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Abstract

Cluster computing is an emerging field with an immense amount of appli-
cations in parallel processing and low-budget computer builds with a need for
large amounts of processing power. Problems in numerical relativity often have
complex computations and solutions that lend themselves to being very easily
put into a parallel format. The practicality of combining the two is explored in
this paper. Specifically, this paper discusses the benefits that cluster comput-
ing provides when assessing potential formulation of Kerr black-holes. Also, it
asses potential applications in simulating gravitational waves. Both applications
serve to demonstrate the benefits that cluster computing may offer to numerical
relativity for more specific/advanced use.
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Introduction

Numerical relativity has recently gained the attention of the public eye with
the research that has been conducted on black holes and gravitational waves.
Despite all the hype that the field has recently seen, a lot of the concepts that
are being discussed are neither new or unexpected. In fact, the concept of
gravitational waves goes back to some of the famous predictions made by Albert
Einstein.

Before delving into the specific uses of numerical relativity for this project, it
is necessary to introduce some details that are different and not often discussed
in classical mechanics. First, it is necessary to consider gravity as a geome-
try, this is actually the main difference between general relativity and classical
mechanics. Other than that, for the purposes of this project, the only real dif-
ference is that some constants will be renamed in a general relativity basis, an
issue that will be discussed later.

A good way to conceptualize gravity as a geometry is to imagine a piece of
fabric stretched as taut as possible, then add marbles and balls of various sizes
and masses. The objects that pull the dips in the fabric would indicate the
gravitational geometry of the object. Obviously, a marble that is smaller and
more massive than a wiffle ball will create a much larger dip in the fabric. In
this analogy, the Sun that the Earth revolves around would be the wiffle ball,
something that is massive in its’ own right, but when compared to the marble,
which would represent a black hole, it has a relatively small dip.

In order to represent the geometries of any surface studied, a metric is used.
For example, the metric for a flat plane, a very common representation in clas-
sical mechanics, is defined as:
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In general relativity, there are also some unit changes that occur in general
relativity. Specifically, the speed of light, c, is treated as having a value of 1, as
opposed to the classical value of 299,800,000 meters per second squared.

These metrics vary in complexity depending on the application. The simplest
metric used in this paper is the metric for flat space, the Minkowski metric. It
is described as:
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There are key things to note about metrics in general relativity. First, in classical
mechanics, students are often taught to think in three spatial dimensions, z1,
29, and x3. In general relativity, it is necessary to include a time, xg, term.



For metrics, the terms are often defined as (xg, x1, 2, x3), where the terms
represent (t, r, 6, ¢), respectively.

More advanced metrics can be used to describe black holes in varying com-
plexity. Each of these metrics should be able to reduce to the Minkowski metric.
The Schwarzschild metric describes an uncharged, non-rotating, black hole and
is the simplest expression for a black hole. It is defined as:
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with coordinates (t, r, 6, ¢). Some key features are that as the mass approaches
zero and as the radius approaches infinity, the Schwarzschild metric reduces to
the Minkowski metric. There are other metrics that are used to describe black
holes in varying complexity, but the main metric used in this paper is the Kerr
metric.

The Kerr Metric

The Kerr metric is slightly more advanced than the Schwarzschild metric,
describing uncharged rotating black holes. The initial goal of this project was
to create a solution to the Kerr metric described as:
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with coordinates (t, r, 6, ¢). In this equation, {2 is treated as being an arbirtary
constant and % is the main solution that is attempting to be attained. A(r) is
defined as:

a
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In order to attempt to create a solution for this metric, it is necessary to
use the Einstein field equations. These are a set of sixteen coupled partial
differential that are able to describe the gravitational effects on a given mass.
These equations are defined as:

1
R, — iRgW + Ag = 87GT),, (8)

Where R, is the Ricci tensor, R is the scalar curvature, g,, is the metric
tensor, and T}, is the stress energy tensor. Also included in the equations is
the cosmological constant, A, whose term is often canceled out or ignored.

There are multiple ways that this may be achieved, the specific options ex-
plored were to attempt to create a solution by hand or use computing software
like Mathematica or Matlab. Solving by hand give the benefit of potentially
no round-off error on any numerical solution, however, the computations nec-
essary for the project are very complex and would likely lead to other errors
in computation and deriving the solution would take an exorbitant amount of
time. Matlab doe present the opportunity for time savings and has the abil-
ity to generate an accurate solution, but Mathematica was ultimately chosen.
Mathematica is commonly used in numerical and general relativity research, it
is easy to setup into a parallel setup, and it easily able to evaluate symbolic
scripts.

Specifically for this project a cluster computer of ten Raspberry Pi 3 Model
B’s, the specifics of the setup are described in Appendix A. The main goal of
this project was to show the viability of applying cluster computing to numerical
relativity. In order to demonstrate this, the scripts evaluated in this project were
run on this cluster system.

In order to solve the Einstein field equations, the Christoffel symbols, a set
of coefficients that descirbe a change in basis as an object moves from a point to
a differential displacement along a curve where other coordinates are constant
[1], must be defined. These Christoffel symbols are represented as:
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It is also necessary to define the Reimann tensor, which describes the cur-
vature of a manifold, and should reduce to zero in flat space-time [1]. It is
specifically defined as:
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which reduces to the Ricci tensor as the first and third indices are retracted:
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The Ricci scalar becomes the scalar curvature when multiplied by the metric:

R = gbded (12)

When substituted for the Kerr values noted previously, the Ricci tensor is
shown in figure 1, with a scalar curvature of:
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Ultimately generating the stress-energy tensor depicted in figure 2, where r is
replaced with a and a is replaced with b.

Gravitational Waves

This was not the only goal of this project, another objective was to attempt
to show demonstrate the viability of using cluster computing to simulate grav-
itational waves, which has become a rather prolific field since the discoveries
made by LIGO and Virgo.

There are some considerations to make for this portion of the project that
were not previously specified. Specifically, these calculations rely on post-
Newtonian theory, a general relativity theory that applies to weak gravitational
fields and slow moving matter. This theory provides a foundation for calculating
gravitational waves emitted from a compact binary system and can even show
orbital evolution under radiative losses. As a matter of convention:

(5)" = 5PN (14)

where v is the object velocity, c is the speed of light, and PN represents some
post-Newtonian order. The formulation for describing gravitational waves as
they propagate through a detector rely on depend on some transverse and trace-
less perturbation from the flat space metric, defined as:

h;j;g' = (guu - an)TT (15)

as before, 1 describes the flat space metric.
h is composed of two different states, hy and h,. These are defined by:
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with x and y representing two vectors. Several sources have already created
expansions for gravitational waves out to the order of 2PN [2], the goals of
this research were to apply this formulation in Mathematica in order to create a
simulation of gravitational waves similar to those made by Stein and Mohapatra
[3, 4]. As is defined by Blanchet:
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with H; and H, components found to match those introduced in [2]. In these
components,
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and w is the orbital frequency of an assumed circular orbit. m is the total mass
of the system, Om is the difference between the two masses, and 7 is % The
variables ¢ and s represent the cosine and sine of the angle of inclination the
binary plane makes with the observer, respectively. The variable ¥ represents
a basic phase variable defined as:
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In these equations, a dimensionless time variable, © represents:
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with tc being a time constant, ¢. represents a phase constant at time tc. These
equations may be put into Mathematica to create a representation of a binary
in-spiral system and its corresponding frequency chart that an observer may
be able to record. An example of this is provided below in figures 3 and 4.
Figure 3 represents a binary in-spiral system with two arbitrary identical masses
until merging. Figure 4 demonstrates what may be observed from the system
depicted in figure 3. This is a rather rudimentary model when compared to
actual observations that have been made by LIGO and Virgo [5], however it
is advanced enough to demonstrate the capabilities of the modeling, indicating
that with more refinement, a much more accurate system could be achieved.

Conclusions

This paper sought to demonstrate the potential for cluster computing to aid
in numerical general relativity calculations. To achieve this, a cluster computer
composed of ten Raspberry Pi 3 Model B’s was created to perform computations.
At first, an attempt was made to redefine the Kerr metric in terms of two
unknown variables, 2 and . Following that, gravitational wave simulations
were made to see if a cluster computing system could successfully model a
rudimentary binary in-spiral system, which was successfully done. In the future,
it would be ideal to use the Einstein Toolkit, an open source software designed
for modeling gravitational waves, to model a gravitational wave system more
accurately. Other implications of this project could be to attempt to create a
solution for more advanced metrics, like Kerr-Newman black holes, or create
more accurate gravitational wave calculations.

Appendix A

Cluster computing is connecting computers together so that they may act
under a single system. The system itself is is generally composed of a single
"master” node that interacts with the user and coordinates the other ”slave”
nodes. These slave nodes generally have their own operating systems, memory,
and disk space. They are often coordinated by the master node with little, or
in most cases, no direct interaction with the user.

There are many benefits to using cluster computers, several of which apply
directly to the application presented in this paper. First, cluster computers
provide a substantially lower cost solution than a single computer with similar
specifications. Second, it is very easy to increase or decrease nodes, depending



on size and computing requirements. Third, the modular nature of cluster
computers makes them very reliable for both data storage and recovery in the
event of failure.

However, there are also potential drawbacks to using cluster computing.
These drawbacks often manifest in improper use of the capabilities that cluster
computers offer. In order to interact with the different nodes, the master must
divide up the work that must be completed, then send and receive information
from each of the nodes. As this explanation implies, for processes that are rather
quick, cluster computing will take much longer to complete the operation than
a single node would take. An example of this would be calculating the number
pi for fifteen digits after the decimal place. This is a simple computation that
can easily be done on a single node, a computation that when moved to multiple
nodes, ends up taking more time. The timings are shown in the table below
from multiple Raspberry Pi Model 3B’s:

Number of Raspberry Pis Time to Compute Pi
1 0.001327
3 0.003389
5 0.005092
10 0.007940

For the purpose of this project, cluster computing is an optimal option.
This is because the information that will be processed in this project will require
rather substantial computing power and it is possible to be analyzed in a parallel
format.

The specifics on the cluster computer built for this project are as follows:
10 Raspberry Pi Model 3B’s, 9 16 Gigabyte SD cards, 1 64 Gigabyte SD cards,
10 Ethernet cables, a 10 port USB hub, and a 10 port desktop switch capable
of supporting 10 static IP’s. The Pis are all housed in a single 3-D printed case
designed to neatly minimize the space required to store all of the Pi’s.

Aside from physical setup, an electronic setup is also required. In order
to properly setup the system there are multiple guides and tutorials to help
setup clustering capabilities on various operating systems [6]. For this project
Raspbian was chosen as the default operating system for multiple reasons. First,
it is a stable operating system that has a good development community behind
it so any issues that may occur should be easy to remedy. Second, many cluster
computing device are built with Raspbian as an operating system so finding
literature or guides to aid in developing a cluster computer should be easy.
Third, Raspbian comes with Mathematica for free, saving costs on the project.

An important note here is that the description will be done assuming all SD
cards are the same size. In reality there are some slight changes that would need
to be made if the SD cards are different sizes, the significance of which will be
explained later. First, Raspbian must be installed on one of the SD cards. Once
it is successfully installed, the password must be changed using the command:

passwd



Following that, in the preferences tab open ”Raspberry Pi Configuration”,
choose the interfaces option and enable SSH. Then, in terminal make sure that
the device is updated and Fortran is downloaded onto the Pi with the commands:

sudo apt-get update

sudo apt-get install gfortran

when prompted to continue, press Y’ .

After that, make a directory to install MPICH onto, and install version 3.0.4
into that directory. MPICH is a messaging passing interface that is designed
for use in parallel processing. It has direct use in many supercomputers, includ-
ing some of the fastest super computers in the world. It is installed with the
commands:

mkdir /home/pi/mpich3

cd mpich3

wget http://www.mpich.org/static/downloads/3.0.4/mpich-3.0.4.tar.gz

tar xfz mpich-3.0.4.tar.gz

sudo mkdir /home/rpimpi

sudo mkdir /home/rpimpi/mpich3-install

sudo mkdir /home/pi/mpich_build

cd /home/pi/mpich_build

sudo /home/pi/mpich3/mpich-3.0.4/configure -prefix=/home/rpimpi/mpich3-install
sudo make

sudo make install

Once MPICH is installed, it is possible to test the computer. To do so, create
a file file called ”Machinefile” and input the IP address of the current Pi and
add commands to test the setup. This is done with the following commands:

sudo nano /home/pi/.profile

[Scroll down to the bottom and type the following:
# Adding MPI to the PATH

PATH="$PATH: /home/rpimpi/mpich3-install/bin"
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Then, save and exit]

cd /home/rpimpi/mpich3-install/bin

cd ~

which mpiexec

which mpicc

mkdir mpi_testing

cd mpi_testing

sudo nano machinefile

[Input the IP of the Pi in the first line, then save and exit.]

mpiexec -f machinefile -n 1 hostname

If ”which mpiexec” does not return anything, it is necessary to restart the
computer that is being used before continuing. The following set of commands
should return the name of the Raspberry Pi that is currently online. If the
number is changed to something like two or three, it will display the hostname
of all of the nodes. In order to compute a more meaningful calculation, like the
value of Pi, it is necessary to do the following:

cd “/mpi_testing
mpiexec -f machinefile -n 1 ~/mpich_build/examples/cpi

This should return the value pi, with both the error in calculation and the
time it took to calculate. Similar to before, as the number of nodes increase,
the timings and process numbers should change.

Next, the SD card is ready to be cloned. This is where the differences occur
if multiple SD cards sizes are used. If this was done on multiple different sized
SD cards, the process should be repeated for each different size card. Following
that, a backup should be made using a program like Win32DiskImager. This
clone may be saved and then re-written onto every other SD card.

In theory, the computer can run in parallel at this point, however it would
be necessary to ssh into each node every-time something is run. To avoid this,
do the following:

ssh-keygen -t rsa -C "raspberrypi@raspberrypi"

[Press Enter
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You can enter a passphrase, however it is not advised]
cat ~/.ssh/id_rsa.pub | ssh pi@IPAddressofOtherPi "mkdir .sshj;cat >> .ssh/authorized_keys"

[Yes
Enter Password]

Now, if there are just two Pis in the cluster it would be possible to test. If
there are more, the previous section would be repeated for each different node.
Following that:

cd mpi_testing

sudo nano machinefile

[Edit the machine file, adding each IP to its’ own line.
Then, save and exit.]

mpiexec -f machinefile -n NumberofNodes ~/mpich_build/examples/cpi

As was the case before, the number of nodes may be changed to allocate
for the number of nodes in the cluster. Not every node is necessary for this
calculation, using more nodes is a viable option and will cause no issues. If at
this point, or any point prior, the commands do not run properly, it is likely
that either the IP address of on of the Pis changed, or one of the commands was
improperly implemented. Assuming, however, that no issues occur the cluster
computer is successfully setup. At this point, for clarity, it is helpful to change
the names of all of the slave nodes to something like PiXX, where each “X”
denotes a number from zero to nine. In order to set the computer to run in
parallel in Mathematica, see the instructions below.

It was previously mentioned how cluster computing provides potential ad-
vantages and disadvantages. Aside from that, it is important to assess the po-
tential benefits from using a certain number of nodes. A real world assessment
of this was constructed using 10 Raspberry Pis running a test script through
Mathematica on a varying number of nodes. The results follow the trend illus-
trated below:

*** in practice, the more nodes used the faster the faster the script was
evaluated. However, the amount of time saved per node decreases substantially.
This indicates that for very complex computations, or if multiple operations
were to be run at the same time, using tens or hundreds of nodes becomes a
viable and potentially even preferred option.

With that in mind, the intended use of the cluster has a large effect on
the number of nodes included. As was shown before, the number of nodes used
increases the time it takes the system to pass and retrieve all of the information.
However, this point is likely to be reached long after the point that the system
is financially viable.
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Cluster Computing in Mathematica

To properly setup cluster computing capabilities in Mathematica, it is nec-
essary to access the parallel kernel configuration. This is done by evaluating the
command:

SystemInformation[]

Then accessing the front end interface and selecting the parallel configuration
option. Following that, select remote kernels and add a new host for each node
other than the master. For the hostname, use the IP address of the Pi. Then,
it is necessary to use a custom launch command, and replace

- | 232 9>
with
hostname@IP

where TP’ represents the IP address of the Pi. Following that, it is necessary
to enable and initialize the kernels. Since different clusters may be used at any
point, it is recommended that the kernels be disabled at the end of each session
and re-enabled at the start of any other session.
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Figure 3

2

3

%0

16



