Recycling for 3D Printing at UNAM

Cassidy Choquette, Tobias Enoch, Jacob Saunders, Nikesh Walling

Presentation Roadmap

01	Project Overview		
U3	Results	02	Methodology
03	Results	04	Discussion
05	Future Work		

Useful Terms

Objectives

Create a renewable supply of filament from waste plastic for the Forge 3D Lab.

Objectives

Assess

Assess the use of and need for 3D educational aids at UNAM.

Identify

Identify
ethical considerations in
medical education in
Southern Africa

Construct

Construct a filament extruder and create a renewable source of filament

Mixed Methods Approach

Qualitative Data Collection

Focus group with UNAM students In-depth interviews with UNAM staff

Technical Engineering Work

CAD models and sourcing Construction of filament production set-up

Qualitative Data Collection Methods

Qualitative Data Collection

Duration

33 minutes

42 minutes

40 minutes

Profession

Anatomy Technician

Anatomy Technician

4th-Year OT Students

Date of

April 5th, 2024

April 5th, 2024

April 5th, 2024

Participant

Participant 5

Participant 6

Focus Group

•	Interview		
Participant 1	March 19th, 2024	1 hour, 41 minutes	Anatomy Professor
Participant 2	March 27th, 2024	59 minutes	Dentistry Technician
Participant 3	March 27th, 2024	52 minutes	OT Professor
Participant 4	April 4th, 2024	39 minutes	Anatomy Professor

.

Data Analysis & Coding

Primary Code

Derived from overarching topics

Secondary Code

Reflect arguments within primary themes **Ethics**

Cultural Rights

Legal Precedent "Bridging the Gap"

2D to 3D

Multimodal Learning Teaching Models

> Material Lifespan

Availability

Cost

Funding

Revenue Stream "Patient Individuality"

Time Cost

Personalization

Technical Methodology: Filament Creation

Objective #1

To assess the use of and need for educational aids at UNAM

Common Themes: Interviews

3D Learning

Stressed importance in anatomy

"Bridging the Gap"

Finding a method in between 2D and cadavers

Multi-Modal Learning

Emphasized the importance of various study tools

Anatomy: "Bridging the Gap"

"If I scan the thing, I have a 3D model that I can show the students on screen in three dimensions that bridges the textbook with paper..."

- Participant 1

"You go to the lab, and they put a sticker on a specific part, either an organ or skull muscle and then they will ask you what that is. But, at home you are only studying from a textbook, not a 3D."

- 4th Year OT Student:

Dentistry

Traditional vs. Contemporary Methods

"For me, the digital system is, it's kind of like an add-on ... It's basically supplementary to the conventional methods - It's really important that [dentistry students] grasp the concept fundamentally from the conventional method."

- Dentistry Tech.

https://www.dentalcompare.com/News/358297-New-Dental-Product-Primescan-Intraoral-Scanner-from-Dentsplv-Sirona/

Occupational Therapy

Personalization and Time

"Physical Therapists teach you how to **walk**, Occupational Therapists teach you how to **dance**."

"It can take up to **two to three hours** to make one splint"

- Participant 3

https://captionsswapde.blogspot.com/2021/03/picture-of-splint.html

Objective #2

To identify ethical considerations in medical education in Southern Africa

Ethical Considerations in Anatomy

Identifiability

Patient privacy when publishing

Consent to reproduce materials

Cultural Traditions

Respecting the life before the cadaver

Ethical Considerations in OT

- Assistive devices toward occupational justice
- Personalization takes time away from others

Ethical Considerations in Dentistry

 Biocompatibility concerns limits using FDM 3D printing in dentistry

 Unethical to use nonbiocompatible or expired material

Technical Design: Bottle Cutter

Technical Design: Filament Winder

Technical Design: Filament Extruder

Design and Sourcing

- Entire design made to use inexpensive materials that are easily replaceable.
- Mostly sourced in Namibia
- Modular design allows for easy modification

Current Progress

Results Summary

Medical education requires a mixed methods approach, but some methods, like cadaver dissection, are controversial.

As a public university funded by the government, UNAM suffers from a severe lack of funding.

3D Printing sits in a moral gray area; everyone disagrees on what human remains can and cannot be reproduced.

Anatomical Models

- Students could bring home 3D printed anatomical models for study
- Ethical considerations regarding replicating cadavers may slow down this process

Biocompatibility

- Dentistry students can practice 3D modeling and print preparation using the resin printers in the Forge3D lab.
- Less of the expensive, proprietary dental resin will be needed for teaching.

Assistive Devices

- With 3D printing, OTs could modify 3D CAD files to quickly make personalized assistive devices.
- With 3D printing, a single OT can see more patients while assistive devices are made automatically by a machine.

)

Technical Progress

- Bottle Cutter ~ 70% Complete
 - Cutter tested and Rev. 2 will be manufactured.
- Filament Winder ~90% Complete
 - Assembled, waiting for electronics.
- Filament Extruder ~50% Complete
 - Nearly all parts manufactured.
 - Tuning and electronics required.

Conclusions

- Objective 1: Assess Educational Needs
 - Many opportunities to use 3D printing in medical education
- Objective 2: Identify Ethical Issues
 - 3D printing lies in an ethical grey area in medical pedagogy
 - Technology is currently ahead of the law
- Objective 3: Construct Device
 - The device is unfinished, but is in a good state overall

Future Potential

Anatomy:

 Professors may print molds to create anatomical models on mass for all students.

Dentistry:

 Experimentation with silicone molds and advanced resins may lower the cost of practice teeth.

Occupational Therapy:

 Courses in CAD may allow students to design and build their own 3D printed assistive devices.

Forge3D Lab:

• 3D printing request service to generate revenue

Questions?

CREDITS: This presentation template was created by **Slidesgo.** and includes icons by **Flaticon**, and infographics & images by **Freepik**

