teamed up with Dr. Janice Gobert, a Professor of Learning Sciences at

WPI, to extend the ASSISTment platform to middle school science; the project began with Physical

Science. The goal here is to generate a question and response structure similar to the existing

mathematics ASSISTments system but adapt this for science learning. Gobert and Heffernan

4 | P a g e

acknowledged that learning science had a critically different ingredient compared to Math, namely,

inquiry. Thus, the system requires the development of interactive microworlds so that students can

conduct scientific inquiry. Regarding inquiry, students need to learn how to formulate a meaningful

question, propose a possible solution, develop and conduct an experiment, and determine what the

results mean in relation to their question (National Research Council, 1996). Thus, the focus of the

tutoring system in Science ASSISTments is to focus primarily on teaching inquiry skills, rather than simply

covering science content.

 Working with graduate and undergraduate students, Dr. Gobert successfully created a simple

physics simulation, i.e., the ramp environment, in which students could test ideas, record data, and

respond with their conclusions (cf. Gobert, J., Beck, J., Sao Pedro, M., Heffernan, N., & Richardson, J.,

2008). The ramp environment consists of a pair of ramps on which balls roll, and the student chooses

from a variety of different options, i.e., variables, such as ramp steepness, run length, ramp surface, and

ball type. Students are allowed to change as many of the variables listed above as they wish at first, but

the system gradually guides them to implement an experiment using the “control for variables” strategy,

namely, keeping all variables constant while manipulating only one. Initial pilot testing was conducted

in a set of middle school classes; some items were revised and then data were collected with an

additional set of 5 classes using the ASSISTments system. The results of this study and others were

promising regarding the efficacy of teaching students inquiry strategies (cf. Gobert, J., Beck, J., Sao

Pedro, M., Heffernan, N., & Richardson, J., 2008). Subsequent to this study, Dr. Gobert was awarded an

additional research grant to expand the project from Physical Science to additional domains of the

middle school science curriculum, namely Life Science and Earth Science (Gobert, Heffernan, Koedinger,

& Beck, 2009).

5 | P a g e

 While inquiry instruction and assessment remain the primary focus of the Science ASSISTments

project, the science topics of study can and are being used to reinforce material tested by the MCAS.

The MCAS Science and Technology portion is divided into a variety of subcategories, depending on the

grade level of the individual exam. Fifth through eighth grade level exams each have the categories

Earth and Space Science, Life Science, Physical Science, and Technology/Engineering. The high school

level exams have similar topics, but with a much higher level of detail. The origin of these topics is the

Massachusetts Curricular Framework (MCF henceforth), a state sanctioned document that outlines all

the content knowledge students should possess by the time they graduate high school. While this is a

noble goal, many students only learn how to memorize facts and procedures, and do not learn how to

use their knowledge to solve new problems. This issue extends all the way up to the national level, with

the National Science Education Standards (NSES), from which the MCF inherited some of its science

curriculum.

 This issue has not gone without notice; many people have voiced concerns and proposed

additions to the NSES to address the issue of scientific inquiry in the classroom. The trouble is that

inquiry is very difficult to quantify and evaluate in an affordable manner in public schools. Current

recognized tests for inquiry utilize short answer responses or a report (cf., Gotwals & Songer), which

must be individually hand graded by scientific education professionals for accurate results. Even more

accurate assessment can be accomplished with a hands-on experiment, since all aspects of the student’s

skills can be observed (Baxter and Shavelson, 1994; Ruiz-Primo and Shavelson, 1996).Unfortunately,

these exams are prohibitively expensive, and tend to be non-standardized. The Science ASSISTments

project is an attempt to solve this dilemma using a virtual environment in which students are provided

rich interactive Microworlds to experiment with, while the system records their actions; these tasks

serve as performance assessments of student’s inquiry skills. Given combinations of variable selections,

they can set up and run trials, gather data, and make conclusions. Carefully designed algorithms will

6 | P a g e

then be developed to analyze students’ strategies and in turn will suggest alternatives to hone their

inquiry strategies with the goal of both supporting student’ acquisition of content knowledge and

inquiry skills. Assessment results regarding students’ inquiry skills are sent to teachers, and any students

having trouble will be flagged and will receive individualized help within the ASSISTments system and,

hopefully by the teacher as well.

2.0.0 My roles in the project

2.1.0 Classification of past items on the Mass. Curricular Framework

 Since the MCAS exam is a very important part of the evaluation process, questions issued from

Mass. Dept. of Education from previous exams are excellent practice for the students. Hundreds of

questions have been entered into the ASSISTments system, and a detailed list of them has been created

in a Google Doc spreadsheet by students under the direction of Cristina Heffernan, a project manager

for the ASSISTments project. Some very basic information about the question was included in this

matrix, but it did not allow for easy browsing of questions by topic. Since all of the questions are

derived from the MCF, I was charged with creating a classification system for the problems out of the

MCF itself, so that problems matching particular requirements could be easily queried. This feature is

important to future analyses by the Science ASSISTments team so that they may easily select and

aggregate items to test for transfer of knowledge from what they learned in the Science ASSISTment

system to the content being evaluated by the MCAS science test.

2.2.0 Development of Graphical Elements for the Phase Change Microworld

 Dr. Gobert’s Ph.D. student Mike Sao Pedro and Masters student, Nate Krach, spearheaded the

technical aspects and general design parameters of the Phase Change Microworld. Mike’s previous

experience with the design of the ramp microworld provided an excellent starting point for the

7 | P a g e

application structure of the phase change microworld. As the science behind the Phase Change

Microworld was a bit more complex than the ramp microworld, Nate focused on developing the

necessary equations and the overall flow of the pedagogical structure. It was my duty to translate

Nate’s designs into graphics that responded to Mike’s programming system. I also wrote a document

describing in great detail the process of creating objects in Laszlo, which will be used in all future

microworlds constructed for this project.

3.0.0 Materials Development

3.1.0 MCAS Problem classification

 As mentioned before, the MCAS exam questions from previous years are available freely on the

official MCAS website (http://www.doe.mass.edu/mcas/). So far, the last five years of exam questions

are entered into the Science ASSISTments question database, in both the fifth and eighth grade

categories. Unfortunately, these questions are only identified by a number in the database, which

makes it relatively useless to search through when looking for a particular problem. To help organize

the problems within the database, an online spreadsheet was created to associate each problem’s

ASSISTment number with a variety of other associated data; namely the problem’s answer, the testing

year it belonged to, the original problem number within the year’s set, and the subject matter of the

problem.

 While the MCAS website was a little more useful than randomly opening and looking through a

list of numbers, it still required users to look for a number on a page with over 200 problem numbers

listed. In page searching (ctrl+f in most browsers) helps of course, but still takes extra time and effort.

Ideally, users should be able to view the question content on the spreadsheet in a little popup next to

each number, but the programming functions were not available to accomplish this. The next best thing

8 | P a g e

was to have a link that opens a new webpage with a preview of the problem. This was implemented

using the GoogleDocs built in function hyperlink(link_address, display_text). Fortuitously, the preview

address for any problem in the ASSISTments system begins with the same address, and only the ending

number distinguishes one problem from another. By concatenating this string with the value of problem

number column in the spreadsheet, it was very easy to add a new column next to the problem numbers

with a working link to the problem. The final result is that viewing a problem whose number you see on

the spreadsheet requires holding the “ctrl” key and clicking the “view” link next to the problem, rather

than navigating for upwards of 30 or more seconds on the ASSISTments problem listings page.

 While this is a marked improvement, it still does not differentiate problems; in the near future

researchers and programmers will need to find problems relating to very specific science content, and

the current basic topics associated with each problem are much too varied to be useful. The

Massachusetts Curricular Framework (MCF) governs the content for all problems in the MCAS exam, and

thus is the perfect problem classification system, complete with detailed descriptions for each

requirement. The MCF for grades 6-8 is divided into 4 main topics, each with a varying number of

branching subcategories. The complete framework documentation is longer than this report, but can

easily be viewed in PDF and Word doc format at http://www.doe.mass.edu/frameworks/current.html.

 To make these standards useful to the spreadsheet, each standard was assigned a code. The

first set of character in the code signified to which of the four primary topics the standard belonged;

PS = Physical Science, ESS = Earth and Space Science, LS = Life Science, and ET = Engineering/Technology.

Each subcategory within these primary topics is assigned a number, and so are naturally the next two

characters in the code. The last single character exists in case the subcategory needs to be further

subdivided; this occurs almost exclusively for the Engineering/Technology topic. Once I had established

the coding system, I began assigning a code to each problem to classify it within the MCF.

9 | P a g e

� Question #29436:

o Ms. Bristol measured the mass of a closed beaker containing several ice cubes. The mass

was 100 g. An hour later after the ice cubes had melted, Ms. Bristol measured the mass of

the beaker again. What was the mass of the beaker of water the second time?

� Question #29499:

o The diagram to the right shows how a change in

temperature affects the physical state of a substance.

Each of the labeled points represents the same

substance at a different temperature. Which point

represents the substance in the physical state with the

particles moving the least?

� Question #29517

o A pot of cold water was heated on a stove until the water boiled. Which of the following

best explains why the water was able to boil?

� A. The hot stove absorbed cold from the pot.

� B. The cold water absorbed heat from the pot.

� C. The hot stove gave off heat to the surrounding air.

� D. The cold water gave off cold to the surrounding air.

 While this appears to be a fairly straightforward concept,

I found it to be difficult to assign only one code to each problem,

as they often incorporated concepts from a variety of different

standards. After working through several problems, I decided that each problem could be associated

with up to three standards, the first being most relevant and the last least relevant. For example,

problem #28434 can be seen in the problem preview above, and the related standards in the table

adjacent.

Properties of

Matter - 1

PS-01-1 Differentiate between weight and

mass, recognizing that weight is the

amount of gravitational pull on an

object.

The Earth in the

Solar System - 10

ESS-10-1 Compare and contrast properties and

conditions of objects in the solar

system (i.e., sun, planets, and moons)

to those on Earth (i.e., gravitational

force, distance from the sun, speed,

movement, temperature, and

atmospheric conditions).

The Earth in the

Solar System - 8 ESS-08-1 Recognize that gravity is a force that

pulls all things on and near the earth

toward the center of the earth.

Gravity plays a major role in the

formation of the planets, stars, and

solar system and in determining their

10 | P a g e

 Once all problems have been classified with this system, researchers will be able to locate all

programs related to one or more standards very quickly. This will allow them to select a set of problems

that will be very relevant to a particular topic, specifically the content or subjects relevant to a

microworld. For example, some problems relating to the phase state of a material: (These were found

simply by checking problems listed as Physical Science from 2008). In sum, this table can be used to

easily identify assessment items that can be used to evaluate the transfer of knowledge from our

microworlds to MCAS questions.

3.2.0 Phase Change Microworld graphical development

 When I began development of the graphical aspects of the phase change microworld, Mike had

a skeleton microworld for me to work with (change capitalization throughout doc—it should not be

capitalized). It had a few basic graphics for me to use as a starting point, as well as a number of

variables that controlled various physical properties such container size and amount of ice. I began by

embellishing the existing variables in both the microworld and the drawing objects so that additional

properties such as scale and color were easily changeable. Then I decided to find a different shape for

the container, and settled on a very stereotypical flask that can be seen in the image to the right. This

object is fairly complex, and I spent some significant time breaking it down into lines and points that

Laszlo’s procedural drawing system could understand.

 I started this process by tracing the image in Microsoft Word using only

straight lines and 3-point spline curves. These accurately simulate the drawing

tools Laszlo uses (namely the lineTo() and parabolicCurveTo() commands), so I

could plan which curves to draw. Next I divided up the image into a grid that

intersected major points and lines on the image. Using a common “origin”

point at the base of the flask, I could then identify each point around the

11 | P a g e

perimeter like a “connect-the-dots” drawing. By using only fractional relationships between the

positions, I could scale the image by changing only the height and width variables while managing to

keep the proportions realistic. This whole procedure is detailed in the last section of this paper. While

an outline serves as a good representation of the object, additional details improve the visual appeal of

the Microworld. I added details around the lip of the flask, and created a partially transparent gradient

to give it some depth. To increase the flexibility of the shape, I also added some variables that control

the neck width and height.

 The next shape I created was the ice, for which I made into a cylinder that would just fit through

the neck of the flask. While this might seem an unrealistic shape for ice to take, it greatly simplified the

animation of melting since the ice will only melt on the bottom, thus requiring only a change in the

height. Cubes floating would require more movement and complex changes in two dimensions. The

height of the ice is set by a slider the student sets before the experiment begins. Its position and width

is driven entirely by the Flask object, and additional calculations assure that the correct volume of ice is

displayed. This means that the ice height is also influenced by the width of the flask neck in relation to

the overall width. However, scaling factors have been added so that the ice volume is not impacted by

changes to the Microworld scale. As a final touch, once the ice height has been lowered all the way, the

remaining “disk” of ice is erased.

 To simulate the liquid water in the flask, I created a copy of the flask object. All the lines are

identical, but have been made transparent. The purpose was to create a “container” for another

gradient, this one much more complex and animated. By adding a few extra colors near the “surface”, I

created a fairly convincing meniscus layer. Unfortunately, the gradient is linear, and looks a little

strange in a simulated 3D flask. I originally intended to use an oval gradient, but Laszlo has not fully

12 | P a g e

implemented this function and only purely circular gradients are rendered. Further work using curves

may create a more realistic liquid.

 Lastly, I migrated three control sliders from the previous ball-ramp Microworld. I reassigned

their values to attributes relevant to the phase change Microworld, namely flame strength, substance

volume and container volume. I experimented with different values, and selected a range for each that

made reasonable changes to the objects. For example, I found a maximal value of ice so it went almost

to the top of the flask, and a minimal value that still filled enough of the flask to cover the base when

melted. Now that the code is integrated and working, additional controls can easily be added to control

any attribute in the Microworld.

3.3.0 Expected Pedagogical Utilization of Phase Change Microworld

 National Science Education Standards have several “strands” of inquiry development. By

combining them with the Mass Curricular Frameworks for grades 6-8, we can effectively tutor both

inquiry development and scientific content. The detailed record of choices made by each student as

they design and conduct experiments provides an accurate measure of their inquiry skills. The following

sections explain in detail how each of the NSES Inquiry Strands are implemented within the Phase

Change Microworld.

3.3.1 Strand 1: Hypothesizing and Forming Predictions

 In a preliminary exercise, students will be given a graph, with data points in a linear trend, and

will be asked to predict the value of the next several points. For example, they may have a temperature

versus time graph of ice as it is heated. The first couple of data points show that temperature of the ice

is steadily rising as energy as added over time. Once the temp reaches 0 degrees Celsius however, the

students will be asked if the temperature will continue to rise at the same rate, a slower rate, or remain

constant at 0 degrees until all the ice is melted. By choosing one of these options, the student has

13 | P a g e

effectively established a hypothesis that will then need to be supported or refuted by the experiment

within the microworld.

3.3.2 Strand 2: Designing and Conducting Experiments

 Now that students know the overall topic, and what they are trying to prove, they need to

choose an experimental set up. This involves setting parameters such as heating strength, amount of

ice, volume of container, and so on. At first, the students can set these values to whatever they want

and run a trial of the experiment. If the hypothesis was something easy (e.g. “If I heat ice, its

temperature will rise at a constant rate until it evaporates”), then a single trial will be enough to refute

the theory. If it is more complex (e.g. “If I use different flame strengths to heat water, then the time

from complete melting to the point of boiling will be directly proportional”), many trials will be

necessary. Additionally, students will need to identify explicitly which variables are dependent, and

independent, i.e., those that need to remain constant for the experiment to be valid. If the student is

not using an appropriate Controls for Variables Strategy (CVS), the system will begin to ask prompting

questions and eventually disable controls on variables that need to remain constant for a valid

experiment.

 After each trial, the student will be required to create a spreadsheet of relevant data, namely

measurements of various physical properties in the microworld. If data needs to be collected over time

during a trial, they may be prompted to setup a data recording widget. Alternatively, they could pause

the experiment at different times and manually record various data points. A variety of extraneous data

will most likely be available, and the students will need to record only the data that is relevant to their

particular hypothesis. It will be up to the student to determine when enough trials have been

completed, so that the next phase of the experiment can begin.

14 | P a g e

3.3.3 Strand 3: Representing and Analyzing Data

 Once the student has completed enough trials and collected some valid data, they will need to

perform graphical and numerical analysis of their data. This could mean constructing a plot of their data

on a graph, creating a table of their data, or predicting new data. Students will be expected to recognize

trends, both visually on graphical plots and numerically by examining data. They will also be expected to

notice whether or not new data supports predictions that are based on older data, thereby supporting a

trend across trials. If their predictions or theories were incorrect, responses in open response format

will be collected in order to be able to characterize their reasoning associated with their interpretations.

3.3.4 Strand 4: Abstraction and Mathematical Modeling

 Once initial observable trends are determined and it is verified that enough data has been

collected, more rigorous statistical calculations and abstract reasoning will be required. This may

involve calculating the slope of a linear trend, or comparing the trends of different trials as a variable

such as heat strength was varied.

3.3.5 Strand 5: Communicating and Defending Ideas

 Traditionally, the NSES Inquiry Strand requirement calls for this section be written entirely in

open response format, and is intended to show the student’s skill at defending or refuting their original

hypothesis, using the collected data as evidence. Unfortunately, this approach makes this section the

most difficult to evaluate with an autonomous system such as ASSISTments. Although there are some

natural language processing systems available, they are not suitable for our data, nor is an auto-scoring

feature of students’ open response data within the scope of the Science ASSISTments project. Instead,

some sort of basic “fill-in-the-blank” analogue to the hypothesis creator used back in Strand 1 may be

possible, and that would allow for rudimentary evaluation of the student’s overall correctness.

However, the bulk of the final analysis of the student’s skill in this strand will need to be hand scored, as

15 | P a g e

was done in the IQP project by Patrick Sebuwufu (Sebuwufu, 2009), also supervised by Dr. Janice

Gobert.

3.4.0 Documentation for future Development of Microworlds

 Following the wisdom of the old saying “Give a man a fish, feed him for a day… Teach a man to

fish, feed him forever”, I began documenting the work and techniques I used to create the basic shapes

and objects used in the Phase Change Microworld. This document is intended for anyone who needs to

create a visual object in Laszlo within an established Microworld. Very little previous programming

knowledge is necessary to create basic shapes, and even advanced animations can be achieved with a

little help from the senior software writers. The full text can be read in Appendix A.

4.3.0 Concluding Remarks

 By the end of the Science ASSISTments project, at least five different Microworlds will be

created. Initial topics and a basic layout of a few are already being designed and developed. Further

work on the Ball-Ramp Microworld and of course the Phase Change Microworld will continue, and new

ways to challenge students within the Microworld frameworks will be developed so that more complex

inquiry opportunities can be explored. The extensive logging capabilities will provide a rigorous and

large dataset, which the project researchers can analyze to determine the effectiveness of different

methods of tutoring inquiry. With the highly scalable nature of the ASSISTments system, eventually any

school interested in tutoring or evaluating inquiry could simply sign up online and begin using it.

16 | P a g e

Appendix A: Guide for creating visual objects in Laszlo

 Laszlo (http://www.openlaszlo.org/) is a language that was written to proceduralize the process

of creating animated graphics on a website. What this means is that nearly any aspect of a drawing can

be animated independently from the other parts, and the animation parameters themselves can be

driven from entirely customized equations. Traditional methods of animation have limited control over

movement, allowing some options in speed, start/stop accelerations, and path. Laszlo can assign any

equation to the motion, so that Newtonian physics and other laws of motion can be used. This

document was written to aid in the creation of new Microworld graphical objects by anyone working on

the Science ASSISTments project, regardless of their programming background. It will also standardize

the minimum basic attributes that every object must have so that animation algorithms can be

simplified and reused.

A.1.0: Creating Basic Shapes:

 Laszlo uses a “canvas” system to draw the objects it displays. This canvas is a grid of pixels, each

with an X and Y coordinate. These coordinates can be negative, allowing for objects to go out of the

visual area. Avisual object is usually represented by a series of points, much like a “connect-the-dots”

picture from a children’s book. The lines between the points can be modified in a variety of ways, so

that different types of curves are possible. Once the points return to the first position, the area

enclosed by the lines can be “filled in” with colors, either solid or a wide range of gradients. Both the

lines and the fill colors have controls for transparency as well.

 Creating objects in Laszlo is fairly simple. Each object is created with a “<drawview>” tag, and

requires three basic parameters: a name, a height, and a width. By default, the top left corner is

located at the (0,0) position on the canvas. X positions move positively to the right, while Y positions

17 | P a g e

move positively downward. This means that if you want to draw a triangle with specific points in a

Cartesian coordinate system, you must think of it as being upside down. While this might seem like a

simple concept, it can be far more complicated for complex shapes involving large numbers of points. I

have found that when drawing using lines in a computer system, it is advantageous to use as few

numerically assigned values as possible. When building a Microworld, the graphics you are creating

usually represent the properties selected by the end user, and the size, shape, color, and a variety of

other characteristics will influence what is being drawn. This means that there will be properties in the

Microworld class that your drawing object will need to access in order to be correctly dimensioned or

colored.

 As stated before, the size and width of the drawing area is a required part of the <drawview>

declaration. These properties can be easily assigned from attributes that are assigned to the

Microworld<class> itself. To illustrate, assume we have a world in which a liquid is to be held in a

18 | P a g e

container. The user selects how much liquid and what size of container, and the “world” stores these

values in its attributes. It then activates a drawing update, and re-draws your object; in this case the

container and the liquid.

 The position of each point used in the

drawing should be relative to a locating point and

the size of the <drawview>. If the item being drawn

is symmetric across either a vertical or horizontal

line (or both), it can be useful to have this point on

the line of symmetry. To start, we will use a

relatively simple shape: a pine tree. For this

example, we will use the top of the tree as the

locator point, which is on the X axis at the midpoint of

the line representing the <drawview> width. The

syntax and mechanics of actually assigning this value to

the locator point will be covered in the next chapter.

For now we will focus on the concepts involved in

defining an object.

 The first step is to divide the object into a grid

that intersects as many of the critical points as possible.

Generally, this will be three to five lines, as illustrated

on the right side of the figure below. Each line needs a

simple name to indentify it, such as “lvl2” or “r1”, so

19 | P a g e

that when assigning values to points you can keep everything organized. The next step is to estimate

the ratio of the space between each line to the width of the draw view, so that relative distances can be

determined. Either decimal or fractional values can be used, and they can be adjusted later quite easily.

These ratios are going to be added or subtracted from the locator point’s X or Y value.

A.2.0: Recommended Variables

 Generally, when assigning variable names to each of the lines you drew, you want to keep them

short and simple. The syntax for variable declaration is quite easy;

“varvariable_name=variable_value;”. The variable value can be just about anything, but for our

purposes numbers are generally the most useful. Since the locator point is going to be the crux of all

calculations, I usually call it “base_x” and “base_y” for the x and y components of the point. The “code

box”below has a variety of

syntax not yet introduced,

which I will now explain.

Laszlo uses a “tagging”

structure was originally

developed for displaying

information on the web in a

more attractive way than

just text. The basic idea is

that you “wrap” the text

you want to display in a

package that instructs the browser to show that text is a specific way. This package is defined by

opening and closing “tags” that each have a different meaning to the browser. If you want large text to

begin the page of text, you can use one of several “title” or “header” tags. If you want to create a link,

<drawview name=“example” width= “50” height= “70”>

<attribute name= “x_loc”value= “${0.5*this.width}” />

<attribute name= “y_loc” value= “${0*this.height}” />

<handler name= “oncontext”>

varbase_x = this.x_loc;

varbase_y = this.y_loc;

var l1 = base_x – (1/12)*this.width;

var l2 = base_x – (1/6)*this.width;

var l3 = base_x – (1/3)*this.width;

var l4 = base_x – (1/2)*this.width;

var r1 = base_x + (1/12)*this.width;

var r2 = base_x + (1/6)*this.width;

var r3 = base_x + (1/3)*this.width;

var r4 = base_x + (1/2)*this.width;

var lvl1 = base_y + (3/8)*this.height;

var lvl2 = base_y + (5/8)*this.height;

var lvl3 = base_y + (7/8)*this.height;

var lvl3 = base_y + this.height;

//drawing instructions here

</handler>

</drawview>

20 | P a g e

there is a special “a” tag. Within each tag itself, a variety of properties can be set, such as font size, the

link destination, or simply a name to allow for in-page navigation. In the case of Laszlo, these tags

define instructions for the system to execute when the page is loaded.

 The <attribute> tag defines just that: an attribute within the <drawview> object that can be

animated and accessed by any other functions. It is similar in essence to a “var” variable, but var’s can

only be defined in and accessed by their own tags. The tags that can contain code (including the

declaration of “vars”) can be either a <handler> or a <method>. A <handler> is basically that: it handles

changes or events within the <drawview>. The name is very important, and every <drawview> must

have one <handler> with the name “oncontext”. This is executed once, when the rendering system first

runs through your code. The <method> tag is more of a general purpose function container, and while it

is not a necessary part of a <drawview> object, it can be very useful for dividing up independent

operations you want your <drawview> to do.

 As I mentioned before, the purpose of tags is to wrap up the enclosed text, and the last few

items above are called “close tags”, and are easily identified by the leading ‘/’ within the tag. Every tag

must have a closing tag, and just like preparing a bunch of items for shipping, each tag should be closed

before the preceding tag is closed. It wouldn’t make much sense to seal up the main container while the

smaller boxes inside are still wide open can spill and mix up. Just like the recipient trying to sort out the

mess, the program that reads your code will be very confused. To further the analogy, you can’t close

the smaller boxes once you’ve sealed the main container either. As can be seen with the <attribute>

tags, you can also close the tag by ending the declaration with a ‘/’. This is like putting an index card

with information in the shipping box; it has value on its own without actually holding anything within.

 There are some important and easily overlooked details in the code box that should be noted

and explained. First, when writing code within a <handler> or <method> tag, every instruction must be

21 | P a g e

terminated by a semi-colon (‘;’). This notifies the system when each instruction is finished, and when

the next instruction starts. It is theoretically possible to write your whole program on one line, but that

would make it a little difficult to read or edit. Next, when I declared the “x_loc” variable, the “value”

property had some odd characters mixed in. Namely the “${ … }” characters. This little “sub-wrapper”

(for lack of a better term) instructs the system to evaluate any variable and mathematic operations

contained within the curly brackets. This must be used whenever assigning values within a tag

declaration. These are NOT needed between the opening and closing tags of a <handler> or a

<method>. Note that in the declaration of the <drawview>, the height and width properties simply use

quotes with the numeric values inside. While you could use the evaluation “${ … }” sub-wrapper for

everything, it helps with the speed of displaying the object if you use it as sparingly as possible.

Especially for animations, when it has to evaluate every variable hundreds or thousands of times per

second.

 The “this.____” syntax is important for calling the various functions and variables associated

with the object within the <handler> and when using the evaluation sub-wrapper. It originates from

java and java-script, the foundation of Laszlo’s architecture. Every function you will be using needs to

have an object of some sort associated with it, either to act on or to originate from. Commands can’t

come from nowhere, and either the <drawview> or some object within it needs to be attached to each

instruction. When referring to <attributes> of the <drawview>, simply using a “this.” plus the attribute’s

name will resolve to the “value” of the <attribute>. While it is possible to assign a different value to the

attribute using the this.attrubute_name notation within a <handler> or <method>, it is better practice to

vary the value with an animator, and simply use the value as is within your functions.

22 | P a g e

A.3.0: Stroke Functions and Modifiers

 Getting back to the connect-the-dots analogy, when you want to draw the lines, first you have

to choose something to draw with. Similarly, we have to tell the system what kind of line to display as it

connects the points, and what color to put in the enclosed area. The “strokeStyle” property instructs

the system to use the indicated color, which can be in one of two formats: a 6 digit hexadecimal

(0x000000 is black, 0xFFFFFF is white) or a CSS color string (#00FF00 or #0F0 is green). If you have

Photoshop available, the color picker tool can be

helpful in choosing the color you want to use.

Similarly, the “fillStyle” property allows you

choose what color the interior of the object will

have. This is optional, and if left undefined the

object will consist of only the lines described by

the movement instructions. Additionally, the

thickness of the line is defined with the

“strokeWidth” property; a value of ‘1’ is kind of

like choosing a finely sharpened pencil, while a 4

would be a marker. Since we are creating a pine

tree, I chose the fill color to be a dark green, with

a thin black boarder for definition.

 Once we’ve chosen a “writing utensil”, so to speak, we need to indicate to the system that we’re

ready to start drawing, which is where we use the “beginPath()” function. The pair of parenthesis

indicates that we are calling a function with no inputs. If you are unfamiliar with the requirements of

functions, imagine that you are telling someone to do something. If you say “blink”, most people would

know how to accomplish this task without any further information. A more complex command might be

<drawview name=“example” width= “50” height= “70”>
<attribute name= “x_loc” value= “${0.5*this.width}” />

<attribute name= “y_loc” value= “${0*this.height}” />
<handler name= “oncontext”>

varbase_x = this.x_loc;
varbase_y = this.y_loc;

var l1 = base_x – (1/12)*this.width;
var l2 = base_x – (1/6)*this.width;

var l3 = base_x – (1/3)*this.width;

var l4 = base_x – (1/2)*this.width;
var r1 = base_x + (1/12)*this.width;

var r2 = base_x + (1/6)*this.width;
var r3 = base_x + (1/3)*this.width;

var r4 = base_x + (1/2)*this.width;
var lvl1 = base_y + (3/8)*this.height;

var lvl2 = base_y + (5/8)*this.height;
var lvl3 = base_y + (7/8)*this.height;

var lvl3 = base_y + this.height;

this.strokeStyle = 0x000000;
this.strokeWidth = 1;

this.fillStyle = 0x009900;

this.beginPath();

this.moveTo(base_x, base_y);

//drawing instructions here

this.closePath();
this.stroke();

this.fill();

</handler>
</drawview>

23 | P a g e

“go”; the person would want to know where you wanted them to go, and just stare at you blankly as a

response. “Go… to your room” would be more likely to be understood and executed. This is why the

command following “beginPath()”, namely “moveTo(base_x, base_y)” has the variables for the x and y

components of the locator point you defined before as “arguments”. It tells the system that you want

to move the “tip” of your “drawing utensil” to this point, without actually making a line. By default, the

system starts drawing at the point (0, 0), in the upper left corner of the canvas.

 To finish explaining the last new commands in the code box, “closePath()” instructs the system

to “close” the last object it drew. Operationally, this means it draws a line back to the first position from

which it started drawing. While this command is not a requirement for the system to draw the lines, it

must be used if you want to fill the object with a color, even if you have returned to the starting point

with your drawing instructions. “stroke()” signifies that you are finished drawing the shape, and it

should render the lines on the canvas, and “fill()” instructs the system to fill the interior of the shape

with whatever color you set with the “fillStyle” property.

A.3.1: lineTo(x , y);

 At last we get to actual instructions for

drawing lines. Once again, the command for drawing

a straight line is a function that needs two inputs.

Thanks to the work we did before with our drawing

and setting up the variables, we simply need to use x

and y values of each point that is intersected by a

vertical and horizontal dashed line. The first point is

illustrated in the figure to the right.

24 | P a g e

 I chose to construct the pine tree in a

counter clockwise direction, going down the left

side, and up the right side. Since our tree is

symmetrical, the right side instructions are very

similar, only using the ‘r1’ through ‘r4’ variables and

the reverse order. The last instruction,

“this.lineTo(base_x, base_y)” is actually

unnecessary, as the next instruction

(“this.closePath()”) would draw the same line. It is

still good practice to close your shapes, since your

last line may need to be a curve.

<drawview name=“example” width= “50” height= “70”>

<attribute name= “x_loc” value= “${0.5*this.width}” />
<attribute name= “y_loc” value= “${0*this.height}” />

<handler name= “oncontext”>
varbase_x = this.x_loc;

varbase_y = this.y_loc;

var l1 = base_x – (1/12)*this.width;
var l2 = base_x – (1/6)*this.width;

var l3 = base_x – (1/3)*this.width;
var l4 = base_x – (1/2)*this.width;

var r1 = base_x + (1/12)*this.width;
var r2 = base_x + (1/6)*this.width;

var r3 = base_x + (1/3)*this.width;
var r4 = base_x + (1/2)*this.width;

var lvl1 = base_y + (3/8)*this.height;
var lvl2 = base_y + (5/8)*this.height;

var lvl3 = base_y + (7/8)*this.height;

var lvl3 = base_y + this.height;
this.strokeStyle = 0x000000;

this.strokeWidth = 1;
this.fillStyle = 0x009900;

this.beginPath();
this.moveTo(base_x, base_y);

//left side of tree
this.lineTo(l2, lvl1);

this.lineTo(l1, lvl1);
this.lineTo(l3, lvl2);
this.lineTo(l1, lvl2);

this.lineTo(l4, lvl3);
this.lineTo(l1, lvl3);
this.lineTo(l1, lvl4);

//right side of tree
this.lineTo(r1, lvl4);

this.lineTo(r1, lvl3);
this.lineTo(r4, lvl3);
this.lineTo(r1, lvl2);

this.lineTo(r3, lvl2);
this.lineTo(r1, lvl1);
this.lineTo(r2, lvl1);

this.lineTo(base_x, base_y);

this.closePath();

this.stroke();

this.fill();
</handler>

</drawview>

25 | P a g e

References

Alonzo, A. &Aschbacher, P.R. Value Added? Long assessment of students’ scientific inquiry skills.

Presented at the Annual Meeting of the American Educational Research Association. San Diego,

CA, April.

Baxter, G. P., &Shavelson, R. J. (1994). Science performance assessments: Benchmarks and surrogates.

International Journal of Educational Research, 21, 279-298.

Gobert, J., Beck, J., Sao Pedro, M., Heffernan, N., & Richardson, J. (2008).Scaffolding and Logging

Students’ Scientific Inquiry within Science ASSISTments program. To be presented at the

International Conference of the Learning Sciences. June 23-28th, Utrecht, The Netherlands.

Gotwals, Amelia W. and Songer, N.B. (2005). The Symbiosis of Cognition, Observation, and

Interpretation in an Assessment System for BioKIDS. In S. Barab and K. Hay (Eds.) The

Proceedings of the International Conference of the Learning Sciences.

Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of

direct instruction and discovery learning. Psychological Science, 15(10), 661-667.

Kuhn, D. (2005). Education for thinking. Harvard University Press, Cambridge, MA.

National Committee on Science Education Standards and Assessment (1996). National Education

Standards, Washington, DC: National Academy Press.

National Research Council (US). (1996). National Science Education Standards. Washington, DC:

National Academy Press.

Ruiz-Primo, M.A. &Furtak, E. (2004).Informal assessment of students’ understanding of scientific

inquiry. A paper presented at the American Education Research Association annual meeting, San

Diego, CA.

Rutherford, J.F. and A. Ahlgren. (1990). Science for All Americans. New York: Oxford University Press.

Schunn, C., Raghavan, K., & Cho, NB. (2007). Domain-general Learning Accelerators in Middle-School

Science.Paper to be presented at the annual meeting of the American Educational Research

Association, Chicago, IL. April 9-13.

Sebuwufu, Patrick, S. (2009). Science ASSISTments Coding Scheme for Open Response Items. Interactive

Qualifying Paper, Worcester Polytechnic Institute, Worcester, MA.

