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Abstract 

 The goal of this project was to build a low-cost, cloud-based spectrum observatory capable 

of monitoring multiple 5G frequency bands in real-time with the ability to remotely change the 

parameters of the radios during runtime. The observatory was implemented using GNU Radio, 

Python, JavaScript, and Node.js as well as multiple software-defined radios. The approach was 

successful, and the spectrum observatory serves as a good proof-of-concept for future works. 
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Executive Summary 

 The development of a spectrum observatory is critical to communications as it provides a 

variety of functions. A 5G spectrum observatory allows anyone to monitor 5G frequency bands 

and access the data to make decisions for their task. Most observatories are designed for 

professional researchers and engineers and require expensive, high-end equipment [1]. There is a 

need for a smaller scale spectrum observatory that is inexpensive and can provide control of 

various parameters while displaying real-time results for anyone to access. The project has created 

a proof-of-concept implementation of a low-cost spectrum observatory that allows users to 

remotely view spectrum data and remotely change the operational parameters of the software-

defined radios sampling. 

 

Figure ES.1: Block Diagram of Design Overview 

 Six different 5G frequency bands were evaluated to have a greater range of 5G data to 

speculate for busy frequencies or available frequencies. The spectrum data was tested using two 

different radios, each designated to a different 5G frequency band. The testbed was built with 

Ubuntu 18.04 using a USRP 2901 on a headless host computer. GNU Radio was used to sample 
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the data at each requested frequency band from the user. This flowgraph sampled data at 300,000 

samples per second to maintain a minimal output data size. 

 The GNU Radio data was uploaded to the cloud server using a custom script that encoded 

and formatted the data before upload. A daemon control program paired the GNU Radio instance 

and the uploader script so that a single program had the ability to control multiple radios. The radio 

host program parsed two input arguments, one argument determined the number of GNU Radio 

instances to run, and the other argument was a string indicating a command for the daemon to start 

running, stop, or restart. 

 The server was originally implemented using the WebSocket protocol. With this type of 

implementation, the server begins by waiting for an event to fire, indicating the radio host has 

connected. The socket would then be opened and allow for data to be sent and received, and the 

server began parsing the data as it came in. The headers were separated from the data payload, and 

the data was converted from Base64 to binary so it could be arranged in a Comma Separated 

Values (CSV) file format. This approach worked well for a single radio but not for multiple. Socket 

implementation with several radios resulted in the server greatly slowing down. As a result, 

Hypertext Transfer Protocol (HTTP) was used in the final server implementation. This type of 

implementation worked better because the server was designed to have a specific address for data 

coming in from different radios. Some changes to data processing were made to increase the 

performance of the server, such as implementing worker threads and splitting the data across 

several files. After the data was converted to a CSV file, the files were stored in separate folders, 

with one designated for each radio.  

 The website used AJAX or “Asynchronous JavaScript and XML” to access the folders 

containing the CSV files, and using this data, calculated the magnitude of each pair of numbers 

using the magnitude equation. Once the calculations were complete, the spectrum data was 

graphed as an amplitude plot. Figure ES.2 is an example of this. 

The final part of the project was implementing the ability to send commands backward, 

from the website to the radio host. The reason for the bi-directional data flow was to allow for the 

remote control of radio parameters, like center frequency, during run time. This was achieved by 

implementing an HTML form with two frequencies to choose from for each radio. This form would 

use an HTTP POST request to send the user’s selected frequency value through the web interface 

to the server. The radio host computer used an HTTP GET request to receive these instructions 
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and change the radio parameters accordingly. This resulted in an easy and effective 

implementation to let the user change the center frequency of the radio remotely through a web 

interface. 

Once the prototype was functional from end-to-end, the performance of this spectrum 

observatory was measured. It was noted that there was a delay in each step of the implementation, 

with the biggest delay occurring between data being stored on the server after being processed and 

data being displayed on the webpage. This delay kept compounding as more files were added to 

the server and the number of required computations to create the spectrograms increased. As more 

data was added, the time between the collection of data and displaying on the website went from 

less than five seconds to more than a minute. Since the time delay is very dependent on the speed 

of the internet and the machine displaying the webpage, the exact latency measurement varies. 

Finally, to check the accuracy of the data, a comparison was made between data being displayed 

on the website and data being displayed in QT GUI sink of GNU Radio. Similarities were noted 

between the visualization of data in both cases, even though the delay in end-to-end 

implementation made the comparison a challenge.  

 Overall, this project provided a comprehensive overview and proof-of-concept of a lower 

cost, cloud-based spectrum observatory. With more research and development being completed to 

expand the system, this implementation could be an excellent model for other lower-cost spectrum 

observatories.
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Figure ES.2: Web Display of Spectrum Data
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Authorship Page 

 While all members of this team contributed to both the implementation of the spectrum 

observatory and writing of this report, different members had different focuses throughout the 

project. For a more in-depth breakdown of who contributed to which pieces of the project, refer to 

Appendix A.  
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1. Introduction 

 This chapter explains the significance of spectrum sensing and spectrum display utilizing 

a cloud-based system, the presence and impact of spectrum observatories in society currently, and 

the current development in data collection and display methods. This chapter ends by narrating 

this project’s contribution to furthering spectrum observatory technologies. 

1.1 Motivation 

5G is a brand new technology still in its infancy, and yet it is making huge waves in industry 

with companies like Verizon or AT&T purchasing mid-band spectrums for over $40 billion each 

[4]. Throughout the lifetime of 4G wireless, there have been many projects [3][4][5] that would 

capture wireless signals across the 4G spectrum using one or more radios and display the spectrum 

on a website. These cloud-based spectrograms allow any internet user to view and analyze data 

being collected by any number of radios across the world in numerous cities, but many are now 

defunct and no longer operate. Figure 1.1 shows an example of one of the spectrograms that has 

since gone defunct. Its two axis, frequency and power, show it is a periodogram, but data is no 

longer being collected and is therefore not being displayed. 

 

Figure 1.1: Illinois Institute of Technology Defunct Spectrum Observatory. From [5] 
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This project’s goal is to accomplish the same functionality as the 4G spectrum 

observatories but in the 5G band. The possible uses for this technology include civilian hobbyists, 

researchers, and even national defense [6]. A 5G spectrum observatory allows interested parties to 

monitor the 5G bands and make decisions based on the data they have access to. A hobbyist 

interested in setting up an IoT device may access a 5G spectrum observatory to see the frequencies 

that are being commonly used, or see the frequencies they need to avoid. A researcher may use the 

technology to locate frequency hotspots or investigate the properties of a 5G antenna outputting 

energy in a band that is being monitored by the observatory. National defense uses include securing 

locations where VIPs need to travel, locating insurgent cells communicating on 5G bands, or 

finding the frequency that needs to be jammed to force a missile to fly off course from a friendly 

aircraft [6]. On a smaller scale, a spectrogram can be used to find local WiFi or Bluetooth 

frequencies that are being jammed by lower energy jammers [7][8]. 

 The possible uses of spectrum observatories are wide, and the choice to make it cloud-

based is purposeful. Allowing anybody in the world to access this technology, analyzing frequency 

data, monitoring captured signals, and changing the operating frequencies on the radios, allows 

this project to be accessible by those who normally cannot afford it. Opening the 5G band for use 

by anyone and everyone levels the technology playing field between professional researchers and 

developers from Silicon Valley tech companies with the everyday engineers who wish to develop 

something unique and personal. Costs for a spectrum observatory are high, the hardware alone 

costing around $5000 for a medium tier radio and computer to run it, not even taking into account 

the development costs and server costs [1]. Providing this technology at a lower cost, and on a 

more widely accessible scale allows any individual to become invested in the spectrum world. 

1.2 Current State of the Art 

 Several spectrum observatories have been implemented to help conduct research that 

requires constant spectrum sensing and data collection at a large scale. Spectrum observatories are 

technologies deployed to capture and display spectrum data of a specific time or throughout a 

specific interval of time. These observatories were designed to overcome some of the challenges 

of developing and analyzing new wireless technologies. Careful handling is required to ensure the 

hardware and software of such spectrum observatories work properly to output correct data [5]. 
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Figure 1.2 Spectrum Observatory concept diagram of the operations between the sensors and 

central server  

 

 Figure 1.2 illustrates the two main components of such spectrum sensing observatories are 

spectrum sensor nodes and a central server [5]. A spectrum sensor node typically consists of a 

software-defined radio (SDR). An SDR is a radio communication system used for modulation and 

demodulation of radio signals. The SDR is programmed to monitor a specific channel in the 

frequency spectrum at a certain time and collect data. This data is then sent to the server when it 

is stored and integrated to generate a plot displayed on a user interface such as a website. Figure 

1.2 shows the basic concept of a spectrum observatory with the sensor nodes feeding information 

to the central server that computes and displays the data. 

 The Illinois Institute of Technology (IIT) created a spectrum observatory to assess the radio 

frequency (RF) spectrum utilization accurately in downtown Chicago. This spectrum 

observatory’s main objective was to encourage the use of the spectrum more efficiently [9]. SDRs 

covering a wideband of 30 MHz to 6 GHz were used as sensor nodes in this project. Due to the 

large amounts of generated data from these sensor nodes, several different data storage solutions 

were evaluated and utilized to store the RF measurement data. Figure 1.3 represents the building 

where Illinois Institute of Technology housed the spectrum observatory along with the results they 

achieved. 
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Figure 1.3 Illinois Institute of Technology spectrum observatory. From [10][11] 

 

Microsoft created a spectrum observatory to map the number of active transmitters, their 

frequency, and their temporal characteristics to detect both rogue transmitters and opportunities 

for radio frequency access. Microsoft used advanced and wideband spectrum analyzers covering 

measurements from 50MHz to 2.5 GHz at different resolution bandwidths and housed the data 

using their own Azure database system [1]. This system required a co-located PC that processed 

the data and created summaries before uploading them to the Cloud [1]. 

FuNLab of the University of Washington developed a system named SpecObs that used a 

geolocation database and spectrum sensing with the intention to improve white space prediction 

in the frequency spectrum. The RF sensor nodes scanned certain frequencies periodically and then 

uploaded the data to a server. This sensing data was tagged with metadata such as a timestamp and 

locational data before being uploaded. The cloud server managed the storage and processing of 

data and calculated statistical characteristics white space availability [5]. Secondary users utilized 

this model to estimate channel availability and determine when the primary user did not occupy 

the channel. A primary user, in this case, refers to individuals or organizations to whom the channel 

is legally licensed [12]. Radios can be deployed at multiple locations to cover a particular 

geographical area in such a type of spectrum observatory [12]. With the above systems seemingly 

not currently available for public access, the project’s goal is to expand on these current systems 

and determine ways to lower the cost of deploying a cloud-based spectrum observatory without 

compromising the vital features. Figure 1.4 shows the system architecture implemented by 

FuNLab along with a scan of radio frequencies in the United States of America.  
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Figure 1.4: FuNLab Spectrum Observatory. From [13] 

 

Table 1.1 summarizes the specifications of each of these spectrum observatories [1][9][12]. 

 

Table 1.1: Specifications of other Spectrum Observatories  

Company/ 

Organization 

FuNLab of the 

University of 

Washington  

Microsoft  The Illinois Institute 

of Technology (IIT 

Spectrum Sensing 

tool 

Sensor nodes  Spectrum Analyzers 

(50MHz to 2.5 GHz) 

SDR 

(30 MHz to 6 GHz) 

Data Base Cloud server  TX Miner MongoDB 

Storage Cloud server Blob Storage DSNET 

 

1.3 Technical Challenges 

Most existing spectrum observatories concentrating on finding radio frequencies and 

displaying real-time results have high operating and development costs or have privileged access 

to RF equipment. Smaller-scale implementations of a spectrum observatory may not have access 

to such high budgets and equipment, limiting these implementation’s ability. 

MongoDB, a database platform, was used by the spectrum observatories developed by IIT 

and the University of Washington to store spectrum data and metadata [5][9]. MongoDB is a cloud-

based database platform used by application developers to store large-scale datasets. Even though 

this software has a free version, the storage is not enough for continuous data generated by SDRs. 



 

6 

A paid subscription for this database would be ideal for storing spectrum data, but it is not cost-

efficient for lower budget projects as the subscription can cost upwards of $97/month in addition 

to the costs of the hardware needed to host the database. 

SDRs have various parameters such as center frequency, gain, and channel bandwidth. 

Although it is possible to change these parameters during runtime, it is usually done on the 

computer hosting the radio. Remotely changing these parameters requires the transfer of 

commands from the user interface to the host computers. This transfer often causes complications 

as commands are transferred between multiple programming languages and multiple, differently 

configured computer systems. As such, this ability to change commands is very uncommon. Some 

observatories let the user select and view the spectrum at different geographical locations by 

selecting an option on the web interface, but this does not require changing radio parameters. This 

user input method does not require data to transfer back to the radio host like changing radio 

parameters would [5][14]. 

1.4 Contributions 

Cloud-based Spectrum Observatory: 

 The cloud-based Spectrum Observatory was implemented using several SDRs and a 

custom central cloud server. The sensor nodes were run by GNU Radio and sampled specific 5G 

spectrum bands, uploading the spectrum data to the central server. This platform was improved to 

support several radios, and acts as a proof-of-concept that has the ability to be expanded to support 

additional sensor nodes and create additional functionality for the user. 

 

Web-based User Display: 

 End-user access to the data was created with an openly accessible website. The utilization 

of JavaScript on both the server and website allowed for the formatting and display of data as a 

spectrogram with data being transferred from the cloud server to the user. This functionality allows 

users around the world to access the sampled data without the need for physical access to the 

observatory. 
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Remote User-control of Radio Parameters: 

 In addition to the display, the user-accessible website provided functionality for remotely 

changing the SDR’s sampling parameters during runtime. Commands from the user are passed 

through the cloud server and accessed by GNU Radio using custom functionality. This allows 

users to remotely control the spectrum band being sampled from a selection of pre-set frequencies, 

in addition to being able to remotely view the sampled data. 

1.5 Report Organization 

 This report is organized into nine chapters as follows. Chapter 1, the Introduction, details 

the motivations for this project and the current state of the art for spectrum sensing and display 

regarding cloud-based systems. The Introduction concludes by briefly analyzing challenges in the 

current state of the art and explaining how this project contributes to current research. Chapter 2, 

Overview of Spectrum Sensing, outlines essential information on the technologies used in this 

project, such as SDRs and cloud platforms, as well as the types of data and processing required for 

displaying frequency spectrum data. Chapter 3, Proposed Implementation, summarizes possible 

solutions, outlines the general implementation, and defines the project’s timeline. Chapters 4 

through 7 describe the implementation methodology and the criteria for measuring success, with 

each chapter focusing on a specific segment of the final project. Chapter 8 presents findings and 

analysis on the data measured in the previous Methodology chapters. The report finishes with the 

Conclusion in Chapter 9. This chapter summarizes the project’s contributions and makes 

recommendations on areas of future improvements.  
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2. Overview of Spectrum Sensing 

2.1 Introduction of Frequency Spectrum 

Radio spectrum is a portion of the electromagnetic spectrum used in modern technologies, 

especially telecommunication [14]. The radio spectrum and its internal partitioning are managed 

by the Federal Communications Commission (FCC) and the National Telecommunications and 

Information Administration (NTIA) [15][16]. Figure 2.1 highlights the different frequency 

allocated by the Federal Communications Commission. 

As seen in Figure 2.1, frequency ranges from 9 kHz to 275 GHz have been allocated, and 

these allocated frequencies are used for different purposes. For example, broadcasting AM radio 

has been allocated frequencies between 535 kHz and 1605 kHz, FM radio spans between 87.8 

MHz to 108 MHz, and radio navigation has the frequency range between 9 kHz and 14 kHz 

allocated to it [18].  Different telecommunications companies have licensed specific bandwidths 

for their commercial uses—Table 2.1 highlights these various cellular frequency band allocations 

[15][16]. Wi-Fi with a the standard 802.11 provides selective ranges for use, these include: 900 

MHz, 2.4 GHz, 3.6 GHz, 4.9 GHz, 5 GHz, 5.9 GHz, 6 GHz and 60 GHz frequency bands.[15][16] 

 

Table 2.1: Licensed Frequency Bands by Company 

Provider  3G Frequency 4G Frequency 5G Frequency 

AT&T GSM/UMTS/HSPA+ 

1900 MHz,850 MHz 

1900, 1700/2100, 

850, 700 2300 

850 MHz, 39 GHz 

T-Mobile GSM/UMTS/HSPA+ 

1900 MHz, 

1700/2100 

MHz,CDMA 1900 

MHz, 800 MHz 

1900, 1700/2100 700, 

600,1900, 850, 2500 

600 MHz, 28 GH, 39 

GHz,2.5 GHz 

Verizon CDMA 850 MHz, 

1900 MHz 

1900, 1700/2100, 

850, 700 

28 GHz,39 GHz 

https://en.wikipedia.org/wiki/Hertz
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Figure 2.1: FCC Frequency Allocations. From [17]
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Four major frequency bands are used in technology today. There are low frequencies that 

range between 30 kHz to 300 kHz, high frequencies that have a range between 3 MHz to 30 MHz, 

ultra-high frequencies that have a range between 300 MHz to 3 GHz, and microwaves that range 

between 1 GHz to 1000 GHz [19][20]. Frequency bands that range between 24 GHz to 100 GHz 

are known as millimeter waves [21], and this range is primarily used for 5G. Other low bands and 

mid bands are also used by telecommunication companies, such as AT&T’s 850 MHz band and 

T-Mobile’s 600 MHz band. 

2.2 Introduction to Fifth Generation Technology 

5G refers to fifth generation mobile network technology, and it uses a network of cell sites 

to send encoded radio waves. Each cell site is connected to a network backbone through a wired 

connection [22]. 5G primarily uses millimeter waves because the use of millimeter waves provides 

higher bandwidth because higher carrier frequency translates to higher signal bandwidth. The 

portion of frequencies that range from 30GHz to 300 GHz are referred to as millimeter waves 

because the wavelengths range between 1-10 mm. Along with millimeter waves ultra-high 

frequencies (UHF) have started to be repurposed for the use of 5G.These higher frequency waves 

cannot penetrate objects such as walls and buildings, limiting the range of the higher frequency 

5G cellular data [22]. It is reliable in densely populated areas such as parks, stadiums, and large 

cities. 

Multi-access edge computing (MEC) is growth to cloud computing, it brings applications from 

centralized data centers to the network edge. This application creates a shortcut in the delivery of 

content between the user and host [23]. Some characteristics of MEC are real-time access to 

Radio Access Networks (RAN), high bandwidth, and low latency. Another integral part of the 

5G architecture is Network slicing [23][24]. This technology along with Network Function 

Virtualization (NFV) allows multiple networks to simultaneously run on top of shared physical 

network infrastructure (wired connection) [24]. Figure 2.2 illustrates 5G slicing architecture with 

SDN/NFV architecture and its connection to a  shared physical network infrastructure. This is 

needed for 5G architecture as the creation of end-to-end virtual networks includes network and 

storage functions, which can be managed by partitioning the networking resources depending on 

cases with different latency and availability. 



 

11 

 

Figure 2.2: 5G Slicing architecture with NFV. From [25] 

 

Another part of 5G architecture is known as beamforming, base stations transmit signals 

in multiple directions using Multiple In Multiple Out (MIMO) arrays using a lot of small antennas 

combined with the use of signal processing algorithms [23]. These algorithms are able to determine 

efficient paths for signals and data packets to travel to reach the intended destination. The use  of 

small antennas enables large arrays to occupy the same area and help with reassigning beam 

direction several times per millisecond [23]. The use of a larger antenna density in the same area 

makes it possible to achieve narrow beams with the use of MIMO. This provides a high throughput 

with effective user tracking [23]. 

2.3 Software-Defined Radios 

 In the field of communication, it is not always feasible to exchange information between 

different types of equipment due to data loss and incompatibility. Thus, SDRs are used, as they 

have flexible architectures. The physical layer function of an SDR is defined through software 

such as GNU Radio, CubicSDR, and Simulink. Leveraging the programmable nature of the 

platform, SDRs can transmit and receive signals to produce various data types from a wide range 

of frequencies, and it is flexible enough to switch channels and change modulation schemes in real 

time [26]. 
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 The block diagrams of the transmitting and receiving functionality SDRs are shown in 

Figures 2.3 and 2.4, respectively.  For the receiver end of the SDR, the radio frequency (RF) tuner 

first converts analog signals to intermediate frequency (IF). After this, the IF signal is passed to 

the analog to digital converter (ADC), which changes the signal’s domain, and the output sample 

is passed onto the digital down converter (DDC). The DDC is the critical part of the system, and 

it contains three main components: a digital mixer, a digital oscillator, and a low-pass filter. The 

digital mixer and oscillator shift the IF samples to baseband, and the low-pass filter encloses the 

bandwidth of the final signal. The DDC output, baseband samples are passed onto the processing 

block, the digital signal processing (DSP). Similarly, the transmitter end of the SDR acts very 

much like the receiver; however, the process is in reverse order [27]. 

 

Figure 2.3: Block Diagram of SDR’s Transmission Functionality. Adapted from [28] 
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Figure 2.4: Block Diagram of SDR’s Receiving Functionality. Adapted from [28] 

 

GNU Radio is a free and open-source software development toolkit that uses signal 

processing blocks to program an SDR and can perform all necessary signal processing using the 

different default blocks or customized blocks. On GNU Radio, different applications can be written 

to receive data from the digital streams and push data into the digital streams using an external 

hardware device to transmit. The different element blocks in the software are capable of handling 

all the digital data and can be used to create filters, channel codes, demodulators, equalizers, and 

many others. The software is programmed by connecting these blocks so that data can be passed 

from one block to the other. It provides a user-friendly graphic user interface (GUI) for the user. 

Python files can also be generated from the flowgraph which can be modified based on user needs 

[29]. 
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Figure 2.5: GNU Radio Flowgraph Example [30] 

2.4 Types of Spectrum Display 

Different types of plots are used to display spectrum data according to the user’s need. The 

waterfall plot and the amplitude plot are the most common [5][9]. The waterfall plot is a three-

dimensional plot that shows a two-dimensional phenomenon such as spectrum change over time, 

as seen in Figure 2.6. The vertical axis represents time, the horizontal represents frequency, and 

the third axis shows amplitude or power, represented by changes in color [31]. An amplitude plot 

in spectrum sensing displays the instantaneous power of a frequency channel, as seen in Figure 

2.7. This type of plot is mainly used to determine whether a channel is active or not, whereas the 

waterfall plot is more widely used to analyze data on a larger scale [32]. 

 



 

15 

 

Figure 2.6: Waterfall Plot. From [32] 

 

 

Figure 2.7: Amplitude Plot 
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 These display methods have positives and negatives associated with their use related to 

computational power needed and usefulness of data displayed. An amplitude plot is an effective 

tool for showing a simplistic overview of a frequency spectrum and only requires magnitude data 

from the fast Fourier transform and the center frequency [33]. The waterfall plot requires the same 

magnitude and center frequency data but also requires the ability to store multiple time instances 

of the magnitude, drastically increasing the storage space necessary to use the plot. The other 

concern with waterfall plots is the code necessary to produce one. In a language such as Python 

[34], it is a simple matter using the matplotlib [35] library. However, when using JavaScript’s D3 

graphing library [36], there is no built-in functionality for building a waterfall graph, requiring 

custom-built methods for drawing the desired field instead. 

 When displaying a spectrogram, the most important thing to consider is; what does each 

axis symbolize and what are its units. In the examples shown in Figures 2.3, the x-axis is labeled 

as frequency, and while this is partially correct, it does not tell the full story of what data is being 

stored and displayed. In reality, the x-axis represents the frequency bins collected from the Discrete 

Fourier Transform (DFT) earlier in the computation. The x-axis is dependent on: the center 

frequency at which the spectrum was collected, the sampling frequency, and the size of the DFT 

used to calculate the frequency magnitudes. The total range of frequencies, or bandwidth, is 

equivalent to the sampling frequency, with the minimum and maximum frequencies displayed 

defined in (1) and (2). 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑓𝑐 − 𝑓𝑠          (1) 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  𝑓𝑐 + 𝑓𝑠           (2) 

where fc is the center frequency and fs is the sampling frequency. Additionally, the described range 

of frequencies is split into equal parts that are averaged and displayed based on the size of the 

discrete fast Fourier transform. Each data point in the transform, called a frequency bin, holds the 

average number of frequencies in its range. The number of bins is described by (3). 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑛𝑠 = 𝑓𝑠/𝐹𝐹𝑇𝑠𝑖𝑧𝑒           (3) 

 The y-axis is much simpler for the two display methods. In the amplitude plot, the vertical 

axis shows the given frequency’s amplitude. This amplitude is commonly in decibels [dB] and 

creates a logarithmic scale [37]. In the waterfall chart, the vertical axis represents time, with each 

new line representing a new time instance. This results in the waterfall chart needing to retain past 

data for display in addition to displaying the most current set of data. 
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 The final axis to be aware of is the z-axis, which is only relevant for the waterfall chart. 

The z-axis represents the magnitude of the corresponding frequency at the corresponding time and 

is represented by color. Commonly, high power frequencies trend towards a more red color, while 

background noise is commonly blue. 

2.5 Software Daemons and Program Control 

 In computing, a daemon is a type of process that runs in the background and typically 

requires little or no input from the user, making them different from a normal process [38]. 

Daemons are typically long-running, with the daemon being created at system startup and running 

until termination when the system shuts down. This behavior makes a daemon process ideal for 

performing autonomous tasks such as serving web pages, like the Apache HTTP server daemon 

(httpd), or providing a network login ability, like the Secure Shell daemon (sshd) [38].  

Characteristics that define a UNIX daemon are outlined below in Table 2.1. Due to this 

standard set of characteristics, many programming languages have a standard implementation for 

converting a regular program into a daemon [39]. Having a standard implementation allows the 

creator of the daemon not to have to ensure these creation steps are completed precisely and 

ensures misbehaving daemons are unlikely to be created. 

Once the process has successfully been turned into a daemon, the process enters the main 

program to execute its intended behavior. This main program is often located inside an infinite 

loop due to the nature of daemons often running until system shutdown. 

The characteristics of a daemon also mean that there are very few ways to interact with it 

during runtime (as is expected since these processes are meant to be autonomous) [40]. The two 

typical interactions a daemon has are to signal a restart or to signal shutdown. Each signal serves 

a specific purpose. By indicating a daemon should restart, it allows a user to change a configuration 

file to send new operational parameters to a daemon. Sending a daemon a signal to terminate 

allows it to perform any cleanup necessary to exit safely. Most often, the termination signal 

(SIGTERM) is sent to the daemon by the system as it shuts down. In this case, the daemon’s 

shutdown process must be short to ensure it can be completed before the system fully shuts down 

[38]. 
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Table 2.2: Actions taken to Create Unix Daemon 

Action Performed on Process Reason 

Perform a process fork and exit the parent 

process 

Orphans the child to run in the background 

and ensures the child process is not a process 

group leader 

Child process from previous fork sets its SID Starts a new session for the child and frees the 

child from any association with a controlling 

terminal 

Fork the child process again and exit the 

parent. This parent is the child in the previous 

step. 

Ensures the child process is not the session 

leader and can not reacquire a controlling 

terminal 

Clear the process unmask for the new child 

process 

Ensures the process has the needed 

permissions when creating files and 

directories 

Change the process’s working directory 

(typically to the root directory) 

Ensure the process’s working directory can 

not be unmounted 

Close all open file descriptors belonging to 

the process 

Ensures stdin, stdout, and stderr are closed 

and not pointed to a terminal. Additionally, 

this helps avoid file descriptor leaks 

Reopen file descriptors 0, 1, and 2 and point 

them at /dev/null 

Ensures that if the daemon program tries to 

make calls to stdin, stdout, or stderr, these 

functions will not unexpectedly fail 

2.6 Cloud Servers 

With the introduction of the Internet of Things (IoT) and an increase in internet-connected 

devices, the concept of “The Cloud” and cloud computing has been growing in popularity [41]. 

When an item or utility is referred to as “cloud-enabled” or “cloud-based” (like this project), it 

typically refers to using the Cloud to transmit data and information. The Cloud, in this case, is a 

central server used to host, route, and store that data or information with the benefit that the cloud 

server has more resources and abilities available than any single device [42]. Figure 2.8 shows a 

typical layout of a cloud system. The user accesses one or more servers over the internet and these 

servers contain applications and databases that provide the user with the desired functionality. 
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Figure 2.8: An example of the functional layout of a Cloud system. Adapted from [43] 

 

In addition to hosting data and making said data available over the internet, cloud servers 

have additional processing power that can be used to support less powerful devices. One of the 

primary differences between an on-premise server (a server physically hosted and managed by the 

company using it) and a cloud server is that cloud servers are often virtualized so that the company 

subscribing to the provider has a lower subscription and operating cost for the server space [44]. 

Table 2.3 outlines several of the pros and cons between using an on-premise server and a cloud 

server. 
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Table 2.3: Pros and Cons of an On-Premise Server vs. a Cloud Server 

Server Type Pros Cons 

On-Premise Server - Lower latency to 

server 

- Direct access to the 

hardware 

- Complete control of 

the server 

- Expensive to maintain 

- Requires on-site 

technical support to 

manage the server 

- Requires 

owning/renting a 

physical location for 

the hardware 

Cloud Server - Do not need to 

manage physical 

server hardware 

- Less expensive 

- Professional technical 

support for the server 

- Dependent on separate 

company for anything 

running on the server 

- Critical data is stored 

external to the 

company 

 

Virtualization refers to splitting up the physical server hardware using software so that one 

physical server can act as multiple virtual servers sharing hardware. Figure 2.9 shows the 

difference between a traditionally server installation and a virtualized server installation. The 

coloring of each block corresponds to the next layer of the installation, with the virtualization 

installation containing an additional layer. In the classic server case, the physical hardware only 

supports one operating system instance as opposed to the virtualized instance that can run several 

instances of an operating system through the use of virtualization software. 

 

Figure 2.9: A comparison between a classic server and a virtualized server installation. 



 

21 

 

Cloud servers are typically sold by commercial providers such as Amazon or Microsoft, 

(Amazon Web Services (AWS) and Microsoft Azure, respectively). There are three main types of 

services that are sold, these being Infrastructure as a Service (IaaS), Platform as a Service (PaaS), 

and Software as a Service (SaaS).  

The major difference in these three services is the amount of infrastructure and software 

managed by the provider versus the consumer. With IaaS, the consumer is provided with just the 

server infrastructure and is responsible for managing things such as operating systems and 

development tools. IaaS is commonly used for tasks like website hosting and data storage as these 

types of jobs require more control over the underlying systems on the server [45]. With PaaS, 

much of the lower-level software, such as the operating system and database management 

software, is managed by the provider so the consumer can focus development on tasks specific to 

their use case [46]. The final service, SaaS, requires the least amount of management from the 

consumer as the consumer is buying access to a preexisting piece of software. One very common 

example of SaaS is a web-based email service, like Gmail. The consumer purchasing access to a 

SaaS application does not have to worry about managing the servers hosting the application, and 

a majority of the workflow is managed by the service provider [47]. Figure 2.10 shows the three 

main service models of cloud computing and outlines what is provided to the client by the cloud 

hosting company. These three types of cloud services have different uses that must be considered 

when selecting what type of cloud platform is required for a given product. 

 

Figure 2.10: An outline of the services and tools provided by the three main cloud computing 

service models offered by many cloud hosting companies. Adapted from [43]. 
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2.7 Chapter Summary 

 This chapter introduced the frequency spectrum, explained how spectrum data could be 

collected and displayed. Different components required to implement a spectrum sensing model 

were outlined, including the utilization of SDRs, GNU Radio, and software daemons. Furthermore, 

several types of graphs that are conventionally used to display spectrum data and a summary of 

cloud servers and cloud infrastructure were discussed. 
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3. Proposed Implementation 

3.1 Problem Statement 

 The need for spectrum observatories by both professionals and hobbyists is high. As 

detailed in Chapter 1, a majority of existing spectrum observatories are not easily deployable and 

have both a high cost to set up and operate.  For this reason, the goal of this project is to create a 

proof-of-concept of a lower-cost, more easily deployable spectrum observatory that is capable of 

sampling the 5G frequency spectrum. In addition to being less expensive to maintain, one of the 

goals is to also make the observatory more accessible to the average person by allowing internet 

access to both view the sampled data and interface with the radio’s sampling parameters remotely. 

In accomplishing this goal, the final proof-of-concept will outline the fundamental structure of a 

lower-cost, more accessible spectrum observatory, with the ability to be expanded upon to create 

a more permanent, large-scale system. 

3.2 Proposed Approach 

This project aims to create a spectrum observatory capable of monitoring multiple 5G 

frequency bands that are updated in real-time and accessible online. Several SDRs will be used to 

collect data from various separate frequency bands, with the data being processed and stored using 

cloud infrastructure. The data from the radios will be processed and displayed as independent 

spectrum graphs that are located on a webpage acting as the point of user interaction for the 

observatory. This webpage also allows the user to select predefined center frequencies to monitor, 

updating the radios and data in real-time to provide a complete in-depth view of many different 

5G frequency bands. The specific details as to how this approach will be implemented is detailed 

in Section 3.4, later in this chapter. 

3.3 Metrics for Success 

 At the start of this project, there were four different goals established to evaluate the success 

of the project. Two of these were measurable metrics, latency and accuracy, while the other two 

were slightly more abstract accomplishments, successful storage and display of a 5G spectrum. 
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Regarding latency, the implementation is deemed successful if it is capable of collecting 

data for a spectrum, saving the data, sending that data to the web server, and writing the data to a 

display in less than a full minute end to end. The barriers to achieving this are all related to code 

optimization and data throughput speed. This is assessed by comparing the sample time metadata 

saved in each data file with the current time.  

The metric for accuracy is based on the difference between the received signal in GNU 

Radio and the signal displayed on the website. The expectation for a successful display with 

accuracy is no more than a 5% difference in displayed magnitude values on the website and the 

actual frequency magnitude values analyzed inside GNU Radio. 

The two abstract metrics for success, storage and display, are evaluated by their completion 

and robustness. A robust storage system for the data is able to take in the large amounts of data 

coming from the radios while also being able to serve that data to the website for display. A robust 

display on the website allows the user to accurately see the spectrum at a given frequency and the 

time the data was collected. The connection between the storage and the display is important for 

these metrics to be met. The quantity of data that is collected by the radios and needs to flow 

smoothly to the website is large and requires that the speed the data can travel through the entire 

implementation is fast enough to keep up. Having a slow connection would result in the failure to 

meet the metric for latency, causing data to slowly build up in a queue until it can be displayed 

and the display to fall behind the sampling stage of the system. 

3.4 Design Overview 

To achieve the goal of this project, the frequency spectrum in the sub-six gigahertz range, 

which ranges from 70 MHz to 6 GHz, will be observed. To conduct this spectrum sensing, several 

SDRs (USRP 2901s) will be utilized. Each SDR will be programmed to scan at the frequency band 

requested by the user on the client interface. The SDR will be programmed using GNU Radio 

which will scan the requested frequency band and store RF data as a “.dat” file on the host 

computer.  

In order to utilize the data from the separate SDRs to create the final spectrum graphs 

outlined in the project goal, all datasets must be sent to a centralized location where they can be 

processed and formatted. To accomplish this, a cloud infrastructure will be utilized to process and 
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display the data. Using a software daemon and an uploader script, data from the host computer 

will be sent to the cloud server to be prepared for display to the user.  

As each radio is responsible for data of distinct frequency bands, it is important to keep 

track of the stored data and catalogue them according to the SDR metadata (e.g., sampling 

frequency, timestamp, etc.). This makes it easier for the developer to integrate the information to 

create four separate spectrum displays, one for each radio, on the web interface.  

To achieve remote control of the radio parameters through the web interface, the cloud 

platform also needs the ability to send data in the opposite direction, from the web browser back 

to the radio host computer. This can be implemented using HTTP GET and POST requests and 

HTML forms to create the user input on the website. The user input from these forms is sent to the 

server using an HTTP POST request. The server stores this command and sends it to the host 

computer when it receives an HTTP GET request. GNU Radio on the host computer sends this 

request, and once it receives the user input, it changes the radio parameter accordingly. Figure 3.1 

on the following page shows a block diagram of the design overview. 
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Figure 3.1: Block Diagram of Design Overview
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3.4.1 GNU Radio 

 In order to successfully process radio signals, an SDR requires a software that can perform 

digital signal processing at high speed. GNU Radio offers both graphical design approaches along 

with development in Python and C++. GNU Radio Companion (GRC) is a graphical design 

approach in GNU Radio which allows users to create and execute signal processing applications 

by utilizing a drag-and-drop method. With GRC users can easily connect different module blocks 

graphically to receive and transmit data from the radio. It uses a block diagram to represent the 

flow of the project within the software. This graphical feature in GNU Radio has a signal generator 

block and interfaces to sound cards. It also can read and write data to the file system without any 

additional hardware [48]. Although it allows users to easily process signals, there are some 

advantages and disadvantages of using GNU Radio as seen on Table 3.1. Even with few limitations 

of GNU Radio, the advantages of the program largely overcomes them such as the ability to easily 

design a system to process analog and digital signals at high speed at reduced cost. 

 

Table 3.1: Advantages and disadvantages of signal sampling on GNU Radio 

Advantage Disadvantage 

● Free open source toolkit 

● Ability to generate data from both 

command prompt and/or GRC 

● Programmable using Python and 

graphical feature 

● Real time data transfer 

● Outputs large data size file 

● High noise in RF 

● Processing delay 

 

 As shown in the block diagram of GNU Radio in Figure 3.2, SDR is programmed in GRC 

by first sampling signals from an input device (a signal source) at some sampling rate. The first 

block on GNU Radio is the signal source which directs the program to receive samples of signals 

at specific frequency bands with a specified sampling rate. The samples provided from radio 

devices are complex numbers with an I and Q component. These samples are processed by 

calculating the fast fourier transform (FFT) and saving the file on the designated source. The 

simplicity of the block diagram allows users to construct an SDR easily. Each of the module blocks 
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includes interchangeable options such as frequency, sample rate, and bandwidth. GRC allows the 

user to visually see the port connections of the same data type or data type converter of the block 

diagram. 

 

Figure 3.2: Block Diagram of GNU Radio Data Sampling and Processing 

 

 For this project, the GNU Radio platform was selected for digital signal processing due to 

its simple design and graphical features, and the ability to utilize Python or C++ programming to 

expand the software’s functionality for more complex applications. As seen in Figure 3.2, the 

processed sample file is saved using File Sink and is sent to a Python Script for uploading to the 

cloud server which will be discussed in greater detail in section 5.4.  Even with few limitations of 

GNU Radio, the advantages of the program largely overcomes them such as the ability to easily 

design a system to process analog and digital signals at high speed at reduced cost. 

3.4.2 Cloud Infrastructure 

 To create a cloud-based spectrum observatory, server hardware to host the cloud platform 

was required. The options for web and cloud infrastructure were evaluated during the planning 

phase, with two main options being considered. These primary options are commercial 

infrastructure and self-hosted infrastructure. In this context, self-hosted infrastructure refers to the 
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server hardware hosted and managed by WPI’s Academic & Research Computing (ARC). The 

primary benefit of using commercial server infrastructure over a self-hosted solution is that 

commercial options, such as Amazon Web Services (AWS) or Microsoft Azure, have much of the 

web backend foundation in place, so that development would be focused specifically on the 

spectrum observatory. Below, Table 3.2 outlines the differences between the three major cloud 

platform providers selected to be evaluated [49][50][51]. While these services all have different 

features, the important points are that they all have database platforms, compute service options, 

similar pricing models. Because the intent for the project was to create a smaller scale, less 

expensive cloud-based spectrum observatory, these commercial options are not worthwhile. The 

compute services and database platforms are not needed for the project, and the benefit of the 

platform’s pre-established framework does not outweigh the cost of needing to pay for the service. 

 

Table 3.2: Comparison between different commercial Cloud platforms 

 AWS Azure Google Cloud 

Pricing Pay as you go 

(hourly basis) 

Pay as you go 

(minute basis) 

Pay as you go 

(minute basis) 

Compute Services EC2 (IaaS) 

Elastic Beanstalk 

(PaaS) 

Azure Virtual 

Machine 

(Azure’s strongest 

focus is PaaS 

Compute) 

Compute Engine 

(IaaS) 

App Engine 

Application Platform 

(PaaS) 

Database 

Engine Support 

Amazon Aurora, 

MySQL, Microsoft 

SQL, PostgreSQL, 

and Oracle, NoSQL 

Azure SQL, NoSQL MySQL, 

PostgreSQL, or SQL 

Server 

Hybrid/Multi-cloud 

Support 

General systems are 

confined to the AWS 

family (hybrid cloud 

platform is very new) 

Open to hybrid cloud 

systems 

Anthos - Enterprise 

level hybrid/multi 

cloud platform 

Software 

Integrations 

More support with the 

open-source 

community 

Integration primarily 

focused on 

Microsoft’s own 

products and 

Windows dev tools 

Attempting to support 

open source more, not 

as established as 

AWS 
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 After concluding that commercial options were not reasonable to accomplish the low-cost 

goal of the project, using a self-hosted server infrastructure was deemed the best option. This 

solution allows the implementation to be low cost, as WPI’s server infrastructure is free, and allows 

the implementation to be more portable as it is not dependent on features only available on a 

commercial platform. WPI’s infrastructure most matches the IaaS options from commercial 

providers as things like network security are already set up and managed by WPI. This decision 

meant that more work needed to be dedicated to setting up the server running the platform, but 

overall meets the goals of the project best. 

3.4.3 Cloud Server Software 

The backend runtime environment used to create and run the server was evaluated and 

selected between two different open-source options, Node.JS and Apache. These software had key 

differences and were analyzed to choose one that would suit the project’s needs best. These needs 

included the ability to quickly process large amounts of data, the ability to process large amounts 

of incoming requests, and be a system that was easily and rapidly deployable. 

Node.JS is an asynchronous event driven software that uses JavaScript to build networks 

and applications. Due to the software’s asynchronous architecture, it is possible to create event 

driven loops [52]. An event driven loop occurs when certain events occur, for example receiving 

and transmitting requests are both events that can fire [52]. The event loop manages the incoming 

requests while delegating I/O tasks to different worker threads as I/O processing takes much longer 

to complete [52]. This multi-threaded approach allows the server to handle file processing tasks 

without blocking new requests from executing. The system is malleable as the events are 

programmable to cater to the clients needs, and because of the event driven architecture, the 

program is very scalable. 

Apache is a web server application software widely used in the world. Apache has a 

module-based architecture, this means that it takes a service or task and breaks it apart in attempts 

to manage and carry out the work [53]. Modules help server administrators terminate and restart 

individual processes without needing to restart the entire server [53]. These modules are used for 

different operations such as security URL rewriting, caching, and password authentication. Apache 

handles incoming requests as a single thread and can create and destroy processes depending on 

the administrators purpose [53]. Apache, with it’s simple configuration along with the use of 
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modules and an environment that is friendly and digestible for new programmers, makes it the 

most widely used web based software. 

 

Table 3.3: Comparison of Node.JS versus Apache 

Software  Apache  Node.JS 

Efficiency Single Thread  Worker threads  

Architecture  Module-base  Asynchronous Event 

Driven 

Data 

Processing 

Request rate falls short 

behind Node.JS 

Request rate shows a high 

processing rate 

 

Table 3.3 is a comparison between two open source web-based server software. The 

software is compared across three criteria, efficiency, architecture, and data processing . This 

comparison helped inform the decision as to which software was the better option for the needs of 

the project. 

From Table 3.3 it is clear that Node.JS was the best choice to meet the needs of the project. 

Node.JS has an event driven architecture which makes it efficient regarding receiving data and 

transmitting data, as the program will automatically sleep while waiting for an event to trigger the 

program. The use of worker threads to accomplish tasks makes it possible for Node.JS to perform 

different actions simultaneously and the asynchronous structure helps in management of programs 

along with requests from clients. Although Node.JS has a complex architecture to use and can be 

hard to keep track of processes, it is the most suitable for high traffic situations which will be 

needed in this project due to the large amount of data processing and requests sent to the server. 

3.5 Project Planning 

 Google Sheets was utilized to organize the timeline of the project. The tasks needed to be 

completed and the deadlines and milestones for these tasks are outlined in the Gantt Charts in 

Figures 3.3(a), 3.3(b), and 3.3(c). Academic years at WPI are divided into four quarters, known as 

terms, where each term consists of 7 weeks. The Gantt Charts shown in the figures below were 

divided into three sections as the project was completed in three terms (A term 2020, B term 2020, 
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and C term 2021). The week of a task deadline is highlighted in red and milestones in yellow in 

the chart. The rest of the weeks were noted for work in progress and highlighted in blue. 

A majority of the literature review for the project, which included research on cloud 

infrastructures, GNU Radio, and other similar spectrum observatories, was conducted over the 

summer leading up to A term and continuing a few weeks into the beginning of A term. In A term, 

the team focused on setting up the testbed for the SDRs, consisting of one or two USRP 2901s 

connected to a headless host computer with Ubuntu and GNU Radio installed. As testing was 

conducted on each USRP, the implementation of the server also took place. By the end of B term, 

each module of the project (e.g., data collection by the Radios, server execution, website 

implementation, and remote control of radio parameters) was working separately. In C term, the 

team focused on combining the modules to implement the initial prototype and expanding the 

prototype to multiple radios. During this last stage of the project implementation, the final report 

was also written alongside development.
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Figure 3.3(a): A Term Gantt Chart
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Figure 3.3(b): B Term Gantt Chart
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Figure 3.3(c): C Term Gantt Chart
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3.6 Technical Deliverables 

By the end of the project, the following will have been completed and delivered:  

1. A fully functioning radio host including radios, a control program, and an upload script to 

upload the data to the server. This radio host samples the data to be displayed to the end-

user and uploads the data to the cloud server through the use of the upload script. 

2. A cloud server that receives and processes the data in preparation for the website display. 

This is one of the primary goals of the project, as creating a real-time cloud-based spectrum 

observatory relies on a server to both process and provide the webpages and data needed 

to create a remote display for the user. 

3. A front-end website users can access to see live spectrum data being sampled by one or 

more radios, with the data being updated in real-time. This is the other primary goal of the 

project; by pairing this live display with the cloud server, the user can access a full spectrum 

observatory. 

4. A user-interface that a user can interact with to change the parameters of the radio (in this 

case, the center frequency) in real-time while the radio is running. This specific 

implementation proves it is possible to have remote control over a radio’s running 

parameters and can be expanded to implement more functionality such as changing the 

radio’s sampling rate or other runtime parameters. 

3.7 Chapter Summary 

 This chapter discussed the current challenges with spectrum observatories, how these 

issues will be tackled, and the approach that will be used to evaluate the success of the project. 

Different design options were discussed in this chapter, and detailed explanations were given as to 

why GNU Radio combined with a self-hosted cloud server is the best option for creating a real-

time cloud-based spectrum observatory. A plan for implementation of the project was introduced, 

providing a general overview of the architecture of the project. Gantt charts were used to 

demonstrate the timeline for each task of the project. Lastly, an overview of the items to be 

delivered at project completion was provided, as well as the relevance of these deliverables. 
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4. Sampling Frequency Spectrum 

 This chapter discusses the process of designing a data receiver utilizing GNU Radio 

Companion for specific frequency bands using an SDR. The program took in frequency requests 

from user input on the web interface and extracted data from specified bands. 

4.1 Configuring GNU Radio on a Headless System 

The radio host computer responsible for running the sampling radios and the upload 

program and control daemon outlined in the next chapter consisted of a recycled computer 

provided by WPI. The radio host ran a headless configuration of Ubuntu 18.04, with GNU Radio 

release version 3.8.2 and Python version 3.8 installed for both the GNU Radio script and uploader 

script. 

For a detailed tutorial on how to install and configure this radio host, refer to Appendix B.  

Prior to setting up the GNU Radio, a Linux system, Ubuntu 18.04, was installed on the server. An 

in-depth tutorial of the Ubuntu Server installation can be found in [54], all of the installation 

settings were kept the same. Next, Python and GNU Radio are required to be installed. Python 3.6 

is preinstalled with Ubuntu and this can be verified using the following command: 

$ python3 --version 

A set of commands is in a package for GNU Radio 3.8 installation through terminal commands: 

 $ sudo add-apt-repository ppa:gnuradio/gnuradio-releases-3.8 

 $ sudo apt-get update 

 $ sudo apt install gnuradio 

The above three lines of commands adds the package repository to Ubuntu’s package manager, 

updates the list of packages the manager can install and then installs the GNU Radio package. To 

verify the installation of the software following command can be used: 

 $ gnuradio-config-info -v 

The code for running the Radio Host can be found and cloned from the following git repository: 

 $ git clone https://github.com/MQPSpectrumObservatory/SpectrumObservatory-Radios.git 

Now, the USRP 2901 can be connected to the host computer via USB and run the Radio Host 

using: 

 $ python3 RadioHost.py 1 start 



 

38 

Figure 4.1 shows the teams setup of Testbed for Radio Host 1 in WPI dormitory, East Hall using 

the campus network. 

 

Figure 4.1: Hardware Setup of Testbed in East Hall (Radio Host 1) 

4.2 Implementation of GNU Radio 

To generate data on the headless host computer, GNU Radio needed to use a non-graphical 

flowgraph so that the data generation and request could be prompted from the command prompt 

or the website. Thus, graphical sink and graphical variable control blocks were not used. As shown 

in Figure 4.1, the generate option in the “Options” block was set to “No GUI” for the flowgraph 

to generate without using blocks dependent on a user interface. The received signal was processed 

within GNU Radio using a fast Fourier transform (FFT) algorithm, and this was completed using 

the FFT block. This block required a vector of floats or complex values as input, and for this 

implementation, the input type was set to complex. To limit the size of the output data, the sample 
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rate of the spectrum analyzer flowgraph was set to 300 kHz. The size of the FFT was set based on 

the number of samples at a time used in each iteration, which is 1024 samples for this frequency 

sampling. 

 

Figure 4.2: Flowgraph of Spectrum Analyzer 

 

As seen in Figure 4.1, two constant variables were set for this flowgraph. The variable 

“sample_rate” was the sample rate used in both the USRP Source block and FFT block for data 

sampling and conversion. The bandwidth of the channel was also set at the same value as the 

sample rate. The variable “mqp_get” stored the center frequency and was used together with the 

code setting new center frequencies based on user input. The value of the frequency band requested 

in “mqp_get” was directed to the “Center Frequency” parameter of the USRP Source block. This 

triggered the SDR to extract data samples from this specific center frequency. 

The output of the USRP Source block was a complex sample. The FFT block requires a 

certain number of samples at a time to calculate an FFT; however, this cannot be done using the 

output from the USRP Source block directly. Thus, the Stream to Vector block was used to 

combine all 1024-samples output from the USRP Source block. The Stream to Vector block takes 

1024 samples as an input and converts it to a single vector of 1024 samples. The complex FFT 

block was able to calculate FFT using the output of Stream to Vector. After the FFT had been 

performed on the signal, the output was then converted back to 1024 samples using the Vector to 

Stream block. This block is a reverse of the Stream to Vector block; it takes the single vector 

stream and converts it into a stream of 1024 samples. Once the vector had been converted, the 

1024 samples were saved to a .dat file. This .dat file will be appended each time a new sample is 

written. The full Python file for this GNU Radio flowchart can be found in Appendix E. 
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Table 4.1: GRC Block Descriptions 

Block Term Function of Block 

Options It sets special parameters for the flow graph. 

Only one option block is allowed per flow 

graph. 

Variable Maps a value to a unique variable. The 

variable can be used in the parameter field of 

another block by simply using the Variable 

Block’s ID. The parameters are ID and Value 

(R). 

UHD: USRP Source The USRP source block receives samples and 

writes to a stream. The source block provides 

receiving data to downstream processing 

blocks. 

Stream to Vector Converts a stream of items into a stream of 

vectors containing Num Items. The input 

stream can itself be of vectors. The parameters 

are Num Items and Vec Length. 

FFT Takes in a vector of floats or complex values 

and calculates the FFT. The parameters are 

FFT Size, Forward/Reverse, Window, Shift, 

Num Threads. 

Vector to Stream Convert a stream of vectors into a stream of 

items. The parameters are Num Items and Vec 

Length. 

File Sink Used to write a stream to a binary file. This 

file can be read into any programming 

environment that can read binary files. The 

parameters are File (R), Unbuffered, and 

Append File. 

4.3 Challenges 

The biggest challenge of frequency sampling on GNU Radio was using a lower sample rate 

to maintain a smaller data size, allowing for a smaller data file to be transferred and increasing the 

speed of the overall system. A sample rate of less than 300 kHz would not allow signals to be 

detected with the antenna and radios used for the project. To get the more detailed signals, a higher 
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sample rate would be required; however, a high sample rate resulted in a larger data file size, 

increasing the data upload time and conversion time on the server. Thus, maintaining the sample 

rate at the 300 kHz boundary was the most reasonable selection to meet both requirements of small 

data size and high resolution. 

4.4 Chapter Summary 

 This chapter discussed the design and implementation of the sampling spectrum analyzer 

using GNU Radio Companion. It required selecting a sample rate to maintain low data size and 

signal detecting and calculating the FFT for signal processing for various frequency bands 

requested from the website. The flow graph sampled specific frequencies requested from the user 

on the website and saved the sampled signal on the host computer for the server to push it to the 

cloud. 
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5. Program Control and Data Upload 

 This chapter discusses the steps taken to develop and set up the program responsible for 

uploading the GNU Radio data to the cloud server and the program which handled pairing the 

GNU Radio instance and the uploader script to allow the single program to control multiple radios. 

The control program in its entirety exists as four Python files with the main file instantiating the 

classes found in the other three Python files. 

5.1 Radio Host Control 

The program responsible for running both GNU Radio and the uploader script was a 

daemon process that acted as the entry point for the program. The main program would turn itself 

into a daemon, the method in which this occurred is outlined in section 5.2, create several child 

processes equal to the number of radios being run, and set up each child process to run two threads, 

one thread for GNU Radio and one thread for the uploader script. Figure 5.1 shows the overview 

of these child processes, threads, and connections between them. 

 

Figure 5.1: Overview of Processes and Threads 
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 When the program was first called, it began by parsing the arguments passed to it. The 

script took two arguments, one argument indicating the number of radios to run and one argument 

indicating a daemon command. This first argument was either “1” or “2” as the main program 

could handle running either one or two instances of GNU Radio and the data uploader. This limit 

was arbitrarily chosen, and if run on a more powerful computer, the program could likely be 

configured to run more instances in parallel. The second argument was either the string “start,” 

“stop,” or “restart” and indicated to the daemon to either start running, stop running, or restart. The 

implementation of these control signals for the daemon will be detailed in section 5.2. The 

command to run the program took the following format with the arguments changing as needed: 

  

After parsing the arguments, the program would set up a logger using Python’s built-in “logging” 

library, allowing it to report informational states and errors to a log file. Figure 5.2 is a sample of 

the log file. This sample shows the program starting up as well as the first two samples being 

processed for uploading. The log file includes a timestamp for each message, the log level of the 

message, the process the message is from, and the details in the message. This log allows the user 

to monitor the uploading process to ensure the server is properly receiving the data as well as 

ensuring the program is starting up and shutting down correctly. 

 

Figure 5.2: A sample of the Radio Daemon’s log file 

 

 After the initial setup, the program entered its main loop, where it began both GNU Radio 

and the uploader. The program created either one or two instances of a child process class, started 

each of the child processes, and then waited for them to join during termination. Each child process 

class had similar behavior to the parent. The class created and started two thread classes—one 

thread class for the GNU Radio instance and one thread class for the uploader script. The child 

process then waited for a signal to terminate and end both threads. Both thread classes created an 



 

44 

instance of the GNU Radio class and the uploader class respectively. The behavior of the GNU 

Radio class was described in Chapter 4, and the behavior of the uploader class is described in 

section 5.4. The main code body for these process and thread classes can be found in the file 

RadioHost.py in Appendix D. 

5.2 Unix Daemon Implementation 

  For the main portion of the radio host control program to act as a daemon, it implemented 

a daemon class written in Python. Originally the program used a Python library for converting 

itself into a daemon; however, this library could no longer be used due to a hardcoded limitation 

forbidding daemon processes to create child processes. This limitation was introduced to protect 

against the creation of orphan processes (processes that still exist even after the parent process has 

been terminated). This was simply a protective measure, not a limitation, and was bypassed by 

using a custom daemon class. The full code of this daemon class can be found as daemon.py in 

Appendix F. 

 The class contained five functions, four of which were used to control the daemon, and one 

to be overridden when the dameon class was subclassed. The four control functions, start, 

daemonize, stop, and restart, contained standard behavior for the daemon that would remain 

identical across implementations of the class. The final function, run, was left unimplemented in 

the daemon class as this function was the function that ran the main program loop of the daemon 

and was left to be overridden by the process subclassing the daemon class. 

 The daemon began when the start function was called. This function would first check if 

the daemon already had an instance running by checking if a process ID (PID) file existed for the 

daemon. If this file existed, the program would exit, indicating that the daemon was already 

running. Once the program determined the daemon was not already running, it would call the 

daemonize function. This function would perform the process outlined in Table 2.2 to create a 

daemon. After the daemonize function, the run function would be called, and the program would 

begin its main loop of code as a daemon. 

 The stop and restart functions were invoked by rerunning the program with either the stop 

or restart arguments. The restart function is called the stop function and then the start function to 

restart the daemon. The stop function would first check if the daemon was running through the 
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same process as the start function, and if it found a PID file, it would send a termination signal to 

the ID stored in the file until the process ended.  

5.3 Data Encoding and Upload 

 The Python script responsible for uploading data to the cloud server took four steps to 

prepare and upload the data to the server for each sample generated. These four steps were parsing 

the incoming data from GNU Radio to separate the metadata from the data payload, encoding the 

data payload to human-readable characters, formatting and creating the JSON file to be uploaded, 

and sending the file to the server on an HTTP request. Figure 5.3 below shows a diagram of these 

four steps and how they interact. 

 

Figure 5.3: Data Upload Script Flow Diagram 

 

 The first step, parsing the binary data from GNU Radio, primarily utilized a Python script 

bundled with GNU Radio. Calling this script converted the metadata out of its polymorphic type 

into a Python dictionary. With the metadata separated from the main data payload, the script then 

converted the binary data into Base64, allowing the data to be represented as alphanumeric 

characters. Base64 represents six bits as a single character, and while this grows the dataset by 

roughly 33% due to each Base64 character being written as an eight-bit UTF-8 character in the 

file, it does avoid transmitting raw binary, which could be unintentionally interpreted as a control 

signal during the transfer. With the data prepared to be sent, the next step was to format this data 
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into the JSON file that would be uploaded to the server. A sample of the formatted JSON file is 

shown below. (In a proper file the “payload” field would be much longer). 

{ 
    "metadata": 
    [ 
        { 
            "rx_time":1.0807631283682877, 
            "rx_sample":299999.9990650252, 
            "rx_freq":900000000, 
            "radio_num":1 
        } 
    ], 
    "payload":"QLcNusAcZDqu" 
} 

Python’s built-in JSON library handled creating this JSON file and the formatting of the file’s 

data. Lastly, the JSON file was sent to the cloud server using Python’s HTTP library “requests”. 

The program would send the file and await a 200 OK response from the server. Once the dataset 

was successfully sent to the server, the program would wait for the next dataset to be generated 

and repeat the process until the output data from GNU Radio stopped. At that point, the loop 

continually processing and uploading data would terminate, and the class would handle its own 

cleanup. This cleanup consists of closing and removing any leftover data files and joining with its 

parent (as it exists in a thread). 

 This uploader script exists as a Python class in file transfer.py, and the full source code can 

be seen in Appendix G. 

5.4 Chapter Summary 

 In this chapter, the process of running GNU Radio and uploading data from the radios was 

outlined. The program, when run, would turn itself into a daemon and create child processes for 

both GNU Radio and the uploader script. Once the program was signaled to terminate, it would 

close these child processes before the parent daemon itself would finally exit. This uploading 

would ensure the data from the radios would arrive at the cloud server for processing and display 

on the front-end webpage. 
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6. Cloud Infrastructure 

Cloud computing has revolutionized general purpose and computing in recent years. Cloud 

architecture has several advantages, such as reducing cost, providing flexibility, and consolidating 

servers. The emergence of real-time applications such as video streaming, cloud-based gaming, 

and telecommunication management has created a demand for real-time performance. This section 

highlights the server’s implementation and challenges and solutions associated with the real-time 

application of data associated with the project. 

6.1 Implementation 

The web server used in this project was hosted on a virtual machine (VM) provided by 

WPI. This VM ran the server distribution of Ubuntu 18.04 and ran the server using version 12.20.1 

of Node.js. Node Package Manager (npm) was used for managing external libraries.Node.js can 

be installed using different commands  

● $ curl -fsSL https://deb.nodesource.com/setup_12.x | sudo -E bash - 

● $ sudo apt-get install -y nodejs 

After the installation is done to verify everything is working order the commands $ node -

v and $ npm -v can be used. The code used to build the server can be found in the Github repository 

in Appendix C.  

6.1.1 Socket implementation 

The web server initially used the WebSocket protocol for transferring data to and from the 

server. The use of the “net” library built into Node.js made it possible to create a network API that 

creates a stream-based socket.  
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 Figure 6.1: A snippet of the code used to create the server along with creating the socket 

 

 Figure 6.1 is a snippet of the code as used with the net class. The first line of code, 

net.createServer, was a way to initialize a server with the net class library with a listener 

function inside that was the socket. The server would listen for a connection for the socket and 

when the socket was connected It would print out the number of bytes and create an empty buffer 

that could hold the data. The data was pushed onto the buffer until all the data was transmitted. 

As the data would come in, the server would log the number of bytes and begin parsing the 

data to find headers. The headers were removed along with converting the encoding from Base64 

to binary. Having the code in binary form would help format the data to the CSV files. The 

arrangement of data began with arranging the bits into 32-bit arrays and then splitting the arrays 

into two arrays per row. This made it so there would be 64 bits in a row, but each column would 

have two 32-bit words. This structure was needed as it would be easier to reference the data parse 

through the data to extract the information. The data was then written into a CSV file with the 

format and saved for the website to reference.  

 

Figure 6.2: Server-side Data Processing  
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Figure 6.2 illustrates the system of events that occur starting with the incoming of data to 

the creation of the CSV file using the socket implementation. This figure is a visual representation 

of the server’s process. 

While looking for different solutions to multiple radio implementations, it was determined 

using sockets was not a viable method. In the socket implementation, there would be either several 

independent connections with one per radio or a single connection shared between several radios. 

This presented several issues, such as a slower data processing rate, and extra difficulties 

implementing many separate data pipelines due to the consequence of these multiple connections 

slowing the server down. Using one pipeline for the data would be viable however the parsing of 

data would slow down the server, and the server would need to classify commands back to the 

radio to specify what radio it would be trying to communicate with. The solution to this problem 

was a different architecture than bi-directional sockets. The new protocol considered was 

Hypertext Transfer Protocol (HTTP). This architecture was different as there would be no direct 

data connections between the radio host and server. Instead, a message (also referred to as a 

request) would be created with a sender and a receiver and would not consist of an always-open 

communication path. Having requests and responses made bi-directional communication a 

possibility. The architecture made it so that the system was dynamic and asynchronous. 

6.1.2 HTTP Implementation 

To create the new server implementation, new code was written with the main differences 

being the references to the HTTP class along with the switch cases for different GET and POST 

scenarios that the server would handle. 
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Figure  6.3: HTTP implementation of server using switch statements 

 

 Figure 6.3 shows the implementation used to create a HTTP based server. This server 

was created by referencing the HTTP library, as seen on line 61. The switch statement was used 

to process incoming POST and GET requests. The GET statement refers to any information that 

other clients need from the server. The POST statement refers to any information clients try to 

send to the server. It was important to clarify to the server what action was occurring. 

Using a server built with HTTP made everything smoother as the radio host would transmit 

the data, and the server would have an address for where the data would appear. Using this method 

made it much easier to expand the number of radio nodes the server could support. Each new radio 

would be provided with a specific address to interact with. This reduced the likelihood of data 

overlapping as each dataset would arrive at its specified address. Additionally, each address could 

have different functions that could process the data differently, allowing individual radio behavior 

if needed. The implementation of HTTP requests used switch statements to parse and route the 

request efficiently and these statements were made to identify what actions were occurring in the 

server. For example, if the radio host were requesting information, the radio host would need to 

specify this to the server by referencing the GET case and the address it would like to receive the 

information from. If the radio wanted to transmit data, it would need to specify this to the server 

by referencing the POST case. This made it so the server would know whether it would be 

receiving information or sending information. The processing of data was done in the POST case 

when data was uploaded, and the processing of data was not changed from the socket 
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implementation. The addressing was added to the GET case to specify what information the radio 

host would request. This implementation is the current implementation, and the full source code 

of the server can be seen in Appendix H.  

While implementing the HTTP server helped solve some of the major issues such as the 

dynamicity of the architecture, other large issues, such as the conversion rate were problems. The 

conversion of bytes to a UTF-8 string of binary took some time but not as long as writing the CSV 

file. This took too much time for the project to be considered real-time.  

6.1.3 Data Processing and the Event Loop 

The high amount of data processing required to convert the incoming JSON file to the 

required formatting in the outgoing CSV file caused the server to have slowdowns and not be as 

responsive as necessary. The long amount of time taken by the data processing caused the server’s 

event loop to become blocked, and as such, if a request came in while the server was still 

processing the previous request, the new request could not be handled until the previous finished. 

To resolve these issues, several changes were implemented. The primary changes involved the 

introduction of worker threads, optimization of the data processing functions, and changing each 

incoming set of data to be smaller but sent more frequently. 

Optimization of the data processing primarily consisted of ensuring the data was iterated 

through as few times as possible. Since the required processing required iterating through the data 

several times, one of the most effective optimizations was ensuring the data was only iterated 

through as many times as strictly needed. By doing several operations per iteration instead of 

iterating through for each operation, the processing took less time but still was not as quick as 

needed for a real-time server. 
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Figure 6.4: Web Server Processing as data is transmitted and received by the server 

 

Figure 6.4 illustrates the threading of commands and requests that occur starting with the 

processing of data to the creation of the CSV file using the HTTP implementation along with event 

loops. In this figure, the Base64 data and the post requests are inputs that feed into the system the 

server’s main event loop as the main event loop is what delegates action to the worker thread to 

work on the data. The data is parsed, converted to binary and restructured to be written onto the 

csv file. Once the worker thread is done the main event loop stores the data to be referenced by the 

website. The post request is an input to the system as the main event loop forwards this request to 

the GNU radio for the change of frequency. 

This figure is a visual representation of the server’s process, the worker thread focuses on 

the data conversion while the main event loop listens and awaits for data or requests coming from 

the client or website. 

The two changes that had the most significant increase in server performance were 

decreasing the size of the incoming data (and, as a result, increasing the frequency of the incoming 

data) and delegating the data processing to a worker thread instead of it blocking the main event 

loop thread. Due to the nature of the data and the operations being performed, working on smaller 
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sets instead of one large set took significantly less time despite the total amount of data being 

operated on remained the same. Additionally, since the processing was being performed in more 

frequent but shorter bursts, it gave the server more opportunities to handle different events, such 

as responding to a request from a client for the main website HTML files. The other fix put in 

place to ensure the server would be responsive was to delegate the data processing to a separate 

worker thread. By creating a worker thread, the server’s event loop is free to continue to listen for 

events instead of needing to perform the data processing. The main thread called the worker thread 

and passed the data, and the worker thread processed the data in the same method as before but 

did not block the event loop. Once the worker thread was finished, it joined with the main thread, 

allowing the server to use the processed data as necessary. While the implementation of worker 

threads did not noticeably speed up the server in this small-scale implementation, it ensures the 

server can stay responsive if the implementation is scaled up and the server needs to handle a larger 

amount of data and/or a larger amount of incoming requests. 

The creation of the worker threads was done using a built-in Node.js library. The code 

executed by the worker thread existed in a separate javascript file (in this case, this file is worker.js 

and can be seen in Appendix I), and the file was provided to the instance of the worker thread 

object when it was created. Figure 6.5 shows the code responsible for the initialization of a worker 

thread. 

 

Figure 6.5: Code sample of the function responsible for creating a worker thread 

 

 The function begins by creating a Promise. This is a data structure in Node.JS that is 

related to asynchronous work. The Promise indicates to the program that the function will return 

data at some point in the future, but the data is not currently present. In this case the Promise acts 

as a placeholder for the indication that the worker thread completed its task successfully. Next, 

the constructor for a new Worker is called. The constructor is passed the new JavaScript file it is 

to execute, as well as any data needed. Once the worker is finished it can send several events that 
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the Promise uses as the data it was holding place for. In this implementation, if the Worker 

responds with a message, the Promise knows the Worker finished successfully.  

6.2 Chapter Summary 

This chapter discussed the different implementations used and the different reasons as to 

why the implementations were chosen or switched. The movement of data was examined from 

when it arrived at the server, to when it was saved for the website to reference. The different 

functions used were highlighted and their purposes explained. The solution to the slower response 

time was explained using the knowledge of event loops and worker threads. 
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7. Spectrogram Display 

 This chapter describes the methodology and thought process for the creation of the website 

that is used to display the spectrogram, as well as some of the problems that arose during the coding 

process. The website as all websites are, using a combination of HTML code for the visual design 

and javascript for the background processes, in conjunction with the use of the D3 visualization 

library for file IO and creating the graph.  

7.1 Implementation Overview 

The D3 javascript library is a tool utilized in industry mainly as a method for showing 

single-use statistics related to business trends or other statistical measurements. The website uses 

this library as well due to the method in which files are saved on the server rather than using a 

constant stream of data. The current method works as a proof-of-concept for a cloud-based 

spectrum observatory but can be improved upon by changing the way the data is served and the 

way the data is displayed. 

On the server-side, separate folders exist that represent each radio the website is expecting 

to display and the data from each radio is stored in each of the separate folders. The website works 

by utilizing asynchronous functions called AJAX or “Asynchronous Javascript and XML” that 

allows the website to call functions and carry out processes that fall outside the usual order of the 

program. The website uses a new instance of AJAX for each radio, and inside each asynchronous 

block, the code performs multiple functions. The first function is to access the folder for the 

corresponding radio and retrieve a list of all the files that contain data inside it. The function loops 

through each of these files, creating a new JavaScript file request for each of the files, calculating 

the magnitude of each pair of numbers in the data files using the magnitude equation, and graphing 

that data as a line. 
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Figure 7.1: Spectrogram Display on Website
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The final functionality of the website is to allow a user to change the frequency of one of 

the radios. It performs this function by displaying a clickable button that, when clicked, creates a 

push request containing the number for the selected frequency that is then handled on the server-

side. 

7.2 Displaying Data 

 The display of the data is implemented using the D3 library which takes several steps 

between data being collected and put on the server, and actually showing the spectrogram on the 

website. The first step after getting the names of each of the files the data is stored on is to access 

the files and store the data onto a more accessible local variable. This is accomplished by using a 

function in the D3 library called d3.text() that reads in the contents of a file as a selection of 

strings. It then uses another function d3.csvParseRows() that parses through the string variable 

storing the data and interprets it as a CSV file that can be separated into its real and imaginary 

components. Below is the code that is used to both access the data stored in the files, parse it into 

separate rows so that each sample is an array with two positions that store the two parts of each 

frequency sample, and then assign each part to its own variable for future calculations. 

 

d3.text(pathName, (function (d) { //Reads in the CSV as a text file 

a = d3.csvParseRows(d); 

samp_freq = a[1][0]; 

a.forEach((item, index) => { 

  I.push(parseInt(item[0], 2)); 

  Q.push(parseInt(item[1], 2)); 

}); 

 

 After the data has been properly parsed, the next step is to change it from real and 

imaginary frequency samples into magnitude data for display. This is done with a simple 

function that uses the magnitude equation (4). The numbers that result from this represent the y-

axis values that will be displayed on the final graph. Directly after the magnitude is calculated, 

the numbers for the x-axis need to be computed for display in a future function. This axis is 

easier than the magnitude function to calculate and uses (1) and (2) to get the minimum and 
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maximum frequency values that will be displayed, and then (3) to create all of the in-between 

points that make up the x-axis, both of these functions are shown below. 

𝑋 = √𝐴2 + 𝐵2            

(4) 

 

function calcMag(I, Q, mag) { 

for (i = 3; i < I.length; i++) { 

         mag.push(Math.sqrt((I[i] * I[i]) + (Q[i] * Q[i]))); 

 } 

 return mag; 

} 

 

freq = linspace(samp_freq-I[0]/2, samp_freq+I[0]/2, 1024) 

 

 With all of the data properly received, calculated into its final sets, and ready to be 

displayed, the final step is to create the objects necessary for showing each axis, the background 

that sits behind the graph, and the line itself that is graphed. This part utilizes the D3 library 

again. The first step is to form the background of the graph that the axes and line will be laid on 

top of, the only variables that need to be set on this are the height and width of the window the 

graph will be drawn in. 

 

var svg = d3.select("#my_dataviz") 

    .append("svg") 

    .attr("width", width + margin.left + margin.right) 

    .attr("height", height + margin.top + margin.bottom) 

    .append("g") 

    .attr("transform", 

      "translate(" + margin.left + "," + margin.top + ")"); 

 

 With the background defined, the next step is to draw the x and y axis that correspond to 

the frequency and magnitude. This is completed by defining the maximum and minimum values 

of each axis by getting the maximum and minimum of the arrays that hold the frequency and 

magnitude data, and by defining the scale of the axis. The frequency scale is linear, while the 

magnitude axis is logarithmic. Finally, the line that represents the spectrum needs to be 
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displayed, this is completed by accessing the x-axis of frequency values, and the magnitude data 

and appending a path type D3 object to the graph, rendering the line itself.  

      svg.selectAll("path") 

        .datum(data) 

        .attr("fill", "none") 

        .attr("stroke", "steelblue") 

        .attr("stroke-width", 1.5) 

        .attr("d", d3.line() 

          .x(function (d, idx) {return x(xaxis[idx])}) 

          .y(function (d, idx) {return y(data[idx])}) 

        ); 

 

7.3 Challenges 

 The largest challenges that hold the website back are related to CPU usage and memory 

issues that arise during website runtime. These challenges exist due to the method the website uses 

to gain access to the data that is displayed. The website is required to ask for the contents inside 

100 plus files, it performs this action very quickly, and then does this multiple times as the files 

inside change and update. This process is extremely taxing on the CPU as the browser is asked to 

load in large amounts of data from an external data source over Wi-Fi. 

 The memory problems come from the way that browsers load files and create the objects 

necessary to draw the spectrum line. Even after the data has been overwritten in the variable that 

is being used to draw the line, the browser will still hold onto the data, slowly taking up more and 

more memory. 

7.4 Chapter Summary 

 This chapter discusses the implementation and challenges associated with the website used 

for the display of data. The website works by gaining access to the files that are used to store all 

of the spectrogram data which is the cause of a memory leak due to how internet browsers function 

keeping the data cached even when it is no longer being used. It then creates the background for 

the display of the graph and the line that represents the spectrogram, and loops through each file 

in the associated radio’s folder for display purposes.  
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8. Remote Control of Radio Parameters 

 In order to remotely change the center frequency of the SDRs during run-time, the 

establishment of data flow from the client’s web browser back to the cloud server and radio host 

is required. This chapter explains the process of implementing control of radio parameters 

remotely from the client interface of the website. User input is collected using HTML forms and 

then by utilizing HTTP GET/POST this backward flow of data is implemented. 

8.1 HTML Forms 

 An HTML form is a section of an HTML document that is used to collect user input. They 

consist of web content, markup and unique elements called controls/input. Input can be text entries, 

checkboxes, menus or radio buttons. These inputs are usually labeled to help the user understand 

what information is being requested. An HTML form is  “completed” by a user by modifying these 

inputs, for example - by entering text, selecting an item on a menu, clicking on a radio button or 

by checking a box. Modification of controls/input is conducted before the form is submitted to a 

web server for processing. In this project, since spectrum data will be displayed on a website, an 

HTML form was the most suitable option to get user input.  

Each SDR was designated with two center frequencies for spectrum sensing. The user 

would be allowed to select one of the two center frequencies for viewing spectrum data at a time. 

As a result, the control type selected for this HTML form was radio buttons. Radio buttons are like 

checkboxes but when the radio buttons share the same input name, they are mutually exclusive. 

This type of selection is perfect for center frequency as the SDR can only scan at one specific 

frequency channel at a time.  

The pseudo code below shows the HTML form element just like any other HTML element 

had a start tag (green highlight) and an end tag (pink highlight). The start tag included the attributes 

(bright red text color) “action” and “method”. The “action” attribute is used to denote the HTTP 

URI so the server can process the data. The “method” attribute used in this form is HTTP POST 

as data is submitted to the server.  
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Two radio buttons using the input tag were created with the same name “CenterFreq”. The value 

of the first radio button was set to be "600000000" and the second was "850000000" to denote 

frequencies 600MHz and 850MHz. The HTML source can be found in Appendix J. Below is a 

snippet of the source code for the HTML form.  

 

When one of the radio buttons is selected their respective value is sent to the server where the 

server stores this data and sends it to the host computer. When a radio button is selected it is 

highlighted in blue. Figure 8.1 shows the output of the HTML form when displayed on the 

Website. 

 

Figure 8.1: HTML form output 

8.2 HTTP Method GET/POST 

 The Hypertext Transfer Protocol (HTTP) was created to establish communication between 

clients and servers. GET and POST are the two most common HTTP methods. GET is used when 

the user needs to request data from a specific resource/server. On the other hand, POST is used to 
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send data to a server with the intent of creating or updating a resource. A comparison of GET and 

POST is shown in Table 8.3.1. 

 

Table 8.1: Comparison of  HTTP GET vs. POST 

GET POST 

Can be cached Never cached 

Remain in browser history Does not remain in browser history 

Has length restrictions No length restriction 

Cannot modify data of a server resource Can modify data of a server resource 

 

 For this project, both the HTTP GET and POST requests were utilized as shown in Figure 

8.2. The POST request was used to send the user input (from the HTML Form) to the server as 

discussed in section 8.1. This was set up using the attribute method of the HTML form. As 

described in Section 6.1.3, the POST request was set up ro be an input to the Web Server. This 

updates the center frequency variable of the server according to user input and the main event loop 

of the Web Server forwards this request to the GNU Radio. During the testing stage, GNU Radio 

was used to program the SDRs and a python file was generated called top_block.py. This python 

script was used by the host computer later to scan the spectrum. In Figure 8.2 it can be seen that 

HTTP GET was used in this python script to fetch the frequency value from the server and change 

the center frequency of the SDR. 

 

Figure 8.2: Flow of Data using HTTP Methods. 



 

63 

8.3 GNU Radio Python Script 

 After the value of the center frequency has been stored in the server, the next step is to 

fetch this information. This will be accomplished using an HTTP GET in the python script called 

top_block.py.  

When the GNU Radio Companion executed the spectrum sensing flowgraph, the 

top_block.py file was generated (shown in Figure 8.3).  

 

Figure 8.3: Generation of python script top_block.py  

 

It looks like any other python script with the modules being imported at the top. In this segment, 

a few new modules (requests, time, threading) were added. These modules are required to fetch 

the data from the server. To use HTTP methods on Python, the module requests need to be 

imported to that python script. The module “time” was added because the GET request will be sent 

every five seconds. The threading module was imported to implement this while loop using a 

separate thread. 

A function MQP_HTTP_Parser() was created to write a while loop for parsing the data 

from HTTP GET. Inside the while loop, a variable freq1 was set to hold the value of the GET 

request. Once the content of the GET request was received using the command 

(requests.get()).content, it was seen that the value of the frequencies was in the form of a string 

instead of a float. To fix this issue, Python’s built-in function int() was used to convert the variable 

from a string to an integer. Below is a snippet of the while loop in the python script. 
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The URL of the GET request was replaced by the address where the server stored the value of the 

center frequency. At this point, the thread waited for five seconds to create a delay between GET 

requests. Another function called startThread() was defined to create a thread that executes the 

while loop. This threading function calls the initial HTTP parsing function.  

 

The final step is calling the threading function in the main() of top_block.py thus changing the 

parameter of the radio during run time. The source code for top_block.py can be found in Appendix 

E. 

8.4 Chapter Summary 

 This chapter discussed the flow of data from the front-end (webpage) to the computer 

hosting the SDRs. It requires writing code in three different programming languages HTML 

(creating the HTML form), JavaScript (creating a simple test server), and Python (modifying 

top_block.py). The HTML form utilized radio buttons that helped the user select one of the two 

frequencies for each radio which was then sent to the server. The data was further sent to the host 

computer from the server. This data was then parsed and ultimately used to change the frequency 

of the SDR during runtime. 
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9. Results and Discussion 

 This chapter discusses and explains the results of the website display, data transfer from 

the radios to the cloud, and the data collection from the radios by examining the delay between 

collection and display, accuracy of the displayed spectrum, and the delay between a user pressing 

the button to change the frequency the radios are being sampled. 

9.1 Data Transfer from Radio to Website 

 Each step the data takes before it can finally be displayed on the website causes a delay. 

These delays are measured inside the functioning of each section, and added together make up an 

average delay for the end-to-end system functionality. The largest delay is the time it takes for the 

data to go from being stored on the server to being displayed on the website. As the radio stores a 

new file worth of samples every second, and the website takes longer than one second to display 

every file the delay between the data being collected and getting displayed rises. Compounding 

this with the slowing of the display rate on the website results in the time between collection and 

display going from less than five seconds to far more than a minute. Getting exact numbers for the 

time delay from the radio computer to the server is not a feasible task. This is due to the time delay 

being entirely reliant on the speed of the internet connection between each of the steps. Figure 9.1 

shows the amount of time it took for each file to be accessed and drawn, the data shows a strong 

linear upward trend showing that as more files get requested the total time takes longer. Figure 9.2 

shows the change in the amount of time it takes to open and display the data files, further showing 

that it stays as a linear increase. 
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Figure 9.1: Time to Draw Data per File 

 

 

Figure 9.2: Change in Time to Open Files 

 

 The second measurable result is the accuracy of the data. There are only a few times data 

could become corrupted and thus display inaccurately, specifically during transfer of data from the 

radio computers to the server when the data is encoded, sent to the server, and then decoded, and 
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during the conversion of the binary data to a CSV. Each of these points is evaluated for accuracy 

by comparing to the raw data that was first output from the radios and is still stored on the 

computer. The other way to confirm the accuracy of the spectrum data is to compare the 

visualization graph on the website to the spectrum graph that can be created using GNURadio. 

Using the first method shows that the data received on the website is the exact same as the data 

collected by the radios, meaning there is 100% accuracy from end-to-end. Using the second 

method is more difficult due to the delay between collection and display, but also shows that there 

is a similarity between the graph the website shows and the graph GNURadio creates, implying 

the accuracy confirmed by comparing the exact data files is representative of the accuracy of the 

entire end-to-end implementation. 
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Figure 9.3: Sample Spectrum Graph from the Website
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Figure 9.4: Spectrum Graph from GNU Radio
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9.2 Frequency Change Request 

 The other main function that the website has is to send back a request to the radios to 

change the center frequency the data is being recorded at. This process is completed by choosing 

a frequency and clicking submit, creating an HTML form that is sent through the web server to the 

python script that controls the radios, and finally, changes the radio’s frequency, this flow is shown 

in figure 9.5. The time for this, much like the delay for data to be sent, is affected by the internet 

connection the user is operating on, though it is more limited in the amount of time it can take due 

to GNURadio asking for the frequency to center too every five seconds. This means that the 

minimum amount of time it would take to change the center frequency is five seconds.  

 

Figure 9.5: Flow of the Frequency Change Request 

9.3 Chapter Summary 

 This chapter discussed the results related to the timing of data transfers from the radios to 

the website and back again for changing the center frequency, and investigated the slow down 

points that keep the website from functioning smoothly. By graphing the response time for data 

on the website to be displayed the setbacks on data visualization are brought to the forefront and 

serve as a jumping off point for any future project that would want to improve on this 

implementation. 
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10. Conclusion 

The project utilized several SDR (USRP 2901s) along with a fully built server to create a 

real time spectrum observatory. The SDRs were used to detect activity in different ranges to 

provide for a wholesome frequency spectrum. The use of a server was needed to help manage 

reorganization of information and helped with bi-directional information flow. The front end was 

created to display the frequency spectrum and was made to adapt for changes in the spectrum. This 

was utilized with a variety of programming languages such as Node.js, and Python. By 

implementing a flowgraph and modifying the GNU Radio generated Python script it was possible 

to transmit data from the GNU Radio to the server. The use of Node.js helped connect the server’s 

back end to the front end. These connections helped pass data in an efficient manner and made it 

possible for the system to operate in real time specifications.  

10.1 Future Work 

There are many ways for this project to be expanded and optimized to make further 

achievements in the detection and relay of activity in the spectrum. The detection of radio 

frequencies can be improved upon by increasing the detection range or adding a few more radios 

to accurately detect specific ranges. The stream of data between the GNU Radio and server can be 

made smoother, for example instead of the data having to write the file and transfer it before 

arriving to the server the GNU Radio would instead stream data directly to the web server. This 

could be made possible using an in-built functionality in GNU Radio to utilize the ZeroMQ 

protocol. Further research would be needed to find a better way to transfer data from the back end 

to the front end, instead of referencing the data in the front end and transferring several CSV files. 

Further work could also be done on the front end spectrum display. Instead of using a D3 real time-

line chart other possible alternatives could be used. Using the current D3 real time chart makes for 

a slow integration of data. 
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Appendix A: Project Authorship 

The following chart outlines each section of the report, the sections’ primary and (if 

applicable) secondary author, and the sections’ primary  and secondary editors. In this case an 

“author” indicates the individual(s) who wrote major parts of each section. “Editor” indicates the 

individual(s) that primarily edited each section. 

 

Section Author 1 Author 2 Editor 1 Editor 2 

Abstract Joseph - Ian - 

E.S. Aneela Sreeshti Joseph - 

1 Sreeshti - Aneela Joseph 

1.1 Ian - Aneela Kevin 

1.2 Kevin - Joseph Sreeshti 

1.3 Aneela - Joseph Ian 

1.4 Joseph Sreeshti Ian Aneela 

1.5 Joseph - Kevin Sreeshti 

2.1 Kevin - Ian Joseph 

2.2 Kevin  - Joseph Aneela 

2.3 Sreeshti - Joseph Aneela 

2.4 Aneela Ian Sreeshti Kevin 

2.5 Joseph - Aneela Ian 

2.6 Joseph - Ian Aneela 

2.7 Aneela - Kevin Sreeshti 

3.1 Joseph - Ian Aneela 

3.2 Joseph - Ian - 

3.3 Ian - Joseph Sreeshti 

3.4 Aneela - Ian Joseph 

3.4.1 Sreeshti - Aneela Joseph 

3.4.2 Joseph - Ian Aneela 

3.4.3 Kevin - Joseph - 

3.5 Aneela - Sreeshti Kevin 
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3.6 Joseph Kevin Sreeshti Aneela 

3.7 Aneela - Kevin Ian 

4 Sreeshti - Joseph - 

5 Joseph - Kevin - 

6 Kevin Joseph Sreeshti - 

7 Ian - Aneela - 

8 Aneela - Ian - 

9 Ian - Sreeshti - 

10 Kevin - Aneela - 

 

In addition to the breakdown of contributions to the report, there were five major pieces of 

the implementation with one member of the team taking primary responsibility for each. The GNU 

Radio flowchart and data sampling portion of the project was overseen by Sreeshti. Joseph was 

responsible for the uploader script, as well as the daemon program responsible for running the 

entire radio host. Kevin was the primary developer for the cloud server, with Joseph assisting with 

the multi-threading and optimization portions of the web server. Ian created the front-end display 

that the user sees, and Aneela was responsible for the portion of the web page allowing user input 

as well as the functionality in GNU Radio to change the radio’s center frequency based on data 

from the server. 
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Appendix B: Tutorial for Setting up Radio Host 

The first part of setup is installing Ubuntu 18.04 Server: 

● An in-depth tutorial  for installing Ubuntu Server can be found in [54] 

● All of the installation settings are the same as listed with the exception of personal 

information such as user login 

 

After the operating system is installed the next step is installing required software: 

● Python 3.6 comes installed with Ubuntu and can be verified using the following command: 

$ python3 --version 

 

● GNU Radio 3.8 can be installed through the package manager using the following terminal 

commands: 

○ $ sudo add-apt-repository ppa:gnuradio/gnuradio-releases-3.8 

■ This command adds the package repository to Ubuntu’s package manager 

○ $ sudo apt-get update 

■ This command updates list of packages the manager can install 

○ $ sudo apt install gnuradio 

■ This command installs the GNU Radio package 

● GNU Radio can be verified with the following command: $ gnuradio-config-info -v 

 

The code for running the Radio Host can be found and cloned from the following git repository 

 $ git clone https://github.com/MQPSpectrumObservatory/SpectrumObservatory-Radios.git 

● This repository contains four Python scripts, the following modifications are required: 

○ On line 96 of “top_block.py” and line 18 of “transfer.py”, the URL must be changed 

to be directed towards the address of the server being used. 

At this point it should be possible to plug in the USRP 2901 via USB and run the Radio Host using: 

$ python3 RadioHost.py 1 start  
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Appendix C: Tutorial for Setting up Web Server 

The steps for installing Ubuntu Server for the Web Server are the same as listed in Appendix B 

● The tutorial for this can be found in [54] 

 

After the operating system is installed the next step is installing required software: 

● Node.js can be installed using the following two commands: 

○ $ curl -fsSL https://deb.nodesource.com/setup_12.x | sudo -E bash - 

○ $ sudo apt-get install -y nodejs 

■ These commands add Node v12 to the package repository and install it 

● The commands $ node -v and $ npm -v can be used to verify both Node.js and its package 

manager are installed 

 

The code for running the server can be found and cloned from the following git repository 

 $ git clone https://github.com/MQPSpectrumObservatory/SpectrumObservatory-Webserver.git 

● This code should not require any modification to run 

 

Once the code base is cloned, navigate into the directory and run the command $ sudo npm install 

● This command will install any third-party libraries and modules needed to run the server 

 

After the libraries are installed, it should be possible to run the server using the command  

$ sudo npm start 

● Note: The server must be started with elevated privileges as it must bind itself to port 80 
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Appendix D: RadioHost.py Source Code 

#!/usr/bin/env python3 

## Imports 

import argparse         # Parse commandline args (to set number of radios) 

import logging          # Logging library 

import multiprocessing  # Separate child process for each Radio Instance 

import signal           # Kernel signal handling 

import sys              # Exit program 

import threading        # Seperate thread for GNU Radio and EncodeTransfer 

import time             # Program sleep 

 

from top_block import ( 

    top_block 

) # GNU Radio top block class 

 

from transfer import ( 

    Transfer 

) # Transfer class 

 

from daemon import ( 

    Daemon 

) # Daemon class 

 

## Daemon subclass 

class RadioDaemon(Daemon): 

 

    # Override init to have args attribute 

    def __init__(self, pidfile, args): 

        Daemon.__init__(self, pidfile) # Run parent constructor 

 

        self.args = args 

 

    # Override run with main process code 

    def run(self): 

 

        # Set up signal handler 

        signal.signal(signal.SIGTERM, signalHandler) 
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        # Set up child processes 

        p1 = RadioChild(1) 

        if self.args.n == 2:  

            p2 = RadioChild(2) 

 

        # Start the child processes 

        logging.info("Start Radio Process 1") 

        p1.start() 

 

        if self.args.n == 2: 

            logging.info("Start Radio Process 2") 

            p2.start() 

 

        try:         

            while True: 

                time.sleep(0.5) 

 

        except ServiceExit: 

            # Terminate the running threads. 

            # Signal the GNU Radio thread to stop 

            p1.shutdown_flag.set() 

            if self.args.n == 2: 

                p2.shutdown_flag.set() 

 

            # Wait for the processes to close... 

            p1.join() 

            if self.args.n == 2: 

                p2.join() 

  

            logging.info('Exiting main program') 

 

## Radio child-process sublass 

class RadioChild(multiprocessing.Process): 

 

    # Override init to have radioNum attribute 

    def __init__(self, radioNum): 

        multiprocessing.Process.__init__(self) # Run parent constructor 
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        self.radioNum = radioNum 

        self.shutdown_flag = multiprocessing.Event() 

 

    def run(self): 

        # Startup code 

        g = GNURadioJob(self.radioNum) 

        t = EncodeTransferJob(self.radioNum) 

 

        logging.info(f"[Process: {self.radioNum}] Starting GNU Radio Thread") 

        g.start() 

        time.sleep(5) 

        logging.info(f"[Process: {self.radioNum}] Starting Upload Thread") 

        t.start() 

 

        # Spin until shutdown is signaled 

        while not self.shutdown_flag.is_set(): 

            time.sleep(0.5) 

 

        # Shutdown code 

        g.shutdown_flag.set() 

        t.shutdown_flag.set() 

 

## GNU Radio thread subclass 

class GNURadioJob(threading.Thread): 

 

    # Override init to have radioNum attribute 

    def __init__(self, radioNum): 

        threading.Thread.__init__(self) # Run parent constructor 

 

        self.radioNum = radioNum 

        self.shutdown_flag = threading.Event() 

 

    def run(self): 

        # Startup Code 

        tb = top_block(self.radioNum) 

        tb.start() 

        tb.startThread() 

 

        # Spin until shutdown is signaled 
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        while not self.shutdown_flag.is_set(): 

            time.sleep(0.5) 

 

        # Shutdown Code 

        tb.stop() 

        tb.wait() 

        logging.info(f"[Process: {self.radioNum}] GNU Radio Shutdown") 

 

## Encode and Transfer Script thread subclass 

class EncodeTransferJob(threading.Thread): 

 

    # Override init to have radioNum attribute 

    def __init__(self, radioNum): 

        threading.Thread.__init__(self) # Run parent constructor 

 

        self.radioNum = radioNum 

        self.shutdown_flag = threading.Event() 

 

    def run(self): 

        # Startup Code 

        tx = Transfer(self.radioNum) 

        tx.run() 

 

        # Spin until shutdown is signaled 

        while not self.shutdown_flag.is_set(): 

            time.sleep(0.5) 

 

        # Shutdown Code 

            # Transfer class handles its own shutdown 

 

## Custom exception for termination 

class ServiceExit(Exception): 

    pass 

 

def signalHandler(signum, frame): 

    raise ServiceExit 

 

## Setup daemon and start 

def main(): 
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    # Argument parsing (sets number of radios in use and daemon commands) 

    parser = argparse.ArgumentParser(description="Daemon controlling radios and 

data upload") 

    parser.add_argument("n", type=int, help="Number of radios in use") 

    parser.add_argument("d", type=str, help="Command for daemon (start, stop, 

restart)") 

 

    args = parser.parse_args() 

 

    # Check if args are invalid 

    if args.n < 1 or args.n > 2: 

        parser.error("Number of radios must be 1 or 2") 

    if args.d != "start" and args.d != "stop" and args.d != "restart": 

        parser.error("Daemon command must be start, stop, or restart") 

 

    # Create instance of daemon 

    daemon = RadioDaemon('./RadioDaemon.pid', args) 

 

    # Daemon command handling 

    if "start" == args.d: 

 

        

  # Setup logger 

        logging.basicConfig(filename="RadioDaemon.log", 

                        format='%(asctime)s [%(levelname)s] %(message)s', 

                        filemode='w') 

 

        logger = logging.getLogger() 

        logger.setLevel(logging.INFO) 

 

        daemon.start() 

 

    elif "stop" == args.d: 

        daemon.stop() 

 

    elif "restart" == args.d: 

        daemon.restart() 
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    sys.exit(0) 

 

if __name__ == "__main__": 

    main() 
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Appendix E: top_block.py Source Code 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

 

# 

# SPDX-License-Identifier: GPL-3.0 

# 

# GNU Radio Python Flow Graph 

# Title: Spectrum Analyzer 

# GNU Radio version: 3.8.1.0 

 

from gnuradio import blocks 

from gnuradio import fft 

from gnuradio.fft import window 

from gnuradio import gr 

from gnuradio.filter import firdes 

import sys 

import signal 

from argparse import ArgumentParser 

from gnuradio.eng_arg import eng_float, intx 

from gnuradio import eng_notation 

from gnuradio import gr, blocks 

from gnuradio import uhd 

import threading 

import time 

import requests 

import pmt 

 

class top_block(gr.top_block): 

 

    def __init__(self, radioNum): 

        gr.top_block.__init__(self, "Spectrum Analyzer") 

 

 

        ################################################## 

        # Variables 

        ################################################## 
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        self.samp_rate = samp_rate = int(300e3) 

        self.center_freq = center_freq = 900e6 

        self.radio_num = radioNum 

 

        # Create custom PMT metadata containing the assigned radio number 

        key0 = pmt.intern("radio_num") 

        val0 = pmt.from_long(self.radio_num) 

        extra_meta = pmt.make_dict() 

        extra_meta = pmt.dict_add(extra_meta, key0, val0) 

 

        ################################################## 

        # Blocks 

        ################################################## 

        self.uhd_usrp_source_0 = uhd.usrp_source( 

            ",".join(("", "")), 

            uhd.stream_args( 

                cpu_format="fc32", 

                args='peak=0.003906', 

                channels=list(range(0,1)), 

            ), 

        ) 

        self.uhd_usrp_source_0.set_center_freq(center_freq, 0) 

        self.uhd_usrp_source_0.set_gain(28, 0) 

        self.uhd_usrp_source_0.set_antenna('RX2', 0) 

        self.uhd_usrp_source_0.set_bandwidth(samp_rate, 0) 

        self.uhd_usrp_source_0.set_samp_rate(samp_rate) 

        # No synchronization enforced. 

        self.fft_vxx_0 = fft.fft_vcc(1024, True, window.blackmanharris(1024), 

True, 1) 

        self.blocks_vector_to_stream_0 = 

blocks.vector_to_stream(gr.sizeof_gr_complex*1, 1024) 

        self.blocks_stream_to_vector_0 = 

blocks.stream_to_vector(gr.sizeof_gr_complex*1, 1024) 

        self.blocks_file_meta_sink_0 = 

blocks.file_meta_sink(gr.sizeof_gr_complex*1, f'./sample{self.radio_num}.dat', 

samp_rate, 1, blocks.GR_FILE_FLOAT, True, 300000, extra_meta, False) 

        self.blocks_file_meta_sink_0.set_unbuffered(False) 
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        ################################################## 

        # Connections 

        ################################################## 

        self.connect((self.blocks_stream_to_vector_0, 0), (self.fft_vxx_0, 0)) 

        self.connect((self.blocks_vector_to_stream_0, 0), 

(self.blocks_file_meta_sink_0, 0)) 

        self.connect((self.fft_vxx_0, 0), (self.blocks_vector_to_stream_0, 0)) 

        self.connect((self.uhd_usrp_source_0, 0), 

(self.blocks_stream_to_vector_0, 0)) 

 

    def get_samp_rate(self): 

        return self.samp_rate 

 

    def set_samp_rate(self, samp_rate): 

        self.samp_rate = samp_rate 

        self.uhd_usrp_source_0.set_samp_rate(self.samp_rate) 

        self.uhd_usrp_source_0.set_bandwidth(self.samp_rate, 0) 

 

    def get_center_freq(self): 

        return self.center_freq 

 

    def set_center_freq(self, freq): 

        self.center_freq = freq 

        self.uhd_usrp_source_0.set_center_freq(self.center_freq, 0) 

 

    def MQP_HTTP_Parser(self): 

        while True: 

            freq1 = 

int((requests.get(f'http://spectrumobservatory.wpi.edu/freq{self.radio_num}')).co

ntent) 

            if(freq1 != self.get_center_freq): # Only set frequency if it is 

different (save on overhead) 

                self.set_center_freq(freq1) 

            time.sleep(5) 

 

    def startThread(self): 

        self.t1 = threading.Thread(target = self.MQP_HTTP_Parser) 

        self.t1.daemon = True 

        self.t1.start() 
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## NOTE: GNURadio generated main function not used 

def main(top_block_cls=top_block, options=None): 

    tb = top_block_cls() 

 

    def sig_handler(sig=None, frame=None): 

        tb.stop() 

        tb.wait() 

        print("Exiting") 

        sys.exit(0) 

 

    signal.signal(signal.SIGINT, sig_handler) 

    signal.signal(signal.SIGTERM, sig_handler) 

 

    tb.start() 

    tb.startThread() 

     

    try: 

        input('Press Enter to quit: ') 

    except EOFError: 

        pass 

 

    tb.stop() 

    tb.wait() 

 

if __name__ == '__main__': 

    main() 
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Appendix F: daemon.py Source Code 

#!/usr/bin/env python3 

 

# Implementation of a daemon class 

# Taken from: 

http://web.archive.org/web/20131017130434/http://www.jejik.com/articles/2007/02/a

_simple_unix_linux_daemon_in_python/ 

 

# This class handles creating a process and daemonizing itself 

# To use it you simply subclass it and implement the run method 

 

import atexit, logging, os, sys, time 

from signal import SIGTERM 

 

class Daemon: 

    def __init__(self, pidfile): 

        self.pidfile = pidfile 

 

    def daemonize(self): 

        # UNIX double fork mechanism 

        try: 

            pid = os.fork() 

            if pid > 0: 

                # Exit first parent 

                sys.exit(0) 

        except OSError as err: 

            logging.critical('Fork #1 failed: {0}\n'.format(err)) 

            sys.exit(1) 

 

        # Decouple from parent environment 

        # NOTE: we do not change the working directory (current working directory  

  is not at risk of being unmounted) 

        os.setsid() 

        os.umask(0) 

 

        # Do second fork 

        try: 
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            pid = os.fork() 

            if pid > 0: 

                # Exit second parent 

                sys.exit(0) 

        except OSError as err: 

            logging.critical('Fork #2 failed: {0}\n'.format(err)) 

            sys.exit(1) 

 

        # Redirect standard file descriptors into /dev/null 

        sys.stdout.flush() 

        sys.stderr.flush() 

        si = open(os.devnull, 'r') 

        so = open(os.devnull, 'a') 

        se = open(os.devnull, 'a') 

 

        os.dup2(si.fileno(), sys.stdin.fileno()) 

        os.dup2(so.fileno(), sys.stdout.fileno()) 

        os.dup2(se.fileno(), sys.stderr.fileno()) 

 

        # Write pidfile 

        atexit.register(self.delpid) 

        pid = str(os.getpid()) 

        with open(self.pidfile, 'w+') as f: 

            f.write(pid + '\n') 

 

    def delpid(self): 

        os.remove(self.pidfile) 

 

    def start(self): 

        # Check for a pidfile to see if daemon is already running 

        try: 

            with open(self.pidfile, 'r') as pf: 

                pid = int(pf.read().strip()) 

        except IOError: 

            pid = None 

 

        if pid: 

            message = "pidfile {0} already exists." 

            logging.error(message.format(self.pidfile)) 
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            sys.exit(1) 

         

        # Start the daemon 

        self.daemonize() 

        self.run() 

 

    def stop(self): 

        # Get the pid from the pidfile 

        try: 

            with open(self.pidfile, 'r') as pf: 

                pid = int(pf.read().strip()) 

        except IOError: 

            pid = None 

 

        if not pid: 

            message = "pidfile {0} does not exist." 

            logging.warn(message.format(self.pidfile)) 

            return # this is not a fatal error if the daemon is restarting (do  

   not exit program) 

 

        # Try to kill the daemon process 

        try: 

            while 1: 

                os.kill(pid, SIGTERM) 

                time.sleep(0.1) 

        except OSError as err: 

            e = str(err.args) 

            if e.find("No such process") > 0: 

                if os.path.exists(self.pidfile): 

                    os.remove(self.pidfile) 

            else: 

                logging.error(e) 

                sys.exit(1) 

 

    def restart(self): 

        # Restart the daemon 

        self.stop() 

        self.start() 
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    def run(self): 

        # Should be overwritten when Daemon is subclassed 

        # Is called when the daemon finishes start() or restart() 

        pass 
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Appendix G: transer.py Source Code 

#!/usr/bin/env python3 

 

## Imports 

import base64   # Encoding binary data 

import json     # Creating JSON file 

import logging  # Logging library 

import os       # File path manipluation 

import pmt      # GNU Radio header parsing 

import requests # Creating HTTP requests 

import sys      # Reading program arguments 

import time     # Program sleep 

 

from gnuradio.blocks import parse_file_metadata # GNU Radio header parsing 

 

class Transfer: 

    def __init__(self, radioNum): 

        self.radioNum = radioNum 

        self.HOST = "http://spectrumobservatory.wpi.edu/data"                        

# host of webserver 

        self.BINNAME = "sample.dat"                                                 

# name of the input file (gets overriden on init) 

        self.HEADERS = {'Content-type': 'application/json', 'Accept':  

    'text/plain'} # Headers for POST request 

        self.NITEMS = 300000 

 

        self.inFile = None 

 

 

    ## Called to update the data file name based on assigned radio number 

    def setBINNAME(self): 

        self.BINNAME = f'sample{self.radioNum}.dat' 

 

 

    ## Called when the transfer program is terminated 

    # Cleans up open files, removes temporary files and exits (terminating the  

 thread) 
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    def stop(self): 

        logging.info(f"[Process: {self.radioNum}] Program termination\n") 

        self.inFile.close() 

        os.remove(self.BINNAME) 

        sys.exit(0) 

 

 

    ## This will be called to parse header data out of the dat file 

    # Takes in an open file descriptor and returns a python dictionary 

    # NOTE: This function is built on the gr_read_file_metadata program from GNU  

 Radio 

    def parseHeaders(self): 

         

        # read out header bytes into a string 

        header_str = self.inFile.read(parse_file_metadata.HEADER_LENGTH) 

 

        # Convert from created string to PMT dict 

        try: 

            header = pmt.deserialize_str(header_str) 

        except RuntimeError: 

            logging.info(f"[Process: {self.radioNum}] Could not deserialize  

    header\n") 

            self.stop() 

 

        # Convert from PMT dict to Python dict 

        info = parse_file_metadata.parse_header(header) 

 

        if(info["extra_len"] > 0): 

            extra_str = self.inFile.read(info["extra_len"]) 

 

        # Extra header info 

        try: 

            extra = pmt.deserialize_str(extra_str) 

        except RuntimeError: 

            logging.info(f"[Process: {self.radioNum}] Could not deserialize extra  

    headers\n") 

            self.stop() 

 

        info = parse_file_metadata.parse_extra_dict(extra, info) 
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        return info 

 

    ## Main running function 

    def run(self): 

 

        ## Set the data file name (changes based on radio instance) 

        self.setBINNAME() 

 

        ## Open the binary data file 

        self.inFile = open(self.BINNAME, "rb") 

 

        headerNum = 0 # Number of headers read 

 

        ## Main loop:  

        # 1. Read GNU Radio output file 

        # 2. Parse header info 

        # 3. Check if final segment 

        # 4. Encode payload 

        # 5. Create JSON 

        # 6. Send JSON with HTTP POST 

        while(True): 

 

            # Read in bin file to parse header metadata 

            headerData = self.parseHeaders() 

            headerNum += 1 

            logging.info(f"[Process: {self.radioNum}] Header Number:  

    {headerNum}") 

 

            # Size of each data segment 

            ITEM_SIZE = headerData["nitems"] 

            SEG_SIZE  = headerData["nbytes"] 

 

            # Check if sample is too small 

            # GET request interrupts GNU Radio's loop causing it to prematurely  

  reinsert a header 

            if ITEM_SIZE < self.NITEMS: 

                self.inFile.read(SEG_SIZE) 
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                logging.info(f"[Process: {self.radioNum}] Segment too small,  

   skipping\n") 

                continue 

 

            # Pull out relevant header info 

            rx_time     = headerData["rx_time"] 

            rx_rate     = headerData["rx_rate"] 

            rx_freq     = pmt.to_python(headerData["rx_freq"]) 

            radio       = pmt.to_python(headerData["radio_num"]) 

 

            # Encode data payload from bin file into base64 ascii characters 

            inputBinary = self.inFile.read(SEG_SIZE) 

            encodedData = (base64.b64encode(inputBinary)).decode('ascii') 

 

            # Create JSON file using encoded payload and header metadata 

            jsonFormat = {"metadata":{"rx_time" : rx_time, "rx_sample" : rx_rate,  

  "rx_freq" : rx_freq, "radio_num" : radio}, "payload" : encodedData} 

            jsonFile = json.dumps(jsonFormat, indent=4) 

 

            # Send this JSON file to the WebServer with an HTTP POST 

            r = requests.post(url=self.HOST, data=jsonFile, headers=self.HEADERS) 

            logging.info(f"[Process: {self.radioNum}] Response from server: %s\n"  

    %r) 

         

            # Wait to send next segment (segments are generated at a rate of 1  

  per second) 

            time.sleep(1) 
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Appendix H: server.js Source Code 

/* ---- Global Variables ---- */ 

// Default packages 

const fs = require('fs'); 

const http = require('http'); 

const path = require('path'); 

const url = require('url'); 

const {Worker} = require('worker_threads'); 

 

// Third party npm packages 

const finalhandler = require('finalhandler'); 

const serveIndex = require('serve-index'); 

const serveStatic = require('serve-static'); 

 

const port = 80; 

const mime = { 

    html: 'text/html', 

    txt:  'text/plain', 

    css:  'text/css', 

    gif:  'image/gif', 

    jpg:  'image/jpeg', 

    png:  'image/png', 

    svg:  'image/svg+xml', 

    js:   'application/javascript' 

}; 

// Point to the static directory to serve 

const index = serveIndex('public'); 

const serve = serveStatic('public'); 

// Hold radio frequency values for remote control 

let freqVal1 = '900000000'; 

let freqVal2 = '900000000'; 

let freqVal3 = '900000000'; 

let freqVal4 = '900000000'; 

 

 

/* ---- HTTP Server Processing & Event Loop ---- */ 

const server = http.createServer(function (req, res) { 
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    const pathname = url.parse(req.url).pathname; 

    switch (req.method) { 

        case "GET": 

            console.log("GET: %s", pathname); 

 

            // Filter and format path name and serve any static file matching 

            let dir = path.join(__dirname, 'public'); 

            let req_path = req.url.toString().split('?')[0]; 

            let filteredPath = req_path.replace(/\/$/, '/index.html'); 

            let file = path.join(dir, filteredPath); 

 

            if (file.indexOf(dir + path.sep) !== 0) { 

                sendCode(res, 403, "403 forbidden"); 

                break; 

            } 

 

            let type = mime[path.extname(file).slice(1)] || 'text/plain'; 

            let s = fs.createReadStream(file); 

 

            s.on('open', function () { 

                res.setHeader('Content-Type', type); 

                s.pipe(res); 

            }); 

 

            // if not serving static file/directory 

            s.on('error', function () { 

                switch (pathname) { 

                    case '/freq1': 

                        console.log("Sending frequency request on /freq1"); 

                        res.end(freqVal1); 

                        sendCode(res, 200, "OK"); 

                        break; 

 

                    case '/freq2': 

                        console.log("Sending frequency request on /freq2"); 

                        res.end(freqVal2); 

                        sendCode(res, 200, "OK"); 

                        break; 
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                    case '/freq3': 

                        console.log("Sending frequency request on /freq3"); 

                        res.end(freqVal3); 

                        sendCode(res, 200, "OK"); 

                        break; 

 

                    case '/freq4': 

                        console.log("Sending frequency request on /freq4"); 

                        res.end(freqVal4); 

                        sendCode(res, 200, "OK"); 

                        break; 

 

                    // Called when front-end requests contents of public/data 

                    case '/data1/': 

                        const done = finalhandler(req, res);    // handler to  

    write response 

                        serve(req, res, function onNext(err) {  // serve the  

    indexes of the files in directory 

                            if (err) return done(err); 

                            index(req, res, done); 

                        }) 

                        break; 

 

                    case '/data2/': 

                        done = finalhandler(req, res);          // handler to  

    write response 

                        serve(req, res, function onNext(err) {  // serve the  

    indexes of the files in directory 

                            if (err) return done(err); 

                            index(req, res, done); 

                        }) 

                        break; 

 

                    default: 

                        console.log("Client made GET to %s and invoked 404",  

    url.parse(req.url).pathname); 

                        sendCode(res, 404, "404 not found"); 

                        break; 
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                } 

            }); 

            break; 

 

        case "POST": 

            console.log("POST: %s", pathname); 

 

            // Data upload handling (full pathname is used in filename) 

            if (pathname.startsWith('/data')) { 

                let reqBody = ''; 

                req.on('data', function (data) { 

                    reqBody += data; 

                    if (reqBody.length > 1e7 /*10MB*/ ) { 

                        sendCode(res, 413, "Request too large"); 

                    } 

                }); 

                req.on('end', function () { 

                    sendCode(res, 200, "OK"); 

                    console.log("Received %d bytes", req.socket.bytesRead); 

                    // This function returns a promise that resolves when its  

    worker thread finishes 

                    processData(pathname, reqBody).then(console.log("Worker  

     finished")); 

                }); 

 

            } else { 

 

            let freq; 

            switch (pathname) { 

                case '/post1': 

                    freq = ''; 

                    req.on('data', function (rcdata) { 

                        freq += rcdata; 

                    }); 

                    req.on('end', () => { 

                        // Need to remove "CenterFreq=" 

                        freqVal1 = freq.toString().split("=")[1]; 

                        console.log("Logged a frequency of %s on /post1",  

      freqVal1); 
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                        // Respond with "204 No Content" to avoid page  

     redirecting 

                        res.writeHead(204) 

                        res.end() 

                    }); 

                    break; 

 

                case '/post2': 

                    freq = ''; 

                    req.on('data', function (rcdata) { 

                        freq += rcdata; 

                    }); 

                    req.on('end', () => { 

                        freqVal2 = freq.toString().split("=")[1]; 

                        console.log("Logged a frequency of %s on /post2",  

      freqVal2); 

                        res.writeHead(204) 

                        res.end() 

                    }); 

                    break; 

 

                case '/post3': 

                    freq = ''; 

                    req.on('data', function (rcdata) { 

                        freq += rcdata; 

                    }); 

                    req.on('end', () => { 

                        freqVal3 = freq.toString().split("=")[1]; 

                        console.log("Logged a frequency of %s on /post3",  

      freqVal3); 

                        res.writeHead(204) 

                        res.end() 

                    }); 

                    break; 

 

                case '/post4': 

                    freq = ''; 

                    req.on('data', function (rcdata) { 

                        freq += rcdata; 
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                    }); 

                    req.on('end', () => { 

                        freqVal = freq.toString().split("=")[1]; 

                        console.log("Logged a frequency of %s on /post4",  

      freqVal); 

                        res.writeHead(204) 

                        res.end() 

                    }); 

                    break; 

 

                default: 

                    console.log("Client made POST to %s and invoked 404",  

      url.parse(req.url).pathname); 

                    sendCode(res, 404, "Not found"); 

                    break; 

            }} 

            break; 

         

        default: 

            sendCode(res, 405, "Incorrect Method"); 

            break; 

    } 

}).listen(port); 

console.log("Server started on port %d\n", port); 

 

/* ---- Helper Functions ---- */ 

// Spawn a worker thread that runs the file worker.js 

function processData(pathname, reqBody) { 

    return new Promise((resolve, reject) => { 

        const worker = new Worker('./worker.js', { workerData: { pathname, 

reqBody } }); 

        worker.on('message', resolve); 

        worker.on('error',   reject); 

        worker.on('exit', (code) => {  

            if (code !== 0)  

                reject(new Error(`Worker stopped with exit code ${code}`));  

        }); 

    }); 

}; 
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function sendCode(res, code, msg) { 

    fs.readFile('public/status/' + code + '.html', function (error, content) { 

        if (error) throw error; 

        res.writeHead(code, msg, {'Content-type': 'text/html'}); 

        res.end(content, 'utf-8'); 

    }) 

} 
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Appendix I: worker.js Source Code 

const fs = require('fs'); 

const {workerData, parentPort} = require('worker_threads'); 

const {pathname, reqBody} = workerData; 

 

/* ---- Main Worker Loop ---- */ 

 

// Parsing JSON and extract fields 

const jsonData = JSON.parse(reqBody); 

 

const payloadData = jsonData.payload; 

const metadata = jsonData.metadata; 

 

// Formatting metadata for CSV file 

const rx_time =  metadata.rx_time; 

const rx_sample = metadata.rx_sample; 

const rx_freq =  metadata.rx_freq; 

const radio_num =  metadata.radio_num; 

const metadata_line = rx_time + "," + rx_sample + "\n" + rx_freq + "," + 

radio_num; 

 

// Convert data payload to binary string 

const binary_string = textToBin(payloadData); 

 

// Split binary string into 1024-sample sized chunks 

const bin_array_in_chunks = splitString(binary_string, 65536); 

 

// Convert each binary segment into a csv 

for(let i = 0; i < bin_array_in_chunks.length; i++) { 

    convertBinToCSV(pathname, bin_array_in_chunks[i], i, metadata_line); 

} 

 

// Let parent know worker finished, fulfilling promise 

parentPort.postMessage({filename: workerData, status: 'Done'}); 

 

 

/* ---- Helper functions ---- */ 
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function Arraycreator(byte) { 

    const inArray = byte.match(new RegExp('.{1,' + 32 + '}', 'g')); // split  

  every 32 characters into a index in array 

    const newArr = []; 

    while (inArray.length) { 

        newArr.push(inArray.splice(0, 2)); // split every two array indecies into  

       sub-array 

    } 

    return newArr; 

} 

 

function arrayToCSV(arr, delimiter = ',') { 

    return arr.map( 

        v => v.map( 

            x => (isNaN(x) ? `"${x.replace(/"/g, '""')}"` : x) 

            ).join(delimiter) 

        ).join('\n'); 

    } 

 

function zeroPad(num, places = 8) { 

    return String(num).padStart(places, '0'); 

} 

 

// Decodes the data out of Base64 and converts to a binary string 

function textToBin(text) { 

    let txt = new Buffer.from(text, 'base64').toString('binary'); 

    let output = []; 

 

    // TODO Optimize this? 

    for (let i = 0; i < txt.length; i++) { 

        let bin = txt[i].charCodeAt().toString(2); 

        output.push(Array(bin.length + 1).join('') + zeroPad(bin, 8)); 

    } 

 

    return output.join(""); 

} 

 

function convertBinToCSV(pathname, binary_string, index, metadata_line) { 

    const bin_array = Arraycreator(binary_string); 
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    let bindata = arrayToCSV(bin_array); 

 

    let finaldata = metadata_line + "\n" + bindata; 

 

    // file format is data###.csv where ### is a 3 digit number representing the  

  index of the current file 

    let new_file_name = 'data' + index.toString().padStart(3, '0') + '.csv'; 

 

    fs.writeFile(`public/data${radio_num}/` + new_file_name, finaldata, function 

(err) { 

        if (err) return console.log(err); 

    }); 

} 

 

function splitString (string, size) { 

    let re = new RegExp('.{1,' + size + '}', 'g'); 

    return string.match(re); 

} 
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Appendix J: index.html Source Code 

<!DOCTYPE html> 

<html> 

  <head> 

    <meta charset="utf-8"> 

    <!-- Load d3.js --> 

    <script src="https://d3js.org/d3.v4.js"></script> 

    <script 

src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script> 

    <script type="text/javascript"> 

    function makeChart() { 

      // set the dimensions and margins of the graph 

      var margin = {top: 10, right: 30, bottom: 30, left: 100}, 

        width = 1600 - margin.left - margin.right, 

        height = 512 - margin.top - margin.bottom; 

 

      // append the svg object to the body of the page 

      var svg = d3.select("#my_dataviz") 

        .append("svg") 

        .attr("width", width + margin.left + margin.right) 

        .attr("height", height + margin.top + margin.bottom) 

        .append("g") 

        .attr("transform", 

          "translate(" + margin.left + "," + margin.top + ")"); 

 

      var dir = "data1/"; 

      var fileextension = ".csv"; 

      $.ajax({ 

        //This will retrieve the contents of the folder if the folder is  

  configured as 'browsable' 

        url: dir, 

        success: function (data) { 

          //List all matching file names in the page 

          $(data).find("a:contains(" + fileextension + ")").each(function () { 

            var a = []; 

            var I = []; 

            var Q = []; 
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            var mag = []; 

            var freq = []; 

            var samp_freq; 

 

            // this makes the path relative to the current page location 

            var filename = this.href.replace(window.location.pathname,  

   "").replace("http://", ""); 

            var pathName = dir + filename.substring(filename.lastIndexOf('/') +  

   1); 

            d3.text(pathName, (function (d) { //Reads in the CSV as a text file 

              a = d3.csvParseRows(d); //Parses the text file as a csv, a is an  

       array of each row 

              samp_freq = a[1][0]; 

              a.forEach((item, index) => { //Each item in 'a' is an arraysize 2  

       with I and Q 

                I.push(parseInt(item[0], 2)); //Stores I of each time sample 

                Q.push(parseInt(item[1], 2)); //Stores Q of each time sample 

              }); 

              mag = calcMag(I, Q, mag); 

              freq = linspace(samp_freq-150000, samp_freq+150000, 1024); 

              graph(freq, mag.slice(1, freq.length), svg); 

            })); 

          }); 

        } 

      }); 

    } 

 

      // Graphing the data 

    function graph(xaxis, data, svg) { 

            // set the dimensions and margins of the graph 

      var margin = {top: 10, right: 30, bottom: 30, left: 100}, 

        width = 1600 - margin.left - margin.right, 

        height = 512 - margin.top - margin.bottom; 

 

      // Add X axis 

      var x = d3.scaleLinear() 

        .domain([d3.min(xaxis), d3.max(xaxis)]) 

        .range([0, width]); 

      svg.append("g") 
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        .attr("transform", "translate(0," + height + ")") 

        .call(d3.axisBottom(x)); 

 

      // Add Y axis 

      var y = d3.scaleLog() 

        //.domain([d3.min(data), d3.max(data)]) 

        .domain([50000000, 8000000000]) 

        .range([0, height]); 

      svg.append("g") 

        .call(d3.axisLeft(y) 

        .tickFormat(d3.format("0.00001e"))); 

 

 

      svg.selectAll("path") 

        .datum(data) 

        .attr("fill", "none") 

        .attr("stroke", "steelblue") 

        .attr("stroke-width", 1.5) 

        .attr("d", d3.line() 

          .x(function (d, idx) {return x(xaxis[idx])}) 

          .y(function (d, idx) {return y(data[idx])}) 

        ); 

 

    } 

 

    function calcMag(I, Q, mag) { 

      for (i = 3; i < I.length; i++) { 

        mag.push(Math.sqrt((I[i] * I[i]) + (Q[i] * Q[i]))); 

      } 

      return mag; 

    } 

 

    function linspace(startValue, stopValue, cardinality) { 

      var arr = []; 

      var step = (stopValue - startValue) / (cardinality - 1); 

      for (var k = 0; k < cardinality; k++) { 

        arr.push(startValue + (step * k)); 

      } 

      return arr; 
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    } 

 

    </script> 

  </head> 

  <body> 

    <!-- Create a div where the graph will take place --> 

    <div id="my_dataviz" width="1100" height="440"></div> 

 

    <h2 style="text-align:center">Radio 1: Select Frequency</h2> 

 

    <form action="http://spectrumobservatory.wpi.edu/post1" method='POST'  

  style="text-align:center"> 

      <input type="radio" id="CenterFreq" name="CenterFreq" value="600000000"> 

      <label for="CenterFreq">600 MHz</label> 

      <input type="radio" id="CenterFreq" name="CenterFreq" value="850000000"> 

      <label for="CenterFreq">850 MHz</label><br> 

      <input type="submit" value="Submit"> 

    </form> 

     

    <button onClick="makeChart()">Show Radio 1 Spectrogram</button> 

 

  </body> 

</html> 

 

 


