
Design of AI-enabled Chatbot

A Major Qualifying Project Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In Partial Fulfillment of the Requirements for the

Degree in Bachelor of Science

By:

Rolando Salamea-Lopez

QiHan He

Federico Perez

Collin Mettler

Quincy Payne

Xiao Xiao

Hrishikesh Nair

Guillermo Morel Mendez

Date: 𝐴𝑝𝑟𝑖𝑙 16𝑡ℎ 2024

WPI Advisor: Professor Bo Tang

Professor Lin Cheng

Abstract

This project is about the design and implementation of a robotic autochat system

which will enhance human-robot interaction through natural language understanding and

response capabilities. The system integrates several audio and video sensors into a

comprehensive framework, making use of cutting-edge AI-enabled chatbot systems,

especially ChatGPT. The embedded system processes the audio and video signals, enabling

the robot to understand human speech and engage in conversations. And the monitor displays

the responses of the system, creating a seamless interaction experience.

One of the key advantages of the system is that the integration of language models

enables the robot to understand and respond effectively to human language, resulting in a

more natural and engaging interaction. The project includes multiple domains, such as

embedded system design, text-speech translation, speech-text translation, and human-robot

interaction. This project provides an in-depth study of cutting-edge technology, and the

robotic autochat system presented as a novel idea for improving communication between

people and robots, which indicates that the robotic autochat system is an innovative solution

for fostering the communication between humans and robots.

Acknowledgements

We want to express our thanks to all the people who contributed to this project. First

of all, we want to express our thanks to Professor Bo Tang. He is giving us support and

sharing invaluable experience and knowledge in the course of project implementation all the

time. His insights and mentorship are important in shaping our approach and guiding us

towards achieving our goals.

We also want to express our thanks for the resources, facilities, and support required

for us to carry out it to the WPI. This opportunity is also taken to put on record the

appreciation with due respect to the contribution made by fellow colleagues, peers, for their

valuable suggestions, and encouragement added value towards the development of the

AI-enabled system.

We would also like to thank the contributors of open-source tools, libraries, and

datasets, without which it would be hard to imagine the completion of this project. Their

works in robotics and artificial intelligence have been very useful in making our work

possible. This project would not be possible without the collective efforts and support of all

those mentioned above.

Table of Contents
Abstract... 2
Acknowledgements...3
Table of Contents..4
1 Introduction... 6

1.1 Overview of Human-Robot Interaction (HRI)... 6
1.2 Challenges in Human-Robot Interaction..7
1.3 Purpose and Significance of the Project...7

2 System Design.. 8
2.1 Introduction.. 8
2.2 System Architecture Overview.. 8

2.2.1 Modular Design...8
2.2.2 Scalability..9

2.3 Hardware Integration..9
2.4 Sensory and Interaction Hardware... 10
2.3 Key Functionalities.. 10

2.3.1 User System and Data Handling... 10
2.3.2 Speech and Visual Interaction... 10
2.3.3 Decision Making and Response Generation..11
2.3.4 Voice Activity Detection and Dialogue Management... 11
2.3.5 Long Term Memory.. 11

2.4 Future Directions and Recommendations.. 11
2.5 Conclusion..12

3 Hardware Design...13
3.1 Mechanical Engineering Aspect...13

3.1.1 Constraints...13
3.1.2 Motivation... 14
3.1.3 Methodology and Design.. 14
3.14 Dimensional Analysis.. 15

3.2 Electrical and Computer Engineering Aspect.. 16
3.2.1 Arduino Uno..16
3.2.2 Stepper Motor and Driver... 17
3.2.3 Assembly of Motor and Microcontoller..17

4 Software Design... 18
4.1 Speech-to-Text..18
4.2 Text-to-Speech..23
4.3 Face Detection and Verification... 29
4.4 Face Recognition Model Selection.. 33
4.5 Face Detection Model Selection.. 34
4.6 LLM Pipeline... 36

4.6.1 Overview... 36
4.6.2 Conversation Loop.. 37
4.6.5 Long Term Memory System..41

4.7 Database... 43
5 Experiments... 44

5.1 Software Experiments.. 44
5.1.1 Silero vs Whisper STT.. 44

6 Conclusions.. 45
7 Reference..46

1 Introduction
In recent years, robotics has made significant advances, especially in the area of

human-robot interaction. Human speech understanding and effective communication; one of

the points is to work on enhancing the user experience and engaging the use of robotics in the

possible domains. The latter includes customer service and healthcare. This project is devoted

to developing intelligent conversational agents for sensible dialogs between a robot and a

human.

This report introduces a novel approach to designing a robotic autochat system that

integrates cutting-edge technologies to facilitate natural language understanding and

response. The use of current AI-enabled chatbot systems is the foundation for the

conversational ability of the robot — ChatGPT. By using the power of this advanced

language model, the system can bridge the gap between human language and robotic

interaction, enabling seamless communication between the two entities.

The key components of the robotic auto chat system for this project include multiple

audio and video sensors, an embedded system, and a monitor for displaying results. These

elements work together to capture and interpret human speech and gestures, facilitating

real-time interaction between the robot and the user.

1.1 Overview of Human-Robot Interaction (HRI)

Human-Robot Interaction (HRI) belongs to an interdisciplinary area aimed at studying

the interactions that might appear between human beings and robots; it has gained popularity

in very versatile research and design activity. Over time, HRI has gained more attention than

before due to the growing numbers of robots in all kinds of domains, from industrial and

professional settings to everyday environments at homes, in hospitals, and public spaces.

Understanding the ways in which people and robots can communicate and work together will

help develop the integration of robotic technologies into society. “From 2006 on, the

symposium on human–robotic interaction has been sponsored by the IEEE (IEEE Robotics

and Automation Society, 2015). Goodrich and Schultz (2007) offer a useful, if slightly dated,

survey of the literature”. (Sheridan, 2016, p.525)

The HRI was born in the early days of industrial robotics, where industrial robots are

primarily employed for boring and unsafe handling manufacturing activities in a

manufacturing environment. The first interactions under these systems were usually confined

to routines pre-programmed with little room for human contribution or the capability to adapt

to a change in condition.

However, the HRI development greatly improved with the progress of Robotics, AI,

and sensing technologies. Today, robots are capable of accomplishing quite complex

behaviors, such as perception, learning, and adaptation, which allows a robot to serve for

interaction with a human in a quite humane way.

1.2 Challenges in Human-Robot Interaction

In human-human interactions, social cues are used to convey context-bound

behaviors. However, in human-robot interactions, it is required that signals from both

directions be explicit and unambiguous. It includes verbal and non-verbal delivery of cues,

for example, people communicate with each other by gesture, facial expression, or body

language.

Moreover, getting a robust natural language understanding language poses a big

problem to HRI. Sometimes, people usually use complex language, expressions, and phrases

amongst themselves in communications, leaving the task of the robot to interpret and respond

accurately.

And with their physical interaction and safety, strong sensing and control mechanisms

will be needed to avoid accidents and any risk during the robots' closed interactions with

humans.

1.3 Purpose and Significance of the Project

This project aims to design and implement a robotic autochat system capable of

understanding human speech and engaging in natural conversations with users. The existing

large-scale AI-enabled chatbot systems like ChatGPT will be implemented, with the

advanced audio and video sensors. It is an innovative idea to facilitate seamless

communication between humans and robots across various contexts.

2 System Design

2.1 Introduction

At Worcester Polytechnic Institute (WPI), our team has developed the first AI-enabled

chat robot designed to pioneer advanced human-robot interaction. This section outlines the

architecture and key components, emphasizing the system’s modularity, scalability, and the

robust integration of both hardware and software to accommodate future technological

expansions and increased user interaction demands.

2.2 System Architecture Overview

The architecture integrates cutting-edge hardware with sophisticated software

modules, supporting extensive data processing and real-time interaction capabilities. It lays

the foundation for handling complex computations and managing large datasets efficiently,

while maintaining flexibility for future enhancements. Multithreading is used to keep track of

interactions as well as run the facial recognition software in the background.

2.2.1 Modular Design

Our team prioritized modularity in the robot's design, allowing for easy updates as

technologies evolve and preventing the robot from becoming obsolete whenever a new model

comes out. Utilizing an LLM framework, our system enhances the flexibility of the language

learning model (LLM) pipeline, allowing components such as the GPT API integration and

RAG (Retrieval-Augmented Generation) module to be updated independently.

LLM Framework: LangChain simplifies the process of swapping out modules and

altering the models used at each stage of the pipeline, reducing our dependence on specific

companies such as OpenAI. This allows for the integration of other models as alternatives to

the GPT API, even running a model locally on our hardware.

Modular PC Build: The computer that controls the robot was also designed with

modularity in mind and for future teams to have an easy time replacing any parts that might

be obsolete.

2.2.2 Scalability

To ensure the system can handle increasing amounts of data and growing user bases

without degradation in performance, we chose to implement several scalable solutions:

● Vector Memory with ChromaDB: We use ChromaDB for efficient and scalable

storage and retrieval of vector embeddings, which store interaction histories and user

information. This allows our system to scale as the number of interactions and the

amount of stored data increases.

● OpenAI API: By leveraging the OpenAI API for heavy LLM tasks, we offload

computational demands to a scalable cloud service, allowing for dynamic resource

allocation based on system load.

● Local Processing: Critical real-time applications such as STT, TTS, and facial

recognition are processed locally. This not only enhances performance and response

times but also addresses potential data privacy concerns by minimizing external data

transmission.

2.3 Hardware Integration

High-Performance Computing Hardware: Features a high-end NVIDIA A5000 GPU,

robust consumer CPU, RAM, and fast NVMe SSD storage, ensuring efficient real-time

operations. The modular nature of the PC build allows future teams to upgrade or repurpose

components without needing to replace the entire system.

Externalized Computing Hardware: Initially designed to be housed within a compact

MicroATX chassis, space and cooling constraints necessitated externalizing the computing

hardware. This is an area that we left open to other groups, there are benefits of having the

robot be self-contained but we chose to have the hardware externalized.

2.4 Sensory and Interaction Hardware

Audio and Visual Sensors: The robot is equipped with a torso and a head featuring

two high-definition cameras mounted in stereo on its head, which can rotate to track people

during interactions. This setup not only supports advanced facial recognition but also

potentially enables depth sensing, significantly enhancing the robot’s environmental

understanding and interaction capabilities.

Mechanical Design: The robot’s design is focused on functionality and user

engagement, with a friendly, non-humanoid form that is approachable yet distinctly robotic.

Instead of trying to make the robot humanoid and running into the issue of looking uncanny

we wanted to go for a charismatic robot approach.

2.3 Key Functionalities

2.3.1 User System and Data Handling

Each user interaction is linked to a unique user profile managed by our system,

allowing the chat robot to maintain context over multiple sessions. Facial recognition

technology is employed to identify returning users, enhancing the personalization of

interactions. Data related to user interactions and biometrics is handled with strict adherence

to privacy regulations, ensuring user data is secure and confidential.

2.3.2 Speech and Visual Interaction

The integration of speech-to-text (STT) and text-to-speech (TTS) technologies

enables our chat robot to communicate with users through natural spoken language, making

the system accessible and user-friendly. The local processing of these functionalities ensures

quick response times and reduces latency, which is crucial for maintaining a natural

conversational flow.

2.3.3 Decision Making and Response Generation

Our system uses a combination of direct LLM responses and RAG for generating

replies. Decisions on which approach to use are made based on the context of the query and

the specific needs of the interaction, ensuring that responses are both relevant and timely.

This decision-making process is supported by NLP techniques that analyze the input and

determine the most suitable response strategy.

2.3.4 Voice Activity Detection and Dialogue Management

The system includes voice activity detection (VAD) to accurately identify when a user

starts speaking and manage pauses in speech. This ensures the robot can maintain natural

dialogues by detecting speech endings and managing conversational turns effectively.

2.3.5 Long Term Memory

Enhances the chatbot's ability to recall and reference previous conversations,

employing a combination of RAG for retrieving relevant past interactions and a session-based

memory buffer. This dual approach ensures comprehensive memory management, with

important conversation details summarized and stored for long-term use, facilitating

continuity across multiple interactions.

2.4 Future Directions and Recommendations

This inaugural project at WPI establishes a solid foundation for further innovation in

AI-enabled chat systems. We encourage future projects to build upon this base, we had a lot

of ideas that we didn’t get to explore but encourage future students to look into:

Gesture Recognition and Multimodal Interaction: Extend the system's capabilities to

include gesture recognition, enriching user interaction by integrating multiple modes of

communication.

Depth Perception: Advance the robot’s sensory hardware to include depth perception

for better environmental awareness and improved navigation, particularly useful in complex

interaction scenarios and multi-user environments.

Speech Diarization: Develop speech diarization technologies to distinguish between

multiple speakers effectively, enhancing the robot’s utility in group settings by attributing

speech to the correct user.

Enhanced Security Measures: Improve facial recognition algorithms to support

more robust authentication processes, increasing both the security and personalization of user

interactions.

Local LLM Implementation: Investigate deploying a fully local LLM to minimize

reliance on cloud services, enhancing the system’s operational reliability and data privacy,

especially in scenarios with limited internet access.

Server-Based Processing: Consider a server-based approach where the robot’s

“brain”, which currently is the PC attached to the robot, are instead managed by a dedicated

server completely. This would allow the robot to be a smaller or more approachable device.

2.5 Conclusion

The architecture of the system underscores a forward-thinking approach. And this

emphasizes the modularity, scalability, and robust integration of hardware and software

components. By adopting a modular design philosophy, we make sure that the system can be

used for future technological advancements, preventing obsolescence and facilitating

seamless updates. Furthermore, we are focusing on the scalability that should enable the

system to handle growing user bases and data volumes without compromising performance.

And this lays a foundation for sustained growth and expansion.

Combined with high-performance computing hardware and sophisticated sensory and

interaction capabilities, the chat robot we made can engage users in natural, meaningful

interactions. Each component is from speech and visual interaction to decision-making and

response generation. This is finely tuned to create a seamless and lifelike user experience.

And this project gives more avenues for further innovation and exploration in

AI-enabled chatbot. We aim to build on this foundation by exploring capabilities such as

gesture recognition, depth perception, and enhanced security measures to increase system

capability and user engagement.

All in all, this project represents a significant step forward in the application of AI

technologies at WPI, establishing a scalable, modular, and innovative platform. The design

choices made reflect a forward-thinking approach to educational and technological

advancements, ensuring that the system remains adaptable and relevant for future

explorations in AI-enabled interactions.

3 Hardware Design

3.1 Mechanical Engineering Aspect

This section reviews what others are doing regarding AI-powered robots and robotics,

hardware, materials, and manufacturing processes.

One of the first AI-powered robots found during research was a GPT-powered robot

built using LEGO. Creative Mindstorms on YouTube posted a video including the robot’s

creation process, the hardware used, and how the robot interacts.

When thinking about the design and manufacturing process, 3D printing, CNC

machining, and woodworking were possible options for creating the robot. The mechanical

team believes that 3D printing will fit this project best. Printing allows for rapid iterative

design at a low cost, meaning the hardware engineering team can create many versions and

manufacture them quickly. This fast-paced, iterative design process allowed for quick

changes and implementation of feedback.

The strength of 3D-printed parts is also sufficient for a robot. While wood and metal

will be stronger and able to resist more force before breaking, the robot will not undergo large

external forces. Therefore, 3D-printed parts will be strong enough for this project.

3.1.1 Constraints
This section discusses the constraints regarding the mechanical engineering of

AI-powered robots.

One of the most important constraints identified in the beginning of the process was

approachability. People are supposed to interact with this robot in a conversational

environment. Because of this, the design should feel approachable and friendly.

Accommodating for this constraint included the addition of a bowtie and hat in the attempt to

resemble a butler. Making the likeness of the robot closer to a butler also gives the impression

that they are able to provide a service, in this case, integration with an AI model.

Other constraints included features that must be included in the final design. These

include, microphones, cameras, and motors for the head and body.

Because of these constraints, 3D printing was used as the manufacturing method. It

would allow for rapid prototyping and turn around for many design versions. With the

assumption that there will be many iterations of the robot, 3D printing proved to be

affordable.

3.1.2 Motivation
The difference with our robot when compared to other GPT-based robots is that it is

specialized for WPI. We have integrated WPI data so that it can cater to the needs of users on

the WPI campus. It can help answer questions, aid in campus tours, or even give directions to

a different building.

3.1.3 Methodology and Design
We decided that 3D printing would fit our design constraints the best. For the design

process, 3D CAD was used. Onshape was picked because it allows easy collaboration and

sharing as well as simple version control. CAD will also incorporate all parts needed,

allowing the design to work around existing hardware. It also allows dimensional analysis,

meaning parts such as motors can be calculated to see if they work correctly.

One aspect of the robot that was needed in the design was approachability. This robot

will be used to interact with community members; the design must incorporate this aspect of

its use.

Figure 1 : Version 3 of the robot

3.14 Dimensional Analysis
The required torque was calculated such that the robot could rotate 180 degrees in 1. 5

seconds. This allowed us to buy a small motor that could move the robot. The dimensional

analysis helped the design process because we could predict whether the motor would be

powerful enough. MATLAB was used for calculations, and the initial data was gathered from

the 3D CAD program.

Like the table shown below, Lxx, Lyy, and Lzz are the moments of inertia about the

principle axes x,y, and z. This represents the resistance to rotational motion about each axis.

As for Lxy, Lyx,Lyz,Lzy,Lxz, and Lzx are the products of inertia, which represents

the correlation of how the mass is distributed in two dimensions between any two axes. For

example, Lyx is the product of inertia that is related to the y-axis and x-axis.

mass moment of

inertia 𝑔 * 𝑖𝑛2
mass moment of

inertia 𝑔 * 𝑖𝑛2
mass moment of

inertia 𝑔 * 𝑖𝑛2

Lxx 23776.63000 Lxy 0.032 Lxz 0.000528

Lyx 0.03173 Lyy 30870.85082 Lyz 72.156624

Lyzx 0.00053 Lzy 72.156624 Lzz 11116.43353

x y z

angular

acceleration

(rad/s) 0 0 2

Mass moment

in

(kgm^2)

0.00001 1.33E-11 2.20E-13

0.00000 1.28E-05 3.00E-08

0.00000 3.00E-08 4.63E-06

Torque in

(Kgm^2*rad/s)

Same as Nm

0.00000000000043954 x

0.00000006006800000 y

0.00000925400000000 z

Torque of

Motor (Nm) 0.16

3.2 Electrical and Computer Engineering Aspect

The electrical team was tasked with figuring out how to pair all the input and output

devices so it would be compatible with the chatbot. In the following sections, it will be

expanded upon as to how we decided on what components we used and how they were setup.

3.2.1 Arduino Uno

To ensure compatibility with the code created for the chatbot robot we had to make

sure we chose a microcontroller that would take real time inputs from the code and control

the stepper motor chosen by the mechanical team. We ultimately settled with the Arduino

Uno microcontroller for its compact design and versatility. It has the power requirements to

operate the stepper motor and can be directly connected to the computer to receive real time

inputs to move the stepper motor from the chatbot code.

3.2.2 Stepper Motor and Driver

The mechanical team determined that we should use a stepper motor to control the

robot’s head. Having determined that we are using the Uno, we looked for a stepper motor

that would fulfill the mechanical team’s requirements. this led us to use NEMA17HS3401

stepper motor which does fulfill the requirements and is compact to fit within the robot. In

order to operate the stepper motor we had to choose a compatible stepper motor driver, the

TMC2208 v3. The driver is compatible with the Uno and also compact enough to fit within

the robot chassis.

3.2.3 Assembly of Motor and Microcontoller

We connected the TMC2208 stepper motor driver to the Arduino Uno. This involved

setting up the power supply by linking the VMOT pin of the TMC2208 to a 12V power

source, which was also connected to the Arduino Uno’s VIN pin for shared power. Control

connections were made by assigning digital pins 7, 8, and 9 on the Arduino for the enable

function, and for controlling the stepping and direction of the motor, respectively. The stepper

motor itself was carefully connected to the driver, ensuring that each of the motor’s coil wires

was correctly matched to the corresponding pins on the TMC2208, following the

manufacturer's wiring configuration.

Once we verified that the stepper motor moved properly, we redid the connections

from the Uno to the driver to be permanent connections by soldering the wires together,

putting heat shrink on them to enclose connections and replacing wires from the original

testing wires with shorter, sturdier wires that snag on the pins so connections aren’t undone

while within the chassis.

Figure 2:Robot assembled with the refined Arduino Uno microcontroller and motor driver setup

4 Software Design
The software design is composed of five main parts: Speech to text, text to speech,

face detection and verification, LLM pipeline, and databases. The details for the process and

theory will be shown in each part.

4.1 Speech-to-Text

The Speech-To-Text (STT) architecture for this project was designed so that it could

work within the flow of a conversation. In this case, the conversation starts when a user’s

face has been either identified, or a user has opted out of being identified but a face is still

visible in frame. Once this occurs, it means a user is actively standing in front of the robot.

And this makes the microphone activate, and the output is listened to until a voice is

recognized. Once the program recognizes that someone is talking, it records the speech until

there is a long enough pause that the robot is making sure the user finishes talking.

The model used is Silero Models for the project, and it can fully rely on the leading

Speech-to-Text technology known to have broad multi-language support and the best-in-class

transcriptions, even for CPU-heavy tasks. Simply built and with little dependencies, we

integrate smoothly to perform our core functionality and not battle with trying to set up a

convoluted build. The advantages of Silero Model is that it includes one-step set-up with no

need for add-on tools, like Kaldi; swift deployment, since no compilation is needed; and a

ready pre-trained model, hence not needing a lot of instructions. Moreover, Silero models

ensure the sound of natural results and offer an extended library of voices, including an

infinite number of languages to work with. All these benefits materialize without GPU

acceleration or heavy training, meaning the efficiency of these models is incredible with

limited requirements.

From this figure of chart, the model versions V3, V4, and V5 WER are represented.

The bar plots are the indication of the WER of the model over several test sets, which go

from clean audio in "librispeech_test_clean" to even more adverse conditions from

"multi_ted_val. The test sets are composed of the scenarios that have a reflection of acoustic

conditions—those that take place in reality and pertain to lectures, discussions on financial

data, and dialect variations. The lower WERs observed for newer versions of the models

indeed point to improvements and better transcription accuracies, which are very key in the

performance of our speech recognition application.

Figure 3 : Dynamics of World Error Rate change

Figure 4: Available Model Checkpoints and Flavors

From the figure, the caption is a summary of the given variety of offered model

checkpoints that are flexible for both PyTorch and ONNX integrations, quantization options,

and are available in sizes with respect to JIT and ONNX models

Below is a snippet in Python showcasing how to use the Silero STT model in

applications. It shows the importing of required libraries, setting the computation device up,

and loading a pre-trained model from the PyTorch Hub. This involves downloading a sample

audio file, preparing the input file, and then transcribing speech to text using the model. Ands

this is an evidence of the ease of running on the CPU, with simple code that would be easy to

modify for languages supported by Silero's models.

Figure 5: Sample Python Code for Silero Speech-to-Text Model Implementation.

The Silero uses a speech-to-text model that integrates into the TensorFlow framework.

Below is an example of Python code showing how to import the necessary libraries, load the

utility functions, and make the desired language accessible. This may consist of acquiring the

SavedModel in TensorFlow, prepping the audio for input, and running the transcription. In

this process, the streamlined model does well to point out that the model should operate well

in the TensorFlow environment.

Figure 6:Sample codes for Silero Speech-to-Text Model Implementation for TensorFlow.

Silero was chosen because it was found to be much more accurate and faster

compared to the original design which used Whisper for Speech-To-Text and

SpeechRecognition for Voice-Activity-Detection. In the previous model using this

combination, the SpeechRecognition software was run, listening to the microphone and

recording what it believed to the speech before returning that to our software, which

transcribed it to a temporary file before sending it to the Whisper model to turn into text.

Switching from the SpeechRecognition VAD model to the Silero VAD model improved this

pipeline as the Silero model merely detects when speech starts and stops, and does not record

anything. This allowed us to cut out needing to transcribe the SpeechRecognition output to a

temporary file, instead allowing us to use PyAudio to directly write the audio from input to a

file on disc. This is then fed to the Silero STT model allowing for faster STT abilities.

4.2 Text-to-Speech

Text-to-Speech (TTS) technology is a form of speech synthesis that converts written

textual content into audible speech. TTS systems equipped with deep learning models can

generate synthesized speech and therefore have applications ranging from voice responses in

virtual assistants to field help for users with visual impairment. Modern TTS models also

come with different voices, and some even have SSML (Speech Synthesis Markup

Language) to take control of the way speech sounds. The technology is rapidly growing to

produce even much more natural and expressive voices.

Like the figure shown below, the V4 Text-to-Speech models enhance the versatility of

language support with many speakers, including those required for languages written in the

Cyrillic script, besides other mostly spoken languages. Each model variant is identified by a

model_id and provides options for different speaker voices to improve the naturalness of the

synthesized speech. The models are also capable of supporting fine-tuning for produced

speech using SSML (Speech Synthesis Markup Language) but still do not have auto-stress

features for all languages. The sample rates range from 8000 Hz to 48000 Hz, making them

usable for many applications and compatible with most platforms.

Figure 7: Overview of V4 Text-to-Speech Models

Like the figure of table shown below, The Silero TTS V3 models are further improved

with SSML, so the synthesis of speech is more finely adjustable. The table contains the list of

the models with different IDs that correspond to diverse speakers and languages, involving

not only English and German but also Spanish, French, and Indic languages. The models do

not inherently support auto-stress, but can work with speech rates (SR) of 8000, 24000, and

48000 Hz. Some language models in this list are going to have labeled speakers such as the

names "African American" and "Australian." Others will only be labeled as "random" to

ensure voice diversity for text-to-speech applications.

Figure 8:Overview of V3 Text-to-Speech Models

Below is an example of the V4 Text-to-Speech model by using PyTorch, predefined settings

for Russian, a defined speaker, and a sample rate of 48000 Hz. This code displays how the

model is loaded, the device on which the computations will be made, and then how to

generate audio from text. This clearly shows that the model can be used for high-quality

synthesized speech using PyTorch.

Figure 9: Implementation of V4 Text-to-Speech Model in PyTorch

In Figure shown below, it provides a self-contained example of the use of the V4

Text-to-Speech model with the ability to inter-operate between PyTorch 1.10 and the Python

standard library. This provides a way to configure the computational device, thread

management for performance, and downloading the model file if not available locally. Then,

it imports the model, sets the sample rate, chooses the speaker, and synthesizes speech from

text. This could give the possibility to save the output as an audio file. This script was

designed as an example of how the model is easy to access and provides very low entry-level

for anyone willing to perform text-to-speech synthesis for his standalone application

Figure 10: Implementation of V4 Text-to-Speech Model in PyTorch for Standalone Use

Below is the figure of the table. This table lists the supported languages and the

speaker options of a text-to-speech system, which includes male and female voices for Hindi,

Malayalam, and few more. This language entry associates a romanization function through a

transliteration process of converting the native-script-based text to a Latin alphabet in

conformity with ISO standards to have a consistent pronunciation by the TTS system.

Figure 11: Supported languages and the speaker options of a text-to-speech system.

The precision-recall curve of the different Voice Activity Detection (VAD) models on

the LibriParty dataset is presented below. The green one is the model Silero with a frames

size of 30 ms, the blue one is a commercial model, and the red one is from the WebRTC

model with a frames size of 30 ms as well. Precision is the proportion of the detected speech

activity that is truly correct, while recall is the proportion of ability to detect all actual speech

events. Ideally, a model will be more likely to return high precision and recall scores,

whereby a perfect model results in both precision and recall being 1 or 100%. The graph

suggests the Silero model balances precision and recall more effectively than the other

models represented.

Moreover, Silero's Voice Activity Detection (VAD) accuracy is one of the best in this

area and displays magnificent results in speech detection. This VAD makes a significant

difference in speed: less than 1 ms of the CPU processing time is spent on audio chunks,

while on a GPU or with ONNX optimization, this speed will be even faster. On the contrary,

the model is lightweight in size—approximately one megabyte. From the other side, Silero

VAD is versatile. This allows multilingual training and adaptation to practically all audio

conditions by supporting both 8000 and 16000 Hz sampling rates with the corresponding

sizes of the chunks. Compatible with the PyTorch and ONNX frameworks, portability is

enhanced, and the permissive MIT-licensed free-to-use without-strings.

Figure 15:Precision-Recall Curve for VAD Models on LibriParty Dataset

4.3 Face Detection and Verification

Face detection and verification technologies are systems that verify a person's

identification by his facial features. The capability of perfectly locating a face in images,

further capable of verifying if two faces are the same, is hence very essential for applications

in security, user authentication, and personalized services. Sophisticated algorithms evaluate

facial features, such as distance between eyes, shape of jawline, and cheekbone contour, in

order to come up with a facial signature. With AI growing stronger, we could very well see

the reliability of these systems being put to use with AI technologies across the board, from

smartphones to law enforcement.

The model we use is one of the biggest open-source projects on GitHub —

DeepFace.And the model we used contains the largest Python library to be used for

recognizing faces and analyzing facial attributes such as age, gender, emotion, and race. It

wraps state-of-the-art models like VGG-Face, FaceNet, and DeepFace for high levels of

accuracy surpassing human performance. It is simple to install via both PyPI and Conda, this

library provides features for verification, finding, and analysis with very few lines of code.

DeepFace was built in a way that users only need to make a single call for such complex

operations that include detection, alignment, and normalization. It also offers a real-time

analysis option using a webcam and can be deployed via Docker or consumed as an API.

In modern face recognition there are 4 steps: Detect, Align, Represent, and Classify.

And the approach is more about alignment and representation of facial images.

For alignment, the steps will be shown below. The document we use illustrates the

process of face alignment in such a way that from an input image, it generates a frontal face.

It proposes that the 3D frontalization should use six key fiducial points on the face: the eyes,

the tip of the nose, and points on the lips. Such points help in the detection of faces and,

consequently, the alignment of faces in whatever poses and angles to a standard orientation,

hence contribution to more accurate further face detection and further applications like

recognition or verification. A 2D face image is then cropped from the original using these

fiducial points for further processing. Then the third step is the spatially aligned 2D-enhanced

and cropped face image is then obtained by aligning—mapping 67 fiducial points onto the

face using Delaunay Triangulation for better spatial alignment. This further allows correction

for out-of-plane rotations and is able to build a more accurate 3D face model. This careful

plotting of fiducial points will contribute a lot to the precision in the subsequent tasks of face

recognition. Then in constituting a 2D to 3D conversion in face recognition and verification,

there is a relationship by which a 2D point is a projection of a 3D point, and in turn, gets

transformed through multiplication with a transformation matrix. The improved

transformation via optimization is to minimize an objective function: the sum of the squares

of the residual errors between actual 2D points and projected 3D points. This is with regard to

a covariance matrix in the consideration for data variability and further includes the Cholesky

decomposition in the maximization of the ordinary least squares solution.

— Equation 1𝑙𝑜𝑠𝑠(𝑃→) = 𝑟𝑇Σ 𝑟

where

)— Equation 2𝑟 = (𝑥2𝑑 − 𝑋3𝑑𝑃→

Like shown above (Equation 1 and Equation 2), it is the relationship between 3D and

2D. And is a covariance matrix and dimensions of (67 x 2) x (67 x2), X3d is (67 x2) x 8Σ

and [Gex]\overrightarrow(P) [/Tex] has dimensions of (2 x 4). We are using Cholesky

decomposition to convert that loss function into ordinary least squares.

The last stage in the procedure of face alignment is referred to as frontalization: the

correction of the 3D model towards a frontal view. In essence, this means adding the residual

components to the x-y of the 3D warp such that there is less distortion on the face so that it is

more accurate. Frontalization is carried out through piecewise affine transformations based

on the 67 fiducial points, which had previously been marked through Delaunay triangulation.

Such a rigorous process gives a more stable and standardized representation of the face that

becomes applicable for recognizing and analyzing a variety of applications.

The architecture of DeepFace is designed for multi-class face recognition with input

in the form of a 3D-aligned RGB image. It features convolutional layers with a large number

of filters to capture low-level features, coupled with locally connected layers with various

filter types to enhance discrimination across different facial regions. The model has 120

million parameters, mostly concentrated in the fully connected layers, and uses ReLU

activation to promote sparsity. To prevent overfitting, dropout regularization is employed.

Additionally, the network includes normalization steps and L2 regularization to ensure

robustness against illumination variations.

Figure 16: DeepFace full architecture

The results of DeepFace are also shown. The maximum accuracy is 97.35% shown in

the document.

DeepFace provides a verification function that tests if two given face images represent

the same person. The function accepts image paths or base64-encoded images as input and

returns verification status along with distance metrics.

result = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg")

Additionally, the find function compares an input image with a database of facial

images, outputting the results in a pandas DataFrame. This setup helps the system store facial

embeddings to execute future searches more efficiently.

dfs = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my_db")

Deepface wraps a variety of state-of-the-art face recognition models, offering the

flexibility to choose according to the specific needs of a task. Its default model is VGG-Face,

but it also includes models like FaceNet, OpenFace, and others, all of which provide a strong

base for robust face verification and recognition. These capabilities allow operations such as

verifying if two images show the same person, finding a face within a database, and

representing faces as embeddings for further analysis.

Figure 17: variety of face recognition models.

4.4 Face Recognition Model Selection

Out of all of the face recognition models provided by the DeepFace framework, we

opted for working with VGG-Face. The VGG Face model, developed by the Visual

Geometry Group at the University of Oxford, is particularly well-suited for facial recognition

tasks due to its deep learning architecture, which closely mirrors that of the VGG-16 model

known for image classification. It stands out for its training on a large and diverse dataset,

which includes over 2 million images from approximately 2,622 distinct individuals. This

extensive training helps the VGG Face model achieve high levels of accuracy in recognizing

faces across various conditions such as different poses, lighting, and expressions. Its

performance has established it as a benchmark model in facial recognition, often used in

security systems and photo tagging applications due to its robustness.

Choosing the VGG Face model over alternatives like OpenFace, Dlib, or ArcFace can

be justified on several grounds. Firstly, VGG Face's large training dataset and deep

architecture tend to provide superior generalization capabilities, which is crucial in handling

the vast diversity seen in real-world applications. While OpenFace and Dlib are also

effective, they may not match the high accuracy and the robustness against diverse conditions

provided by VGG Face. ArcFace offers competitive performance, particularly in terms of

feature discrimination and is useful in highly accurate systems, but the simplicity and

widespread use of the VGG Face model often make it a more accessible and readily

applicable choice in many practical applications. Furthermore, the availability of pre-trained

VGG Face models enables developers to implement facial recognition features quickly and

with fewer resources, leveraging transfer learning to adapt to specific needs more efficiently

than starting from scratch with other models. Below are all of the model’s accuracy, measured

by LFW metric (Labeled Faces in the Wild).

Figure 18: Different Models and declared LFW score.

4.5 Face Detection Model Selection

The YuNet face detection model stands out for its efficient architecture and real-time

performance capabilities, designed specifically for use in environments where computational

resources are limited. Built on a modified Single Shot Multibox Detector (SSD) framework,

YuNet utilizes depthwise separable convolutions to reduce computational complexity while

maintaining a competitive level of accuracy. This makes it exceptionally well-suited for

real-time applications such as video surveillance and augmented reality on mobile or

embedded systems. The model’s ability to deliver robust face detection under varying

conditions—such as changes in lighting, different poses, and partial occlusions—ensures its

utility in both indoor and outdoor settings.

Compared to other popular face detection models like those available in OpenCV,

SSD, Dlib, MTCNN, RetinaFace, and MediaPipe, YuNet offers a compelling balance of

detection speed and accuracy with significantly lower computational costs. While OpenCV

and Dlib are widely used for their ease of integration and broad feature set, they may not

match the speed or efficiency of YuNet on constrained devices. SSD and RetinaFace,

although highly accurate, require greater computational resources, which can be a limiting

factor for real-time processing on less powerful hardware. MTCNN provides excellent

accuracy through its multi-stage detection mechanism, but at the cost of increased

computational overhead. Similarly, MediaPipe offers robust detection and additional features

but might be overkill for applications that solely require face detection without the need for

extensive tracking or landmark detection. Therefore, for projects where real-time

performance, low power consumption, and minimal processing delay are critical, YuNet

emerges as the optimal choice.

Figure 19 : Numbers of detections for different models.

4.6 LLM Pipeline

Figure 20: Language Learning Model (LLM) Pipeline graph.

4.6.1 Overview

The LLM pipeline is at the heart of our AI-enabled chat robot, designed to handle

sophisticated interactions through an integration of advanced technologies. This pipeline

utilizes a combination of deep learning models and intelligent systems to manage dialogues,

access historical data, and utilize various external tools effectively.

4.6.2 Interaction Initialization

● User Interaction Cache: When a new interaction begins, the system automatically

retrieves and caches relevant data about the user, including their previous interactions

and any associated preferences or details. This preloading of data ensures that the

robot can provide personalized and contextually relevant greetings, enhancing the

user's experience from the moment of engagement.

● Greeting and Continuation: Depending on the cached information, the robot either

initiates a new dialogue or seamlessly continues a previous conversation. This

approach not only fosters a sense of continuity for returning users but also builds a

deeper connection between the user and the robot by acknowledging past interactions.

4.6.2 Conversation Loop

● Listening and Presence Detection: Throughout the interaction, the robot

continuously checks for the user's presence and attentively listens for any spoken

inputs. This continuous monitoring is crucial for maintaining an engaging and

responsive dialogue, ensuring the robot is always ready to proceed with the

conversation as soon as the user speaks.

● Query Classification: Incoming queries are first processed by a specialized

classification LLM, which determines the nature of the response required:

Figure 21: Semantic Route Flow chart.

○ Naive LLM Response: Straightforward queries are handled directly by the

○ LLM, providing quick and accurate answers without the need for additional

contextual data.

■ The specific model used is also different depending on its underlying

function; if the model is being used as an intermediary step and not the

final dialogue generation step it will try to use a faster less smart model

(3.5) but for generating speech it will use the more advanced but

slower gpt 4 turbo.

○ Information Retrieval via RAG: More complex questions that require

context or historical interaction data are routed to the Retrieval-Augmented

Generation (RAG) system. This system pulls relevant information from a vast

database to enrich the robot's responses, making them more informed and

contextually appropriate.

■ Uses ChromaDB as backend, explained further below.

○ Tool Utilization/Function Calling: For queries that require external

functionalities—such as accessing the internet, retrieving calendar events, or

performing specific computations—the necessary tools are engaged. The

results from these tools are then seamlessly integrated into the LLM's

processing pipeline, enriching the response with accurate and useful

information.

■ Some of these tools include: calendar access, math capabilities, access

to current information from the internet, access to RAG, access to long

term memory, change settings module. These can easily be expanded

upon.

4.6.4 Response Generation and Handling

Data Integration and Response Formulation: Depending on the query

classification, appropriate data is integrated into the response:

Figure 22 :Data integration and Response Formulation.

○ Tool Execution: For operational queries needing external tools, the outcomes

are synthesized into the LLM's responses, ensuring that the user receives

comprehensive and practical information. This is done with the use of a

special LLM fine tuned for function calling. Function calling is really what the

underlying principle of tool usage is, its exposing useful functions to the LLM

interface that allows the model to use predefined code such as looking

something up on the internet via an API or doing a calculation.

■ “The latest models (gpt-3.5-turbo-0125 and gpt-4-turbo-preview) have

been trained to both detect when a function should to be called

(depending on the input) and to respond with JSON that adheres to the

function signature more closely than previous models.”

RAG System: For complex inquiries, relevant information retrieved by the RAG (Retrieval

Augmented Generation) system is incorporated into the LLM response, providing depth and

context that enhance the relevance and accuracy of the robot’s answers.

■ ChromaDB: ChromaDB serves as the foundational vector storage

system where embeddings of various documents, such as PDFs,

articles, and other relevant textual data, are stored. These embeddings

are preprocessed to capture semantic meanings, which are essential for

effective information retrieval.

■ Document Preprocessing: Documents are first chunked into

manageable pieces, then processed to extract vector embeddings that

represent their semantic content. This preprocessing is critical for

ensuring that the vectors are both comprehensive and efficient to

search.

● Retrieval part of RAG:

Figure 23: Flow chart of Retrieval augmented generation.

○ Semantic Search: When the RAG system is activated by a query that requires

additional contextual information, the system performs a semantic search

within ChromaDB’s collections depending on what information is queried

(User data vs WPI data). Using the query’s vector (embedding), the system

searches for the most semantically similar document embeddings.

○ Cosine Distance Search: The primary technique used for this search is cosine

distance, which measures the cosine of the angle between the query vector and

document vectors. This metric effectively identifies documents that are most

similar in meaning to the query.

○ Further improvements:

■ Hybrid Search Approach: To enhance the retrieval accuracy, a hybrid

approach that combines keyword search and cosine distance

measurements is employed. This method ensures that results are both

relevant and precise.

■ Result Integration and Re-ranking: Once potential document

matches are identified, they are potentially re-ranked based on their

relevance to the current context, with the top results selected for

integration into the LLM prompt. This integration enriches the robot’s

responses, making them more informative and context-aware.

● Response Processing: After integrating all necessary data, the LLM crafts the final

response, which is then refined for clarity and natural language flow. This refined

response is converted into speech through a text-to-speech system, continuing the

interaction loop and maintaining an engaging dialogue.

4.6.5 Long Term Memory System

● Memory Storage: The robot utilizes a sophisticated memory system that stores
detailed logs of all interactions, segmented by individual user profiles. This long-term
memory enables the robot to recall specific details or topics from previous
conversations, enhancing subsequent interactions with personal relevance and
continuity.

Figure 24 : Flow Chart of Memory Storage.

○ Summary Memory: At the end of each interaction session, a summary of the

conversation is generated and stored. This summary captures key points and

decisions, making it easy to retrieve and reference in future interactions.

○ Vector Store Memory: Alongside summary memory, detailed interaction data

is stored as vectors in ChromaDB. This dual approach ensures that both

high-level summaries and detailed conversational contexts are preserved.

Figure 25: Flow Chart of the vector store memory.

● Challenges and Considerations:

○ Challenges with Vector Store Memory: Initially, using vector-based memory

for storing detailed interactions proved challenging, particularly in capturing

the nuanced details that depend heavily on context. The fragmented nature of

chunked text for embeddings sometimes resulted in loss of continuity and

relevance.

○ Advantages of Summary Memory: To address these challenges, summary

memory plays a crucial role by keeping coherent and contextually relevant

records of each session. These summaries provide a reliable basis for recalling

past interactions without the contextual fragmentation often seen with

vector-based storage.

· RAG and Memory

○ Combined Approach: Both summary and vector-based memories are utilized

strategically. For quick recall of specific facts or details, vector search is used,

while summaries are employed for understanding broader context or session

histories.

○ Shared ChromaDB Infrastructure: Both the RAG system and the long-term

memory share the same ChromaDB infrastructure, which simplifies data

management and enhances the efficiency of data retrieval processes.

● Dynamic Settings Adjustment: The system is designed to dynamically adjust

various settings, including the robot’s voice tone and interaction style (personality),

based on user preferences and interaction history. This personalization capability is

under continuous development, but should allow the user to change these things

during conversations dynamically.

4.7 Database

The plan for the database of this project had 3 major parts. Assuming a user agreed to

be recognized, they would be added to a centralized user database connecting their user_id

and their name, as well as two specialized databases connecting their facial verification

information and previous conversation context to their user_id. The decision to use a central

userinfo database connecting their name to a numerical user_id was made in order to help

differentiate between multiple users that might share the same name. Due to time constraints

on this project, only the centralized user database and part of the plan for long term memory

was finalized. In the current format user’s facial recognition data is saved in the form of a

.png file with a photo of their face and a filename of their user_id, and no long term memory

for a specific user is stored. However, a vector database was implemented that stores

information from documentation such as PDFs so that custom information - such as campus

events, course catalogs, directions around campus, etc. can be loaded into the GPT prompt.

5 Experiments

5.1 Software Experiments

5.1.1 Silero vs Whisper STT

Before deciding which speech-to-test module to use for the robot, we must test two

reliable modules and select one. To accomplish this, we had each module transcribe a

complex sentence and convert it back to text. It was: "Despite its diminutive size, the intricate

mechanism of a wristwatch contains an array of precisely calibrated gears, springs, and

jewels, orchestrating the passage of time with remarkable position and elegance." The

processes were timed and repeated five times to gain a comprehensive understanding of the

data.

Figure 26: A graph showing the time taken to transcribe speech between Silero and Whisper

Upon reviewing the results, we found that Whisper was significantly slower than

Silero when it came to the system's overall transcription time. However, the speech

transcription contained numerous spelling errors and lacked accuracy. Our main objective

was to identify the STT module that required the least amount of time to transcribe a given

sentence, and it was evident that Silero was the best option. While it does tend to have a

larger tendency for error, this can be counteracted in further versions with the use of the

Silero Text Enhancement Models. In addition, GPT was found to generally be able to

understand the meaning of a question even with some minor inaccuracies.

6 Conclusions
This report showed the successful development of the AI-enabled chatbot, which also

shows the remarkable strides our team made in the realm of robotics and AI, especially in

human-robot interaction. The proposed system introduced by us is a blend of leading-edge

technology that transcends theoretical development, taking shape as a concrete interface

capable not only of recognizing but also of communicating and interacting with humans.

Throughout the journey of detailed research, design, and implementation of this MQP,

this report is going to show the integration of this AI-enabled chatbot with the integration of

ChatGPT.

This MQP’s objective is met as well. The robotic auto chat system has demonstrated

its ability to handle some dialogues between human and robot. And it will respond with

sensibility. We believe that it has brought us closer to the gap for the communications

between human and robot.

In addition, it is also important to acknowledge the implication of this project. Even

though the auto chat robot functions well in a prototype, there are also a lot of possibilities to

refine and expand. For example, the signal processing is not used in this prototype like we

planned to do. This auto chat robot could locate different people’s positions by integrating the

signal processing. And this could make the robot more efficient and communicate with

humans more smoothly. Moreover, it is also possible to explore more AI models. And the

enhancement of robot’s empathetic responses could be made as well. Finally, exploring more

applications of this technology in languages and dialects around the world could make the

robot more universal.

In conclusion, the significance of this project is that it gives us a great opportunity to

explore future research and more technology of human-robot interaction. Our project will

pave the way for the following innovations between humans and robots. We hope to make

them not just tools, but also partners in daily lives.

7 Reference

Hancock, P. A., Billings, D. R., Schaefer, K. E., Chen, J. Y. C., de Visser, E. J., &

Parasuraman, R. (2011). A Meta-Analysis of Factors Affecting Trust in Human-Robot

Interaction. Human Factors, 53(5), 517-527. https://doi.org/10.1177/0018720811417254

Sheridan, T. B. (2016). Human–Robot Interaction: Status and Challenges. Human Factors,

58(4), 525-532. https://doi.org/10.1177/0018720816644364

Dakhila, S., Ahmed, N., & Shaari, H. (2022). Comparison of two face recognition machine

learning models. Journal of Pure & Applied Sciences, 21(4), Article 2120.

https://doi.org/10.51984/JOPAS.V21I4.2120

snakers4. (n.d.). Silero Models [Software]. GitHub. Retrieved April 16, 2024, from

https://github.com/snakers4/silero-models

snakers4. (n.d.). Silero VAD [Software]. GitHub. Retrieved April 16, 2024, from

https://github.com/snakers4/silero-vad

Serengil, S. (n.d.). DeepFace [Software]. GitHub. Retrieved April 16, 2024, from

https://github.com/serengil/deepface

LangChain. (n.d.). Introduction to LangChain. Retrieved April 16, 2024, from

https://python.langchain.com/docs/get_started/introduction/

OpenAI. (n.d.). Introduction to the OpenAI API. Retrieved April 16, 2024, from

https://platform.openai.com/docs/api-reference/introduction/

https://doi.org/10.1177/0018720811417254
https://doi.org/10.1177/0018720816644364
https://doi.org/10.51984/JOPAS.V21I4.2120
https://github.com/snakers4/silero-models
https://github.com/snakers4/silero-vad
https://github.com/serengil/deepface
https://python.langchain.com/docs/get_started/introduction/
https://platform.openai.com/docs/api-reference/introduction/

Aurelio Labs. (n.d.). Semantic Router [Software]. GitHub. Accessed April 16, 2024, from

https://github.com/aurelio-labs/semantic-router

Chroma. (n.d.). Introduction. Chroma Docs. Retrieved April 16, 2024, from

https://docs.trychroma.com/

Aurelio Labs. (n.d.). Semantic Router [Software]. GitHub. Retrieved April 16, 2024, from

https://github.com/aurelio-labs/semantic-router

https://github.com/aurelio-labs/semantic-router
https://docs.trychroma.com/
https://github.com/aurelio-labs/semantic-router

