
Supporting Multi-Criteria Decision Support Queries over
Disparate Data Sources

by

Venkatesh Raghavan

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Computer Science

by

April 17, 2012

APPROVED:

Professor Elke A. Rundensteiner
Worcester Polytechnic Institute
Advisor

Professor Murali Mani
University of Michigan, Flint
Committee Member

Professor Craig Wills
Worcester Polytechnic Institute
Head of Department

Professor Daniel J. Dougherty
Worcester Polytechnic Institute
Committee Member

Dr. Haixun Wang
Microsoft Research Asia
External Committee Member

Abstract

In the era of “big data revolution,” marked by an exponential growth of infor-

mation, extracting value from data enables analysts and businesses to address

challenging problems such as drug discovery, fraud detection, and earthquake

predictions. Multi-Criteria Decision Support (MCDS) queries are at the core

of big-data analytics resulting in several classes of MCDS queries such as

OLAP, Top-K, Pareto-optimal, and nearest neighbor queries. The intuitive

nature of specifying multi-dimensional preferences has made Pareto-optimal

queries, also known as skyline queries, popular. Existing skyline algorithms

however do not address several crucial issues such as performing skyline

evaluation over disparate sources, progressively generating skyline results,

or robustly handling workload with multiple skyline over join queries. In

this dissertation we thoroughly investigate topics in the area of skyline-aware

query evaluation.

In this dissertation, we first propose a novel execution framework called SKIN

that treats skyline over joins as first class citizens during query processing.

This is in contrast to existing techniques that treat skylines as an “add-on,”

loosely integrated with query processing by being placed on top of the query

plan. SKIN is effective in exploiting the skyline characteristics of the tu-

ples within individual data sources as well as across disparate sources. This

enables SKIN to significantly reduce two primary costs, namely the cost of

generating the join results and the cost of skyline comparisons to compute

the final results.

Second, we address the crucial business need to report results early; as soon

as they are being generated so that users can formulate competitive decisions

in near real-time. On top of SKIN, we built a progressive query evaluation

framework ProgXe to transform the execution of queries involving skyline

over joins to become non-blocking, i.e., to be progressively generating re-

sults early and often. By exploiting SKIN’s principle of processing query at

multiple levels of abstraction, ProgXe is able to: (1) extract the output depen-

dencies in the output spaces by analyzing both the input and output space,

and (2) exploit this knowledge of abstract-level relationships to guarantee

correctness of early output.

Third, real-world applications handle query workloads with diverse Qual-

ity of Service (QoS) requirements also referred to as contracts. Time sensi-

tive queries, such as fraud detection, require results to progressively output

with minimal delay, while ad-hoc and reporting queries can tolerate delay.

In this dissertation, by building on the principles of ProgXe we propose the

Contract- Aware Query Execution (CAQE) framework to support the open

problem of contract driven multi-query processing. CAQE employs an adap-

tive execution strategy to continuously monitor the run-time satisfaction of

queries and aggressively take corrective steps whenever the contracts are not

being met.

Lastly, to elucidate the portability of the core principle of this dissertation,

the reasoning and query processing at different levels of data abstraction,

we apply them to solve an orthogonal research question – to auto-generate

recommendation queries that facilitate users in exploring a complex database

system. User queries are often too strict or too broad requiring a frustrating

trial-and-error refinement process to meet the desired result cardinality while

preserving original query semantics. Based on the principles of SKIN, we

propose CAPRI to automatically generate refined queries that: (1) attain the

desired cardinality and (2) minimize changes to the original query intentions.

In our comprehensive experimental study of each part of this dissertation, we

demonstrate the superiority of the proposed strategies over state-of-the-art

techniques in both efficiency, as well as resource consumption.

Acknowledgements

The growth of my knowledge over the last few years culminating with my

dissertation is to a huge part due to the inspiration, guidance and friendship

I received from my advisor, Professor Elke A. Rundensteiner. She gave me

the freedom to explore any topic in database research, provided sound direc-

tions at every turn, and the frequent 1 a.m. curve ball emails that pushed

my research envelope. I have been fortunate to have her as my advisor, col-

league and a friend. I express my sincere thanks for her support, advice, pa-

tience, and encouragement throughout my graduate studies. Her excellence

in teaching as well as tackling complex research problems will always be my

inspiration to return back to academia.

I sincerely thank the members of my Ph.D. committee, Prof. Daniel J. Dougherty,

Prof. Murali Mani, and Dr. Haixun Wang for providing me valuable feedback

during the various milestones in my Ph.D. Their insight and critique helped

me improve the contents of this dissertation. I am thankful for the financial

support I have received from my advisor Prof. Elke A. Rundensteiner, Dr.

John Woycheese during his tenure as the Professor in the Department of Fire

Protection Engineering at WPI, and my department. My thanks also goes to

the National Science Foundation (NSF) and National Institute of Standards

and Technology (NIST) for providing funding for the computing resources

used in my dissertation.

I would like to thank DSRG team members – in particular Manasi Varak,

Shweta Srivastava, Dr. Nam Hun Park, and the students of Mass Academy

– Nikhil Thorat, Ariel Wexler and Kwame Siriboe for their hard work in

building quality software that we could share and demonstrate together as a

team. In addition, I would also like to thank the CAPE team members for

their help in my early Ph.D. study. I very much appreciate the discussions as

well as friendship of Bin Liu, Maged El-Sayed, Mo Lui, Rimma Nehme, Yali

Zhu, Abhishek Mukherji, Mingzhu Wei, Di Wang, Ming Li, and all the other

previous and current DSRG members.

The knowledgeable and approachable professors in the Department of Com-

puter Science who are leaders in their respective areas helped me to expand

the breadth of my knowledge. The systems and support staff, Mark Taylor,

Mike Voorhis, Jesse Banning, Diane Baxter, Refie Cane and Christine Caron,

in our department and from the school for providing a state-of-the-art com-

puting infrastructure and a welcoming work environment.

I would like to thank my spouse David Sampson and his family for their

patience, support and love during the past few years. His proof reading skills

and encouragement was in the end what made this dissertation possible. My

parents receive my most sincere gratitude. Their passion to achieve bigger

and better things ingrained in me a drive to reach excellence. I would also like

to thank my family Vaidyanathan and Radhika for their support throughout

my academic pursuit. Lastly, to Irving D. Press for his confidence in me for

doing great work.

My Publications

Publications Contributing to this Dissertation

Part I: Skyline and Mapping Aware Query Evaluation

Part I of this dissertation addresses the problem of efficiently evaluating skylines over

disparate sources.

1. Venkatesh Raghavan, Shweta Srivastava and Elke A. Rundensteiner, Skyline and

Mapping Aware Join Query Evaluation, Information Systems, Volume 36:6, 2011,

pages 917-936.

Relationship to this dissertation: In this work, we propose SKIN (SKyline INside

Join) - an efficient methodology to evaluate SkyMapJoin queries. Chapters 2 and 3

in Part I of this dissertation are based on this work.

2. Venkatesh Raghavan, and Elke A. Rundensteiner, SkyDB - Skyline Aware Query

Evaluation, SIGMOD Ph.D. Workshop 2009.

Relationship to this dissertation: In this vision paper, we present the overall frame-

work of the skyline-aware query evaluation framework that addresses three key

issues that enable the treatment of skylines as a first-class citizen in query process-

ing. First, we extend the relational model to now include skyline aware operators.

iii

Second, for these new operators we design execution strategies that are tuned to ex-

ploit the skyline knowledge. Third, we propose our skyline aware query optimizer

to effectively choose between the query plan execution strategies. Third, we thus

aim to transform the execution of skylines over joins to non-blocking so that we

can produce progressive output of results. This vision paper includes key elements

of Parts I and II of this dissertation.

Part II: Progressive Result Generation for Multi-Criteria Decision Sup-

port Queries

Part II of this dissertation addresses the motivating need for real-time multi-criteria de-

cision support (MCDS) applications — supporting the early output of results rather than

waiting until the end of query processing.

3. Venkatesh Raghavan and Elke A. Rundensteiner, Progressive Result Generation for

Multi-Criteria Decision Support Queries, ICDE 2010, pages 733-744.

Relationship to this dissertation: In this work, we present ProgXe – a progressive

evaluation framework that transforms the execution of MCDS queries involving

skyline over joins to be non-blocking by progressively generating results early and

often. Part II (Chapters 6-10) of this dissertation is based on this work.

4. Venkatesh Raghavan, and Elke A. Rundensteiner, ProgXe: Progressive Result Gen-

eration Framework for Multi-Criteria Decision Support Queries, SIGMOD 2010,

pages 1135-1138, demonstration.

Relationship to this dissertation: This demonstration highlights the key ideas of

ProgXe. We provide visualization tools that enable the user to make quick deci-

sions, compare alternative techniques, and provide the capability to fine-tune the

iv

query predicates based on the early output results.

Part III: Contract-Driven Processing of Concurrent Decision Queries

Part III of this dissertation addresses the problem of processing multiple MCDS queries

– each augmented by Quality of Service (QoS) requirements.

5. Venkatesh Raghavan and Elke A. Rundensteiner, Contract-Driven Processing of

Concurrent Decision Support Queries: A Piece of CAQE, in submission.

Relationship to dissertation: In this work, we propose our Contract-Aware Query

Execution (CAQE) framework that unblocks query processing of multiple skyline-

over-join queries by using a multi-granular adaptive execution strategy. Part III (

Chapters 11-18) of this dissertation is based on this work.

Part IV: Cardinality Assurance Via Proximity-driven Refinement

We successfully apply the principles of SKIN to address an orthogonal research problem

– the problem of Proximity-driven Cardinality Assurance (PCA) that seeks to generate

refined queries meeting both cardinality and proximity constraints. This is a collaborative

work with Manasi Vartak during her undergraduate studies at WPI.

6. Manasi Vartak, Venkatesh Raghavan and Elke A. Rundensteiner, CAPRI: Cardinal-

ity Assurance Via Proximity-driven Refinement, in submission.

Relationship to dissertation: In this work, we formally establish the NP-hardness

of PCA, and propose CAPRI – the first framework to address this problem. Part IV

(Chapters 19-24) of this dissertation is based on this work.

v

7. Manasi Vartak, Venkatesh Raghavan, and Elke Rundensteiner, QRelX: Generating

meaningful queries that provide cardinality assurance, demonstration, SIGMOD

2010, pages 1215-1218.

Relationship to dissertation: In this demonstration we present QRelX – a novel

framework that exploits the principle of CAPRI to automatically generate alternate

queries that meet the cardinality and closeness criteria.

Extensions

We also extended the core principles of SKIN to present TI-Sky – a continuous evaluation

framework to handle skyline queries over time-interval data streams. TI-Sky strikes a

perfect balance between the costs of continuously maintaining the result space upon the

arrival of new objects or the expiration of old objects, and the costs of computing the final

skyline result from this space whenever a pull-based user query is received.

8. Nam Hun Park, Venkatesh Raghavan, and Elke A. Rundensteiner, Supporting Multi-

Criteria Decision Support Queries Over Time-Interval Data Streams, DEXA 2010,

pages 281-289.

In the below listed work we present an adaptive approach for determining the process-

ing abstraction levels dynamically at run time instead of assigning a static one at compile

time. The adaptive re-partitioning method is triggered by the observed potential benefit

for dominance-driven region purging.

9. Shweta Srivastava, Venkatesh Raghavan, and Elke A. Rundensteiner, Adaptive Pro-

cessing of Multi-Criteria Decision Support Queries, VDLB Workshop, 2011.

vi

Other Publications

The below listed publications are outcomes of my Ph.D. Research Qualifier in continuous

stream processing systems and my Masters’ thesis in XPath query processing at WPI.

10. Yali Zhu, Venkatesh Raghavan, and Elke A. Rundensteiner, A new look at generat-

ing multi-join continuous query plans: A qualified plan generation problem. Data

Knowledge Eng. 69(5): 2010, pages 424-443.

11. Venkatesh Raghavan, Yali Zhu, Elke A. Rundensteiner, Daniel Dougherty, Multi-

Join Continuous Query Optimization: Covering the Spectrum of Linear, Acyclic,

and Cyclic Queries, BNCOD 2009, pages 91-106.

12. Abhishek Mukherji, Elke A. Rundensteiner, David Brown, and Venkatesh Ragha-

van, SNIF TOOL: Sniffing for patterns in continuous streams, CIKM 2008, pages

369-378.

13. Venkatesh Raghavan, Elke A. Rundensteiner, John Woycheese, Abhishek Mukherji,

FireStream: Sensor Stream Processing for Monitoring Fire Spread, demonstration,

ICDE 2007, pages 1507-1508.

14. Venkatesh Raghavan, Kurt W. Deschler, Elke Rundensteiner, VAMANA - A Scalable

Cost-Driven XPath Engine, ICDE Workshop 2005, pages 1278-1287.

vii

Contents

My Publications iii

List of Figures xvi

List of Tables xix

1 Introduction 1

1.1 Background . 2

1.1.1 Skyline Operation . 2

1.1.2 Top-K or Ranked Queries . 3

1.1.3 Convex-Hull Query . 4

1.2 Motivation . 5

1.2.1 Skyline Evaluation Across Disparate Sources 5

1.2.2 Progressive Evaluation of MCDS Queries 8

1.2.3 Contract-Driven Query Processing 9

1.2.4 Automated Query Refinement in MCDS Systems 10

1.3 State-Of-The-Art Techniques . 12

1.3.1 Skyline Algorithms over a Single Relation 12

1.3.2 Skylines over Disparate Sources 13

1.3.3 Progressive Skyline Query Evaluation 14

viii

CONTENTS

1.3.4 Handling Concurrent MCDS Queries 14

1.3.5 Automated Query Refinement 15

1.4 Research Challenges Addressed in This Dissertation 16

1.4.1 Efficiently Processing Skylines over Disparate Sources 16

1.4.2 Progressive Skyline over Join Evaluation 19

1.4.3 Contract-Driven Multi-Query Processing 19

1.4.4 Proximity-Driven Cardinality Assurance 20

1.5 Proposed Solutions . 21

1.5.1 Skyline and Mapping Aware Query Evaluation 21

1.5.2 Progressive Result Generation for MCDS Queries 23

1.5.3 Contract-Driven Processing of Multiple Multi-Criteria Decision

Support Queries . 25

1.5.4 Cardinality Assurance Via Proximity-driven Refinement 26

1.6 Dissertation Organization . 28

I Skyline and Mapping Aware Query Evaluation 29

2 Skyline Aware Relational Algebra 30

2.1 Preliminaries . 30

2.1.1 Mapping Functions and Map Operator 31

2.1.2 Preference Model and Skyline Operator 31

2.2 Extended Algebra Model . 32

2.3 Query Equivalence Rules . 32

3 SKIN: The Proposed Approach 36

3.1 Phase I: Region-Level Elimination . 39

3.2 Phase II: Output-Partition Level Elimination 44

ix

CONTENTS

3.3 Phase III: Skyline-Aware Join Ordering 46

3.4 Phase IV: Object-Level Execution . 49

3.5 Handling Join Predicates . 52

4 Experimental Evaluation of SKIN 55

4.1 Experimental Setup . 55

4.1.1 Proposed Techniques . 55

4.1.2 Competitor Techniques . 56

4.1.3 Experimental Platform . 56

4.1.4 Evaluation Metrics . 56

4.1.5 Stress Test Data . 57

4.2 Experimental Analysis of SKIN . 57

4.3 Comparisons with State-of-The-Art . 61

4.3.1 Execution Time . 61

4.3.2 Number of Join Results Generated 64

4.3.3 Number of Skyline Comparisons Performed 66

4.3.4 Differing Mapping Functions 66

4.4 Real Data Sets . 68

4.5 Summary of Experimental Conclusions 69

5 Related Work for Part I 72

5.1 Skyline Algorithms over a Single Relation 72

5.2 Skylines over Disparate Sources . 73

5.3 Pushing Skyline Inside and Through Join Evaluation 75

x

CONTENTS

II Progressive Result Generation for Multi-Criteria Decision Sup-

port Queries 77

6 ProgXe: Progressive Execution Framework 78

7 Progressive Driven Ordering 81

7.1 Effect of Ordering . 81

7.2 Benefit Model: Progressiveness Capacity of a Region 83

7.3 Cost Model: Tuple-Level Processing . 87

7.4 The ProgOrder Algorithm: Putting it all together 88

8 Progressive Result Determination 92

8.1 Our Approach . 92

8.2 The ProgDetermine Technique: Putting It All Together 95

9 Experimental Evaluation of ProgXe 97

9.1 Experimental Setup . 97

9.2 Experimental Analysis of ProgXe Variations 98

9.2.1 Variations of ProgXe . 98

9.2.2 Progressive Result Generation 100

9.2.3 Total Execution Time . 100

9.3 Comparisons with State-of-the-Art Techniques 101

9.3.1 Summary of Experimental Conclusions 103

10 Related Work for Part II 105

10.1 Blocking vs. Non-Blocking Query Operators 105

10.2 Progressive Skyline Algorithms . 105

xi

CONTENTS

III Contract-Driven Processing of Multiple Multi-Criteria Deci-

sion Support Queries 107

11 Contract-Driven Processing of Concurrent Decision Support Queries: A Piece

of CAQE 108

12 Specifying Progressiveness Requirements via Contracts 111

12.1 Progressiveness Contract . 111

12.1.1 Contract Specification Models 112

12.1.1.1 Time Based Specification 112

12.1.1.2 Cardinality Based Specification 113

12.1.2 Hybrid Specification . 114

12.2 The CAQE Optimization Goal . 115

13 Shared Min-Max Cuboid Plan 116

14 Multi-Query Output Look Ahead 119

14.1 Overview . 119

14.2 Coarse-Level Skyline Evaluation . 121

14.3 Optimizing MQLA . 123

14.3.1 Sort-Based Traversal . 123

14.3.2 Merging Subspace Skylines . 123

14.3.3 Sorted Subspace Skyline Maintenance 123

14.4 Putting MQLA Together . 125

15 Contract-Driven Optimization 126

15.1 Contract Satisfaction Metric . 127

15.2 Multi-Query Progressiveness Based Benefit Model 127

xii

CONTENTS

15.3 Multi-Query Cost Model . 130

15.4 Putting Contract-Driven Ordering Together 131

16 Contract-Driven Execution 134

16.1 Tuple Level Processing . 134

16.2 Multi-Query Progressive Result Reporting 136

16.3 Satisfaction Based Feedback Mechanism 136

17 Experimental Evaluation on CAQE 138

17.1 Experimental Settings . 138

17.1.1 Experimental Platform . 138

17.1.2 Contract Models . 138

17.1.3 Data Sets . 139

17.1.4 Query Workload . 139

17.1.5 Competitor Techniques . 140

17.1.6 Evaluation Metrics . 140

17.2 Contract Satisfaction Metric . 140

17.3 Increasing Size of Workload . 143

17.4 Comparing CPU and Memory Utilization 144

18 Related Work for Part III 146

18.1 Subspace Skylines over Single Relation 146

18.2 Skylines over Join Queries . 147

18.3 Quality of Service . 147

IV Cardinality Assurance Via Proximity-driven Refinement 148

19 Proximity-Driven Cardinality Assurance 149

xiii

CONTENTS

19.1 Running Query . 149

19.2 Query Representation . 150

19.3 Measuring Refinement . 150

19.4 Problem Definition . 153

20 Phase I: Expand 155

21 Phase II: Explore 159

21.1 Incremental Query Execution . 159

21.1.1 Query Decomposition . 160

21.1.2 Recursive Cardinality Computation 164

21.1.3 Cardinality Computation Algorithm 165

21.2 Predictive Index Structure . 166

21.3 CAPRI: Putting It All Together . 167

22 Experimental Evaluation of CAPRI 169

22.1 Experimental Setup . 169

22.1.1 Platform . 169

22.1.2 Evaluation Metrics . 169

22.1.3 Alternative Techniques . 170

22.1.4 Data Sets . 170

22.2 Performance Comparisons . 172

22.2.1 Refining Select Predicates . 172

22.2.2 Refining Both Join and Select Predicates 174

22.2.3 Analyzing CAPRI Parameters 176

23 Discussion 177

23.1 Optimizations to CAPRI . 177

xiv

CONTENTS

23.2 Handling Non-numeric Predicates . 178

23.3 Preferences in Refinement . 179

23.4 Contracting Queries With Too Many Results 179

24 Related Work for Part IV 180

24.1 Tuple-Oriented Techniques . 180

24.2 Query-Oriented Approach . 182

25 Conclusions of This Dissertation 183

26 Future Work 186

26.1 Scaling Skyline over Join Queries . 186

26.1.1 Handling Larger Data Sets . 186

26.1.2 Handling High Dimensional Datasets 188

26.1.3 Adaptive Spatial Partitioning . 188

26.1.4 Approximation through Dimension Reduction 189

26.1.5 Meaningfulness of Skyline Results 190

26.1.6 Cardinality Estimation for Skyline-Aware Operators 190

26.1.7 Execution Cost-Aware Query Optimization 192

26.2 Multi-Query Multi-Constraint Plan Generation 192

References 195

xv

List of Figures

1.1 A Motivating Skyline Example . 4

1.2 Comparison: Top-K vs. Skyline vs. Convex-Hull 5

1.3 Motivating Example: a) Query Q1 b) Traditional Query Plan for Q1 . . . 6

1.4 Traditional Query Plan For User Query Q1 17

2.1 Multiple Equivalent Plans for SkyMapJoin query Q2 35

3.1 Overview of the SKIN Approach . 37

3.2 Partitioning Of Input Datasets . 40

3.3 Pessimistic Skyline, Spes . 41

3.4 Generating Optimistic Skyline Sopt . 47

3.5 Object-Level Comparison Criteria . 50

3.6 Partitioning For Suppliers (R) and Transporters (T) 52

4.1 Effects of Partition Size (δ) On SKIN’s Performance (d = 2; σ = 0.1) . . . 58

4.2 Execution Time for the Different Phases in SKIN; d=4, σ=0.01 60

4.3 Performance Comparisons with JFSL, JFSL+, and SSMJ for d = 3;

N=500K . 62

4.4 Closer Investigation with only JFSL+, and SSMJ for d = 5; N=500K . . . 63

4.5 Number of Join Results Generated, and Number of Skyline Comparisons

for d=4 and N=500K . 65

xvi

LIST OF FIGURES

4.6 Performance Comparison for Various Mapping Functions (Anti-Correlated;

d = 3; N = 500K) . 67

6.1 Overview of the Progressive Query Execution Framework – ProgXe . . . 79

6.2 Output Space Look-Ahead: Avoid Join and/or Skyline Costs 80

7.1 Effect of Ordering on Progressiveness 82

7.2 Relationships between Output Space Abstractions 84

7.3 Elimination Graph (EL-Graph) (Root Nodes Depicted as Shaded Nodes) . 85

7.4 Calculating Progressiveness Capacity 86

8.1 Data Maintained for Oh[(11,4)(12,5)] 93

9.1 Performance Study of ProgXe and its variations
[
ProgXe+, ProgXe (No-

Order) and ProgXe+ (No-Order)
]

when d=4 and |N |=500K. Progressive-

ness Comparisons (a, b, and c); Total Execution Time Comparisons (d, e,

and f) . 99

9.2 Progressiveness Comparisons of ProgXe, ProgXe+ and SSMJ; d = 4N =

500K . 102

9.3 Total Execution Time Comparison: Proposed techniques vs. SSMJ (d =

4; N = 500K) . 103

9.4 Higher Dimension of d = 5 and σ = 0.1; SSMJ for Anti-Correlated Data

Fails to Return Any Results After Several Hours 104

11.1 CAQE Framework . 109

11.2 Running Query Workload . 110

12.1 Time Based Progressive Utility Function 112

12.2 Cardinality Based Progressive Utility Function 113

xvii

LIST OF FIGURES

13.1 Shared Plan Generation: (a) Full Skycube; (b) Reduced Lattice Structure . 117

13.2 Shared Plan Generation: Min-Max Cuboid 118

15.1 multi-query dependency graph . 128

16.1 Multi-Query Progressive Output . 135

17.1 Comparing the Avg. Query Satisfaction Metric for CAQE, S-JFSL, JFSL,

ProgXe+ and SSMJ; |SQ| = 11 N = 500K 141

17.2 Increasing Number of Queries in the Workload 142

17.3 Comparing the Statistics Measured for S-JFSL, JFSL, ProgXe and SSMJ

Against CAQE (|SQ| = 11, N = 500K,C2) 144

20.1 Expand Phase: Refined Space and Generation of Refined Queries 155

21.1 Sub-orthotopes of a 2-D Query Orthotope 161

21.2 Sub-orthotopes of a 3-D Query Orthotope 162

21.3 Orthotope Decomposition: (a) 2-D (b) 3-D 164

21.4 Building Output Regions: (a) Table A (b) Table B (c) Output Regions in

Refined Space . 167

22.1 Performance comparison: CAPRI against state-of-the-art BinSearch and

TQGen; [Experimental Settings: N=100K; d = 5 for (a)-(c) and (e)-(g)] . 171

22.2 Number of Queries Executed; d = 3 . 173

22.3 Effects of Input Cardinality N . 173

22.4 Effects of step-size γ
d
; d = 5; C/Cactual = 0.5 174

22.5 Refining Join and Select Predicates . 175

23.1 Ontology for Categorical Data . 178

24.1 Top-k Based Approach . 181

xviii

List of Tables

3.1 Notations Used In This Work . 39

4.1 Performance Comparisons over NASDAQ and Household data sets 69

17.1 Progressive Contracts Used in the Experimental Study 139

18.1 Summary of Related Work for Part III (CAQE) 146

24.1 Summary of Related Work for Part IV (CAPRI) 180

xix

1

Introduction

In recent years we have witnessed the growing accessibility of smart hand-held devices

such as iPadTM, iPhoneTM, AndroidTM devices, and GPS monitoring systems. This cou-

pled with affordable data storage mechanisms over the cloud has resulted in massive

amounts of data to be acquired from a wider variety of sources such as FacebookTM,

TwitterTMfeeds, web-click streams, and sensor streams. GartnerTM(DF11) estimates that

in this era of “big data revolution”, extracting value from data will not only enable re-

searchers and businesses to address challenging problems such as fire movement predic-

tions and fraud alerts, but also make at least 20% more profit than their counter-parts

who do not exploit such valuable nuggets of information. Multi-Criteria Decision Sup-

port (MCDS) queries are at the core of big-data analytics providing users with a query

framework that supports the efficient execution of multi-criteria data analytical queries

over large databases (BKS01, Kie02).

1

1.1 BACKGROUND

1.1 Background

To address the need to extract value by analyzing multi-dimensional datasets a rich variety

of MCDS queries have been proposed over the years. For instance, Top-K or ranking

queries (IAE03, FLN01, NCS+01, LCIS05), convex hull (Cha93, MZ93, Bre96), nearest

neighbor (FTAA01, LLN02, Agg02, APPK08) as well as Pareto-optimal queries known

in the database literature as skyline queries (BKS01, Kie02).

1.1.1 Skyline Operation

The growing use of the smart-devices has increased the popularity of many real-time

smart tools and applications such as on-line text search, Internet aggregators and stock

market tickers. Such applications require an intuitive query formulation that enables the

user to state the different criteria that are of interest, and return a set of partially or-

dered results that meet the user preferences. These queries are known in the literature as

Pareto-optimal or skyline queries. Skyline computation are characterized by the follow-

ing features: (1) the user is interested in minimizing (or maximizing) a variety of criteria,

and (2) the user wants to analyze the pros and cons of the different options across multiple

dimensions rather than being provided with single overall best match (BKS01, CET05).

Therefore, the goal of skyline queries is to return a set of alternative results, where each

result is better than the others in at least one criteria.

In contrast, a Top-K query requires the user to provide a singular scoring-function

(BGS07). Coming up with a single scoring function can be counter-productive since such

functions reduce the multi-dimensional comparisons to a single scalar value which losses

the multi-dimensional nature of skyline queries. For instance, on a travel website such as

Orbitz.comTM to formulate a singular scoring function to combine price, duration of flight

and number of stops does not make sense. Instead, if the user is presented with a set of

2

1.1 BACKGROUND

flight options, each desirable in a subset of dimensions, this will enable the user to make

an informed decision in choosing a flight by weighting the pros and cons of the different

options.

SELECT ID, Features, Reviews

FROM CAR

PREFERENCE HIGHEST(Features), HIGHEST(Reviews)

Example 1.1 To illustrate the concept of skylines, consider the above mentioned skyline

query where the user is shopping for a car that has the maximum feature score and the

best customer reviews. For the sample data set depicted in Figure 1.1, we observe that

the car d5(17, 22) has a lower feature score and customer reviews than the car d7(25, 23).

Therefore, d7 is a better choice than d5. Next, consider the pair of cars d7(25, 22) and

d9(27, 19). Even though d9 has a higher feature score, its reviews however are lower

than d7. Therefore based on the above mentioned preference functions, both d7 and d9

are viable alternatives that need to be reported to enable the user to make an informed

decision by weighing the trade-offs between the different result tuples in the skyline.

1.1.2 Top-K or Ranked Queries

Top-K or ranked queries retrieve the best K objects that minimize a user-defined scoring

(or ranking) function (FLN01, NCS+01, LCIS05). In other words, from a totally ordered

set of objects, such queries fetch the top K objects, where the ordering criterion is a

single scoring function. To illustrate, (FLN01) models the problem of answering the

Top-K queries as follows: “given n data objects, and the scoring function F, then the

problem of Top-K queries is to find the K data items with the highest score” (FLN01).

In our motivating skyline query (Example 1 Figure Chapter 1.1) against the CAR table

(see Figure 1.1) where each car object has two numerical attributes, features and reviews.

3

1.1 BACKGROUND

d

Skyline

Reviews

Features

d

d

d

d

d

d

d

d

Figure 1.1: A Motivating Skyline Example

To illustrate, let the scoring function add both of these attributes. Then Figure 1.2 shows

that the result of the Top-K query where K = 5 is {d1, d7, d9, d2, d8}. We can observe

that even though d8 is dominated by the car d7 it is still part of the Top-5 result set. The

result of the Top-K query is in stark contrast to the skyline results {d1, d2, d6, d7, d9} that

contains d6, which is not in the Top-5 since its score F(d6) = 41 is low. The reasoning

is that the skyline operation returns a set of non-dominated objects based on multiple

criteria in a multi-dimensional data space from a strict partially ordered set of objects,

while Top-K generates a totally ordered set based on a single scoring function. Thus,

there is ultimately no relationship between the results produced by Top-K queries and

those generated by skyline queries.

1.1.3 Convex-Hull Query

In computational geometry, convex hull, also known as convex envelope, is defined as

the minimal convex set that contains a given set X of multi-dimensional points (PS85).

Convex hull queries are popular in pattern recognition, image processing, and outlier

detection applications. In Figure 1.2, the convex hull for the given set is found to be

4

1.2 MOTIVATION

d

Convex Hull

Skyline

Reviews

Features

Top-K

d

d

d

d

d

d

d

d

Figure 1.2: Comparison: Top-K vs. Skyline vs. Convex-Hull

{d1, d4, d2, d7}. We observe that in the geometric space some skyline points can be hidden

behind a convex segment, for example d6 and d9. In contrast the results of the convex hull

query, representing the outlier points, may not be in the set of skyline results. For instance

d4 is not in the skyline result due to the fact that d7 is better than d4 in both Feature and

Reviews, but d4 is the outlier in the 2-D space and therefore in the convex hull.

1.2 Motivation

1.2.1 Skyline Evaluation Across Disparate Sources

In recent years, several skyline algorithms have been proposed (BKS01, KRR02, CGGL03,

PTFS03, BCP06). The skyline operation, similar to aggregate computations, is tradition-

ally evaluated as the final computation after join and group-by operations in a query plan,

thereby assuming its input to be a single set of homogeneous data (BKS01). In practice,

this common assumption is rather limiting since a vast majority of MCDS applications do

not operate on just a single data source (JEHH07). Instead, they are required to: (1) ac-

cess data from disparate sources with varying schemas, and (2) combine several attributes

5

1.2 MOTIVATION

across these sources through possibly complex user-defined functions to characterize the

final composite product. Below, we first substantiate these requirements by drawing from

a wide diversity of applications.

Skyline Aware Join Ordering to Support
Progressive Result Generation

Venkatesh Raghavan1, Elke A. Rundensteiner2

Department of Computer Science, Worcester Polytechnic Institute,
100 Institute Road, Worcester MA, USA
{1venky,2rundenst}@cs.wpi.edu

Abstract—

I. INTRODUCTION

Skyline over Disparate Sources. The rapid growth in the
number of Internet users1 has resulted in the development of a
variety of on-line services to facilitate commerce, information
retrieval and social networking. This phenomenon has high-
lighted the need for supporting complex multi-criteria decision
support (MCDS) queries [1]. The intuitive nature of specifying
a set of user preferences has made Pareto-optimal (or skyline)
queries a popular class of MCDS queries [1–3] resulting
in several efficient algorithms [1, 3–6] that evaluate skyline
queries over a single data set. However, these state-of-the-art
techniques make a common assumption of viewing skyline as
an operator on top of the traditional SPJ queries making them
inefficient for a vast majority og real-time MCDS. Instead,
they require to (1) access data from disparate sources via joins,
and (2) combine several attributes across these sources through
possibly complex user-defined functions to characterize the
final composite product. To substantiate these needs we draw
from a wide diversity of applications as listed below:

• Internet Aggregators. The rapid increase in the number of
online vendors has resulted in internet aggregators such
as Froogle1 for durable goods and Kayak2 for travel
services, are fast growing in popularity. Such aggregators
access and combine data form several sources to produce
complex results that are then pruned by the skyline
operation. To illustrate, consider a usecase scenario where
a user planning a holiday in Europe visiting both Rome
and Paris. The user may have different preferences in each
leg of the journey, for instance since Rome is an ancient
city the user is willing to walk twice as much in Rome
than in Paris. In addition, the user has a cumulative goal
such as the total cost of the trip that is to be minimized.

• Supply-Chain Management. A manufacturer in a sup-
ply chain aims to maximize profit, market share, etc.,
and minimize overhead, delays, etc. This is achieved
by structuring an optimal production and distribution
plan through the evaluation of various alternatives. To
illustrate, Q1 identifies the suppliers that can produce
“100K” units of the part “P1” and couples them with

1http://www.internetworldstats.com/
1http://froogle.google.com/shoppinglist, 2www.kayak.com

transporters that deliver it. The preference is to minimize
both total cost (tCost) as well as delays (delay).

Q1: SELECT R.id, T.id,
(R.uPrice + T.uShipCost) as tCost,
(2 * R.manTime + T.shipTime) as delay
FROM Suppliers R, Transporters T
WHERE R.country=T.country AND
‘P1’ in R.suppliedParts AND R.manCap>=100K
PREFERRING LOWEST(tCost) AND LOWEST(delay)

• Query Refinement. Databases expect precisely defined
queries while users may seldom have this exact knowl-
edge [7]. Therefore, long running queries against large
databases may output an empty answer set even though
the results of a slightly reformulated query may satisfy
the users needs equally well. To avoid undesired relax-
ations, such a system must produce quick partial results,
thereby giving the opportunity to obtain user feedback
(preference) and facilitate iterative query refinement [8].

In this work, we target such queries which perform skyline
and map operations over the join, here known as SkyMapJoin
(SMJ) queries.
Motivation. To provide real-time response, such applications
need the processing of user queries to have a high degree of
responsiveness. In otherwords, the primary query optimization
criteria must be to deliver the partial results as quick as possi-
ble, or known in literature as progressive output generation [6,
9]. In addition, the chosen execution strategy must guarantee
the generation of the complete result set.

!"##$%&'()*+,)

-'./(#0'1&'()*-,)

2345)%/)+6("##$%&73.'1()))

89:)+6;./<.#)=>)4??@)

A)

!

S
P

!

!"

!

µ
F

X

B0%/CD%'(1)!EF$%/&CG.1&'))

))))))))*BDC!G,)

:&(%'&7)8##'0.HI)

J;&)

!KBC)L"&'F)3'0H&((%/M)*!KBCL3,)

!KBCL3)

+&("$1()

3'0M'&((%N&)+&("$1)O&/&'.J0/)

J;&)

4)

D.(1&')PQ&H"J0/)R)

K.#) !EF$%/&)B0%/)

+&("$1()

!KBCL3)

*.,)-'.7%J0/.$)L"&'F)3$./)

*S,)-'.7%J0/.$)PQ&H"J0/)!1'.1&MF)

*H,):&(%'&7)8##'0.HI)

Fig. 1. Traditional Query Plan for Q1

Challenge. To highlight the challenges in achieving progres-
sive output generation when processing skylines over join
we first look at the commonly used translation of a SMJ
queries into a query plan using canonical relational operators
as depicted in Figure 1. State-of-the-art techniques [1, 7, 10]
that employ such a query are unable to deliver progressive
output generation due the blocking nature of such a plan. The
blocking nature of operation is caused by two factors namely,

(a)

!"##$%&'()*+,)

-'./(#0'1&'()*-,)

2345)%/)+6("##$%&73.'1()))

89:)+6;./<.#)=>)4??@)

A)

!

S
P

!

!"

!

µ
F

X

B0%/CD%'(1)!EF$%/&CG.1&'))

))))))))*BDC!G,)

:&(%'&7)8##'0.HI)

J;&)

!KBC)L"&'F)3'0H&((%/M)*!KBCL3,)

!KBCL3)

+&("$1()

3'0M'&((%N&)+&("$1)O&/&'.J0/)

J;&)

4)

D.(1&')PQ&H"J0/)R)

K.#) !EF$%/&)B0%/)

+&("$1()

!KBCL3)

*.,)-'.7%J0/.$)L"&'F)3$./)

*S,)-'.7%J0/.$)PQ&H"J0/)!1'.1&MF)

*H,):&(%'&7)8##'0.HI)

(b)

Figure 1.3: Motivating Example: a) Query Q1 b) Traditional Query Plan for Q1

Example 1.2 (Supply-Chain Management) A manufacturer in a supply-chain pipeline

aims to maximize profit and market share, while minimizing overhead, delays and losses.

This is achieved by structuring an optimal production and distribution plan through the

evaluation of various alternatives. For example, query Q1 as shown below represents a

user query submitted in a globalized market where products can be purchased in any of

the world markets. Q1 in Figure 1.3.a first identifies the suppliers that supply the part

“P1”, with the manufacturing capacity of “100K” and couples them with transporters,

that supply to the same country as the supplier, to generate potential supplier-transporter

pairs. The user preference in Q1 aims to reduce both total per-unit cost as well as time

delay. The total per-unit cost includes the per-unit wholesale cost combined with the per-

unit shipping charges, while the delay encompasses the time needed to ship the finished

6

1.2 MOTIVATION

products in addition to the manufacturing time.

Example 1.3 (Internet Aggregators) The rapid increase in the number of on-line ven-

dors has resulted in growing popularity of Internet aggregators such as FroogleTM for

durable goods and KayakTM for travel services. However, these aggregators do not sup-

port skyline-over-join queries such as Q2, limiting the user experience by producing po-

tentially less desirable query results. For example, in motivating query Q2, as shown

below, the user is planning a vacation in Europe that includes visiting both Rome and

Paris. In Q2 the user has different preferences in each leg of the journey. For instance,

the user is willing to walk twice as much in Rome than in Paris, since the ancient parts of

Rome have narrow roads and have to be discovered on foot. In addition, the user has a

cumulative goal of minimizing the total cost of the trip.

Q2: SELECT R.id, T.id, (R.price + T.price) as tCost,

(2 * R.distance+ T.distance) as tDistance

FROM RomeHotels R, ParisHotels T

PREFERRING LOWEST(tCost) AND LOWEST(tDistance)

Example 1.4 (Drug Discovery) The life cycle for drug discovery is a long process span-

ning a decade or more, beginning with the identification of an initial lead compound.

An iterative process of synthesis and assaying analogs of the compound is carried out

until a final drug is discovered and later introduced to the market. Molecular modeling

plays a vital role in drug discovery and is used to identify protein-ligand pairs that can

point to potential directions of further investigation. This involves screening large data

banks of ligands against a protein, and then ranking the protein-ligand pair interactions

according to a multi-dimensional scoring functions based on structure, energy forces or

empirical data of each pair with the goal of maximizing the intermolecular interaction

energy between the two molecules of interest (CLW03).

7

1.2 MOTIVATION

In this dissertation, we target applications such as those listed above that require multi-

criteria decision support over disparate data sources.

1.2.2 Progressive Evaluation of MCDS Queries

The rapid growth in the number of Internet users has resulted in a variety of on-line ser-

vices that facilitate commerce, information retrieval and social networking. Real-time

MCDS applications need to process queries with a high degree of responsiveness. There-

fore, the query execution strategy must report partial results as early as possible rather

than waiting until the end of query processing, commonly known as progressive result

generation (TEO01, PTFS03). Also, they must guarantee correctness, i.e., an early re-

ported partial result must be guaranteed to remain in the final result set. Lastly, the query

execution strategy must produce the complete result set, i.e., no promising candidates

should ever be discarded. To substantiate consider the following use case:

Example 1.5 (On-line Search Refinement) The underlying databases of any on-line search

application expect precisely defined queries while users may seldom have the exact knowl-

edge (KLTV06). A query against a large database may be long running and could po-

tentially output an empty answer set. In such applications, the results of a slightly refor-

mulated query may satisfy the user’s needs equally well. However, careless relaxation of

queries can potentially result in large and therefore unusable answer sets. Therefore, one

must only return results that are as close as possible to the original query, i.e., a skyline of

results (KLTV06). To avoid wasting resources on producing unnecessary relaxations, it is

prudent to produce early results as they are generated - thereby providing an opportunity

to the user for providing immediate refinement (MK09).

8

1.2 MOTIVATION

1.2.3 Contract-Driven Query Processing

Multi-Criteria Decision Support (MCDS) systems supporting applications from business

intelligence to real-time event detection must handle workloads composed of queries with

varying degrees of responsiveness (a.k.a. Quality of Service) (ACc+03). For example,

some applications such as a stock market trend analyzer cater to user queries that need

to identify real-time trends, while the overall analysis can be delayed to the end of the

trading day. In contrast, applications that require complete results such as drug modeling

require the overall execution of the user query to be optimized and are not interested in

partial results. To summarize, some real-world applications can indeed receive queries

that predominantly have one optimization goal while others may cater to queries that

have a mixture of optimization goals. Therefore, there is a need to provide an evaluation

methodology that can cater to multiple optimization goals.

In this work, we tackle the problem of handling queries with diverse QoS demands,

henceforth called Contract-driven Multi-Query Processing (Contract-MQP). In this

dissertation, we target skyline-over-joins query workloads. Consider the following real-

world use case:

Example 1.6 (Travel Planner) A travel planner enables users to search Hotels (H) and

Tours (T) to find competing packages. Consider the following workload of preference

queries SQ = {Q3, Q4, Q5}.

• Q3: John Smith is planning a business trip to Paris that minimizes the distance from

the venue; while maximizing the rating. John is on a break in-between meetings,

and has 10-15 minutes to quickly narrow down his top choices.

• Q4: Student Jane Doe is searching for vacation deals in Paris that are cheap while

compromising on the distance. She wishes to be alerted about attractive packages

as soon as they are identified to facilitate immediate action.

9

1.2 MOTIVATION

• Q5: ACME travel agency designs competitive European tours. The preference is to

maximize ratings while minimizing costs and distance to produce hourly reports.

These three skyline-over-join queries perform joins across the same base tables but

differ in criteria that the users wish to optimize for. Furthermore, the users differ in their

expected system responsiveness i.e., QoS requirements.

1.2.4 Automated Query Refinement in MCDS Systems

Databases today are becoming adept at processing petabytes of data, handling complex

schemas, and supporting computationally expensive queries (CDD+09). However, users

often endure a frustrating, repetitive query specification process before they can get the

desired information from a database (JCE+07). The primary cause of this difficulty is that

end-users are ill-equipped to formulate precise queries: (1) they are often “in the dark”

about the available data (LFW+11), and (2) the inherent flexibility of user requirements

cannot be captured through SQL (BP05). Consequently, the user must manually refine

queries through a cumbersome and resource-intensive trial-and-error process with the aim

to meet the desired cardinality while simultaneously preserving original query semantics.

We drive home the importance of the automation of the query refinement process in a

competitive MCDS system via the following use cases:

Example 1.7 (Medical Research) Jane Doe has received a grant for obesity research

where she has funding to study 5000 volunteers through interviews and health checks.

Jane runs query Q6 to identify adults having BMI greater than 30, aged below 30 years,

low income, and engaging in moderate weekly exercise. For Jane, the first two predicates

are rigid or hard constraints because the definition of obesity is universal and the age

threshold delimits her target study group. In contrast, the last two predicates are flexible

or soft constraints since the precise definitions of “low income” and “moderate exercise”

10

1.2 MOTIVATION

may vary with geographic areas and relevant patient records. For Jane to analyze volun-

teer data following the study, she has to know not only which volunteers were selected but

also how they were selected, i.e., the exact demographic attributes used for their selection.

To illustrate, to draw a hypothetical conclusion that lower income leads to obesity, Jane

must know the precise income and BMI selection criteria for all her volunteers; merely

having a set of result tuples or a ranking function provides insufficient information.

Q6:SELECT * FROM PatientRecords WHERE

(18 < age < 30) AND (BMI > 30) AND

(income < $60,000) AND (weeklyExercise > 5)

Assume that when Jane runs Q6, she can only find 1600 volunteers. Since her ini-

tial query was too strict, she must now relax the soft constraints of income and exercise

to identify more volunteers. At the same time, she must be careful to not grossly alter

the original query predicates. For instance, increasing the income threshold to $65,000

may be acceptable, but increasing it to $95,000 will violate the spirit of low income cri-

teria. While refining Q6, Jane must thus satisfy two orthogonal constraints: (1) Desired

Cardinality: to return exactly 5000 volunteers, and (2) Query Proximity: to preserve orig-

inal semantics by minimally changing Q6. Manual query refinement with these goals is a

frustrating trial-and-error process because Jane is unfamiliar with the underlying database.

She could (potentially) attempt a very large number of refinements without any guarantee

of success, and therefore waste time, effort, and system resources.

Example 1.8 (Financial Services) John Smith’s bank is offering special low-interest prop-

erty loans to 2000 young customers who have good credit scores, high incomes and are

planning to buy homes in specific areas across the country. The bank uses queryQ7 shown

below to select 2000 customers. Similar to our previous example, John requires to know

not only which customers were selected for the offer, but also how they were selected.

11

1.3 STATE-OF-THE-ART TECHNIQUES

Response to the current offer can be analyzed based on customer selection attributes to

plan future strategies. However, unlike query Q6, we observe that all predicates in Q7,

i.e., “young customers”, “good credit”, “high income” and location, are soft constraints

because their definitions can vary.

Q7: SELECT * FROM Customers C, Locations L

WHERE (C.zipcode = L.zipcode)

AND (C.age < 35) AND (C.creditScore > 730)

AND (C.income > $75,000)

Suppose John only obtains 1200 results from Q7 and must manually refine the query.

Since all constraints in Q7 can be categorized as soft constraints, the query can be mod-

ified by relaxing any combination of predicates. Once again, John must strive to ensure

that his refinements don’t grossly alter the original query. Refining the location-based join

predicate inQ7 is particularly attractive because it can enable the bank to target customers

meeting the age, income and credit criteria but buying property at a slightly different

zip code. However, manual join refinement is very challenging because the consequent

change in cardinality is unpredictable and repeated join execution is resource-intensive in

terms of time and system utilization.

1.3 State-Of-The-Art Techniques

1.3.1 Skyline Algorithms over a Single Relation

The majority of research on skylines has focused on the efficient computation of a skyline

over a single set (BKS01, KRR02, CGGL03, PTFS03, BCP06). This can be broadly cat-

egorized as non-index and index-based solutions. Block Nested Loop (BNL) (BKS01) is

the straightforward non-index based approach that compares each new object against the

12

1.3 STATE-OF-THE-ART TECHNIQUES

skyline of objects considered so far. The Sort Filter Skyline (SFS) (CGGL03) improves

on BNL by first sorting the input data by a monotonic function. Nearest Neighbor (NN)

(KRR02) and Branch & Bound Search (BBS) (PTFS03) are index-based algorithms. In

Chapter 5 we present a more detailed description of these state-of-the-art techniques.

1.3.2 Skylines over Disparate Sources

The naı̈ve strategy to execute the skyline-over-join is to follow the Join-First, Skyline-

Later paradigm, which divides the execution of the operator into two disjoint steps. First,

the join operation is performed in totality and then the skyline computation is performed

over the join results. A marginal improvement over this strategy would be to incremen-

tally compute the skyline after the generation of each join result, thereby slightly reducing

the number of skyline comparisons. However, this approach fails to avoid any join eval-

uations which is an expensive process. In the context of returning meaningful results by

relaxing user queries, (KLTV06) is one such approach to follow the join-first, skyline-

later (JF-SL) paradigm. This approach does not consider mapping functions. In fact, it is

shown to be effective only for correlated data where the combined-object generation can

be stopped early (BKS01) confirming the findings presented in (KLTV06).

(JEHH07, JMP+10) proposed SSMJ (Skyline Sort Merge Join) technique to handle

skyline-over-join by primarily exploiting the principle of skyline partial push-through.

This approach suffers from the following three drawbacks: First, SSMJ is only beneficial

when the local level pruning decisions can successfully prune a large number of objects,

like skyline friendly data sets such as correlated and independent data sets or those with

very high selectivity (SWLT08). Second, the guarantee that objects in the set-level skyline

of an individual table clearly contribute to be in the output no longer holds here. This

is so because SSMJ does not consider mapping functions which can affect dominance

characteristics. Third, since SSMJ follows the same skyline first- join later it is unable to

13

1.3 STATE-OF-THE-ART TECHNIQUES

exploit this knowledge to reduce the number of dominance comparisons. Following the

principles proposed in (JMP+10), recently (VDP11, KML11) proposed alternative sorting

based techniques.

1.3.3 Progressive Skyline Query Evaluation

In the context of single-set skyline algorithms, (TEO01, PTFS03) proposed progressive

algorithms by pre-loading the entire data-set into bitmap or R-Tree indices first. How-

ever, these techniques are not efficient in the context of skyline-over-join queries for the

following two reasons. First, to ensure correctness when applied to existing methods,

the skyline evaluation must be delayed until all possible join results have been generated

and loaded into the respective indices, rendering the process fully blocking. Second, for

skyline-over-join queries the input to the skyline operation is generated on-the-fly based

on the pipeline of join and mapping operations. In our context of skyline-over-join, if

we used such techniques we would now add the cost of load the join results into an in-

dex and yet without being able to take advantage of the performance benefits gained in

(TEO01, PTFS03).

1.3.4 Handling Concurrent MCDS Queries

In recent years we have witnessed a rapid increase in the size of databases and the num-

ber of concurrent users for any particular application in the domain of consumer and/or

business services, scientific and engineering applications, critical services such as law

enforcement, and defense/crisis management (BKS01, WOT10). The user queries for

such applications range from trivial look-ups to computationally intensive queries such as

those in drug modeling and fire detection and monitoring. It is easy to envision in such

domains the application receiving multiple concurrent queries over the same large data

14

1.3 STATE-OF-THE-ART TECHNIQUES

sets. To provide scalable performance and acceptable quality of service to all end-users

such load intensive systems must: (1) avoid processing each computationally intensive

query independently, (2) identify concurrent queries that can exploit the sharing of the

results of sub-expressions that are common, (3) minimize unnecessary retrieval of tuples

from disk to avoid processing and storing of tuples that will not contribute to the results

of any user queries.

Multi-query processing is typically solved by one of two methodologies. The time-

shared approach (KGM92, RCL01, NW11) partitions the total available processing time

into slices and allocates it to different queries in a round-robin fashion. In this approach

each query is processed separately with no sharing of intermediate results for common

sub-expressions. This makes the time-shared approach a non-attractive choice for pro-

cessing workloads with resource intensive skyline-over-join queries.

To elaborate consider tables R and T with cardinalities of 200K and 100K respec-

tively. A query plan containing a single join filter with selectivity of σ = 0.1 and skyline

dimensions d = 2 will generate ≈ 1 million join results and require > 1 million pairwise

comparisons (CDK06). Clearly, processing multiple skyline-over-join queries individu-

ally is prohibitively expensive.

Alternatively, the shared query plan approach pipelines each tuple through a shared

multi-operator plan (KFHJ04, WOT10, MPK00, HRK+09, DSRS01). Each query is

viewed as a subscriber that consumes the results produced by a producer operator within

this larger integrated plan. The later approach is superior to the former due to its effec-

tiveness in reducing the computation load.

1.3.5 Automated Query Refinement

In recent years, several existing techniques such as empty result refinement, skyline

queries, Top-K, and approximate query answering (Gaa97, ML05, Mus04, BKS01, KLTV06,

15

1.4 RESEARCH CHALLENGES ADDRESSED IN THIS DISSERTATION

CG99, CD03, KWFH04, IAE03, CK97, MMY09) only produce individual result tuples

and ignore the challenge of providing a concise, easy-to-understand SPJ query specifica-

tion for generating the tuples. Such techniques address the question of what results are

produced rather than how the results are produced. However, result tuples alone are insuf-

ficient in many applications. For instance, scientific research applications (Example 1.7 in

Chapter 1.2.4) require precise query specification for post-experimental analysis of data

and repeatability of experiments. Similarly, business intelligence applications (Example

1.8 in Chapter 1.2.4) require queries for market analysis and strategic planning. Recently,

(MK09) proposed an interactive framework to help users to manually refine queries. This

approach however can still be tedious and may not ensure query proximity. In the context

of testing, (BCT06, MKZ08) proposed techniques to generate test queries meeting cardi-

nality constraints while disregarding query proximity. Furthermore, existing techniques

largely address select query refinement as opposed to the challenging problem of join

query refinement.

1.4 Research Challenges Addressed in This Dissertation

In this section, we highlight the research challenges in addressing the four research top-

ics of this dissertation, namely skyline aware evaluation over disparate source, pro-

gressive query evaluation of MCDS queries, contract-driven processing of multiple

MCDS queries and proximity-driven cardinality assurance.

1.4.1 Efficiently Processing Skylines over Disparate Sources

In the literature (BKS01, KRR02, CGGL03), the skyline operation, similar to aggregate

computations, has traditionally been evaluated last after the join and group-by operations

in a query plan. Therefore, these techniques make the assumption that the input is a single

16

1.4 RESEARCH CHALLENGES ADDRESSED IN THIS DISSERTATION

P1 = min(tCost); P2 = min(delay); P = {P1, P2}
SKYLINE operator

MAP operator

F = { f1 ,f2 ,f3 ,f4 } 1 :R.id, f2 :T.id
f
3

:(R.manTime+T.supplyTime) as delay f4
X = {R.id, S.id, tCost, delay}

200K

100K

1,000K

1,000K

16

[F ,X]

SP

100K

:(R.uPrice + T.uShipCost) as tCost
f

JOIN operator

R.country = T.country (with Join Factor = 10)

Figure 1.4: Traditional Query Plan For User Query Q1

set of homogeneous data (BKS01). In other words, prior to our publications (RR09,

RR10, RRS11), core techniques proposed in this dissertation, the common strategy in the

literature to execute queries such as Q1 and Q2 (see Chapter 1.2) had been the join-first,

skyline-later (JF-SL) paradigm discussed earlier in Chapter 1.3.2 that divides the query

execution into several disjoint steps.

Example 1.9 Figure 1.4 illustrates the traditional Join-First Skyline-Later (JF-SL) exe-

cution strategy using the motivating query Q1. First, the objects in relation R that satisfy

the selection conditions, part “P1” in R.suppliedParts AND R.manCap ≥ 100K are se-

lected. Next, the join operation is applied to generate supplier-transporter pairs. These

join results are transformed by the mapping operation. In this dissertation, we refer to the

mapped join results as combined-objects. Finally, the skyline computation is performed

to return the set of non-dominated supplier-transporter pairs.

In this data set with cardinalities |R|=200K and |T |=100K objects, the pruning ca-

pacity of the selection conditions is 0.5 while the join factor is 10. Therefore, JFSL will

first generate all 1 million supplier-transporter join results. Next, consistent with the

estimation proposed by (CGGL03) the skyline computation requires on the order of mil-

17

1.4 RESEARCH CHALLENGES ADDRESSED IN THIS DISSERTATION

lions of comparisons. A marginal improvement would be to incrementally compute the

skyline over the supplier-transporter pairs produced thus far, after each newly generated

supplier-transporter pair. This reduces the total number of intermediate results main-

tained by the algorithm. As our experimental evaluation in Chapter 4 later on confirms,

this would still require ≈ 1.2 million comparisons. However, this marginal improvement

fails to avoid the generation of any supplier-transporter join results nor does it signifi-

cantly reduce the number of comparisons undertaken for skyline computation.

In many real world applications the attribute values exhibit anti-correlation. For ex-

ample, in a hotel reservation application the cost of the hotel increases with the nearness

to popular tourist interests, and in an automobile purchase system the mileage on the car

is inversely proportional to its asking price. Existing techniques proposed to handle sky-

line over joins (JEHH07, JMP+10, SWLT08) are not effective for such anti-correlated

data sets. For this reason, these techniques in the literature focus primarily on the skyline-

friendly correlated and independent data sets (SWLT08). The focus of this work is to

present a robust evaluation strategy that handles all the three extreme distributions, namely

independent, correlated and anti-correlated data distribution, identified by the pioneering

work in (BKS01) as the de-facto standard for testing skyline algorithms.

As illustrated in Example 1.9 by treating the skyline operation as an “add-on” to the

query plan these state-of-the-art techniques miss potential optimization opportunities. We

address this shortcoming in the literature we first extend the mature DBMS technology

such as pushing (when possible) skyline operation through joins (BKS01, Kie02) to now

be applied at various levels of data processing. Next, we design skyline-aware query

operators that can exploit the properties of Pareto-optimal queries at various stages of

query processing. And lastly, we build sophisticated evaluation methodologies for these

skyline-aware operators.

18

1.4 RESEARCH CHALLENGES ADDRESSED IN THIS DISSERTATION

1.4.2 Progressive Skyline over Join Evaluation

Multi-Criteria Decision Support (MCDS) applications such as web searches, B2B portals

and on-line commerce need to report results early; while they are being generated, so

that users can react and formulate competitive decisions in near real-time. However,

state-of-the-art skyline techniques that support progressive query evaluation focus only

on handling skylines on single input sets (i.e., no joins).

Since traditional techniques (KLTV06, BKS01) (Figure 1.3.b) follow the JF-SL exe-

cution paradigm, the skyline operation has to wait until all join results have been gener-

ated and inspected to even begin to generate a skyline result over them. This approach

renders the query execution to be blocking– making it not viable for progressive result

generation. (JEHH07, JMP+10, SWLT08) proposed techniques exploiting the principle

of skyline partial push-through (HK05, BKS01) on each individual data source. How-

ever, as the number of dimensions increases the pruning capacity of the push-through

principle is greatly reduced, sometimes up to the size of the entire source (CDK06).

Since the skyline partial push-through is itself blocking, the local pruning employed in

(JEHH07, SWLT08) may be computationally intensive without yielding a single progres-

sively generated partial result. In addition, (JEHH07, JMP+10, SWLT08) are unable to

look ahead into the output space to make decisions that can further optimize progressive

result generation.

1.4.3 Contract-Driven Multi-Query Processing

The Contract-MQP problem is especially difficult for skyline-over-join workloads for the

following reasons: The set-based skyline over join operation is blocking – in the worst

case all the join tuples to be processed by the skyline operator may need to be generated

to return a single progressive skyline result (CDK06). Therefore, the skyline operators in

19

1.4 RESEARCH CHALLENGES ADDRESSED IN THIS DISSERTATION

the shared query plan approach may be blocking the progressiveness of other operators

of the plan. In our case this may even be other queries in the integrated query plan. To

increase progressiveness of a single query Qi, we must fully generate large portions of

the Qi’s intermediate tuples servicing another query Qj in the workload. This defeats the

chief objective of Contract-MQP.

Although existing shared query plan approaches have been effective for select-project-

join (HRK+09, KFHJ04, DSRS01) and aggregate (HHW97, HGHS07, WOT10) queries.

These techniques rely on the queries being monotonic (GÖ05). That is, they produce an

append-only result stream where processing a new input tuple never incurs deletion of a

previously generated result tuple. Unfortunately skyline over join queries do not exhibit

this convenient property. Instead, a newly generated join result can potentially dominate

several previously generated join results – making them invalid. Moreover, these tech-

niques assume all queries to have equal importance, thereby ignoring that some queries

may have highly diverging and possibly conflicting QoS requirements.

1.4.4 Proximity-Driven Cardinality Assurance

As motivated in Chapter 1.2.4 to provide a better user experience databases must offer

the capability of automatically yet appropriately refine the original query. The database

can leverage information about the underlying data, quickly evaluate alternate refined

queries and recommend the best set of queries to the user. The user can then choose the

most appropriate query based on domain knowledge. For automatic query refinement

to be meaningful, it must satisfy two criteria: (1) Proximity: the refined queries must

minimize changes to the original query because the user will prefer queries that preserve

semantics and differ as little as possible from their original intent. (2) Cardinality Assur-

ance: the refined queries must minimize the difference between the actual and expected

cardinality. The approach must be efficient and require minimal user effort. We refer

20

1.5 PROPOSED SOLUTIONS

to the above problem of automatic query refinement as Proximity-driven Cardinality

Assurance (PCA).

PCA is a challenging problem for several reasons. First, the sub-problem of ensuring

query cardinality is in itself NP-Hard (BCT06). Second, the amount of refinement needed

to meet the cardinality constraint is difficult to predict apriori since it closely depends on

factors such as data distribution and implicit correlations between attributes. Third, the

number of possible refined queries is exponential in the number of predicates, making an

exhaustive search impractical. Moreover, executing each refined query independently to

calculate its cardinality is prohibitively resource-intensive.

1.5 Proposed Solutions

In this dissertation, we thoroughly investigate novel techniques to address the challenges

listed in Chapter 1.4 in context of skyline-aware query evaluation. To demonstrate the

generality of the solutions proposed in this work, we apply the foundational principle

of this dissertation to an orthogonal research question – enabling users to acquire the

desired information from a complex database via recommendation queries. The main

contributions of this dissertation work include the following:

1.5.1 Skyline and Mapping Aware Query Evaluation

As the first objective in this dissertation, we provide key DBMS technologies that enable

the skyline operation to be treated as a first-class citizen of query processing, namely: (1)

extending the canonical relational operators to include operators that are skyline and map-

ping aware, (2) providing equivalence rules that transform the traditional query plans into

plans that incorporate these skyline sensitive operators, (3) proposing query processing

techniques tuned to exploit both skyline and mapping knowledge.

21

1.5 PROPOSED SOLUTIONS

As a foundation, we propose new relational operators, namely SkyMap, SkyJoin, and

SkyMapJoin to exploit the properties of the skyline operation. Accompanying this, we

provide a set of equivalence rules to transform the traditional plans that involve skyline

operations into plans that incorporate the new skyline and/or mapping aware operators.

In this work, we design a query execution framework SKIN (SKyline INside Join)

that is able to: (1) leverage the skyline knowledge at various steps of query evaluation,

(2) minimize the number of join results generated, (3) also reduce the number of sky-

line comparisons over this reduced set of join results, and (4) exhibit competitive perfor-

mance for all distributions, including the skyline-unfriendly anti-correlated data sets. The

optimization-mantra employed in SKIN is to “avoid joining objects that will not result

in a skyline result and avoid evaluating skylines for objects that do not join.”

Instead of performing the join evaluation at the individual object level, we form

a higher-level abstraction of the multi-dimensional data space using grid partitioning.

Thereafter, we exploit the insight that skyline and mapping operations can be performed

at this coarser granularity instead of directly on individual objects in the data space. The

abstract-level execution principle holds true in the output space thereby reducing the total

number of skyline comparisons necessary for query evaluation. SKIN is shown in our ex-

perimental evaluation to achieve nearly 1-2 orders of magnitude reduction in the number

of join results, in comparison to state-of-the-art (KLTV06, JMP+10, SWLT08, BKS01)

techniques. In addition, SKIN successfully reduces the total number of comparisons (in

several cases) by orders of magnitude against state-of-the-art approaches. To provide a

complete study of the efficient handling of skyline and mapping aware query evaluation,

we also explore the principles of skyline partial push-through (see Chapter 4 for details).

This part of the dissertation work contributes to research in the efficient processing of

skyline-over-join queries in the following ways:

1. As a foundation, we introduce new skyline-aware algebra operators namely, SkyMap,

22

1.5 PROPOSED SOLUTIONS

SkyJoin and SkyMapJoin, to facilitate query re-writes (see Chapter 2).

2. We propose SKIN in Chapter 3 as a robust methodology to process SkyMapJoin

queries. To our best knowledge, SKIN is the first algorithm to efficiently exploit the

insight that the join, skyline, and mapping operations cannot only be performed at

different levels of data abstraction, but also be simultaneously performed in both

input and output spaces.

3. Existing state-of-the-art techniques (JEHH07, SWLT08) do not test their approach

over anti-correlated data sets, rather they restrict themselves to only the skyline

friendly distributions such as independent and correlated datasets. In Chapter 5, we

provide a comprehensive experimental evaluation of the existing techniques over

all distributions commonly used in skyline literature as a stress test (BKS01).

4. Our performance analysis demonstrates the superiority of our proposed SKIN ap-

proach for many cases (such as anti-correlated and some independent data sets) by

1-2 orders of magnitude faster over state-of-the-art methods (as shown in Chapter

4). For the skyline friendly data sets such as correlated data, SKIN has similar per-

formance as state-of-the-art techniques (KLTV06, JMP+10, JEHH07, SWLT08).

In addition, we report that SKIN on an average produces 50% fewer join results

in comparison to state-of-the-art techniques and requires 1-2 orders of magnitude

fewer skyline comparisons to produce the final result.

1.5.2 Progressive Result Generation for MCDS Queries

Next we propose a progressive query evaluation framework ProgXe. By transforming

the execution of queries involving skyline-over-join to be non-blocking, ProgXe is able to

be progressively generating results early and often. ProgXe, by exploiting the underlying

23

1.5 PROPOSED SOLUTIONS

principle of SKIN – by performing query processing (join, mapping and skyline) at mul-

tiple levels of data abstraction, establishes the interaction between the input and output

space to progressively output result early and often. This knowledge enables us to iden-

tify and reason with abstract-level relationships to guarantee correctness of early output.

It also provides optimization opportunities previously missed by current techniques. To

further optimize ProgXe, we incorporate an ordering technique that maximizes the rate at

which results are reported by translating the optimization of tuple-level processing into a

job-sequencing problem.

Our contributions in the area of progressive result generation are:

1. We design a pipelined execution framework ProgXe that represents the foundation

of our progressive result generation approach for skyline queries.

2. We propose the progressive driven ordering (ProgOrder) optimization which em-

ploys a cost benefit model to determine the order in which we perform the expensive

tuple-level processing; such that the rate at which the partial results can be output

early is maximized.

3. During the tuple-level processing, to ensure the correct reporting of early results, we

present the progressive result determination (ProgDetermine) technique. ProgDe-

termine enables us to identify the subset of results generated so far which are guar-

anteed to be in the final skyline and therefore can be output early.

4. Our experimental analysis of ProgXe demonstrates the superiority of our proposed

techniques over state-of-the-art techniques across a wide variety of data sets.

24

1.5 PROPOSED SOLUTIONS

1.5.3 Contract-Driven Processing of Multiple Multi-Criteria Deci-

sion Support Queries

As elaborated in Chapter 1.4, when processing a workload of concurrent skyline-over-join

queries each augmented with its own QoS requirement, it is not sufficient to complete one

query fully before turning our attention to the second query. To the best of our knowl-

edge we are the first to address the challenging problem of Contract-Driven Multi-Query

Processing (Contract-MQP) where for a given workload of skyline-over-join queries and

their associated QoS contracts we develop an execution strategy that maximizes the over-

all satisfaction of the workload.

In this dissertation, to address the Contract-MQP problem we propose the Contract-

Aware Query Execution framework - CAQE (pronounced cake). CAQE takes as input

a set of skyline-over-join queries (SQ) and the associated set of contracts (SC). The core

principle exploited in this work is: “different portions of the input contribute to different

and often multiple queries.”

In this effort, we first designed a uniform model to express a progressiveness contract,

and a metric to continuously measure the degree to which the contracts are being met.

By exploiting SKIN’s principles of query processing at different data abstractions we ex-

pose and then exploit opportunities for fine-grained sharing among complex queries. We

employ a novel contract-aware progressiveness estimation model to maximize the over-

all satisfaction of the workload of queries. The adaptive execution strategy employed in

CAQE continuously monitors the run-time satisfaction of the queries and takes corrective

steps when necessary to maximally satisfy the contracts. Our experimental evaluation

demonstrates the effectiveness of CAQE in meeting these contracts compared to state-

of-the-art techniques. To the best of our knowledge, this is the first work to define the

Contract-MQP problem that handles multiple skyline-over-join queries.

25

1.5 PROPOSED SOLUTIONS

1. We developed a uniform model to express a rich set of contracts to represent pro-

gressiveness, and a metric to continuously measure the degree to which the con-

tracts are met.

2. Design the min-max-cuboid shared query plan, that facilitates sharing among plans

for skyline-over-join queries, is guaranteed to contain the minimal subset of sub-

spaces needed while maximizing sharing of skyline computations.

3. We propose an intuitive contract-driven optimization that applies a cost benefit

model to determine the order in which the output regions are to be processed; such

that the satisfaction of the conflicting contracts of workload queries are maximized.

4. We build an adaptive contract-aware execution methodology that continuously mon-

itors the run-time satisfaction of the queries and aggressively takes corrective steps

to maximally meet contracts.

5. Our experimental study on CAQE over benchmark datasets demonstrates that CAQE

consistently outperforms existing techniques. More specifically, in many cases

CAQE is > 2x better in satisfying query contracts while generating 20x fewer join

results and conducting 17x fewer skyline comparisons.

1.5.4 Cardinality Assurance Via Proximity-driven Refinement

To demonstrate the generality of the solutions proposed in this work, we apply the foun-

dational principle exploited in this dissertation of processing queries at different level of

data abstraction to an orthogonal research question namely, Proximity-driven Cardinality

Assurance (PCA). PCA is an unexplored area of auto-refining queries to meet cardinality

and proximity constraints, while concurrently providing seamless support for select and

join refinement. In this dissertation, to address this open problem we propose Cardinality

26

1.5 PROPOSED SOLUTIONS

Assurance via Proximity-driven RefInement (CAPRI), the first of its kind.

Given a conjunctive Select-Project-Join (SPJ) query Q, desired cardinality C, cardi-

nality threshold δ, and refinement threshold γ, CAPRI produces a set of refined queries

meeting the dual constraints of cardinality and proximity. In CAPRI we adopt the strat-

egy ofExpand and Explore to iteratively expand the original query and to explore refined

queries with respect to cardinality. The expand phase ensures that refined queries pro-

duced satisfy the refinement threshold and that queries with smaller refinements are pro-

duced before those with large refinements. Thus, once CAPRI finds a query satisfying the

cardinality constraint, it need not examine queries with larger refinements. The explore

phase on the other hand efficiently computes refined query cardinalities via a novel in-

cremental execution algorithm and an efficient, predictive index structure. By performing

query processing at multiple levels of abstraction, a core contribution of SKIN, our incre-

mental execution algorithm can identify dependencies between refined queries so that for

each query, CAPRI must only execute a small sub-query and then simply use our recursive

model to combine results from previous queries. Our predictive index structure assists in

this process by coarsely mapping potential results to queries and enabling CAPRI to ma-

terialize only those query results that: (1) are likely to satisfy the given refined query and

(2) haven’t been materialized before. Together, these two techniques perform extensive

result sharing and guarantee that any query result is processed at most once, irrespective

of how many queries contain it. The two approaches enable CAPRI to evaluate a large

number of queries rapidly without performing redundant computations.

Our contributions in addressing the PCA problem can be summarized as follows:

1. We introduce and then formalize the Proximity-driven Cardinality Assurance prob-

lem. We prove PCA to be NP-hard via a simple reduction (Chapter 19).

2. We propose CAPRI to auto-generate refined queries that satisfy both proximity and

27

1.6 DISSERTATION ORGANIZATION

cardinality constraints. We present a novel strategy to build the refined query space

and map results to it, minimize query refinement via proximity-driven exploration,

and evaluate a large number of refined queries efficiently (Chapter 20).

3. We design an innovative Incremental Query Execution approach to exploit depen-

dencies between refined queries and facilitate extensive result-sharing. Our recur-

sive model is guaranteed to process a result tuple at most once throughout our search

and execution process (Chapter 21).

4. We demonstrate in our experimental study of CAPRI on TPC-H benchmark data

sets that CAPRI consistently outperforms existing techniques with performance

gains of up to 2 orders of magnitude. In addition, the queries generated by CAPRI

are on average 25% closer to the original query compared to current techniques (see

Chapter 22 for details).

1.6 Dissertation Organization

We discuss in detail the four research topics of this dissertation, namely skyline aware

evaluation over disparate source, progressive query evaluation of MCDS queries,

contract-driven processing of multiple MCDS queries and proximity-driven cardi-

nality assurance, in Part I (Chapters 2-5), Part II (Chapters 6-10), Part III (Chapters

11-18) and Part IV (19-24) respectively. The discussions of each of the four research top-

ics include the problem formulation and analysis, description of the proposed solution,

experimental evaluation, and lastly discussions of related work. Chapter 25 concludes

this dissertation and Chapter 26 discusses possible future work.

28

Part I

Skyline and Mapping Aware Query

Evaluation

29

2

Skyline Aware Relational Algebra

Traditional query processing techniques (KLTV06) view skyline evaluation as a complex

and extremely expensive filter operation. Thus rather than handling skyline computations

only as an afterthought, in this chapter propose skyline-aware operators that exploit the

principle of pushing the skyline operations through or inside other algebra operators.

In this effort, we extend the canonical relational model by introducing skyline and

mapping aware operators. This extended relational model provides the foundation for re-

search in developing efficient methodologies for evaluating these skyline aware operators.

To transform a traditional query plan that has skyline operations on top of Select-Project-

Join operations into an equivalent query plan with skyline sensitive operators, we provide

a set of equivalence rules. In Chapter 3 we design an efficient query processing strategy

for each of the proposed skyline aware operators.

2.1 Preliminaries

In this section, we review the preference model (Kie02) and the algebra model used to

represent an SMJ (Skyline-Map-Join) query such asQ1. Each d-dimensional object is de-

30

2.1 PRELIMINARIES

fined by a set of attributesA = {a1, . . ., ad}. For a given object ri, the value of the attribute

ak can be accessed as ri[ak]. Dom(ak) is domain of the attribute ak and Dom(A) =

Dom(a1)× . . .×Dom(ad).

2.1.1 Mapping Functions and Map Operator

The map operator (µ) is defined based on a set of k mapping functions. For each input

object ri the mapping function fj , in a set of k mapping functions F, takes as input a

set of distinct attributes Bj ⊆ A and returns a newly computed attribute xj . That is,

fj : Dom(Bj)→ Dom(xj) and F ={f1, f2, . . . fk}.

Map Operator (µ[F,X](R)) applies a set of k mapping functions F to transform each

d-dimensional input object ri ∈ R into a k-dimensional output object r′i defined by a set

of attributes X = {x1, . . ., xk}, where xi is generated by the function fi ∈ F.

2.1.2 Preference Model and Skyline Operator

For a d-dimensional data set R, we use ak (1 ≤ k ≤ d) to represent each dimension and

D = {a1, . . . , ad} the set of all d dimensions, called the full-space. For a tuple τi ∈ R,

the value of the attribute ak can be accessed as τi[ak]. Given a set of attributes V ⊂ D, the

preference P over the set of objectsR is defined as P := (V,�) where� is a strict partial

order on the domain of V. Here, V is termed as subspace. Without loss of generality, we

assume that ∀ak : τi[ak] ≥ 0, and that smaller values are preferred.

Definition 2.1 (Full Space Dominance) For a set R of d- dimensional tuples, a tuple

τi ∈ R dominates tuple τj ∈ R (denoted as τi ≺ τj), iff (∀(ak ∈ D) (τi[ak] ≤ τj[ak]) ∧

∃(al ∈ D) (τi[al] < τj[al])).

Definition 2.2 (Subspace Dominance) For a set R of d- dimensional tuples, and a set of

attribute dimensions V ⊆ D tuple τi dominates by a tuple τj in subspace V iff (∀ak ∈ V

31

2.2 EXTENDED ALGEBRA MODEL

(τi[ak] ≤ τj[ak]) ∧ ∃al ∈ V (τi[al] < τj[al])) and is denoted as τi ≺V τj .

Skyline Operator (SP (R)), given a set of objects R and a preference P , returns a

subset of non-dominated objects in R.

2.2 Extended Algebra Model

To facilitate the pushing of the skyline operation into the map and/or the join, we introduce

three new operators, namely SkyMap (µ̂), SkyJoin (.̂/) and SkyMapJoin (Ψ̂).

SkyMap (µ̂[F,X,P]) performs the following operations in order: (1) apply the set of k

mapping functions F to transform each d-dimensional object ri ∈ R into a k-dimensional

object r′i defined by the set of attributes X , and then (2) generate the skyline of trans-

formed objects by the preference P = (E,�P), where E ⊆ X .

SkyJoin (.̂/[C,P]) combines objects from its input data sets based on the conditions in

C and returns a set of non-dominated combined-objects based on the preference P . If

C = φ then the operator returns the set of non-dominated Cartesian product results.

SkyMapJoin (Ψ̂[C,F,X,P]) performs the following operations in order: (1) combine

objects from the input data sets based on the conditions in C, (2) apply the set of map-

ping functions F to transform each combined-object to generate a transformed combined-

object with attributes X , and (3) generate the skyline of combined-objects by the prefer-

ence P = (E,�P), where E ⊆ X .

2.3 Query Equivalence Rules

In this work, we provide the foundation of alternate SkyMapJoin query plan solutions

by describing the algebra and its equivalence rules. We now briefly review equivalence

rules that enable us to push the skyline and mapping operation into the join operator.

32

2.3 QUERY EQUIVALENCE RULES

The principle of pushing skylines through a join have been exploited in related work

(JMP+10). However these existing techniques do not consider the multi-relational skyline

operators with mapping operations (i.e., SkyMapJoin queries) which is the focus of our

work.

To draw a parallel to Select in Select-Project-Join (SPJ) queries, there are scenarios

when the mapping and skyline functionality can be pushed inside as well as sometimes

pushed-through joins (BKS01, HK05). Below, we present equivalence rules to handle

various mapping scenarios with Cartesian product (L1) as well as the join operations

(L2). Rules L3-L7 are adaptations of the principle of skyline push through (HK05). Rules

L7-L10 incorporate our proposed operators. Rules L10.a and L10.b aid in pushing partial

skylines through the SkyMapJoin operator.

1. L1: Pushing µ[F,X] through ×

(a) µ[F,X](R × T) ≡ πX(µ[F,X](R)× T) iff ∀(fi ∈ F)(Bi ⊆ attr(R)), where Bi

as defined in Chapter 2.1.1 as the set of distinct attributes consumed by the

function fi.

(b) µ[F,X](R× T) ≡ πX(µ[FR,XR](R)× µ[FT ,XT](T)) iff

i. F = FR ∪ FT , that is, X = XR ∪XT

ii. ∀(fi ∈ FR)(Bi ⊆ attr(R))

iii. ∀(fi ∈ FT)(Bi ⊆ attr(T))

(c) µ[F,X](R× T) ≡ µ[FRT ,X](µ[FR,XR∪attr(R)](R) ×µ[FT ,XT∪attr(T)](T)) iff

i. F = FR ∪ FT ∪ FRT i.e. X = XR ∪XT ∪XRT

ii. ∀(fi ∈ FR)(Bi ⊆ attr(R))

iii. ∀(fi ∈ FT)(Bi ⊆ attr(T))

iv. ∀(fi ∈ FRT)(Bi ∩ attr(R) 6= φ) ∧ (Bi ∩ attr(T) 6= φ)

33

2.3 QUERY EQUIVALENCE RULES

2. L2: Pushing µ[F,X] through 1:

Given a query plan µ[F,X](R 1R.C=T.C T) where C = attr(R) ∩ attr(T). If

∀(fi ∈ F)(Bi ∩ C = φ), then rules in L1 can be directly extended to handle joins.

3. L3: Pushing SP through ×:

(a) SP (R× T) ≡ SP (R)× T iff E ⊆ attr(R)

(b) SP (R× T) ≡ SP (SP (R)× SP (T)) iff E ⊆ attr(R) = attr(T)

4. L4: Pushing SP through 1: SP (R 1R.C=T.C T) ≡ SP (SP,GroupBy C(R) 1R.C=T.C

T) where C = attr(R) ∩ attr(T), SP,GroupBy C(R) = { ri ∈ R|@(rj ∈ R) s.t.

(rj[C] = ri[C]) ∧ (rj �P ri)}

5. L5: Split and push SP through ×:

Let PR = (ER,�P) where ER ⊆ attr(R), PT = (ET ,�P), ET ⊆ attr(T) and

P = {PR, PT} then SP (R× T) ≡ SPR
(R)× SPT

(T)

6. L6: Split and push SP through 1

SP (R 1R.C=S.C T) ≡ SP (S[PR, GroupBy C](R)1R.C=S.C S[PT , GroupBy C](T)) where,

S[PR, GroupBy C](R) = { ri ∈ R |@(rj ∈ R) (∀(ak ∈ C)(rj[ak] = ri[ak])) ∧ (rj �PR

ri) }

7. L7: Merging SP with 1: SP (R 1C T) ≡ R .̂/[C,P] T

8. L8: Merging SP with µ[F,X]: SP (µ[F,X](R)) ≡ µ̂[F,X,P](R)

9. L9: Merging µ̂[F,X,P] with 1: µ̂[F,X,P](R 1C T) ≡ R Ψ̂[C,F,X,P] T

10. L10: Push down SP in Ψ̂: Let F be a set of k monotonic increasing functions

and F be proper. For each fi ∈ F, let BR
i ⊆ Bi s.t. BR

i ⊆ attr(R) and BR =

BR
1

⋃
. . .
⋃
BR
k . Given P = (E,�P), let PR = (ER,�PR

) where ER ⊆ E s.t.

ER ⊆ BR. Additionally, C : R.C = T.C where C ⊆ attr(R) ∩ attr(T).

34

2.3 QUERY EQUIVALENCE RULES

(a) R Ψ̂[C,F,X,P] T ≡ [C]G[PR](R) Ψ̂[C,F,X,P] [C]G[PT](T)

(b) R Ψ̂[C=φ,F,X,P] T ≡ (SPR
(R)) Ψ̂[C=φ,F,X,P] (SPT

(T))

P = P1 P2

P1 = min(tdistance); P2 = min(tcost)

F = { f1 ,f2 ,f3 ,f4 } f1: :R.id, f2 :S.id,

f3: (2 * R.distance+T.distance) as tdistance,

f4: (R.price+T.price) as tcost

X = {R.id, S.id, tdistance ,tcost}

!

µ
[F ,X]

!

S
P

!

R

!

T

!

R

!

T!

µ
[F ,X ,P]

!

R

!

T

!

"
[C=# ,F ,X ,P]

(a) Traditional Query Plan (b) Using SkyMap (c) Using SkyMapJoin

P1 = min(tdistance); P2 = min(tcost)

P = {P1, P2}

X = {R.id, S.id, tdistance ,tcost}

F = { f1 ,f2 ,f3 ,f4 } f1: :R.id, f2 :T.id,

f3: (2 * R.distance+T.distance) as tdistance,

f4: (R.price+T.price) as tcost

P = P1 P2

P1 = min(tdistance); P2 = min(tcost)

F = { f1 ,f2 ,f3 ,f4 } f1: :R.id, f2 :S.id,

f3: (2 * R.distance+T.distance) as tdistance,

f4: (R.price+T.price) as tcost

X = {R.id, S.id, tdistance ,tcost}

!

µ
[F ,X]

!

S
P

!

R

!

T

!

R

!

T!

µ
[F ,X ,P]

!

R

!

T

!

"
[C=# ,F ,X ,P]

(a) Traditional Query Plan (b) Using SkyMap (c) Using SkyMapJoin

P1 = min(tdistance); P2 = min(tcost)

P = {P1, P2}

X = {R.id, S.id, tdistance ,tcost}

F = { f1 ,f2 ,f3 ,f4 } f1: :R.id, f2 :T.id,

f3: (2 * R.distance+T.distance) as tdistance,

f4: (R.price+T.price) as tcost

Figure 2.1: Multiple Equivalent Plans for SkyMapJoin query Q2

Example 2.1 Figure 2.1.a depicts the traditional query plan for Q2 using canonical al-

gebra operators where the results of the Cartesian product are fed to the map operator.

For each Rome and Paris hotel pair, the map operator calculates tCost and tDistance.

The transformed combined-objects are then given as inputs to the skyline operator to

generate the final result. Figures 2.1.b and 2.1.c represent the equivalent SkyMap- and

SkyMapJoin-based query plans of Q2 generated by pushing first the skyline operation

into the map operator, and then pushing both into the join. In other words, by applying

the equivalence rules L8 and L9 listed above.

35

3

SKIN: The Proposed Approach

In this chapter, we propose SKIN (SKyline INside Join) – an efficient methodology to

evaluate SkyMapJoin queries. Figure 3.1 depicts the overall process of our approach

called SKIN. For each input data source, we form an m-dimensional abstraction where m

is the number of skyline dimensions in the combined (join) object. Below we elaborate

on the core principles exploited in SKIN for evaluating the SkyMapJoin operators. The

SkyMap operation is straightforward and thus omitted for conciseness. The SkyJoin op-

erator can be viewed as a special case of the SkyMapJoin operator where each of the k

mapping functions is a trivial projection.

The first phase in SKIN called region-level elimination targets to avoid the generation

of combined objects altogether. Given a pair of input partitions from R and T , we deter-

mine: (1) whether or not the join operation between the objects in the input partition pairs

will result in at least one combined-object (see details in Chapters 3.1–3.5), and (2) the

region in the mapped output space into which the future combined-objects will fall dur-

ing the actual object-level evaluation. Next, we identify output regions that are dominated

by other regions. As we will show in Chapter 3.1 (Lemma 3.1), dominated regions are

guaranteed to not contribute to the final skyline. Therefore, the join evaluation that gener-

36

!"  #$%&&'()*+,)-(./*)0.$1,)
2"  3,*,%4-(,)*+,)'/*./*)%,5-'()6'%),$1+)-(./*7.$%&&'().$-%)
8"  9:,(&6;)-(./*7.$%&&'(7.$-%0)*+$*)(,,:)('*)<,)1'4<-(,:)

!")#%/(,)=:'4-($*,:>)'/*./*).$%&&'(0)

?@A9BC7D@E@D)@D9F9CGH9BC)

!" #"

!"#"$$%&'()*+)

,-+#(")#$./*0$&1$#2*$&'#3'#$+3")*$$

BIH#IH7#G?H9H9BC7D@E@D)@D9F9CGH9BC)

453'#67"(88&567"/(+)

%9:$;'*(<$

=+*($)

J'%),$1+)-(./*7.$%&&'(7.$-%K)
!"  A,(,%$*,)*+,)L'-()%,0/M*0)*+$*)4$.)*')*+,)0,M,1*,:)%,5-'()
2"  #,%6'%4)0N;M-(,)1'4.$%-0'(0)
8"  F-(-4-O,)*+,)*'*$M)(/4<,%)'6)0N;M-(,)1'4.$%-0'(0)(,,:,:))

)*')5,(,%$*,)*+,)0N;M-(,)%,0/M*0)

>'#3'#$?*+'@#+$

BPQ@RH7D@E@D)@S@RIH9BC)

A&56B&C/5"#*B$>D7$3"(88&5+)

?*E/&5$F*.*@$

7"(88&5$F*.*@$

>-G*)#$F*.*@$

H("5'@"(/#<$

!")9:,(&6;)(,T*)0,*)'6)'/*./*)%,5-'(0)*')<,),T,1/*,:)

UVWD9C@7GXG?@)QB9C)B?3@?9CA)

%*#$&1$>'#3'#$?*E/&5+$#&$*I*)'#*B) J&5#(&@)

Figure 3.1: Overview of the SKIN Approach

37

ates objects that map to such dominated output regions need not be performed altogether,

thereby saving on combined-object generation costs as well as dominance comparison

costs (see Chapter 3.1).

Our second phase partition-level elimination aims to reduce dominance comparisons

between combined-objects. Here, we perform query evaluation at the abstraction of par-

titions in the output space. In other words, we partition the output space such that each

output region is composed of a set of output partitions. We observe that for some re-

gions, a subset of their output partitions are dominated by other regions. Unlike in the

above region-level elimination phase such partially dominated regions cannot be entirely

discarded. However, we show by Lemma 3.2 that such dominated output partitions are

guaranteed to not contribute to the final skyline. Therefore, combined-objects that map to

these dominated output partitions can be immediately discarded without conducting any

skyline comparisons (Chapter 3.2). In summary, region- and partition-level elimination

phases eliminate many output regions and partitions respectively without any object-level

access. Next, we sequence the execution of output regions to exploit the skyline charac-

teristics of the output regions. In other words, we process output regions that are closer

to the origin before those that can potentially be dominated by a future generated output

tuple.

Finally, the fourth phase, called object-level execution, further reduces the total num-

ber of dominance comparisons needed to generate the final skyline. For each generated

combined-object rf tg we minimize the number of comparisons by: (1) eliminating all

output partitions dominated by rf tg, and (2) restricting the object-level skyline compar-

isons to only a small subset of partitions containing combined-objects, namely those in

output partitions that it can potentially dominate, and vice-versa (see Chapter 3.4). This

third phase piggybacks on the former steps by reusing the partition information produced

by them. We present the details; both underlying theory as well as concrete algorithms

38

3.1 PHASE I: REGION-LEVEL ELIMINATION

Notations:
• Each input partition in R is denoted as IRi
• Each output partition is denoted as Oi

• IR is a set of all input partitions in R
• O is a set of all output partitions
• [IRi , I

T
j] input-partition pairs whose combined-objects map to region Ri,j

• R is a set of all output regions called as Region Collection
• LOWER(X): Returns the lower-bound point of the region or partition X
• UPPER(X): Returns the upper-bound point of the region or partition X
•MAP OBJECT(rctd, F, δ): Returns the output partition to which rctd maps to.
•MAP REGION(Ri,j , F, δ): Returns a set of output partitions that Ri,j maps to.
•MARK(Oi): Marks the partition Oi as “non-contributing”
• IS MARKED(Oi): Return true if output partition Oi is marked, false otherwise.

Table 3.1: Notations Used In This Work

for each of the four phases in Chapters 3.1, 3.2, 3.3 and 3.4 respectively.

3.1 Phase I: Region-Level Elimination

The first phase of our SKIN methodology, named region-level optimization, avoids the

generation of many combined-objects. To easily highlight the core areas of optimization

we first consider the motivating query Q2 where the join condition C=φ. In Chapter 3.5

we extend the core approach to handle general join predicates as in query Q1.

We first partition each of the input data sets. For the remainder of this elaboration we

employ an m-dimensional grid for partitioning the data space, with m being the number

of skyline dimensions In our running example as in Figure 3.2.b the input data set T

is partitioned into a 2-D grid. Each partition is uniquely identified by its bottom-left

coordinates, the lower bound retrieved by the function LOWER(ITi). We define IT as

the set of all non-empty input partitions for T . In this example, IT={IT1 [(1,5)(2,6)],

IT2 [(3,1)(4,2)], IT3 [(5,0)(6,1)]}.

In region-level elimination, for each non-empty partition, IRi ∈ IR and each non-

39

3.1 PHASE I: REGION-LEVEL ELIMINATION

price [normalized]

distance

[normalized]
0 1 2 3 4 5 6

5

1

2

3

4

6

(b) ParisHotels (T)

price [normalized]

distance

[normalized]
0 1 2 3 4 5 6

5

1

2

3

4

Non-empty partitions

Empty partitions

(a) RomeHotels (R)

I
1

R

I
3

R

I
4

R

I
1

T

I
2

T

I
3

T

2

R
I

Figure 3.2: Partitioning Of Input Datasets

empty partition ITj ∈ IT , we determine the region of the output mapped space to which

their join results will map to. This is achieved by applying the set of k mapping func-

tions F to lower- and upper- bounds of the two input partitions respectively. The region

corresponding to an input-partition-pair [IRi , I
T
j] is called an output region (denoted as

Ri,j).

To elaborate, for query Q2 the mapping functions f1 and f2 compute two attributes,

namely (f1:R.price+T.price) computes tprice and (2∗R.distance+T.distance:f2) tdis-

tance. The objects that map to the partition IR1 [(0, 4)(1, 5)] in Figure 3.2.a when combined

with objects in partition IT2 [(3, 1)(4, 2)] in Figure 3.2.b result in the combined-objects that

are guaranteed to fall into the region bounded by the points b(3, 5) and B(6, 7) in Figure

3.3.

We observe that: (1) the mapping and skyline functionality can now be applied at this

higher level of abstraction, (2) output regions can always be determined a priori without

any object-level data access, and (3) as long as both of the input partitions are non-empty,

the corresponding output region is guaranteed to be populated. The set of all populated

regions is called the Region Collection (R).

40

3.1 PHASE I: REGION-LEVEL ELIMINATION

A

B

CR 1,2 R 4,1

R 3,1

D

d

g

F

K

LR 1,3

a

b

c e

G

E

H

f

J
I

j

i

k
l

tCost

tDistance

Output Partitions dominated by S

Regions dominated by S

Potential Combined Partitions

pes

pes

Lower Bound

Upper Bound Not in Spes

Upper Bound in Spes

pessimistic skyline ()Spes

h

R 2,1

Figure 3.3: Pessimistic Skyline, Spes

41

3.1 PHASE I: REGION-LEVEL ELIMINATION

In query Q2 the preference is to minimize all skyline-dimensions. In a pessimistic

scenario for each output region Ri,j , all the combined-objects that map to it would lie on

the upper-bound point of Ri,j . We introduce the notion of the pessimistic output skyline,

denoted as Spes to identify the dominated output regions.

Definition 3.1 For the preference P , the region collection R, U = {UPPER(Ri,j) | ∀(Ri,j ∈

R)}, i.e., the set of upper-bounds of all output regions in R. Pessimistic skyline Spes is

defined as the skyline over U based on P, i.e., Spes = SP (U).

In Figure 3.3 the region R1,2 with the upper boundB(6, 7) clearly dominatesG(12, 9),

the upper bound of the region R3,1. Therefore H is not in the pessimistic skyline, Spes = {

A, B, C, E, F, K, L }.

Lemma 3.1 For a region collection R, its pessimistic skyline Spes, preference P and an

output region Ri,j ∈ R, if ∃s ∈ Spes such that s �P LOWER(Ri,j) then no combined-

object rf tg ∈ Ri,j can be contained in the output skyline.

Proof: Proof by contradiction. Assume that ∃(rf tg ∈ Ri,j), ∃s ∈ Spes and s �

LOWER(Ri,j), but rf tg in the output skyline. By Definition 3.1, ∃Rx,y s.t. s =UPPER(Rx,y).

Since Rx,y 6= φ, let rbtc ∈ Rx,y. Since s � LOWER(Ri,j), rbtc � rf tg and thus rf tg is not

in the output skyline. This is a contradiction. Therefore, the output region Ri,j will not

contribute to the output skyline.

Rule 3.1 Region Elimination. For a region collection R, its pessimistic skyline Spes,

and preference P and a region Ri,j ∈ R, if ∃s ∈ Spes s.t., s � LOWER(Ri,j), then by

Lemma 3.1, the objects in the input partitions IRi need never be combined with those in

ITj since the resulting combined-objects are guaranteed to not be in the final skyline.

For example, in Figure 3.3 the output region R3,1 with the lower-bound g(9, 7) is

dominated by the pessimistic skyline points B(6, 7) as well as C(8, 6). By Lemma 3.1

42

3.1 PHASE I: REGION-LEVEL ELIMINATION

the combined-objects generated from the input partition pair [IR3 , I
T
1] are guaranteed to not

contribute to the output skyline, thus need not be generated. Algorithm 1 is the pseudo-

code for the region-level elimination.

To summarize, the properties of region-level elimination are:

1. Only the regions that are guaranteed to be populated are considered for join evalu-

ation.

2. Dominated regions are guaranteed to not contribute to the final results and therefore

need not be considered for join evaluation.

Algorithm 1 Region-Level Elimination

Input: F, P , IR, IT

Output: R {Region Collection}
1: R = φ; U = φ
2: for each partition IRi ∈ IR do
3: for each partition ITj ∈ IT do
4: Ri,j ← Associated output region for [IRi , I

T
j]

5: Add UPPER(Ri,j) to U ; Add Ri,j to R
6: Spes = SP (U)
7: for each output region Ri,j ∈ R do
8: if ∃(s ∈ Spes) (s �P LOWER(Ri,j)) then
9: Remove Ri,j from R {By Lemma 3.1, Rule 3.1}

10: return R

Time Complexity. The total number of input partitions for the input data sets R and

T is denoted by nR and nT respectively. If nR = nT = n, then the time complex-

ity to determine all n2 output regions is O(n2). The time complexity of generating the

pessimistic skyline is in the worst case O(n4) based on the Block-Nested-Loop (BNL)

skyline algorithm (BKS01). Therefore, region-level elimination has the time complexity

of O(n2+n4) ≈ O(n4). This optimization is beneficial because it: (1) is at the granularity

of output regions and does not require any object-level data access, (2) has the potential

43

3.2 PHASE II: OUTPUT-PARTITION LEVEL ELIMINATION

to eliminate n2 − 1 out of n2 output regions in the best case scenario, and (3) has a sig-

nificantly cheaper time complexity than O(N4) for popular skyline algorithms (BKS01),

where |R|=|T |=N . Since typically, n << N , O(n4) << O(N4).

3.2 Phase II: Output-Partition Level Elimination

The partition-level elimination phase aims to reduce dominance comparisons needed

to produce the final skyline. Each region Ri,j is mapped to one or possibly several out-

put partitions. In Figure 3.3, R1,1 maps to the set of output partitions {O[(1,9)(2,10)],

O[(1,10)(2,11)], O[(2,9)(3,10)], O[(2,10)(3,11)], O[(3,9)(4,10)], O[(3,10)(4,11)]}. Dif-

ferent regions may map to common output partitions. For example, R1,2 and R1,3 in

Figure 3.3 share the output partition O[(5, 5)(6, 6)]. The set of all output partitions in the

mapped output space is denoted as O.

We observe that for some regions, only a subset of the output partitions they contain

are dominated by the pessimistic skyline Spes. In Figure 3.3 for R2,1 the output partitions:

O[(6,8)(7,9)], O[(6,9)(7,10)], O[(7,8)(8,9)] and O[(7.9)(7,10)] are dominated by point

B(6, 7) ∈ Spes. Prior to the actual generation of combined-objects that map to R2,1 we

cannot easily determine which of the output partitions for R2,1 the combined-objects will

fall into. For this reason, unfortunately we cannot entirely discard the partially dominated

output region R2,2 as in Chapter 3.1. Therefore, we have to first generate the combined-

objects that map to such partially dominated regions. As we show next, we can however

exploit this fact of partially dominated output regions. The intuition here is that for a point

B to be in Spes there must exist an output region, here R1,2, such that UPPER(R1,2) = B.

All output regions are guaranteed to be populated i.e., R1,2 6= φ and ∃rbtc ∈ R1,2 such

that rbtc dominates a subset of output partitions mapped to R2,1. Therefore, combined-

objects that map to output partitions: O[(6,8)(7,9)], O[(6,9)(7,10)], O[(7,8)(8,9)] and

44

3.2 PHASE II: OUTPUT-PARTITION LEVEL ELIMINATION

O[(7.9)(7,10)] are guaranteed to not contribute to the final skyline.

Lemma 3.2 Given a region collection R, its pessimistic skyline Spes, preference P and

an output partitionOl ∈ O s.t., ∃(s ∈ Spes) (s �P LOWER(Ol)), then no combined-object

rf tg ∈ Ol can be contained in the output skyline.

We omit the proof for By Lemma 3.2 for conciseness. Combined objects that map

to dominated output partitions during actual object-level evaluation can safely discard

thereby avoid performing any skyline comparisons on such combined-objects. In addi-

tion, we mark all such dominated output partitions as non-contributing. Algorithm 2 is

the pseudo-code for the partition-level elimination. For each region Ri,j , it determines its

corresponding partitions by the function MAP REGION(Ri,j,F, δ) (Line: 2). For each

output partition Ol we determine if it is dominated by a pessimistic skyline point (Line:

4-5). All dominated output partitions are marked as “non-contributing” by the function

MARK(Ol) (Line: 6).

Algorithm 2 Output Partition-Level Elimination
Input: R {Region Collection}, Spes {Pessimistic Skyline}
Output: O {Set of output partitions}

1: for each output region Ri,j ∈ R do
2: for each o/p partition Ol ∈MAP REGION(Ri,j ,F, δ) do
3: Add Ol to O

4: for each output partition Ol ∈ O do
5: if ∃(s ∈ Spes) (s � LOWER(Ol)) then MARK(Ol)
6: return O

Time Complexity. This phase eliminates the skyline comparisons for combined-objects

that map to any dominated output partitions. In the worst case scenario, the region-level

elimination is unsuccessful in eliminating any output region. Then the pessimistic skyline

has n2 points that correspond to the upper bounds of all n2 output regions. The total

number of output partitions is denoted as no. The time complexity of the partition-level

elimination is O(n2
o). This overhead is small because, (1) it is at the granularity of output

45

3.3 PHASE III: SKYLINE-AWARE JOIN ORDERING

partitions and does not require any object-level data access, and (2) in a typical database

n2
o << N2.

3.3 Phase III: Skyline-Aware Join Ordering

In this section, we present an optimization technique that orders the execution of output

regions to minimize the total execution time. This is accomplished by analyzing the

dependencies among the output regions in the multi-dimensional abstract space. In this

effort, we first introduce the concept of an optimistic skyline. Without loss of generality,

we assume that the preference model is to minimize all skyline-dimensions. Thus in the

optimistic scenario for each output region Ri,j all future join results would lie on (or near)

the lower bound point of Ri,j .

Definition 3.2 For the region collection R, L = {LOWER(Ri,j) | ∀(Ri,j ∈ R)}, i.e.,

the set of lower-bounds of all output regions in R. The optimistic skyline Sopt is defined

as the skyline over L based on P, i.e., Sopt = SP (L).

The main intuition here is to evaluate all output regions that intersect the optimistic

skyline. Output regions on this optimistic skyline have a greater chance of dominating

those region(s) not on the optimistic skyline, thereby potentially avoiding their join eval-

uation. Once all the output regions on the optimistic skyline have been processed, if any

non-dominated output regions still exist, we repeat the above technique. In other words,

we evaluate output regions on the updated optimistic skyline generated over the remaining

non-dominated output regions.

In Figure 3.4, point c(5, 4) is the lower-bound corners of the output region R1,3 and

dominates e(7, 4), the lower-bound corner of region R2,2. Therefore, c ∈ Sopt, while

e 6∈ Sopt. We define the optimistic skyline as the skyline of all the lower-bound corners.

46

3.3 PHASE III: SKYLINE-AWARE JOIN ORDERING

Figure 3.4: Generating Optimistic Skyline Sopt

In Figure 3.3, Sopt = { a, b, c, f, k, l}. Current state-of-the-art skyline algorithms (BKS01,

CGGL03, KS00, BCP06) can be utilized to find this optimistic skyline.

Next, we consider for join and skyline evaluation the subset of output regions whose

lower bounds are on the optimistic skyline namely, SO1 . In Figure 3.4, this is found to be {

R1,1, R1,2, R1,3, R2,3, R4,2, R4,3}. We can be obtained by the functionOPT REGION(R).

Then we pipeline the execution of all regions in SO1 . Next, we investigate the remaining

non-dominated output region that have not yet been considered for tuple-level processing

to determine the output regions interesting the optimistic skyline. We denote this set as

SO2 . Thus optimistic skyline-based ordering is an ordered subset of output regions in the

mapped output space, R, denoted as SO = (SO1 , . . . SOn), where SOi is the ith subset of

output regions to be considered for object-level join evaluation.

Definition 3.3 Given the region collection R, the optimistic skyline-aware join order is

47

3.3 PHASE III: SKYLINE-AWARE JOIN ORDERING

defined as a set SO = {SO1 , SO2 , . . . SOn }, where SOi = OPT REGION (R \
⋃i−1
j=1 S

O
j).

To illustrate, in Figure 3.4, SO1 = { R1,1, R1,2, R1,3, R2,3, R4,2, R4,3} is the first subset

of regions to be considered for the object-level execution phase of SKIN. Once all regions

in SO1 have been processed we then move to processing the next subset of regions, SO2 =

{R2,1, R2,2, R3,2, R3,3 }. Finally, SO3 ={R4,1} is considered for object-level execution.

Algorithm 3 Skyline-Aware Join Ordering

Input: X {Set of regions yet to be considered for object-level execution}
Output: SOcurr {Skyline-Aware Join Order}

1: Initialize SOcurr=φ; Remainder = φ
2: for each partition Ri,j ∈ X do
3: if SOcurr=φ then
4: Add Ri,j to SOcurr
5: for each Rx,y ∈ SOindex do
6: if LOWER(Rx,y) � LOWER(Ri,j) then
7: Add Ri,j to Remainder; Goto 2;
8: else
9: if LOWER(Ri,j) � LOWER(Rx,y) then

10: Remove Rx,y from SOcurr
11: Add Rx,y to Remainder
12: Add Ri,j to SOcurr
13: X← Remainder
14: return SOcurr

Next, we present Algorithm 3 for finding the optimistic skyline-based ordering SOcurr.

For each output Ri,j , we first identify if it belongs to SOcurr (starting with curr = 1) by

comparing Ri,j against all the non-dominated regions yet to be considered for object-

level execution (Line: 2–4). If there exists an Ri,j ∈ SOcurr such that the lower-bound

corner of Rx,y dominates the corresponding lower-bound of Ri,j , then Ri,j does not fall

on the current optimistic skyline SOcurr (Line: 9-11).

Time Complexity: For n output regions, in the best case scenario the skyline-aware join

ordering is triggered only once. Hence the time complexity of O(n2). In the worst case

scenario |SO| = n, that is, in each iteration we have only one region to be sent for tuple-

48

3.4 PHASE IV: OBJECT-LEVEL EXECUTION

level processing. In such a scenario, the skyline-aware join ordering needs to be triggered

n times. Therefore the ordering step of SKIN has the time complexity of ≈ O(n3).

3.4 Phase IV: Object-Level Execution

We now introduce the processing logic for the actual generation of combined-objects and

skyline evaluation assuming the above pruning steps have been carried out.

For each remaining pair of input partitions [IRi , I
T
j] the object-level execution involves

three steps. First, each object rf in partition IRi is combined with each object tg in partition

ITj to generate the combined object rf tg. Second, the newly generated combined object

rf tg is then mapped to its corresponding output partition Oh. Finally, rf tg is compared

against other existing combined-objects to generate the output skyline.

We optimize the skyline comparison step as follows: first, if the newly generated

combined object rf tg that maps to an output partition that is marked as “non-contributing”

can be safely discard without further processing. If rf tg maps to an output partition is not

marked “non-contributing” we cannot discard rf tg without having to perform skyline

comparisons. Second, in such scenarios we next mark all partitions dominated by rf tg as

being “non-contributing” by following the principle stated in Lemma 3.2. Please note that

this sub-task of marking dominated partitions is done only for the first combined object

that falls in partitions Oh.

In Figure 3.5, the combined-object rf tg ∈ Oh clearly dominates the output partitions

in the top-right corner, i.e., every Oq ∈ O where rf tg �P LOWER(Oq) holds. Third, we

minimize the total number of combined-object comparisons during skyline computation.

We exploit the knowledge gained from the output space by ordering the sequence in which

the input partition pairs [IRi , I
T
j] are considered for object-level execution based on its

nearness to origin given that we assume that the preference is to minimize across all

49

3.4 PHASE IV: OBJECT-LEVEL EXECUTION

dimensions.

tCost

tDistance

Figure 3.5: Object-Level Comparison Criteria

In Figure 3.5 we observe that (1) combined-objects that map to output partitions in the

top-left and the bottom right corner ofOh cannot dominate rf tg and vice versa. Thus, such

comparisons can be avoided. (2) Partitions in the bottom-left corner of Oh are guaranteed

to be empty, else Oh would have been be marked as “non-contributing” in an earlier

iteration. (3) rf tg ∈ Oh can be only dominated by combined objects that map to the slice

of partitions that either have the same price or distance as Oh.

Rule 3.2 Comparable Partitions. Given a newly generated combined-object rf tg, let

MAP OBJECT(rf tg,F, δ) = Oh, and let A = LOWER(Oh). Then, rf tg needs to only be

compared against combined-objects in output partition Oq ∈ O with B = LOWER(Oq),

where ∃(1 ≤ v ≤ m)(A[lv] = B[lv]).

Algorithm 4 lists the pseudo-code for the object-level execution. For each generated

combined-object rf tg, we first identify the partition Oh to which it maps by the function

MAP OBJECT (Line: 4). If Oh is marked “non-contributing” we immediately discard

rf tg without any further processing (Line: 5-6). Otherwise, we mark all partitions Oq ∈

O which are dominated by Oh as “non-contributing” Line (9-11). Next, we begin the

comparisons of rf tg by first comparing it against other existing combined-objects that are

mapped to the same Oh (Line: 12). If rf tg is dominated in Oh we stop and move to the

50

3.4 PHASE IV: OBJECT-LEVEL EXECUTION

Algorithm 4 Object-Level Execution

Input: IR, IT , F, R, P
Output: Set of non-dominated combined-objects

1: for each output region Ri,j ∈ R do
2: for each object rf ∈ IRi and tg ∈ ITj do
3: Generate combined object rf tg
4: Oh←MAP OBJECT(rf tg, F, δ)
5: if IS MARKED(Oh) then
6: discard rf tg
7: else
8: for each Oq ∈ O do
9: if rf tg �PLOWER(Oq) then MARK(Oq)

10: Call UpdatePartition(Oh, rf tg, P)
11: for each Oq satisfying Rule 3.2 AND rf tg not dominated do
12: Call UpdatePartition(Oq, rf tg, P)
13: Add rf tg to Oh if rf tg is still not dominated
14: return all combined objects mapped to all output partitions
15: procedure UpdatePartition(Oq, rf tg, P)
16: for each rxty ∈ Oq do
17: if rxty �P rf tg then discard rf tg
18: else if rf tg �P rxty then remove rxty from Oq

generation of the next combined-object. Otherwise, we compare rf tg against combined-

objects that are mapped to “comparable partition” as defined by Rule 3.2 (Line 13-14).

After all these comparisons if rf tg remains not dominated then and only then we insert

rf tg into Oh.

Optimization Benefits. Let each dimension in the output space be partitioned into k

partitions. Then the d-dimensional grid has kd output partitions. For any skyline al-

gorithm in the worst case scenario all objects are in the final skyline. Therefore, for a

naı̈ve approach in the worst case scenario, each newly generated combined-object will

be compared against objects in all kd partitions. Instead, in our approach for each newly

generated combined-object, in the worst case, we only perform dominance comparisons

against objects that are mapped to a smaller set of [kd − (k − 1)d] partitions.

51

3.5 HANDLING JOIN PREDICATES

3.5 Handling Join Predicates

We now illustrate the full solution of our approach, namely we now to also handle join

predicates in queries such as Q1 (in Figure 1.4) where suppliers and transporters have

to be from the same country. Unlike the scenario in Chapter 3.1 where we utilize all

input partition pairs, we now only need to consider those input partition pairs that are

guaranteed to have at least one tuple each with matching attributes values. That is, they

indeed join and populate the corresponding region. Clearly, otherwise no input objects

will find matching join partners, and thus the region will be empty. Intuitively, for this

determination we perform join evaluation at a higher-level abstraction instead of join over

actual objects. In our example as in Figure 3.6, the input partition IR2 shares with input

partition IT2 the domain values {Brazil, China, Mexico}, while both input partitions IT1

and IT3 share the attribute value {China}. Therefore, objects in IR2 are guaranteed to find

at least one join pair in each of the partitions IT1 , IR2 and IT3 . Conversely, in Figure 3.6,

we do not consider the pairs [IR3 ,IT1], [IR3 ,IT2] and [IR3 ,IT3], since there is no partition in T

that shares any domain value with IR3 , in this case Indonesia.

shipCost [normalized]

shipTime

0 1 2 3 4 5

5

1

2

3

4

6

 Transporters (T)

price [normalized]

supplyTime

0 1 2 3 4 5 6

5

1

2

3

4

Non-empty partitions

Empty partitions

 Suppliers (R)

I
1

R

I
2

R

I
3

R

I
1

T

I
2

T

I
3

T

China, India, Germany, US

Brazil, China, Mexico

Indonesia

China, India, US

 Brazil China, Germany, Mexico

China, US

Figure 3.6: Partitioning For Suppliers (R) and Transporters (T)

52

3.5 HANDLING JOIN PREDICATES

To determine if an input-partition shares at least a single domain value, we maintain

a signature for each partition to capture the domain values of its member objects. This

signature could either be a Bloom Filter, bit vector, etc. In Figure 3.6 for each partition

in R (or T) we maintain a list of countries to which the suppliers (or transporters) belong

to, e.g., IT3 has suppliers from China and US.

For finite domains, to efficiently maintain the occurrence of join values within a parti-

tion we use a bit vector with size equal to the cardinality of the domain of the join attribute.

In the motivating example as in Figure 3.6, Dom(country)= {Brazil, China, Germany,

India, Indonesia, Mexico, USA}, and input partition IR1 has a bit vectorBR
1 (0111001). For

our bit vector method, to determine if the input partition pair [IRi , ITj] will generate even

a single join result, a simple bit-wise AND operation between BR
i and BT

j is sufficient.

If the resulting bit vector BR
i ∧ BT

j is greater than 0, the region Ri,j is guaranteed to be

populated. Otherwise, the output region Ri,j is guaranteed to be empty. Then we simply

do not perform computation on such empty region and move on to the next input partition

pair. In our running example, BR
1 (0111001) ∧ BT

1 (0101001)=(0101001) > 0 and there-

fore we generate region R1,1. Conversely, BR
3 (0000100)∧BT

1 (0101001) = (0000000) and

we do not generate region R3,1.

Region- and Output Partition-Level Elimination:. When an output region or output

partition is populated by at least one member, we proceed with the techniques described in

Chapters 3.1-3.2 without any modification. This is because both output region- and output

partition-level reasoning are independent of domain values and only concern themselves

itself exclusively with dominance properties of output regions or partitions that are known

to contain some join pairs.

Object-Level Execution. We only consider output regions that are guaranteed to be

populated and generated in the previous steps. Next, we generate combined objects that

satisfy the join condition. The strategy presented in Chapter 3.4 can thus be used as is to

53

3.5 HANDLING JOIN PREDICATES

generate the final skyline.

For very large domain values when the bit-vector based join evaluation may become

rather expensive. We propose two alternative solution strategies that can applied as ex-

plained next. One, we could interleave region elimination during tuple level processing

and, two, we could deploy sampling. In the case of interleaving we start by assuming

that we have no knowledge of any region being guaranteed to be populated. Then, we

iteratively trigger the region and partition-level elimination when a previously empty out-

put region or output partition becomes populated. Alternatively, for the sampling based

approach we sample each input data source (table) in the given SMJ join query. Based on

the obtained sample set of input tuples (from both tables in our running example) we gen-

erate join tuples. These join tuples are then mapped and further used to prune dominated

output regions.

SKIN handles both numeric and non-numeric join attributes as illustrated in our mo-

tivating example in Figure 3.6 where the join condition is on country – a non-numeric

attribute. Since we use a bit-vector to encode join attribute values, both numeric and

non-numeric domain values can be supported.

54

4

Experimental Evaluation of SKIN

In this section, we verify the effectiveness and efficiency of our proposed SKIN approach

to handle skyline queries over disparate sources.

4.1 Experimental Setup

4.1.1 Proposed Techniques

The principle of skyline partial push-through (BKS01, HK05) is complimentary to the

core approach presented in Chapter 3. Here, we incorporate this principle by pruning

each individual data source by first applying Algorithm 5 on them separately.

Algorithm 5 Skyline Partial Push-Through
Input: Input Set R; Skyline dimensions {a1, . . . ad}; Join attribute ad+1

Output: Set of non-dominated objects with-in the same join attribute value ad+1

1: Group objects in input set R into groups Gi by the join attribute ad+1

2: for each group Gi do
3: LRi = Generate local skyline on attributes {a1, . . . ad}
4: return LRo ∪ LR1 ∪ . . . LRk

55

4.1 EXPERIMENTAL SETUP

4.1.2 Competitor Techniques

In this dissertation we compare the performance of our proposed technique with the

following state-of-the-art techniques. First, JFSL with the improvement of incremen-

tally maintaining the skyline of join results and using a hash-based join implementation

(KLTV06). Second, an optimized JFSL+ that uses the principle of skyline partial push-

through to prune each individual data source. Third, Skyline-Sort-Merge-Join (SSMJ)

technique proposed by (JEHH07). SSMJ maintains for each data source two active lists

of objects: (1) those objects that are in the set-level skyline generated by ignoring the join

condition, and (2) the objects that are in the group-level skyline for each join attribute

value (as in Algorithm 5). Next, these lists are given for join evaluation, set-level lists

first followed by group-level lists. The skyline is then computed over the join results

to return the final query results. Fourth, we deploy SAJ (KLTV06) which extended the

popular Fagin technique (FLN01) following the JFSL paradigm.

4.1.3 Experimental Platform

All experiments are conducted on a Linux machine with AMD 2.6GHz Dual Core CPUs

and 4GB memory. All algorithms are implemented in Java 1.5.0 16.

4.1.4 Evaluation Metrics

For each algorithm we measure: (1) the total execution time, (2) the total number of

intermediate combined-objects generated, and (3) the total number of domination com-

parisons required to generate the final skyline. In addition, we measure the time taken by

each phase of our approach.

56

4.2 EXPERIMENTAL ANALYSIS OF SKIN

4.1.5 Stress Test Data

We have conducted our experiments using data sets that are the de-facto standard for

stress testing skyline algorithms in the literature (BKS01). The data sets contain three

extreme attribute correlations, namely independent, correlated, or anti-correlated. For

each data set R (and T), we vary the cardinality N [10K–500K] and the # of skyline

dimensions d. The attribute values are real numbers in the range [1–100]. The join

selectivity σ is varied in the range [10−4–10−1]. The mapping function used is an addition

operation between the attribute-values of the corresponding dimensions similar to those

in our motivating queries in Chapter 1.2. In Chapter 4.3.4 we analyze the performances

of the different techniques by varying the mapping function applied over the join results.

We set |R| = |T | = N .

Real Data Sets. In addition, we also conducted our experiments using two real data sets,

namely NASDAQ data1 and Household data2. The NASDAQ data set contains 219K 6-

dimensional tuples, where each tuple represents the information about daily trading of

NASDAQ stocks. The attributes for each tuple comprises of open price, high price, low

price, close price, volume, and adjusted close price. The household data set contains

127k 6-dimensional tuples, where each tuple represents the amount spent annually by an

American family on gas, electricity, water, heating, insurance, and property tax.

4.2 Experimental Analysis of SKIN

Purpose. We first study the robustness of our approach by varying: (1) partition sizes δ,

(2) data distributions, (3) cardinality N , and (4) dimensions d. For a dimension d, data

distribution and cardinality N , we measure the execution time for each partition size δ.

1available at http://davis.wpi.edu/xmdv/datasets/nasdaqg.html
2available at www.ipums.org

57

4.2 EXPERIMENTAL ANALYSIS OF SKIN

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 3 4 5 6 7 8 9

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Partition Size ()

()

100K
300K
500K

(a) Correlated Distribution

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 3 4 5 6 7 8 9

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Partition Size ()

() p

100K
300K
500K

(b) Independent Distribution

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 3 4 5 6 7 8 9

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Partition Size ()

()

100K
300K
500K

(c) Anti-Correlated Distribution

Figure 4.1: Effects of Partition Size (δ) On SKIN’s Performance (d = 2; σ = 0.1)

58

4.2 EXPERIMENTAL ANALYSIS OF SKIN

Partition Size (δ). The effectiveness of SKIN depends on the ratio between the object-

level vs. the partition-level granularity. (DTB09, TB10) proposed a tool to automate

the task of identifying good settings for database configuration parameters. In this work,

we follow the principle proposed in (TB10) to test our proposed system based on a set

of training work loads generated by the de-facto standard for testing skyline algorithms

(BKS01). For our training data set, for each d, we generated data sets with several key dis-

tributions (correlated, anti-correlated and independent) of sizes 100K, 300K, and 500K.

That is, for each d we had 9 training data sets. Figures 4.1.a–c show the execution times

of SKIN for dimension d=2, and for the data sizes N= 100K, 300K and 500K. Smaller

partition sizes δ will result in many sparsely populated input partitions, and therefore the

overhead costs of region-level elimination will out-weigh its benefits. Alternatively, as

δ is increased the execution costs of region-level eliminations are reduced. For large δ

however may only marginally reduce the number of combined objects generated and thus

would increase the number of combined objects to be compared against the output space.

This insight is confirmed in Figures 4.1.a–c for δ ≥ 6 for all distributions. In Figures

4.1.a–c and for all N , we observe that δ = 4 for all three distributions has the smallest

execution costs compared to the other partition sizes. Similarly, for the dimension d=3

and then d=4 we observe similar trends for picking δ =12 or δ=17 respectively for all

distributions. Based on these encouraging findings of stability across distributions, an op-

timizer could choose a delta for given a data set, distribution and number of dimensions

in its setup time.

Execution Time Analysis of SKIN Steps. In Figure 4.2 we present the CPU processing

time incurred by the four steps in our proposed SKIN methodology.

Cardinality (N). In Figure 4.2 for any given data distribution, we observe that the exe-

cution time for output region elimination, output partition elimination and skyline aware

59

4.2 EXPERIMENTAL ANALYSIS OF SKIN

Figure 4.2: Execution Time for the Different Phases in SKIN; d=4, σ=0.01

join ordering remains constant across varying N . This is due to the fact these steps per-

form query evaluation at the granularity of output regions and output partitions, and stay

unchanged once a given δ selection has been made. This is indeed the salient feature of

our approach, namely to conduct much of the reasoning and dominance elimination early

on at the cheaper partition level so that the more compute-intensive object-level effort is

minimized. In contrast, the object level execution is affected by the change in N . More

specifically, in Figure 4.2 for anti-correlated data distribution, as N increases from 100K

to 500K the time needed to perform object-level execution is 65, 190 and 320 seconds

respectively. This is consistent with the findings reported in Figure 4.1.c for the best δ

value. It is important to note that the effects of N on object level execution is greatly re-

duced by (1) performing the dominance comparison to tuples mapped to a smaller subset

of output partitions (see Chapter 3.2), and (2) the effective pruning accomplished by the

first three optimization steps of SKIN. In Figure 4.2, for independent and correlated dis-

tributions the first three optimization steps of SKIN are so effective that the object-level

execution step takes less than 1 and 10 seconds.

Distributions. Correlated distribution is specially geared for skyline operation, since a

few objects can potentially dominate the remainder (BKS01). Most skyline algorithms

60

4.3 COMPARISONS WITH STATE-OF-THE-ART

tend to do the best for such correlated data sets (BKS01, PTFS05, KLTV06). Figures

4.1.b, 4.3.a and 4.4.a show clearly that our approach is efficient in handling correlated

data for all cardinalities and dimensions. Anti-correlated data is a much more challenging

for skyline algorithms since they produce large skyline results (BKS01). It is interesting to

observe in Figures 4.3.a and 4.4.a that our method however is robust and has significantly

better performance that the state-of-the-art techniques in this most challenging scenario.

The detailed comparison of the proposed approach against state-of-the-art techniques,

depicted in Figure 4.5, confirms that for anti-correlated data our optimization phases are

highly effective in reducing the number of skyline comparisons.

4.3 Comparisons with State-of-The-Art

Purpose. We compare SKIN against existing techniques based on three factors: (1) exe-

cution time, (2) the number of intermediate join results (combined objects) generated, and

(3) the number of skyline comparisons. (KLTV06) acknowledged that SAJ is beneficial

only for correlated data while JFSL-based techniques exhibit better performance for all

distributions. Thus we focus our detailed comparative study on JFSL, JFSL+ and SSMJ.

4.3.1 Execution Time

Figures 4.3 and 4.4 compare the execution times of the different techniques for d=3, and

d=5 respectively. JFSL generates all possible join results which for most of cases range

in the order of several million combined-objects. Due to this drawback, JFSL exhibits

inferior performance as observed in Figures 4.3.a-c. For d=4 and anti-correlated data

sets, JFSL ran out of memory space and failed to return results. Therefore, for d ≥4 we

only compare our technique against JFSL+ and SSMJ.

For d=3 and for skyline friendly data distributions such as correlated and independent

61

4.3 COMPARISONS WITH STATE-OF-THE-ART

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

 0.0001 0.001 0.01 0.1

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Join Selectivity

JFSL
SSMJ
JFSL+

SKIN

(a) Correlated Distribution

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

 0.0001 0.001 0.01 0.1

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Join Selectivity

JFSL
SSMJ
JFSL+

SKIN

(b) Independent Distribution

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

 0.0001 0.001 0.01 0.1

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Join Selectivity

JFSL
SSMJ
JFSL+

SKIN

(c) Anti-Correlated Distribution

Figure 4.3: Performance Comparisons with JFSL, JFSL+, and SSMJ for d = 3; N=500K

62

4.3 COMPARISONS WITH STATE-OF-THE-ART

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

 0.0001 0.001 0.01 0.1

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Join Selectivity

SSMJ
JFSL+

SKIN

(a) Correlated Distribution

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

 0.0001 0.001 0.01 0.1

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Join Selectivity

p

SSMJ
JFSL+

SKIN

(b) Independent Distribution

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

 0.0001 0.001 0.01 0.1

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

[L
o

g
 S

c
a

le
]

Join Selectivity

Distribution - Anti-correlated; Dimensions = 5; N = 500K

SSMJ
JFSL+

SKIN

(c) Anti-Correlated Distribution

Figure 4.4: Closer Investigation with only JFSL+, and SSMJ for d = 5; N=500K

63

4.3 COMPARISONS WITH STATE-OF-THE-ART

distributions, SKIN has identical performance as JFSL+ and SSMJ as shown in Figures

4.3.a and 4.3.b. For the tougher anti-correlated data, SKIN is effective and outperforms

both JFSL+ and SSMJ on average by 1 order of magnitude for the join selectivity of

σ ≥ 0.001. It is important to note that even though JFSL+, SSMJ, and SKIN all receive the

same set of pruned pre-filtered sources, and SKIN is able to perform better than others due

to its underlying principle of query processing at different data abstractions. Therefore,

from Figure 4.3 we can conclude that for d=3 SKIN is robust and exhibits in many cases

1 order of magnitude faster performance. Henceforth, we focus our discussion on the

anti-correlated and independent data distributions.

For d=5 and independent data sets in Figure 4.4.b we observe that for the join se-

lectivity of σ = 0.0001, SSMJ is 15 seconds faster than SKIN. The crossover point is

σ > 0.001 when SKIN outperforms SSMJ. More specifically, by slightly less than 1 order

of magnitude for σ = 0.1 and 2 folds better for σ = 0.001. For d=5 and anti-correlated

data set, in Figure 4.4 we observe the following: (1) for join selectivity σ > 0.001, both

JF-SL+ and SSMJ fail to return results even after several hours, (2) since SKIN can exploit

the knowledge of the output space it can further optimize the generation of join results

and minimize the number of skyline comparisons, and (3) for σ = 0.0001 and σ = 0.001

SKIN outperforms both SSMJ and JFSL+ by a factor larger than 1 order of magnitude.

Therefore, for d = 5 SKIN is robust and effective across all distributions in comparison

to existing techniques.

4.3.2 Number of Join Results Generated

For correlated data sets a few tuples can dominate a large portion of the input space.

Therefore the partial push through principle when used as a pre-filtering phase is very

effective in making correlated data sets less interesting. In Figure 4.5, we compare the

number of join results generated by the different algorithms on the primary y−axis and

64

4.3 COMPARISONS WITH STATE-OF-THE-ART

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

JFSL+

SSM
J

SKIN
JFSL+

SSM
J

SKIN
JFSL+

SSM
J

SKIN
JFSL+

SSM
J

SKIN

 1e+06

 1e+07

 1e+08

 1e+09

N
u

m
b

e
r

o
f

J
o

in
 R

e
s
u

lt
s

N
u

m
b

e
r

o
f

S
k
y
lin

e
 C

o
m

p
a

ri
s
o

n
s
 [

L
o

g
 S

c
a

le
]

Join-Results
Skyline-Comparisons

=0.1=0.01=0.001=0.0001

(a) Independent Distribution

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

JFSL+

SSM
J

SKIN
JFSL+

SSM
J

SKIN
JFSL+

SSM
J

SKIN
JFSL+

SSM
J

SKIN

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

N
u

m
b

e
r

o
f

J
o

in
 R

e
s
u

lt
s

N
u

m
b

e
r

o
f

S
k
y
lin

e
 C

o
m

p
a

ri
s
o

n
s
 [

L
o

g
 S

c
a

le
]

Join-Results
Skyline-Comparisons

=0.1=0.01=0.001=0.0001

(b) Anti-Correlated Distribution

Figure 4.5: Number of Join Results Generated, and Number of Skyline Comparisons for d=4
and N=500K

the . number of skyline (dominance) comparisons on the secondary y − axis.

Here we observe that SKIN produces the least number of join results across all join

selectivities and for both independent as well as anti-correlated data sets. This is because

SKIN effectively exploits the region- and partition-level elimination techniques proposed

in Chapters 3.1 and 3.2 respectively. In Figure 4.5.a for independent data sets, SKIN

has an average performance benefit of producing 45% fewer intermediate join results

across various join selectivities when compared against both SSMJ and JFSL+. More

specifically, the minimum benefit is 7% lesser join results for σ = 0.1 and a maximum

65

4.3 COMPARISONS WITH STATE-OF-THE-ART

benefit of 122% for σ = 0.0001. For anti-correlated data sets, as in Figure 4.5.b, the

average benefit is to produce 50% lesser intermediate join results with a minimum of 10%

fewer intermediate join results for σ = 0.1 and a maximum of 105% fewer intermediate

join results for σ = 0.0001.

4.3.3 Number of Skyline Comparisons Performed

In Figure 4.5, we compare the number of skyline (dominance) comparisons on the sec-

ondary y-axis needed by the respective algorithms. For anti-correlated data, SKIN re-

quires 1 and 2 orders of magnitude fewer skyline comparisons than SSMJ and JFSL+

respectively to generate the final skyline. In contrast, for independent data sets SKIN

requires 1 order of magnitude fewer skyline comparisons than both SSMJ and JFSL+.

4.3.4 Differing Mapping Functions

In this section, we compare the performance of the algorithms for different mapping func-

tions. The mapping functions considered in this work are of the form (αi ∗ rl[i]) + (βi ∗

tm[i]) + γ[i] where rl ∈ R and tm ∈ T . We vary the product coefficients α[i] and β[i]

in between [1–5] and the constant coefficient γ[i] is chosen between [0–5]. For instance,

in Figure 4.6 for Q1, the third dimension of each join tuple is produced by the mapping

function ((5 ∗ rl[3]) + (3 ∗ tm[3]) + 4) where rl ∈ R and tm ∈ T . In Figure 4.6.a, we

compare the execution times of JFSL+, SSMJ and SKIN. The underlying mapping func-

tion effects the number of skyline points in the final result set. Therefore, there is a slight

fluctuation in total execution costs, as in Figure 4.6.a, for each algorithm. In Figure 4.6.a

when comparing execution costs, we observe for all 10 mapping functions SKIN performs

consistently well in the range of 2-4 fold better than both SSMJ and JFSL+. The superior

performance of SKIN even when there is a large overlap between the regions is due the

66

4.3 COMPARISONS WITH STATE-OF-THE-ART

2e+01

4e+01

6e+01

8e+01

1e+02

1e+02

1e+02

2e+02

2e+02

2e+02

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Varying Mapping Functions

SKIN
JF-SL+

SSMJ

(a) Number of Join Results Generated

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

N
um

be
r o

f J
oi

n
R

es
ul

ts

Varying Mapping Functions

SKIN
JF-SL+

SSMJ

(b) Number of Skyline Comparisons Performed

1e+05

1e+06

1e+07

1e+08

1e+09

1e+10

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

N
um

be
r o

f S
ky

lin
e

C
om

pa
ris

on
s

[L
og

 S
ca

le
]

Varying Mapping Functions

SKIN
JF-SL+

SSMJ

(c) Total Execution Time

Figure 4.6: Performance Comparison for Various Mapping Functions (Anti-Correlated; d =
3; N = 500K)

67

4.4 REAL DATA SETS

effecting query processing at different levels of granularity employed by SKIN.

In Figure 4.6.b we observe that once skyline partial push-through is performed both

JFSL+ and SSMJ cannot further reduce the number join results that need to generated.

However, by performing operations at a higher-level of granularity SKIN is able to still

further reduce the number join results generated. More specifically, SKIN generates on

average 78% fewer join results than its competitors. In Figure 4.6.c we compare the

number of skyline comparisons performed by the algorithms where we observe that SKIN

requires 2-3 orders of magnitude fewer skyline comparisons than SSMJ or JFSL+.

4.4 Real Data Sets

The preference is on 5 numeric dimensions obtained by adding the corresponding dimen-

sions of the two contribution input tuples. For the NASDAQ data sets we use the stock-id

as the join condition where there are 110 unique stock ids. In contrast for the Household

data sets we introduce a join variable having selectivity of 0.001. The performance com-

parisons of the three compared techniques are reported in Table 4.1. Our proposed SKIN

technique is shown to have better performance than both JFSL+ and SSMJ for all three

metrics, namely execution time, number of join results generated and number of skyline

comparisons performed during query evaluations.

For NASDAQ data sets the distribution for the attribute values is observed to be cor-

related. For such correlated distributions the principle of skyline partial push through a

small fraction of the input tuples can effectively prune a large number of input tuples.

Therefore after applying skyline-push through all three techniques generate 3520 join tu-

ples – which is indeed very small. SKIN is shown to conduct approximately 1 order of

magnitude fewer skyline comparisons than both JFSL+ and SSMJ.

Even though the principle of skyline partial push through is not as effective for the

68

4.5 SUMMARY OF EXPERIMENTAL CONCLUSIONS

Data Set Algorithm Time (sec) # of Join Tuples # of Skyline Comparisons

NASDAQ
SKIN 1 3520 3432

JFSL+ 4 3520 28228
SSMJ 4 3250 28228

Household
SKIN 9 442,953 1,312,997

JFSL+ 15 835,688 52,323,765
SSMJ 14 835,688 24,135,510

Table 4.1: Performance Comparisons over NASDAQ and Household data sets

Household data sets as it was for NASDAQ data sets, our proposed SKIN approach is

shown to generate far fewer number of join results than the comparable techniques. More

specifically, generating ≈2 fold fewer join results than both JFSL+ and SSMJ. Lastly,

SKIN’s object-level execution methodology enables it to perform far smaller number (> 1

order of magnitude) of skyline comparisons than the compared techniques.

4.5 Summary of Experimental Conclusions

SKIN is effective for the more difficult data distribution for skylines, namely the anti-

correlated data due to the fact that we exploit the principle of abstract level processing at

each step of the query evaluation process. We now elaborate in detail where these benefits

occur.

1. The region-level elimination supplemented by an effective execution ordering en-

ables SKIN to avoid the generation of many join tuples which are otherwise gener-

ated by compared techniques (JMP+10, KLTV06) as depicted in Figures 4.5.

2. In SKIN we propose two additional optimization steps – output-partition level (Phase

II) and object-level processing (Phase IV) described in Chpaters 3.2 and 3.4 respec-

tively. For each newly generated join tuple ritj , SKIN can (cheaply) determine the

subset of (comparable) partitions whose tuples can potentially dominate it. In the

69

4.5 SUMMARY OF EXPERIMENTAL CONCLUSIONS

case of anti-correlated data sets, instead of comparing against all objects as done

in existing techniques, SKIN reduces the comparisons to only a small set of objects

that map to the comparable partitions.

3. State-of-the-art techniques (JEHH07, JMP+10, KLTV06) do not conduct any abstract-

level processing and instead must rely on the much more expensive pairwise object-

level comparisons. Therefore, for anti-correlated data sets as reported in Figures

4.5.b and 4.6.c we show that we drastically reduce the total number of comparisons

by 1-3 orders of magnitude.

The findings of our experimental analysis can be summarized as follows:

1. The SKIN approach is robust across all distributions, cardinality and join factors.

2. The principle of skyline partial push-thorough is complimentary to our work.

3. For all three data distributions, cardinalities and join selectivities, SKIN outperforms

both JSFL+ and SSMJ. More specifically, for skyline non-friendly anti-correlated

data SKIN outperforms by 1-2 orders of magnitude in execution times. In addition,

for skyline-friendly correlated data sets SKIN has competitive performance with

respect to both SSMJ and JFSL.

4. For dimensions d=5, current techniques do not report any results even after several

hours when the data set is anti-correlated and selectivity σ > 0.001. In contrast,

SKIN is shown to perform well even for such difficult skyline non-friendly data sets.

5. For independent and anti-correlated data sets, SKIN produces fewer numbers of

intermediate join results than compared techniques. More precisely, on average

50% fewer intermediate join results are produced.

70

4.5 SUMMARY OF EXPERIMENTAL CONCLUSIONS

6. SKIN is more effective in performing a smaller number of dominance comparisons

to generate the final skyline than JSFL+ or SSMJ. More specifically, SKIN requires

1-2 orders of magnitude fewer skyline comparisons to generate the final results.

71

5

Related Work for Part I

5.1 Skyline Algorithms over a Single Relation

The majority of research on skylines has focused on the efficient computation of a skyline

over a single relation (BKS01, KRR02, CGGL03, PTFS03, BCP06). These algorithms

can be broadly categorized as either a non-index or index-based solutions. (BKS01) pro-

posed non-index based approaches such as Block-Nested Loop (BNL) and Divide and

Conquer (D&C). The block nested loop (BNL) (BKS01) approach compares each new

object against the skyline of objects considered so far. The simplicity of BNL and its

ability to handle a higher dimensional skyline operator without the help of indexing and

sorting makes it widely applicable. Divide-and-Conquer (D&C) (BKS01) divides a single

data set into several memory-resident subsets. For each subset, the algorithm then eval-

uates a local skyline which is later merged to form the output skyline. D&C is primarily

efficient when the data set and number of dimensions are small (BKS01, PTFS03).

Sort-First-Skyline (CGGL03) and SalSa (BCP06) based on the BNL rationale pro-

posed algorithms that improve the performance by conducting various sorting and halting

strategies. The bitmap algorithm proposed in (TEO01) converts each data point p into a

72

5.2 SKYLINES OVER DISPARATE SOURCES

bit string, which encodes the number of points having a smaller coordinate than p on each

dimension. When encoding a single dimension of an object, we need to know how many

other objects dominate this object in that dimension and therefore this indexing is an ex-

pensive process. Additionally, this approach assumes no duplicate values. The skyline

operation is then viewed as set of bitwise operations.

The Nearest Neighbour (NN) algorithm (KRR02) is an index-based approach that

recursively divides the input region by finding the nearest neighbor to the region’s ori-

gin. For higher dimensions of d > 2 the partitions can have some overlap thereby caus-

ing duplicate objects. (KRR02) proposes several alternative techniques such as laisser-

faire, merge and propagate to handle duplicate elimination. Experimental evaluation in

(KRR02) concludes that the performance results of laisser-faire and merge techniques

make them unacceptable. To overcome these shortcomings, (PTFS05) proposed a Branch

and Bound Search of the R-Tree index.

5.2 Skylines over Disparate Sources

In the context of returning meaningful results by relaxing user queries, (KLTV06) pre-

sented various strategies that follow the join-first, skyline-later (JF-SL) paradigm. This

approach does not consider mapping functions. In fact, it is shown to be effective only

for correlated data where the combined-object generation can be stopped early (BKS01)

confirming the findings presented in (KLTV06). (JEHH07, JMP+10) proposed the Sky-

line Sort Merge Join (SSMJ) technique and its extensions to handle skylines over join by

primarily exploiting the principle of skyline partial push-through.

This approach suffers from the following three drawbacks: First, SSMJ is only ben-

eficial when the local level pruning decisions can successfully prune a large number of

objects, namely for skyline friendly data distributions such as correlated and independent

73

5.2 SKYLINES OVER DISPARATE SOURCES

or highly selective join predicate (SWLT08). SSMJ proposed to first group tuples for each

individual table by the join attribute(s). Next, for each join attribute domain value it gen-

erates a local skyline. Additionally, for each individual table the algorithm also maintains

a table-level partial-skyline. This approach does not consider mapping functions, which

is a critical component of our targeted queries. Thus it simplifies the problem because

when mapping functions are considered the skyline dimensions are generated on the fly.

We now present a counter example to illustrate that the dominance comparison avoidance

property achieved in (JEHH07) no longer holds when mapping functions are supported as

in our case. Consider the example when the relations R and T both have two objects each

with the domain value 135. Specifically, r1 (135, 0.25, 4.75) and r4 (135 , 2.75, 3.25) inR

and t2 (135, 1.75, 5.25) and t4 (135, 3.25, 1.75) in T , where the objects have the schema

<joinAttribute, distance, price>. Since the objects in R and T both are in the group-

and table-level skyline, (JEHH07) generates four skyline combined-objects namely r1t2,

r1t4, r4t2 and r4t4, and outputs them as skyline results. This however is incorrect because

the join result r1t4 (3.5, 6.5) dominates the result r4t2 (4.5, 8.5) and therefore is not in

the final skyline. Clearly, the prior guarantees of minimizing dominance comparisons no

longer hold here when mapping functions are involved.

Moreover, (JEHH07) suffers from the following disadvantages: (1) skylines and map-

ping functions cannot always be correctly pushed-through (KLTV06), (2) when the num-

ber of distinct variables are large the pruning capacity of the partial skyline is greatly

reduced (BKS01), (3) generating group- and table-level skylines is by itself an expen-

sive process when dealing with a large table where the number of distinct variables are

few, (4) the dominance comparison avoidance property previously achieved in (JEHH07,

JMP+10) can no longer be ensured when handling mapping functions (as shown below),

and (5) to ensure that no skyline results have been missed requires a significant amount of

bookkeeping (JMP+10). In our experimental study, see Chapter 4, we show that even in

74

5.3 PUSHING SKYLINE INSIDE AND THROUGH JOIN EVALUATION

data sets where SSMJ has good performance our proposed SKIN+ performs equally well.

Second, since existing techniques do not have any knowledge of the mapped output space

SSMJ is unable to exploit this knowledge to reduce the number of dominance compar-

isons. Third, the previously held guarantee, namely objects in the set-level skyline of an

individual table will clearly be in the output, no longer holds here. This is so because they

do not consider mapping functions which can affect dominance characteristics.

(SWLT08, JMP+10) noted that for a very low join selectivity of ≤ 0.000001, SSMJ is

ineffective in pruning many objects both at the set- and group-level of each data source.

To handle such scenarios, (SWLT08, JMP+10) made modification to the core SSMJ ap-

proach. However, for σ > 0.00001 (when the non-reductive property holds for join

operations) as in our work, the performance of these techniques remain identical to that

of SSMJ (SWLT08). Following the principles proposed in (JMP+10), (VDP11, KML11)

recently proposed alternative sorting-based techniques.

5.3 Pushing Skyline Inside and Through Join Evaluation

To draw a parallel to Select in Select-Project-Join (SPJ) queries, there are scenarios when

the skyline functionality can be pushed inside as well as sometimes pushed-through joins

(BKS01, HK05). Such rewrite rules aim to facilitate processing. For instance, pushing

Select inside the Cartesian product results in the theta-join operator, for which numer-

ous efficient strategies such as index-join, sort-merge join, etc., have been devised in the

literature.

In the same spirit, we observe that the skyline operation can be viewed as a com-

plex and expensive filter operation. In our motivating query Q1, the attribute value

of each skyline dimension is generated on the fly by the join and mapping operations.

(KLTV06) noted that skylines cannot be correctly pushed-through in many scenarios. In

75

5.3 PUSHING SKYLINE INSIDE AND THROUGH JOIN EVALUATION

traditional filters increasing the number of conditions will usually increase its pruning

capacity. However, adding a preference to a skyline operation will reduce their filtering

capacity and increase the cardinality of its result set up to the size of the entire relation

(CDK06). Therefore, the partial push-through of skylines can be an expensive and some-

times ineffective proposition.

(JMP+10, KML11, SWLT08) proposed techniques that rely heavily on the effective-

ness of making local partial push-through decisions on each individual data source. By

relying primarily on the principle of partial push-through, (JEHH07, SWLT08) are un-

able to see the forest from the individual trees. Thus by only exploiting the partial push-

through they suffer from the following two limitations: (1) not being robust for a wide

variety of data sets as they themselves report (SWLT08), and (2) for the generated join

results techniques proposed in (JMP+10, SWLT08) cannot further optimize the skyline

evaluation even when such opportunities could be found provided the knowledge of the

forest is exploited.

76

Part II

Progressive Result Generation for

Multi-Criteria Decision Support

Queries

77

6

ProgXe: Progressive Execution

Framework

In this section, we provide an overview of the main steps of our proposed progressive

query execution framework, ProgXe. The ProgXe framework (Figure 6.1) efficiently ex-

ploits the skyline knowledge at various steps of query processing (both in evaluation and

early output) as well as at different levels of data abstraction.

Without directly having to dive into expensive tuple-level processing like existing

state-of-the-art techniques (JEHH07, KLTV06, SWLT08), ProgXe exploits SKIN’s prin-

ciple of processing queries at multi-levels of data abstraction to look ahead into the output

space in our first step, thus named output space look-ahead. The goals of this step are

to: (1) generate the higher-level abstraction of the output space and (2) prune dominated

abstractions early on. Internally, the output space look-ahead phase of ProgXe exercises

two SKIN components namely region-level elimination and partition-level elimination

(described in Chapters 3.1 and 3.2 respectively) to perform the join and skyline query ex-

ecution at a higher granularity of abstraction rather than at the level of individual tuples.

Next, in our progressive driven ordering step we investigate the output space, as

78

!"! #$%$&'($)(*$)+,-%)&$./0(.)(*'()1'2)(,)(*$).$0$3($4)'5.(&'36,%)

7"! 8$&9,&1).:;0-%$)3,12'&-.,%.)<*-0$)1-%-1-=-%>)(*$)(,('0)%/15$&),9)

.:;0-%$)3,12'&-.,%.)%$$4$4)(,)>$%$&'($)(*$)2'&6'0)&$./0()

?@A8@A)B8CDE)F)G??H)CIECJ)

!"#$%"&'(

)*(+,-.(

/012-/34,51(

5..6(2,(0.(

7-,3.11.6(

!"! #$%$&'($),/(2/()'5.(&'36,%.)9&,1)(*$)-%2/()'5.(&'36,%.)

7"! J-.3'&4)4,1-%'($4),/(2/()'5.(&'36,%)>/'&'%($$4)(,)%,()

3,%(&-5/($)(,)(*$)K%'0).:;0-%$)

89:(;<.-=(

!" #">1.-(

?/2/((

8,<-3.1

@-,A-.11BC.(@/-4/D(%.1<D21(

!"! J$($&1-%$)$'&0;),/(2/()4$2$%4$%3-$.)'1,%>)'5.(&'36,%.)

7"! ?&4$&)'5.(&'36,%.)9,&)(/20$L0M0)2&,3$..-%>)(,),261-=$)(*$)&'($)

'()<*-3*)2'&6'0)&$./0(.)'&$),/(2/()$'&0;)'%4).$0$3(),%$)

8N?#NEBBOPE)JNOPEQ)?NJENOQ#)

E012-/32(CB.F(,*(2G.(,<27<2(17/3.((

A@8GELGEPEG)8N?DEBBOQ#)

8N?#NEBBOPE)NEB@GA)JEAENROQCAO?Q

J$($&1-%$)(*$).$(),9)(/20$.)>$%$&'($4).,)9'&))

(*'()3'%)%,<)5$).'9$0;),/(2/()

8.D.32.6(/012-/34,5

!<--.52(,<27<2(17/3.((

Figure 6.1: Overview of the Progressive Query Execution Framework – ProgXe

shown in Figure 6.2 to identify output abstractions that have a higher likelihood of gen-

erating tuples that can be output early. The goal of this step is to maximize the rate at

which the results are output early. This is achieved by ordering the sequence in which the

output abstractions are considered for the expensive operation of tuple-level processing.

The chosen output abstraction is then sent for processing to SKIN object-level processing.

From the generated intermediate results, we need to next determine the subset of

these results that safely belong into the final skyline so that they can be output early. In

our progressive result determination step, we analyze the dependencies in the output

space to determine which tuples can be output early since they are guaranteed to belong

79

A

B

CR 1,2 R 4,1

R 3,1

D

d

g

F

K

LR 1,3

a

b

c e

G

E

H

f

J
I

j

i

k
l

tcost

delay

Output Partitions dominated by S

Regions dominated by S

Potential Combined Partitions

pes

pes

Lower Bound

Upper Bound Not in Spes

Upper Bound in Spes

pessimistic skyline ()Spes

h

R 2,1

Figure 6.2: Output Space Look-Ahead: Avoid Join and/or Skyline Costs

into the final result set. The last three phases of the ProgXe pipelined steps are repeated

until all output abstractions have either been considered for tuple-level processing or are

dominated (and thus guaranteed to not contribute to the final result).

Details descriptions of the components of the output space look-ahead (namely, region-

level processing and object-level processing) and tuple-level processing can be found in

Chapter 6. In Chapter 7 we elaborate on the progressive benefits of ordering, followed by

our progressive driven ordering algorithm to achieve this goal. Lastly, in Chapter 8 we

present the details of our progressive result determination phase.

80

7

Progressive Driven Ordering

In this section, we highlight the impact that ordering of tuple-level processing can have

on progressive result generation. We then propose our technique to optimize the query

execution strategy such that the rate at which results are output early is maximized. In par-

ticular, our solution orders the regions based on their respective progressiveness capacity

versus penalty (that is, their respective processing costs required to gain that benefit).

7.1 Effect of Ordering

The order in which we conduct the tuple-level processing of regions can affect the rate at

which the partial results are output. To elaborate, let us compare two orderings of regions

for tuple-level processing. Consider a good ordering that produces more results early:

R1,2, R1,1, R1,3, and so on, as depicted in Figure 7.1.a. Following this ordering, the join

results that map to the region R1,2 are generated and then their corresponding dominance

comparisons are performed. While examining the output space, as shown in Figure 6.2,

we observe that results that map to the partitionsO[(3,5)],O[(3,6)],O[(4,5)], andO[(4,6)]

cannot be dominated by any future generated tuples belonging to other regions. Therefore,

81

7.1 EFFECT OF ORDERING

tuples that map to these partitions (4 of 6 partitions in R1,2) can be safely output early.

However, results that map to the remaining two partitions O[(5,5)] and O[(5,6)] cannot

yet be output. They can potentially still be dominated by future generated tuples that map

to the partitions O[(5,4)] and O[(5,5)] during the tuple-level processing of region R1,3.

Thus, they must be held in the output buffer.

R1,2 R1,1 R1,3
Tuple-level

processing

!"#$%&'(%)

!"#$%$*'%)

!"#+%&'(%)

!"#+%$*'%)

!"#,%&'(%)

!"#,%$*'()

!"#,%-'(%)

!"#.%-'(%)

!"#,%/'(%)

!"#.%/'()

!"#-%.'(%)

!"#/%.'(%)

!"#-%-'(%)

!"#/%-'(%)

!"#-%/'()

012)

Progressively

output tuples

in partition

R2,1 R1,3 R1,1
Tuple-level

processing

!"#-%.'(%)

!"#/%.'()

!"#$%&'(%)

!"#$%$*'()

!"#+%&'(%)

!"#+%$*'()

012)

Progressively

output tuples

in partition

(a) More Results Output Earlier

R1,2 R1,1 R1,3
Tuple-level

processing

!"#$%&'(%)

!"#$%$*'%)

!"#+%&'(%)

!"#+%$*'%)

!"#,%&'(%)

!"#,%$*'()

!"#,%-'(%)

!"#.%-'(%)

!"#,%/'(%)

!"#.%/'()

!"#-%.'(%)

!"#/%.'(%)

!"#-%-'(%)

!"#/%-'(%)

!"#-%/'()

012)

Progressively

output tuples

in partition

R2,1 R1,3 R1,1
Tuple-level

processing

!"#-%.'(%)

!"#/%.'()

!"#$%&'(%)

!"#$%$*'()

!"#+%&'(%)

!"#+%$*'()

012)

Progressively

output tuples

in partition

(b) Less Results Output Earlier

Figure 7.1: Effect of Ordering on Progressiveness

Next, R1,1 is considered for tuple-level processing. At its completion, we safely return

tuples that map to all of R1,1’s partitions. At the end of processing the third region R1,3 we

would have reported results from 15 output partitions. In contrast, consider the ordering

in Figure 7.1.b where at the end of processing three regions we could only report results

that map to 6 partitions. Therefore, orderings such as in Figure 7.1.a are clearly preferable

over those in Figure 7.1.b.

To effectively support progressive result generation we propose a progressive driven

ordering technique that is able to identify abstractions that can produce the largest num-

82

7.2 BENEFIT MODEL: PROGRESSIVENESS CAPACITY OF A REGION

ber of results early using the least amount of CPU time spent on tuple-level processing.

Our proposed approach translates the problem into a graph-based job sequencing prob-

lem.

7.2 Benefit Model: Progressiveness Capacity of a Region

We define progressiveness capacity of an output region Ra,b as the number of skyline

results in Ra,b that can be estimated to be output early if tuple-level processing was con-

ducted on Ra,b. To estimate the progressiveness capacity of each output region we first

determine the maximum number of partial results it can produce. Second and more im-

portantly, we identify the relationship between any two regions and the impact of this

relationship on the ability to safely release these results at this point of time into the

output.

First, we estimate the maximum number of tuples that an output region could output

early. In the context of computational geometry, (BKST78, Buc89) addressed the problem

of estimating the average number of maxima in a set of vectors to be Θ((ln(n))d−1/(d−

1)!), where d is the number of dimensions and n is the cardinality of the input data set.

Given IRa and ITb as the corresponding input partitions of the output region Ra,b, we es-

timate the maximum number of skyline results that each region can produce as follows:

Cardinality(Ra,b) = ln(σ · nRa · nTb)d−1/(d− 1)! (7.1)

where nRa and nTb are the number of tuples in the input partition IRa and ITb respectively.

Next, we examine interrelationships which exist in the output space that can pre-

vent the tuples in Ra,b to be output after the tuple-level processing of region Ra,b. Three

types of relationships are depicted in Figure 7.2. First, in Figure 7.2.a the lightly shaded

partitions in the region Ra,b can completely eliminate all partitions in the region Re,f .

83

7.2 BENEFIT MODEL: PROGRESSIVENESS CAPACITY OF A REGION

Re,f

Ra,b

(a) Complete Elimination (b) Partial Elimination

Re,f

Ra,b

Ra,b
Re,f

Ra,b

Re,f

(c) 1-way Output Dependence (d) 2-way Output Dependence

Figure 7.2: Relationships between Output Space Abstractions

Such a relationship is called complete elimination. Second, in Figure 7.2.b the lightly

shaded partitions of Ra,b only dominated a subset of the partitions (darkly shaded) in

Re,f . In other words, Ra,b partially eliminates Re,f . Lastly, in Figures 7.2.c and 7.2.d the

tuple-level processing of any one region does not eliminate any part of the other region.

However, way future generated tuples that map to the lightly shaded partitions can “po-

tentially” dominate tuples in the darkly shaded partitions of the other regions. Therefore,

in Figure 7.2.c to safely output tuples mapped to the region Re,f we must wait for Ra,b to

finish its tuple-level processing as they potentially still can become invalid and then must

be discarded. Such a relationship is called output dependence. For a pair of regions

the output dependencies can either be uni- or bi- directional as in Figures 7.2.c and 7.2.d

respectively.

Next, we introduce a graph representation to capture these relationships and the method-

ology to determine the progressiveness capacity of a region given its dependencies.

Elimination Graph (EL-Graph). A directed graph, denoted as EL-Graph (R, E,W):

(1) R is the set of vertexes, where each vertex represents an output region; (2) E is a set

84

7.2 BENEFIT MODEL: PROGRESSIVENESS CAPACITY OF A REGION

of directed edges between the regions, where an edge exists between the regions Ra,b and

Re,f if and only if there exists an output partition Oh ∈ Ra,b such that it either partially or

completely dominates Re,f .

R1,1

R1,2 R1,3

R2,1 R2,2

R4,1

R2,3

R3,2

R4,2 R3,3

R4,3

Figure 7.3: Elimination Graph (EL-Graph) (Root Nodes Depicted as Shaded Nodes)

Example 7.1 In our running example, as depicted in Figure 6.2, the output region R1,3

has partitions (O[(5, 4)]O[(6, 4)] andO[(7, 4)]) if populated during tuple level processing

can completely dominate the output region R1,3[(4, 1)]. In addition, the above mentioned

partitions can dominate a subset of partitions in the region R2,2[(7, 4)]. In other words,

R1,3 completely dominates R4,1 and partially dominates R2,2. Thus in our elimination

graph, as shown in Figure 7.3, we have a directed edge from node R1,3 to R4,1 and R2,2.

The precise distribution of final tuples in each region will only be determined after all

tuples within that region have been joined, mapped and dominance comparison have been

completed. The roots of the elimination graph (depicted as shaded circles in Figure 7.3)

represent regions whose processing can neither be completely nor partially eliminated by

other regions and therefore have a higher probability of reporting results early. We further

investigate dependencies among these root nodes to determine the next output region with

the highest expected benefit. The chosen region is then sent for the expensive tuple-level

processing. As each output region is considered for tuple-level processing, other non-root

regions can become root nodes, making them potential candidates for execution. In our

proposed approach we incrementally maintain the elimination graph.

85

7.2 BENEFIT MODEL: PROGRESSIVENESS CAPACITY OF A REGION

Progressiveness capacity an output region Ra,b is defined as the percentage of its es-

timated cardinality (from Equation 7.1) that can be safely output early at a given instance.

The main intuition is to identify all output partitions in a region that solely depend on the

tuple-level processing of itself to be able to output early. To illustrate in Figure 7.4 for the

region R1,2, the tuples in partition Oh[(3, 5)(4, 6)] can be output at the end of tuple-level

processing of R1,2.

R 1,1

R 1,2

R 1,3

R 2,1

0 1 3 5 7 9

5

3

11

7

13

9

A

B

C

D

a

b

c

d

tCost

delay

O
h

Output Dependence Relationship

O
i

Figure 7.4: Calculating Progressiveness Capacity

Definition 7.1 The progressive partition count (ProgCount) for an output region Ra,b is

defined as the number of partitions in Ra,b that can neither be eliminated nor have output

dependencies to partitions belonging to other output regions.

Example 7.2 In Figure 7.4, the progressiveness count for the output region R1,2 and R1,1

are both 4 while ProgCount(R1,3)=3. Since all partitions of the region R2,1 are either

dependent or eliminated by partitions belonging to other regions, ProgCount(R2,1)=0.

The benefit of processing Ra,b is now defined to be the product of its cardinality and

the percentage of partitions that are guaranteed to be output immediately at the end of its

86

7.3 COST MODEL: TUPLE-LEVEL PROCESSING

tuple-level processing.

Benefit(Ra,b) =
ProgCount(Ra,b)

PartitionCount(Ra,b)
· Cardinality(Ra,b) (7.2)

where PartitionCount(Ra,b) is the total number of output partitions in the region Ra,b.

7.3 Cost Model: Tuple-Level Processing

The time required, here considered a penalty, to complete the tuple-level processing of

the region Ra,b includes: (1) the cost for materializing the join results (Cjoin), (2) cost of

mapping (Cmap), and (3) cost of skyline comparisons (Csky).

Cost(Ra,b) = Cjoin(Ra,b) + Cmap(Ra,b) + Csky(Ra,b) (7.3)

For an output region Ra,b we estimate the cost of join as the product of the cardinalities

of their respective input partitions.

Cjoin = (|IRa | · |ITb |) (7.4)

The join results cardinality is σ · |IRa | · |ITb |, where σ is the join selectivity between

two input sources. If the amortized cost to map each of the join results is O(1), then:

Cmap = (σ · |IRa | · |ITb |) (7.5)

Assuming independent data distribution, the average skyline execution time by (KLP75)

is O(|S| · logα|S|), where |S| is the number of tuples to be compared against and α = 1

for d = 2 or 3, and α = d− 2 for d ≥ 4. In Chapter 3.4 we concluded that for each newly

generated join result we need to perform dominance comparison with tuples in at most

87

7.4 THE PROGORDER ALGORITHM: PUTTING IT ALL TOGETHER

(k · d) partitions. Then for each newly generated tuple rf tg ∈ Oh we need to conduct

(CPavg ·savg) comparisons, where CPavg is the average number of comparable partitions

for a tuple mapped an output partition (see Chapter 3.4) and savg is the average number

of tuples in each output partition. Thus, the amortized time for evaluating the dominance

comparison for a single intermediate result rf tg ∈ Oh is:

O

((
CPavg · savg

)
· logα

(
CPavg · savg

))
(7.6)

where α = 1 for d = 2 or 3, and α = d− 2 for d ≥ 4.

Let us denote |IRa | as nRa and |ITb | as nTb . By substituting the respective terms in

Equation 7.3 by those in Equations 7.4, 7.5 and 7.6, the amortized time for processing the

output region Ra,b now is modelled as:

O

((
nRa · nTb

)
+

(
σ · nRa · nTb

)

+ (σ · nRa · nTb)

((
CPavg · savg

)
· logα

(
CPavg · savg

))) (7.7)

where α = 1 for d = 2 or 3, and α = d− 2 for d ≥ 4.

7.4 The ProgOrder Algorithm: Putting it all together

We now propose the progressive-ordering (ProgOrder) algorithm that iteratively deter-

mines the order in which these regions are considered for tuple-level processing. Pro-

gOrder ranks each output region that is a root in the elimination graph, where rank(Ra,b)

88

7.4 THE PROGORDER ALGORITHM: PUTTING IT ALL TOGETHER

is derived from Equations 7.2 and 7.3 as:

rank(Ra,b) =
Benefit(Ra,b)

Cost(Ra,b)
(7.8)

The list of all such root regions is maintained in an inverted priority queue. We pick the

next region to be considered for tuple-level processing from the top of this queue. After

the tuple-level processing of the chosen region is completed, the graph and benefit models

are incrementally updated in order to accurately chose the next region. This process is

repeated until all regions in the mapped output space have either been considered for

tuple-level processing or have been dominated by newly generated tuple(s).

The step-by-step description of ProgOrder is listed in Algorithm 6. The algorithm

maintains a list of current root nodes in a priority queue PQueue (Line: 3-5). In PQueue

the regions are ranked in descending order of their respective rank. In each iteration (Line:

6–19), we pick the next output region from the top of the PQueue. The chosen region, say

Ra,b, is then sent for tuple-level processing (Line: 8). Thereafter, we update the benefit

model for all regions affected by the execution of Ra,b (Line: 13). Next, we identify all

regions that have “newly” become root nodes in EL-Graph after removing Ra,b from the

graph (Line: 15). For all such regions, we calculate its rank (Equation 7.8) and insert

them into PQueue (Line: 18). The above steps are iterated until all non-dominated

regions have been considered for tuple-level processing.

Time Complexity. Let n = |R| be the total number of regions in the mapped output

space. For our algorithm, in the worst case scenarios all regions overlap each other. Then,

after the first iteration (first pick), we need to touch n− 1 regions, in the second iteration

n− 2 regions and so on. Therefore, the time complexity for updating the benefit model is

O(n2). The time complexity to build PQueue is O(n · log(n)). Therefore, ProgOrder has

a worst case time complexity of O(n2). However, in another extreme scenario when there

is no relationship between any two region, the time complexity is reduced to the cost of

89

7.4 THE PROGORDER ALGORITHM: PUTTING IT ALL TOGETHER

Algorithm 6 ProgOrder

Input: R {Region Collection}; input partitions (IR, IT)
Output: 0 to denote a successful execution; else return 1; {Iteratively pick the a region

for tuple-level processing}
1: Build the initial elimination graph, EL-Graph.
2: Initialize ELroot to the list of all root nodes in EL-Graph.
3: for each Ra,b in ELroot: do
4: analyse-Cost-vs-Benefit(Ra,b)
5: Add Ra,b to the inverted priority queue PQueue {PQueue sorted by the scoring

function rank(Ra,b)}
6: while |R| 6= φ do
7: Ra,b ← remove(PQueue) {Removes top of the list}
8: Perform tuple-level processing for region Ra,b

9: Discard those regions now dominated by the newly generated tuple(s) in Ra,b using
EL-Graph.

10: for each edge e =
−−−−−−→
Ra,b,Re,f ∈ EL-Graph do

11: Remove e
12: if Re,f ∈ PQueue then
13: Update its benefit, Benefit(Re,f).
14: else
15: ELnew−root ← nodes EL-Graph that became a root due to the removal of

edge e
16: for each Ri,j ∈ ELnew−root do
17: analyse-Cost-vs-Benefit(Ri,j)
18: Add Ri,j to PQueue
19: ELroot ← ELroot ∪ ELnew−root
20: Remove Ra,b from R
21: return 0;
22: procedure analyse-Cost-vs-Benefit(Ra,b)
23: Compute the progressiveness count ProgCount(Ra,b) and the benefit,

Benefit((Ra,b).
24: Calculate the cost to process the region, COST (Ra,b))

90

7.4 THE PROGORDER ALGORITHM: PUTTING IT ALL TOGETHER

maintaining the priority queue which is O(n · log(n)). Since typically, n << N (number

of tuples in one source), O(n2) << O(N2).

91

8

Progressive Result Determination

At the completion of the tuple-level processing of region Ra,b, not all of its tuples can be

output since they could potentially be discarded by tuples generated by other regions (as

in Figures 7.2.c and 7.2.d). Therefore, we need a strategy to determine which subset of

the tuples generated so far can be output early as partial results. Our progressive result

reporting technique assures the results output early are correct. To ensure correctness,

our technique avoids reporting: (1) false positives: partial results that were reported early

even though they are found to eventually not belong into the final skyline result, and (2)

false negative(s): not report or worst yet drop results that eventually should have been in

the final query result set.

8.1 Our Approach

To investigate whether a tuple generated by the tuple-level processing can be output is a

potentially blocking operation since it requires the knowledge about the output space. To

support progressive result reporting, we first translate this problem to decision making

at the coarser granularity of output partitions. More precisely, we translate the problem

92

8.1 OUR APPROACH

into the process of determining tuples that map to a partition Oh belong in the final result

set and therefore can be safely output early on. The intuition behind our approach is to

guarantee that any partition (say Ol) that may contain results that can dominate those in

Oh, have all been generated and their skyline computations completed. That is, no future

tuples will map to Ol.

8

2

3

4

5

6

7

8

delay

94 5 6 7 10 11 12 13 14 15 16

tCost

b

c e

f j

i

k

h

Set 3: Dependent (Oh)

Set 4: Dependence(Oh)

Set 1: Dom(Oh)

Set 2: DomBy(Oh)

R4,1

R3,2

R1,3

R2,2

R2,3

R1,2

O
h

Figure 8.1: Data Maintained for Oh[(11,4)(12,5)]

To illustrate the intuition consider the running example in Figure 8.1 for the output

partitionOh[(11, 4)]. To safely output the tuples contained inOh, we must first ensure that

no future tuples will map to the partition Oh. In other words, the tuple-level processing

for all output regions to which Oh contributes has been completed. Second, we must

ensure that the output partition in Set 3 of Figure 8.1 will be empty in the final output

space. Lastly, we must also ensure that all tuples that map to the output partitions in Set 1

of Figure 8.1 have already been generated. When these conditions are met we can safely

output the generated tuples that map to Oh since none of the yet to be generated tuples

could ever dominate those in Oh. We translate this core intuition into our correctness

principle.

93

8.1 OUR APPROACH

Principle 8.1 (Correctness Principle) The output partition Oh containing result tuples

can be safely output provided it satisfies the following conditions:

1. Tuples that map to Oh have all been generated and their corresponding skyline

comparisons performed.

2. For all partitions Ol such that UPPER(Ol) � LOWER(Oh), Ol is guaranteed

to be empty in the final output space.

3. For all partitions Ok such that UPPER(Ok) � LOWER(Oh), it is guaranteed

that no future generated tuple rxty will map into Ol that may satisfy the condition

rxty � rf tg where rf tg ∈ Oh.

To check for the first condition, for each partition Oh, we maintain the count of all

output regions (say Ra,b) that contain Oh. Region count for a partition is denoted as

RegCount(Oh). We decrement RegCount(Oh) after the tuple-level processing of Ra,b.

To evaluate the second condition in Principle 8.1, we maintain a list of partitions that

are guaranteed to dominate Oh if they were populated. Set 1 in Figure 8.1 is called the

dominate list, denoted by Dom(Oh). Inversely, the list of partitions that are guaranteed

to be dominated by Oh if |Oh| 6= φ, called the dominated-by list (Set 2 in Figure 8.1). It

is denoted as DomBy(Oh).

To evaluate the third condition in Principle 8.1, we maintain for each output parti-

tion Oh a list of partitions (say Ok) which satisfies the conditions: (1) UPPER(Ok) �

LOWER(Oh), and (2) there potentially could be tuples in Ok that can dominate those in

Oh. For example, Set 3 in Figure 8.1 can potentially have tuples that can dominate those

in Oh. This list is called dependent list and denoted as Dependent(Oh). Conversely, we

also maintain a list called output dependence list denoted as Dependence(Oh) (Set 4 in

Figure 8.1).

94

8.2 THE PROGDETERMINE TECHNIQUE: PUTTING IT ALL TOGETHER

Algorithm 7 ProgDetermine

Input: Ra,b {Region whose tuple-level processing has just been completed}; R {Region
Collection};

Output: Set of output partitions that can be output early.
1: Output = φ
2: for each partition Oh ∈ Ra,b do
3: Decrement RegCount(Oh);
4: if RegCount(Oh) = 0 then
5: Call Progressive-Maintenance(Oh, Output);
6: Call Progressive-Output(Oh, Output);
7: return Output

Algorithm 8 Progressive-Maintenance
Input: Output Partition Oh; Output – list of output partition that can output early

1: for each partition Og ∈ DomBy(Oh) do
2: Remove Oh from Dom(Og)
3: Call Progressive-Output(Og);
4: for each partition Og ∈ Dependent(Oh) do
5: Remove Oh from Dependence(Og)
6: Call Progressive-Output(Og);

8.2 The ProgDetermine Technique: Putting It All Together

Next, we present the technique (see Algorithm 7) that utilizes the above mentioned lists

to determine a set of partitions that can be output early yet safely based on Principle

8.1. First, we assume that Algorithm 7 is triggered after the tuple-level processing of

each output region Ra,b. For each output partition Oh ∈ Ra,b, we first decrement the

partition region count (Line: 3). If partition Oh is guaranteed to have no future tuples

mapped to it (i.e.,RegCount(Oh)= 0) we trigger the progressive maintenance (Algorithm

8) that updates the corresponding lists associated with Oh. For example, in Line: 4-6

Algorithm 9 Progressive-Output
Input: Output Partition Oh; Output – list of output partition that can output early

1: if |Dom(Oh)| = 0) ∧ ¬IS MARKED(Oh) then
2: if |Dependence(Oh)| = 0 then
3: Add Oh to Output

95

8.2 THE PROGDETERMINE TECHNIQUE: PUTTING IT ALL TOGETHER

in Algorithm 8 assuming that no future tuples will fall in Oh, for each partition Og ∈

Dependent(Oh) we can now safely remove Oh from their corresponding dependence

list. While updating these lists, we investigate if the partitions that are affected by Oh

can themselves be output. Finally, in Line: 6 in Algorithm 7 we investigate whether

Oh can itself be output early. If |Dom(Oh)| = 0 we can guarantee that tuples that map

to partitions that dominate Oh have already been generated. To verify condition (2) of

Principle 8.1 we check if its dependence list is empty, namely |Dependence(Oh)| = φ.

To avoid having to add and remove partitions from each of the lists, we instead utilize a

count-based realization. That is, we maintain a dedicated count for each list. Now, instead

of removing a partition from a list, we merely decrement the corresponding count.

Time Complexity. The worst case scenario for ProgDetermine is when all regions the

output space overlap each other. That is for each insert we need to adjust the count of

[kd − (k − 1)d] partitions.

96

9

Experimental Evaluation of ProgXe

9.1 Experimental Setup

Alternative Techniques. State-of-the-art techniques that handle skylines over joins are:

first, JF-SL using a hash-based join (KLTV06). Second, an optimized JF-SL+ which

uses the principle of skyline partial push-through to prune each data source. Third, SAJ

(KLTV06) extended the popular Fagin technique (FLN01) following the JF-SL paradigm.

In addition, we also compare against the popular Skyline-Sort-Merge-Join (SSMJ) tech-

nique (JEHH07, JMP+10). However, as discussed in Chapter 5.2 SSMJ produces results

at two distinct moments of time in batches. Since this method cannot exploit the knowl-

edge of the output space, SSMJ cannot support the early output of the results as gener-

ated like in our proposed techniques. (SWLT08) noted that for low join selectivity of

≤ 0.000001, SSMJ is ineffective in pruning many objects.

Experimental Platform. All algorithms were implemented in Java. All measurements

were obtained on a workstation with AMD 2.6GHz Dual Core CPUs and 4GB memory

running Java HotSpot 64-Bit Server VM and Java heap set to 2GB.

Evaluation Metrics. We study the robustness of ProgXe by varying: (1) data distribu-

97

9.2 EXPERIMENTAL ANALYSIS OF PROGXE VARIATIONS

tions, (2) cardinalityN , and (3) dimensions d. For each setting we measure the following:

(1) the time stamp of when the output results were reported by the various algorithms to

measure progressiveness, and (2) the total execution time to return the complete result set.

Data Sets. We conducted our experiments using data sets that are the de-facto standard

for stress testing skyline algorithms in the literature (BKS01) described in Chapter 4.1.5.

9.2 Experimental Analysis of ProgXe Variations

9.2.1 Variations of ProgXe

To get a better understanding of the benefits and the cost incurred due to progressive or-

dering, we implemented the core ProgXe framework with the ability to enable or disable

the progressive driven ordering. Therefore, we now have the first variation, ProgXe-

(No-Order), where regions are chosen for tuple-level processing in random. However,

in ProgXe (No-Order) we enable the progressive result determination feature to support

early output. The principle of skyline partial push-through (BKS01, HK05) is compli-

mentary to ProgXe. To study the effects of skyline partial push-through with ordering, we

extended our core approach and no-ordering based technique to exploit the push-through

principle. Thus, we introduce two more variations, namely ProgXe+ – the core ProgXe

approach with push-through and ProgXe+ (No-Order) – which exploits push-through

but with random ordering. For each dimension d, we chose the same partition size δ for

all variations of our proposed approach and all data distributions. For a given dimension

d, our core framework is shown to exhibit stable performance across all distributions and

thus this enables us to find a good partition size δ (RRS11).

98

9.2 EXPERIMENTAL ANALYSIS OF PROGXE VARIATIONS

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

y

ProgXe
ProgXe+

ProgXe (No-Order)
ProgXe+ (No-Order)

 0

 50

 100

 150

 200

 250

 300

 0.0001 0.001 0.01 0.1

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)
Join Selectivity

ProgXe
ProgXe+

ProgXe (No-Order)
ProgXe+ (No-Order)

(a) Correlated Data; σ=0.001 (d) Correlated Distribution

 0

 100

 200

 300

 400

 500

 600

 700

 20 40 60 80 100 120 140 160

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

p y

ProgXe
ProgXe+

ProgXe (No-Order)
ProgXe+ (No-Order)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.0001 0.001 0.01 0.1

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Join Selectivity

p

ProgXe
ProgXe+

ProgXe (No-Order)
ProgXe+ (No-Order)

(b) Independent Data; σ=0.001 (e) Independent Distribution

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 50 100 150 200 250 300 350 400 450

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

y

ProgXe
ProgXe+

ProgXe (No-Order)
ProgXe+ (No-Order)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.0001 0.001 0.01 0.1

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Join Selectivity

ProgXe
ProgXe+

ProgXe (No-Order)
ProgXe+ (No-Order)

(c) Anti-correlated Data; σ=0.001 (f) Anti-correlated Distribution

Figure 9.1: Performance Study of ProgXe and its variations
[
ProgXe+, ProgXe (No-Order)

and ProgXe+ (No-Order)
]

when d=4 and |N |=500K. Progressiveness Comparisons (a, b, and
c); Total Execution Time Comparisons (d, e, and f)

99

9.2 EXPERIMENTAL ANALYSIS OF PROGXE VARIATIONS

9.2.2 Progressive Result Generation

In Figures 9.1.a, 9.1.b and 9.1.c we compare the total number of results output over time.

Correlated data is a skyline friendly distribution since a few 10s of tuples can dominate

the entire table. In such a scenario, we observe that both variations ProgXe+ and ProgXe+

(No-Order) show identical performance. ProgXe starts producing results from t=20 sec-

onds instead of t=10 seconds achieved by ProgXe+ and ProgXe+ (No-Order). In Figure

9.1.b we show that for independent data sets progressive drive ordering is able to produce

both early as well as faster results. For the anti-correlated data sets, both ProgXe and

ProgXe+ techniques are able to report ≈ 25% of the total results before the random or-

dering techniques start reporting results. For anti-correlated data sets, as in Figure 9.1.c,

we observe that ProgXe is able to produce earlier results than ProgXe+. This is due to

the fact that ProgXe+ consumes time trying to prune the individual sources which in the

case of anti-correlated data sets is not cost effective. To summarize, ProgXe+ is effective

in producing early results across all distributions. In contrast, ProgXe is best suited for

anti-correlated data, while still being competitive for the independent and correlated data.

9.2.3 Total Execution Time

To measure the overhead of ordering we compare the total query execution time. When

σ < 0.01, Figures 9.1.d, 9.1.e and 9.1.f show that ProgXe has identical execution time as

ProgXe (No-Order). This highlights that our ProgOrder and ProgDetermine algorithms

are cheap and in fact can be considered negligible in overhead. For σ ≥ 0.01 we observe

that ordering tuple-level processing helps reduce the total execution cost of the algorithm.

ProgXe+ and ProgXe+ (No-Order) is shown to take about the same time to finish the

query evaluation. To summarize, the overhead incurred due to ordering is insignificant

but has good progressiveness benefits as shown in Figures 9.1 a–c.

100

9.3 COMPARISONS WITH STATE-OF-THE-ART TECHNIQUES

9.3 Comparisons with State-of-the-Art Techniques

JF-SL, JF-SL+ and SAJ techniques all follow the join first skyline later methodology and

therefore are blocking in nature. Hence, we ignore their comparisons here. However

their execution time comparisons is presented in (RRS11). (SWLT08) acknowledged that

their technique has identical performance characteristics to SSMJ for all join selectivities

σ ≥ 10−5. Thus we limit our comparative study henceforth to SSMJ.

In Figure 9.2, we compare the progressiveness of the different algorithms when d=4.

For the non-friendly anti-correlated data ProgXe and ProgXe+ outperforms SSMJ by 3

to 4 orders of magnitude, as shown in Figures 9.2.c and 9.2.d. For correlated data,

Figures 9.2.a, and 9.2.d, we observe that ProgXe+ has almost similar performance to

SSMJ. In Figures 9.2.b and 9.2.e, for independent distribution, ProgXe+ has a slightly

better performance than SSMJ.

For d=5 and independent data (Figure 9.4.a) the performance of SSMJ is unaccept-

able as it starts producing tuples later when t > 350 seconds. In contrast, ProgXe and

ProgXe+ take 40 and 50 seconds respectively. Under one minute is considered an accept-

able wait time for an interactive system. The slower performance of SSMJ is due to the

fact that as the number of skyline dimensions increases the pruning capacity of skyline

partial push-through is dramatically reduced. As SSMJ cannot exploit the knowledge of

the output space, it can neither optimize for early output of results nor its query execu-

tion time. For anti-correlated distribution, SSMJ fails to return a single result even after

several hours. In Figure 9.4.b, we observe ProgXe+ has near identical performance to

ProgXe since the push-through re-write is not as effective and it has to solely rely on the

optimization methods proposed in ProgXe.

101

9.3 COMPARISONS WITH STATE-OF-THE-ART TECHNIQUES

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

y

ProgXe
ProgXe+

SSMJ
 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100
To

ta
l N

um
be

r o
f R

es
ul

ts
 O

ut
pu

t
Time (sec)

y

ProgXe
ProgXe+

SSMJ

(a) Correlated; σ = 0.01 (d) Correlated; σ = 0.1

 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 0 100 200 300 400 500 600 700

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

p y

ProgXe
ProgXe+

SSMJ
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 200 400 600 800 1000

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

p y

ProgXe
ProgXe+

SSMJ

(b) Independent; σ = 0.01 (e) Independent; σ = 0.1

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 250 500 750 1000 1250 1500 1750

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

y

ProgXe
ProgXe+

SSMJ
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 2500 5000 7500 10000

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

y

ProgXe
ProgXe+

SSMJ

(c) Anti-correlated; σ = 0.01 (f) Anti-correlated; σ = 0.1

Figure 9.2: Progressiveness Comparisons of ProgXe, ProgXe+ and SSMJ; d = 4N = 500K

102

9.3 COMPARISONS WITH STATE-OF-THE-ART TECHNIQUES

 0

 20

 40

 60

 80

 100

 120

 0.0001 0.001 0.01 0.1

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Join Selectivity

ProgXe
ProgXe+

SSMJ

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.0001 0.001 0.01 0.1

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Join Selectivity

p

ProgXe
ProgXe+

SSMJ

(a) Correlated Distribution (b) Independent Distribution

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 0.0001 0.001 0.01 0.1

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Join Selectivity

ProgXe
ProgXe+

SSMJ

(c) Anti-correlated Distribution

Figure 9.3: Total Execution Time Comparison: Proposed techniques vs. SSMJ (d = 4;
N = 500K)

9.3.1 Summary of Experimental Conclusions

1. The progressive query execution framework ProgXe and its optimized ProgXe+ are

robust for all distributions, cardinalities and join factors.

2. Principle of skyline partial push-thorough is complimentary for lower dimensions.

3. For anti-correlated data sets, our proposed techniques have superior performance

since they output results early; in many cases by 2-4 orders of magnitude.

4. For correlated and independent data sets and (d ≤ 4), ProgXe+ is shown to have

103

9.3 COMPARISONS WITH STATE-OF-THE-ART TECHNIQUES

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

p y

ProgXe
ProgXe+

SSMJ
 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 5000 10000 15000 20000 25000

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

p y

ProgXe
ProgXe+

(a) Independent (b) Anti-correlated (SSMJ did not output)

Figure 9.4: Higher Dimension of d = 5 and σ = 0.1; SSMJ for Anti-Correlated Data Fails
to Return Any Results After Several Hours

competitive performance with SSMJ.

5. For higher dimensions (d=5) ProgXe and ProgXe+ are superior to SSMJ across

all distributions and selectivity. In particular, for anti-correlated data sets SSMJ is

unable to return results even after several hours (Figure 9.4.b).

104

10

Related Work for Part II

10.1 Blocking vs. Non-Blocking Query Operators

Relational algebra operators can be classified as either being blocking or non-blocking

(HcZ07). Operations such as Select (σ) and Project (π) that can return results immediately

after processing each input tuple are called non-blocking. On the other hand, operators

such as Group-By (G), and Skyline (S) that require at least one full scan of the entire

input data to return any results are called blocking. Transforming all blocking operations

in the query into a non-blocking (in some case at least partially-blocking) operation has

received much attention in the literature (CS94, YL94, HcZ07). Techniques include to

push aggregates through the join operations in certain cases or a window-based evaluation

of aggregates. However, these techniques are not applicable for processing SMJ queries.

10.2 Progressive Skyline Algorithms

In the context of single-set skyline algorithms, (TEO01, PTFS03) proposed progressive

algorithms that pre-loads the entire data-set into bitmap or R-Tree indices first. However,

105

10.2 PROGRESSIVE SKYLINE ALGORITHMS

these techniques are not efficient in the context of SkyMapJoin queries for the following

two reasons. First, to ensure correctness when applied to existing methods, the skyline

evaluation must be delayed until all possible join results have been generated and loaded

into the respective indices, rendering the process fully blocking (JMP+10). Second, for

SMJ queries the input to the skyline operation is generated on the fly based on the pipeline

of join and mapping operations. In our context of skylines over join, if we used such

techniques we would now add on index loading cost as a part of the query processing

costs and yet we cannot take advantage of the performance benefits gained in (TEO01,

PTFS03).

106

Part III

Contract-Driven Processing of Multiple

Multi-Criteria Decision Support

Queries

107

11

Contract-Driven Processing of

Concurrent Decision Support Queries:

A Piece of CAQE

In this chapter, we propose Contract-Aware Query Execution framework - CAQE (pro-

nounced cake) to solve the Contract-MQP problem defined in Chapter 1.2.3. CAQE takes

as input a set of skyline-over-join queries (SQ) and the associated set of contracts (SC).

The core principle exploited in this work is: “different portions of the input contribute to

different and often multiple queries.” Each sub-problem serves different subset of queries

with varying degrees of progressiveness. Thus, the division of work enables CAQE’s

execution model to adaptively choose different chunks of the input depending on the run-

time satisfaction of the workload queries. Given this overall approach, we address the

following open questions in CAQE:

1. Given a workload of skyline-over-join queries, how do we effectively partition the

total work into chunks that maximizes execution sharing as well as progressiveness?

2. Results produced by processing one chunk can determine which subsets of the re-

108

sults produced by other chunks contribute to the final results of workload queries.

How do we capture and exploit such output dependence amongst chunks?

3. Given a particular division of labor, how does the processing of a given input chunk

affect the run-time satisfaction of the different workload queries?

4. How can we adaptively process these chunks to maximize the overall satisfaction

of the workload?

Mul$%Query*Output**
Space*Look*Ahead*

Shared*Min%Max*
Cuboid*Plan*Generator*

Abstract(Mul,-Query(
Output(Space*

Queries((

Shared(Plan(

Contract%Driven*
Op$miza$on*

Contract%Aware*
Execu$on*

(Chosen(Output(Abstrac,on(

Updated(Output(Space(
&(

Contract(Sa,sfac,on(Metrics(

Progressive(Results(

User(Contracts(

Figure 11.1: CAQE Framework

The CAQE framework depicted in Figure 11.1 is composed of four pipelined steps as

described below. As the first step, CAQE generates the shared min-max cuboid plan

Pshared for the given workload SQ that maximizes the sharing of expensive operations

(join evaluation and skyline comparisons) across queries (see Chapter 13).

Multi-Query Output Look Ahead evaluates the workload at a coarser granularity over

the shared min-max cuboid plan to build an abstract multi-query output space that can

then be divided into smaller chunks. In other words each output chunk also called the

109

output region containing the results of different queries is associated with a subset of

coarse input abstractions containing input tuples. This model facilitates CAQE to quickly

identify groups of input tuples that contribute to multiple queries – thereby facilitating

execution sharing (see Chapter 14).

Contract-Driven Optimization analyzes the abstract-level output space to enable CAQE

to determine the output dependencies amongst output regions across multiple queries that

can be exploited to increase progressiveness for queries as designated by contracts. In

this optimization step we employ a novel contract-based benefit model to determine the

order in which the output regions are considered for tuple-level processing (see Chapter

15 for details).

Contract-Aware Execution iteratively processes the next output region, selected by the

previous step, over the shared min-max cuboid plan. Among the join results generated

thus far, the executor exploits the output dependency knowledge captured by our abstract

multi-query output space to identify which subset of results can be output to any of the

workload queries. Lastly, the satisfaction metrics for the QoS contracts are fed back to the

optimizer to immediately rectify any inappropriate choices (see Chapter 16 for details).

To elucidate the novelty features of CAQE we use the example workload SQ as in

Figure 11.2 as our running example in Chapters 12 – 16.

Q1:SMJ[JC1,'{f1,'f2},'X1,'P1]$(σ1(R),$T);$$$$$$P1$=${d1,$d2}$$

Q2:SMJ[JC2,'{f1,'f2,'f3},'X2,'P2]$(σ2(R),$T);$$P2$=${d1,$d2,$d3}$$

Q3:SMJ[JC1,'{f2,'f3},'X3,'P3]$(R,$T);$$$$$$$$$$$$$P3$=${d2,$d3}$$

Q4:SMJ[JC2,'{f2,'f3,'f4},'X4,'P4]$(R,$T);$$$$$$$$$P4$=${d2,$d3,$d4}$$

Figure 11.2: Running Query Workload

110

12

Specifying Progressiveness

Requirements via Contracts

We introduce a simple yet extensible model for specifying user QoS preferences, called

the progressiveness contract. Based on this model we design a success metric called

progressiveness score that measures how contracts are met by a given execution. We

utilize this metric to formulate our optimization goal.

12.1 Progressiveness Contract

The progressiveness contract follows the micro-economic principle of result tuple utility(LQX06).

Put differently, the progressiveness contract C for queryQ is a progressive utility function

ϑ that assigns a utility score to each result tuple. The result tuple τi is reported at time

τi.ts.

Definition 12.1 Result(E, Q, tstart, tend), for query Q and execution E, is defined as the

set of all results {τ1, . . . τN} ordered by time of the respective result generation. Here

tstart is the query submission time, and tend is the time query execution finished.

111

12.1 PROGRESSIVENESS CONTRACT

Definition 12.2 For query Q and execution run E, the progressive utility function ϑ is

defined as a function that maps each result tuple τk ∈ Result(E, Q, tstart, tend) to a utility

score between 1 (most useful) and -1 (least useful) based on its usefulness.

12.1.1 Contract Specification Models

Next, we present alternative contract models supported in CAQE.

12.1.1.1 Time Based Specification

Users can specify a “time constraint” that indicate the deadline by which all results need

to be reported. Result tuples produced after the time thard are useless to the application.

!"
#
"$
%&

'(
)*

)

&#()

!""#$

%&'($)*'+,-./*$$

0*-'($)*'+,-./*$$

122*3(-./*$

!"#$%&'()*+,''(ϑ)!

"-,'
%./+01'23'-$45'

6$

3$

!"#$%&'()*+,''(ϑ)!

"-,'7-$458'

6$

3$ 9' 23'

!"#$%&'()*+,'(ϑ)!6$

3$

:'+,5;#%5'*;%<;%'
<,+'5,=-,4%'

!$ 4$ 5$ 6$ 7$ 8$

2>9$

9$

(a) (b)

Figure 12.1: Time Based Progressive Utility Function

Example 12.1 Figure 12.1.a depicts a time constraint where all tuples generated after

30 minutes have no use. The utility function for such time-based contract is:

ϑtime(τk) =

 1 for τk.ts ≤ 30

0 for τk.ts > 30
(12.1)

Example 12.2 Alternatively, one can specify a decay function that decreases the result

utility as query execution progresses. For example, the utility function of the decay func-

tion in Figure 12.1.b. is:

112

12.1 PROGRESSIVENESS CONTRACT

ϑtime(τk) =


1 for τk.ts ≤ 5

0.8 for 5 < τk.ts ≤ 30

log(1/τk.ts) for τk.ts > 30

(12.2)

!"#$%&'()*+,'(ϑ)!

!"! #! $!-./'.0!

123!

4!

%&!#!

4!

-./'540!

5'.63!

'! (!

5'.67!

5'.68!

9'+,:;#%:'<,+':,)'

32=!

!"#$%&'()*+,'(ϑ)!

>'+,:;#%:'<,+'?$@;%,'

%&!$!-./'540!

.!

'! (!

5'.67!

'5'.6A!

>'+,:;#%:'<,+'?$@;%,'

4!

'5'.68!

!"#$%&'()*+,'(ϑ)! !"#$%&'()*+,'(ϑ)!

!"! #! $!-./'.0!

123!

4!

%&!#!

4!

-./'540!

5'.63!

'! (!

5'.67!

5'.68!

9'+,:;#%:'<,+':,)'

32=!

!"#$%&'()*+,'(ϑ)!

>'+,:;#%:'<,+'?$@;%,'

(a) (b)

Figure 12.2: Cardinality Based Progressive Utility Function

12.1.1.2 Cardinality Based Specification

A user may be interested in the number of results being generated at a certain time (an

exact count or a percentage).

Example 12.3 The requirement that 10% of total results to be returned every minute

is represented in Figure 12.2.a where the x-axis represents the % of the estimated total

number of results to be returned every minute. In Figure 12.2.a, for x ≥ 10 the utility

score of each tuple is equal to 1 and when x < 10 the utility score is a negative score

of the ratio of the actual number of tuples generated and the required number of result

tuples. The utility function for this contract is:

ϑcard(τk) =

 1 for ni,j/Nest ≥ 0.1

ni,j/(Nest ∗ 0.1)− 1 for ni,j/Nest < 0.1
(12.3)

113

12.1 PROGRESSIVENESS CONTRACT

where Nest is the estimated result size of the query Q, ni,j = |Result(Q,E, ti, tj)| is

the number of results generated between the time interval ti and tj .

Example 12.4 An example preference about the query output rate is when the user can

handle at most 5 tuples/sec, the corresponding contract is depicted in Figure 12.2.b. Here,

the x-axis represents the number of tuples generated every second and y-axis is the utility

of each tuple. The utility function of such a contract is:

ϑcard(τk) =

 (ni,j/5) for ni,j ≤ 5

(5/ni,j) for ni,j > 5
(12.4)

12.1.2 Hybrid Specification

The user can flexibly combine several classes of specifications to specify a hybrid speci-

fication.

Example 12.5 A stock market analyst John Doe requires at least 10% of all results to

be reported every minute, while all results must be generated within 30 minutes. The

utility score of tuple τk for this hybrid contract is obtained as the product of the utility

score defined via the cardinality- and time-based contracts (see Equations 12.3 and 12.1

respectively).

For ease of elaboration, we assume the utility scores to be independent.1 The com-

bined utility score of a tuple thus is:

ϑ(τk) = ϑcard(τk) ∗ ϑtime(τk) (12.5)

1The framework can support richer models that capture the dependence between the cardinality and
time-based utility scores.

114

12.2 THE CAQE OPTIMIZATION GOAL

12.2 The CAQE Optimization Goal

Definition 12.3 Given a set of skyline-over-join queries SQ where each query Qi ∈ SQ

is associated with a contract Ci. The contract-driven multi-query optimization prob-

lem is to design a shared execution strategy Eshared of the workload that maximizes the

cumulative progressiveness score of the queries in SQ. That is,

Maximize :

|SQ|∑
i=1

pScore(Qi,Ci,Eshared) (12.6)

where pScore is defined as follows. Each contract Ci is modeled by its utility function

ϑi and the progressiveness score of Eshared for Qi ∈ SQ is defined as the total utility

score assigned to each tuple τk generated at time instance τk.ts and computed as follows:

pScore(Qi,Ci,Eshared) =

|Result(Qi,Eshared,tstart,tend)|∑
k=1

ϑi(τk) (12.7)

where τk ∈ Result(Qi,Eshared, tstart, tend) (see Definition 12.1).

115

13

Shared Min-Max Cuboid Plan

Given the set of MCDS queries, we generate a shared plan that compactly represents

the query workload SQ. To simplify the discussion and highlight the novelty of CAQE

henceforth we focus on workloads containing queries that differ in their skyline dimen-

sions while having identical select, mapping and join conditions. However the principles

presented in this work can equally apply when these conditions are relaxed.

We elucidate the intuition of our approach via the example in Figure 11.2 presented

in Chapter 2.1. Under the assumption that the Distinct Value Attributes (DVA) -property1

holds, the skyline results over the subspaces {d2, d3} are guaranteed to also be in the

skyline over the subspaces {d1, d2, d3} and {d2, d3, d4}. If however the DVA-property

does not hold and the tuple τi belongs in the skyline SKY(d2,d3), then only those tuples

with the same d2 and/or d3 attribute values of τi need to be compared against to determine

if τi belongs in SKY(d1,d2,d3) or SKY(d2,d3,d4). This allows us to perform dominance

comparisons along dimensions d2 and d3 only once rather than separately for queries

Q2, Q3 and Q4. For d dimensions, there are 2d − 1 possible subspaces called skycube

(YLL+05). Since maintaining the entire skycube (as in Figure 13.1.a) is unnecessary, we

1DVA-property states that no two tuples share the same value for any given skyline dimension
(YLL+05).

116

instead propose to prune the space to only contain subspaces that contribute to at least

one query. We call this the reduced lattice (Figure 13.1.b).

!"!#! !"!$! !"!%! !#!$!

!"! !%!!#! !$!

!$!%!!#!%!

!"!#!$! !"!#!%! !#!$!%!

"#! "$!"%!"&!

!"!$!%!

!"!#! !"!$! !#!$!

!"! !%!!#! !$!

!$!%!!#!%!

!"!#!$! !#!$!%!

"#! "$!"%!"&!

!"!#! !"!$! !"!%! !#!$!

!"! !%!!#! !$!

!$!%!!#!%!

!"!#!$! !"!#!%! !#!$!%!

"#! "$!"%!"&!

!"!$!%!

!"!#! !"!$! !#!$!

!"! !%!!#! !$!

!$!%!!#!%!

!"!#!$! !#!$!%!

"#! "$!"%!"&!

(a) (b)

Figure 13.1: Shared Plan Generation: (a) Full Skycube; (b) Reduced Lattice Structure

Definition 13.1 A subspace U serves queryQi ∈ SQ of the formQi = SMJ[JCi,Fi,Xi,Pi](R, S)

if and only if U ⊆ Pi. The set of all queries that U contributes to is denoted asQServe(U, SQ).

Example 13.1 In Figure 13.1.b the results in subspace {d2, d3} contributes to queries

Q2, Q3 and Q4, where subspace {d2, d4} contributes to only Q4.

If a given subspace U, such as {d2, d3}, contributes to more than one query then the

skyline comparisons performed for skyline attributes di ∈ U can be shared. In contrast,

for query Q4 with the final skyline dimensions {d2, d3, d4} maintaining skyline results in

subspace {d2, d4} does not aid in sharing skyline evaluation as {d2, d3} only serves Q4.

Next, if we have a sub-tree in the lattice rooted at subspace V where each subspace

U ⊂ V serves the same set of queries then we compactly maintain the root subspace

V and avoid the maintenance costs of all subspaces U ⊂ V. We therefore propose our

min-max-cuboid (see Definition 13.2) that is guaranteed to contain the minimal subset

of subspaces while maximizing sharing.

Definition 13.2 For a workload SQ, the min-max-cuboidM is the set of subspaces such

that for each subspace U ∈M at least one of the following properties holds:

117

!"!#!$! !#!$!%!

!"!#! !#!$!

!"! !%!!#! !$!

"#! "$!"%! "&!

&'(')*+*

&'(')*"*

&'(')*#*

'()*+,-.*! "(./0.*!

,!"*!#*!$-! "#!

,!%-*,!#*!$*!%*-! "$!

,!"-!,!"*!#-! "%1!"#!

,!$-!,!#*!$-! "#1!"&1!"$!

,!#-! "%1!"#1!"&1!"$!

Figure 13.2: Shared Plan Generation: Min-Max Cuboid

1. (|QServe(U, SQ)| ≥ 1) ∧ (|U| = 1)

2. ∃Qi ∈ SQ of the form SMJ[JCi,Fi,Xi,Pi=U](R, S)

3. @V s.t. [(U ⊂ V) ∧ (QServe(U, SQ) ⊆ QServe(V, SQ))]

where |U| is the number of skyline dimensions in subspace U.

118

14

Multi-Query Output Look Ahead

14.1 Overview

The objective of the Multi-Query output Look Ahead (MQLA) step is to process the input

workload at a higher granularity. This allows us to identify where the skyline results for

the different queries lie in the abstract multi-query output space, thereby enabling CAQE

to follow the principle of chopping the total work into smaller chunks that can be later be

individually processed. We achieve this by first partitioning the input sources and then

evaluating these input abstractions over the shared min-max cuboid plan generated by the

previous step. Later during the actual tuple-level query execution we populate this multi-

query output space with the actual skyline results as they are being generated. Mapping

the input space to the multi-query output space enables CAQE to accomplish:

1. Advanced Execution Sharing. The coarser-grained evaluation enables us to es-

tablish the mapping between the coarse abstractions of the input space containing

input tuples and the output regions, containing the results of different queries that

are generated when the query plan is executed. Our model facilitates CAQE to

quickly identify groups of input tuples that contribute to multiple queries – thereby

119

14.1 OVERVIEW

facilitating execution sharing and prioritization.

2. Selective Unblocking. The generation of the abstract-level output space enables

us to identify, for each query, the subset of output regions that are guaranteed to

contain skyline results. This output dependency knowledge among regions for dif-

ferent queries facilitates us to partially unblock the processing of skyline-over-join

queries and thus prioritize the processing of such regions.

3. Aggressively prune output regions that are guaranteed to not generate even a single

skyline result for any workload query.

We now describe the steps involved in building the multi-query output space at a

coarse granularity. In Chapters 14.2-14.4 we provide a more detailed description of

the coarse-level skyline processing as well as optimization steps to efficiently perform

dominance comparisons. Each input table is maintained in a d−dimensional quad-tree.

For instance, for our running example in Figure 11.2 we maintain a 4-D quad-tree on

{d1, d2, d3, d4} (the full space) one for each of input sources R and T . We define LR as

the set of all leaf cells for the index on R. Each input cell, say LRi ∈ R, is defined by its

d−dimensional lower and upper bounds, that is LRi (li, ui).

Coarse-Level Join Operation. To facilitate joins at a coarse granularity, a leaf cell

maintains a signature for each join predicate that captures the domain values of its mem-

ber tuples1. For the running workload in Figure 11.2 with join predicates JC1 and JC2,

each cell maintains the signatures {Sig1, Sig2}. Next, we perform a coarse-level join

evaluation on the leaf cells to determine which output regions are guaranteed to be pop-

ulated. For query Q1 and input cells LRi ∈ R and LTj ∈ T , if the condition (|LRi [Sig1]

∩LTj [Sig1]| 6= φ) holds then the output region generated by LRi 1 LTj is guaranteed to be

populated with at least one join result for query Q1.

1This can be achieved by either a Bloom Filter or bit vector.

120

14.2 COARSE-LEVEL SKYLINE EVALUATION

Coarse-Level Map Operation. For all output regions that are guaranteed to be pop-

ulated, we apply the mapping functions, such as the total cost of the trip. To determine

the d-dimensional upper bound of the output region we apply the mapping functions to

the upper bounds of the two respective input cells. Similarly we obtain the lower-bound

of the output region.

Coarse-Level Skyline Operation. In this step, we determine the list of output regions

that do not contribute to a single query in the workload and therefore can be safely elim-

inated from further processing. We achieve this by performing dominance comparisons

at the granularity of output regions to identify for each query Qi, (1) the subset of out-

put regions that are guaranteed not to be dominated, (2) the subset of output regions that

can potentially contribute to the skyline results depending on the actual result distribution

determined during tuple-level processing, and (3) the remaining output regions that are

guaranteed to not contribute to query Qi and therefore can be safely eliminated.

At the end of this step, for each query Qj ∈ SQ, we return a set of non-dominated

regions REG(Qj) that contribute to Qj . Conversely, for a region Ri we define the set of

queries that Ri serves as region query lineage RQL(Ri). In the following sections we

present the details of this MQLA step, including additional optimizations in building the

abstract output space as well as the pseudo-code.

14.2 Coarse-Level Skyline Evaluation

The dominance comparison between any two regions Ri and Rj is only meaningful if

there exists at least one common workload query that both regions serve. Henceforth,

when we discuss dominance between two regions Ri and Rj we focus our attention on

queries in RQL(Ri) ∩RQL(Rj).

Definition 14.1 (Region Domination) Given a subspace V, and two regions Ri(li, ui),

121

14.2 COARSE-LEVEL SKYLINE EVALUATION

Rj(lj, uj) , the dominance relationship between these output regions is characterized as:

(1) Ri dominates Rj if ui �V lj; (2) Ri partially dominates Rj iff at least one output

cell Of ∈ Ri and Og ∈ Rj, s.t. uf �V lg, (3) else incomparable.

Theorem 14.1 Given subspaces V and U such that U ⊂ V, if Ri is a non-dominated

region the subspace U then it is guaranteed to not be dominated in subspace V1.

Proof: Proof by contradiction. For subspace U ⊂ V and a pair of output region

{Rj, Ri}, assume that condition (Ri ⊀U Rj) ∧ (Ri ≺V Rj) holds. Given that the DVA

property(YLL+05) means ∀ak∈V(uj[ak] < li[ak]). Since U ⊂ V, this translates to the

fact that ∀am∈U(uj[am] < li[am]). Hence we (Ri ≺U Rj). This is a contradiction to our

assumption that (Ri ⊀U Rj). Thus if Ri is not dominated in subspace U ⊂ V then it is

also not dominated in subspace V.

Corollary 14.1 Given subspaces U1, U2 such that U1 ⊂ V and U2 ⊂ V and U1 6= U2, if

region Ri ∈ SKYU1 and Rj ∈ SKYU2 then {Ri, Rj} ∈ SKYV.

The pairwise dominance comparison between regions is conducted in a bottom-up

fashion starting at subspaces in Level 0 of the Min-Max Cuboid and moving upwards. By

utilizing Theorem 14.1 and its Corollary 14.1, we populate the Min-Max Cuboid (M) in

a bottom-up fashion to determine the list of queries a region Ri contributes to.

Example 14.1 Let the output space consist of three regions:

R1[(6, 8, 8, 4) (8, 10, 10, 6)], R2[(8, 6, 6, 5) (10, 8, 8, 7)], and

R3[(7, 5, 4, 1) (9, 7, 6, 4)]. For level 0 in the min-max cuboid in Figure 13.2, R1 belongs

in SKY(d1), and R3 belongs to SKY(d2), SKY(d3), and SKY(d4). For level 1 by Theorem

14.1 we know that SKY(d1,d2) = {R1, R3} and SKY(d3,d4)={R3}. Next, we investigate if

R1 contributes to SKY(d3,d4) and if R2 belongs to either SKY(d1,d2) or SKY(d3,d4). At the

end of processing, level 1 has SKY(d1,d2)={R1, R2, R3} and SKY(d2,d3)={R2, R3}.
1Under the DVA assumption.

122

14.3 OPTIMIZING MQLA

14.3 Optimizing MQLA

A default strategy is to perform skyline comparison for each region Rnew with all other

regions for all subspaces in the min-max cuboid M. We now propose optimizations to

further reduce the number of dominance comparisons.

14.3.1 Sort-Based Traversal

To reduce the number of dominance comparisons we maintain d sorted lists of regions.

That is, for dimension dj , the ordered region list ORLj maintains all the output regions

in a sorted order by the function fupper. For region Rf (lf , uf) with lower bound lf and

upper bound uf the function fupper is defined as:

fupper(Rf , dj) = uf [dj] (14.1)

The intuition is that the regions with more desired (smaller) upper bound values on the

given dimension di are considered before regions with less desired (larger) upper bound

values.

14.3.2 Merging Subspace Skylines

For all subspaces V we apply Theorem 14.1 to generate the union (merge) of all non-

dominated regions in the child subspaces Ui ∈ M s.t. Ui ⊂ V. When |V| = 1, i.e.,

V = dj , we calculate SKYdj by performing a scan on the sorted list ORLj .

14.3.3 Sorted Subspace Skyline Maintenance

Given subspaces U1, U2 ⊂ V, an output region Rf 6∈ (SKYU1 ∪ SKYU2) can still belong

in SKYV. A simple but expensive way to identify such regions is to scan through all the

123

14.3 OPTIMIZING MQLA

output regions. Instead, we propose an alternative approach that allows us to not scan the

list of output regions but rather stop early. To achieve this we maintain for each subspace

V an ordered region list ORLj1 where regions are sorted by the following function fsum:

fsum(Rf ,V) =
∑
di∈V

lf [di] (14.2)

The intuition of sorting the regions in SKYV is that if the topmost region Rnext in the

sorted list ORLi, has a smaller fsum value, for the subspace V, than the hth region in the

sorted skyline SKYV, denoted as Rh, then:

1. All output regions after Rh, including Rh, in the sorted skyline SKYV cannot dom-

inate Rnext.

2. All output regions after Rh, including Rh, in the sorted skyline SKYV can poten-

tially be dominated by Rnext.

This enables us to eliminate dominated regions early on and reduce the total number

of skyline comparisons.

Theorem 14.2 If Rnext is the top most region in ORLi and Rf ∈ SKYV, if (fsum(Rf ,V)

≥ fsum(Rnext,V)) then Rf �V Rnext.

Proof: Case (i): fsum(Rnext,V) = fsum(Rf ,V). Given that Rf ∈ SKYV, therefore

either (a) Rf ∈ SKYU where U ⊂ V, or (b) Rf was picked before Rnext in the ORLi

as Rf [di] ≤ Rnext[di]. In both cases since fsum(Rf ,V) = fsum(Rnext,V), ∃dh ∈ V s.t.

(dh 6= di) ∧ (lnext[dh] < lf [dh]). Therefore Rnext, Rf ∈ SKYV and Rf �V Rnext.

Case (ii): fsum(Rf ,V) > fsum(Rnext,V). Let us assume Rf �V Rnext. Since

fsum(Rf ,V) > fsum(Rnext,V), ∃dh ∈ V such that lf [dh] > lnext[dh]. This is a con-

tradiction to our assumption. Thus Rf �V Rnext.
1The selection criteria is the dimension with the maximum number of domain values to be used to

distinguish between two regions.

124

14.4 PUTTING MQLA TOGETHER

Corollary 14.2 If fsum(Rnext,V)≤ fsum(Rf ,V) thenRnext can potentially dominateRf .

14.4 Putting MQLA Together

Algorithm 10 depicts the pseudo-code of MQLA where we first generate all populated

regions in the output space. We next sort the regions into d sorted lists. For each subspace

V in the min-max-cuboid M, we build the subspace skyline of output regions bottom up

by applying the above mentioned optimization techniques.

Algorithm 10 Multi-Query Output Look Ahead
Input: Set SQ of queries; Min-Max CuboidM
Output: Set R of regions where each regionRi ∈ R is not dominated for a set of queries

in the workload.
1: for each partition LRi ∈ LR do
2: for each partition LTj ∈ LT do
3: Rnew ← Associated output region for [LRi , L

T
j]

4: Add Rnew to R
5: Sort regions in R by their upper-bounds (in ascending order) on every dimension dl

into sorted list ORLl
6: for Subspace V ⊂M do
7: Initialize SKYV ← union of skylines of all child cuboids
8: Pick ORLi s.t. di ∈ V

9: while ORLi 6= φ do
10: Rnext ← Pop the top-most region in ORLi
11: if Rnext 6∈ SKYV then
12: for each region Rf ∈ SKYV do
13: for ∀Qj ∈ Rf [RQL] ∩Rnext[RQL] do
14: if (fsum(Rnext,V)) > fsum(Rf ,V) ∧ (Rf �V Rnext) then
15: Remove Qj from Rnext[RQL]; Go to Line 9
16: else if (fsum(Rnext,V)<fsum(Rf ,V)) ∧ (Rnext �V Rf then
17: Remove Rf from SKYV

125

15

Contract-Driven Optimization

The contract-driven optimizer is responsible for ordering the execution of output re-

gions generated during the previous MQLA step such that (1) the contracts of the differ-

ent queries are being met and (2) to maximally exploit sharing opportunities across these

queries. More formally, for a given set of user contracts and the set R of output regions,

the objective of the contract-driven optimization is to guide query execution such that

the cumulative satisfaction of the workload is maximized (see Definition 12.3)

Finding the optimal execution ordering of regions requires the comparison of all pos-

sible orderings. This involves estimating where in the d- dimensional multi-query output

space the skyline results of the different workload queries will fall and to determine how

they will affect the QoS requirements. This is not practical – requiring the exhaustive gen-

eration all join and skyline results of all queries. Instead, we iteratively pick the next best

region until all regions have been considered based on the estimated benefit of satisfying

the QoS requirements of the different queries. This feedback-driven iterative approach

provides us an opportunity to identify the impact of each region selection decision on the

contract satisfaction metric and take corrective immediate actions whenever a poor choice

is being made.

126

15.1 CONTRACT SATISFACTION METRIC

15.1 Contract Satisfaction Metric

We identify “the current best” candidate for execution as the output region with the high-

est contract-based satisfaction metric at the given time instance tcurr. Let us assume that

output region Rc requires time tc to complete its tuple-level evaluation over the shared

min-max cuboid plan, and is estimated to progressively output ProgEst(Rc, Qi, tc) (see

Equation 15.3) for query Qi after time tcurr + tc. We assign each query a run-time weight

wi. At the start of the query execution we set ∀Qi∈SQ(wi = 1). The Cumulative Satis-

faction Metric (CSM) of Rc at time tc is:

CSM(Rc,Eshared,C, tc) =
∑
Qi∈SQ

wi ∗
N i

est∑
j=1

ϑi(τj) (15.1)

where N i
est = ProgEst(Rc, Qi, tc) and the utility score ϑi is associated with the contract

Ci ∈ C of query Qi.

To compute CSM for each region Rc, we develop a cardinality model to estimate: (1)

for each query Qi ∈ SQ the number of skyline results that can be output early at time

tcurr + tc — the benefit of considering Rc and (2) the number of intermediate results

generated by the shared query plan that will affect the execution time for Rc (i.e., tc)

— the cost of considering Rc for query execution. Next, we describe our cardinality

estimation model.

15.2 Multi-Query Progressiveness Based Benefit Model

To estimate the progressiveness benefit of a region, we introduce the multi-query depen-

dency graph that captures the output dependencies among the different output regions.

Definition 15.1 A multi-query dependency graph is a directed graph, denoted asDG(V,E),

where (1) V is the set of vertexes, where each vertex represents a region; (2) E is a set

127

15.2 MULTI-QUERY PROGRESSIVENESS BASED BENEFIT MODEL

of directed edges between regions where an edge ei,j between regions Ri and Rj is an-

notated with the set of queries Wi,j for which Ri dominates one or more output cells in

Rj .

R1

R3

R4

!"""""""""""""""""#"""""""""""""""""$""""""""""""""""""%"

$

#"

!!"

%"

!#"

&"

'"

("

)"

*"+"

,"
-"

."

!""

!#"

/01234" /!" /5" /#" /6"

780920:" ;7!<"75<"7#=" ;7!<"75=" ;75<"7#=" ;7!<"7#="

>+?"@3AB+A41"CD+EFG0" >,?"*0F04.04-H"I9+FJ"

R1

R2 R3

R4

Q
3 !Q1, Q2!

R2

Q1, Q2!

Figure 15.1: multi-query dependency graph

Example 15.1 In Figure 15.1, output regions R1, R2, R3, and R4 contribute to different

subsets of workload queries. For queries Q1 and Q2, R2 has cells, that if populated

during query tuple-level processing, can completely dominate R1. Therefore R2 should

be considered for execution before R1 to avoid unnecessary computation. We denote this

dependency by the directed edge
−−−→
R2R1 annotated by the setW2,1 = {Q1, Q2}.

Example 15.2 In Figure 15.1 the shaded nodes representing regions R2 and R3 are

both root nodes. This is because cells O[(3, 5)(4, 6)], O[(3, 6)(4, 7)] ∈ R2 and cells

O[(4, 4)(5, 5)], O[(5, 4)(6, 5)], O[(6, 4)(7, 5)] ∈ R3 cannot be dominated by any other

cell in the output space for queries Q1, Q2 and Q3. At the end of evaluating R2, result

tuples that map to these cells in R2 can be progressively output for queries Q1, Q2 and

128

15.2 MULTI-QUERY PROGRESSIVENESS BASED BENEFIT MODEL

Q3. Similarly if R3 were to be chosen for execution the above mentioned cells can also

output early.

As root regions are sent for execution, non-root regions become root nodes making

them candidates for possible future execution.

Definition 15.2 The progressive estimate of region Rc for query Qi at time t is the frac-

tion of all the results produced by Rc that are guaranteed to be in the final skyline at time

t.

Let LRa and LTb be the input cells contributing to the region Rc. For query Qi with

selectivity σi, the estimated number of skyline results Rc can produce is established by

(Buc89) as:

Cardinality(Rc, Qi) = ln(σi · nRa · nTb)d−1/(d− 1)! (15.2)

where nRa = |LRa | and nTb = |LTb |.

Definition 15.3 The progressive cell count (ProgCount) for a region Rc at time t and

query Qi ∈ RQL(Rc) is the total number of cells in Rc that are not dominated by cells

mapped to another region that contributes to the same query Qi.

Example 15.3 In Figure 15.1.a let us assume that the output cells O[(3, 5)(4, 6)] and

O[(3, 6)(4, 7)] are populated during tuple-level processing of R2. Then, all output cells in

the output regionR1 can be dominated for queries {Q1, Q2}. Thus, the ProgCount(R1, Q1) =

ProgCount(R1, Q2) = 0. In contrast, for query Q3 the progressive count for R1 is 2

since tuples that map to its cells O[(5, 8)(6, 9)] and O[(5, 9)(6, 10)] can be progressively

output at the end of processing R1 since the remaining output cells could potentially be

dominated by tuples that map to region R3.

129

15.3 MULTI-QUERY COST MODEL

From Definition 15.3 and Equation 15.2 the progressiveness estimate of Rc for query

Qi can defined as follows:

ProgEst(Rc, Qi, t) =
(ProgCount(Rc, Qi, t)

CellCount(Rc, Qi)

)
∗ Cardinality(Rc, Qi)

(15.3)

where CellCount(Rc, Qi) denotes the total number of output cells in the region Rc for

query Qi.

15.3 Multi-Query Cost Model

The time tc required to process Rc is considered to be the penalty for choosing Rc. This

includes the time needed : (1) to materialize the join results (Cjoin), (2) conduct mapping

(Cmap), and (3) perform skyline comparisons (Csky).

tc = Cjoin(Rc) + Cmap(Rc) + Csky(Rc) (15.4)

For an output region Rc we estimate the cost of join as the product of the cardinalities

of their respective input cells (LRa and LTb).

Cjoin(Rc) = (nRa · nTb) (15.5)

The cardinality of the join results is σ · |IRa | · |ITb |, where σ is the join selectivity

between two input sources. If the amortized cost to map each of the join results can be

estimated as O(1), then:

Cmap(Rc) = (σ · nRa · nTb) (15.6)

130

15.4 PUTTING CONTRACT-DRIVEN ORDERING TOGETHER

We estimate the skyline comparisons with regards to the full d-dimensional space.

Assuming an independent data distribution, the average skyline execution time according

to Kung et. al. (KLP75) is O(|S| · logα|S|), where |S| is the number of tuples to be

compared against and α = 1 for d = 2 or 3, and α = d − 2 for d ≥ 4. For each newly

generated join result rf tg that maps to the output cellOcurr we need to perform dominance

comparison with tuples in at most CLavg cells in the full d-dimensional subspace, where

CLavg is the average number of comparable cells toOcurr. We therefore conduct (CLavg ·

savg) comparisons, where savg is the average number of tuples in each output cell. Thus,

the amortized time for evaluating the dominance comparison for a single intermediate

result rf tg ∈ Ocurr is:

O

((
CLavg · savg

)
· logα

(
CLavg · savg

))
(15.7)

where α = 1 for d = 2 or 3, and α = d− 2 for d ≥ 4.

From Equations 15.4, 15.5, 15.6 and 15.7, the amortized time for processing the out-

put region Ra,b now is modeled as:

O

((
nRa · nTb

)
+

(
σ · nRa · nTb

)

+ (σ · nRa · nTb)

((
CLavg · savg

)
· logα

(
CLavg · savg

))) (15.8)

where α = 1 for d = 2 or 3, and α = d− 2 for d ≥ 4.

15.4 Putting Contract-Driven Ordering Together

The contract-driven optimizer iteratively determines the next region to be considered

for query execution. The pseudo-code of the contract-driven optimizer is listed in Algo-

131

15.4 PUTTING CONTRACT-DRIVEN ORDERING TOGETHER

Algorithm 11 Contract-Driven Ordering

Input: R (Region Collection); input cells (LR, LT); query workload SQ contracts SC
Output: Iteratively pick the next region Rnext to process.

1: Build the initial multi-query dependency graph, Multi−Query −DG
2: for each Rc in DGroot: do
3: computeCSM(Rc, SQ, SC)
4: Add Rc to inverted priority queue PQueue (sort by CSM)
5: while |R| 6= φ do
6: Rc ← remove(PQueue) {Top of the list}
7: Perform contract-driven execution for region Rc

8: Discard regions dominated by the generated tuple(s) in Rc.
9: for each edge ec,f =

−−−−→
Rc, Rf ∈ DG do

10: Remove ec,f
11: if Rf ∈ PQueue then
12: Update its CSM scores.
13: DGroot′ ← new root nodes due to the removal of ec,f
14: for each Rg ∈ DGroot′ do
15: computeCSM(Rg, SQ, SC)
16: Add Rg to PQueue
17: DGroot ← DGroot ∪DGroot′

18: Remove Rc from R
19: return
20:
21: function computeCSM(Rc, SQ, SC)
22: Calculate the cost to process the region tc
23: for each query Qi ∈ SQ do
24: Compute ProgEst(Rc, Qi)→ |RS(Rc, Qi)| (Definition 15.3)
25: CSM = CSM + (wi ∗ pScore(Rc, Qi,Ci))
26: return sat

rithm 11. The progressive benefit model (Equation 15.3) estimates the number of tuples

that a region can output after its evaluation. Our cost model (Equation 15.8 in Chapter

15.3) estimates the time needed (tc) to evaluate region Rc over the shared query plan. The

root regions in the dependency graph are ranked based on their CSM scores (Equation

15.1) and maintained in an inverted priority queue. We iteratively pick the topmost region

from the queue for tuple-level processing. Based on how the run-time QoS contracts of

each query Qi are being met, we update the CSM-based benefit model by adjusting its

132

15.4 PUTTING CONTRACT-DRIVEN ORDERING TOGETHER

weight (see Chapter 16). This process is repeated until all regions have either been con-

sidered for tuple-level processing or have been dominated by newly generated tuple(s).

133

16

Contract-Driven Execution

Next, CAQE’s contract driven execution engine then executes the chosen output region,

recommended by the optimizer, over the shared min-max cuboid plan. For each scheduled

region Rc the contract driven executor performs the following three operations:

1. Tuple Level Processing. Conduct tuple-level evaluation (join, map and skyline)

over the shared min-max cuboid plan.

2. Progressive Result Reporting. For each workload query Qi ∈ SQ determine the

subset of the generated result tuples that is guaranteed to be in the final skyline.

3. Run-time Satisfaction Metric and Optimizer Feedback. Based on user contracts

and the skyline results generated so far update the run-time satisfaction metric of

each query Qi ∈ SQ. Use this run-time metric update the benefit model used by the

contract-driven optimizer to pick the next region.

16.1 Tuple Level Processing

For the chosen region Rc, we first evaluate the join conditions between the tuples in the

input cell LRa and those in LTb . Join results are then mapped to their output cells by

134

16.1 TUPLE LEVEL PROCESSING

applying the mapping functions. For each output cell Ox we maintain the cell query-

lineage (CQL) bit vector representing the list of queries that the cell contributes to. The

CQL is easily derived from the region query-lineage of all the regions that Ox contributes

to. For subspace V in the min-max cuboid M, we limit the skyline comparisons for the

new generated tuples in cell Ox ∈ Rc to tuples in cells, say Oy, that satisfy both these

conditions:

1. |CQL(Ox) ∩ CQL(Oy)| 6= φ

2. ∃z ∈ V s.t. (lx[az] = ly[az])

For all regions Rf such that there exists an edge
−−−−→
Rc, Rf in the dominance graph

Multi−Query−DG (see Chapter 15.2) and queriesRQL(Rc)∩RQL(Rf), we identify

output cells in Rf that are dominated by the newly generated tuples in Rc. This allows us

to discard all join results that map to such dominated cells for RQL(Rc) ∩ RQL(Rf) as

they are guaranteed to not contribute to its final result of queries inRQL(Rc)∩RQL(Rf).

R1

R3

R4

1$$$$$$$$$$$$$$$$$3$$$$$$$$$$$$$$$$$5$$$$$$$$$$$$$$$$$$7$

5

3$

11$

7$

13$

9$

A$

B$

C$

Da

b$
c$

d$

d2$

d1$

Progressive$Output$
For$Q3$

R2

Region$ R1$ R2$ R3$ R4$

Queries$ {Q1,$Q2,$Q3}$ {Q1,$Q2}$ {Q2,$Q3}$ {Q1,$Q3}$

Progressive$Output$
For$Q2$and$Q3$

Figure 16.1: Multi-Query Progressive Output

135

16.2 MULTI-QUERY PROGRESSIVE RESULT REPORTING

16.2 Multi-Query Progressive Result Reporting

To support progressive result reporting, we push the decision making to the coarser gran-

ularity of output cells. More precisely, we translate the problem of determining which

result can be progressively output into the process of determining output cells, say Ox,

that are guaranteed to (1) not have any future results map to them, and (2) that contain

only tuples that are guaranteed to not be dominated by future tuples.

Example 16.1 In Figure 16.1, if region R3 is picked for tuple-level processing, at the end

of its processing, we can safely output all tuples in all of its output cells for queryQ3. This

is due to the fact that no future tuples can dominate it (as derived from the dependency

graph) and tuples in region R2 do not contribute to Q3. In contrast, for Q2 we can

only progressively output tuples in cells O[(4, 4)(5, 5)], O[(5, 4)(6, 5)] and O[(6, 4)(7, 5)]

since the tuples in the remaining cells may be dominated by future tuples that map to cells

O[(3, 5)(4, 6)], O[(4, 5)(5, 6)] and O[(5, 5)(6, 6)] of R2.

16.3 Satisfaction Based Feedback Mechanism

For each progressive result reported for query Qi ∈ SQ we calculate its utility by the

utility function vi defined in this contract Ci. The Qi’s QoS metric at time instance t, is

denoted as v(Qi, t), is the average utility score of all the results reporting at time t. Based

on this metric we adjust the query Qi’s weight wi in Equation 15.1 for next iteration

of processing. This enables us to pick regions that satisfy queries with low run-time

satisfaction to meet their respective contracts in the future. This translates to changing the

weight wi to w′i in our CSM-based benefit model (Equation 15.1):

w′i = wi +
vcurr−max − v(Qi)∑N
j (vcurr−max − v(Qj))

(16.1)

136

16.3 SATISFACTION BASED FEEDBACK MECHANISM

where vcurr−max is the maximum satisfaction of any single query during the current time

period.

Example 16.2 At the end of picking region R3, let the run-time satisfaction metric of

the queries be {0, 1, 0.7, 0} i.e., vcurr−max = 1. By Equation 16.1 the new weights are

{1.43, 1, 1.13, 1.43}1. In other words, we bump up the priorities of Q1, Q2 and Q3 since

they have not yet meet their respective QoS contracts.

1Let us assume that the original weights ∀iwi = 1

137

17

Experimental Evaluation on CAQE

17.1 Experimental Settings

17.1.1 Experimental Platform

All measurements obtained on a workstation with AMD 2.6GHz Dual Core CPUs with

Java heap set to 4GB. All algorithms were implemented in Java.

17.1.2 Contract Models

As described in Chapter 12.1.1, progressiveness contracts in CAQE follow the micro-

economic principle to determine the utility of a result tuple. We tested CAQE’s effective-

ness under different classes of contracts, namely time-based (C1, C3 and C3), cardinality-

based (C4) and hybrid (C5) contracts. Table 17.1 summarizes the contract models used in

this study where tC1 and tC3 are tunable parameters for contracts C1 and C3 respectively,

while nij is the time interval used in contracts C4 and C5. In Table 17.1 N is the total of

output tuples for query Q and τk.ts is the output time of the result tuple τk.

138

17.1 EXPERIMENTAL SETTINGS

Utility Functions

C1 ϑC1(τk) =

{
1 for τk.ts ≤ tC1

0 for τk.ts > tC1

C2 ϑC2(τk) = 1/log(τk.ts)

C3 ϑC3(τk) =

{
1 for τk.ts ≤ tC3

1/(τk.ts− tC3) for τk.ts > tC3

C4 ϑC4(τk) =

{
1 for ni,j/N ≥ 0.1

ni,j/(N ∗ 0.1)− 1 for ni,j/N < 0.1
ϑC5(τk) = ϑcard(τk) ∗ ϑtime(τk), where

C5 ϑtime(τk) = 1/τk.ts; ϑcard(τk) = ϑC4(τk)

Table 17.1: Progressive Contracts Used in the Experimental Study

17.1.3 Data Sets

We conducted our experiments using the de-facto standard datasets used to stress test

skyline algorithms (BKS01). This includes three extreme attribute correlations, namely

independent, correlated, or anti-correlated. For correlated data a few tuples dominate

a vast majority of tuples in that table. In contrast, for anti-correlated datasets a large

portions of the input can potentially correspond to the final skyline results, making skyline

operations resource intensive (both memory and CPU). For each data set R (and T), we

vary the cardinality N [10K–500K] and the # of skyline dimensions d [2-5]. The attribute

values are real numbers in the range [1–100]. The join selectivity σ is varied in the range

[10−4–10−1]. We set |R| = |T | = N .

17.1.4 Query Workload

We focus on queries similar to the motivating examples in Chapter 1.2. That is, queries

that perform join, mapping and then skyline operations. More specifically, we consider

queries that differ in their skyline dimensions. Each workload query is assigned a query

priority pri [1 – 0] that classifies the queries into HIGH [1 – 0.7], MEDIUM [0.69 – 0.4]

and LOW [0.39, 0] priority.

139

17.2 CONTRACT SATISFACTION METRIC

17.1.5 Competitor Techniques

To the best of our knowledge, CAQE is the first technique to support the Contract-MQP.

To showcase the effectiveness of CAQE, we compared against existing skyline-over-

join algorithms, namely JFSL (KLTV06), Skyline-Sort-Merge-Join (SSMJ) (JMP+10) and

ProgXe (RR10). In all systems, queries are processed in the order of the priority pri but

these existing techniques do not share work across skyline queries. To compare CAQE

against sharing-based technique, we propose a shared skyline approach (S-JFSL) that

pipelines the join tuples over our min-max cuboid plan (see Chapter 13).

17.1.6 Evaluation Metrics

To examine the performance of CAQE we vary the: (1) contract model used, (2) query

priorities, (3) data distributions, and (4) number of workload queries. For a given work-

load and its associated contract model, we measure: (1) the latency and the utility of each

result tuple, (2) the total execution time to return the complete result set, (3) total mem-

ory usage (number of join results), (4) CPU computations by means of the number of

skyline comparisons needed. Lastly, we calculate the average satisfaction metric of each

workload query.

17.2 Contract Satisfaction Metric

We now analyze the performance of the different algorithms under varying contract and

data distribution models. In this set of experiments, we vary the priority of the different

queries such that for contract models {C1, C2}, in Figure 17.1 and Figure 17.3, queries

with a larger number of skyline dimensions have a higher priority than queries with a

smaller dimensions. In contrast, for {C3, C4} we assigned queries with smaller number

of skyline dimensions a higher priority. Lastly, for C5 priorities were uniformly assigned.

140

17.2 CONTRACT SATISFACTION METRIC

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5

Av
g.

 Q
ue

ry
 S

at
is

fa
ct

io
n

M
et

ric

S-JFSL
JFSL

ProgXe+
CAQE

SSMJ

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5

Av
g.

 Q
ue

ry
 S

at
is

fa
ct

io
n

M
et

ric

S-JFSL
JFSL

ProgXe+
CAQE

SSMJ

(a) Correlated (b) Independent

 0

 20

 40

 60

 80

 100

C1 C2 C3 C4 C5

Av
g.

 Q
ue

ry
 S

at
is

fa
ct

io
n

M
et

ric

S-JFSL
JFSL

ProgXe+
CAQE

SSMJ

(c) Anti-correlated

Figure 17.1: Comparing the Avg. Query Satisfaction Metric for CAQE, S-JFSL, JFSL,
ProgXe+ and SSMJ; |SQ| = 11 N = 500K

Correlated datasets are tailor made for skyline algorithms since a handful of join tuples

can dominate the entire result space. Therefore we set the contract parameters tC1 = tC3

= 10s and ni,j = 1s. In Figure 17.1.a we observe that for contracts {C1, C3, C4, C5}

CAQE and S-JFSL both exploit the sharing opportunity provided by our min-max cuboid

plan to progressively output the dominating tuples early on. They also exploit it to prune

vast amounts of intermediate tuples. For these same contracts, existing techniques return

tuples that have at worst 4x smaller utility score (C1) than CAQE and at best have 1.5x

smaller utility score. Contract C3 is our toughest requirement to meet, for instance a

tuple with a time stamp 12 seconds has utility of 0.5. Even under such stringent contract

141

17.2 CONTRACT SATISFACTION METRIC

requirements, CAQE’s contract-driven ordering technique allows us to meet a satisfaction

metric of 66% which is approximately 4x better than both ProgXe+ and SSMJ, and 3x

better than the shared execution strategy S-JFSL.

For independent 4-d dataset, several hundreds of join tuples contribute to the final

skyline rather than the mere 16 tuples produced in the correlated dataset. Accordingly

we set tC1 = tC3 = 40s. Cardinality-based contract C4 requires 10% of the tuples to be

progressively produced every 10s (ni,j). Under this model, the performance of the count

based ProgXe+ algorithm is comparable to CAQE’s satisfaction based metric. In Figure

17.1.a for contracts {C2, C3, C5} the contract-driven, rather than count-driven, approach

of CAQE enables it to perform 2.5x better than the others.

 0

 20

 40

 60

 80

 100

1 3 5 7 11

Av
g.

 Q
ue

ry
 S

at
is

fa
ct

io
n

M
et

ric

S-JFSL
JFSL

ProgXe+
CAQE

SSMJ

(a) Contract Model: C2

 0

 20

 40

 60

 80

 100

1 3 5 7 11

Av
g.

 Q
ue

ry
 S

at
is

fa
ct

io
n

M
et

ric

S-JFSL
JFSL

ProgXe+
CAQE

SSMJ

(b) Contract Model: C3

Figure 17.2: Increasing Number of Queries in the Workload

142

17.3 INCREASING SIZE OF WORKLOAD

The anti-correlated data distribution is the most resource intensive dataset for a skyline

algorithm. This is evident from the fact that a 4-d skyline has 75K+ join tuples in the final

skyline. Given the expensive nature of this dataset we set tC1 = tC3 = 30 minutes and

ni,j = 10 minutes. For all contract models except C2, skyline results returned by JFSL

have no value to users of the workload queries. In Figure 17.1.c we observe that both

CAQE and ProgXe+ outperform the other techniques by a factor of ≈2x. For time-based

contracts such as {C1, C3} CAQE returns skyline results that have 1.5x and 1.8x better

utility than that of ProgXe+. For contracts {C4, C5} when smaller dimensional skyline

queries have higher priority, ProgXe+ is competitive with CAQE. However, when the

higher dimensional queries are of more importance, then CAQE outperforms ProgXe+ by

≥ 1.5x.

17.3 Increasing Size of Workload

We now measure the effectiveness of the compared techniques for varying workload

sizes. In this section, we focus the discussion to the general independent data distri-

bution datasets and to contracts {C2, C3} which are the strictest contract models pre-

sented in Table 17.1 (Chapter 17.1). In Figure 17.2 as the number of workload queries

increases the average satisfaction of each query in the workload drops proportionally. In

Figure 17.2.a, for all workload sizes due to the nature of the logarithmic decay function

contract C2 none of the techniques can achieve the optimal 100% satisfaction. As the

workload size increases, the adaptive execution strategy enables CAQE to the smallest

drop of 20% in comparison to the 36% and 38% drop in performance for the ProgXe+

and SSMJ respectively. In contrast in Figure 17.2.b for the contract model C3 all com-

pared techniques exhibit optimal query satisfaction when only handling a single query in

the workload. However, as the number of queries increases we observe in Figure 17.2.b

143

17.4 COMPARING CPU AND MEMORY UTILIZATION

 0

 0.5

 1

 1.5

 2

 2.5

 3

Anti-Corr Ind Corr

R
at

io
 o

f #
Jo

in
-T

up
le

s
G

en
er

at
ed

For All Distributions: CAQE = 1

S-JFSL
JFSL

ProgXe+
CAQE
SSMJ

 1

 10

 100

 1000

 10000

 100000

Anti-Corr Ind Corr

 R
at

io
 o

f S
ky

lin
e

C
om

pa
ris

on
s

(lo
g)

For All Distributions: CAQE = 1
For Corr. : S-JFSL=ProgXe=1

S-JFSL
JFSL

ProgXe+
CAQE
SSMJ

(a) Join Tuples Generated (b) Skyline Comparisons Conducted

 0

 5

 10

 15

 20

 25

Anti-Corr Ind Corr

R
at

io
 o

f E
xe

cu
tio

n
Ti

m
e

For All Distributions: CAQE = 1

S-JFSL
JFSL

ProgXe+
CAQE
SSMJ

(c) Total Execution Time

Figure 17.3: Comparing the Statistics Measured for S-JFSL, JFSL, ProgXe and SSMJ
Against CAQE (|SQ| = 11, N = 500K,C2)

alternative techniques suffer from a step drop in performance. In contrast, the adaptive

execution strategy employed enables CAQE to only experiences a relatively smaller drop

in query satisfaction.

17.4 Comparing CPU and Memory Utilization

The CPU and memory utilization of the skyline-over-join algorithm are directly related

to the number of intermediate tuples generated by the join operation as well as the ex-

pensive pairwise dominance comparison needed to evaluate the final skyline. In Figures

17.3.a- 17.3.c we illustrate that the by employing a shared execution approach enables

144

17.4 COMPARING CPU AND MEMORY UTILIZATION

both CAQE and S-JFSL to produce fewer join tuples than their competitors. In fact,

for the independent dataset CAQE generates 31% fewer join results than both JFSL and

SSMJ and 16% fewer than ProgXe+.

In terms of skyline comparisons, the contract-driven processing of join results over

the min-max cuboid plan empowers CAQE to deliver skyline results earlier than its com-

petitors while having to perform several fold fewer pairwise skyline comparisons. In

particular as shown in Figure 17.3.b, for independent datasets CAQE requires 66x, 2.7x,

7x, and 20x fewer comparisons than the JFSL, S-JFSL, ProgXe+, and SSMJ techniques

respectively. By generating a smaller number of join tuples as well as performing fewer

dominance comparisons CAQE is able to outperform the compared techniques in the

overall execution time of the query workload. In fact, CAQE is at least 2x faster than

ProgXe+, and ≈ 24x better than JFSL. Lastly, CAQE outperforms the shared execution

strategy S-JFSL by 17x.

145

18

Related Work for Part III

Skyline- Supports
Over Multiple Progressive User
Join Queries QoS

SkyCube (YLL+05) X X
BUS, TDS(PJET05) X X

PruningJoin+ (KLTV06) X
SAJ(KLTV06) X

Sort-Based (KML11, VDP11, JMP+10) X X
ProgXe (RR10) X X

z Our Approach X X X X

Table 18.1: Summary of Related Work for Part III (CAQE)

18.1 Subspace Skylines over Single Relation

(PJET05, YLL+05) proposed Skyline Cube containing skylines results for all combina-

tions of skyline dimensions. This is reminiscent of the precomputed data cube technique

in data warehousing (GBLP96). However, these techniques ignore (1) multi-relational

skylines, and (2) do not support QoS sensitive query evaluation – both now tackled by our

work.

146

18.2 SKYLINES OVER JOIN QUERIES

18.2 Skylines over Join Queries

Existing techniques (BKS01, RR10, JMP+10, KML11, VDP11) process a single skyline-

over-join query, while ours is the first effort at processing multiple skyline-over-join

query. Table 18.1 summarizes the differences between our approach versus the state-of-

the-art skyline techniques. In Chapter 5 we provide a detailed descriptions of the above

mentioned techniques.

18.3 Quality of Service

In computer networking, QoS defines varying levels of services for applications and types

of data. Applications such voice over IP and streaming multimedia must ensure a certain

level of user experience by reducing packet drops. This is accomplished by reserving net-

work capacity based on bandwidth, delay, and error rates (PL07). In streaming databases,

to provide real-time responses, (LQX06, XZH05) enable the user to specify a contract in

terms of latency, data freshness, CPU and memory usage. Their focus is different from

ours in the complexity of the queries targeted, the objective and the approach taken. First,

(XZH05) sheds data from incoming streams to handle load and meet the desired QoS.

Second, they only consider simple stream queries namely Select-Project-Join. They do

not support the more complex nor blocking queries such as skyline-over-join queries.

147

Part IV

Cardinality Assurance Via

Proximity-driven Refinement

148

19

Proximity-Driven Cardinality

Assurance

In the following chapters, we address the problem of Proximity-Driven Cardinality As-

surance, introduced in Chapter 1.4.4. In this context, we consider conjunctive Select-

Project-Join (SPJ) queries of the form Q = P1 ∧ . . . ∧ Pd, where Pi’s denote predicates

spanning relations R1. . .Rk in database D.

19.1 Running Query

In this work, we will use query Q2 below as our running example. For simplicity, Q2

contains only one select and one join predicate.

Q2: SELECT * FROM A, B WHERE A.x=B.x AND B.y<50

149

19.2 QUERY REPRESENTATION

19.2 Query Representation

For a given query Q, we divide each predicate Pi into two parts: the predicate func-

tion (PiF) and the predicate interval (PiI). Pi
F is a monotonic function on attributes

of R1. . .Rk while PiI denotes the interval of acceptable values for PiF, that is, PiI =

(mini
I,maxi

I). To illustrate, the predicate (B.y < 50), in Q2 is decomposed into

Pi
F = B.y and PiI = (0, 50). Range predicates like (10 < B.y < 50) are rewritten

as two one-sided predicates, (B.y > 10) ∧ (B.y < 50). For equi-joins (A.x = B.x) and

non-equi joins (2 ∗ A.x < 3 ∗ B.x), the form of PiI is unchanged; however, PiF takes

the form Diff((Pi
F)1, (Pi

F)2), where (Pi
F)1 and (Pi

F)2 are separate predicate functions

and Diff is the function measuring distance between them. Therefore, join predicate

A.x = B.x in Q2 is decomposed into (Pi
F)1 = A.x and (Pi

F)2 = B.x. Its PiI = (0, 0)

signifies that values of the two functions must match exactly.

19.3 Measuring Refinement

A query Q=(P1 ∧ . . . ∧ Pd) is refined to Q′ by refining one or more predicates Pi ∈ Q to

predicates Pi′ ∈ Q′. The refinement of Q′ along Pi, called predicate refinement score or

PScorei(Q,Q
′), is measured as the percent departure of (Pi

I)
′
from Pi

I (Equation 19.1).

For equality join predicates, the denominator is set to 100. Measuring relative change, as

opposed to absolute change, in predicate intervals compensates for the differing scales of

query attributes. While percent refinement is the default predicate refinement metric used

in this work, a user can override the metric with custom (monotonic) functions without

changes to our algorithm. By computing the refinement score for each query predicate,

a refined query Q′ can be represented as a d-dimensional vector of predicate refinement

scores, called the predicate refinement vector or PScore(Q,Q′) (Equation 19.2).

150

19.3 MEASURING REFINEMENT

PScorei(Q,Q
′) =

|(PiI)min − (Pi
I)
′
min|+ |(Pi

I)max − (Pi
I)
′
max|

|(PiI)max − (Pi
I)min|

· 100 (19.1)

PScore(Q,Q′) = (PScore1(Q,Q
′) . . . PScored(Q,Q

′)) (19.2)

The query refinement score of Q′, denoted by QScore(Q,Q′) is defined as a mono-

tonic function f : Rd → R used to measure the magnitude of PScore(Q,Q′). We use

the popular weighted vector p-norms (Kol08) to calculate QScore(Q,Q′), though other

norms can be also be plugged in.

Weighted Vector P-norms. Given a vector v, the p-norm or Lp norm of v, denoted

by ‖ v ‖p, is defined by Equation 19.3. A weighted norm is a norm assigning weights to

the individual components of the vector v through a diagonal matrix W .

‖ v ‖p=
(d∑
i=1

| vpd |
)1/p

(19.3)

‖ v ‖Wp=‖ Wv ‖p (19.4)

‖ v ‖∞= max
1≤i≤d

| vi | (19.5)

Equations 19.6-19.9 show QScore for the common vector norms.

151

19.3 MEASURING REFINEMENT

L1 : QScore(Q,Q′) =
(d∑
i=1

PScorei(Q,Q
′)
)

(19.6)

L2 : QScore(Q,Q′) =
(d∑
i=1

PScorei(Q,Q
′)2
)1/2

(19.7)

LW1 : QScore(Q,Q′) =
(d∑
i=1

wi · PScorei(Q,Q′)
)

(19.8)

L∞ : QScore(Q,Q′) = max
1≤i≤d

PScorei(Q,Q
′) (19.9)

Example 19.1 Consider the following refinement to Q2.

Q2’: SELECT * FROM A,B WHERE A.x=B.x AND B.y<60

The refined query Q′2 expands the ranges of acceptable values for B.y by 10 units.

Therefore,Q′2 is represented as PScore(Q2, Q′2)= (0, 10
50
·100) and hasQScore(Q2, Q

′
2)=20

for the L1 norm.

We can similarly define refinement scores for tuples. The refinement score of a tuple

quantifies how much the original query must be refined to produce it as a result.

Example 19.2 A join tuple τ {(A.x=10010), (B.x=10015, B.y = 55)} is represented

by the refinement vector (5, 5
50
· 100) to indicate that the join and select predicates must be

refined by 5 and 10 units respectively to produce τ as a result. The total refinement of τ

is 15 for L1, 5
√

5 for L2 and 10 for L∞.

Theorem 19.1 Given a refined query Q′ for Q and a tuple τ expressed in terms of their

predicate refinements respectively as (u′1, u
′
2, . . . u

′
d) and (t1, t2, . . . td). τ satisfies query

Q′ if and only if 0 ≤ ti ≤ u′i ∀ i.

Proof: Proof omitted due to space limitations.

152

19.4 PROBLEM DEFINITION

19.4 Problem Definition

Definition 19.1 Exact Proximity-driven Cardinality Assurance (E-PCA). Given database

D, query Q and desired cardinality C, E-PCA finds a set QF of refined queries s.t.

∀Q′i ∈ QF (1) Cardinality Constraint: Cardinality(Q′i) = C, and (2) Proximity Con-

straint: QScore(Q,Q′i) = min{QScore(Q,Q′j)| ∀Q′j s.t. (Cardinality(Q′j) = C)}.

In many scenarios, however, no query can attain the exact cardinality C and even an

exhaustive search cannot find a single query producing the cardinality C. Hence, to make

the problem tractable, we augment the problem with two tunable thresholds: cardinality

threshold δ and refinement threshold γ.

Definition 19.2 Approximate Proximity-driven Cardinality Assurance (A-PCA). Given

database D, queryQ, desired cardinality C, cardinality threshold δ and refinement thresh-

old γ, A-PCA finds a set QF of queries s.t. ∀Q′i ∈ QF (1) Cardinality constraint:

|Cardinality(Q′i)−C|≤δ, and (2) Proximity constraint: |QScoreopt − QScore(Q,Q′i)|

≤γ, where QScoreopt= min {QScore(Q,Q′j)| ∀Q′j s.t. (|Cardinality(Q′j)−C| ≤ δ)}. For

simplicity, we henceforth use the term PCA interchangeably with A-PCA.

Theorem 19.2 For a conjunctive query Q with desired cardinality C, cardinality thresh-

old δ and a refinement threshold γ, the PCA problem is NP-hard.

Proof: We prove the NP-hardness of PCA by a simple reduction to the approximate

cardinality assurance (A− CA) problem which is known to be NP-hard (BCT06). First,

we recast PCA as a decision problem: Given database D, query Q, expected cardinality

C, cardinality threshold δ, and refinement threshold γ, does there exist a set of queries

satisfying constraints (1) and (2) of Definition 2? Similarly, A− CA takes the following

form: Given database D, query Q, expected cardinality C, and cardinality threshold δ,

does there exist a set of queries satisfying constraint (1) from Definition 2? The A −

153

19.4 PROBLEM DEFINITION

CA problem is known to be NP-hard. Next, we define a procedure reduce, which given

an instance of A − CA, creates an equivalent PCA instance with γ = ∞. Reduce is

therefore (trivially) polynomial, and any solution of A − CA solves the corresponding

PCA problem and vice versa. Since the approximate cardinality problem A − CA is

NP-hard, and A−CA can be reduced to PCA via a polynomial time algorithm, PCA is

NP-hard.

In this work, we first focus our attention on queries that return too few results. We

show in Chapter 23 that CAPRI can be extended to handle queries that produce too many

results.

154

20

Phase I: Expand

As described in the previous section, the Expand phase of CAPRI is responsible for it-

eratively generating refined queries that meet two criteria: (1) they satisfy the proximity

threshold, and (2) their refinement scores (QScore values) are greater or equal to the

scores of previously generated queries.

Q3=(0,0) 1 2 3

1

2

3

y

x

P2 [Y] Refinement

P1 [Join (X)] Refinement

L1-1

L1-2

L1-4

L1-3

L∞-1

L∞-2

L∞-3

Q’3=(0,4)

Figure 20.1: Expand Phase: Refined Space and Generation of Refined Queries

To meet the above query generation goals, CAPRI uses an abstraction called the Re-

fined Space to represent all refined queries. Given an original query Q having d predi-

155

cates, the Refined Space, denoted henceforth by RS(Q), is a d-dimensional space, where

the origin represents Q and the axes measure individual predicate refinement. To illus-

trate, consider a refined queryQ′ and assume that theLp norm is used to computeQScore.

Q′ would then be represented in RS(Q) as (u1, u2 . . . ud) where ui = (PScorei(Q,Q
′))p

∀i = 1 . . . d, making QScore(Q,Q′) = (
∑d

i=1 ui)
1
p . Conversely, every point in the re-

fined space (u1, u2 . . . ud) corresponds to some query Q′ with PScorei(Q,Q′) = u
1/p
i .

By extension, any d-dimensional hyper-rectangle on RS(Q) also corresponds to a query.

Theorem 20.1 Given original query Q and optimal query Qopt meeting the cardinality

constraint and having minimum refinement. Let RS(Q) be a multi-dimensional grid with

step-size on each axis equal to γ
d
, then at least one refined query Q′ lying on the RS(Q)

grid will satisfy the proximity constraint w.r.t. to Qopt.

Proof: LetQopt = {u1, u2 . . . ud} in a grid cellG inRS(Q). Since the refined space

grid has step-size γ
d
, any query Q′ = {u′1, u′2 . . . u′d} on G satisfies:

|u1p − u′1
p| + |u2p − u′2

p| + . . . + |udp − u′d
p| ≤ γ

d
· d = γ

⇒|(u1p + u2
p + . . .+ ud

p)− (u′1
p + u′2

p + . . .+ u′d
p)| ≤ γ

⇒|QScore(Qopt, Q)p −QScore(Q′, Q)p| ≤ γ

⇒QScore(Qopt, Q)p−QScore(Q′, Q)p≤ γ (assumeQScore(Qopt, Q)p≥QScore(Q′, Q)p)

⇒(QScore(Qopt, Q)−QScore(Q′, Q)) · (QScore(Qopt, Q)p−1 +QScore(Qopt, Q)p−2 ·

QScore(Q′, Q) + . . .+QScore(Q′, Q)p−1) ≤ γ

⇒(QScore(Qopt, Q)−QScore(Q′, Q)) ≤ γ (γ > 1)

CAPRI divides RS(Q) into a multi-dimensional grid with step-size γ
d

to avoid an

exhaustive search of RS(Q) and stay within the proximity threshold. Each query on

the multi-dimensional grid is called the grid query. Figure 20.1 depicts the refined

space abstraction for running query Q2 assuming γ=10. Since Q2 has two predicates,

step-size=5 and RS(Q2) is a 2-dimensional space with the axes respectively measuring

156

the refinements along the select and join predicates. A refined query like Q′2 having

PScore(Q2, Q′2)= (0, 20) is represented as (0, 4) in RS(Q2).

The second goal of the Expand phase is to generate refined queries in order of in-

creasing refinement. CAPRI achieves this goal by producing queries close to the origin in

RS(Q) before those far from it. In particular, the Expand phase generates refined queries

in layers where queries in a given query-layer have the same QScore. Consequently,

for all Lp norms except L∞, query-layers take the form of d-dimensional planes corre-

sponding to QScore = k ⇒ QScorep = kp ⇒ (
∑d

i=1 u
′
i) = kp. For L∞, however,

query-layers are L-shaped and intersect each axis at kp. Figure 20.1 shows query-layers

for Q3 assuming the L1 and L∞ norms.

Beginning with the query-layer with refinement 0, CAPRI generates all grid queries

in the current query-layer. If no query from the current layer produces adequate results,

CAPRI proceeds to the next query-layer having QScore increased by γ
d
. Since this it-

erative expansion model examines queries in order of increasing refinement, CAPRI can

stop immediately after a query is found to meet the required cardinality, thus reducing the

number of queries examined by CAPRI. Algorithms 12 and 13 respectively describe the

pseudocode for generating queries using the Lp and L∞ norms. The Lp algorithm gener-

ates query-layers using a breadth-first search while the L∞ norm sequentially enumerates

queries in the given layer.

Algorithm 12 GetNextQuery(Queue queryQue)
1: int[] currQuery = queryQue.Pop() //Array indexed from 1
2: for i = 1 to d do
3: nextQuery ← GetNextNeighbor(i) //Increment the (i)th dimension of currQuery

by stepsize
4: if (!queryQue.Contains(nextQuery)) then
5: queryQue.Push(nextQuery)
6: return currQuery

157

Algorithm 13 GetNextQuery(Queue queryQue, int currRef)
1: if (!queryQueue.Empty()) then
2: return queryQue.Pop()
3: else
4: Query newQuery = 0
5: for i = 1 . . . d do
6: newQuery[i] = currRef; queryQue.Push(newQuery)
7: while newQuery != null do
8: IncrementQuery(newQuery, i, currRef) // Enumerate queries with i-th dimen-

sion fixed at currRef all other dimensions < currRef
9: queryQue.Push(newQuery)

Theorem 20.2 A grid query Q′i with QScore(Q,Q′i) = k is investigated after all grid

queries with QScore(Q,Q′i) = (k − 1) have been investigated.

Proof: Consider the refined space to be a directed graph with the origin as the root

and every grid query as a node. Every grid query is connected to d queries obtained by

incrementing one dimension by the unit step-size. These connections form the graph’s

edges. Then GetNextQuery for the Lp norm performs a breadth-first search on the

refined space grid, guaranteeing that all queries at distance k − 1 from the root are in-

vestigated before those at distance k. The result is trivially true for L∞ norm since our

algorithm explicitly generates queries in each query layer.

Time Complexity. The worst case complexity of the Expand phase is O(V + E)

where V is maximum number of refined queries in the grid and |E| = d · |V |.

158

21

Phase II: Explore

The Explore phase of CAPRI is responsible for efficiently computing the cardinalities of

queries produced in the Expand phase. For this purpose, we introduce a light-weight

query execution methodology based on two key contributions: (1) a novel, efficient

incremental query execution algorithm, and (2) an efficient, predictive index structure.

The former exploits dependencies between refined queries using a specialized recursive

model. For each query, our model requires execution of only one sub-query and computes

the overall cardinality by intelligently combining partial results from previously queries.

CAPRI guarantees that a query result is examined at most once, irrespective of how many

queries contain it. Our predictive index structure, on the other hand, ensures that CAPRI

only examines tuples likely to satisfy a query and does not regenerate previously produced

query results.

21.1 Incremental Query Execution

The principle underlying our query execution algorithm is that refined queries often share

results and therefore, once a query result is found to satisfy a given query, it must never

159

21.1 INCREMENTAL QUERY EXECUTION

be re-evaluated for any other query.

Query Containment. A refined query Q′=(u′1, u
′
2 . . . u

′
d) is said to be contained within

another refined query Q′′=(u′′1, u
′′
2 . . . u

′′
d) if (u′i≤u′′i) ∀ i = 1 . . . d.

Theorem 21.1 If refined query Q′ is contained within refined query Q′′: (1) all results of

Q′ also satisfy Q′′. (2) Q′ is guaranteed to be generated before Q′′ in the Expand phase.

Proof: Let tuple τ that satisfies Q′. (1) By Equation 19.2:

PScorei(τ,Q) ≤ PScorei(Q′, Q) ∀ i = 1 . . . d

⇒ PScorei(τ,Q)p ≤ PScorei(Q′, Q)p = u′i ∀ i = 1 . . . d (PScore ≥ 0)

⇒ PScorei(τ,Q)p ≤ u′′i

⇒ PScorei(τ,Q) ≤ PScorei(Q′′, Q).

Consequently, all the query results of Q′ also satisfy Q′′. For (2), from definition of

contained queries, QScore(Q′, Q)≤QScore(Q′′, Q). Therefore, by Theorem 20.2, the

Expand phase will produce Q′ before Q′′.

Since all contained queries are produced and executed before those containing them,

CAPRI can extensively use previously-generated query results. In particular, CAPRI

exploits the concept of query containment by artificially constructing contained queries,

called sub-queries henceforth, that are used as units of query execution and result sharing.

We now describe the sub-queries used.

21.1.1 Query Decomposition

Consider query Q′ with d predicates, represented as point (u′1, . . . , u
′
d) in the refined

space. In addition to Q′, CAPRI defines d specialized sub-queries contained in it, giv-

ing d + 1 queries in all. Figure 21.1 shows these queries for a 2-predicate query. The

first sub-query (A) corresponds to the unit square in RS(Q) with its upper-right corner

at Q′=(u′1, u
′
2), the second sub-query (B) corresponds to a unit-width rectangle in RS(Q)

160

21.1 INCREMENTAL QUERY EXECUTION

!"#"

!"#$%&"#'(&

$"

!"#$%&"#'(&

!"#$)$%&"#')$(&

!"#$%&"#'(&

!*(& !+(& !,(&

!-%-(&!-%&"#')$(&!-%-(& !-%-(&

$"

!"#$%&"#'(&!"#$%&"#')$(&

!-%-(&

#"

!"
!"#$)$%&"#'(&

Figure 21.1: Sub-orthotopes of a 2-D Query Orthotope

with Q′ at its upper-right corner, and the third sub-query is the entire query (C). Simi-

larly, for a 3-predicate query as in Figure 21.2, the first sub-query (A) is the unit cube,

the second (B) is a unit length and width parallelepiped, the third (C) is a unit width par-

allelepiped, and the fourth (D) is the entire query sub-query. For ease of exposition, we

refer to the first sub-query as cell, the second as pillar, the third as wall, and the fourth as

block.

In a d-dimensional refined space, the d+ 1 sub-queries, called O1, O2. . .Od+1, can be

formally defined as shown in Equations 21.1-21.4. All d + 1 sub-queries have the same

upper bound (Q′ = (u′1 . . . u
′
d)), but different lower bounds. For instance, the cell sub-

query O1 has a lower bound which is unit length away from (u′1, . . . u
′
d) on all dimensions

(Equation 21.1). The cell sub-query corresponds to the cell in the refined space grid

having (u′1, . . . u
′
d) as its upper bound. Similarly, the pillar sub-query has a lower bound

with the first dimension equal to 0 and all remaining dimensions j (j = 2 . . . d) unit

length away from u′j (Equation 21.2). In general, the lower bound of the jth sub-query

Oj is (0, . . . 0, u′j − 1, . . . u′d − 1,). For simplicity, we will refer to an sub-query Oi

corresponding to query (u′1, . . . u
′
d) as Oi(u

′
1, . . . u

′
d).

161

21.1 INCREMENTAL QUERY EXECUTION

!"#$%"#&%"#'()

!"#$%"#&%"#'*$()

!"#$)%"#&*$%"#'()

!+%+%+()

!"#$*$%"#&%"#'()

!"

!"#$%"#&%"#'()

!"#$%"#&%"#'*$()

!+%+%+()

!"

!"#$)%"#&*$%"#'()

!"#*$$%"#&%"#'()

(a) (b)

!"

!"#$%"#&''%"#()'

!"#$%"#&%"#(*$)'

!+%+%+)'

!"

!"#$%"#&''%"#()'

!"#$%"#&%"#(*$)'

!+%+%+)'

#"

!"#$%"#&'%"#()'

!+%+%+)'

(c) (d)

Figure 21.2: Sub-orthotopes of a 3-D Query Orthotope

O1 = ((u′1 − 1, . . . , u′d − 1), (u′1, . . . , u
′
d)) (21.1)

O2 = ((0, u′2 − 1, . . . , u′d − 1), (u′1, . . . , u
′
d)) (21.2)

Oj = ((0, 0, ...u′j − 1, . . . , u′d − 1), (u′1, .., u
′
d)) (21.3)

Od+1 = ((0, . . . , 0), (u′1, .., u
′
d))} (21.4)

By decomposing a query into the sub-queries defined above, we can reuse previously

obtained results. To see how this can be done, consider Figure 21.3.a where the 2-D query

decomposed into 3 sub-queries. We observe that sub-query A is the Cell(u′1, u
′
2), B is

162

21.1 INCREMENTAL QUERY EXECUTION

the Pillar(u′1, u
′
2 − 1), and C is the Wall(u′1 − 1, u′2). Similarly, Figure 21.3.b shows

the decomposition of a 3-predicate query into the four sub-queries A, B, C and D which

are respectively the Cell(u′1, u
′
2, u
′
3), the Pillar(u′1− 1, u′2, u

′
3), the Wall(u′1, u

′
2− 1, u′3),

and the Block(u′1, u
′
2, u
′
3 − 1). In general, a d-predicate query can be decomposed into

the previously defined (d+ 1) sub-queries:

2− predicate Query : (21.5)

O3(u
′
1, u
′
2) = O1(u

′
1, u
′
2) +O2(u

′
1 − 1, u′2) +O3(u

′
1, u
′
2 − 1)

3− predicate Query : (21.6)

O4(u
′
1, u
′
2, u
′
3) = O1(u

′
1, u
′
2, u
′
3) +O2(u

′
1 − 1, u′3, u

′
3) +

O3(u
′
1, u
′
2 − 1, u′3) +O4(u

′
1, u
′
2, u
′
3 − 1)

d− predicate Query : (21.7)

Od+1(u
′
1, u
′
2, . . . , u

′
d) = O1(u

′
1, u
′
2, . . . , u

′
d) +

O2(u
′
1 − 1, u′2, . . . , u

′
d) +O3(u

′
1, u
′
2 − 1, u′3 . . . u

′
d) +

. . .+Od+1(u
′
1, u
′
2, . . . , u

′
d − 1)

Thus, if the cardinalities for the (d+ 1) sub-queries have been pre-computed, the car-

dinality of queryQ′ is the mere addition of these sub-cardinalities. We must store only the

cardinality values for the d+ 1 sub-queries. The corresponding result tuples can either be

stored in main memory or paged to disk. The above sub-query decomposition also leads

to two crucial observations: (1) The only part of a query unique to itself is the cell; all

remaining parts of the sub-query are shared with other queries. (2) The d+1 sub-queries

defined above belong to queries completely contained in Q′. Therefore, Theorem 21.1

guarantees that these queries would have been produced and hence executed before in-

163

21.1 INCREMENTAL QUERY EXECUTION

vestigating Q′. As a consequence, CAPRI must only execute the cell sub-query and can

directly reuse cardinalities of the remaining sub-queries.

21.1.2 Recursive Cardinality Computation

Query decomposition assumes that the cardinalities of the d + 1 sub-queries have al-

ready been computed. But independently determining cardinalities of these sub-queries

is redundant. Instead, we present a recursive strategy to calculate the cardinalities of the

sub-queries in constant time.

!"#"

!"#$%&"#'(&

$"

!"#$%&"#'(&

!"#$)$%&"#')$(&

!"#$%&"#'(&

!*(& !+(& !,(&

!-%-(&!-%&"#')$(&!-%-(& !-%-(&

$"

!"#$%&"#'(&!"#$%&"#')$(&

!-%-(&

#"

!"
!"#$)$%&"#'(&

!"

#"

!"#$%"#&%"#'()

!"#$%"#&%"#'*$()

!"#$)%"#&*$%"#'()

!+%+%+()

!"#$*$%"#&%"#'()

$"

%"

(a) (b)

Figure 21.3: Orthotope Decomposition: (a) 2-D (b) 3-D

Reconsider Figure 21.3 focusing now on the relationship between sub-queries. We

observe that for 2-predicate sub-queries (Figure 21.3.a) the Pillar(u′1, u
′
2) is equivalent

to Cell(u′1, u
′
2) and Pillar(u′1-1, u

′
2) combined. Similarly, the Wall(u′1, u

′
2), which is

the entire query is equal to the sum of Pillar(u′1, u
′
2) and Wall(u′1, u

′
2 − 1). For the

3-predicate query, in Figure 21.3.b, we have three similar recurrences as shown below.

164

21.1 INCREMENTAL QUERY EXECUTION

2−Recurrences : (21.8)

Pillar(u′1, u
′
2) = Cell(u′1, u

′
2) + Pillar(u′1 − 1, u′2)

Wall(u′1, u
′
2) = Pillar(u′1, u

′
2) +Wall(u′1, u

′
2 − 1) (21.9)

3−Recurrences : (21.10)

Pillar(u′1, u
′
2, u
′
3) = Cell(u′1, u

′
2, u
′
3) + Pillar(u′1 − 1, u′2, u

′
3)

Wall(u′1, u
′
2, u
′
3) = Pillar(u′1, u

′
2, u
′
3) +Wall(u′1, u

′
2 − 1, u′3) (21.11)

Block(u′1, u
′
2, u
′
3) =Wall(u′1, u

′
2, u
′
3) +Block(u′1, u

′
2, u
′
3 − 1) (21.12)

In general, this recursion for a d-predicate query is:

Oi(u
′
1, . . . , u

′
d) = Oi−1(u

′
1, . . . , u

′
d) + (21.13)

Oi(u
′
1, u
′
2, . . . , u

′
i−1 − 1, . . . , u′d) where i = 2 . . . d+ 1

Since the sub-query O1 has no recurrences, its cardinality must be computed by exe-

cuting the query. However, once the cardinality of O1 is determined, it takes d (constant)

steps to calculate the total cardinality for query Q′.

21.1.3 Cardinality Computation Algorithm

Algorithm 14 takes as input the query Q′(u′1, . . . , u
′
d) being investigated and produces

its cardinality. For this, Algorithm 14 first computes the cardinality of Cell(u′1, . . . , u
′
d),

and then iteratively applies the recurrence in Equation 21.13 to compute cardinalities of

the remaining sub-queries. Algorithm 15 is used to compute cell cardinality. Based on

165

21.2 PREDICTIVE INDEX STRUCTURE

the input query, Algorithm 15 finds the bounds of the cell sub-query and determines the

set of unmaterialized output regions that overlap with it. These output regions are then

materialized to calculate the cell cardinality.

Algorithm 14 ComputeCardinality(Query currQuery, int d)
1: int[d+ 1] currCard //All arrays are indexed from 1
2: currCard[1] = ComputeCellCardinality(currQuery)
3: for i = 2 to d+ 1 do
4: prevQuery← GetPreviousNeighbour(i-1) //decrement the (i − 1)th dimension of

currQuery by step-size
5: int[] prevCard = GetAllCardinalities(prevQuery)
6: currCard[i] = currCard[i− 1] + prevCard[i]
7: StoreAllCardinalities(currQuery, currCard)
8: return currCard[d+ 1]

Algorithm 15 ComputeCellCardinality(int[] currQuery)
1: List<OPRegion> opRegs = GetOverlap(GetCell(currQuery))
2: List<ResultTuples> tuples = GetResultTuples(opRegs)
3: for t in tuples do
4: boundingCell = GetBoundingCell(t)
5: IncrementCellCardinality(boundingCell)
6: RemoveMaterializedRegions(opRegs)
7: return GetCellTupleCount(currQuery) //Get number of tuples lying in the unit cell

with currQuery as upper bound

21.2 Predictive Index Structure

The incremental query execution algorithm described above ensures that CAPRI can per-

form extensive result sharing between refined queries and that each individual query re-

quires the execution of only the unit cell sub-query. The predictive index structure de-

scribed below in turn ensures that the unit cell sub-query is executed efficiently by only

examining those results that (1) are likely to satisfy a query and (2) haven’t been exam-

ined before. CAPRI achieves these twin goals through the strategy of mapping potential

166

21.3 CAPRI: PUTTING IT ALL TOGETHER

results to queries at a coarse granularity and keeping a running count of the cardinality

of previous queries. We illustrate the construction of our index structure via the running

query Q2 and an L1 norm.

!"#$%"&$'""""""##""""""""""($""""""""""(#"

&#
"""
"""
")
$"
"""
"""
)#
"""
"""
""#
$"

&$
"""
"""
"&
#"
"""
"""
)$
"""
"""
")
#"
"""
"""
"#
$"

!"#$%&"'()$*$!&#$%&"'()$+$

*" *"

+"
$""""""""""""#""""""""""""",$"""""""""""",#"

#"
"""
"""
"",
$"
"""
"""
,#
"""
"""
""-
$"

!,#$+"-./&,.$0(-1'.$23&,($

!""!"#$%&'()*"./01/2/13"

!#$!+*"./01/2/13"

R1,1
R1,2

R1,3

I1
A&

I2
B&

I3
B&

I1
B&

Figure 21.4: Building Output Regions: (a) Table A (b) Table B (c) Output Regions in Refined
Space

The first step in mapping potential results to queries is to partition input tables along

the attributes included in the original query (or equivalently use existing multi-dimensional

indexes). Therefore, as depicted in Figure 21.4, Table A is partitioned along A.y, while

B is partitioned along attributes B.x and B.y. To cope with skewed data, if a multi-

dimensional partition is found to have more than c tuples, the partition is divided into

half along each dimension. The resulting input partitions are identified by their lower and

upper bounds.

21.3 CAPRI: Putting It All Together

Algorithm 16 presents the pseudo code for the CAPRI framework. Given an initial

query Q and the refinement threshold γ, begins to iteratively Expand and Explore re-

fined queries, starting at the origin of the refined space and sequentially traverses queries

in subsequent layers. For each refined query, CAPRI estimates its cardinality following

the Incremental Query Execution technique described in Algorithm 14. Once the query

167

21.3 CAPRI: PUTTING IT ALL TOGETHER

cardinality has been determined, it is compared to the expected cardinality, C. If the car-

dinality is within the cardinality threshold δ of C, the query is stored in the answer list. In

this case, query search terminates with the exploration of all queries in the current layer,

i.e., all alternate queries with the same refinement score. If all queries in a layer under-

shoot the expected cardinality by more than δ, CAPRI explores the next higher layer. Last,

if any query overshoots the expected cardinality by more than δ, we repartition the cell

corresponding to the given query. The cell is divided into ϑ segments along each dimen-

sion (ϑ is a tunable parameter) to examine queries lying within it. Since the result tuples

potentially contributing to these new queries have already been generated, CAPRI can di-

rectly jump to cardinality estimation. We repeat the repartitioning process for b iterations

(b is a tunable parameter). If, at the end of repartitioning, no query is found to satisfy the

cardinality constraint, CAPRI returns the query attaining the closest cardinality.

Algorithm 16 CAPRI(Query origQuery, int C, int δ, double γ)
1: A =[] //Set of refined Queries
2: Queue queryQueue = [] //Data structure for traversal
3: d← Soft predicates in origQuery
4: ConstructRefinedSpace(origQuery, γ, d)
5: int[d] currQuery = {0,. . . , 0} //Origin represents origQuery
6: queryQueue.push(currQuery)
7: int minRefLayer = MAX INTEGER VALUE
8: int currRefLayer = 0
9: while (currRefLayer ≤ minRefLayer) do

10: int card = ComputeCardinality(currQuery, d) //Algorithm 14
11: if (| card - C | ≤ δ) then
12: A.add(currQuery)
13: minRefLayer = currRefLayer
14: else if (card > C) then
15: A.add(Repartition(currQuery))
16: currQuery = GetNextQuery(queryQueue) //Algorithm 12
17: currRefLayer = QScore(currQuery)
18: return A

168

22

Experimental Evaluation of CAPRI

22.1 Experimental Setup

22.1.1 Platform

All algorithms were implemented in Java 1.5. Measurements were obtained on AMD

2.6GHz Dual Core CPUs, Java HotSpot 64-Bit Server VM and Java heap of 2GB.

22.1.2 Evaluation Metrics

We studied the robustness of CAPRI by varying: (1) the number of predicates (select or

join) and the combination of attributes in these predicates, (2) the ratio Cactual/C between

the actual cardinality of query Q and the desired cardinality, (3) cardinality of the input

table, (4) different data distributions, (5) the presence of join refinement, and (6) the

refinement (γ) and cardinality (δ) thresholds. For each setting, we measured the time

needed to return the set QF of refined queries, avgerage refinement score for Q′i ∈ QF ,

and relative cardinality error = |Cardinality(Q′i)− C|/C.

169

22.1 EXPERIMENTAL SETUP

22.1.3 Alternative Techniques

We ran comparative studies of CAPRI with state-of-the-art techniques proposed in (MKZ08),

namely, TQGen and binary search (referred to as BinSearch). These techniques do not

solve the PCA problem, but are able to produce a single refined query meeting the cardi-

nality constraint by ignoring the proximity criteria. The techniques work as follows. First,

both techniques generate the complete set of join results. Following this, TQGen bounds

the result space along each select predicate and follows a divide-and-conquer methodol-

ogy to find a refined query with cardinality close to C. Our experiments used the TQGen

parameters reported in (MKZ08). In contrast with TQGen, after join results have been

generated, BinSearch performs sequential binary searches on each query predicate to find

a query attaining the required cardinality. Since the order of predicate refinement affects

the quality of queries returned by BinSearch, we executed the algorithm with all predicate

orderings and report the average values for evaluation metrics. It is important to note that

neither TQGen nor BinSearch can refine join predicates.

22.1.4 Data Sets

We utilized the TPC-H benchmark data for our experiments and generated datasets of

varying sizes and data distributions. Specifically, since the standard TPC-H data is uni-

formly distributed (i.e., Z = 0), we used (CN) to generate TPC-H data with Z = 1. In

addition, to illustrate the benefits of join refinements we used a synthetic dataset (BKS01)

having tables of 10K and join selectivity σ = 0.01. For our test query workload, we used

queries having [2-5] numeric predicates on the TPC-H benchmark dataset.

170

22.1 EXPERIMENTAL SETUP

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

0.1 0.3 0.5 0.7 0.9

Ti
m

e
(s

ec
) [

Lo
g

Sc
al

e]

Ratio (Actual / Desired Cardinality)

TQGen
BinSearch (avg.)

CAPRI

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

0.1 0.3 0.5 0.7 0.9

Ti
m

e
(s

ec
) [

Lo
g

Sc
al

e]

Ratio (Actual / Desired Cardinality)

TQGen
BinSearch (avg.)

CAPRI

(a) Total Execution Time (Z = 0) (e) Total Execution Time (Z = 1)

-0.01
 0

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

0.1 0.3 0.5 0.7 0.9

R
el

at
iv

e
C

ar
di

na
lit

y
Er

ro
r

Ratio (Actual / Desired Cardinality)

Rel. Card. Error Threshold (0.01)

TQGen
BinSearch (avg.)

CAPRI

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

0.1 0.3 0.5 0.7 0.9

R
el

at
iv

e
C

ar
di

na
lit

y
Er

ro
r

Ratio (Actual / Desired Cardinality)

Rel. Card. Error Threshold (0.01)

TQGen
BinSearch (avg.)

CAPRI

(b) Relative Cardinality Error (Z = 0) (f) Relative Cardinality Error (Z = 1)

 0

 50

 100

 150

 200

0.1 0.3 0.5 0.7 0.9

Q
Sc

or
e

(R
el

ax
at

io
n)

Ratio (Actual / Desired Cardinality)

TQGen
BinSearch (avg.)

CAPRI

 0

 50

 100

 150

 200

0.1 0.3 0.5 0.7 0.9

Q
Sc

or
e

(R
el

ax
at

io
n)

Ratio(Actual / Desired Cardinality)

TQGen
BinSearch (avg.)

CAPRI

(c) Query Relaxation Score (Z = 0) (g) Query Relaxation Score (Z = 1)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

2 3 4 5

Ti
m

e
(s

ec
) [

Lo
g

Sc
al

e]

Number of Select Predicates

TQGen
BinSearch (avg.)

CAPRI

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

2 3 4 5

Ti
m

e
(s

ec
) [

Lo
g

Sc
al

e]

Number of Select Predicates

TQGen
BinSearch (avg.)

CAPRI

(d) Effects of Dimensionality d (Z = 0) (h) Effects of Dimensionality d (Z = 1)

Figure 22.1: Performance comparison: CAPRI against state-of-the-art BinSearch and TQ-
Gen; [Experimental Settings: N=100K; d = 5 for (a)-(c) and (e)-(g)]

171

22.2 PERFORMANCE COMPARISONS

22.2 Performance Comparisons

22.2.1 Refining Select Predicates

We first present a detailed comparison between CAPRI, TQGen and BinSearch for selec-

tion queries. For this set of experiments, we used selection queries with [2–5] predicates

and different sets of attributes. For each query, we varied the ratio of actual to desired

cardinality, Cactual/C, between 0.1 – 0.9. Cactual/C = 0.1 signifies that the desired car-

dinality is far from the actual cardinality, requiring a large refinement, while a 0.9 ratio

means C is close to Cactual, requiring a small refinement. Figures 22.1.a and 22.1.d depict

the execution times for the three methods over data sets with Z = 0 and Z = 1 respec-

tively. We observe that CAPRI is consistently 2 orders of magnitude faster than TQGen

and on average 77% faster than BinSearch. Unlike CAPRI, both the alternate methods

perform repeated cardinality calculations without reusing results, and therefore CAPRI

can significantly outperform both techniques. In Figures 22.1.a and 22.1.d, we also no-

tice a decreasing trend in CAPRI execution time. This trend reflects CAPRI’s search

strategy where more queries are investigated when Cactual is not close the desired cardi-

nality C. Figures 22.1.b and 22.1.f compare the relative cardinality errors of the refined

queries generated by all three techniques (δ = 0.01%). We observe that both TQGen and

CAPRI are well within the cardinality threshold of 0.01%, while BinSearch is on average

0.05% away from C. Further, as seen in these figures, BinSearch produces uncontrolled

errors in cardinality depending on predicate refinement order, giving inconsistent results

and leading to lack of robustness. Figures 22.1.c and 22.1.f compare the refinement scores

of queries generated by all three techniques. As a consequence of CAPRI’s special grid

structure and Proximity-driven Exploration, our algorithm is shown to generate queries

that on average have 25% better refinement scores than queries produced by TQGen or

BinSearch. Thus, CAPRI outperforms existing techniques in all three metrics.

172

22.2 PERFORMANCE COMPARISONS

Next, we studied the effects of varying the number of predicates on the total exe-

cution time for all methods. Figures 22.1.d and 22.1.g report the execution time for

(Cactual/C) = 0.5. CAPRI again consistently outperforms TQGen and BinSearch. As

the number of predicates increases, the number of queries (independently) executed by

TQGen grows exponentially. In contrast, CAPRI extensively shares results during query

execution and adopts an early termination strategy. Consequently, CAPRI performs ≈ 2

orders of magnitude faster than TQGen. While BinSearch’s search space is not as large

as TQGen, it still needs to execute multiple queries independently. Thus, it is on average

55% slower than CAPRI.

 0
 200
 400
 600
 800

 1000
 1200
 1400

0.1 0.3 0.5 0.7 0.9

N
o.

 o
f Q

ue
rie

s
Ex

ec
ut

ed

Ratio (Actual / Desired Cardinality)

TQGen
BinSearch (avg.)

CAPRI

Figure 22.2: Number of Queries Executed; d = 3

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

60K 90K 120K 150K 180K

Ti
m

e
(s

ec
) [

Lo
g

Sc
al

e]

Table Cardinality

TQGen
BinSearch (avg.)

CAPRI

Figure 22.3: Effects of Input Cardinality N

In Figure 22.2, we compare the number of queries executed by the three techniques

for varying ratios of Cactual/C. The number of candidate queries executed by TQGen

173

22.2 PERFORMANCE COMPARISONS

 0

 2

 4

 6

 8

 10

 5 10 15 20 25
 90

 100

 110

 120

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

R
ef

in
em

en
t S

co
re

Query Space Step Size

Execution Time
Relaxation Score

Figure 22.4: Effects of step-size γ
d ; d = 5; C/Cactual = 0.5

and BinSearch is constant across different ratios of Cactual/C as they search a fixed num-

ber of candidate queries irrespective of how far the desired cardinality is from the actual

cardinality. In contrast, the number of queries investigated by CAPRI depends on the

ratio Cactual/C. When the desired cardinality C is close to the actual cardinality Cactual,

Proximity-driven Exploration enables CAPRI to investigate fewer queries, as shown Fig-

ure 22.2. On the other hand, when C is farther away from Cactual, the number of candidate

queries investigated by CAPRI increases. However, we note that even when CAPRI inves-

tigates a large number of queries, need-based result generation and result sharing enable

CAPRI to outperform TQGen and BinSearch.

Finally, in Figure 22.3, we report how the execution times for the three techniques vary

with differing input table cardinality. We observe that CAPRI is robust and its execution

time is stable for a variety of input sizes.

22.2.2 Refining Both Join and Select Predicates

To highlight the advantage of join refinement, we conducted experiments comparing the

results of allowing and disallowing join predicate refinement. Since the TPC-H bench-

mark only involves equality joins, join refinement is semantically invalid for this dataset,

and we instead used a synthetic dataset. In this set of experiments, we joined two tables

174

22.2 PERFORMANCE COMPARISONS

with initial join selectivity 0.01, and varied the Cactual/C ratio in the range of [0.05 – 0.1].

The choice of small Cactual/C ratios mimicks scenarios where the user query is highly

selective, making join refinement attractive. Since TQGen and BinSearch both do not

support join refinements, we omit their comparisons. In this experiment, we compared

two instances of CAPRI: (1) CAPRI with join refinement enabled, and (2) CAPRI with

join refinement disabled. Figures 22.5.a and 22.5.b depict comparisons of the quality of

refined queries generated in terms of QScore and the total execution time.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.05 0.06 0.07 0.08 0.09 0.1

Q
Sc

or
e

(R
el

ax
at

io
n)

Ratio (Actual / Desired Cardinality)

CAPRI (No Join Refinement)
CAPRI (Join Refinement)

 100

 1000

 0.05 0.06 0.07 0.08 0.09 0.1

Ti
m

e
(s

ec
) [

Lo
g

Sc
al

e]

Ratio (Actual / Desired Cardinality)

CAPRI (No Join Refinement)
CAPRI (Join Refinement)

(a) Query Relaxation Score (b) Total Execution Time

Figure 22.5: Refining Join and Select Predicates

Figure 22.5.a indicates that when join predicates are refined, queries recommended by

CAPRI have a QScore at least 80% smaller than that of queries generated by select-only

refinement. This is because even small changes to join selectivity can produce a large

increase in query cardinality. Similarly, in Figure 22.5.b, we observe that the instance of

CAPRI with join refinement enabled is 20% faster than CAPRI with join refinement dis-

abled. Join refinement runs faster because CAPRI has to investigate much fewer queries

compared to select-only refinement. Thus, we observe that refining join predicates is a

powerful tool when the original query cardinality differs vastly from the desired cardinal-

ity (Cactual/C ≤ 0.1).

175

22.2 PERFORMANCE COMPARISONS

22.2.3 Analyzing CAPRI Parameters

Last, we present results of our experiment measuring the effects of step-size γ
d

on the

total execution time and refinement score of queries returned by CAPRI (Figure 22.4).

For different γ
d

ratios and a fixed Cactual/C = 0.5 setting, we observe that the execution

time is relatively constant because approximately the same number of result tuples need

to be generated. However, a large γ value indicates that the user permits a large departure

from the original query. Therefore, we observe that as γ
d

increases, the refinement score

of the queries recommended by CAPRI increases proportionally.

176

23

Discussion

23.1 Optimizations to CAPRI

To further optimize the performance of CAPRI, we present two important optimization

strategies. The first strategy enhances the efficiency of refined space transformation by

incrementally building the result space. The brute-force approach is to create the result

space at a higher level abstraction by generating all output regions that map to the re-

sult space. However, if we were to only generate output regions that overlap the layer

of queries currently under investigation, we eliminate the expenses of generating output

regions which subsequently may never be utilized. To implement this optimization, we

represent input partitions by their maximum (selection-only) refinement scores and main-

tain partitions in each table as sorted lists. These lists are then traversed in a round-robin

fashion until all output regions likely to lie in the current layer are generated. The next

batch of output regions are generated only if CAPRI explores the subsequent layer of

queries.

The second optimization enhances proximity-driven refinement by enabling CAPRI

to skip query layers and directly jump to the layer containing queries that have a high

177

23.2 HANDLING NON-NUMERIC PREDICATES

probability of satisfying the cardinality criteria. We note that as long as we employ lay-

ered exploration, we can still provide the same proximity guarantees as the core CAPRI

algorithm. CAPRI can skip query layers by estimating the cardinality of each output re-

gion (based on the corresponding input partitions) and using a data distribution model

(e.g. normal, uniform, etc.) to calculate the probability of a query in a given layer satis-

fying the expected cardinality. If for a particular layer this has a probability higher than

a tunable threshold, CAPRI skips previous layers and begins exploring the queries in the

current layer. Once the cardinalities for all queries in the current layer have been calcu-

lated, the recurrences proposed in Chapter 21 can be used to explore subsequent layers as

required.

23.2 Handling Non-numeric Predicates

!"##$%&'(! !&#)*&+(,!

!,"+-).&$!

!&#)/0ӏ,).&$)40(&!

5(##2#3"'&!

6&'27,0#2&!

8#2+(9)!+&+(3!

:(;)<,0=!

*&#-&>&#!

:(;)<,0=)62+$!?!

?!

?!

?!

?!

@&A)B,1&C,#D.&3(9)E&F,#,G$)E0((!

/&'&7('! H$0,!

*299'(DI&3+(0#!

*(92+(00&#(&#!

H0((=!

J(3+&"0&#+3!

?!

?!

?!

@KA))E&F,#,G$)E0((!

Figure 23.1: Ontology for Categorical Data

The focus of this work is to handle numeric predicates. Measuring refinement dis-

tance between categorical data points is in itself a challenging problem, requiring the

analysis of taxonomy information. CAPRI can be extended to support categorical predi-

cates by plugging in the appropriate means for measuring the distance between any two

categorical values. For example, Figure 23.1 depicts sample ontology trees related to

food preferences and location. The refinement distance between the original query de-

178

23.3 PREFERENCES IN REFINEMENT

siring places that serve Gyro to restaurants that have any Mediterranean cuisine may be

defined based on the relative depths of the two nodes. In general, the roll-up operation

on an ontology tree corresponds to making the predicate less selective, i.e., relaxation.

While the drill down operation translates to query contraction. To support relaxation of

categorical predicates, we augment input partitions with meta-information about the con-

tained categorical values. Given this meta-information and the ontology tree, the CAPRI

framework can be used to refine categorical predicates.

23.3 Preferences in Refinement

In Chapter 2.1, to easily expose the core idea, we assumed that the user wants to refine

all predicates. However, CAPRI supports scenarios where the user wants to refine only a

subset of predicates as well as have upper bounds on maximum possible refinements. The

default refinement metric in CAPRI is the L1 norm, but users can opt to use another Lp

norm. In fact, they could provide predicate-specific weights in the LWp norm. While we

provide several avenues for user control, user intervention is necessary and each tunable

parameter is provided an appropriate default setting.

23.4 Contracting Queries With Too Many Results

CAPRI can handle scenarios where there are too many results. This is achieved by con-

structing a query Q′min with each predicate of the original query Q set to its minimum

value. Since Q′min will produce too few results, we can now construct a refined space

bounded by Q and Q′min. CAPRI now traverses the refined space to find queries that meet

the cardinality constraint, this time minimizing refinement with respect to Q instead of

Q′min.

179

24

Related Work for Part IV

(Luo06) identified that many real-world queries produce empty results. Techniques that

address the empty result set problem can be classified into (1) tuple-oriented approaches

which only generate the required number of tuples but no query that indicates the crite-

ria that fully describes the retrieved tuple set, and (2) query-oriented approaches which

generate queries attaining the desired cardinality but ignore the proximity criteria.

Table 24.1: Summary of Related Work for Part IV (CAPRI)

Techniques Proximity Cardinality Query
Tuple-Oriented: X X

skyline (KLTV06), top-k (CG99)
Query-Oriented: X

BinSearch (MKZ08), IQR (MK09)
Query-Oriented: X X

TQGen (MKZ08), Hill-Climbing (BCT06)
z Our Approach X X X

24.1 Tuple-Oriented Techniques

(Mus04, KLTV06) do not focus on the problem of generating refined queries that explain

how the result tuples are selected, information that is crucial in many scientific and busi-

180

24.1 TUPLE-ORIENTED TECHNIQUES

ness applications. Similarly, top-k algorithms, such as (CG99), can be used to attain the

desired cardinality by producing a set of highly ranked results. While powerful in many

instances, this approach does not address the PCA problem. To illustrate, we now attempt

to refine query Q1 using the top-k approach. To simply, let us focus on refining the select

predicated R.income and R.weeklyExercise. The approach will return the results of the

query: “SELECT * FROM Records R, HighRiskLoc L WHERE R.zipcode = L.zipCode

AND (R.BMI > 30) AND (18 ≤ R.age ≤ 30) ORDER BY CASE R.income < 60000

THEN 0 ELSE (R.income - 60000) + CASE R.weeklyExercise > 3 THEN 0 ELSE (3

- R.weeklyExercise) STOP AFTER 5000.” The problem with this approach is that the

produced tuples are likely to be skewed in certain predicate dimensions. To mitigate this

problem, one can attempt to construct the smallest refined query containing all the results

obtained using top-k.

!"#$

%$&'(')$

*+$,-./01&!"#$%&)$
2+$,-./01&'&&()*+,&-#!.&/0

*#&'($-345)$

2#$&-345($')$

*62$7$-345$

20

*0

Figure 24.1: Top-k Based Approach

The top-k approach guarantees that the tuples returned all have PScore(R.income)

+ PScore(R.weeklyExercise) ≤ Smax. Therefore, in the refined space, the 5000 top-k

tuples all lie below the line representing PScore(income) + PScore(weeklyExercise)

= Smax as shown in Figure 24.1. However, the refined queryQ′1 corresponds the rectangle

181

24.2 QUERY-ORIENTED APPROACH

OX1Q
′
1Y1 instead of the contained triangle OX1Y1. If we provide users the 5000 tuples

generated by top-k, but provide query Q′1, we are providing users an extremely biased

set of tuples belonging to Q′1. On the other hand, if we were to provide users the query

Q′1 and “all” tuples that satisfy Q′1 (i.e., those belonging to OX1Q
′
1Y1), we would be

giving users many more tuples than required. The discrepancy in cardinality will be even

larger for skewed distributions where triangle Q′1X1Y1 contains many more tuples than

OX1Y1. Thus, a pure top-k based approach as well as variations of it prove inadequate

to address the PCA problem that requires the auto-generation of refined queries that meet

the required cardinality.

24.2 Query-Oriented Approach

In the context of database testing, (BCT06, MKZ08) generate test queries that satisfy

cardinality constraints while disregarding proximity criteria. (BCT06) has shown that

generating targeted test queries is an NP-hard problem. (MK09) proposed a variation

of BinSearch, that iteratively narrows the bounds on each selection predicate in a query

and asks the user to manually refine the predicate within the constrained dimensions.

This approach however cannot be extended to support the refinement of join predicates

as CAPRI does. For simple select-only queries, (MK09) seeks only to attain the desired

cardinality and disregards proximity. Consequently, it cannot guarantee that the refined

query has the least refinement. Moreover, the quality of queries is heavily influenced by

the order in which predicates are refined; some orders produce accurate results whereas

others produce large errors. Finally, unlike CAPRI, (MK09) does not generate a set of

alternative refined queries to the user to choose from. To summarize, CAPRI is the first

technique to refine select and join queries to meet the dual constraints of proximity to the

original query and desired cardinality.

182

25

Conclusions of This Dissertation

Decision support systems are technologies that support complex multi-criteria decision

making and problem solving. In the early 1970s decision support systems involved de-

veloping a robust database management system with effective user interface designs to

manage as well as view data in the form of sophisticated report generation tools. In the

recent years, decision support systems has evolved into an effective tool to aid users in

making informed decisions over “big-data” by complex multi-criteria decision support

queries. This growing interest in multi-criteria decision queries has resulted in several

classes of queries such as OLAP, Top-K, Nearest Neighbor as well as skyline queries.

The intuitive nature of specifying user preferences has made skyline a computation crit-

ical component for many multi-criteria decision support applications. The traditional

approach of viewing the skyline computation as an “add-on” to SPJ queries can represent

performance bottleneck. In this dissertation, we leverage mature DBMS technology by

treating the skyline operation as a first-class citizen within a query plan.

In the first part of this dissertation, we focus on the problem of the efficient evalua-

tion of the skyline operationo ver disparate sources. The processing of over skylines over

multiple sources is burdened by two primary component cost factors, namely the cost of

183

generating the intermediate join results and the cost of dominance comparisons to com-

pute the final skyline of join results. State-of-the-art techniques handle this by primarily

relying on making local pruning decisions at each source, and are therefore shown to

be not robust for a wide variety of data. In addition, existing techniques such as do not

consider alternative scenarios when attributes across these sources through user-defined

mapping functions to characterize the final result. To address these shortcomings, we pro-

pose our SKIN approach that supports the robust and efficient evaluation of SkyMapJoin

queries. We achieve this by taking advantage of optimization opportunities that are avail-

able by looking ahead into the mapped output space and exploiting this knowledge at the

level of both individual sources and the complete query. We demonstrate the superiority

of our approach over existing techniques by consistently outperforming them by several

folds, for a wide range of data sets, confirming the robustness of our methodology.

In the second part of the dissertation, we address the need of real-time multi-criteria

decision support systems to support the early output of results rather than waiting until

the end of query processing. In this work, we propose a progressive query evaluation

framework ProgXe that is successful in achieving this goal. By exploiting the principle

of SKIN, ProgXe is able to looking ahead into the mapped output space. ProgXe by em-

ploying an effective ordering technique that optimizes the rate at which partial results are

reported by translating the optimization of tuple-level processing into a job-sequencing

problem. Our experimental analysis demonstrates the effectiveness of ProgXe over state-

of-the-art techniques in progressively outputting the skyline results confirming the robust-

ness of our methodology.

Next in the third part of this dissertation, we address the open problem of contract-

driven processing of multiple multi-criteria decision support queries where each is aug-

mented by quality of service (QoS) requirements. Specifically, we propose our Contract-

Aware Query Execution (CAQE) built on top of SKIN to effectively unblocks query

184

processing by using a multi-granular execution strategy. We develop a uniform model to

express a rich set of contracts to represent progressiveness, as well as a metric to contin-

uously measure the degree to which the contracts are satisfied. By analyzing the early-

output dependencies amongst the different output regions across different queries, our

contract-driven optimization methodology is able to maximize the overall satisfaction of

the workload. In addition, our contract-aware executor is able to exploit sharing of work

across multiple queries, continuously monitor the run-time satisfaction of queries and ag-

gressively take corrective steps whenever the contracts are not being met. We demonstrate

the superiority of CAQE over existing techniques by showing that in many cases CAQE

is ≈ 2x more effective in satisfying the queries in the workload.

Lastly, to elucidate the novelty and the generality of the core-principle of abstract-

level processing exploited in this dissertation, we successfully apply the principles of

SKIN to address an orthogonal research problem. More specifically, we introduce the

problem of Proximity-driven Cardinality Assurance (PCA) that seeks to generate refined

queries meeting both cardinality and proximity constraints. We establish the NP-hardness

of PCA, and propose CAPRI – the first framework to address this problem. CAPRI adopts

the Expand and Explore strategy - that iteratively expands the original query to minimize

refinement and efficiently explores refined queries via a novel incremental execution tech-

nique and a predictive index structure. By exploiting SKIN’s principle of query process-

ing at different levels of data abstraction, CAPRI not only able to efficiently process the

refined queries it can also guarantee that each result tuple is processed at most once, re-

gardless of the number of queries it contributes to. Unlike existing techniques, CAPRI

provides seamless support for the refinement of select, as well as join predicates, cru-

cial in many applications. Moreover, our Expand-and-Explore strategy enables CAPRI to

perform up to 2 orders of magnitude faster than existing query-oriented techniques, and

consistently produce queries with 25% smaller refinements to the original query.

185

26

Future Work

26.1 Scaling Skyline over Join Queries

Databases systems such as Oracle, DB2, PostgreSQL, etc., must effectively maintain large

databases in the order of several gigabytes to petabytes while still efficiently handling

large number of concurrent queries. This heavy data and user volume coupled with vary-

ing levels of performance requirements make scalability a high priority in enabling a

robust database management system. In this section, we highlight future directions in the

area of scalability.

26.1.1 Handling Larger Data Sets

Our experimental evaluation reveals that a main-memory based implementation of SKIN

can safely handle SkyMapJoin queries over data sources of 500K tuples each. We now

briefly discuss an adaptation to SKIN when the available main-memory is not sufficient.

Pre-processing Phase: The objects associated with the same input partition are clus-

tered together in one or if needed possibly multiple disk pages. The index loading time

is similar to that of other indexing techniques such as R-Trees and Bit Map-Index. For

186

26.1 SCALING SKYLINE OVER JOIN QUERIES

each source, we only maintain the input-partition abstraction in main-memory, that is, the

meta-data describing each of its input partitions such as the identifier, upper and lower

bounds and number of tuples.

Region- and Partition- Level Elimination: To determine which region is dominated,

the region-level elimination phase solely needs to access the meta-data for each input

source – which is compact and thus could be kept efficiently in a main-memory structure.

Similarly, the partition-level elimination phase can be performed without any disk access.

Object-Level Execution: For each input partition pair [IRi , I
T
j], during the join evalua-

tion, we only retrieve pages associated with the two current input partitions IRi and ITj and

the output partitions that map to the region Ri,j . Next we exploit the concept described in

Chapter 3.4 to efficiently handle skyline comparisons namely we only retrieve the subset

of pages that are associated with the comparable output partitions.

In general, traditional skyline evaluation over large data sets requires disk I/O op-

erations. If the sequence in which the output regions are considered for join and skyline

evaluation are poorly chosen, it is quite possible that pages are repeatedly paged in and out

of the main-memory, thereby decreasing the overall performance of the algorithm. Disk

input/output (I/O) efficient query execution is an important topic with respect to DBMS

performance (IK84, SAC+79). To decrease the total number of I/O operations, one can

order the sequence in which input-partition pairs are considered for join evaluation. The

intuition is to consider two consecutively generated output regions that share the largest

number of pages during the skyline comparison phase. To summarize, the SKIN approach

proposed in this dissertation can naturally handle scenarios when the raw data resides on

disk. We leave this extension as a future work.

187

26.1 SCALING SKYLINE OVER JOIN QUERIES

26.1.2 Handling High Dimensional Datasets

Scientific applications in fields such as bio-informatics, pharmaceutical drug modeling,

on-line text processing, hyper-spectral imaging and astrophysics data processing, work

with datasets of high dimensionality in the order of several hundreds of attributes per tu-

ple. In this dissertation, we target multi-dimensional applications (such as those outlined

in the introduction) where the number of skyline dimensions is in the order of 2 to 6 di-

mensions. The reasoning here is that as the number of attributes on which the skyline is

applied increases, the cardinality of the output results also increases drastically. Human

analyst cannot make effective decisions when faced with such high cardinality result sets.

Thus, further processing such as linear ranking of results or clustering, would be needed

to be employed (CJT+06b). Increasing usability of the results in an orthogonal problem to

the one addressed in this work. In addition to the above concern, high-dimensional skyline

evaluation (even for single sets) has exponential time complexity (BKS01). Therefore, it

is clearly a challenging task to extend this effort to high-dimensional applications with say

hundreds of dimensions. We leave the extensions of this work to handle high-dimensional

applications for our future work.

26.1.3 Adaptive Spatial Partitioning

To efficiently handle data sets with low dimensionality, both state-of-the-art and proposed

SKIN skyline algorithms make use of popular indexing methodologies such as R-Trees

(Gut84), quad-trees or simple grid indices like those in SKIN. Our experiments demon-

strate that this is a simple yet extremely effective strategy. Conceptually, these indexing

techniques can be extended to handle high dimensional data sets. However, in practice

these techniques are usually time and space intensive - making them not viable for large

dimensions. It would be interesting in the future to explore alternate partitioning meth-

188

26.1 SCALING SKYLINE OVER JOIN QUERIES

ods. For instance, we could explore variable-sized partitioning, considering aspects of

the population of partitions. This could be achieved by adaptively re-partitioning method

triggered by the observed potential benefit for dominance-driven region purging.

Adaptive repartitioning input partitions is guided by the knowledge of the mapped

output space thus can alleviate the expensive nature of skyline over join operations. To

achieve this we explored in (SRR11) heuristics to determine the threshold value for any

given output region, Ri,j , which when met will trigger re-partitioning of the input parti-

tions IRi and ITj . Our re-partitioning policies is guided by three parameters namely, (1)

estimated density of the partition, (2) proximity to the origin, and (3) estimated elimina-

tion benefits. For example, low density regions which are closer to the origin and have

potential to dominate output region(s) with higher density are favored for re-partitioning

compared to others that have higher density with lesser elimination benefits.

Alternatively, one could study the distribution-sensitive pre-processing to determine

optimal partitioning based on criteria such as data density, relative closeness to the origin,

etc. We leave these challenges for the future.

26.1.4 Approximation through Dimension Reduction

One avenue to exploit the capability of traditional dimension reduction techniques such

as Principle Component Analysis (PCA) and Fast Map (FL95) to convert high dimen-

sional points is to a set of low dimensional points while maintaining the relative distance

between points in the reduced space. It would be interesting in the future to explore their

usage as a pre-processing method to convert the input data sets into data sets with lower

dimensions and then apply SKIN which works efficiently for lower dimensions. Some

of the parameters to be considered before selecting suitable dimension reduction tech-

niques are: first, the cost of converting high dimensional data points into low dimensional

data points is low. Second, a data point that is dominated in the reduced space must be

189

26.1 SCALING SKYLINE OVER JOIN QUERIES

dominated in the original space as well. The opposite should hold true as well. That is, a

non-dominated data point in the reduced space must also be non-dominated in the original

space. Lastly, in scenarios where the dominance property does not hold, one could able to

quantify the percentage to which the skyline on the reduced space accurately represents

the skyline on the original space.

26.1.5 Meaningfulness of Skyline Results

The total number of skyline points increases dramatically with the number of skyline

dimensions. For a data set with 100K tuples; d = 10 and anti-correlated distribution,

the skyline operation will result in ≈ 75K skyline tuples. In this situation, the skyline

operation over high dimensional data sets may no longer offer any interesting insights for

decision making. The reasoning behind the growth in skyline results is that as the number

of dimensions increases, for a given tuple p, there is a high likelihood that at least one

dimension exists in which the attribute value of p is better than that of all other tuples

in the data set. In this context, several alternatives have been proposed in the literature

such as k-dominant skylines (CJT+06a), representative skylines (LYZZ07) and subspaces

skyline queries (JTEH07). In the future, one can look into how these concepts translate

to the context of skyline and mapping aware query evaluation over disparate sources.

26.1.6 Cardinality Estimation for Skyline-Aware Operators

To make an informed decision when choosing between the various implementation strate-

gies of skyline-aware operators in a DBMS, one needs to study the cardinality estimation

of the skyline operation and its interaction with other relational operators. In the context

of a select operator, adding a select condition will always reduce the overall cardinal-

ity of the operator. However, when processing a skyline operator adding a preference

190

26.1 SCALING SKYLINE OVER JOIN QUERIES

can increase the cardinality, even up to the size of the entire relation. Therefore, skyline

cardinality estimation is challenging even under the assumptions such as attribute value

independence and attributes having unique values.

In the context of computational geometry, (BKST78) addressed the problem of es-

timating the average number of maxims in a set of vectors. (BKST78) established that

the loose upper-bound cardinality to be O((ln(n))d−1), where d is the number of skyline

dimensions and n is the cardinality of the input data set. While in the average case it is

O((ln(n))d−1/(d−1)!) (Buc89). The above mentioned approaches address the estimation

problem with the strong assumption that the attribute values are independent, unique and

completely ordered (CDK06).

The attribute value independence assumption is known to lead to erroneous cardi-

nality estimates even in canonical operators such as joins (HNM+07). This problem is

further exacerbated in the context of skyline-aware operators which are very sensitive

to the correlation of the different skyline attributes. To illustrate, consider the relation

CAR{age, mileage, price}. The higher the age and the mileage, the lower the price of the

car will be. In this example, the skyline query with the preference P1 = {LOW(mileage),

LOW(age)} will have a significantly lower cardinality than the query with preference P

= {LOW(mileage), LOW(price)}. This is because the former preference has attributes

that show a high degree of correlation while the later preference involves anti-correlated

attributes. (CDK06) highlights through experimental analysis that the estimation tech-

niques proposed in (BKST78, Buc89, God04) are not adequate for real databases. It then

presents a robust cardinality estimation technique that relaxes the independence assump-

tion by applying uniform random sampling techniques. In the future, we plan to address

the novel problem of cardinality estimation of skyline aware operators presented in this

dissertation.

191

26.2 MULTI-QUERY MULTI-CONSTRAINT PLAN GENERATION

26.1.7 Execution Cost-Aware Query Optimization

To treat the skyline operation as a first class citizen, the query optimizer must be able

to estimate the execution costs of various implementations of the given query and then

choose the cheapest alternative. In other words, we must take into consideration the phys-

ical implementation of the skyline-aware operators as well as system resource constraints

such as the amount of buffer space available. For instance, if there is sufficient memory

to hold the intermediate skyline results, then a basic skyline operation can be done in

a single scan, where each tuple is compared with all maximal (skyline) tuples found so

far. (CDK06) presented cost estimation solutions for the physical implementations of the

Block-Nested-Loop (BNL) (BKS01) as well as Sorting-Based approach (CGGL03). An

important future area of research is to study various physical implementation of different

execution strategy of the skyline-aware operators.

26.2 Multi-Query Multi-Constraint Plan Generation

State-of-the-art algorithms in static databases (IK84, SAC+79, SI93, IK91, KS00) pri-

marily focus on generating an optimal or near-optimal plan by minimizing a single cost

function, typically the processing costs is comprised of either I/O or CPU (SMK97). Con-

tinuous query processing (MSHR02, CcC+02) differs from its static counterpart in several

aspects. First, the incoming streaming data is unbounded and the query lifespan is poten-

tially infinite. Therefore, run-time output rate is a better metric than the total CPU time

needed to handle all input data (VNB03). When the per-unit-time CPU usage of a query

plan is less than the available system CPU capacity, the query execution is able to keep

up with incoming tuples and produce real-time results at an optimal output rate (AN04).

Second, real-time response requirements make continuous queries memory resident

(MSHR02). Stateful operators, such as joins, store input tuples in states with which fu-

192

26.2 MULTI-QUERY MULTI-CONSTRAINT PLAN GENERATION

ture incoming tuples of other streams will join. In time-critical applications, such as

fire-sensor monitoring, it is common to have multi-join queries with large numbers of

participant streams with high input rates. In such scenarios, the size of the in-memory

operator states could potentially grow to be very large, making memory a constrained

resource. Memory overflow can result in unacceptable outcomes, such as temporary halt

of query execution (VNB03, LZR06, UF00), approximation of query results (TcZ+03)

and in some cases thrashing (XZH05). Therefore in this scenario, generating a query plan

that is optimal in one resource usage while out-of-bound in the other is not an acceptable

solution. Therefore, the aim is to generate a query plan with both resource consump-

tions within their respective system resource capacities, henceforth called a qualified plan

(AN04). All qualified plans are guaranteed to produce results at the same output rate

(AN04).

To address this qualified plan generation problem, one could attempt to design a com-

bined (singular) cost function that captures both resource usages. This would be beneficial

as we could then capitalize on state-of-the-art optimization techniques. However, such an

approach suffers from the following drawbacks that make it unsuitable. First, a singular

cost function that captures both CPU and memory usages and their correlation a priori

is in practice hard to obtain (SAL+96). This is because the problem is no longer a min-

imization problem but rather a system resource constraint satisfaction problem. Also,

there is no monotonic function that can clearly characterize the relationship between the

resources. On the contrary, we show that these resources in parts of the search space may

be positively correlated and in others negatively correlated. Second, a query plan that

is minimal by this new singular function need not be optimal or near-optimal in either

resource usage nor guaranteed to be qualified. Additionally it is important to note that

the plan generation problem is NP-complete (IK84), yet efficient algorithms are a must

in the streaming context for run-time optimization. To summarize, continuous query plan

193

26.2 MULTI-QUERY MULTI-CONSTRAINT PLAN GENERATION

generation can be viewed as a multi-criteria decision making process.

194

References

[ACc+03] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Chris-

tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan-

ley B. Zdonik. Aurora: a new model and architecture for data stream man-

agement. The VLDB Journal, 12(2):120–139, 2003. 9

[Agg02] Charu C. Aggarwal. Towards meaningful high-dimensional nearest neighbor

search by human-computer interaction. In International Conference on Data

Engineering (ICDE), pages 593–604, 2002. 2

[AN04] Ahmed Ayad and Jeffrey F. Naughton. Static optimization of conjunctive

queries with sliding windows over infinite streams. In SIGMOD Conference,

pages 419–430, 2004. 192, 193

[APPK08] Vassilis Athitsos, Michalis Potamias, Panagiotis Papapetrou, and George

Kollios. Nearest neighbor retrieval using distance-based hashing. In Interna-

tional Conference on Data Engineering (ICDE), pages 327–336, 2008. 2

[BCP06] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. Salsa: computing the

skyline without scanning the whole sky. In International Conference on In-

formation and Knowledge Management (CIKM), pages 405–414, 2006. 5,

12, 47, 72

195

REFERENCES

[BCT06] Nicolas Bruno, Surajit Chaudhuri, and Dilys Thomas. Generating queries

with cardinality constraints for dbms testing. IEEE Transactions on Knowl-

edge and Data Engineering, 18(12):1721–1725, 2006. 16, 21, 153, 180, 182

[BGS07] Wolf-Tilo Balke, Ulrich Güntzer, and Wolf Siberski. Restricting skyline sizes

using weak pareto dominance. Inform., Forsch. Entwickl., 21(3-4):165–178,

2007. 2

[BKS01] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline

operator. In International Conference on Data Engineering (ICDE), pages

421–430, 2001. 1, 2, 5, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 33, 43, 44, 47,

55, 57, 59, 60, 61, 72, 73, 74, 75, 98, 139, 147, 170, 188, 192

[BKST78] Jon Louis Bentley, H. T. Kung, Mario Schkolnick, and Clark D. Thompson.

On the average number of maxima in a set of vectors and applications. J.

ACM, 25(4):536–543, 1978. 83, 191

[BP05] Gloria Bordogna and Giuseppe Psaila. Extending sql with customizable

soft selection conditions. In ACM Symposium on Applied Computing (SAC),

pages 1107–1111, 2005. 10

[Bre96] David Bremner. Incremental convex hull algorithms are not output sensitive.

In International Symposium on Algorithms and Computation (ISAAC), pages

26–35, 1996. 2

[Buc89] Christian Buchta. On the average number of maxima in a set of vectors. Inf.

Process. Lett., 33(2):63–65, 1989. 83, 129, 191

[CcC+02] Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sang-

don Lee, Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stanley B.

196

REFERENCES

Zdonik. Monitoring streams - a new class of data management applications.

In Very Large Data Bases (VLDB), pages 215–226, 2002. 192

[CD03] Surajit Chaudhuri and Gautam Das. Automated ranking of database query

results. In Conference on Innovative Data Systems Research (CIDR), pages

888–899, 2003. 16

[CDD+09] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M. Hellerstein, and Caleb

Welton. Mad skills: New analysis practices for big data. Proceedings of Very

Large Database Conference (PVLDB), 2(2):1481–1492, 2009. 10

[CDK06] Surajit Chaudhuri, Nilesh N. Dalvi, and Raghav Kaushik. Robust cardinality

and cost estimation for skyline operator. In International Conference on Data

Engineering (ICDE), pages 64–73, 2006. 15, 19, 76, 191, 192

[CET05] Chee Yong Chan, Pin-Kwang Eng, and Kian-Lee Tan. Stratified computation

of skylines with partially-ordered domains. In SIGMOD Conference, pages

203–214, 2005. 2

[CG99] Surajit Chaudhari and Luis Gravano. Evaluating top-k selection queries. In

Very Large Data Bases (VLDB), pages 397–410, 1999. 16, 180, 181

[CGGL03] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. Skyline

with presorting. In International Conference on Data Engineering (ICDE),

pages 717–816, 2003. 5, 12, 13, 16, 17, 47, 72, 192

[Cha93] Bernard Chazelle. An optimal convex hull algorithm in any fixed dimension.

Discrete & Computational Geometry, 10:377–409, 1993. 2

[CJT+06a] Chee Yong Chan, H. V. Jagadish, Kian-Lee Tan, Anthony K. H. Tung, and

197

REFERENCES

Zhenjie Zhang. Finding k-dominant skylines in high dimensional space. In

SIGMOD Conference, pages 503–514, 2006. 190

[CJT+06b] Chee Yong Chan, H. V. Jagadish, Kian-Lee Tan, Anthony K. H. Tung, and

Zhenjie Zhang. On high dimensional skylines. In International Conference

on Extending Database Technology (EDBT), pages 478–495, 2006. 188

[CK97] Michael J. Carey and Donald Kossmann. On saying ”enough already!” in

sql. In SIGMOD Conference, pages 219–230, 1997. 16

[CLW03] R. Chen, L. Li, and Z Weng. Zdock: An initial-stage protein docking algo-

rithm. Proteins, 52(1), 2003. 7

[CN] S. Chaudhuri and V. Narasayya. Program for tpc-d data generation with skew.

170

[CS94] Surajit Chaudhuri and Kyuseok Shim. Including group-by in query optimiza-

tion. In Very Large Data Bases (VLDB), pages 354–366, 1994. 105

[DF11] Mark A. Beyer Donald Feinberg. Magic quadrant for data ware-

house database management systems. Gartner RAS Core Research Note

G00209623, January 2011. 1

[DSRS01] Nilesh N. Dalvi, Sumit K. Sanghai, Prasan Roy, and S. Sudarshan. Pipelin-

ing in multi-query optimization. In Symposium on Principles of Database

Systems (PODS), pages 59–70, 2001. 15, 20

[DTB09] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning database

configuration parameters with ituned. Proceedings of Very Large Database

Conference (PVLDB), 2(1):1246–1257, 2009. 59

198

REFERENCES

[FL95] Christos Faloutsos and King-Ip Lin. Fastmap: A fast algorithm for index-

ing, data-mining and visualization of traditional and multimedia datasets. In

SIGMOD Conference, pages 163–174, 1995. 189

[FLN01] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algo-

rithms for middleware. In Symposium on Principles of Database Systems

(PODS), pages 102–113, 2001. 2, 3, 56, 97

[FTAA01] Hakan Ferhatosmanoglu, Ertem Tuncel, Divyakant Agrawal, and Amr El

Abbadi. Approximate nearest neighbor searching in multimedia databases.

In International Conference on Data Engineering (ICDE), pages 503–511,

2001. 2

[Gaa97] Terry Gaasterland. Cooperative answering through controlled query relax-

ation. IEEE Expert: Intelligent Systems and Their Applications, 12(5):48–59,

1997. 15

[GBLP96] Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. Data

cube: A relational aggregation operator generalizing group-by, cross-tab, and

sub-total. In International Conference on Data Engineering (ICDE), pages

152–159, 1996. 146

[GÖ05] Lukasz Golab and M. Tamer Özsu. Update-pattern-aware modeling and pro-

cessing of continuous queries. In SIGMOD Conference, pages 658–669,

2005. 20

[God04] Parke Godfrey. Skyline cardinality for relational processing. In FoIKS, pages

78–97, 2004. 191

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial searching.

In Beatrice Yormark, editor, SIGMOD Conference, pages 47–57, 1984. 188

199

REFERENCES

[HcZ07] Jeong-Hyon Hwang, Ugur Çetintemel, and Stanley B. Zdonik. Fast and reli-

able stream processing over wide area networks. In ICDE Workshops, pages

604–613, 2007. 105

[HGHS07] Ryan Huebsch, Minos N. Garofalakis, Joseph M. Hellerstein, and Ion Stoica.

Sharing aggregate computation for distributed queries. In SIGMOD Confer-

ence, pages 485–496, 2007. 20

[HHW97] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation.

In SIGMOD Conference, pages 171–182, 1997. 20

[HK05] Bernd Hafenrichter and Werner Kießling. Optimization of relational prefer-

ence queries. In ADC, pages 175–184, 2005. 19, 33, 55, 75, 98

[HNM+07] Wook-Shin Han, Jack Ng, Volker Markl, Holger Kache, and Mokhtar Kandil.

Progressive optimization in a shared-nothing parallel database. In SIGMOD

Conference, pages 809–820, 2007. 191

[HRK+09] Mingsheng Hong, Mirek Riedewald, Christoph Koch, Johannes Gehrke, and

Alan J. Demers. Rule-based multi-query optimization. In International Con-

ference on Extending Database Technology (EDBT), pages 120–131, 2009.

15, 20

[IAE03] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Supporting top-k

join queries in relational databases. In Very Large Data Bases (VLDB), pages

754–765, 2003. 2, 16

[IK84] Toshihide Ibaraki and Tiko Kameda. On the optimal nesting order for com-

puting n-relational joins. ACM Transactions on Database Systems, 9(3):482–

502, 1984. 187, 192, 193

200

REFERENCES

[IK91] Yannis E. Ioannidis and Younkyung Cha Kang. Left-deep vs. bushy trees:

An analysis of strategy spaces and its implications for query optimization. In

SIGMOD Conference, pages 168–177, 1991. 192

[JCE+07] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yun-

yao Li, Arnab Nandi, and Cong Yu. Making database systems usable. In

SIGMOD Conference, pages 13–24, 2007. 10

[JEHH07] Wen Jin, Martin Ester, Zengjian Hu, and Jiawei Han. The multi-relational

skyline operator. In International Conference on Data Engineering (ICDE),

pages 1276–1280, 2007. 5, 13, 18, 19, 23, 56, 70, 73, 74, 76, 78, 97

[JMP+10] Wen Jin, Michael D. Morse, Jignesh M. Patel, Martin Ester, and Zengjian Hu.

Evaluating skylines in the presence of equijoins. In International Conference

on Data Engineering (ICDE), pages 249–260, 2010. 13, 14, 18, 19, 22, 23,

33, 69, 70, 73, 74, 75, 76, 97, 106, 140, 146, 147

[JTEH07] Wen Jin, Anthony K. H. Tung, Martin Ester, and Jiawei Han. On efficient

processing of subspace skyline queries on high dimensional data. In Statisti-

cal and Scientific Database Management (SSDBM), 2007. 190

[KFHJ04] Sailesh Krishnamurthy, Michael J. Franklin, Joseph M. Hellerstein, and Gar-

rett Jacobson. The case for precision sharing. In Very Large Data Bases

(VLDB), pages 972–986, 2004. 15, 20

[KGM92] Ben Kao and Hector Garcia-Molina. An overview of real-time database sys-

tems. In NATO Advanced Study Institute on Real-Time Computing, 1992.

15

[Kie02] Werner Kießling. Foundations of preferences in database systems. In Very

Large Data Bases (VLDB), pages 311–322, 2002. 1, 2, 18, 30

201

REFERENCES

[KLP75] H. T. Kung, Fabrizio Luccio, and Franco P. Preparata. On finding the maxima

of a set of vectors. J. ACM, 22(4):469–476, 1975. 87, 131

[KLTV06] Nick Koudas, Chen Li, Anthony K. H. Tung, and Rares Vernica. Relaxing

join and selection queries. In Very Large Data Bases (VLDB), pages 199–

210, 2006. 8, 13, 15, 19, 22, 23, 30, 56, 61, 69, 70, 73, 74, 75, 78, 97, 140,

146, 180

[KML11] Mohamed E. Khalefa, Mohamed F. Mokbel, and Justin J. Levandoski. Pre-

fjoin: An efficient preference-aware join operator. In International Confer-

ence on Data Engineering (ICDE), pages 995–1006, 2011. 14, 75, 76, 146,

147

[Kol08] J Koliha. Metrics, Norms and Integrals: An Introduction to Contemporary

Analysis. World Scientific Publishing Company, 2008. 151

[KRR02] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars in the

sky: An online algorithm for skyline queries. In Very Large Data Bases

(VLDB), pages 275–286, 2002. 5, 12, 13, 16, 72, 73

[KS00] Donald Kossmann and Konrad Stocker. Iterative dynamic programming: a

new class of query optimization algorithms. ACM Transactions on Database

Systems, 25:43–82, 2000. 47, 192

[KWFH04] Abhijit Kadlag, Amol V. Wanjari, Juliana Freire, and Jayant R. Haritsa. Car-

dinality estimation using sample views with quality assurance. In DAFSAA,

pages 594–605, 2004. 16

[LCIS05] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and Sumin Song.

Ranksql: Query algebra and optimization for relational top-k queries. In

SIGMOD Conference, pages 131–142, 2005. 2, 3

202

REFERENCES

[LFW+11] Guoliang Li, Ju Fan, Hao Wu, Jiannan Wang, and Jianhua Feng. Dbease:

Making databases user friendly and easily accessible. In Conference on In-

novative Data Systems Research (CIDR), 2011. 10

[LLN02] Danzhou Liu, Ee-Peng Lim, and Wee Keong Ng. Efficient k nearest neighbor

queries on remote spatial databases using range estimation. In Statistical and

Scientific Database Management (SSDBM), pages 121–130, 2002. 2

[LQX06] Alexandros Labrinidis, Huiming Qu, and Jie Xu. Quality contracts for real-

time enterprises. In BIRTE, pages 143–156, 2006. 111, 147

[Luo06] Gang Luo. Efficient detection of empty-result queries. In Very Large Data

Bases (VLDB), pages 1015–1025, 2006. 180

[LYZZ07] Xuemin Lin, Yidong Yuan, Qing Zhang, and Ying Zhang. Selecting stars:

The k most representative skyline operator. In International Conference on

Data Engineering (ICDE), pages 86–95, 2007. 190

[LZR06] Bin Liu, Yali Zhu, and Elke A. Rundensteiner. Run-time operator state

spilling for memory intensive long-running queries. In SIGMOD Conference,

pages 347–358, 2006. 193

[MK09] Chaitanya Mishra and Nick Koudas. Interactive query refinement. In In-

ternational Conference on Extending Database Technology (EDBT), pages

862–873, 2009. 8, 16, 180, 182

[MKZ08] Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte. Generating targeted

queries for database testing. In SIGMOD Conference, pages 499–510, 2008.

16, 170, 180, 182

203

REFERENCES

[ML05] Ion Muslea and Thomas Lee. Online query relaxation via bayesian causal

structures discovery. In National Conference on Artificial Intelligence

(AAAI), pages 831–836, 2005. 15

[MMY09] Xiangfu Meng, Z. M. Ma, and Li Yan. Answering approximate queries over

autonomous web databases. In WWW, pages 1021–1030, 2009. 16

[MPK00] Stefan Manegold, Arjan Pellenkoft, and Martin L. Kersten. A multi-query

optimizer for monet. In BNCOD, pages 36–50, 2000. 15

[MSHR02] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vijayshankar

Raman. Continuously adaptive continuous queries over streams. In SIGMOD

Conference, pages 49–60, 2002. 192

[Mus04] Ion Muslea. Online query relaxation. In Knowledge Discovery and Data

Mining (KDD), pages 246–255, 2004. 15, 180

[MZ93] Hla Min and Si-Qing Zheng. Time-space optimal convex hull algorithms. In

ACM Symposium on Applied Computing (SAC), pages 687–693, 1993. 2

[NCS+01] Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, and Jef-

frey Scott Vitter. Supporting incremental join queries on ranked inputs. In

Very Large Data Bases (VLDB), pages 281–290, 2001. 2, 3

[NW11] Sivaramakrishnan Narayanan and Florian Waas. Dynamic prioritization of

database queries. In International Conference on Data Engineering (ICDE),

pages 1232–1241, 2011. 15

[PJET05] Jian Pei, Wen Jin, Martin Ester, and Yufei Tao. Catching the best views of

skyline: A semantic approach based on decisive subspaces. In Very Large

Data Bases (VLDB), pages 253–264, 2005. 146

204

REFERENCES

[PL07] John Pongsajapan and Steven H. Low. Reverse engineering tcp/ip-like net-

works using delay-sensitive utility functions. In INFOCOM, pages 418–426,

2007. 147

[PS85] Franco P. Preparata and Michael Ian Shamos. Computational Geometry - An

Introduction. Springer, 1985. 4

[PTFS03] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal and

progressive algorithm for skyline queries. In SIGMOD Conference, pages

467–478, 2003. 5, 8, 12, 13, 14, 72, 105, 106

[PTFS05] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progres-

sive skyline computation in database systems. ACM Trans. Database Syst.,

30(1):41–82, 2005. 61, 73

[RCL01] Ann Rhee, Sumanta Chatterjee, and Tirthankar Lahiri. The oracle database

resource manager. In High Performance Transaction Systems, 2001. 15

[RR09] Venkatesh Raghavan and Elke A. Rundensteiner. Skydb: Skyline aware query

evaluation framework. In SIGMOD Workshops, 2009. 17

[RR10] Venkatesh Raghavan and Elke A. Rundensteiner. Progressive result genera-

tion for multi-criteria decision support queries. In International Conference

on Data Engineering (ICDE), pages 733–744, 2010. 17, 140, 146, 147

[RRS11] Venkatesh Raghavan, Elke A. Rundensteiner, and Shweta Srivastava. Skyline

and mapping aware join query evaluation. Inf. Syst., 36(6):917–936, 2011.

17, 98, 101

[SAC+79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Ray-

mond A. Lorie, and Thomas G. Price. Access path selection in a relational

205

REFERENCES

database management system. In Philip A. Bernstein, editor, SIGMOD Con-

ference, pages 23–34, 1979. 187, 192

[SAL+96] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah,

Jeff Sidell, Carl Staelin, and Andrew Yu. Mariposa: A wide-area distributed

database system. The VLDB Journal, 5(1):48–63, 1996. 193

[SI93] Arun N. Swami and Balakrishna R. Iyer. A polynomial time algorithm for

optimizing join queries. In International Conference on Data Engineering

(ICDE), pages 345–354, 1993. 192

[SMK97] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and

randomized optimization for the join ordering problem. VLDB J. 6:3, pages

191–208, 1997. 192

[SRR11] Shweta Srivastava, Venkatesh Raghavan, and Elke A. Rundensteiner. Adap-

tive processing of multi-criteria decision support queries. In VLDB Work-

shops (BIRTE), 2011. 189

[SWLT08] Dalie Sun, Sai Wu, Jianzhong Li, and Anthony K. H. Tung. Skyline-join in

distributed databases. In ICDE Workshops, pages 176–181, 2008. 13, 18, 19,

22, 23, 74, 75, 76, 78, 97, 101

[TB10] Vamsidhar Thummala and Shivnath Babu. ituned: a tool for configuring and

visualizing database parameters. In SIGMOD Conference, pages 1231–1234,

2010. 59

[TcZ+03] Nesime Tatbul, Ugur Çetintemel, Stanley B. Zdonik, Mitch Cherniack, and

Michael Stonebraker. Load shedding in a data stream manager. In Very Large

Data Bases (VLDB), pages 309–320, 2003. 193

206

REFERENCES

[TEO01] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient progressive

skyline computation. In Very Large Data Bases (VLDB), pages 301–310,

2001. 8, 14, 72, 105, 106

[UF00] Tolga Urhan and Michael J. Franklin. Xjoin: A reactively-scheduled

pipelined join operator. IEEE Data Eng. Bull., 23(2):27–33, 2000. 193

[VDP11] Akrivi Vlachou, Christos Doulkeridis, and Neoklis Polyzotis. Skyline query

processing over joins. In SIGMOD Conference, pages 73–84, 2011. 14, 75,

146, 147

[VNB03] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the output

rate of multi-way join queries over streaming information sources. In Very

Large Data Bases (VLDB), pages 285–296, 2003. 192, 193

[WOT10] Sai Wu, Beng Chin Ooi, and Kian-Lee Tan. Continuous sampling for online

aggregation over multiple queries. In SIGMOD Conference, pages 651–662,

2010. 14, 15, 20

[XZH05] Ying Xing, Stanley B. Zdonik, and Jeong-Hyon Hwang. Dynamic load distri-

bution in the borealis stream processor. In International Conference on Data

Engineering (ICDE), pages 791–802, 2005. 147, 193

[YL94] Weipeng P. Yan and Per-Åke Larson. Performing group-by before join. In

International Conference on Data Engineering (ICDE), pages 89–100, 1994.

105

[YLL+05] Yidong Yuan, Xuemin Lin, Qing Liu, Wei Wang, Jeffrey Xu Yu, and Qing

Zhang. Efficient computation of the skyline cube. In Very Large Data Bases

(VLDB), pages 241–252, 2005. 116, 122, 146

207

	My Publications
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.1.1 Skyline Operation
	1.1.2 Top-K or Ranked Queries
	1.1.3 Convex-Hull Query

	1.2 Motivation
	1.2.1 Skyline Evaluation Across Disparate Sources
	1.2.2 Progressive Evaluation of MCDS Queries
	1.2.3 Contract-Driven Query Processing
	1.2.4 Automated Query Refinement in MCDS Systems

	1.3 State-Of-The-Art Techniques
	1.3.1 Skyline Algorithms over a Single Relation
	1.3.2 Skylines over Disparate Sources
	1.3.3 Progressive Skyline Query Evaluation
	1.3.4 Handling Concurrent MCDS Queries
	1.3.5 Automated Query Refinement

	1.4 Research Challenges Addressed in This Dissertation
	1.4.1 Efficiently Processing Skylines over Disparate Sources
	1.4.2 Progressive Skyline over Join Evaluation
	1.4.3 Contract-Driven Multi-Query Processing
	1.4.4 Proximity-Driven Cardinality Assurance

	1.5 Proposed Solutions
	1.5.1 Skyline and Mapping Aware Query Evaluation
	1.5.2 Progressive Result Generation for MCDS Queries
	1.5.3 Contract-Driven Processing of Multiple Multi-Criteria Decision Support Queries
	1.5.4 Cardinality Assurance Via Proximity-driven Refinement

	1.6 Dissertation Organization

	I Skyline and Mapping Aware Query Evaluation
	2 Skyline Aware Relational Algebra
	2.1 Preliminaries
	2.1.1 Mapping Functions and Map Operator
	2.1.2 Preference Model and Skyline Operator

	2.2 Extended Algebra Model
	2.3 Query Equivalence Rules

	3 SKIN: The Proposed Approach
	3.1 Phase I: Region-Level Elimination
	3.2 Phase II: Output-Partition Level Elimination
	3.3 Phase III: Skyline-Aware Join Ordering
	3.4 Phase IV: Object-Level Execution
	3.5 Handling Join Predicates

	4 Experimental Evaluation of SKIN
	4.1 Experimental Setup
	4.1.1 Proposed Techniques
	4.1.2 Competitor Techniques
	4.1.3 Experimental Platform
	4.1.4 Evaluation Metrics
	4.1.5 Stress Test Data

	4.2 Experimental Analysis of SKIN
	4.3 Comparisons with State-of-The-Art
	4.3.1 Execution Time
	4.3.2 Number of Join Results Generated
	4.3.3 Number of Skyline Comparisons Performed
	4.3.4 Differing Mapping Functions

	4.4 Real Data Sets
	4.5 Summary of Experimental Conclusions

	5 Related Work for Part I
	5.1 Skyline Algorithms over a Single Relation
	5.2 Skylines over Disparate Sources
	5.3 Pushing Skyline Inside and Through Join Evaluation

	II Progressive Result Generation for Multi-Criteria Decision Support Queries
	6 ProgXe: Progressive Execution Framework
	7 Progressive Driven Ordering
	7.1 Effect of Ordering
	7.2 Benefit Model: Progressiveness Capacity of a Region
	7.3 Cost Model: Tuple-Level Processing
	7.4 The ProgOrder Algorithm: Putting it all together

	8 Progressive Result Determination
	8.1 Our Approach
	8.2 The ProgDetermine Technique: Putting It All Together

	9 Experimental Evaluation of ProgXe
	9.1 Experimental Setup
	9.2 Experimental Analysis of ProgXe Variations
	9.2.1 Variations of ProgXe
	9.2.2 Progressive Result Generation
	9.2.3 Total Execution Time

	9.3 Comparisons with State-of-the-Art Techniques
	9.3.1 Summary of Experimental Conclusions

	10 Related Work for Part II
	10.1 Blocking vs. Non-Blocking Query Operators
	10.2 Progressive Skyline Algorithms

	III Contract-Driven Processing of Multiple Multi-Criteria Decision Support Queries
	11 Contract-Driven Processing of Concurrent Decision Support Queries: A Piece of CAQE
	12 Specifying Progressiveness Requirements via Contracts
	12.1 Progressiveness Contract
	12.1.1 Contract Specification Models
	12.1.1.1 Time Based Specification
	12.1.1.2 Cardinality Based Specification

	12.1.2 Hybrid Specification

	12.2 The CAQE Optimization Goal

	13 Shared Min-Max Cuboid Plan
	14 Multi-Query Output Look Ahead
	14.1 Overview
	14.2 Coarse-Level Skyline Evaluation
	14.3 Optimizing MQLA
	14.3.1 Sort-Based Traversal
	14.3.2 Merging Subspace Skylines
	14.3.3 Sorted Subspace Skyline Maintenance

	14.4 Putting MQLA Together

	15 Contract-Driven Optimization
	15.1 Contract Satisfaction Metric
	15.2 Multi-Query Progressiveness Based Benefit Model
	15.3 Multi-Query Cost Model
	15.4 Putting Contract-Driven Ordering Together

	16 Contract-Driven Execution
	16.1 Tuple Level Processing
	16.2 Multi-Query Progressive Result Reporting
	16.3 Satisfaction Based Feedback Mechanism

	17 Experimental Evaluation on CAQE
	17.1 Experimental Settings
	17.1.1 Experimental Platform
	17.1.2 Contract Models
	17.1.3 Data Sets
	17.1.4 Query Workload
	17.1.5 Competitor Techniques
	17.1.6 Evaluation Metrics

	17.2 Contract Satisfaction Metric
	17.3 Increasing Size of Workload
	17.4 Comparing CPU and Memory Utilization

	18 Related Work for Part III
	18.1 Subspace Skylines over Single Relation
	18.2 Skylines over Join Queries
	18.3 Quality of Service

	IV Cardinality Assurance Via Proximity-driven Refinement
	19 Proximity-Driven Cardinality Assurance
	19.1 Running Query
	19.2 Query Representation
	19.3 Measuring Refinement
	19.4 Problem Definition

	20 Phase I: Expand
	21 Phase II: Explore
	21.1 Incremental Query Execution
	21.1.1 Query Decomposition
	21.1.2 Recursive Cardinality Computation
	21.1.3 Cardinality Computation Algorithm

	21.2 Predictive Index Structure
	21.3 CAPRI: Putting It All Together

	22 Experimental Evaluation of CAPRI
	22.1 Experimental Setup
	22.1.1 Platform
	22.1.2 Evaluation Metrics
	22.1.3 Alternative Techniques
	22.1.4 Data Sets

	22.2 Performance Comparisons
	22.2.1 Refining Select Predicates
	22.2.2 Refining Both Join and Select Predicates
	22.2.3 Analyzing CAPRI Parameters

	23 Discussion
	23.1 Optimizations to CAPRI
	23.2 Handling Non-numeric Predicates
	23.3 Preferences in Refinement
	23.4 Contracting Queries With Too Many Results

	24 Related Work for Part IV
	24.1 Tuple-Oriented Techniques
	24.2 Query-Oriented Approach

	25 Conclusions of This Dissertation
	26 Future Work
	26.1 Scaling Skyline over Join Queries
	26.1.1 Handling Larger Data Sets
	26.1.2 Handling High Dimensional Datasets
	26.1.3 Adaptive Spatial Partitioning
	26.1.4 Approximation through Dimension Reduction
	26.1.5 Meaningfulness of Skyline Results
	26.1.6 Cardinality Estimation for Skyline-Aware Operators
	26.1.7 Execution Cost-Aware Query Optimization

	26.2 Multi-Query Multi-Constraint Plan Generation

	References

