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Abstract  

This compendium-format dissertation (i.e., comprised mostly of published and in-process articles) 

primarily reports on system identification methods that relate the surface electromyogram (EMG)—the 

electrical activity of skeletal muscles—to mechanical kinetics. The methods focus on activities of the 

elbow and hand-wrist. The relationship between the surface EMG and joint impedance was initially 

studied. My work provided a complete second-order EMG-based impedance characterization of 

stiffness, viscosity and inertia over a complete range of nominal torques, from a single perturbation trial 

with slowly varied torque. A single perturbation trial provides a more convenient method for impedance 

evaluation.  The RMS errors of the EMG-based method were 20.01% for stiffness and 7.05% for 

viscosity, compared with the traditional mechanical measurement. 

Three projects studied the relationship between EMG and force/torque, a topic that has been studied 

for a number of years. Optimal models use whitened EMG amplitude, combining multiple EMG 

channels and a polynomial equation to describe this relationship. First, we used three techniques to 

improve current models at the elbow joint. Three more features were extracted from the EMG 

(waveform length, slope sign change rate and zero crossing rate), in addition to EMG amplitude. Each 

EMG channel was used separately, compared to previous studies which combined multiple channels 

from biceps and, separately, from triceps muscles. Finally, an exponential power law model was used. 

Each of these improvement techniques showed better performance (P<0.05 and ~0.7 percent maximum 

voluntary contraction (%MVC) error reduction from a nominal error of 5.5%MVC) than the current 

“optimal” model. However, the combination of pairs of these techniques did not further improve results.  

Second, traditional prostheses only control 1 degree of freedom (DoF) at a time. My work provided 

evidence for the feasibility of controlling 2-DoF wrist movements simultaneously, with a minimum 

number of electrodes. Results suggested that as few as four conventional electrodes, optimally located 

about the forearm, could provide 2-DoF simultaneous, independent and proportional control with error  

ranging from 9.0–10.4 %MVC, which is similar to the 1-DoF approach (error from 8.8–9.8 %MVC) 

currently used for commercial prosthesis control. The third project was similar to the second, except that 

this project studied controlling a 1-DoF wrist with one hand DoF simultaneously. It also demonstrated 

good performance with the error ranging from 7.8-8.7 %MVC, compared with 1-DoF control. 

Additionally, I participated in two team projects—EMG decomposition and static wrist EMG to 

torque—which are described herein. 
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Chapter 1: Introduction 

The introduction includes two parts, a background and a description of the contributions of my 

Ph.D. work. The background part introduces some biomedical knowledge related with my projects and 

some signal processing techniques used. The contribution part introduces the current state of the 

research field for each project and gives an overall summary of my new contributions to the 

corresponding research field. And then, the final sub-section of this part summarizes my whole Ph.D. 

work and the main content of the rest of the dissertation chapters. 

1.1 EMG and Its Signal Processing Background 

In this part, some biomedical background and signal processing techniques are introduced. Sections 

1.1.1, 1.1.2 and 1.1.3 describe the generation of the electromyogram (EMG) signal based on 

neuromuscular motor units, and an electrical engineering model of the EMG signal. Section 1.1.4 

introduces the features we extract from the EMG signal, and the related signal processing methods. 

1.1.1 Structure of Muscle and Motor Unit 

EMG is the electrical signal generated by our muscles. When we walk or do exercise, our muscles 

always support us to produce these movements. Human muscle mainly contains a combination of two 

kinds of muscle fibers, which are respectively called slow twitch fibers (Type 1) and fast twitch fibers 

(Type 2). The slow twitch fibers are capable of sustaining low forceful contraction without too much 

fatigue for long periods; while the fast twitch fibers can generate a quicker and more forceful 

contraction, but fatigue much more rapidly. Both types of fibers cooperate with each other to fulfill 

different tasks. The detailed structure of skeletal muscle is depicted in Figure 1(a). One whole muscle 

usually consists of many parallel muscle fascicles, which are interspersed by connective tissues, blood 

vessels, sensory tissue, etc. Fascicles are a collection of parallel muscle fibers. These muscle fibers are 

innervated by branches of attached neurons. All fibers innervated by one neuron are near each other, but 

not necessarily adjacent. One motor unit is defined as one motor nerve and all innervated muscle fibers 

(Figure 1(b)). All muscle fibers in one motor unit are of the same type. And the contraction of one motor 

unit (in healthy muscle) obeys a rule called “all or nothing,” which means if one motor unit is activated, 

all of its innervated fibers will subsequently contract. One single muscle is comprised of a group of 

motor units which work together to coordinate different contractions, but the quantity of motor units 



 

10  

  

varies from muscle to muscle. Generally, muscles with larger size contain more motor units, but are less 

finely able to control force. 

       

Figure 1: a) The structure of a skeletal muscle [1]                   b) The structure of a muscle fiber [2] 

1.1.2 Muscle Electrical Activity and Its Engineering Model 

When the central nervous system sends a command to a motor neuron, the motor neuron will 

electro-chemically activate muscle fibers. Then, those fibers depolarize, which leads to muscle 

contraction. After depolarization, the muscle fibers quickly repolarize to a rest state. This whole 

electrical process generates an electromagnetic field. The electromagnetic field can be recorded within 

muscle (indwelling EMG) or on the skin surface (surface EMG). Indwelling EMG is an invasive 

recording, which requires electrical needles/wires penetrating into human skin; while surface EMG is a 

non-invasive method to collect EMG signals. This thesis includes both indwelling EMG and surface 

EMG projects. Figure 2 shows the time course of depolarization-repolarization in one individual motor 

unit. The rest potential is often around –70 mV, which is based on the concentration of ions in body cells 

and fluid. When muscle fibers are activated, the action potential peaks around +30 mV. The duration of 

one action potential is usually 2–4 ms or longer. When the overall muscle continues to contract, the same 

motor unit will successively generate a series of action potentials with quite similar shape. Different 

motor units often produce different action potentials with different shapes. When humans perform 

different motions, the muscles require a different number of activated motor units to complete different 

tasks. The frequency of motor unit discharging is called firing rate. In general, a more forceful motion 

needs more activated motor units, and the firing rate of each motor unit also increases. The process of 

activating more motor units is called the recruitment of motor units. The force level is measured by 
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percent maximum voluntary contraction (%MVC) level. Usually, the firing rate is about 5–10 pulses per 

second when initially recruited and can be up to 20+ pulses per second at the highest force levels. The 

firing intervals are not perfectly periodic.  

 

Figure 2: Electrical activity of one individual motor unit [3] 

 

Figure 3: Schematic representation of the generation of the motor unit action potential [4] 
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Figure 4: Schematic for the motor unit action potential train [4] 

 

Figure 5: Complete engineering model of motor unit action potential [4] 

As mentioned before, one motor unit always generates similar shape of action potential for healthy 

muscles, while different motor units typically produce different action potential shapes. Figure 4 shows 

the model of one individual motor unit. The shape of a motor unit action potential sometimes may vary 

due to muscle fatigue or disease. When muscle contraction level increases, several different motor units 

may discharge at the same time. Figure 3 shows this case as the superposition of potentials from 

individual fibers. When the muscle generates force, each motor unit produces successive motor unit 
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action potentials. This process can be modeled as: the nerve sends a series of stimuli (an impulse train) 

through its innervated muscle fibers (system). Then, the output can be regarded as an impulse response 

train. When many motor units are active at the same time, the EMG recording would be the summation 

of these impulse response trains. Therefore, the EMG recording looks like a random Gaussian process  

(i.e., the sum of many mostly-independent, rather identically shaped pulses). The total engineering 

model is shown as Figure 5. When EMG signal is recorded, it will include some system noise. Finally, 

this noisy signal may be pre-processed by some hardware filters. 

1.1.3 EMG Recording 

Based on the method of EMG data collection, EMG recordings can be separated as indwelling 

EMG and surface EMG. Traditional indwelling EMG requires a needle (or wire) to insert into muscle 

through skin, so the electrode location is quite close to motor units. A wireless invasive approach is 

under development. Indwelling needle/wire EMG is typically used to view only a few motor units of one 

muscle, due to the small pick-up area of these electrodes. Needles for indwelling recordings are quite 

small. Figure 6 shows two common needles for single channel indwelling EMG recording (Figure 6(a), 

Consolidated Neuro Supply, Inc.) and multiple channel indwelling EMG recording during research 

studies (Figure 6(b)). Since the raw EMG signal is the sum of motor unit action potentials, one obvious 

project for indwelling EMG is EMG decomposition which separates the composite interference pattern 

into its constituent motor unit action potential trains. Chapters 2–4 describe our EMG decomposition 

project in detail.  

                  

Figure 6: a) concentric (single-channel) needle;               b) quadrifilar (multiple channel) needle. 

However, surface EMG recording is quite different from indwelling recording. It is a non-invasive 

approach, in which the electrodes are secured to the skin surface. Several surface electrodes 

(conventional: 8mm diameter) are attached to the skin. The skin surface is often cleaned with alcohol 

and gelled to ensure good conductivity between the electrodes and the measured muscle. Figure 7 shows 
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a sample of one type of custom-made surface EMG bipolar electrodes. Chapters 5–end introduce several 

kinds of surface EMG projects. 

Figure 8 shows one example of indwelling EMG recording (left) and surface EMG (right). From 

the indwelling EMG recording, each motor unit action potential is relatively easy to identify, since only 

a few unit motors are simultaneously viewed. The surface EMG recording looks like an amplitude-

modulated random signal and cannot distinguish individual motor unit action potential spikes. 

 

Figure 7:  One pair of surface EMG electrode contacts within their plastic tab encasement. 

 

Figure 8: a) Indwelling EMG recording;                         b) Surface EMG recording [5] 

1.1.4 Several Important EMG Signal Processing Methods 

The raw EMG signal, either indwelling or surface EMG, contains a lot of noise and other 

interference. The signal processing methods in the remaining chapters (papers) usually only briefly 

describe the noise and interference. However, this thesis focuses on EMG signal processing. This small 

section separately introduces several important EMG signal processing methods for my EMG projects. 

High-pass filter for EMG decomposition: The portion of an indwelling signal’s power that exist 

under 1000 Hz is known to look quite similar across motor units. It is a quite adverse factor for some 

indwelling EMG recording projects, especially for EMG decomposition. A high-pass filter normally 

with 1000 Hz cut-off frequency was built, which can not only solve this issue, but also eliminate some 

low background noise. Filter with cut-off frequency higher than 1000 is also not recommended, since it 
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decreases signal to noise ratio after filter. Figure 10 shows the comparison between the unfiltered and 

filtered signal. 

  

Figure 9: a) Unfiltered indwelling recording                   b) High-pass filtered indwelling recording 

EMG amplitude estimator: As mentioned in section 1.1.3, each motor unit discharging can be 

regarded as an impulse response train. Therefore, when many motor units contract at the same time, the 

EMG signal would be the sum of lots of impulse response trains and can be regarded as an amplitude 

modulated, zero-mean, random Gaussian process. The math expression for this Gaussian process model 

is: 𝑚[𝑛] = 𝑠[𝑛] ∙ 𝑣[𝑛], where n is the discrete-time sample index, 𝑚[𝑛] is raw EMG signal, 𝑠[𝑛] is 

EMG amplitude and 𝑣[𝑛] is a random process with unit variance. One important feature which can be 

extracted from the EMG signal is EMG amplitude. 

 

Figure 10: Diagram of EMG amplitude estimation [5] 

Therefore, EMG amplitude is defined as the time-varying standard deviation of 𝑚[𝑛]. A moving 

average filter can be used to estimate it: 𝑠̂𝑀𝐴𝑅𝑀𝑆 [𝑛] =  
1

𝐿
∙ ∑ |𝑚[𝑘]|𝑛

𝑘 =𝑛−𝐿+1 . It performs as a low pass 

filter of the rectified signal. The window length, L, determines the cut-off frequency. A longer window 

has a low cut-off frequency, which can reduce 𝑣[𝑛] random errors and increase 𝑠[𝑛] bias errors, and vice 

versa [6]. The EMG amplitude estimator can be improved by removal of measurement noise, EMG 

signal whitening, multiple EMG channels, optimal detectors and optimal smoothing. The bandwidth of 

EMG amplitude is usually about 0–10 Hz and the noise often has a much broader band, so a low-pass 
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filter can be used for removing the noise. EMG signal whitening techniques decorrelate the data 

samples, allowing subsequent analysis to individually operate on each EMG sample. Multiple EMG 

channels means that a group of electrodes are used for detecting EMG from the same muscle; combining 

their information can reduce the variance. Optimal smoothing means to pick a suitable window for 

𝑠̂𝑀𝐴𝑅𝑀𝑆 . Usually, longer windows are picked when EMG amplitude changes slowly, while shorter 

windows for fast change. Since filtering causes start-up transient issue at the beginning of signal (see 

step 5 in figure 11), this start-up part will be discarded for data analysis. 

Hence, the entire EMG amplitude estimator can be summarized as the block diagram below: 

 

Figure 11: Detailed signal processing procedure of EMG amplitude estimation [7] 

Other EMG features: Some researchers found that if more features were extracted from the raw 

EMG signal besides amplitude, it can improve the performance of surface EMG stud ies that relate 

surface EMG to movement classes or to force. Three common features are: waveform length, zero 

crossing and slope sign changes [8]. 
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The waveform length feature describes the sum of the absolute difference between two adjacent 

points. The equation for waveform length is: 

∆𝑥𝑘 =  |𝑥𝑘+1 − 𝑥𝑘| , 

where 𝑥𝑘 is the 𝑘𝑡ℎ sample of EMG signal for 𝑘 = 1,  … ,  𝑁 − 1. The zero crossing feature is defined 

as: 

𝑐𝑜𝑢𝑛𝑡 𝑎𝑠 1,  𝑖𝑓 𝑥𝑘 > 0 𝑎𝑛𝑑 𝑥𝑘+1 < 0,  𝑜𝑟 𝑥𝑘 < 0 𝑎𝑛𝑑 𝑥𝑘+1 > 0,   

𝑎𝑛𝑑 |𝑥𝑘 − 𝑥𝑘+1| > 𝑛𝑜𝑖𝑠𝑒 𝑙𝑒𝑣𝑒𝑙.  

Slope sign changes indicate the local peaks of the EMG signal: 

𝑐𝑜𝑢𝑛𝑡 𝑎𝑠 1, 𝑖𝑓 𝑥𝑘 > 𝑥𝑘−1𝑎𝑛𝑑 𝑥𝑘 > 𝑥𝑘+1,  𝑜𝑟 𝑥𝑘 < 𝑥𝑘−1 𝑎𝑛𝑑 𝑥𝑘 < 𝑥𝑘+1, 

𝑎𝑛𝑑 |𝑥𝑘 − 𝑥𝑘+1| > 𝑛𝑜𝑖𝑠𝑒 𝑙𝑒𝑣𝑒𝑙 𝑜𝑟  |𝑥𝑘 − 𝑥𝑘−1| > 𝑛𝑜𝑖𝑠𝑒 𝑙𝑒𝑣𝑒𝑙 

 

1.2 Current State of the Research Field and My Contributions 

This section introduces the current state of the research field and my contributions for each of my 

projects. The projects in which I was the lead investigator during my Ph.D. study are EMG impedance 

project, dynamic elbow EMG to torque with improved methods project, dynamic wrist EMG to torque 

project and dynamic hand-wrist EMG to torque project. Additionally, EMG decomposition project and 

static wrist EMG to torque project are two team projects in which I was involved. The main analysis of 

EMG decomposition project was finished during my M.S. degree, and the revision work and publication 

were done during my Ph.D. degree. The rest of the projects were mostly finished during my Ph.D. 

degree. One small summary section for each project is presented in this part. 

1.2.1 EMG Impedance Project 

Current research field: Researchers have been studying the relationship between the surface 

electromyogram (EMG) and joint torque for a number of years [9-14]. However, when muscles contract, 

it can not only generate joint torque but also joint mechanical impedance [15]. Joint impedance exists 

because of the mechanical properties of soft tissues (muscles, tendons, nerves and ligaments) and is a 

necessary property of the musculoskeletal system because it helps stabilize our movements. Accurate 

measurement of joint mechanical impedance in daily activities would provide new insights on the origin 

of several musculoskeletal disorders [16, 17]. Previous studies found that a second order quasi-linear 
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model can describe joint dynamics in terms of the relationship between angle and torque for constant-

effort, constant-posture contractions [18, 19]. The equation of this model is: 

𝑇(𝑡) = 𝐼 𝜃̈(𝑡) + 𝐵 𝜃̇(𝑡) + 𝐾𝜃(𝑡) 

where 𝑇 and 𝜃 are torque and angle which subtract the base mean torque and angle respectively (similar 

as standard deviation); 𝑡  is the time index; 𝐾 , 𝐵 and 𝐼  are the stiffness, viscosity and inertia fitting 

coefficients respectively. This method requires perturbation trials conducted at distinct torque levels, 

imparting forces on the body, disturbing the task under study; a situation quite undesirable for taking in 

situ measurements during applied tasks. This method means if we want to measure different torque 

levels, numerous time-consuming repeated trials are required.  

My contribution in this field: The stiffness and viscosity increase with force/torque [18]. At the 

same time, the surface EMG also increases. My contribution was to relate surface EMG to joint 

impedance, and provide a complete second-order characterization which includes stiffness, viscosity and 

inertia. My work provided a new perspective which related surface EMG to estimate stiffness, viscosity 

and inertia. In addition, I used a single perturbation trial with slow varied torque to evaluate impedance 

over a complete range of nominal torques, which provided a much faster measurement than previous 

methods. 

1.2.2 Elbow EMG to Torque with Improved Techniques Project 

Current research field: For several decades, commercial myoelectric prostheses have used surface 

electromyogram activity from the residual biceps and triceps to control elbow joint movement [10-12].  

In the early stage of research, investigators used simple proportional models between EMG and elbow 

torque [20-24]. This approach was functional, but with high error. From then on, numerous techniques 

have been used to reduce the error for this EMG-based method, including modeling both agonist and 

antagonist muscle activity [10, 25-27], accounting for subject-to-subject differences in the relationship 

[23,28], reducing EMG amplitude (EMG) variability by whitening the EMG signal and/or (for large 

muscle groups) utilizing multiple-channel EMG estimators [29-35], modeling EMG-torque dynamics 

[13, 36-38], incorporating a range of joint angles [14, 39-42], and applying robust system identification 

methods [11-13, 28, 38]. The various techniques are relevant in several areas in which a noninvasive 

EMG-torque estimate is useful, such as prosthesis control [43, 44], clinical biomechanics [45, 46] and 

ergonomics assessment [47, 48]. The current “best” model uses a polynomial function, multiple EMG 
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channels but combined into two groups (biceps EMG and triceps EMG), whitening of the EMG signal 

and modeling EMG-torque dynamics [12].  

My contribution in this field: My contribution to this field is using three techniques to improve 

current models. First, I extracted three more features—waveform length, slope sign change rate and zero 

crossing rate—from raw EMG signals instead of EMG amplitude only (see section 1.1.4). Second, I 

used each EMG channel separately, rather than previous studies which combine multiple channels from 

biceps (and separately from triceps) into a combined processed EMG. Third, I used an exponential 

power law model to replace the previous polynomial model. Three new methods were individually 

compared with the current “best” model. Then, I examined if combining pairs of these various 

improvement techniques provides an additive benefit. Each of the individual improvement techniques 

showed a better performance (P<0.05 and ~10-15% error improvement) than the current “optimal” 

model. However, the pair combinations of these three techniques have a limited further improvement. 

Therefore, the three improved methods can provide more precise results for EMG to torque estimation. 

1.2.3 Two-DoF Dynamic/Static Wrist EMG to Torque Using a Minimum Number of 

Electrodes Project 

Current research field: Over 95% of traumatic upper-limb extremity amputations are transradial 

or more distal [49]. Commercial myoelectric hand-wrist prostheses return partial function by using 

surface electromyogram signals from the residual forearm muscles to control wrist extension-flexion 

(this DoF is still under development and will soon be a product) (Ext-Flx), radial-ulnar deviation (Rad-

Uln) and pronation-supination (Pro-Sup), respectively. Most current models only control one degree of 

freedom (DoF) at one time. However, many basic daily tasks require simultaneous activation of more 

than one joint [50]. 

For multiple DoF control, some current studies try to realize 2-DoF control. First, Kuiken and 

colleagues developed targeted muscle reinnervation surgery [51, 52]. However, the high cost, invasive 

surgery and long recovery period likely limit its acceptability. Second, another improvement technique 

is based on the multifunction pattern recognition approach to select desired movements of the hand 

and/or wrist via EMG signals from the forearm (recently commercialized [53]). Continuous control is 

realized by applying pattern recognition throughout the EMG signal stream [54-58]. Multi-joint control 

is facilitated, but still only 1-DoF is operated at a time. 
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For proportional, simultaneous and independent control of multiple joints, most researchers used a 

large number of EMG electrodes in an array and found that the performance of algorithms is highly 

related to the number of EMG channels [59, 60]. They used a high density of EMG electrodes to obtain 

a more precise evaluation. However, such an amount of electrodes could not be used in a commercial 

prostheses. And some of them did not explore the influence or feasibility of reducing the quantity of 

EMG channels. 

My contribution in this field: For the 2-DoF static wrist EMG to torque project, Prof. Clancy led 

the work. I helped him debug and analyze the experimental data.  

For the 2-DoF dynamic wrist EMG to torque project, I led the data analysis. My task was to provide 

evidence for the feasibility of controlling 2-DoFs of wrist simultaneously. In addition, my study 

explored the minimum number of electrodes required for 2-DoFs hand control. Backward stepwise 

selection of EMG channels was utilized to study the minimum required number of EMG channels. This 

method progressively reduced the number of channels, removing the channel with the highest associated 

error at each step. The study results supported the use of as few as four conventional electrodes for 2 -

DoF of simultaneous, independent and proportional (SIP) prosthesis control at the wrist. Two-DoF 

EMG-force models using four electrodes had average RMS errors of 9.0–10.4 %MVC, which was 

similar to the one-DoF error (8.8-9.8%MVC). The results of my work showed that the existing one-DoF 

EMG-torque control model can be expanded to two-DoF control, and using less electrodes was feasible.  

1.2.4 2-DoF Dynamic Hand-Wrist EMG to Torque Using a Minimum Number of 

Electrodes Project 

Current research field: The current research field is similar as section 1.2.3 (Two-DoF 

dynamic/static wrist only EMG to torque using a minimum number of electrodes project). First, most 

current models only control one degree of freedom (DoF) at one time, especially control wrist or hand 

separately. In addition to the multiple DoF control research mentioned in section 1.2.3, other related 

studies have explored EMG-based control for multiple fingers [61-64]. Some of these studies used 

pattern recognition/ classification, which does not provide simultaneous, independent and proportional 

(SIP) control; there was also some limited effort to quasi-constant-force contractions, which does not 

model dynamic control. Second, the quantity of electrodes was highly correlated with the performance 

of torque estimation. Some of the prior studies did not explore the feasibility of reducing the number of 

electrodes. 
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My contribution in this field: My contribution of this field is similar as section 1.2.4 (Two-DoF 

dynamic/static wrist only EMG to torque using a minimum number of electrodes project). The results 

suggested as few as four conventional electrodes, optimally located about the forearm, could provide 2 

DoFs of simultaneous, independent and proportional control with error ranging from 7.8–8.7 %MVC, 

which is rates similar to the 1-DoF approach (error from 8.3–9.0 %MVC) currently used for commercial 

prosthesis control. A prosthesis user could target 2-DoF towards control of an existing hand-wrist 

system. So, the above wrist work was helpful, but the more immediate opportunity is to simultaneously 

control both a hand and a wrist. 

1.2.5 EMG Decomposition Project 

Current research field: As mentioned in section 1.1.2, the raw EMG signal is the superposition of 

different motor unit action potentials. EMG decomposition of indwelling recording is used to separate 

the composite signal into its constituent motor unit action potential trains (see figure 13). EMG 

decomposition is widely used for clinical and scientific studies of the neuromuscular system [65-67], 

especially for muscle disease and fatigue. For most decomposition studies, an accurate automated 

algorithm is required. DeLuca and his colleagues were the pioneers of this field [68-69]. Thereafter, 

some other automated decomposition methods were developed [70-72]. During the early phase of this 

research area, manual decomposition was performed [73]. This method is quite time-consuming, and 

also requires experienced people. Another approach which is useful for quantifying the performance of 

algorithms is to utilize simulated EMG signals whose true annotations are known [74-77]. However, this 

method cannot mimic the experimental data completely. The third method which uses multiple channel 

data has been performed recently. The motor unit action potentials are detected by a group of electrodes. 

If the decomposition results of different electrodes have a high agreement, this gives a strong reliability 

of the decomposition algorithm. However, little literature has systematically discussed the strengths and 

weakness of previous automated methods, and very little direct or cross comparison between the 

different algorithms was studied. 
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Figure 12: Diagram for EMG decomposition [78] 

My contribution in this field: This project is a team project finished by Yejin Li and me. The 

contribution of our team project to this field was to evaluate the performance of three publicly available 

automated algorithms— EMGlab, Fuzzy Expert and Montreal [70-72] — using both experimental and 

simulated data, producing an overall evaluation of performance. My comparison information is 

important to the interpretation of results across studies using different analysis techniques. For the 

multiple channel experimental data, median agreement between the Montreal and Fuzzy Expert 

algorithms at 10%, 20% and 50% MVC were 95, 86 and 64%, respectively. For the single channel 

control and patient data, median agreement between pairs of the three algorithms was ~97% and ~92%, 

respectively, for each pair. Agreement across algorithms and accuracy within algorithms were strongly 

related to the Decomposability Index (DI). When agreement was high between algorithm pairs applied 

to the simulated data, so was the individual accuracy of each algorithm. My role of this team project was 

to generate simulated EMG data, apply three algorithms to both experimental and simulated data and 

cross-compare the performance of three algorithms. 

1.2.6 Summary of My PhD Work and Introduction of Remaining Chapters 

The remaining chapters describe all of my Ph.D. projects in detail in the form of published, 

accepted, submitted and in-development journal or conference manuscripts.  

Chapters 2–4 are about the EMG decomposition project. First, in Chapter 2, we focus on cross-

comparison of three EMG decomposition algorithms. This chapter was published as a journal paper. 

Second, in Chapter 3, the same three EMG decomposition algorithms were compared but based on an 

alternative performance measure. This chapter was published as a conference paper. Third, in Chapter 4, 
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only two multiple channel EMG decomposition algorithms were compared. This chapter was published 

as a conference paper. 

Chapter 5 details the EMG impedance project. This chapter is still in preparation and going to be 

submitted as a journal paper. 

Chapter 6 focuses on dynamic elbow EMG to torque with improved methods project. This chapter 

is still in preparation and going to be submitted as a journal paper, which is now under review. 

Chapters 7–10 describe the two degree of freedom (DoF) hand-wrist EMG to torque project. First, 

in Chapter 7, we discuss the 2-DoF static wrist EMG to torque project. This chapter is still in preparation 

and going to be submitted as a journal paper, which is now under review. Second, in Chapter 8, we 

discuss the 2-DoF dynamic wrist EMG to torque project. The muscle effort discussed in this Chapter is 

dynamic instead of static in Chapter 7. This chapter is still in preparation and going to be submitted as a 

journal paper. Third, in Chapter 9, we focus on 2-DoF dynamic hand-wrist EMG to torque project. The 

2-DoF effort in this chapter involved the hand-wrist. This chapter is still in preparation and going to be 

submitted as a journal paper. Fourth, in Chapter 10, we assessed mirrored bi-lateral training for able-

bodied subjects. This chapter has been published as a conference paper. 
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Chapter 2: Cross-Comparison of Three Electromyogram 

Decomposition Algorithms Assessed with Experimental and 

Simulated Data 

 

This chapter has been published as: Chenyun Dai, Yejin Li, Anita Christie, Paolo Bonato, Kevin C. 

McGill and Edward A. Clancy, "Cross-Comparison of Three Electromyogram Decomposition 

Algorithms Assessed with Experimental and Simulated Data," IEEE Transactions on Neural Systems 

and Rehabilitation Engineering, Vol. 23, No. 1, pp.32–40, 2015. Color versions of one or more of the 

figures in this paper are available online at 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6819816. 

  

Abstract— The reliability of clinical and scientific information provided by algorithms that 

automatically decompose the electromyogram (EMG) depends on the algorithms’ accuracies. We 

used experimental and simulated data to assess the agreement and accuracy of three publicly 

available decomposition algorithms —EMGlab [1] (single channel data only), Fuzzy Expert [2] 

and Montreal [3]. Data consisted of quadrifilar needle EMGs from the tibialis anterior of 12 

subjects at 10%, 20% and 50% maximum voluntary contraction (MVC); single channel needle 

EMGs from the biceps brachii of 10 controls and 10 patients during contractions just above 

threshold; and matched simulated data. Performance was assessed via agreement between pairs of 

algorithms for experimental data and accuracy with respect to the known decomposition for 

simulated data. For the quadrifilar experimental data, median agreements between the Montreal 

and Fuzzy Expert algorithms at 10%, 20% and 50% MVC were 95%, 86% and 64%, 

respectively. For the single channel control and patient data, median agreements between the 

three algorithm pairs were statistically similar at ~97% and ~92%, respectively. Accuracy on the 

simulated data exceeded this performance. Agreement/accuracy was strongly related to the 

Decomposability Index [3]. When agreement was high between algorithm pairs applied to 

simulated data, so was accuracy.  

 

http://ieeexplore.ieee.org/
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Index Terms—Electromyogram (EMG), motor units, decomposition, intramuscular EMG, 

biomedical signal analysis.  

2.1 Introduction  

Decomposition of indwelling recordings of the electromyogram (EMG) is the process of separating 

the composite interference pattern into its constituent motor unit action potential trains (MUAPTs), 

permitting the evaluation and study of individual motor unit (MU) firing patterns and action potential 

shapes. Decomposition is useful in a wide range of clinical and scientific studies of the neuromuscular 

system (for reviews, see [4]–[6]). For most decomposition-based studies, an automated algorithm is 

utilized to perform most of the decomposition, with expert manual editing often completed thereafter. 

Methods for automated decomposition were pioneered by DeLuca and colleagues [7], [8]. Since that 

time, a number of other significant approaches and variations have been developed and refined [2], [4], 

[9]–[17].  

The performance of automated decomposition algorithms has primarily been evaluated in a few 

manners [18]. First, “reference” or “true” annotations have been achieved via manual expert editing of 

experimental data [2], [4], [12], [13], [17]. This technique can be extremely time consuming (e.g., one 

hour per second of data [2]) and the accuracy of the reference annotat ions can be difficult to assess. 

Nonetheless, assessment on experimental data guarantees signal conditions representative of actual use. 

Second, EMGs have been simulated [8], [9], [11]–[13], [15], [17]. In this case, the true annotations are 

known to be correct. However, even highly detailed simulated data cannot guarantee all of the 

complexities of an actual signal. Third, a few studies have recorded EMGs from multiple indwelling 

needles, each of which is decomposed [4], [19]–[21]. Some of the motor unit action potentials (MUAPs) 

are detected by more than one electrode. Agreement in their firing times is strong evidence of correct 

detection and classification of those firings. Recent studies have also compared decomposition results 

between EMGs that have been simultaneously acquired from indwelling electrodes and surface EMG 

arrays [22]–[24]. Most commonly, a combination of evidence—from experimental and simulated data—

is used to evaluate an algorithm, as each evaluation technique has its own strengths and weaknesses.  

To date, very little direct comparison has been made between the performance of various 

automated algorithms [25]. Since algorithm performance depends on the characteristics of the signal 

being analyzed, the same set of signals should be used when comparing different algorithms. For 

example, relative decomposition accuracy is known to decrease when: more spikes occur per second, 
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MUAPs from distinct trains exhibit more similar shapes, the signal-to-noise ratio (SNR) lowers, MUAP 

shapes change over time and/or firing times are irregular [4]. Moreover, when multiple algorithms are 

able to agree on the annotation of a particular signal, it increases confidence that the annotation is 

correct. Three of the major decomposition algorithms are now publicly available within the MATLAB 

software environment [1]–[3]. In addition, a versatile simulator of indwelling EMGs is also publicly 

available [26]. Hence, we cross-compared the performance of these three algorithms utilizing a variety 

of experimental and simulated needle EMG data.   

2.2 Methods  

2.2.1 Experimental Data 

Portions of experimental data from two prior studies were reanalyzed, and simulated data were 

generated. No new subject data were collected. The data reanalysis was approved by the WPI 

Institutional Review Committee. The experimental data spanned a range o f MVC levels and included 

both controls and patients, to provide data with a range of challenges to decomposition algorithms.  

Three-channel quadrifilar needle EMGs had been acquired from the dominant leg of seven young 

(three male, four female; aged 18–30 years) and five elderly (two male, three female; aged 65 years or 

older) healthy subjects at the University of Massachusetts. Subjects were seated, the upper leg of their 

preferred limb restrained and the ipsilateral foot secured to a stiff transducer tha t measured ankle 

dorsiflexion force. The skin over the tibialis anterior (TA) muscle was cleaned with rubbing alcohol and 

a 27-gauge four-wire quadrifilar needle electrode was inserted into the belly of the TA muscle, avoiding 

the innervation zone. The needle was maneuvered into a position from which activity from several MUs 

could be obtained. Four 50-µm diameter platinum-iridium wires terminating at a side port 7.5 mm from 

the tip of the electrode comprised the recording surfaces [27]. The four wires in this electrode were 

arranged in a square array with approximately 200 µm on each side. The signals detected with this 

needle were connected to three differential amplifiers (1012 Ω input resistance; 25 pA bias current), 

bandpass filtered from 1,000– 10,000 Hz, sampled at 25,600 Hz (16-bit resolution), upsampled by a 

factor of two to a sampling rate of 51,200 Hz, and stored at this higher rate for off -line processing. Prior 

to electrode insertion, maximum voluntary contraction (MVC) dorsiflexion force was measured as the 

average of 3–5 maximum contractions of 5 s duration each. Following electrode insertion, subjects 

performed constant-force contractions at 10%, 20% and 50% MVC, with target force levels displayed 
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on a video monitor. Subjects slowly increased their force to the target level, and then maintained the 

force while a 30 s recording was made. A rest period of three minutes was provided between each 

contraction to prevent fatigue. One, 5 s segment during the constant-force portion of each recording was 

analyzed. Thus, 36 recordings of 5 s duration each were used (12 subjects x 3 levels of contraction). 

EMGs detected during higher levels of contraction are usually more challenging to decompose [4].  

Single channel needle EMGs were reanalyzed from ten control subjects (6 males, 4 females; aged 

21–37 years) and ten patients [5 diagnosed with ALS (3 males, 2 females; aged 56 – 65 years); 5 

diagnosed with myopathy (4 males, 1 female; aged 26–44 years)] in the publicly-available “N2001” 

database of Nikolic [28]. Of the available recordings within the database, recordings exhibiting a low 

background noise level (assessed visually) were selected. Recordings were acquired from the biceps 

brachii muscles during low level (just above threshold), constant-force contractions using a concentric 

needle electrode in accordance with standard clinical recording procedures. The signals were bandpass 

filtered between 2–10,000 Hz and sampled at 23,437.5 Hz with 16 bit resolution. Twenty 5 s recordings 

(20 subjects x one recording/subject) were used for analysis. Patient data are considered more 

challenging than that of healthy controls for decomposition algorithms [4]. For each signal, a “Spike 

Rate” measure was computed, expressing the number of MUAP firings per second. Within the analyzed 

5 s segment of each recording, the number of pulses exceeding the background noise was manually 

counted. Spikes of duration greater than 3 ms, representing superimpositions, were counted as two 

pulses. Those with duration greater than 6 ms were counted as three pulses, etc. This approach 

accentuates the influence of longer duration spikes (which are, presumably, more complex to 

decompose) and causes the Spike Rate to be larger than the rate that would be derived by using the 

number of events found by the detection stage of a classical decomposition algorithm. For multiple -

channel data, all three channels were simultaneously viewed and a pulse was counted if it was 

discernible from the background in any channel. The Spike Rate measure was expressed in pulses per 

second (pps). Spike Rate measures from the experimental data were used to guide generation of the 

simulated data.  

2.2.2 Simulated Data 

Constant-force, quadrifilar and single channel data were simulated using the publicly -available 

needle EMG simulator of Hamilton-Wright and Stashuk [26]. The resulting signals closely resembled 

those acquired experimentally from healthy subjects. The simulator parameters were selected to model 
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the physical layout of the TA muscle, MU firing patterns, action potential propagation and type of EMG 

electrode. To emulate quadrifilar recordings, four noise-free monopolar tip electrodes (50 µm diameter) 

were simultaneously simulated in a square array configuration at 200 µm distances. This configuration 

mimics a quadrifilar needle. The three differential voltages were then computed offline in MATLAB and 

white Gaussian noise was added to give a SNR of 20 dB.  For each experimental contraction level to be 

simulated, trial and error was used to determine the contraction level parameter input value of the 

simulator software such that the average Spike Rate of the simulated data matched the average Spike 

Rate of the corresponding experimental data. Five-second constant-force recording segments were 

created at force levels representing 10%, 20% and 50% MVC. Each simulated condition was iterated 12 

times, providing 12 realizations, to give the same number of trials as with the quadrifilar experimental 

data. The true time instances and identities of each MUAP firing (i.e., MUAP annotations), which are 

fully known in simulated data, were recorded along with the simulated signals (sampled at 31,250 Hz, 

16-bit resolution). To emulate healthy (control) single channel recordings, one 10 mm concentric 

electrode was simulated and white Gaussian noise was added to give a SNR of 20 dB. The Spike Rate of 

these simulated data was matched to the average Spike Rate of the single channel needle (N2001) data 

of the control subjects, again via selection of the contraction level parameter input value of the simulator 

software. Ten recordings, each of 5 s duration, were created at a sampling rate of 31,250 Hz with 16 -bit 

resolution, along with the true MUAP annotations.  

2.2.3 Automated Decomposition Algorithms 

Three publicly-available decomposition algorithms were compared. Each is implemented in 

MATLAB, which was used for all computation. Each algorithm was used without manual editing, 

although such editing is the norm in scientific studies. Prior to automated decomposition, the quadrifilar 

experimental data were digitally highpass filtered at 100 Hz. Although the signal had been analog 

highpass filtered at 1,000 Hz, this digital filter removed any offsets due to subsequent analog filter 

stages, including the analog to digital converter. The single channel experimental data were digitally 

highpass filtered at 500 Hz. This cut-off frequency was selected after visual review of a subset of the 

data, so as to reduce background noise and best accentuate spikes. All simulated data were digitally 

highpass filtered at 1,000 Hz, this cut-off frequency also being selected after visual review of a data 

subset. In all cases, a first-order Butterworth filter was designed, and then applied in the forward and 

reverse time directions to achieve zero phase shift.  
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All three algorithms detected voltage spikes within the EMG (each spike is a candidate MUAP, 

typically with a registration time corresponding to its peak magnitude), classified spikes with similar 

shapes and resolved superimpositions. The first automated decomposition algorithm was the default 

algorithm implemented in the publicly-available “EMGlab” software [1]. This algorithm can only 

analyze single channel EMGs and thus was only used for our single channel data. The second algorithm 

was the “Montreal” algorithm [3]. This algorithm has no adjustable parameters. The third algorithm was 

the “Fuzzy Expert” algorithm [2]. With the Fuzzy Expert algorithm, we utilized ten algorithm passes 

and limited resolution of superimpositions to three MUs on the first two passes, five MUs on the third 

pass and six MUs thereafter.  

2.2.4 Methods of Analysis 

After highpass filtering (described above), all experimental and simulated quadrifilar data were 

automatically decomposed by the Fuzzy Expert and Montreal algorithms. The single channel 

experimental (from the controls and the patients) and simulated data were decomposed by all three 

automated algorithms.  Decompositions of experimental signals were compared pair-wise between 

algorithms for each signal. Each MUAP annotation was said to match if both algorithms found a MUAP 

from the same train within a ±0.5 ms match window, after determining a timing offset that accounts for 

the difference in MUAPT registration locations between the different algorithms [18], [24]. 

“Agreement” was measured as the number of matched annotations, divided by the sum of: (1) matched 

annotations and (2) unmatched annotations from either algorithm. Agreement results were expressed in 

percent. For the experimental quadrifilar data, results are only presented for those MUAPTs that 

exhibited a minimum of 20 matches between the Fuzzy Expert and Montreal algorithms (average of 4 

matches per second over a 5 s recording duration). For the experimental single channel data, results are 

only presented for those MUAPTs that exhibited a minimum of 20 matches for each pairing between the 

three algorithms (i.e., those MUAPTs “found” by all three algorithms). For simulated data, the minimum 

number of required matches was one (i.e., every MUAPT that was extracted was analyzed). In addition 

to agreement results, decompositions of simulated signals were also compared directly to the true 

annotations (all MUAPTs included), this result being denoted “Accuracy,” since the true annotations 

were known.  

For each identified MUAPT for single channel data, the Decomposability Index (DI) [3] was 

computed as the minimum RMS difference between that MUAP template and each other MUAP 
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template (or the baseline), divided by the RMS value of the entire channel. For quadrifilar data, this 

value was computed from each channel and the norm of the three values reported as the DI. The DI is 

non-dimensional. For experimental and simulated signals, DI was computed multiple times, using the 

annotations from each respective decomposition algorithm. For simulated signals, the measures were 

also computed using the true annotations. Cross-plots of DI vs. agreement (or accuracy) were created for 

each contraction level for each data set. The data from each plot were then least squares fit to the 

exponential model: 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 = 100𝑎 ∙ 𝑒−𝑏∙𝑆𝑁𝑅𝑀𝑈 where a and b are the fit parameters. Except where 

indicated otherwise, performance differences were tested statistically using ANOVAs (two - or one-way), 

with post hoc pair-wise comparisons (when significant) conducted using Tukey’s honest significant 

difference (HSD) test.  

2.3 Results 

Table I lists the number of MUAPTs detected and analyzed in the various data sets, the total 

number of excluded MUAPTs (due to fewer than 20 matches) for the experiments, as well as the actual 

(true) number of MUAPTs generated for the simulated data. MUAPTs were only analyzed if they were 

detected by all algorithms and contained 20 or more matches. Thus, the number of analyzed MUAPTs 

must be less than or equal to the minimum number of MUAPTs detected from the individual algorithms. 

For all experiments, the number of excluded MUAPTs averaged 1–2 per recording, and was primarily 

comprised of small amplitude MUAPs. A smaller number of exclusions were due to individual MUAPTs 

that were erroneously decomposed into two distinct MUAPTs, either (or both) of which wa s comprised 

of less than 20 MUAPs. For all simulated data, the number of MUAPTs analyzed was always less than 

the number of true MUAPTs, since some algorithms failed to detect some MUAPTs. For the simulated 

quadrifilar data, the proportion of detected units (out of the total number of units actually simulated) 

decreased as the MVC level increased.  

Spike Rate values for the quadrifilar experimental data at 10%, 20% and 50% MVC were 

100.1±49.8, 119.3±46.4 and 211.8±54.6 pps, respectively. An ANOVA showed a s ignificant difference 

in Spike Rate between MVC levels [F(2,33)=16.9, p<10–5], with pair-wise post hoc Tukey comparisons 

showing that Spike Rate was significantly higher at 50% MVC compared to the other two contraction 

levels (p<0.01). Depending on the subject, spikes with a duration between 3–6 ms (counted as two 

spikes in the Spike Rate) occurred at a rate of 3–10/s at 10% MVC, 5–15/s at 20% MVC and 30–40/s at 

50% MVC. Spike durations longer than 6 ms were rare (< 2/s) in the 10% and 20% MVC data. In the 
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50% MVC data, spikes of duration 6–9 ms occurred at a rate of ~15/s and spikes of duration 9–12 ms 

occurred at a rate of ~5/s. Spike Rate values for the corresponding simulated quadrifilar signals at 10%, 

20% and 50% MVC were 99.2±21.3, 120.7±25.5 and 215.9±59.4 pps, respectively. Spike Rate values 

for the single channel experimental control and patient data were 61.8±19.8 pps and 48.8±27.0 pps, 

respectively. These values for the control and patient data did not differ statistically (p=0.16, t -test). The 

corresponding values for the simulated single channel signals were 62.6±12.3 pps. Hence, the average 

experimental control trial and simulated trial Spike Rate values were quite well matched, as designed. 

Spike durations between 3–6 ms were rare in the patient ALS data and occurred at a rate of 3-10/s in the 

control and patient myopathy data. Spike durations longer than 6 ms were rare in all single channel data.  

General statistical comparisons of agreement and accuracy are shown in Table II. For quadrifilar 

experimental results, one-way ANOVAs assessed differences across the three MVC levels. Agreement 

decreased with increasing MVC level. The higher contraction data exhibited a substantial number of 

superimpositions (particularly at 50% MVC). Additionally, the higher-level contractions contained 

substantial smaller-amplitude “background” MUAPs that were not detected and, thus, contributed to an 

increased noise floor. For experimental single channel results, a two -way ANOVA (algorithm as one 

factor and control/patient as the other) found a mild difference between controls and patients (p=0.044), 

but no differences (p>0.07) on any of the three post hoc Tukey tests (one per algorithm pair, comparing 

controls to patients). Hence, no statistical differences between experimental single channel results are 

labeled in Table II. For simulated quadrifilar data results, one-way ANOVAs assessed differences across 

the three MVC levels, separately for both algorithms. For these results only, paired t -tests examined 

statistical differences between the Montreal and Fuzzy Expert algorithms, at each MVC level. The 

Montreal algorithm was significantly more accurate than the Fuzzy Expert algorithm at 10% and 20% 

MVC, although both algorithms performed quite well. Note that several of these results list both a 

median and 75th percentile value of 100%. In these cases, more than half of the result values equaled 

100%. For simulated single channel results, a one-way ANOVA assessed differences among algorithms. 
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The Fuzzy Expert algorithm performed poorer than the other two with these data.  

 

Fig. 1 shows agreement results (Montreal vs. Fuzzy Expert) vs. DI for the experimental quadrifilar 

data. Figs. 2 and 3 show accuracy vs. DI for the simulated quadrifilar data, both as a function of MVC  

level and combined across levels. Similarly, agreement and accuracy results for experimental (control 

and, separately, patient) and simulated single channel data are shown vs. DI in Fig. 4. Each plot in Figs. 

1–4 also shows the best-fit exponential model. Quantitatively, it is anticipated that agreement/accuracy 

is associated with DI. Here, that relation is expressed by the goodness -of-fit of the exponential model, 

also listed in the plots. In general, agreement/accuracy increased with DI.  
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Fig. 1.  Agreement between the Fuzzy Expert and Montreal algorithms as 

a function of DI for the quadrifilar experimental data. Each point 
represents one MUAPT. Results shown separately for each MVC level, 

and for all levels combined. Best fit  exponential model shown in each 

plot, along with the RMS fit  error.  

Fig. 2.  Accuracy with respect to the true decomposition for the 
simulated quadrifilar data as a function of DI for the Montreal 
algorithm. Each point represents one MUAPT. Results shown separately 

for each MVC level, and for all levels combined. Best fit  exponential 
model shown in each plot, along with the RMS fit  error.  
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Fig. 3. Accuracy with respect to the true decomposition for the simulated 
quadrifilar data as a function of DI for the Fuzzy Expert algorithm. Each 

point represents one MUAPT. Results shown separately for each MVC 
level, and for all levels combined. Best fit  exponential model shown in 
each plot, along with the RMS fit  error. 

 

Fig. 4.  Agreement (top) between algorithm pairs (as labeled) as a 
function of DI for the single channel experimental control data. 

Agreement (middle) between algorithm pairs as a function of DI for the 
single channel experimental patient data.  Accuracy (bottom) with 
respect to the true decomposition for the simulated single channel data 
as a function of DI. Best fit  exponential model shown in each plot, along 

with the RMS fit  error. Each point in a plot represents one MUAPT. 
 

Fig. 5 shows agreement between algorithm pairs and their individual accuracies for the simulated 

quadrifilar data and, separately, for the simulated single channel data. Each paired agreement value 

(paired between decomposition algorithms) is plotted twice, once corresponding to each individual 

accuracy value. The vast majority of accuracy values are higher than their corresponding agreement 

values. Note that most of the plotted values are difficult to visualize because they are clustered in the 

upper right corner of each plot, with multiple values over-plotted. The “tails” extending towards the 

origin primarily depict the limited number of low accuracy/agreement values. Thus, the combined data 

from each plot are presented in the corresponding surface density plots of Fig. 6. The density ( z-axis) 

value at each node in the x-y rectangle (resolution of 1%) of these plots is the sum of all cross -plot 
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points within a radius of ten percentage points (with corrections made at the edges, since the radius 

extends outside of the x-y rectangle, distorting density calculation). A smoothed estimate of the density 

at each x-y node is produced. The preponderance of high agreement-accuracy values is now evident, 

although the accuracy distinctions between the algorithms cannot be represented.  

 
Fig. 5.  (Top) Agreement between Montreal and Fuzzy Expert 

algorithms vs. their individual accuracies for the simulated quadrifilar 
data, separated by MVC level. Each x-axis agreement value corresponds 
to two y-axis accuracy values. Each such pair of points represents one 
MUAPT. (Bottom) Agreement between algorithm pairs vs. their 

individual accuracies for the simulated single channel data. For all plots, 
red plus=EMGlab, green “X”=Montreal, blue triangle=Fuzzy Expert.  
Note that many plot values in the upper right corner of each plot fall on 

top of each other, exaggerating the poorer performing trials. 

Fig. 6. Combined data points from each plot within Fig. 5 are shown 

here using surface density plots. (Top) Agreement between Montreal 
and Fuzzy Expert algorithms vs. their accuracies for the simulated 
quadrifilar data, separated by MVC level. (Bottom) Agreement between 
algorithm pairs vs. their accuracies for the simulated single channel 

data. Note the preponderance of high agreement-accuracy values in 
each plot. 

 

Finally, Fig. 7 (cross-plots) and Fig. 8 (surface density plots) directly compare accuracy 

performance on the simulated data between algorithm pairs. Again, the cross -plots in Fig. 7 best 

visualize performance at the tails of the distribution, while the surface plots in Fig. 8 best display the 

overall trend of high accuracies.  



 

39  

  

 
Fig. 7.  (Top) Cross-plot comparisons of accuracy between Montreal 
and Fuzzy Expert algorithms for the simulated quadrifilar data, 

separated by MVC level. Each point represents one MUAPT. (Bottom) 
Cross-plot comparisons of accuracy for the simulated single channel 
data, separated by algorithm pair. All plot axes in units of percent 
accuracy. Note that many plot values in the upper right corner of each 

plot fall on top of each other, exaggerating the poorer performing trials. 

Fig. 8. Data points from each plot within Fig. 7 are shown here using 
surface density plots. (Top) Accuracies of Montreal and Fuzzy Expert 

algorithms for the simulated quadrifilar data, separated by MVC level. 
(Bottom) Accuracies of algorithms for the simulated single channel 
data. All x- and y-axis units are percent accuracy. Note the 
preponderance of high accuracy-accuracy values in each plot. 

2.4 Discussion 

This study evaluated the agreement between pairs of automated decomposition algorithms when 

applied to experimental data, as well as the accuracy of these algorithms when applied to simulated 

data. A large subject pool and wide range of contraction levels (10%, 20% and 50% MVC) was 

considered, as well as quadrifilar and single channel (control and patient) electrode recordings. Only the 

automated portion of the algorithms was evaluated—algorithm parameters, when available, were not 

varied. In research practice, algorithm parameters may be tuned as a function of the data set and 

decomposition results may be manually edited. As such, it is likely that the agreements/accuracies listed 

herein represent a lower bound on those that might be found in practice [23]. In particular, cursory 

examination of the results showed that one common source of errors occurred when one algorithm 

created two or more distinct (often non-overlapping) MUAPTs that really corresponded to the same 

MU. In our analyses, the partial MUAPT with the larger number of firings would tend to be correctly 

paired, but the MUAPT with the smaller number of firings would produce an error at each of its firings. 

Manual editing tends to find and correct this issue; a single “merging” of MUAPTs would correct a large 

number of agreement/accuracy errors. Automated merging/splitting of MUAPTs during the 

decomposition process has also been shown to improve decomposition performance [29]. In addition, 
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the lower agreement of the experimental quadrifilar data might be enhanced with manua l editing, as it is 

likely that many missed detections and unclassified spikes could be resolved.  

For the multiple channel data, there was a clear performance decrement as contraction level 

increased (Table II). This result is expected, as MU recruitment and firing rates rise with contraction 

level, producing more overlapping discharges and increasing the likelihood of MUAP shape similarity. 

Both of these issues are known challenges to decomposition algorithms [3], [4], [8]. Additionally, 

median accuracy on the simulated data exceeded experimental agreement, particularly at higher MVC 

levels. Of course, agreement between two algorithms counts an error whenever either algorithm errs, 

whereas accuracy with respect to the known firings of simulated data only counts an error when the test 

algorithm produces a mistaken firing. Additionally, the decomposition difficulty may have differed 

between the experimental and simulated data. Even though their Spike Rate values were matched, this 

one measure may not adequately capture all factors that affect decomposition difficulty. Note that most 

experimental validation studies are based on data from relatively low contraction levels. Thus, the 95% 

median agreement for the 10% MVC quadrifilar experimental data, as well as the near-perfect median 

accuracies for the simulated quadrifilar data results are consistent with prior performance assessments of 

these and other mature decomposition algorithms [1]–[4]. Anecdotally, it was noted that the Montreal 

algorithm more frequently produced decompositions with very high accuracy (e.g., median accuracy 

≥99%), but occasionally (~3% of the simulated MUs) failed to detect MUAPTs with high DI.  

The experimental single channel control data led to excellent median agreement results between all 

three pairs of algorithms. Agreement was not statistically different between any algorithm pair. These 

data were recorded at much lower contraction levels (just above threshold), thus were likely less 

challenging. For the simulated single channel data, the Montreal and EMGlab algorithms out-performed 

the Fuzzy Expert algorithm, although all three algorithms exhibited median accuracies ≥ 96%.  

In a more challenging data set, the experimental single channel patient data exhibited a lower 

average Spike Rate than that of the controls (albeit not statistically different with this small sample size) 

and a lower number of MUAPTs analyzed, both of which might be expected from diagnosed ALS and 

myopathy patients. Although only marginally significant, the overall agreement results were lower for 

the patient data. Variation in MUAP shape is more prevalent with neuromuscular disease, which is 

consistent with making decomposition more challenging.  
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Figs. 1–4 show a rather clear relationship between DI and agreement/accuracy, suggesting that high 

accuracy is most probably achieved whenever the DI is high. Nonetheless, these figures also show that 

the RMS errors from the best fit exponential model between agreement/accuracy and DI were in the 

range of 3.7–19.2%, depending on MVC level and electrode recording type. This RMS error seems 

moderately high, indicating that DI does not account for all of the factors that affect decomposition 

accuracy. For example, the definition of the DI measure does not account for the freque ncy of 

superimpositions, even though superimpositions are known to decrease the accuracy of decomposition 

algorithms. In Figs. 1– 4, the exponential model relates decomposition accuracy to DI by fitting across 

all available MUAPTs from many recordings, providing a population-derived measure. In contrast, 

McGill and Marateb [30] developed a quality measure based on the properties of an individual 

recording.  

Figs. 5 and 6 compared agreement vs. accuracy for the simulated data. Fig. 5 clearly segregates 

results between algorithms.  However, many plot values in the upper right corner of each plot fall on top 

of each other, exaggerating the poorer performing trials. In contrast, Fig. 6 clarifies the density of points 

in the upper right corners of each plot, but does not segregate results between algorithms. Taken 

together, the pair of figures provides a fuller explanation of the data. In these plots, accuracy nearly 

always exceeded agreement, perhaps again reflecting that accuracy performance is only influenced b y 

errors in the test algorithm while agreement is influenced by errors in both algorithms. Most important, 

whenever agreement was high (e.g., above 90–95%), accuracy was similarly high—suggesting that each 

algorithm was correctly detecting the same MU discharges and properly classifying them. Fig. 5 also 

seems to indicate that agreement is largely determined by the algorithm with the weaker performance. 

The weaker algorithm has many values along the diagonal (line of agreement). Figs. 7 and 8 provide 

additional information, comparing accuracy performance directly between the algorithms with the 

simulated data. In general, all algorithms performed quite well on the simulated data, even where 

statistical differences were found.  

The evidence found herein did not support universal selection of one algorithm over the other. In 

fact, the high agreement/accuracy at lower contraction levels suggests that each of the three algorithms 

is virtually identical in classifying the commonly detected MU discharges. This result is supportive that 

all algorithms are performing well on these data. Further, Figs. 5 and 6 strongly suggest that when two 

algorithms are in strong agreement, then they are each likely to also be highly accurate. One strategy, 
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therefore, might be to decompose experimental EMG data with more than one of these algorithms, and 

then retain only those MUAPTs that exhibit high agreement among algorithms. It is common to only 

post-process a subset of the identified MUAPTs, typically those exhibiting a large SNR or DI (as these 

trains presumably have been accurately decomposed). Our evidence suggests that such individual 

measures are useful, but not definitive. Perhaps decomposition agreement between these distinct 

algorithms could provide another useful selection measure.   

Reliable assessment of EMG decomposition algorithms is an important, yet difficult, challenge 

with many inherent limitations. In studies of simulated data, known true decompositions exist, but the 

simulator cannot fully capture the character of real EMGs. In experimental studies, the true 

decomposition is not known. Thus, it is common to study decomposition algorithm performance with 

both real and simulated data. Some algorithms focus on decomposition of only those spikes exhibiting a 

large SNR. Algorithms that decompose all detected spikes—even those corresponding to low SNR 

MUAPs—might be penalized with a lower average accuracy/agreement performance, even though they 

perform as well on those MUAPs with high SNR. Anecdotally, this type of detection error was observed 

from the Fuzzy Expert algorithm, whose default settings tended to detect more low-SNR MUAPs 

compared to the other algorithms. False positive noise spike detections seemed more prevalent in these 

low-SNR MUAPs. In this study, we indirectly limited the number of low-SNR MUAPs by excluding 

MUAPTs from analysis if less than 20 matches were available. Relaxing this condition would likely 

have reduced the accuracy/agreement of all algorithms. And, of course, distinct algorithms should be 

compared using the same data, since algorithm performance is influenced by the characteristics of the 

signal recordings. Accordingly, some algorithms may perform better on certain signals as compared to 

other algorithms, and vice versa.  

2.5 Conclusion 

This study provides a systematic comparison of agreement/accuracy performance between three 

publicly available algorithms which perform decomposition on indwelling EMGs. Our comparison 

information is important to the interpretation of results across studies using different analysis techniques. 

For the quadrifilar experimental data, median agreement between the Montreal and Fuzzy Expert 

algorithms at 10%, 20% and 50% MVC were 95, 86 and 64%, respectively. For the single channel 

control and patient data, median agreement between pairs of the three algorithms was ~97% and ~92%, 

respectively, for each pair. Agreement across algorithms and accuracy within algorithms were strongly 
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related to the DI. When agreement was high between algorithm pairs applied to the simulated data, so 

was the individual accuracy of each algorithm. These results, therefore, provide confidence that the 

algorithms perform reliably on experimental quadrifilar and single channel indwelling EMGs. 
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Chapter 3: Performance of Three Electromyogram 

Decomposition Algorithms as a Function of Signal to Noise Ratio: 

Assessment with Experimental and Simulated Data 

This chapter has been published as: Chenyun Dai, Yejin Li, Edward A. Clancy, Anita Christie, 

Paolo Bonato and Kevin C. McGill. "Performance of Three Electromyogram Decomposition Algorithms 

as a Function of Signal to Noise Ratio: Assessment with Experimental and Simulated Data," 2014 IEEE 

Signal Processing in Medicine and Biology Symposium (SPMB), Temple University, Philadelphia, PA, 

13 December 2014. Color versions of one or more of the figures in this paper are available online at 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7002963. 

 
Abstract— We have previously published a full report [25] comparing the performance of 

three automated electromyogram (EMG) decomposition algorithms. In our prior report, the 

primary measure of decomposition difficulty/challenge for each data record was the 

“Decomposability Index” of Florestal et al. [3]. This conference paper is intended to augment our 

prior work by providing companion results when the measure of difficulty is the motor unit signal-

to-noise ratio (SNRMU) — a measure that is commonly used in the literature. Thus, we analyzed 

experimental and simulated data to assess the agreement and accuracy, as a function of SNRMU, of 

three publicly available decomposition algorithms —EMGlab [1] (single channel data only), Fuzzy 

Expert [2] and Montreal [3]. Data consisted of quadrifilar needle EMGs from the tibialis anterior 

of 12 subjects at 10%, 20% and 50% maximum voluntary contraction (MVC); single channel 

needle EMGs from the biceps brachii of 10 control subjects during contractions just above 

threshold; and matched simulated data. Performance vs. SNRMU was assessed via agreement 

between pairs of algorithms for experimental data and accuracy with respect to the known 

decomposition for simulated data. For experimental data, RMS errors between the achieved 

agreement and those predicted by an exponential model as a function of SNRMU ranged from 8.4% 

to 19.2%. For the simulations, RMS errors between achieved accuracy and those predicted by the 

SNRMU exponential model ranged from 3.7% to 14.7%. Agreement/accuracy was strongly related 

to SNRMU.  

http://ieeexplore.ieee.org/


 

46  

  

Keywords— Electromyogram (EMG), motor units, decomposition, intramuscular EMG, 

biomedical signal analysis.  

  

3.1 Introduction 

Indwelling electromyogram (EMG) recordings are decomposed by separating the interference 

pattern into its constituent motor unit action potential trains (MUAPTs). Doing so permits the evaluation 

and study of individual motor unit (MU) firing patterns and action potential shapes, which is useful in a 

wide range of clinical and scientific studies (for reviews, see [4]–[6]). In most decomposition schemes, 

an automated algorithm detects and clusters each MUAP firing, typically with expert manual editing 

performed thereafter. Signal processing methods for automated decomposition were pioneered by 

DeLuca and colleagues [7], [8]; with numerous variations and alternative approaches proposed and 

studied thereafter [2], [4], [9]–[17].  

Quantitative performance evaluation of automated decomposition algorithms has been conducted in 

a few manners [18]. First, reference annotations have been produced via manual expert editing of 

experimental data [2], [4], [12], [13], [17]. This technique is extremely time consuming (e.g.,  one hour 

per second of data [2]) and its true accuracy can be difficult to assess. Yet, the use of experimental data 

guarantees signal conditions representative of actual use. Second, EMGs can be simulated [8], [9], [11]–

[13], [15], [17]. In this case, the true annotations are known. But, even highly detailed simulators 

produce data that cannot replicate all of the complexities of an experimental signal. Third, a few studies 

have recorded EMGs from multiple indwelling needles, comparing the decompositions of MUs detected 

by more than one electrode [4], [19]–[21]. Agreement in their firing times is strong evidence of accurate 

detection and classification. Recently, studies have compared decomposition results between EMG 

simultaneously acquired from indwelling electrodes and surface EMG arrays [22]–[24]. Overall, a 

combination of evidence from experimental and simulated data is typically used to evaluate an 

algorithm, as each evaluation technique exhibits strengths and weaknesses.  

For all automated algorithms, it is well established that performance depends on the characteristics 

of the signal being analyzed. Relative decomposition accuracy is known to decrease when: more spikes 

occur per second, MUAPs from distinct trains exhibit similar shapes, the signal -to-noise ratio (SNR) 

lowers, MUAP shapes change over time and/or firing times are irregular [4]. Florestal et al. [3] 

attempted to capture these signal characteristics in their Decomposability Index (DI), defined as the 
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minimum RMS difference between the given MUAP template and each other MUAP template (or the 

baseline), divided by the RMS value of the entire channel. This measure takes into account both the size 

and the distinguishability of the MUAPs.  

In our prior full report [25], we contrasted the performance of three automated algorithms [1]–[3] 

that are publicly available for use in the MATLAB environment, with DI as our primary measure of the 

difficulty/challenge expected from each recording. Since algorithm performance varies depending on the 

data set analyzed, the same data were presented to each algorithm. We augmented the experimental data 

with data created by a publicly available EMG simulator [26], providing a more comprehensive 

evaluation.  

In this conference publication, we augment our prior work by presenting complimentary results 

when the measure of data set difficulty/challenge is the SNR of a MU (SNRMU). Distinct from the DI, 

the SNRMU is sensitive only to the amplitude of a MUAP, relative to the noise floor. This difficulty 

measure is more traditional than the DI and arguably simpler to understand. Thus, we present a 

companion cross-comparison of the performance of the three decomposition algorithms, as a function of 

the SNRMU. Readers are advised to review our prior full report [25], which contains complete project 

methods, etc.  

3.2 Methods 

3.2.1 Experimental Data 

Portions of experimental data from two prior studies were reanalyzed, and simulated data were 

generated. No new subject data were collected. The data reanalysis was approved by the WPI 

Institutional Review Board. The experimental data spanned a range of MVC levels as well as laboratory 

and clinical data collection settings, to provide data with a range of challenges to decomposition 

algorithms.  

Three-channel quadrifilar needle EMGs had been acquired from the dominant leg of seven young 

(three male, four female; aged 18–30 years) and five elderly (two male, three female; aged 65 years or 

older) healthy subjects at the University of Massachusetts [25]. Briefly, the skin over the tibia lis anterior 

(TA) muscle was cleaned with rubbing alcohol and a 27-gauge four-wire quadrifilar needle electrode 

was inserted into the belly of the TA muscle, avoiding the innervation zone. Four 50 -μm diameter 

platinum-iridium wires terminating at a side port 7.5 mm from the tip of the electrode comprised the 
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recording surfaces [27]. The four wires in this electrode were arranged in a square array with 

approximately 200 μm on each side. The signals detected with this needle were connected to three 

differential amplifiers (1012 Ω input resistance; 25 pA bias current), bandpass filtered from 1,000–10,000 

Hz, and sampled at an effective rate of 51,200 Hz (16-bit resolution). Following electrode insertion, 

subjects performed 30s duration constant-force contractions at 10%, 20% and 50% MVC, with target 

force levels displayed on a video monitor. A rest period of three minutes was provided between 

contractions to prevent fatigue. One, 5 s segment during the constant-force portion of each recording 

was analyzed. Thus, 36 recordings of 5 s duration each were used (12 subjects x 3 levels of contraction).  

Single channel needle EMGs were reanalyzed from ten control subjects (6 males, 4 females; aged 

21–37 years) in the publicly-available “N2001” database of Nikolic [28]. Of the available recordings 

within the database, recordings exhibiting a low background noise level (assessed visually) were 

selected. Recordings were acquired from the biceps brachii muscles during low level (just above 

threshold), constantforce contractions using a concentric needle electrode in accordance with standard 

clinical recording procedures. The signals were bandpass filtered between 2 –10,000 Hz and sampled at 

23,437.5 Hz with 16 bit resolution. Ten 5 s recordings (10 subjects x one recording/subject) were used 

for analysis.  

For each signal, a “Spike Rate” measure was computed, expressing the number of MUAP firings 

per second. Within the analyzed 5 s segment of each recording, the number of pulses exceeding the 

background noise was manually counted. Spikes of duration greater than 3 ms, representing 

superimpositions, were counted as two pulses. Those with duration greater than 6 ms were counted as 

three pulses, etc. This approach accentuates the influence of longer duration spikes (which are, 

presumably, more difficult to decompose) and causes the Spike Rate to be larger than the rate that would 

be derived by using the number of events found by the detection stage of a classical decomposition 

algorithm. For multiple-channel data, all three channels were simultaneously viewed and a pulse was 

counted if it was discernible from the background in any channel. The Spike Rate measure was 

expressed in pulses per second (pps). Spike Rate measures from the experimental data were used to 

guide generation of the simulated data.  

3.2.2 Simulated Data 

Constant-force, quadrifilar and single channel data were simulated using the publicly -available 

needle EMG simulator of Hamilton-Wright and Stashuk [26]. The resulting signals closely resembled 
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those acquired experimentally. The simulator parameters were selected to model the physical layout of 

the TA muscle, MU firing patterns, action potential propagation and type of EMG electrode. To emulate 

quadrifilar recordings, four noise-free monopolar tip electrodes (50 μm diameter) were simultaneously 

simulated in a square array configuration at 200 μm distances. This configuration mimics a quadrifilar 

needle. The three differential voltages were then computed offline in MATLAB and white Gaussian 

noise was added to give a SNR of 20 dB. For each experimental contraction level to be simulated, trial 

and error was used to determine the contraction level parameter input value of the simulator software 

such that the average Spike Rate of the simulated data matched the average Spike Rate of the 

corresponding experimental data. Fivesecond constant-force recording segments were created at force 

levels representing 10%, 20% and 50% MVC. Each simulated condition was iterated 12 times, 

providing 12 realizations, to give the same number of trials as with the quadrifilar experimental data. 

The true time instances and identities of each MUAP firing (i.e., MUAP annotations), which are fully 

known in simulated data, were recorded along with the simulated signals (sampled at 31,250 Hz, 16-bit 

resolution). To emulate healthy (control) single channel recordings, one 10 mm concentric electrode was 

simulated and white Gaussian noise was added to give a SNR of 20 dB. The Spike Rate of these 

simulated data was matched to the average Spike Rate of the single channel needle (N2001) data of the 

control subjects, again via selection of the contraction level parameter input value of the simulator 

software. Ten recordings, each of 5 s duration, were created at a sampling rate of 31,250 Hz with 16-bit 

resolution, along with the true MUAP annotations.  

3.2.3 Automated Decomposition Algorithms 

Three publicly-available decomposition algorithms were compared. Each is implemented in 

MATLAB, which was used for all computation. Each algorithm was used without manual editing, 

although such editing is the norm in scientific studies. Prior to automated decomposition, the quadrifilar 

experimental data were digitally highpass filtered at 100 Hz. Although the signal had been analog 

highpass filtered at 1,000 Hz, this digital filter removed any offsets due to subsequent analog filter 

stages, including the analog to digital converter. The single channel experimental data were digitally 

highpass filtered at 500 Hz. This cut-off frequency was selected after visual review of a subset of the 

data, so as to reduce background noise and best accentuate spikes. All simulated data were digitally 

highpass filtered at 1,000 Hz, this cut-off frequency also being selected after visual review of a data 
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subset. In all cases, a first-order Butterworth filter was designed, and then applied in the forward and 

reverse time directions to achieve zero phase shift.  

All three algorithms detected voltage spikes within the EMG (each spike is a candidate MUAP, 

typically with a registration time corresponding to its peak magnitude), classified spikes with similar 

shapes and resolved superimpositions. The first automated decomposition algorithm was the default 

algorithm implemented in the publicly-available “EMGlab” software [1]. This algorithm can only 

analyze single channel EMGs and thus was only used for our single channel data. The second algorithm 

was the “Montreal” algorithm [3]. This algorithm has no adjustable parameters. The third algorithm was 

the “Fuzzy Expert” algorithm [2]. With the Fuzzy Expert algorithm, we utilized ten algorithm passes and 

limited resolution of superimpositions to three MUs on the first two passes, five MUs on the third pass 

and six MUs thereafter.  

3.2.4 Methods of Analysis 

After highpass filtering (described above), all experimental and simulated quadrifilar data were 

automatically decomposed by the Fuzzy Expert and Montreal algorithms. The single channel 

experimental and simulated data were decomposed by all three automated algorithms. Decompositions 

of experimental signals were compared pair-wise between algorithms for each signal. Each MUAP 

annotation was said to match if both algorithms found a MUAP from the same train within a ±1 ms 

match window1, after determining a timing offset that accounts for the difference in MUAPT registration 

locations between the different algorithms [18], [24]. “Agreement” was measured as the number of 

matched annotations, divided by the sum of: (1) matched annotations and (2) unmatched annotations 

from either algorithm. Agreement results were expressed in percent. For the experimental quadrifilar 

data, results are only presented for those MUAPTs that exhibited a minimum of 20 matches between the 

Fuzzy Expert and Montreal algorithms (average of 4 matches per second over a 5 s recording duration). 

For the experimental single channel data, results are only presented for those MUAPTs that exhibited a 

minimum of 20 matches for each pairing between the three algorithms (i.e., those MUAPTs “found” by 

all three algorithms). For simulated data, the minimum number of required matches was one (i.e., every 

MUAPT that was extracted was analyzed). In addition to agreement results, decompositions of 

simulated signals were also compared directly to the true annotations (all MUAPTs included), this result 

being denoted “Accuracy,” since the true annotations were known.  

                                                 
1
 Note that a different match window of ±0.5 ms was used in [25].  



 

51  

  

For each identified MUAPT for single channel data, a MU SNR (SNRMU) was computed as the 

peak-to-peak height of the MU divided by the RMS value of the entire channel [21]. A ten-bin histogram 

of all (negative/positive) peak values from all firings of a MUAPT was computed. A peak value was 

estimated as the average height of all values contributing to the histogram mode bin. This selection helps 

to reject peak values that might be unrepresentative due to MUAP superimpositions. For multiple -

channel data, the SNRMU was computed separately for each channel and then averaged. The SNRMU is 

non-dimensional. For experimental signals, SNRMU was computed multiple times, using the annotations 

from each respective decomposition algorithm. For simulated signals, the measures were also computed 

using the truth annotations. Cross-plots of SNRMU vs. agreement (or accuracy) were created for each 

contraction level for each data set. The data from each plot were then least squares fit to the exponential 

model: 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 = 100𝑎 ∙ 𝑒−𝑏∙𝑆𝑁𝑅𝑀𝑈  where a and b are the fit parameters. Except where indicated 

otherwise, performance differences were tested statistically using ANOVAs (two - or one-way), with post 

hoc pair-wise comparisons (when significant) conducted using Tukey’s honest significant difference 

(HSD) test.  

3.3 Results 

Table I in the companion work [25] lists and discusses the number of MUAPTs detected and 

analyzed in the various data sets, the total number of excluded MUAPTs (due to fewer than 20 matches) 

for the experiments, as well as the actual (true) number of MUAPTs generated for the simulated data. 

The companion work also details the Spike Rate values for each data set. Spike Rate increased with 

MVC level. The average experimental control trial and simulated trial Spike Rate values were quite well 

matched, as designed.   

  



 

52  

  

 

General statistical comparisons of agreement and accuracy are shown in Table II. Table II also 

indicates statistically significant differences in results from one-way ANOVA comparisons and post hoc 

Tukey tests. For the quadrifilar simulation results only, paired t-tests examined statistical differences 

between the Montreal and Fuzzy Expert algorithms, at each MVC level. Agreement generally decreased 

with MVC level for the multiple-channel experimental data. The higher contraction data exhibited a 

substantial number of superimpositions (particularly at 50% MVC), which is not reflected in the SMRMU 

measure. Additionally, the higher-level contractions contained substantial smaller-amplitude 

“background” MUs that were not detected and, thus, contributed to an increased noise floor. For the 

quadrifilar simulation, Table II further shows that the Montreal algorithm was significantly more 

accurate than the Fuzzy Expert algorithm at 10% and 20% MVC, although both algorithms performed 

quite well.  

Fig. 1 shows agreement results (Montreal vs. Fuzzy Expert) vs. SMRMU for the experimental 

quadrifilar data. Figs. 2 and 3 show accuracy vs. SMRMU for the simulated quadrifilar data, both as a 

function of MVC level and combined across levels. Similarly, agreement and accuracy results for 

experimental and simulated  single  channel  data are shown vs. SMRMU in Fig. 4.   



 

53  

  

 

Fig. 1.  Agreement between the Fuzzy Expert and Montreal algorithms 
as a function of SMRMU for the quadrifilar experimental data. Each point 
represents one MUAPT. Results shown separately for each MVC level, 
and for all levels combined. Best fit  exponential model shown in each 
plot, along with the RMS fit  error.  

Fig. 2.  Accuracy with respect to the true decomposition for the 
simulated quadrifilar data as a function of SNRMU for the Montreal 
algorithm. Each point represents one MUAPT. Results shown separately 
for each MVC level, and for all levels combined. Best fit exponential 
model shown in each plot, along with the RMS fit  error.  
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Fig. 3.  Accuracy with respect to the true decomposition for the 
simulated quadrifilar data as a function of SNRMU for the Fuzzy Expert 
algorithm. Each point represents one MUAPT. Results shown separately 
for each MVC level, and for all levels combined. Best fit exponential 
model shown in each plot, along with the RMS fit  error.  

Fig. 4. Agreement (top) between algorithm pairs (as labeled) as a 
function of SNRMU for the single channel experimental control data. 
Accuracy (bottom) with respect to the true decomposition for the 
simulated single channel data as a function of SNRMU. Best fit 
exponential model shown in each plot, along with the RMS fit error. 
Each point in a plot represents one MUAPT. 

Each plot in Figs. 1–4 also shows the best-fit exponential model. Quantitatively, it is anticipated 

that agreement/accuracy is associated with SNRMU. Here, that relation is expressed by the goodness-of-

fit of the exponential model, also listed in the plots. In general, agreement/accuracy increased with 

SNRMU.  

3.4 Discussion 

This study evaluated the agreement between pairs of automated decomposition algorithms when 

applied to experimental data, as well as the accuracy of these algorithms when applied to simulated 

data, each as a function of SNRMU. This study provides companion results to a prior full report that 

appeared in [25], using the DI. As such, we will concentrate our discussion on comparison of the 

SNRMUbased results in the present paper to the equivalent results based on the DI. Note that our prior 

full report utilized a shorter duration match window for MU comparisons (±0.5 ms), analyzed additional 

M

U 
M
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data not discussed herein and provided additional analysis not directly related to the SNRMU and DI 

measures.  

Figs. 1–4 in the present paper (SNRMU-based analysis) show a strong  relationship  between  

SNRMU  and  agreement/ accuracy, suggesting that high accuracy is most probably achieved whenever 

the SNRMU is high. Yet, these figures also show that the RMS errors from the best fit exponential model 

between agreement/accuracy and SNRMU were in the range of 3.7–19.3%, depending on MVC level and 

electrode recording type. This RMS error seems moderately high, indicating that SNRMU does not 

account for all of the factors that affect decomposition accuracy.  

Comparison of the SNRMU-based results in Figs. 1–4 to the DI-based results shown in the prior full 

report (see corresponding Figs. 1–4, respectively, in [25]) shows that nearly identical trends are found. It 

is, in fact, difficult to note performance differences between the SNRMU-based and DIbased models. 

Thus, the simpler SNRMU measure seems to predict achieved agreement/accuracy equally as well as the 

more complex DI measure. Future research might examine whether the combined use of these (and 

other) measures might provide better estimation of achieved agreement/accuracy.  

3.5 Conclusion 

In summary, this companion study provides a systematic comparison of agreement/accuracy 

performance between three publicly available algorithms which perform decomposition on indwelling 

EMGs, as a function of SNRMU. For experimental data, RMS errors between the achieved agreement 

and those predicted by an exponential model as a function of SNRMU ranged from 8.4% to 19.2%. For 

the simulations, RMS errors between achieved accuracy and those predicted by the SNRMU exponential 

model ranged from 3.7% to 14.7%.  

Agreement/accuracy was strongly related to SNRMU. Prediction of agreement/accuracy based on 

SNRMU was essentially equivalent in performance to prediction based on DI.  
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Chapter 4: Cross-Comparison Between Two Multi-Channel 

EMG Decomposition Algorithms Assessed with Experimental 

and Simulated data 

This chapter has been published as: Yejin Li, Chenyun Dai, Edward A. Clancy, Anita Christie, 

Paolo Bonato and Kevin C. McGill. "Cross-Comparison Between Two Multi-Channel EMG 

Decomposition Algorithms Assessed with Experimental and Simulated Data," 2013 IEEE 39th Annual 

Northeast Bioengineering Conference, Syracuse University, 191–192, 5–7 April, 2013. Color versions 

of one or more of the figures in this paper are available online at 

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6574423. 

 

Abstract—The reliability of automated electromyogram (EMG) decomposition algorithms is 

important in clinical and scientific studies. In this paper, we analyzed the performance of two 

multi-channel decomposition algorithms—Montreal [1] and Fuzzy Expert [2] using both 

experimental and simulated data. Comparison data consisted of quadrifiler needle EMG from the 

tibialis anterior muscle of 12 subjects (young and elderly) at three contraction levels (10, 20 and 

50% MVC), and matched simulation data. Performance was assessed via agreement between the 

two algorithms for experimental data and accuracy with respect to the known decomposition for 

simulated data. For the experimental data, median agreement between the Montreal and Fuzzy 

Expert algorithms at 10, 20 and 50% MVC was 95.7, 86.4 and 64.8%, respectively. For the 

simulation data, median accuracy was 99.8%, 100% and 95.9% for Montreal, and 100%, 98% 

and 93.5% for Fuzzy Expert at the different contraction levels. 

Keywords—EMG; Motor unit potential; Decomposition; SNR; Composite Decomposability 

Index (CDI); Cross-comparison. 

4.1 Introduction 

Decomposition of EMG signals separates the composite signal into its constituent motor unit (MU) 

firing times and action potential shapes. Decomposition is used in many clinical and research studies of 

the neuromuscular system [3]. In most cases, an automatic algorithm and expert manual editing are 

combined to produce a more reliable result [4].  

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6574423
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Evaluating the performance between multiple automated algorithms is crucial, since EMG 

recordings can be extremely difficult to decompose under conditions of low signal to noise ratio (SNR) 

and/or high similarity of MU shapes. Hence, if high agreement is achieved between algorithms, more 

confidence is gained in each decomposition. 

Two major multi-channel decomposition algorithms are now publically available within the 

MATLAB software environment [1], [2]. In addition, a detailed indwelling EMG simulator is also 

publically available [5]. Hence, we cross-compared the performance of these two algorithms, utilizing a 

variety of experimental and simulated data at different contraction levels. 

4.2 Methods 

4.2.1 Experimental and Simulated Data 

The data used in this paper consisted of two parts: the experimental data were recorded at the 

University of Massachusetts and simulated data were generated. The data reanalysis was approved and 

supervised by the WPI Institutional Review Board. 

 Three-channel quadrifiler needle EMG signals were acquired from the tibialis anterior muscle of 

the dominant leg of seven young (three male, four female) and five elderly (two male, three female), 

healthy subjects during isometric contractions of 10%, 20% and 50% MVC. Four 50-µm diameter wires 

with 200 µm distance between electrode pairs comprised the recording surfaces. The signals were 

bandpass filtered from 1,000–10,000 Hz and sampled at 51,200 Hz at 16-bit resolution. One 5s segment 

of each signal was analyzed. Thus, 36 recordings of 5 s duration each were used (12 subjects x 3 levels 

of contraction). 

Quadrifiler data were simulated using the EMG needle simulator of Hamilton-Wright [5]. The 

resulting signals resembled those acquired experimentally as closely as possible including electrode 

configuration and shape, recording duration, contraction levels and background noise.  

4.2.2 Automated Decomposition Algorithms 

Before decomposition, each recording was highpass filtered. For the experimental data, the 

acquisition hardware already provided some filtering. Thus, a 1st-order zero-phase Butterworth high-

pass filter with 100 Hz cut off frequency was applied digitally. For the simulated data, the same process 

was implemented, except that the cut off frequency was 500 Hz. 
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Both algorithms detected EMG spikes, classified spikes with similar shapes and patterns, and 

resolved superimpositions. The first algorithm was the “Montreal” algorithm [1]. This algorithm has no 

adjustable parameters. The second algorithm was the “Fuzzy Expert” algorithm [2]. We utilized ten 

passes and limited resolution of superimpositions to three MUs on the first two passes, five MUs on the 

third pass and six MUs thereafter. 

4.2.2 Methods of Analysis 

The experimental data were analyzed separately from the simulated data. After highpass filtering, 

all experimental and simulated quadrifiler data were automatically decomposed by the Fuzzy Expert and 

Montreal algorithms.  

For each MU in the experimental signals that was identified by both algorithms, the agreement rate 

was calculated as the percentage of the MU firings on which the two algorithms agreed to within ± 1 ms 

[6]. For each MU in the simulated signals, the accuracy of each algorithm was calculated as the 

percentage of firings which the algorithm correctly identified to within ± 1 ms. The "decomposability 

index" [1] of each MU was calculated as the minimum RMS difference between that MU and any other 

MU or the baseline, divided by the RMS value of the entire signal. The index was computed from each 

channel and the norm of the individual indexes reported. 

4.3 Results 

Average performance results vs. contraction level are listed in the Abstract. Fig. 1 shows the 

relationship between agreement rate and decomposability index for the experimental data at each 

contraction level. For 10% MVC, the number of matched MUs ranged from 7–10 per subject (total of 

103 MUs). For 20% MVC, the number ranged from 7–13 (total 110). For 50% MVC, the number ranged 

from 7–12 (total 120). Fig. 2 shows the accuracy vs. decomposability index for the simulated data at 

20% MVC. The number of matched MUs identified by Fuzzy Expert for each subject ranged from 7 –13 

(total of 117 MUs) and from 7–15 by Montreal (total of 114 MUs). 

The data from each plot were then fit to the exponential model: xbeaAgreement 100  , where 

x is the Decomposability index of each motor unit.  
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Figure 1.  The relationship between Decomposability Index and agreement at MVC 10%, 20% and 50% (Montreal vs. Fuzzy Expert). 

 

 

Figure 2.  The relationship between Decomposability Index and accuracy at MVC 20% (Montreal vs. Fuzzy Expert). 

 

4.4 Discussion/Conclusion 

This study evaluated two automated decomposition algorithms when applied to experimental and 

simulated data. The results show good accuracy and substantial agreement between the algorithms, 

especially for MUs with a larger decomposability index at lower levels of contraction. These results 

provide a measure of confidence that the algorithms perform reliably on real EMG signals. 

Performance was poorer for MUs with lower decomposability indices and in signals from higher 

levels of contraction (Figs. 1 and 2). This result is expected, as MU recruitment and firing rates rise with 

contraction level, producing more overlapping discharges and increasing the likelihood of MU shape 

similarity. 
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Chapter 5: Single-Trial Estimation of Quasi-Static EMG-to-

Joint-Mechanical-Impedance Relationship Over a Range of Joint 

Torques 

Abstract—Researchers have been studying the relationship between the surface 

electromyogram (EMG) and joint impedance for a number of years, as a means of non-invasively 

estimating musculoskeletal loads and joint/musculoskeletal dynamics. For constant-posture tasks, 

point-to-point motion tasks and other limited dynamic tasks, mechanical impedance has been 

measured by a second order differential equation between the resulting change in position/angle 

and joint torque. However, joint impedance increases as the force level, and this method can only 

measure the joint impedance at one fixed force level.  My work provided a complete second-order 

EMG-based impedance characterization of stiffness, viscosity and inertia over a complete range of 

nominal torques, from a single perturbation trial with slowly varied torque. A single perturbation 

trial provides a more convenient method for impedance evaluation.  The RMS errors of EMG 

based method were 20.01% for stiffness and 7.05% for viscosity, compared with the traditional 

mechanical measurement. 

Keywords—Joint impedance, Joint torque, Electromyogram, Biological system modeling, 

EMG signal processing, Myoelectric control, Prosthesis, Prosthesis control 

 

5.1 Introduction 

Researchers have been studying the relationship between the surface electromyogram (EMG) and 

joint torque for a number of years, as a means of non-invasively estimating musculoskeletal loads and 

joint/musculoskeletal dynamics [e.g., (An et al., 1983; Clancy et al., 2006; Clancy and Hogan, 1997; 

Clancy et al., 2012; Doheny et al., 2008; Gottlieb and Agarwal, 1971; Hashemi et al., 2013; 2015; 

Hashemi et al., 2012; Liu et al., 2015; Staudenmann et al., 2010; Thelen et al., 1994; Vredenbregt and 

Rau, 1973)].  Measurement and understanding of these dynamics is important in several areas, 

including: ergonomic assessment (Hagg and Melin, 2004), prosthetic control (Parker et al., 2006), 

clinical biomechanics (Disselhorst-Klug et al., 2009; Doorenbosch and Harlaar, 2003) and basic motor 

control research. A distinct aspect of musculoskeletal loading, but of equal importance, is the joint 
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mechanical impedance. A joint exhibits non-zero mechanical impedance since it produces a reaction 

torque if it is subjected to a generalized displacement (or vice versa.). Joint impedance exists because of 

the mechanical properties of tissues (muscles, tendons,  ligaments, bones) and is a necessary property of 

the musculoskeletal system because it helps stabilize force interactive tasks such as tool usage [c.f., 

(Burdet et al., 2001)]. Joint mechanical impedance can be modulated by co-contracting agonist-

antagonist muscles about the joint. For example, a worker using a power tool (e.g., a hand drill) will 

purposely co-contract their muscles to increase hand mechanical impedance up to at least the minimum 

required to stabilize the task (Rancourt and Hogan, 2001a; b)—often without producing any externally 

measurable torques/forces. Impedance formally characterizes the torque -angle relationship state of the 

joint, and does so using an absolute physical scale (e.g., the stiffness component of linear impedance 

models is expressed in units of Newton-meters per degree) as opposed to the non-dimensional measures 

that are common based on EMG co-activation levels (Andison, 2011; Ford et al., 2008; Rosa et al., 

2014). Accurate measurement of joint mechanical impedance in daily activities may provide new 

insights into the origin of several musculoskeletal disorders. 

For constant-posture tasks, point-to-point motion tasks and other limited dynamic tasks, mechanical 

impedance has been measured by imparting forces on the body and measuring the resulting change in 

position/angle (or vice versa) (Bennett et al., 1992; Burdet, Osu, 2001; Cannon and Zahalak, 1982; 

Gomi and Osu, 1998; Hunter and Kearney, 1982; Kearney and Hunter, 1990; Kearney et al., 1997; 

McIntyre et al., 1996; Zhang and Rymer, 1997). These methods have performed well for their intended 

scientific studies, but have some important limitations for broader application. First, numerous 

measurements are typically required to fully characterize impedance over a range of operating 

conditions.  For example, if perturbations are imparted about a nominal joint angle at a nominal torque 

level, then the impedance relationship is well characterized via the stiffness, viscosity and inertia of a 

second-order linear system (Kearney and Hunter, 1990; Zhang and Rymer, 1997). Perturbation trials 

conducted at distinct torque levels can characterize the system over that range of torques—but numerous 

repeated trials are required. Second, such measurements require imparting forces on the body, disturbing 

the task under study, a situation quite undesirable for taking in situ measurements during applied tasks. 

Considering existing technologies, surface electromyography (EMG) may be an excellent solution 

to simultaneously estimate torque and impedance during applied motor tasks as it provides a non-

invasive approach (once calibrated). Previous work has successfully related EMG to joint quasi-
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stiffness—which does not seek to account for short-range stiffness (Rack and Westbury, 1974; Rouse et 

al., 2013). Osu et al. (Osu and Gomi, 1999) assumed a baseline stiffness representing passive joint 

properties and a second additive quasi-stiffness component proportional to muscular activity of both 

agonist and antagonist muscles of the joint. Others have successfully related EMG to joint quasi-

stiffness in various tasks by differentiating the EMG-torque relationship as a function of joint angle 

(Kawase et al., 2012; Pfeifer et al., 2012; Shin et al., 2009). These methods are attractive in that only 

simpler torque measurements are required in order to calibrate the model.  But, the model identification 

process utilizes multiple trials which are cumbersome for applied studies, the model form is limited by 

the EMG-torque model and no viscosity term is estimated. Of course, the inertial properties of a classic 

second-order characterization do not vary with the level of joint torque. 

Our work described herein seeks to advance the above work in a few manners.  First, we propose a 

simple EMG-impedance model which includes stiffness, viscosity and inertia, that can be estimated 

using calibration perturbations along with EMG recordings. A complete second -order characterization is 

provided.  Second, the form of the EMG-impedance model is parametric and can be selected to include a 

nonlinear shape. Third, we demonstrate the use of perturbation contractions in which the nominal 

(“background”) torque level is slowly varied, such that a single perturbation trial can be used to ca librate 

a model over a complete range of nominal torques. Our experimental evaluation was completed on 

human subjects producing torques about their elbow joint. 

5.2 Methods 

5.2.1 Experimental Methods 

The original experimental protocol was approved by the Institutional Review Board (IRB) of Laval 

University (Québec, Canada) and all subjects provided written informed consent. The analysis described 

herein was approved by the Worcester Polytechnic Institute IRB. Seven subjects (7 females, 10 males; 

aged 21–43 years) each participated in one experimental session. The skin above the investigated 

muscles was cleaned with alcohol and four bipolar EMG electrode-amplifiers placed transversely across 

each of the biceps and triceps muscles, midway between the elbow and the midpoint of the upper arm, 

centered on the muscle midline. The two contacts (5 mm diameter, stainless steel, separated 10 mm 

edge-to-edge) of each electrode-amplifier were oriented along the muscle’s long axis. Adjacent 

electrodes were spaced ~1.75 cm apart. A reference electrode was applied over the acromion process. 
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Each electrode-amplifier had a common mode rejection ratio greater than 90 dB at 60 Hz. Signals were 

highpass filtered at 15 Hz (eighth-order Butterworth) and then lowpass filtered at 1800 Hz (fourth-order 

Butterworth). As shown in Fig. 1, a subject was seated in front of a two degree of freedom planar 

joystick manipulandum that can produce 15 Nm of torque about each axis (about 50 N at the tip) with a 

frequency response up to 15 Hz. The vertical axis of the joystick was locked to allow horizontal (medial-

lateral) motion only. Subject’s held their right arm in the plane parallel to the floor, with the shoulder 

abducted 90°, the forearm oriented in the sagittal plane, the wrist fully supinated and the elbow flexed 

90°. The wrist was rigidly attached to the manipulandum load cell via a cuff covering the distal forearm. 

The EMG signals were sampled at 4096 Hz and the load cell signal at 400 Hz (time synchronized), each 

using 16 bits. 

Subjects initially performed two, 2 s maximum voluntary contractions (MVCs) in each of flexion 

and extension, the maximum of which was used as the subject’s MVC. Next, they performed a 0% MVC 

(rest contraction) and separate flexion and extension 50% MVCs for 5 s, utilizing force feedback on a 

computer screen. These contractions were used to calibrate the advanced EMG processors (Clancy and 

Farry, 2000; Prakash et al., 2005). Pseudo-random perturbations (manipulandum set in angle control, 

0¬–6 Hz frequency range, Gaussian distributed with zero mean and std. dev. of xxo) were then 

performed twice for 20 s on the manipulandum alone to identify its inertia. The same process was 

performed with the subject’s arm secured in the cuff while the subject remained relaxed to measure the 

total inertia of the combined arm-manipulandum system. 
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Fig. 1. Top view of subject seated in the impedance measurement apparatus. Label 1 shows the location of the actuated joy stick and load cell. Label 2 

identifies the cuff restraint. Label 3 shows the medial-lateral orientation of the applied force perturbations. 

 

Subjects then performed two sequences of perturbation tasks at eight distinct, fixed nominal effort 

levels, 30 s each in duration (Fig. 2). The eight effort levels were 10%, 20%, 30% and 40% MVC 

extension and flexion. During each trial, the angle of the manipulandum was feedback to the subject on 

a computer screen. The subject was instructed to maintain their average joint angle at 90° throughout the 

trial. The manipulandum exerted constant flexion/extension torque for 5 s, after which an additional 0 –

15 Hz bandwidth pseudo-random torque perturbation was applied during the 5–25 s period. The order of 

the trials was randomly selected. The subject’s forearm was removed from the wrist cuff between all 

trials for 2–3 min of rest to avoid fatigue. 

A second set of trials was conducted in which subjects maintained their elbow joint angle at 90° 

while a ramp force, combined with the force perturbations, was exerted by the manipulandum over 50 s 

(Fig. 3). As shown in Fig. 3, each trial was segmented as: during the first 20 s, the nominal torque started 

at 40% MVC extension and linearly ramped to 0% MVC; during the next 10 s, the nominal torq ue was 

0% MVC; and during the last 20 s, the nominal torque linearly ramped from 0% MVC to 40% MVC 



 

67  

  

flexion. Three such trials were performed. The pause at 0% MVC was added after initial evaluation 

found it difficult for subjects to follow the nominal torque trajectory across zero. Finally, three other 

perturbation trials were performed with the ramping reversed, i. e. with nominal torque linearly ramping 

from 40% MVC flexion to 0% MVC (20 s), 10 s of 0% MVC nominal torque, and 20 s of nominal 

torque linearly ramping from 0% MVC to 40% MVC extension. 

 

Fig. 2.  Sample time-series data from a constant -torque trial.  Show sample biceps EMG, triceps EMG, angle and torque.  
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Fig. 3.  Sample time-series data from a ramp torque trial.  Show sample biceps EMG, triceps EMG, angle and torque. 

 

5.2.2 Methods of Analysis 

Signal preprocessing: Analysis was performed offline in MATLAB. All filter specifications 

reported herein refer to the designed filters—these filters were applied in the forward, then reverse, time 

directions to achieve zero phase (and the square of the designed magnitude response). EMG signals were 

highpass filtered (15 Hz cutoff, 5th-order Butterworth). Then, two distinct EMG amplitude (EMG) 

estimates were computed for each of extension and flexion—a single-channel, unwhitened estimate 

(using a centrally-located electrode) and a four-channel, whitened estimate using adaptive whitening 

(Clancy and Farry, 2000; Prakash, Salini, 2005). Each used a first-order demodulator (rectifier), 

followed by lowpass filtering at 1 Hz (4th-order Butterworth) and then resampling to 100 Hz. This lower 

rate is appropriate for system identification (Clancy, Bida, 2006; Ljung, 1999, pp. 491–519). 

The general second-order linear mechanical joint impedance model at a particular operating point is 

(Kearney and Hunter, 1990): 

                                                  mKmBmImT    ,                                        (1) 

where m is the resampled rate, T  is the change in joint torque,   is the change in joint angle; and I 

(inertia), B (viscosity) and K (stiffness) are the fit parameters. Since torque and angle change are 

required, each of these recorded signals was highpass filtered at 0.25 Hz using a 2nd-order Butterworth 
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filter. This approach was applicable to both constant-torque and ramp-torque trials. For the first 

derivative of angle, a central difference was computed, followed by 5th-order lowpass filtering with a 

Butterworth filter with cutoff frequency at 15 Hz. For the second derivative of angle, two successive 

central differences were computed, followed by the same lowpass filter. These filter selections were 

determined via preliminary analysis. All mechanical signals were lowpass filtered at 40 Hz and then 

resampled to 100 Hz. 

System Identification: Initially for each subject, the rest trial was used to estimate the rest 

impedance parameters of the arm-manipulandum system. These Io, Bo and Ko values were estimated via 

least squares. All least squares used the pseudo-inverse technique in which singular values of the design 

matrix were removed if their ratio to that of the largest singular value was less than a  tolerance value. 

Through preliminary analysis, a tolerance value of 0.005 was selected (Clancy, Liu, 2012). In all 

subsequent analysis, the torque oT  estimated via these parameters (according to equation 1) was 

subtracted from the overall T , leaving only the torque change due to muscle activation, EMGT . In 

addition, the inertia was fixed and not further estimated, as it does not change with muscular activation 

level. 

Next, viscosity and stiffness parameters were least squares estimated from the constant -torque 

trials, without the use of EMG. The middle 20 s of data, avoiding the recording portion that did not 

include perturbations, was used. Parameter values were estimated separately for the eight contraction 

levels and two sets, with the results from the two trials per condition averaged. These parameter values 

served as the “true” parameter values, in that they were estimated via the established method. 

Then, EMG signals were used to estimate viscosity and stiffness from the constant -torque trials. 

EMG was incorporated into the joint mechanical impedance model  of equation 1 in a linear fashion by 

setting: 

                                              mKmKKmBmBmB ffeeffee   and ,         (2) 

where e  and f  are the EMG values for extension and flexion, respectively; and the Bi and Ki are the 

viscosity and stiffness fit parameters, respectively. Again, the middle 20 s data segment was used. A full 

set of eight trials (one per contraction level) was combined as training data, so that EMG would be 

related to impedance parameters across the range of effort levels. The parameters were then fixed and 

the second set of eight trials used for testing. The values of B[m] and K[m] (equation 2) from the 20 s 
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middle segment of a test trial was averaged and then compared to the truth parameters estimated strictly 

from the mechanical measures. Error was taken as 100% times the absolute difference between the truth 

and test measures, divided by the truth measure. Both single-channel unwhitened and four-channel 

whitened EMG performance was compared. 

Next, EMG signals were used to estimate viscosity and stiffness from the ramp -torque trials. The 

model of equation 2 was again used, except that only one ramp trial was used for training. A second trial 

was used for testing. [How to measure error?  Probably need to evaluate error only at the eight locations 

at which a mechanical measure was made.] 

Finally, some researchers would benefit from single-trial estimation of impedance parameters over 

a range of effort levels without the use of EMG. We utilized our ramp-torque trials to investigate doing 

so.  Modeling a linear relationship between mean torque level and viscosity/stiffness (Hunter and 

Kearney, 1982; Kearney and Hunter, 1990) was incorporated into equation 1 by setting: 

                                                  mTcKmTcmB KB  and ,                                     (3) 

where cB and cB are fit parameters and  mT  is the quasi-static (background) torque level. One model fit 

was made using the 20-s portion of the ramp perturbation contraction that was extension-dominant and a 

second fit was made using the 20-s portion of the ramp perturbation contraction that was flexion-

dominant. In this manner, the slope of the viscosity/slope vs. mean torque could differ in extension from 

that of flexion.  

5.3 Results 

Fig. 2 shows sample time-series data from a constant-torque trial, while Fig. 3 does so for a ramp 

trial. Fig. 4 shows test trial viscosity and stiffness estimates for a single subject. For the ramp 

contractions, impedance parameter estimates are available continuously throughout the contraction, as 

shown in the figure. The figure also shows the specific ramp-calibrated estimates at the eight constant-

torque contraction levels. Error was assessed at these locations. 
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Fig. 4.  Viscosity and stiffness estimates for one of the seven subjects.  
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Fig. 5.  Viscosity and stiffness estimates from all seven subjects, normalized to each subject’s mechanically -estimated value at 40% extension. 
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Chapter 6: Comparison of Constant-Posture Force-Varying 

EMG-Force Dynamic Models About the Elbow 
This chapter has been accepted as: Chenyun Dai, Berj Bardizbanian, and Edward A. Clancy, " 

Comparison of Constant-Posture Force-Varying EMG-Force Dynamic Models About the Elbow," IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, in press. Color versions of one or more 

of the figures in this paper are available online at 

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7782853. 

 

Abstract—Numerous techniques have been used to minimize error in relating the surface 

electromyogram (EMG) to elbow joint torque. We compare the use of three techniques to further 

reduce error. First, most EMG-torque models only use estimates of EMG standard deviation as 

inputs. We studied the additional features of average waveform length, slope sign change rate and 

zero crossing rate. Second, multiple channels of EMG from the biceps, and separately from the 

triceps, have been combined to produce two low-variance model inputs. We contrasted this 

channel combination with using each EMG separately. Third, we previously modeled no nlinearity 

in the EMG-torque relationship via a polynomial. We contrasted our model vs. that of the classic 

exponential power law of Vredenbregt and Rau [1]. Results from 65 subjects performing constant-

posture, force-varying contraction gave a “baseline” comparison error (i.e., error with none of the 

new techniques) of 5.5 ± 2.3% maximum flexion voluntary contraction (%MVCF). Combining the 

techniques of multiple features with individual channels reduced error to 4.8 ± 2.2 %MVCF, while 

combining individual channels with the power-law model reduced error to 4.7 ± 2.0 %MVCF. The 

new techniques further reduced error from that of the baseline by ≈15%. 

 

Index Terms—Biological system modeling, electromyogram, EMG-force, multiple-channel 

EMG 

 

 

6.1 Introduction 

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7782853
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Since at least the work of Inman et al. in 1952 [2], the surface electromyogram (EMG) has been 

investigated as an estimator of muscle force/joint torque. Much of the early work studied the linearity of 

the relation using agonist muscle EMG during constant-posture, quasi-constant force contractions 

(“quasi-static”) [1-5]. During the intervening years, numerous studies (see review in [6]) have expanded 

the experimental conditions and reduced the error in the EMG-torque relationship through various 

improvements, including: modeling both agonist and antagonist muscle activity [7-10], accounting for 

subject-to-subject differences in the relationship [4, 11], reducing variability in the estimate of EMG 

standard deviation (EMG) by whitening the EMG signal and/or (for large muscle groups) utilizing 

multiple-channel EMG–torque estimators [12-21], modeling EMG-torque dynamics [19, 22-24], 

incorporating a range of joint angles [25-29], and applying robust system identification methods [11, 19, 

24, 30, 31]. The various techniques are relevant in several areas in which a noninvas ive EMG-torque 

estimate is useful, such as prosthesis control [32, 33], clinical biomechanics [34, 35] and ergonomics 

assessment [36, 37]. 

In a related problem in EMG-based prosthetics control, multiple EMG features have been used as 

inputs to the task of classifying distinct movement classes. In particular, Hudgins et al. [38] (see [39] for 

a review) added to EMG the features of slope sign change rate (SSC), zero crossing rate (ZC) and 

average waveform length (WL). Only recently has the success of these “additional” features in the EMG 

classification problem led to their investigation as model inputs in the EMG-torque problem [40-45]. 

In this study, we report on three techniques for continuing performance improvement in the EMG-

torque relationship. First, most past studies using dynamic models of EMG-torque have exclusively 

utilized EMG as the input EMG feature. Thus, we look at the applicability of adding the additional 

features of Hudgins et al., comparing models with and without their inclusion. Second, for large 

muscles, EMG variability has been reduced by combining the information from multiple electrodes 

into one EMG estimate [12-14, 16]. This method of channel combination is optimal assuming that the 

underlying muscle contains the same information across its multiple electrode locations, varying only 

due to the stochastic nature of motor unit firing times. However, there is evidence that large muscles—

this research studies the biceps and triceps muscles—contain some degree of control based on 

neuromuscular compartments [46-48]. As such, combining EMG sites to produce a feature estimate 

would no longer be justified. Thus, we contrast combining EMG sites to estimate a feature vs. extracting 

features from each individual electrode. Third, our own dynamic EMG-torque models have incorporated 
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the static power-law nonlinearity described by Vredenbregt and Rau [1] via the use of a polynomial 

relation [29, 31]. This method simplifies the mathematics, allowing the use of linear least squares 

estimation, but can require many parameters—which can have its own detrimental effects [49]. Other 

authors have captured a nonlinear relationship with other model forms, e.g., parallel -cascade models 

[24] and neural networks [40, 42, 44, 45, 50]. Therefore, we directly compared use of the power-law 

nonlinearity of [1] (requiring parameter estimation via nonlinear least squares) to that of the polynomial 

model. Finally, we examined if combining pairs of these various improvement techniques provides an 

additive benefit. We also varied the dynamic model order (i.e., number of time lags) and the tolerance 

value associated with the Moore-Penrose inverse method used to linear least squares fit model 

parameters. These parameters influence EMG-force errors [31] and thus should be optimized within 

each of the three primary techniques studied in this work. 

6.2 Methods 

6.2.1 Experimental Subjects, Apparatus and Methods 

Experimental data from 54 subjects acquired during three prior experiments [29, 51, 52] were 

combined with the data from 11 new subjects to form a pool of 65 total subjec ts. The new data collection 

and all analysis was approved and supervised by the WPI Institutional Review Board. Each of the 65 

subjects provided written informed consent for their respective experiment. For the new data collection 

(similar methods were used in the prior experiments), subjects were seated and strapped via three belts 

into the custom-built straight-back chair shown in Fig. 1, with their right shoulder abducted 90o, the 

angle between their upper arm and forearm 90o, their forearm oriented in a parasaggital plane, and their 

supinated right wrist (palm perpendicular to the floor) tightly cuffed to a load cell (Vishay Tedea -

Huntleigh Model 1042, 75 kg full scale). Skin above the biceps and triceps muscles was vigorously 

scrubbed with an alcohol wipe and a bead of electrode gel was massaged into the overlying skin. Four 

custom-built bipolar EMG electrode-amplifiers were applied in a transverse row across each of the 

biceps and triceps muscle groups, midway between the elbow and the midpoint of the upper arm (to 

avoid the innervation zone proximally and the tendon distally), centered along the muscle mid -line. Each 

electrode-amplifier had a pair of 8 mm diameter, stainless steel, hemispherical contacts separated 1 cm 

edge-to-edge, oriented along the muscle’s long axis. The distance between adjacent electrode-amplifiers 

was ~1.75 cm. A reference electrode was gelled and secured to the lateral aspect of the upper arm, 
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between the flexion and extension electrodes. All electrodes were secured in place on the right arm with 

elastic bandages. Custom electronics amplified and filtered each EMG signal (CMRR > 90 dB at 60 Hz; 

8th-order Butterworth highpass at 15 Hz; 4th-order Butterworth lowpass at 1800 Hz) before being 

sampled at 4096 Hz with 16-bit resolution. The RMS EMG signal level at rest (representing equipment 

noise plus ambient physiological activity) was on average 5.0 ± 7.3% of the RMS EMG at 50% 

maximum voluntary contraction (MVC) for these 11 new subjects. The load cell (torque) signal was 

synchronously sampled at 4096 Hz with 16-bit resolution. 

All contractions were constant-posture. Subjects were provided a warm-up period. Separate 

extension and flexion MVCs were then measured in which subjects took 2–3 seconds to slowly ramp up 

to MVC and maintained that force for two seconds. The average load cell value during the contraction 

plateau was taken as the MVC. Five second duration, constant-force contractions at 50% MVC 

extension, 50% MVC flexion and at rest (arm removed from the wrist cuff) were next recorded. These 

contractions were used to calibrate whitening filters and to gain-normalize the EMG and force data [52, 

53], as further described below. Then, three tracking trials of 30 s duration were recorded during which 

the subjects used the load cell as a feedback signal to track a computer -generated torque target. The 

target moved on the screen in the pattern of a bandlimited (1 Hz) uniform random process, spanning 

50% MVC extension to 50% MVC flexion. Three minutes of rest were provided between trials to avoid 

cumulative fatigue. 

 
 

 

Fig. 1.  Subject seated in the experimental apparatus with right arm cuffed at the wrist to the load cell and electrodes applied over the biceps and triceps 

muscles. Inset shows six electrodes positioned transversely across the biceps muscles (with securing bandage removed for visualization). Middle four 
electrodes used for the analysis reported herein. Triceps electrodes were arranged similarly.  
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6.2.2 Methods of Analysis 

Analysis was performed offline in MATLAB. All EMG filters were designed as specified below, 

then applied in the forward and reverse time directions to achieve zero phase and the square of the 

magnitude response. Each EMG channel was powerline notch filtered (2nd-order IIR notch filter at the 

fundamental and each harmonic, bandwidth ≤ 1.5 Hz), since whitening at high frequencies is 

particularly susceptible to powerline interference. These filters attenuate powerline noise with limited 

reduction in signal statistical bandwidth [54]. Each EMG channel was then highpass filtered to reject 

motion artifacts (5th-order Butterworth, 15 Hz cutoff) and whitened using the adaptive whitening 

algorithm of [52] and [53]. Features were next extracted from each of the eight whitened EMG signals. 

EMGσ[n] was formed by rectifying each signal and WL[n] was computed as the absolute difference 

between adjacent samples [38, 39, 55], where n was the discrete-time sample index at the sampling rate 

of 4096 Hz. ZC[n] and SSC[n] [38, 39, 55] were formed by assigning a value of one to each sample 

corresponding to a thresholded zero crossing/slope sign change, and a value of zero otherwise. For each 

electrode, the noise threshold used for ZC and SSC was 3% of the RMS of a rest contraction. Two 

different EMG channel selection options were studied: (1) features from the four biceps and, separately, 

triceps channels were each ensemble averaged to form four-channel feature estimates (for EMG and 

WL, the channels were gain normalized prior to doing so [16]), or (2) features from each of the eight 

individual EMGs were retained separately. EMG features and the torque measurement were next 

lowpass filtered at 16 Hz, then downsampled to 40.96 Hz. This rate is fast enough to capture the system 

dynamics while also eliminating high-frequency noise outside of the torque signal band that can 

confound the ensuing system identification [30, 49]. Note that the lowpass filter stage prevents aliasing 

when downsampling, while simultaneously smoothing (/averaging) the EMG features. Further 

smoothing is inherently customized to each subject, provided by the dynamic models (described in the 

next paragraph).  Hence, the dynamic models optimize the final lowpass cutoff frequency (and shape) in 

order to minimize EMG-torque error [56]. 

The decimated extension and flexion EMG features from each subject (inputs) were related to their 

respective elbow torque (output) via one of two dynamic models. The first “quadratic” model 

incorporated a second degree polynomial (based on prior optimization of a subset of these data [31], and 

consistent with the nonlinearity in the EMG-force curve at the elbow [1]): 
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where m was the decimated discrete-time sample index, T[m] the measured torque, Q the number 

of time lags in the model (to provide dynamics), F the number of EMG features included (EMG was 

always included; optionally either one or all of the remaining three features was included), E the number 

of EMG channels (E=2 was used when the four biceps and four triceps channels were combined into 

two channels; E=8 was used when eight individual channels were retained), ci were the fit coefficients, 

and  V  were the EMG feature values. The fit coefficients were estimated using regularized (Moore -

Penrose inverse) linear least squares, in which singular values of the design matrix were discarded if 

their ratio to the largest singular value was less than a selected tolerance value (Tol) [31, 57]. Thus, the 

EMG features, and their squared values, were least squares fit to torque. 

The second “power-law” model was: 
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where r was also a fit parameter equal to a continuous-valued exponent applied to the feature value. 

This exponent directly implemented the EMG-force nonlinearity of Vredenbregt and Rau [1]. The fit 

coefficients (ci, ri) were fit using nonlinear least squares. Anecdotally, initial solution guesses for r of 

0.5, 1 and 2 were evaluated, with the ci coefficients then initialized via linear least squares (using a 

pseudo-inverse tolerance of 0.005). Only the r = 1 value converged rapidly for most subjects. When each 

of these three r values led to convergence, they arrived at the same minimum soution. Thus, r = 1 was 

used as the initial guess value. This initial guess value happens to be the optimal linear solution. 

Of the three available tracking trials, two were used for training and one for testing. Since the 

nonlinear minimizations were time-intensive and the sample size was already quite large for an EMG-

torque study (65 subjects), cross-validation was not used. Error is reported as the test set RMS error 

between the actual and EMG-estimated torque, normalized to maximum flexion torque for each subject. 

The first and last 2 s of data were excluded to account for filter startup and tail transients 2 . We 

investigated combinations of: model orders between Q=5 to 40, five distinct EMG feature selections 

(EMG only, EMG paired with each of the other three features and all four features), two EMG 

                                                 
2
 In real-time applications, all processing would be conducted using causal filters, eliminating the need to exclude any tail transient s.  (They would 

not exist.) The startup transient would occur at device power-up and thus not interfere with regular device operation. 
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channel selections (a four-channel biceps EMG with a four-channel triceps EMG, or retaining all 

eight individual electrodes), two models (quadratic and power-law), and various pseudo-inverse linear 

least squares tolerance values (starting at Tol=0.1 and decrementing by 0.002 to 310 , and 410  and 510 ). 

Note that we did not investigate every combination of model order and pseudo -inverse tolerance vs. the 

other parameters, since doing so would have been prohibitively time-consuming and the influence of 

model order and tolerance has already been characterized in prior work [31]. Rather, tolerance was fixed 

at Tol=0.005 while model order was varied; and model order was fixed at Q=15 while tolerance was 

varied. 

Finally, for comparison to conventional EMG-torque models, we also investigated cascade of a 

fixed, second-order Butterworth filter (cut-off frequency of 1.5 Hz , as optimized for a subset of these 

data in prior work [56]) after each of the extension and flexion EMGσ signals, as derived from single-

channel unwhitened EMG (selecting one of the central electrodes on each muscle). The gains of both 

filters (i.e., the fit coefficients for the Butterworth model) were calibrated from the test data using linear 

least squares (Tol = 0.005, two training trials, one test trial). 

Statistical evaluation used multivariate ANOVA (significance level of p = 0.05), with post hoc pair-

wise comparisons conducted using Tukey’s honestly significant difference test (which adjusts for 

multiple comparisons). 

6.3 Results 

Our strategy was to individually compare the three study techniques of EMG features, EMG 

channel combination and model vs. our “baseline” best prior technique [31] comprised of the EMG 

feature only, four-channel EMG processors and the quadratic polynomial model. As appropriate, we also 

assessed performance as a function of dynamic model order (Q) and pseudo-inverse tolerance (Tol). 

Then, we assessed improvement (beyond that found due to one study technique) when pairs of study 

techniques were combined. We do not report results from all three study techniques combined, since the 

nonlinear minimization frequency failed to converge—presumably due to the large number of features 

encountered when using all (five) features and eight individual EMG channels. Note that for several 

analyses, model order was fixed at Q=15 and the pseudo-inverse tolerance was fixed at Tol=0.005. 

These fixed values were determined based on prior analysis of a portion of these data [31] (and are 

consistent with our results reported herein). Example time-series EMG-torque estimates are shown in 
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Fig. 2. For comparison, the conventional Butterworth model had average ± std. dev. RMS error of 8.9 ± 

3.0 %MVCF. 

 

 

Fig. 2.  Example EMGσ-torque estimation results for selected models. Butterworth model (2 Hz  lowpass filter cut -off) exhibited an RMS error of 

10.2 %MVC. Eight-channel EMGσ model (Q = 15 order, pseudo-inverse tolerance of Tol = 0.005) exhibited an RMS error of 4.5 %MVC. “Truth” refers to 

the recorded load cell values. Subject LA04, trial 45.

 

6.3.1 Baseline Technique vs. One Improvement Technique 

EMG Feature Set: We began by comparing the results between the baseline technique (EMG only, 

four-channel EMG and quadratic model) vs. EMG feature set. Fig. 3, top, shows average error results vs. 

dynamic model order (Q) with pseudo-inverse tolerance fixed at Tol=0.005. Error reduced rapidly as 

model order initially increased and the full feature set showed the lowest error. A two -way ANOVA 

(Factors: model order, feature set) was significant for both main effects [F(35, 140)=17, p= 410  for 

model order; F(4, 140)=4.9, p= 310  for feature set], without interaction. Post hoc Tukey evaluation of 

model order found that lower orders exhibited higher errors than the highest orders for orders Q=5 

through 8. Results for model orders 9–40 did not differ. Post hoc Tukey differences were also found as a 

function of the feature set: EMG had higher error than either EMG+WL or the full set. At Q=15, the 

baseline technique error (mean ± std.) was 5.5 ± 2.3 %MVCF. Fig. 3, bottom, shows results vs. pseudo-

inverse tolerance (Tol) with model order fixed at Q=15. Error reduced rapidly as tolerance decreased, 
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and the full feature set showed the lowest error. To avoid the interactions at the larger tolerance values, a 

two-way ANOVA (Factors: tolerance, feature set 3 ) omitted tolerance values above 0.011. This 

comparison was only significant for the main effect of feature set [F(4, 40)=3.1, p=0.01], without 

interaction. Post hoc Tukey comparisons only found differences between the EMG-only feature vs. the 

full feature set. Overall, the full feature set generally produced lower errors. 

EMG Channel Selection: Next, we compared results between the baseline technique vs. individual 

EMG channels.  Fig. 4, top, shows results vs. model order Q (Tol fixed at 0.005). Error reduced as model 

order initially increased and the individual EMG channels had lower error. A two -way ANOVA (Factors: 

model order, EMG channel selection) was significant for both main effects [F(35, 35)=7.4, p= 610  for 

model order; F(1, 35)=96, p= 610  for channel selection], without interaction. Post hoc Tukey evaluation 

of model order found that lower orders had higher errors than the highest orders for orders Q=5 through 

7. Results for model orders 8–40 did not differ. Post hoc Tukey evaluation of EMG channel selection 

found individual EMG channels to have lower error. Fig. 4, bottom, shows results vs. tolerance (Q fixed 

at 15). For consistency, a two-way ANOVA (Factors: tolerance, EMG channel selection) omitted 

tolerance values above 0.011. This comparison was only significant for the main effect of EMG channel 

selection [F(1, 10)=34, p= 610 ; no interaction], with post hoc Tukey evaluation finding individual EMG 

channels to have lower error. Overall, using eight separate channels—as opposed to extension/flexion 

four-channel processors—consistently led to lower error. 

Power-Law Model: Then, we compared results between the baseline technique and the power-law 

model. Fig. 5 shows these results vs. model order (Q), with Tol=0.005 selected for the quadratic model. 

Tolerance was not examined as a separate factor, as it is not varied with the power -law model. Error 

using the power-law model was consistently lower than that of the baseline model. A two -way ANOVA 

(Factors: model order, model type) was significant for both main effects [F(35, 35)=9.4, p= 610  for 

model order; F(1, 35)=33, p= 610  for model type], without interaction. Post hoc Tukey evaluation of 

model order found that lower orders exhibited higher errors than the highest orders for orders Q=5 

through 7. Results for model orders 8–40 did not differ. Post hoc Tukey evaluation of model form found 

lower errors with the power-law model. Overall, the power-law model produced lower errors. 

 

                                                 
3
 Note that a three-way ANOVA with factors model order, tolerance and feature set was not pursued since results from all combinations of model 

order and tolerance were not computed (see Methods). Instead, model order and tolerance were analyzed in separate two-way ANOVAs (here and also 
below). 



 

84  

  

 
Fig. 3.  Baseline Model vs. Feature Set: Average RMS errors from 65 

subjects, four-channel EMG. Legend refers to both plots. Single-sided 

standard error bars shown for two of five feature sets (standard errors 
were similar for the other three feature sets) for selected Q values. Top: 

Results vs. quadratic model order (Q), using pseudo-inverse tolerance of 

Tol=0.005. Bottom: Results vs. pseudo-inverse tolerance, with quadratic 

model order Q=15. 

 

 
Fig. 4. Baseline Model vs. EMG Channel Selection: Average RMS 

errors from 65 subjects, EMG-only feature set. Single-sided standard 
error bars shown for selected Q values. Top: Results vs. quadratic model 

order (Q), using pseudo-inverse tolerance of Tol= 0.005. Bottom: 

Results vs. pseudo-inverse tolerance, with quadratic model order Q=15. 
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Fig. 5.  Baseline Model vs. Power-Law Model: Average RMS errors from 65 subjects, EMG-only feature set. Results vs. model order (Q). Quadratic model 

used pseudo-inverse tolerance of Tol=0.005. Single-sided standard error bars shown for selected Q values.

 

 

6.3.2 One Improvement Technique vs. Two 

We concluded from the above results that each of the three techniques improved EMG-torque 

performance individually. Thus we next evaluated pairs of techniques, comparing each pair to the 

individual improvements. For EMG feature sets, we only retained two options, EMG only and all 

features. The results above showed that the other feature set options had performance that fell between 

these two. Also, we eliminated the reporting of post hoc statistical evaluation for model order and 

tolerance, as their roles were well established by the results above and prior literature results [31]. Doing 

so placed our focus on the three improvement techniques. 

EMG Feature Set & EMG Channel Selection: Above, Fig. 3 showed the error improvements from 

the baseline technique due to EMG feature set and Fig. 4 to EMG channel selection. Here, Fig. 6 repeats 

both of these individual results, then adds the results when these techniques are combined (quadratic 

model with all features and eight individual EMG channels). For the results shown in Fig. 6, top, a two -

way ANOVA (Factors: model order, the three techniques) was significant for both main effects [F(35, 

70)=8.7, p=
610
 for model order; F(2, 70)=23, p=

610
 for technique], without interaction. Post hoc 

Tukey evaluation of technique found that using all EMG features with four-channel EMG had higher 

error than the other two techniques (EMGσ only, eight individual channels; all features, eight individual 

channels). At Q=15, the technique with all features and eight individual EMG channels had an error 

mean ± std. of 4.8 ± 2.2 %MVCF. The error results shown in Fig. 6, bottom, are high for all techniques 
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for large tolerance values and climb when using all features and eight individual channels for tolerances 

310 . A two-way ANOVA (Factors: tolerance values ≤0.011, the three techniques) was only significant 

for technique [F(2, 20)=4.2, p=0.02; no interaction]. Post hoc Tukey evaluation of technique found that 

using EMGσ only with eight individual channels exhibited lower error than the other two techniques. 

Nonetheless, Fig. 6 shows similar performance specifically in the region of the optimum tolerance value 

(e.g., Tol = 0.005), when comparing the technique of EMGσ only with eight individual channels to the 

technique of all features with eight individual channels. 

EMG Feature Set & Model Form: Above, Fig. 3 showed the error improvements due to EMG 

feature set and Fig. 5 to model form. Here, Fig. 7 repeats both of these individual results, then adds the 

results when these techniques are combined (four-channel EMG with all features and the power-law 

model). A two-way ANOVA (Factors: model order, the three techniques) was significant for the main 

effect of model order [F(35, 70)=13, p= 610 ], but not significant for the main effect of technique [F(2, 

70)=2.8, p=0.06], without interaction. Thus, this paired set of improvements did not reduce error beyond 

that found from each individual technique. At Q=15, each of the three techniques had an error mean ± 

std. of approximately 5.1 ± 2.1 %MVCF. 

EMG Channel Selection & Model Form: Above, Fig. 4 showed the error improvements due to eight 

individual EMG channels and Fig. 5 to model form.  Here, Fig. 8 repeats both of these individual results, 

then adds the results when these techniques are combined (EMG-only feature with eight individual 

EMG channels and the power-law model). A two-way ANOVA (Factors: model order, the three 

techniques) was significant for both main effects [F(35, 70)=14, p= 610 for model order; F(2, 70)=21, p=

610 for technique], without interaction. Post hoc Tukey evaluation of technique found that using four-

channel EMG with the power-law model had higher error than the other two techniques. At Q=15, the 

technique with eight individual EMG channels and the power-law model had an error mean ± std. of 4.7 

± 2.0 %MVCF. 
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Fig. 6.  Quadratic Model: All Features vs. Eight Individual EMG vs. 

Both. Average RMS errors from 65 subjects. Legend refers to both plots. 

Single-sided standard error bars shown for two of three feature sets 
(standard errors were similar for the third feature set) for selected Q 

values. Top: Results vs. quadratic model order (Q), using pseudo-inverse 

tolerance of Tol=0.005. Bottom: Results vs. pseudo-inverse tolerance, 

with quadratic model order Q=15. 

 

 
Fig. 7.  Four-Channel EMG: All Features vs. Power-Law Model vs. 

Both. Average RMS errors from 65 subjects. Results vs. model order 

(Q). Quadratic model used pseudo-inverse tolerance of Tol=0.005. 

Single-sided standard error bars shown for two of three feature sets 

(standard errors were similar for the third feature set) for selected Q 
values. 

 

 
Fig. 8. EMG Feature: Eight Individual EMG vs. Power-Law Model vs. 

Both. Average RMS errors from 65 subjects. Results vs. model order 

(Q). Quadratic model used pseudo-inverse tolerance of Tol=0.005. 

Single-sided standard error bars shown for two of three feature sets 

(standard errors were similar for the third feature set) for selected Q 

values. 

 

6.4 Discussion 

This study evaluated three techniques to reduce error in the EMG-torque relationship about the 

elbow—additional EMG features, EMG channel selection and EMG-force model form. Figs. 3–5 (and 

their associated statistical analyses) show that each of these techniques individually improved upon a 

“baseline” model that used only the EMG feature, four-channel EMG for each of the biceps and 
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triceps, and the quadratic polynomial model. Note that this baseline model already optimizes several 

processing steps, including using EMG signal whitening, selecting the degree of the polynomial model 

and selecting the pseudo-inverse tolerance [15, 16, 31]. Whitening has previously been shown to reduce 

the variance of EMGσ estimates [13-16], e.g. providing an ≈63% improvement in SNR for constant-

posture, constant-force elbow contractions when using a 245 ms smoothing window [15]. EMG 

whitening leads to significant performance improvements in EMG-torque estimation [17, 31], e.g. a 

14.1% reduction in RMS error during constant-posture, repetitive elbow exertions [17]. Whitening has 

also been shown to reduce the variance of WL and (to some extent) ZC estimates [55] (leading to 

performance improvements in multifunction prosthesis control [55]). The variance reduction is 

attributed to an increase in signal statistical bandwidth provided by whitening [13, 55]. Therefore, we 

would expect similar variance reduction in whitened estimates of the SSC feature. 

Of the three techniques, Figs. 6 and 8 show that using eight individual EMGs (as opposed to a four-

channel EMG for each of the biceps and triceps) provides the clearest advantage. The concept of 

combining the information from multiple electrodes sited over a large muscle assumes that the spatially 

diverse information represents different statistical samples of the same underlying stochastic process 

[12, 13]. The elbow contractions used herein were constrained to a single plane, reinforcing this 

assumption. Certainly, prior work has shown that four-channel EMG over the biceps and triceps leads to 

lower EMG-torque error than if only one biceps and one triceps EMG were used [12, 13, 30, 31], 

attributed largely to lower EMG variance [12, 13, 15-17]. However, our current results show that 

further error reduction is realized if the multiple EMG channels are used as separate inputs to the system 

identification model. Several concepts could explain this further improvement, all challenging the 

assumption that each electrode is stochastically sampling the same distribution. First, the individual 

electrodes could be sampling from distinct spatial regions with distinct neuromuscular control (i.e., 

neuromuscular compartments [46-48]). Second, we have anecdotally noticed that electrodes placed 

further from the muscle midline are more prone to crosstalk from the antagonist muscles, and that the 

EMG from such electrodes leads to a poorer EMG-torque estimate. The use of individual electrodes 

would permit the system identification model to de-emphasize those EMG channels that contribute less 

to reducing the EMG-torque error. Third, the quality of the EMG signal (e.g., signal to noise ratio) can 

vary electrode-to-electrode. When used as individual channels, the system identification model can de-

emphasize the noisy electrodes; but when combined into a four-channel EMG, the emphasis of 
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individual channels is purposely equalized [12, 16]. Future research should examine which EMG 

channels are more heavily weighted in these identified models. 

Because the decrease in EMG-force error due to eight individual EMG channels was robust to 

model form, it may be especially applicable to other nonlinear models used in the literature, such as 

parallel-cascade models [24] and neural networks [40, 42, 44, 45, 50]. All model forms, however, 

become increasingly ill-conditioned as more fit parameters are added, the relative importance of which 

may vary model form to model form. 

Figs. 6–8 show that the remaining two improvement techniques (EMG feature sets and EMG-force 

model form) each provide approximately the same error reduction—Fig. 6, top, shows that all features, 

eight individual EMG channels and the quadratic model (Q=15, Tol=0.005) had an error mean ± std. of 

4.8 ± 2.2 %MVCF.; while Fig. 8 shows that the EMG-only feature, eight individual EMG channels and 

the power-law model (Q=15) had an error mean ± std. of 4.7 ± 2.0 %MVCF. These error performances 

represent an ≈15% reduction in error compared to the baseline model error of 5.5 ± 2.3 %MVCF. The 

power-law model has the advantage of fulfilling the static EMG-force nonlinearity found by 

Vredenbregt and Rau [1] with a single exponential parameter per EMG channel, but the disadvantage of 

requiring significantly more computation time for determining fit coefficients via nonlinear least 

squares. A concern with using additional EMG features is their effect on the co nditioning of the 

linear/nonlinear least squares fit, since conditioning is inversely related to the number of fit coefficients 

[49]. In particular, Fig. 6, bottom, shows error increasing for tolerances below 310  when all four 

features for each of eight individual channels are fit using the quadratic model (64 coefficients in total). 

Tolerances below 310  provide progressively less regularization, the opposite of what is needed when 

the number of fit coefficients grows.  Hence, model error grows, likely due to overfitting.  As a result, 

the range of tolerance values over which error is minimum shrinks, making the modeling less reliable. 

Considering systematic errors in the EMG-torque techniques, the use of multiple features expands 

the model shapes that can be fit (i.e., beyond the shapes that can be accommodated when only using 

EMG as an input). The performance of EMG-torque models also suffer from random errors due to the 

stochastic nature of EMG. The uncorrelated components of the four EMG features would tend to 

average and reduce variance errors. (E.g., when one feature value is randomly above its “true” value, 

another feature might be below.) Hence, both systematic and stochastic improvements can result. Of 

course, a challenge is to improve EMG-torque performance due to these advantages, in spite of the 
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detrimental effects of overfitting (due to the increased number of parameters) and feature correlation 

(which, combined with overfitting, degrade the conditioning of the least squares fit). Future modeling 

might consider a compromise approach that only utilizes a sub-set of the additional features. 

For the quadratic polynomial model, we focused our attention on a model order of Q=15 and a 

tolerance of Tol=0.005. Our ANOVA results showed statistical differences (reductions) in error as model 

order increased from Q=5 to Q=7 or 8 (depending on the condition). Nonetheless, all of our graphical 

results show continuing decline in error up to about Q=15. Although we had a large sample size of 65 

subjects, it is likely that statistical power limited our ability to find statistical differences for orders 

above 8. In particular, paired statistical tests can be more powerful when assessing different treatments 

(i.e., EMG-force techniques) applied to the same data. For example, consider the technique that 

demonstrated the lowest average error: EMG-only feature, eight individual channels and the power-

law model (Fig. 8). If we successively compute paired sign tests [58] between adjacent model orders 

at/above Q=8, we find statistical differences (p<0.01) until comparing orders Q=12 to 13. Such 

comparisons support our choice of Q=15 (and are more fully detailed in [31]). A similar argument 

supports our use of Tol=0.005. 

Within the literature, it is difficult to directly compare EMG-torque results between studies, since 

error is a function of many variables, including the experimental conditions (e.g., constant -posture vs. 

freely moving) and experimental tasks (e.g., random, broadband torques vs. sinusoidal). Further, several 

different error measures are used within the literature. However, relative changes in performance in the 

same dataset, evaluated with the same error measure, should be more robust when compared. To that 

end, we have studied sub-portions of this data set in several published studies. The highest error of 19.2 

± 11.2 %MVCF was found when supplying single-channel, unwhitened EMGσ to a simple second-order 

Butterworth model, calibrated from 50% constant-force contractions [31]. Our results herein reduced the 

error to 8.9 ± 3.0 %MVCF when the single-channel, unwhitened EMGσ supplied to the Butterworth 

model was calibrated from two dynamic contractions. This error was reduced to 5.5 ± 2.3 %MVCF with 

our “baseline” method that used four-channel, whitened EMG and a quadratic nonlinearity (and FIR 

linear model). Finally, error was reduced to 4.7 ± 2.0 %MVCF (the primarily work reported herein) by 

substituting individual EMG channels (rather than grouping them, separately, from the biceps and 

triceps muscle groups) and the power-law model (or reduced to 4.8 ± 2.2 %MVCF by substituting 

individual EMG channels and all features). Thus, dramatic reduction in EMG-torque error has been 
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achieved overall. In many applications in clinical biomechanics and ergonomics assessment, electrodes 

would be mounted on a subject, calibration data recorded and then a clinical/experimental task 

completed in a single session. Since appropriate EMG-torque calibration data is required for these 

scenarios and computation is readily available, all of the performance gains realized by these modeling 

techniques could be utilized. For prosthesis control, however, there is some evidence that improved off-

line classification results do not always translate into improved on-line classification performance when 

assessed on standard prosthesis tasks [59, 60]. Although our research involved EMG-torque estimation 

and not EMG-based classification, similar concerns exist [61]. 

We limited this work to constant-posture contractions in order to reduce the complexity of a 

problem that already considers many modeling variables. In so doing, our results are directly relevant to 

prosthesis control when EMG is observed over remnant muscles whose posture is constrained (e.g., 

secured at both ends to the same bone), and in clinical/ergonomic assessments in which such postural 

constraint is appropriate. But, when joint angle is varied, additional study will be necessary.  That said, 

the reduction in RMS error can be thought of as a reduction of two error components: a variance error 

and a bias error. Those processing techniques that generally reduce variance (e.g., whitening, averaging 

due to multiple EMG channels, averaging due to multiple EMG features) should reduce EMG-torque 

error regardless of the experimental conditions. Techniques that reduce bias would likely need to be 

substituted with appropriate posture-varying models. The relative magnitude of variance vs. bias error 

can also change in posture-varying contractions. Nonetheless, our results should be informative to future 

studies of the reduction of both components of the RMS error in posture-varying contractions. 

6.5 Conclusion 

Our baseline technique for relating EMG to torque—EMG feature only, four-channel EMG from 

each of the biceps and triceps and a dynamic, quadratic nonlinear model—produced an error mean ± 

std. on this dataset of 5.5 ± 2.3 %MVCF. This baseline technique already includes several technique 

optimizations, including EMG signal whitening, multi-site EMG and the use of the quadratic 

nonlinearity [31]. Three technique improvements were individually applied. These improvements were: 

additional EMG features, the use of eight individual EMG channels and a power-law model. Each 

technique individually lowered EMG-torque fit error. Combining the techniques of additional features 

and individual channels reduced error to 4.8 ± 2.2 %MVCF, while combining individual channels with 
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the power-law model reduced error to 4.7 ± 2.0 %MVCF. These error performances represent an ≈15% 

reduction in error compared to the baseline model. Hence, these combined techniques represent a 

substantial improvement in performance. These results should be informative to applicatio n areas, 

including prosthesis control, clinical biomechanics and ergonomics assessment. 
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Chapter 7: Two degrees of freedom quasi-static EMG-force at 

the wrist using a minimum number of electrodes 

 

This chapter has been submitted as: Edward A. Clancy, Carlos Martinez-Luna, Marek Wartenberg, 

Chenyun Dai, Todd R. Farrell, "Two degrees of freedom quasi-static EMG-force at the wrist using a 

minimum number of electrodes."  

 

Abstract—Surface electromyogram-controlled powered hand/wrist prostheses return partial 

upper-limb function to limb-absent persons. Typically, one degree of freedom (DoF) is controlled at a 

time, with mode switching between DoFs. Recent research has explored using large -channel EMG 

systems to provide simultaneous, independent and proportional (SIP) control of two joints—but such 

systems are not practical in current commercial prostheses. Thus, we investigated optimal selection 

of a minimum number of EMG sites, targeting four sites for a two DoF controller. In a laboratory 

experiment with 10 able-bodied subjects and three limb-absent subjects, 16 conventional electrodes 

were placed about the proximal forearm. Subjects produced 1 -DoF and 2-DoF slowly force-varying 

contractions up to 30% maximum voluntary contraction (MVC). EMG standard deviation was 

related to forces via regularized regression. Backward stepwise selection was used to optimally retain 

progressively fewer electrodes. For 1-DoF models using two optimally retained electrodes (which 

mimics the current state of the art), subjects had average RMS errors of (depending on the DoF): 

7.1–9.5 %MVC for able-bodied and 13.7–17.1 %MVC for limb-absent subjects. For 2-DoF models, 

subjects using four electrodes had errors on 1-DoF trials of 6.7–8.5 %MVC for able -bodied and 11.9–

14.0 %MVC for limb-absent; and errors on 2-DoF trials of 9.9–11.2 %MVC for able -bodied and 

15.8–16.7 %MVC for limb-absent subjects. For each model, retaining more electrodes did not 

statistically improve performance. These results suggest that as few as four optimally sited electrodes 

could control two DoFs of SIP control at the wrist. 

 

 

 

Keywords—EMG, EMG-force, EMG signal processing, Electromyogram, Myoelectric control, 

Prosthesis, Prosthesis control 
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7.1 Introduction 

Most upper-limb absence is transradial or more distal (Dillingham et al., 2002). Typical commercial 

myoelectric hand-wrist prostheses return partial function by using residual forearm muscle surface 

electromyogram (EMG) signals to control hand closing/opening. Additional degrees of freedom (DoF), e.g. 

wrist rotation, are not controlled simultaneously; rather, mode switching sequentially activates additional 

DoFs (Parker et al., 2006). This limitation is problematic (Atkins et al., 1996; Pezzin et al., 2004), as many 

basic daily tasks require the simultaneous activation and control of two or more joints. 

Three notable techniques to provide multi-DoF control have been emerging. First, Kuiken and 

colleagues (Kuiken et al., 2004; Kuiken et al., 2009) pioneered “targeted muscle reinnervation” surgery in 

which certain muscles (e.g., pectoralis) are denervated, and then nerves which formerly innervated absent 

upper limb muscles are grafted to them. EMGs from the grafted muscles provide simultaneous, 

independent and proportional (SIP) control. The invasive and costly surgery and long recovery period (3 –6 

months) likely make this technique most attractive to those with bilateral and proximal limb-loss. 

Second, multifunction pattern recognition (recently commercialized (Coapt, Chicago, IL)) uses 

forearm EMGs to select between a small set of predefined movements (Boostani and Moradi, 2003; 

Englehart and Hudgins, 2003; Graupe and Cline, 1975; Hudgins et al., 1993; Parker, Englehart, 2006; 

Powell et al., 2014). All functions are comprised of one DoF of movement at a time—although this degree 

can be multi-joint. 

Third, studies have related forearm surface EMG to multiple DoF finger (Liu et al., 2013; Smith et al., 

2009; Smith et al., 2008) and/or hand-wrist (Ameri et al., 2014a; Ameri et al., 2014b; Jiang et al., 2009; 

Jiang et al., 2012b; Muceli and Farina, 2012; Muceli et al., 2014; Nielsen et al., 2011) forces or kinematics, 

primarily in able-bodied subjects. Preliminary studies utilized high-density electrode arrays (32–64+ 

channels) (Liu, Brown, 2013; Muceli and Farina, 2012; Muceli, Jiang, 2014) or indwelling electrodes 

(Kamavuako et al., 2012; Kamavuako et al., 2014; Smith and Hargrove, 2014). These studies demonstrated 

that intact forearm EMG encodes multiple DoFs of SIP information—but the high-density EMG 

arrays/indwelling electrodes are not viable in commercial prosthetic systems. Recently, conventional 

(bipolar) surface EMG systems with as few as 7–8 electrodes have been reported—an electrode quantity 

that is still high for most practical prosthesis systems. The electrodes are generally equally-spaced about the 

circumference of the forearm. Jang et al. (Jiang, Englehart, 2009) related eight electrodes to wrist forces of 

11 able-bodied subjects, achieving a multivariate R2 index of 77.5 ± 10.9% for two DoF tasks utilizing 

extension-flexion (Ext-Flx) and radial-ulnar deviation (Rad-Uln). Nielson et al. (Nielsen, Holmgaard, 

2011) related multiple EMG features from seven electrodes to wrist Ext-Flx with Rad-Uln forces, achieving 
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R2 values that exceeded 90% in 10 able-bodied subjects and averaged 72% in their one subject with 

congenital malformation. Jiang et al. (Jiang, Vest-Nielsen, 2012b) related seven electrodes to the 

kinematics of all three wrist DoFs. Three amputees with a long residual limb (≥20 cm) achieved a R2 

performance of 62.5 ± 8.50%, while five able-bodied subjects achieved a R2 performance of 72.0 ± 8.29%. 

Ameri et al. (Ameri, Kamavuako, 2014a) related eight EMG signals to 1- and 2-DoF target displacements. 

Ten able-bodied subjects achieved average R2 values from 82–90% and two limb-deficient subjects from 

76–84%, depending on the DoF. Fougner et al. (Fougner et al., 2014) applied only five electrodes over 

selected anatomical locations, and implemented a form of hybrid control between multi -level control and 

proportional control. Two able-bodied subjects could actuate a hand, a wrist or simultaneously activate both 

at a fixed-ratio co-active rate. This approach does not provide independent proportional control, but does 

provide simultaneous control and represents an improvement step that may be easier for the user to control. 

Amsuess et al. (Amsuess et al., 2016) used eight electrodes and combined sequential-simultaneous control 

to improve activity of daily living performance tasks in five able-bodied subjects and two amputees. 

Throughout all of this work, many different modeling techniques were evaluated (e.g., regression, 

regularized regression, neural networks, support vector machines), and studies used a wide selection of 

force or kinematic trajectories as the model output variable (Ameri et al. (Ameri, Scheme, 2014b) 

contrasted force vs. kinematic outputs; Jiang, Muceli and colleagues (Jiang et al., 2014; Muceli, Jiang, 

2014) developed models requiring minimal supervision). Recent studies have even combined EMG inputs 

with other modalities, such as kinematic signals (Blana et al., 2016). Most studies found that performance 

is inversely related to the number of DoFs/classes modeled and positively correlated to the number o f EMG 

channels. 

No study has specifically targeted two DoFs of SIP control from a minimum number of conventional 

surface electrodes. In particular, if as few as four electrodes could be used to provide 2 -DoF control, this 

number of conventional electrodes is already within the capability of commercial prostheses. Of course, 

determining the optimal location of a limited number of electrodes a priori is difficult (Cavanaugh et al., 

1983) for two DoF control. Hence, our research applied 16 electrodes packed tightly about the 

circumference of the proximal forearm and then used backward stepwise selection (off-line) to 

progressively reduce the number of electrodes—optimally removing the least useful electrode at each step. 

This proximal location was selected since it is applicable to the broadest range of residual forearm lengths. 

Clinically, we foresee a procedure in which the optimal four of 16 electrode sites are determined via our 

technique during the fitting stage by a prosthetist; then these four optimal sites are fixed into the final 

prosthesis socket. Herein, we studied 2-DoF combinations of the three possible wrist DoFs: Ext-Flx, Rad-
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Uln and pronation-supination (Pro-Sup). We did so because the literature is unclear as to which DoF pair is 

best for prosthesis control. We elicited slowly force/moment-varying contractions (“quasi-static”) for this 

initial exploration, so as to avoid the additional complexity of dynamical system modeling. Our results 

suggest that optimal selection of electrode sites may lead to a viable four -channel prosthesis that can 

provide SIP control of two wrist DoFs. 

 

7.2 Methods 

 

7.2.1 Experimental apparatus and procedures 

Experiments were approved and supervised by the New England IRB (Newton, MA). Each subject 

provided written informed consent. Ten able-bodied subjects (6 female, 4 male; aged 22–61 years) and 

three subjects with transradial limb absence (3 male; aged 24–60 years; 8–50 years of limb absence) each 

successfully completed one experiment lasting 3–4 hours. Data from two additional limb-absent subjects 

were excluded, one due to unusable MVC values and one due to poor EMG quality. 

Able-Bodied Subjects, Setup: Skin about the proximal forearm of the dominant arm was scrubbed 

vigorously with an alcohol wipe and a bead of electrode gel was applied. Sixteen bipolar EMG electrodes 

were placed equidistant in a row, transversely about the forearm, each centered 5 cm distal from the crease 

of the elbow, with one electrode aligned at the most dorsal aspect. Each electrode pair consisted of 5 mm 

diameter, stainless steel, hemispherical contacts separated 1 cm edge-to-edge, oriented along the forearm’s 

long axis. The average transverse spacing between bipolar electrodes was 1.6 ± 0.24 cm. A reference 

electrode was gelled and secured on the ventral forearm, just distal to the row of bipolar electrodes. The 

EMG signals from each bipolar electrode were cabled to a differential amplifier circuit (Liberating 

Technologies, Inc. BE328 amplifier; pass band from 30–500 Hz, CMRR > 100 dB over the pass band) and 

then selectable gain was applied to maximize ADC resolution without signal saturation. The RMS EMG 

signal level at rest (representing equipment and electrode-skin interface noise plus ambient physiological 

activity) averaged 7.1 ± 6.4% (median of 3.8%) of the RMS EMG at 50% maximum voluntary contraction 

(MVC). This rest level is marginally higher than that of our previous laboratory work (Clancy et al., 2005; 

Clancy and Farry, 2000; Liu et al., 2015), perhaps due to cabling the EMG pre-amplifiers 16 cm from the 

electrode contacts in a standard “remote” prosthesis configuration (as opposed to using cased electrodes 

with embedded pre-amplifiers in past work). 

Able-bodied subjects sat at the experimental apparatus, as shown in Fig. 1 (top). A thermo -formable 

plastic hand splint was rigidly attached to a load cell (AMTI, Watertown, MA; model MC3A-100 
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transducer, Gen 5 signal conditioner). The metacarpal region of the dominant hand was tightly secured to 

the hand splint using Velcro straps, while leaving the phalanges free. The palm of the hand was 

perpendicular with the plane of the floor, the hand was in a neutral position with respect to the wrist, the 

forearm was parallel to the plane of the floor and the shoulder was flexed 45o forward from the anatomical 

position along the sagittal plane. The elbow was supported just distal to the olecrano n process. The load 

cell measured three DoFs, which were displayed on a computer screen in front of the subject via an 

arrowhead in which wrist Ext-Flx force specified its x-axis location, Rad-Uln force its y-axis location and 

Pro-Sup moment its rotation. A second computer-generated target arrowhead could also be displayed. The 

three load cell signals and the 16 EMG channels were each sampled at 2048 Hz with 16-bit resolution. 

 

Fig. 1.  Experimental apparatus. 

Dominant/able hand was tightly secured via thermo-

formable plastic and Velcro to six-axis load cell. 

Sixteen electrodes (not visible) were secured about 

the proximal aspect of the dominant/limb-absent 

forearm. Top: Able-bodied configuration. Wrist was 

maintained in a neutral position by a padded 

restraint. Bottom: Limb-absent configuration. 

Mirrored display screen at right. 

 

 

Able-Bodied Subjects, Contractions: Contractions were constant-posture about the wrist. Subjects 

were instructed to relax all muscles not involved in the task (including their phalanges). Trials were 

conducted at an interval of at least two minutes, to avoid accumulated fatigue. Subjects were released from 
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the hand cuff for rest between experiment stages. Initially, subjects practiced the contraction tasks for 10–

20 minutes to become familiar with the apparatus and experimental protocol. Next, subjects performed 

MVCs in each of wrist extension, flexion, radial deviation, ulnar deviation, pronation and supination. 

Subjects increased force to their maximum over 2–3 s, then maintained maximum for 5 s. Verbal 

encouragement was provided. The average load cell value during the contraction plateau was the MVC. 

One-DoF quasi-static trials were then conducted separately for each DoF (Fig. 2). For Ext -Flx, 

subjects followed the target arrowhead as it took 30 s to linearly ramp from zero force, to Peak force level 

in flexion, to Peak force level in extension, back to Peak force level in flexion and then back to zero force. 

This Peak force, in N, equaled half the 30 %MVC Ext-Flx force range: Peak = (|30 %MVC Flx| + 

|30 %MVC Ext|)/2.  This trajectory provided a consistent, subject-scaled force range and a constant rate of 

change of force (within subject) in physical units. The subject-controlled arrowhead was only permitted to 

move along the active DoF, to avoid distraction from unused DoFs. Analogous ramp trajectories were used 

for Rad-Uln and Pro-Sup trials, four trials per DoF (12 trials total, block randomized by DoF).  

Next, 2-DoF quasi-static ramp trials were conducted (Fig. 4). Two DoFs were active and their target 

effort levels were coincident. Thus, both active DoFs had their effort levels rise and fall simultaneously. 

The same “quasi-static” 30 s ramp trajectory was used. Two sets of six (block randomized) trials were 

conducted (12 trials total), the trials being identified by the contraction directions associated with the first 

effort direction during the ramp (Flx coincident with Uln, Flx with Rad, Flx with Pro, Flx with Sup, Uln 

with Pro, Uln with Sup). The subject-controlled arrowhead was only permitted to move/rotate along the 

two active DoFs. 

Limb-Absent Subjects: The same general procedure was used, with a few differences. For warm-up, 

subjects practiced mirrored movements for the three DoFs using a mirror box (Mirror Box Therapy, 

Stockport, England; Hand/Wrist model) prior to more extensive practice of constant -posture tasks in the 

experimental apparatus. Their sound-side wrist was secured to the load cell that was re-positioned such that 

their elbow angle was reduced to 100o (Fig. 1, bottom). A cupped support contacted the proximal edge of 

the olecranon process and distal portion of the upper arm, securing the upper arm via taught-fitting Velcro. 

This posture facilitated bilateral symmetry, since the arm on their limb -absent side was similarly supported 

and secured, and the 16 electrodes placed on this forearm. Limb -absent subjects completed mirrored 

contractions, using forces/moment on their sound side for feedback (Ameri, Scheme, 2014b; Clancy et al., 

2015; Hahne et al., 2014; Jiang, Vest-Nielsen, 2012b; Muceli and Farina, 2012; Nielsen, Holmgaard, 2011). 

Additionally, a mirrored screen display showed two graphs, one showing the subject-controlled and target 

arrowheads for the sound side and a second which mirrored this display for the limb -absent side. Subjects 
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were instructed to use the muscles in the forearm on their limb-absent side to mirror the forces/moment 

actually generated on their sound side. EMG from their limb-absent side was related to forces generated on 

their sound side. 

 

7.2.2 Methods of analysis 

Pre-Processing: Analysis was performed offline in MATLAB (The MathWorks, Inc., Natick, MA) and 

used causal processing, appropriate for future real-time implementation. Each EMG channel was highpass 

filtered (fifth-order Butterworth, cut-off at 15 Hz) and notch filtered at the power line frequency (second-

order IIR filter at 60 Hz, notch bandwidth of 1 Hz). The narrow notch bandwidth greatly attenuated power 

line interference, with limited loss of signal power. An estimate of EMG standard deviation (EMGσ) was 

formed as the mean absolute value of the notched signal followed by decimation to 4.096 Hz. Decimation, 

(MATLAB “decimate” function) incorporated lowpass filtering at 1.6 Hz (Chebyshev Type 1 filter, ninth-

order, 0.05 dB peak-to-peak passband ripple). This lowpass filter served the same function as a smoothing 

window. Ext-Flx force was normalized to the Ext-Flx MVC ranges. Rad-Uln force and Pro-Sup moment 

were similarly normalized. Each mechanical signal was then decimated to 4.096 Hz. Thus, the complete 

input-output data set for EMG-force modeling was sampled at 4.096 Hz—approximately ten times the 

bandwidth of the output force/moment signal (which is preferred for system identification (Clancy et al., 

2006; Ljung, 1999)). 

One-DoF Models: For comparison to existing prosthesis control, 1-DoF linear models were fit for 

each subject, using the 1-DoF trials. For Ext-Flx, EMGs were least squares fit to Ext-Flx force (the 

remaining force and moment were ignored), initially using all 16 electrodes. Dynamics were not included 

in the model due to the slow rate of change of forces. The pseudo-inverse technique was used to regularize 

the least squares fit, in which singular values were removed if the ratio of that singular value to the largest 

singular value in the design matrix was less than a tolerance value. Via preliminary a nalysis, a tolerance 

value of 0.01 was selected, consistent with prior work (Clancy et al., 2012; Press et al., 1994). Two 1-DoF 

trials for Ext-Flx were used for model training, with performance taken as the RMS error between the 

known force and the EMG-estimated force, averaged across these two training trials. This error was 

expressed in %MVC. Previous research has shown lower test error when combining multiple training trials 

into one longer training set (Clancy, Liu, 2012). Backward stepwise selection was then used to 

progressively reduce the number of EMG channels (i.e., leaving out the channel whose absence resulted in 

the lowest error), making all decisions only on the training data. In this manner, the complete training 

operation—including electrode selection—is conducted with the training data. The two remaining 1-DoF 
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trials were used for testing at each step (normalized RMS error, average of the two trials). The entire 

process was repeated after switching training and testing data, with the average RMS error from this two-

fold cross validation used as the overall error. Noting that correlated models are less statistically efficient, 

two-fold cross validation was selected for computational efficiency in lieu of exhaustive cross validation. 

The analogous process was used for 1-DoF models relating EMG to Rad-Uln force and Pro-Sup moment. 

Two-DoF Models: Next, 2-DoF linear models were fit. The EMG-force model and backward stepwise 

selection were applied identically, except that the model always simultaneously estimated two mechanical 

DoFs (the third, unused mechanical force/moment was ignored). Each model fit produced two sets of 

coefficients, one per DoF. The model training data either consisted of two 1 -DoF trials from each of the two 

DoFs (representing the simplest method by which a prosthesis controller might be trained), or two 2-DoF 

trials from each of the two DoF pairs, or both of these trial groupings (representing the most exhaustive 

method by which a prosthesis controller might be trained). During backward selection, RMS error was 

assessed on the training data (both DoFs). For testing, RMS error was assessed on the remaining trials, 

separately for 1-DoF trials (four trials) and 2-DoF trials (four trials). In either case, error was always 

assessed across the two available DoFs. (When assessing 1-DoF trials for these 2-DoF models, the second 

mechanical dimension would be expected to remain near a zero value throughout the trial.) The 1 -DoF 

assessments were useful to compare vs. typical prostheses, which only control 1 -DoF at a time. Ideally, the 

addition of 2-DoF control would not serve as a detriment to 1-DoF tasks. The trial data were switched and 

the overall error assigned as the average of the two-fold cross validation. 

Statistics: Statistical evaluation used multivariate ANOVA, with post hoc pair-wise comparisons 

conducted using Tukey’s honestly significant difference test (which adjusts for multiple comparisons). A 

significance level of p = 0.05 was used. 

 

7.3 Results 

 
Our analysis and models evaluated three 1-DoF contractions (Ext-Flx, Rad-Uln, Pro-Sup), their three 

2-DoF co-contraction combinations (with different training conditions) and the number of electrodes used 

(1–16). Results are reported separately for able-bodied and amputee subjects. 

 

7.3.1 One-DoF models, able-bodied subjects 

Fig. 2 shows sample time-series EMG-force test results for the 1-DoF models (i.e., separate models 

formed for each DoF from trials that only excited each respective DoF) for an able -bodied subject. Table 1 
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and Fig. 3 show summary results. A two-way ANOVA was computed (factors: DoF and number of 

electrodes). Both main effects were significant (p< 610 ), with no interaction. Tukey post hoc comparisons 

found that Pro-Sup errors were significantly higher than the other two DoFs (p<0.01), and that the only 

statistical differences between number of channels was when comparing one channel (highest error) to each 

other number of channels (p< 610  for each pair). In addition, Table 1 (row 1) shows these RMS errors for 

two electrodes—typical in a commercial 1-DoF prosthesis controller. Two-channel results for 1-DoF 

represent the state-of-the art for this contraction task.  

 
 

Fig. 2.  Example time-series plots of 1-degree-of-

freedom models, able-bodied subject. Solid lines are 

actual forces/moment, dashed lines are estimated 

using two EMG channels. 

 
 

Fig. 3.  Summary results: 1-degree-of- freedom 

models, ten able-bodied subjects. Error lines show 

one standard deviation above the mean. 

 

 

7.3.2 Two-DoF models, able-bodied subjects 

Two-DoF models always estimated both DoFs simultaneously. Fig. 4 shows sample time-series EMG-

force test results during 2-DoF (co-contraction) trials from an able-bodied subject. Table 1 and Fig. 5 show 

summary results. 

 For 2-DOF model errors assessed on the 1-DoF trials (Fig. 5, top), a three-way ANOVA (factors: DoF, 

number of electrodes and training condition—either 1-DoF trials, 2-DoF trials or both) found that training 

condition interacted with number of electrodes. Thus, separate two-way ANOVAs were computed with 

each of the training conditions fixed. Results when training with 2 -DoF trails were inconclusive, due to 

interaction. Results when training with 1-DoF trials or both were similar. Both main factors (DoF and 

number of electrodes) were significant (p< 610 ), without interaction. Tukey post hoc analysis of DoF found 
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Ext-Flx with Pro-Sup to have higher errors than either of the other two DoF combinations (p< 610 ). For 

number of electrodes, one electrode always exhibited higher error than more than one (p< 610 ); and two 

electrodes exhibited higher error than either three or more (when training with 1 -DoF trials, p<0.02), or 

four or more (when training with 1- and 2-DoF trials, p<0.002) electrodes. Thus, performance improved as 

the selected number of channels increased from one channel, with performance stabilizing (statistically) at 

3–4 channels. In addition, Table 1 (row 2) shows these RMS errors for four electrodes (the goal minimum 

number of electrodes for a commercial 2-DoF prosthesis controller). Lastly, we also computed a two-way 

ANOVA with number of electrodes fixed at the preferred value of four. Both main factors (DoF, training 

condition) were significant (p≤0.01), without interaction. Tukey post hoc analysis found Ext-Flx with Pro-

Sup DoF to have higher errors than either of the other two DoF combinations (p≤0.03) and training with 

only 2-DoF trials to have higher errors than either of the other two training conditions (p< 610 ). 

For 2-DoF model errors assessed on the 2-DoF trials (Fig. 5, bottom), a three-way ANOVA (factors: 

DoF, number of electrodes and training condition) found that training condition interacted with DoF and 

number of electrodes. Thus, separate two-way ANOVAs were computed with each of the training 

conditions fixed. Results found no interactions. When training with 1-DoF trials, only the main effect of 

DoF was significant, with Tukey post hoc analysis finding Ext-Flx with Rad-Uln to have lower errors than 

either of the other two DoF combinations (p< 310 ). When training with either 2-DoF trials or both 1- and 2-

DoF trials, only the main effect of number of electrodes was significant. In both ANOVAs, Tukey post hoc 

analysis found that selection down to one electrode gave higher error than three or more electrodes (p< 510 ) 

and selection down to two electrodes gave higher error than six or more electrodes (p≤0.03). Errors when 

selecting down to three electrodes did not differ from when selecting four or more electrodes. In addition, 

Table 1 (rows 3–4) shows these RMS errors for four electrodes. Overall, performance improved when 

increasing from one electrode to approximately 3–6.  Lastly we also computed a two-way ANOVA with 

number of electrodes fixed at the preferred value of four (factors: DoF and training condition). Only the 

main effect of training condition was significant (p< 310 ), without interaction. Tukey post hoc analysis 

found that training with only 1-DoF trials had higher errors than either of the other two training conditions 

(p<0.004). 
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Fig. 4.  Example time-series plots of 2-degree-

of- freedom models applied to co-contraction trials 

from able-bodied subject. Key: solid lines=actual 

forces, dashed=estimated using four EMG channels; 

blue=Ext-Flx, red=Rad-Uln. Positive %MVC 

corresponds to Ext-Rad. Four EMG channels and 

training from both 1- and 2-DoF trials. 

 
 

Fig. 5.  Summary results: 2-degree-of-freedom 

(DoF) models, ten able-bodied subjects, training 

from both 1- and 2-DoF models. Top: tested on 1-

DoF trials. Bottom: tested on 2-DoF trials. Error 

lines show one standard deviation above the mean. 

 

 

                                                                                                                     Table 1 
                                                                         Mean ± std. dev. RMS errors (%MVC), ten able-bodied subjects. 

Condition DoF(s) 

1-DoF Models 

(2 e lectrodes) 

Ext-Flx Rad-Uln Pro-Sup 

Assessed on 1-DoF trials 7.3 ± 2.4 7.1 ± 1.8 9.5 ± 3.6 

 
 

   

2-DoF Models 

(4 e lectrodes) 

Ext-Flx & 

Rad-Uln 

Ext-Flx & 

Pro-Sup 

Rad-Uln & 

Pro-Sup 
Assessed on 1-DoF trials:    

 T rain with 1-DoF trials 6.7 ± 2.0 8.5 ± 2.2 7.4 ± 1.5 

 Train with 2- DoF trials 12.5 ± 5.2 14.0 ± 2.7 11.0 ± 1.0 

 Train with 1-, 2- DoF trials 7.1 ± 2.0 8.8 ± 2.0 7.6 ± 1.4 

Assessed on 2-DoF trials:    

 T rain with 1-DoF trials 13.1 ± 5.4 15.5 ± 4.0 15.7 ± 7.2 

 Train with 2-DoF trials 11.7 ± 5.4 11.3 ± 3.0 10.6 ± 2.1 

 Train with 1-, 2-DoF trials 9.9 ± 2.9 10.5 ± 1.6 11.2 ± 2.1 

 

 

7.3.3 Interposing electrode distance, able-bodied subjects 

It is useful to describe the extent to which the algorithm is selecting electrodes from diverse locations 

about the forearm. For 1-DoF models with two electrodes, there are two distances between the selected 

electrodes, measured in number of interposing electrodes. The average interposing distance must equal 8 
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electrodes (out of 16 total). The left plot of Fig. 6 shows the distribution of the minimum interposing 

distances, aggregating the separate results from electrode selection from the three DoFs, two cross-

validations and ten subjects. The mean ± std. dev. distance was 31 ± 14% of forearm circumference. For 2-

DoF models, we considered the case of training with both 1- and 2-DoF trials and selection to four 

electrodes. Thus, there are four interposing distances whose average must equal 4 electrodes. The right plot 

of Fig. 6 shows the distribution from each such interposing distance, aggregating the separate results from 

electrode selection from the three DoFs, two cross-validations and ten subjects. The mean ± std. dev. 

distance was 25 ± 14% of forearm circumference. Note that when an interposing space of, for example, 11 

electrodes is found, the remaining three interposing spaces from that model must be small, such that the 

sum of the four interposing spaces from that model equals 16. Overall, the selected electrodes tended not to 

be adjacent, but were also not necessarily equally-spaced about the forearm. 

 

 

Fig. 6.  Distribution of interposing distances, 

all degrees-of-freedom (DoFs). Left shows 

proportion of minimum distances for the 1-DoF 

models using two electrodes. Right shows the 

proportion of each of the four interposing distances 

for the 2-DoF models, trained using both 1- and 2-

DoF trials, using four electrodes. Total of 16 

electrodes/subject. 

 

 

 

 

 

 

7.3.4 One-DoF models, limb-absent subjects 

Fig. 7 shows sample time-series EMG-force test results for the 1-DoF models (i.e., separate models 

formed for each DoF from trials that only excited each respective DoF) from a limb -absent subject. Fig. 8 

shows summary results. Table 2 shows RMS error for 1-DoF models using two electrodes and 2-DoF 

models using four electrodes. All of the errors were large compared to those of the able -bodied subjects. A 

two-way ANOVA (factors: DoF and number of electrodes) found the main effect of DoF was significant 

 610p , with no interaction. Tukey post hoc analysis found Rad-Uln to have higher error then either of 

Ext-Flx or Pro-Sup (p<0.02). 
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Fig. 7.  Example time-series plots of 1-degree-of-

freedom models, limb-absent subject. Solid lines are 

actual forces/moment from sound side, dashed lines are 

estimated using two EMG channels of limb-absent side. 

 
 

Fig. 8.  Summary results: 1-degree-of- freedom 

models, three limb-absent subjects. Error lines show one 

standard deviation above the mean. Note y-axis scale 

differs from that of other bar plot result figures. 

 
Table 2 

Mean ± std. dev. RMS errors (%MVC), three limb-absent subjects. 
Condition DoF(s) 

1-DoF Models 
(2 e lectrodes) 

Ext-Flx Rad-Uln Pro-Sup 

Assessed on 1-DoF trials 13.7 ± 1.2 17.1 ± 4.1 13.8 ± 2.1 
 

 

   

2-DoF Models 
(4 e lectrodes) 

Ext-Flx & 
Rad-Uln 

Ext-Flx & 
Pro-Sup 

Rad-Uln & 
Pro-Sup 

Assessed on 1-DoF trials:    

T rain with 1-DoF trials 11.9 ± 1.3 14.0 ± 2.7 12.5 ± 2.5 

Train with 2- DoF trials 38.4 ± 7.2 35.9 ± 18.6 19.5 ± 3.4 

Train with 1-, 2- DoF trials 12.3 ± 1.4 13.9 ± 2.4 11.9 ± 2.1 

Assessed on 2-DoF trials:    

T rain with 1-DoF trials 20.2 ± 2.5 21.0 ± 5.4 17.9 ± 3.9 

Train with 2-DoF trials 24.2 ± 2.2 20.0 ± 3.2 16.6 ± 1.8 

Train with 1-, 2-DoF trials 16.3 ± 1.0 16.7 ± 2.8 15.8 ± 0.4 

 

7.3.5 Two-DoF models, limb-absent subjects 

Fig. 9 shows sample time-series test results of simultaneous EMG-based estimation of Ext-Flx forces 

with Pro-Sup moments during 2-DoF (co-contraction) trials from a limb-absent subject. Table 2 and Fig. 10 

show summary results. All errors were large when compared to the able-bodied subjects. 

For 2-DoF model errors assessed with the 1-DoF trials (Fig. 10, top), a three-way ANOVA (factors: 

DoF, number of electrodes and training condition) found that training condition interacted with DoF and 

number of electrodes. Thus, separate two-way ANOVAs were computed with each of the training 

conditions fixed. These three ANOVAs each found a significant difference only for the main effect of DoF 

(p<0.01), without interactions. Tukey post hoc analysis found Ext-Flx with Pro-Sup to have higher errors 
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than either of the other two DoF combinations when training with 1-DoF, or 1- and 2-DoF trials (p<0.03); 

and for Rad-Uln with Pro-Sup to have lower errors than either of the other two DoF combinations when 

training with 2-DoF trials (p<0.03) Lastly, we also computed a two-way ANOVA with number of electrodes 

fixed at the preferred value of four (factors: DoF and training condition). This comparison was only 

significant for training condition (p< 610 ), with no interaction. Tukey post hoc analysis showed that training 

with only the 2-DoF trials had higher error than both of the other training conditions (p< 410 ). 

For 2-DoF model errors assessed with the 2-DoF trials (Fig. 10, bottom), a three-way ANOVA 

(factors: DoF, number of electrodes and training condition) found an interaction between DoF and training 

condition. Thus, separate two-way ANOVAs were computed with each of the training conditions fixed. 

None found interactions. When training with 1-DoF trials, no main effects were found. When training with 

2-DoF trials, the main effect of DoF was significant (p< 610 ); and Tukey post hoc analysis found Ext-Flx 

with Rad-Uln to have higher errors than either of the other two DoF combinations (p< 610 ). When training 

with 1- and 2-DoF trials, the main effect of DoF was significant (p=0.01); and Tukey post hoc analysis 

found Ext-Flx with Pro-Sup to have higher errors than Rad-Uln with Pro-Sup (p=0.01). Lastly we also 

computed a two-way ANOVA with number of electrodes fixed at the preferred value of four (factors: DoF 

and training condition). Only the main effect of training condition was significant (p=0.02), without 

interaction. Tukey post hoc analysis found that training with only 2-DoF trails had higher error than 

training with both 1- and 2-DoF trials (p=0.02) 
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Fig. 9.  Example time-series plots of 2-degree-of-

freedom (DoF) models applied to co-contraction 

trials from limb-absent subject. Key: solid 

lines=actual forces from sound side, 

dashed=estimated from four EMG channels of limb-

absent side; blue=Ext-Flx, green=Pro-Sup. 

Positive %MVC corresponds to Ext/Pro. Four EMG 

channels, training from both 1- and 2-DoF trials.  
 

Fig. 10.  Summary results: 2-degree-of- freedom 

models, three limb-absent subjects, training from 

both 1- and 2-DoF trials. Top: tested on 1-DoF 

trials. Bottom: tested on 2-DoF trials. Error lines 

show one standard deviation above the mean. 

 

7.3.6 Interposing electrode distance, limb-absent subjects 

Methods identical to those for the able-subjects were used to produce these results. Distribution plots 

were not developed, since the samples size is much smaller for limb-absent subjects. For 1-DoF models 

with two electrodes, the mean ± std. dev. of the minimum distances between selected electrodes was 28 ± 

14% of forearm circumference. For 2-DoF models, trained with both 1- and 2-DoF trials and selection to 

four electrodes, the mean ± std. dev. of each distance was 25 ± 15% of forearm circumference. These 

results are similar to those of the able-bodied subjects. 

 

7.4 Discussion 

7.4.1 Discussion of able-bodied results 

An existing prosthesis control strategy is the use of two electrodes to provide proportional control of 

one DoF. When our 1-DoF tasks were used to produce 1-DoF models, Table 1 shows average EMG-force 

errors for able-bodied subjects of 7.1–9.5 %MVC, depending on the DoF. Our interest was in the design of 

EMG-based controllers using as few as four electrodes that could perform comparably in two DoFs. The 
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second row of Table 1 shows that SIP estimation of two DoFs assessed with the same 1 -DoF tasks 

exhibited average errors between 6.7–8.5 %MVC, depending on the DoFs. (Ideally, we desire that 2 -DoF 

control retains low error even when operated on only 1-DoF tasks.) Direct comparison of these RMS values 

is not appropriate—during 1-DoF tasks, our 2-DoF models simultaneously assess errors in both DoFs, 

however only one DoF is active while the second DoF has forces near zero. Nonetheless, low errors were 

achieved in the 2-DoF models with four electrodes; additional electrodes provided no statistically 

significant advantage. 

When a 2-DoF task was used for assessment, the errors grew. This increase is consistent with an 

increase in the average effort level—both DoFs were active. Four-channel versions of these 2-DoF models 

performed poorest when trained from only 1-DoF trials (bottom row of Table 1). This result is unfortunate, 

as training from 1-DoF trials would be simpler. Lower errors when including 2 -DoF trials may be due to 

the wider range of the model space explored, or simply due to the noise averaging effect of a larger t raining 

set when using both 1- and 2-DoF trials (Clancy, Liu, 2012). These overall results are consistent with much 

of the developing EMG-force research related to the wrist, extending acceptable 2 -DoF performance to a 

minimum number of electrodes (e.g., four). In particular, for 1 -DoF models (Fig. 3), the able-bodied results 

show that using two optimally sited electrodes are significantly better than one, and additional electrodes 

beyond two provide limited benefit. For 2-DoF models (Fig. 5), errors generally decreased progressively as 

the number of selected electrodes increased from one to four, with little additional improvement thereafter. 

Of the three possible DoF combinations that could be utilized for control, our results suggested some 

(limited) preference for Ext-Flx paired with Rad-Uln and against Ext-Flx paired with Pro-Sup. 

 

7.4.2 Discussion of limb-absent results 

As found in prior studies (Ameri, Kamavuako, 2014a; Jiang, Vest-Nielsen, 2012b; Nielsen, 

Holmgaard, 2011), force estimation errors for the limb-absent subjects were universally much higher than 

those from the able-bodied subjects. Average errors above 15 %MVC are particularly problematic, as they 

are more than half the experimental force range. Our models require an output signal (force/moment) in 

order to estimate the model parameters; but, limb-absent subjects cannot directly provide this information. 

We, therefore, utilized bilateral mirrored contractions. An alternative approach is for the subject to only use 

their phantom limb on their affected side to match the effort associated with the location and/or orientation 

of the computer screen target (Ameri, Kamavuako, 2014a; Ameri, Scheme, 2014b). In neither case does a 

limb-absent subject benefit from afferent feedback. Hence, less accurate muscular activation and 

measurement is likely, leading to higher EMG-force errors. A better understanding of the limitations 
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imposed by these surrogate force measures might lead to better EMG-force performance. In addition, limb-

absent subjects may require substantially more training than was made available to them in this single-

session study (Hahne et al., 2015; Powell, Kaliki, 2014). Each of our limb-absent subjects was new to lab-

based EMG-force experimentation. 

Increasing the number of electrodes did not statistically improve performance. For 1 -DoF models, 

Rad-Uln and Ext-Flx results in Fig. 8 even suggest that higher numbers of electrodes might lead to 

increased error, if sufficient statistical power existed. Such contrary results could exist since models with 

higher numbers of electrodes require retaining electrodes in the model’s training set, even if their 

corresponding EMG signals have no useful relation to the output forces. (Such a situation is not uncommon 

due to the altered anatomy of limb-loss subjects.) However, results from the independent test trials (shown 

in the figure) would demonstrate the poor performance of such models. 

 

7.4.3 Limitations and extensions 

Direct comparison of absolute error performance to prior studies can be misleading due to differences 

in the types of contractions produced (e.g., more forceful contractions will necessarily produce higher 

errors, measured either in physical units or %MVC; dynamic contractions are generally more challenging 

to model than static contractions), the measure of error, the subject population, the experimental conditions 

and numerous other factors. Nonetheless, relative error performance should be a more consistent metric for 

inter-study comparison. In that regard, it is most useful to observe that 1 -DoF models (Figs. 3, 8) 

experienced no statistically significant benefit when using more than two optimally -sited electrodes and 2-

DoF models (Figs. 5, 10) saw little or no benefit when using more than four optimally-sited electrodes. 

Given that EMG is a non-negative measure, it is not expected that fewer than four electrode sites could 

successfully provide 2-DoFs of SIP control. The prior literature (see Introduction section) has related 

progressively fewer EMG signals to 2-DoF forces at the wrist; our results help set a lower limit. 

Several limitations should be noted. First, the successful results were primarily observed in able -

bodied subjects, with poorer results in limb-absent subjects. Multi-session training could lead to lower 

errors in limb-absent subjects (Hahne, Dahne, 2015; Powell, Kaliki, 2014). Second, low EMG-force errors 

in the laboratory do not necessarily transfer to improved prosthesis usability (Jiang et al., 2012a). We 

utilized the controlled (and inexpensive) laboratory setting—a common paradigm in this field—to 

demonstrate performance of electrode site selection via the backward stepwise selection method. Future 

work should investigate its performance by limb-loss subjects performing more functional tasks. Third, the 

relative merits of bilateral mirrored contractions vs. screen tracking in limb-absent subjects are not well 
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understood. Fourth, we examined a single fixed posture, but Jiang et al. (Jiang et al., 2013) showed that 

arm pose influences performance of a simultaneous and proportional myoelectric control algorithm. Fifth, 

our results were from within a single session. If electrodes are re -applied, the effect of subtle shifts in 

electrode locations is unclear (Muceli, Jiang, 2014; Simon et al., 2012). Sixth, the selection of optimal 

electrodes (from the available 16) may not be unique. In fact, the two distinct training sets from our two 

cross validation folds may have selected different electrodes. Alternative optimized electrode site selection 

schemes are possible (including simply selecting four equally-spaced electrodes), as well as anatomically-

based schemes (e.g., (Fougner, Stavdahl, 2014)). Anecdotally, we made preliminary evaluation of forward 

stepwise selection of electrode sites, finding rather similar performance to the backward stepwise selection 

results shown herein. Nonetheless, a more complete study is appropriate as future work. Seventh, our 

contractions were limited to slowly force-varying (quasi-static), so that we could concentrate on optimal 

selection of the electrode sites. Future work should include dynamic contraction trials and models (Clancy, 

Liu, 2012; Hashemi et al., 2012; Thelen et al., 1994), and this research will clearly need to progress to 

implementation and testing in prosthetic devices. 

 

7.5 Conclusions 

 

This initial study is encouraging for the use of as few as four conventional electrodes for 2-DoF of SIP 

prosthesis control at the wrist. Two-DoF EMG-force models using four electrodes, trained from both 1- and 

2-DoF trials, had average RMS errors of 9.9–11.2 %MVC on able-bodied subjects and 15.8–16.7 %MVC 

on limb-absent subjects, depending on the DoF. Additional electrodes, up to a total of 16, provided no 

statistically significant benefit. Electrodes were automatically selected over a reasonably diverse (generally 

non-adjacent) extent of the forearm. In able-bodied subjects, there was some preference for lower errors 

when utilizing Ext-Flx, and higher errors when utilizing Pro-Sup. Transition of these results beyond a 

laboratory task and into prosthesis testing and implementation is necessary, and may require substantive 

training in limb-absent subjects. 
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Chapter 8: Two Degrees of Freedom, Dynamic, Hand-Wrist 

EMG-Force Using a Minimum Number of Electrodes 

 

Abstract— Commercial hand-wrist prostheses provide partial function for limb-absent 

persons, often controlled via surface electromyogram (EMG) from the residual forearm. 

Traditional prostheses only control one degree of freedom (DoF) at a time, regulating the hand or 

wrist sequentially. Recent studies realized simultaneous, independent and proportional (SIP) 

estimation of kinetics/kinematics from two joints using a large number of EMG channels, which is 

not practical for commercial prostheses. Hence, our research provides evidence for the feasibility 

of controlling two DoFs—hand open-closed paired with one wrist DoF, simultaneously—using as 

few as four electrodes. Experimental data from nine able-bodied subjects were analyzed. Subjects 

produced 1-DoF and 2-DoF uniform random forces (bandlimited to 0.75 Hz) up to 30% maximum 

voluntary contraction (MVC).  EMG standard deviation (EMGσ) was related to force using linear 

dynamic models were via least squares. For 1-DoF forces, the average RMS errors ranged from 

8.3–9.0 %MVC, depending on the DoF, and indicated that two electrodes were required. For 2 -

DoFs, overall performance was best when training from both 1- and 2-DoF trials. When doing so, 

average RMS errors were 9.2 %MVC for each DoF pair (hand open-close paired with one wrist 

DoF), using four electrodes. For each model, more electrodes showed no statistical improvement. 

The results suggest that 2-DoF SIP hand-wrist control with a small number of electrodes may be 

feasible. 

 

Index Terms—EMG-force, EMG signal processing, electromyogram, myoelectric control, 

prosthesis control 

 

8.1 Introduction 

 It is estimated that 41,000 people in the U.S. experienced upper-limb loss in 2005 [1] and that 95% 

of traumatic upper-limb extremity amputations are transradial or more distal [2]. For several decades, 

commercial myoelectric prostheses have used surface electromyogram (EMG) activity from residual 

muscles to control prosthesis movement, thereby realizing partial replacement function [3-5]. However, 

substantial issues exist for prosthesis control. A fundamental challenge is that only one degree of 
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freedom (DoF) is typically controlled at a time, with mode switching used between them [3]. Prosthesis 

users recognize this limitation [6], since even simple daily tasks can require simultaneous use of 

multiple DoFs—e.g. opening a door requires hand grip of the door knob with simultaneous wrist 

rotation. Another related issue is that most EMG-based laboratory studies of multi–DoF control have 

utilized a large quantity of specialized electrodes (upwards of 32–64). High density electrode arrays can 

extract more information and decrease the error in EMG-force/kinematics estimation [7-9], but they are 

not practical for commercial prostheses. 

To improve multi-DoF control of prostheses, Kuiken and colleagues [10, 11] developed targeted 

muscle reinnervation surgery. Surface EMG electrodes sense the actual muscle contractions of 

reinnervated residual muscle regions to provide simultaneous, independent and proportional (SIP) 

control of multiple prosthesis joints (e.g., hand, wrist, elbow). The high cost, invasive surgery and long 

recovery period (3–6 months) likely limit its acceptability. Another improvement technique is based on 

the multifunction pattern recognition approach to select desired movements of the hand and/or wrist via 

EMG signals from the forearm [12-16] (recently commercialized [17]). Multi-joint control is facilitated, 

but still only 1-DoF is operated at a time. The performance of this method degrades with the number of 

functions selected and increases with the number of electrodes applied. 

Recent studies have explored EMG-based multiple DoF EMG-force/kinematics (or direct 

prosthesis control) using 7–8 conventional electrodes, equally-spaced transversely about the forearm 

[18-22]; and one study has placed 5 electrodes over anatomically-selected locations in able-bodied 

subjects [23]. However, none of these works explored the influence or feasibility of reducing the 

quantity of conventional EMG channels to its minimum number. Further, very little work has studied 2-

DoF SIP hand-wrist control [i.e., hand open-close (Opn-Cls) combined with one wrist DoF] using a 

surface EMG-force approach. Limiting the number of applied electrodes is an important goal, since 

electrode site selection and cabling remain difficult tasks faced by prosthetists who must custom fit each 

prosthetic device to its user. This problem grows with the number of electrodes used. In addition, when 

more electrodes are used in a preparation, the odds of a failure increase, with a single failing electrode 

channel potentially degrading the entire system [24]. Combining hand Opn-Cls with one wrist DoF 

could be immediately mapped to existing hand-wrist prostheses (with the one wrist DoF being mapped 

to rotation of the prosthetic wrist). Improvement to 2-DoF control would then be available immediately 

to a wide range of existing commercial prosthetic devices. 
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Hence, our work studied the feasibility of estimating 2 DoFs—hand Opn-Cls force in conjunction 

with one wrist DoF—using as few conventional electrodes as possible. In particular, each 2 -DoF 

contraction trial, which produced random forces queued by a  computer-generated target, incorporated 

hand Opn-Cls force with one of either extension-flexion (Ext-Flx), radial-ulnar deviation (Rad-Uln) or 

pronation-supination (Pro-Sup). In a prosthesis controller, the one best performing of these wrist DoFs 

would be utilized. Backward stepwise selection was utilized to progressively reduce the number of EMG 

channels. In practice, selection of the optimal electrode sites and best performing wrist DoF would occur 

in the fitting stage by a prosthetist, with the optimal EMG locations then used to produce the final 

prosthesis socket. The electrode sites would then be fixed during fielded prosthesis use. Our results 

show that 2-DoF control had similar error levels when compared to 1-DoF control and required as few 

as four electrodes. 

8.2 Methods 

8.2.1 Experimental Data and Apparatus 

Experimental data from nine able-bodied subjects (five males, four females; aged 27±9.7 years) 

were acquired at Liberating Technologies, Inc. (Holliston, MA) and approved by the New England 

Independent Review Board (Newton, MA). All subjects provided written informed consent. Data from 

one additional subject were excluded from analysis due to erroneous EMG values. 

Data Collection, Setup: Subjects sat at the experimental apparatus. The back of the dominant hand 

was tightly cuffed to a six-DoF load cell (MC3A-100 transducer with Gen 5 signal conditioner, AMTI, 

Watertown, MA) using a thermo-formable plastic mold, to measure force/torque generated at the wrist. 

A single-axis load cell (LCR-150 with DMD-465WB amplifier, Omega Engineering, Inc., Stamford, 

CT) was secured around the distal thumb via a rigid tube and, separately on the opposing side of the cell, 

Velcro-secured to the proximal aspects of the four fingers to measure grip force during attempted hand 

Opn-Cls (see Fig. 1). The palm of the hand was perpendicular with the plane of the floor, the wrist was 

relaxed in a neutral position with respect to the hand and the shoulder was flexed 45o forward from the 

anatomical position along the sagittal plane. The elbow was supported just distal to the olecranon 

process. The skin surface about the forearm was scrubbed with an alcohol wipe and electrode gel was 

applied. Sixteen bipolar EMG electrodes were equidistantly placed in a row, transversely around the 

forearm (one electrode aligned at the most dorsal aspect) with the mid -point between bipolar contacts 
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situated 5 cm distal to the elbow crease; and then held in place with bandaging. Each electrode pair 

consisted of 5 mm diameter, stainless steel, hemispherical contacts separated 1 cm edge-to-edge, 

oriented along the long axis of the forearm. A reference elec trode was gelled and secured on the ventral 

forearm, just distal to the row of active electrodes. Each bipolar EMG signal was differentially amplified 

(Liberating Technologies, Inc. BE328 amplifier; 30–500 Hz pass band, CMRR > 100 dB over the pass 

band) and then selectable gain was applied. The average ratio of resting RMS EMG to the RMS EMG at 

50% maximum voluntary contraction (MVC) was 8.1 ± 5.4%. A real-time feedback signal from the load 

cells was shown via an arrowhead on the computer screen in front of the subject. The arrowhead 

displayed four different DoFs—x-axis location for Ext-Flx force, y-axis location for Rad-Uln force, 

rotation for Pro-Sup moment, and size for hand Opn-Cls. A second arrowhead displayed in another color 

was a computer-controlled target that guided the subject to complete different experimental tasks. Four 

load cell signals and 16 EMG channels were each sampled at 2048 Hz with 16-bit resolution. 

 

Fig. 1.  Experimental apparatus. Dominant hand was tightly secured via 

thermo-formable plastic and Velcro to six-axis load cell. Sixteen electrodes 

(not visible) were secured about the distal aspect of the dominant forearm.  

 

Data Collection, Contractions: All contractions were constant-posture. A minimum two-minute rest 

interval was provided between contractions to prevent muscle fatigue. After a warm-up period, MVC 

was measured separately for both directions (e.g., open vs. close) for each of the four DoFs. A subject 

took 2–3 seconds to ramp up their effort to MVC, maintaining that effort for two seconds. The plateau 

level of this force/ moment was measured as the MVC. Lastly, rest trials were recorded for noise level 

evaluation. 

Next, subjects proceeded to 1-DoF dynamic tracking trials. Each of the four DoFs was tested 

separately. Subject feedback only modified the arrowhead according to changes in the specified DoF. 
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For Ext-Flx, the guide arrowhead generated a random target moving between ±(|30 %MVC Flx| + 

|30 %MVC Ext|)/2 on the screen, and subjects were asked to track the movement of the target by 

controlling the load cell force. The random target was a 0.75 Hz band-limited, white and uniform 

random process. Preliminary testing was used to select this bandwidth as the widest in which subjects 

could maintain target tracking for these tasks. Four trials of 40 s duration each were collected. The 

equivalent experiment was applied for the three remaining DoFs (16 total trials). The order of 

presentation of the DoFs was randomized. 

Lastly, 2-DoF trials were conducted in which two different DoFs were tracked simultaneously. We 

only considered three combinations: hand Opn-Cls combined with one of the three wrist DOFs (Ext-Flx, 

Rad-Uln or Pro-Sup)—targeting control of a prosthetic hand/terminal device with a wrist rotator. The 

same random target style was used, but with two independent random instances (one per DoF). Four 

trials of 40 s duration were tested for each hand-wrist combination (12 total trials). 

8.2.2 Methods of Analysis 

Pre-Processing: Data analysis was performed offline in MATLAB (The MathWorks, Inc., Natick, 

MA). Once designed, all filters were implemented using MATLAB function “filtfilt()”, which applied 

filters in the forward and reverse time directions to achieve a noncausal, zero-phase and magnitude 

squared response. An estimate of EMG standard deviation (EMGσ) was computed for each EMG 

channel. Raw EMG was highpass filtered to avoid motion artifact (fifth-order Butterworth, cut-off at 15 

Hz), notch filtered to attenuate power-line interference with little loss of signal power (second-order IIR 

filter at 60 Hz, notch bandwidth of 1Hz), rectified and downsampled (after lowpass filtering at 16 Hz; 

Chebyshev Type 1 filter, ninth-order, 0.05 dB peak-to-peak passband ripple) from 2048 Hz to 40.96 Hz. 

This resulting frequency is suitable for system identification of EMG-force dynamic models [25, 26]. 

The lowpass filter can be regarded as a smoothing window. Each force/moment signal (Opn-Cls, Ext-

Flx, Rad-Uln and Pro-Sup) was normalized by its corresponding MVC level pair. For example, Ext-Flx 

was normalized by:   2/FlxExt MVCMVC  . 

One-DoF Dynamic Models: The processed extension and flexion EMGσ values were related to 

Ext-Flx wrist force via a 1-DoF linear dynamic model as: 

   
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where TE-F was wrist Ext-Flx force, m was the decimated discrete-time sample index, E was the 

number of electrodes used in the fit (initially set to 16), Q was the maximum lag of the model (set to 20 

based on [27] and preliminary evaluation of these data) and ce,q were the fit coefficients. Two of four 

trials were used for coefficient training, using the known EMGσ values and force. The linear least 

squares pseudo-inverse method [28] was performed for model training, in which singular values of the 

design matrix were removed if the ratio of that singular value to the largest was less than a tolerance 

value, Tol (set to 0.01 based on [27] and preliminary evaluation of these data). The remaining two trials 

were used for testing (RMS error between the estimated and measured torques). The training and testing 

sets were flipped for two-fold cross-validation, and the average of these two results reported. Two-fold 

cross validation was selected for computational efficiency, and because the remaining four folds wo uld 

necessarily yield correlated results (which are statistically less efficient). Since the mechanical signals 

were normalized by MVC, the final RMS error was in %MVC. The backward stepwise method was 

utilized for electrode selection. All 16 EMG channels were entered initially. Then, the channel whose 

absence resulted in the lowest RMS error was excluded for each step. Stepping continued until only one 

electrode remained. Identical modeling was separately performed for the other three DoFs (Opn-Cls, 

Rad-Uln and Pro-Sup). 

Two-DoF Models:  Similar 2-DoF EMG-force models were evaluated (including backward 

stepwise selection of EMG channels) for each of the three pairs of dimensions tested (Opn-Cls paired 

with one wrist DoF), except these models always estimated two DoFs simultaneously. Thus, each EMG 

channel contributed to each DoF. All six combinations of three different training paradigms and two 

testing paradigms were performed to evaluate the best modeling strategy. The training paradigms were: 

training with 1-DoF trials, with 2-DoF trials or with both 1- and 2-DoF trials. The testing paradigms 

were: testing on 1-DoF trials or on 2-DoF trials. When testing on 1-DoF trials for these 2-DoF models, 

the non-used dimension would be expected to remain near a zero value throughout the trial. These 1-

DoF tests were intended to determine if 2-DoF models could still perform well when encountering 1 -

DoF tasks (common to prosthesis use). 

Statistics: Performance differences were tested statistically using multivariate ANOVA, with post 

hoc pair-wise comparisons conducted using Tukey’s honestly significant difference test. A significance 

level of p = 0.05 was used. 
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8.3 Results 

8.3.1 One-DoF Models 

Fig. 2 shows sample time-series EMG-force test results for the 1-DoF models (i.e., separate models 

formed for each DoF from trials that only examined each respective DoF). Fig. 3 shows summary results 

as a function of number of electrodes selected. Using all the results of one-DoF models, a two-way 

ANOVA was computed (factors: DoF; and number of electrodes, E). Both main effects were significant 

(p<0.001), without interactions. Tukey post hoc comparisons for DoF only found that Rad-Uln errors 

were significantly higher than Ext-Flx (p=0.001) and Opn-Cls (p=0.01). For number of electrodes, 1 

optimally-sited electrode always exhibited higher error than 2 or more electrodes  610p . There were 

no other significant differences. Table I shows the RMS errors for 2 optimally-sited electrodes (typical in 

a commercial 1-DoF prosthesis controller), for each DoF. 

 

Fig. 2.  Example time-series plots of 1-degree-of-freedom models, 

two electrodes (Subject 46, Trials 31, 35, 39 and 43). Solid lines are 

actual forces/moment, dashed lines are EMG-estimated. 

 

Fig. 3.  Summary results: 1-degree-of-freedom models, nine 

subjects. Error lines show one standard deviation above the mean. 
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8.3.2 Two-DoF Models 

Two-DoF models always estimated Opn-Cls with one other DoF (Ext-Flx, Rad-Uln or Pro-Sup) 

simultaneously. Fig. 4 shows sample time-series EMG-force test results during 2-DoF trials. Fig. 5 

shows a set of summary results. 

For 2-DoF models assessed on the 1-DoF trials, a three-way ANOVA (factors: DoF, number of 

electrodes and training condition—either 1-DoF trials, 2-DoF trials or both) found interactions between 

training condition and each of the two other factors. Thus, separate two-way ANOVAs were computed 

with each of the training conditions fixed. We fixed the training condition because it had the smallest 

number of degrees of freedom and represented different variants on how a prosthetist might perform 

electrode site selection. There were no interactions. Results when training with 1-DoF trials or both (Fig. 

5, top) were similar. Both main factors (DoF, number of electrodes) were significant  510p . Tukey 

post hoc analysis of DoF only found Opn-Cls with Ext-Flx to have lower errors than the other two DoF 

combinations  410p . For number of optimally-sited electrodes, 1 electrode exhibited higher error 

than more than 1 (p<0.01), 2 electrodes exhibited higher error than 4 or more (p<0.01), 3 electrodes 

exhibited higher error than 9 or more (p<0.045), and there were no significant differences when 

comparing 4 electrodes to more than 4 electrodes (p>0.06). Results when training with 2-DoF trials were 

only significant for DoF (p=0.001). Tukey post hoc analysis only found Opn-Cls with Pro-Sup to have 

higher errors than the other two DoF combinations (p≤0.03). Table I shows the RMS errors for 4 

optimally-sited electrodes (preferred for a commercial prosthesis controller). Lastly, we also computed a 

two-way ANOVA with number of electrodes fixed at the preferred value of four (factors: DoF, training 

condition). Only the main effect of training condition was significant (p = 610 ), without interaction. 

Tukey post hoc analysis found that training with only 2-DoF trials had higher errors than either of the 

other two training conditions  610p . 

For 2-DoF models assessed on the 2-DoF trials, a three-way ANOVA (factors: DoF, number of 

electrodes and training condition) found interactions between training condition and each of the two 

other factors. Thus, separate two-way ANOVAs were again computed with each of the training 

conditions fixed. There were no interactions. Results when training with 1 -DoF trials were only 

significant for DoF  510p , with Tukey post hoc analysis only finding that Opn-Cls with Pro-Sup had 

higher errors than the other two DoF combinations (p<0.001). Results when training with 2-DoF trials 

were significant for both factors (p<0.01). Tukey post hoc analysis of DoF only found that Opn-Cls with 
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Ext-Flx had higher errors than the other two DoF combinations (p<0.01). Tukey post hoc analysis of 

number of optimally-sited electrodes only found that 1 electrode exhibited higher error than more than 

one (p<0.002), and 2 electrodes exhibited higher error than nine or more (p<0.045). Results when 

training with 1- and 2-DoF trials were only significant for number of electrodes  610p ; with Tukey 

post hoc analysis finding that 1 optimally-sited electrode exhibited higher error than more than one 

(p<0.002), 2 electrodes exhibited higher error than five or more (p<0.02), 3 electrodes exhibited higher 

error than 11 or more (p<0.005), and there were no significant differences when comparing 4 electrodes 

to more than 4 electrodes (p>0.64). Table I shows the RMS errors for 4 electrodes. Lastly, we also 

computed a two-way ANOVA with number of optimally-sited electrodes fixed at the preferred value of 

four (factors: DoF, training condition). Only the main effect of training condition was significant 

 610p , without interaction. Tukey post hoc analysis found that training with only 1-DoF trials had 

higher errors than either of the other two training conditions  410p . 

 

 
Fig. 4.  Example time-series plots of 2-degree-of-freedom models 

applied to co-contraction trials from subject 46, trial 51 (four 

electrodes). Key: solid lines=actual forces, dashed=estimated; blue=Ext-

Flx, black=Opn-Cls. Positive %MVC corresponds to Ext-Rad. Four 

EMG channels and training from both 1- and 2-DoF trials. 

 

 

 

Fig. 5.  Summary results: 2-degree-of-freedom (DoF) models, nine 

subjects. Top: testing on 1-DoF trials. Bottom: Models trained from both 

1- and 2-DoF trials, tested on 2-DoF trials. Error lines show one 

standard deviation above the mean. 
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8.3.3 Interposing Electrode Distances 

It is helpful to characterize the extent to which the selected electrode locations were distrib uted 

about the forearm. When selecting to two electrodes in 1-DoF models, there exist two interposing 

electrode distances. The average distance must equal 8 electrodes (out of 16 total). Fig. 6 -left shows the 

distribution of the minimum interposing distance, aggregating the results across four DoFs, two cross-

validations and nine subjects. The mean ± std. distance was 31 ± 12% of forearm circumference. When 

selecting to four electrodes in 2-DoF models, there exist four interposing distances (with an average  

distance of 4 electrodes). Fig. 6-right shows the distribution of each interposing distance (same 

aggregation), when training with both 1- and 2-DoF trials. The mean ± std. distance was 25 ± 17% of 

forearm circumference. Overall, the selected electrodes were rarely adjacent, but not necessarily spaced 

equally about the forearm. 

 

 

Fig. 6.  Distribution of interposing electrode distances, aggregated across all DoFs, two cross-validations and nine subjects. Left shows proportion of 

minimum distances for the 1-DoF models with two electrodes. Right shows proportion of each of distance for the 2-DoF models, trained with 1- and 2-DoF 

trials, with four electrodes. Total of 16 electrodes per subject. 

8.4 Discussion 

8.4.1 One-DoF Models 

One-DoF models were studied to quantify the existing state of the art in 1 -DoF EMG-force, at least 

as assessed on these tasks and with this protocol. Fig. 3 and its associated statistical results show, as 

expected, rather poor performance when only one electrode is retained in the models. EMGσ is a non-

negative (unipolar) quantity, yet 1-DoF wrist force/moment is bipolar (spanning a range of 30 %MVC); 

thus, one would not expect one EMG channel to accurately relate to these outputs when using linear 

models. It is for this reason that common 1-DoF proportional EMG controllers utilize the difference 
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between agonist and antagonist EMGσ values [3, 29], forming a bipolar signal from two unipolar 

signals. Our results herein confirm the need for two optimally-sited EMG channels [30], and show 

statistically that additional channels (beyond two) provide no benefit. Our results also suggest higher 

relative errors for Rad-Uln, as compared to Ext-Flx and Opn-Cls. With two optimally-sited electrodes, 

the mean errors ranged from 8.3–9.0 %MVC, depending on the DoF. 

8.4.2 Two-DoF Models 

We initially assessed our 2-DoF models on 1-DoF tasks, since 2-DoF prosthesis controllers would 

still be operated for use in 1-DoF tasks. When training with 1-DoF trials, or both 1- and 2-DoF trials, 

error was reduced as the selected number of electrodes increased from one until four. And, there was 

preference for lower errors when combining Opn-Cls with Ext-Flx. When the number of electrodes was 

fixed at four, training with only 2-DoF trials produced higher errors. We next assessed our 2 -DoF 

models on 2-DoF tasks. In general, Table I shows that higher average errors were found. However, direct 

comparison between 1-DoF assessment and 2-DoF assessment is not appropriate. In 1-DoF assessment, 

errors in the second DoF were assessed, but their truth values were near zero (as the second DoF was not 

active).  Hence, higher errors are expected in the 2 -DoF assessments, since the average %MVC level 

(across both DoFs) is much higher. (Both DoFs were active, and higher effort levels produce higher 

errors, in general.) When training with 2-DoF trials or both 1- and 2-DoF trials, error was reduced as the 

selected number of electrodes increased from two until 4–9.  Fig. 5 suggests that most of the 

improvement happened when the number of electrodes was less than 4–5. And, there was preference for 

higher errors when combining Opn-Cls with Ext-Flx. When the number of electrodes was fixed at four, 

training with only 1-DoF trials produced higher errors. 

For model training, a single training procedure is required, after which the  model is used on both 1-

DoF and 2-DoF tasks. The summary of results in the prior paragraph shows that the clearly 

advantageous training technique is to use both 1- and 2-DoF trials. This result is unfortunate, since 

training would be simpler if only 1-DoF trials were required. Substantial concentration is required to 

track a random target in two dimensions; simpler tracking is found with only 1 -DoF targets. It is, 

however, not overly surprising that training on both 1- and 2-DoF trials provides the best performance 

when assessing across both 1- and 2-DoF tasks [25]. And, as mentioned previously, training trials of 

sufficiently long duration so as to permit electrode site selection are only required during the prosthesis 

fitting task. 
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For number of optimally-sited electrodes, there was generally no statistical advantage in the 2 -DoF 

models to having more than four electrodes. Fig. 5 shows a trend for some (limited) improvement due to 

more than four electrodes. A larger sample size might have borne out this trend statistically, although the 

likely strength of the error reduction seems small (once the number of electrodes exceeds four). Again, 

since two bipolar DoFs are being estimated, it is not surprising that at least four unipolar EMGσ 

channels are appropriate. 

Our goal was to facilitate 2-DoF EMG-force, which could be mapped to 2-DoF SIP control of a 

hand-wrist prosthesis.  However, which pair of DoFs to utilize was not assumed a priori. We required 

hand Opn-CLS to be one of the DoFs, but examined pairings with Ext-Flx or Rad-Uln or Pro-Sup. Some 

previous literature has found higher errors when including the Pro -Sup DoF [18, 20]. In our work, no 

preferred DoF pair seemed to emerge. 

8.4.3 Limitations 

This study was an initial examination into using the backward stepwise selection method to 

optimally site a minimum number of electrodes for simultaneous estimation of force-varying hand grip 

(Opn-Cls) and one wrist DoF. The target application was SIP control of a conventional hand-wrist 

prosthesis, although results can be helpful to the general 2 -DoF EMG-force problem. Several limitations 

are evident. First, low error in a laboratory setting has not necessarily reflected improved performance in 

a prosthesis [31]. That fact noted, laboratory studies represent an established and inexpensive initial step 

in the development of new technologies, a method that is particularly adept at screening out 

unsuccessful approaches and refining algorithms before undertaking expensive applied/field evaluations. 

For example, the results of the work herein recommend the use of both 1 - and 2-DoF trials for training 

and the use of a minimum of four optimally-cited electrodes. Second, this EMG-force training technique 

was only studied in able-bodied subjects during a single session. Evaluation in limb-loss subjects should 

follow; including multi-session training, which has been shown to produce better performance [16, 32]. 

Third, we studied fixed-posture, dynamic contraction with a bandwidth of 0.75 Hz. Varying posture can 

alter the interpretation of EMG intent [33], and the re-donning of a prosthesis can produce subtle shifts 

in EMG sites and channel gains which may confound prosthesis control [9, 34]. Fourth, our backward 

selection method for choosing the optimal electrodes (as a subset of the available 16) may not be unique 

or represent the only successful method. Further, the two distinct folds (from cross-validation) did not 

necessarily select the same electrodes. When choosing 4 electrodes from 16 total, there are 1820 
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combinations.  Thus, a non-exhaustive search method seems advantageous. But, alternatives to 

backward selection exist,  including selection based on anatomical locations [23] (appropriate for able-

bodied subjects but perhaps problematic for limb-loss subjects who may have altered remnant anatomy), 

forward stepwise selection and backward-forward stepwise combinations. Fifth, direct comparison of 

our absolute performance results to those of other studies is quite difficult, as performance is a function 

of many factors, including: contractions used for training/testing (wider bandwidth contractions and 

more forceful contractions should each lead to higher average errors, at least as measured in %MVC or 

physical units), the subject population (young vs. aged able-bodied subjects, vs. limb-loss subjects), the 

experimental conditions and tasks (ADLs [35-38] vs. EMG-force measures), and the manner by which 

error is measured. Regardless, relative performance should be more interpretable across studies. In 

particular, our relative results suggest that: two electrodes are the minimum number for EMG-force 

estimation of our 1-DoF hand-wrist tasks, and additional electrodes do not reduce error; four electrodes 

are the minimum number for our 2-DoF tasks, with a few additional electrodes perhaps providing some 

limited improvement; training for a 2-DoF model should include both 1-DoF and 2-DoF trials; and that 

we found no substantial evidence to either prefer or dissuade the pairing of the hand grip DoF with any 

of the three wrist DoFs when forming a 2-DoF hand-wrist EMG-force estimator. 

8.4.4 Implications for Prosthesis Control 

The long-term implications for prosthetic control may best be understood via prosthesis testing in 

limb-loss subjects. But, the implication from able-bodied subjects is that as few as four optimally-sited 

electrodes—trained from both 1- and 2-DoF trials—may provide 2-DoF EMG-force estimates that are as 

good (or nearly so) as those from 16 electrodes placed equidistant about the circumference of the 

forearm. The automated backward selection algorithm is not biased towards a priori site locations, thus 

the altered anatomy of many limb-loss subjects may not adversely influence this site selection method, 

so long as the necessary information is available in the surface EMG—an assumption that will require 

evaluation. 

Although we have evaluated site selection, training techniques and DoF pairing with an EMG-

force/moment task, many prosthesis controllers map EMGσ to joint velocity (rather than joint torque).  

And, controllers routinely maintain a “dead zone” at EMGσ values near zero, so that the prosthesis does 

not actuate in response to EMG measurement noise at rest [23]. These distinctions will need to be added 

to a controller that is based on our calibration method. 
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Our modeling techniques require measurement of an output force/moment. No such signal is 

available from limb-loss subjects. As a surrogate measure, unilateral limb-loss subjects can produce 

force/moment on the sound side and relate it to EMG produced on the limb -loss side during mirrored 

contractions [8, 19, 20, 39, 40]. Alternatively, all limb-loss subjects can directly activate their phantom 

limb to track a desired target effort pattern, and then relate EMGσ from the affected limb directly to this 

target (without feedback) [21, 39]. In either case, one disadvantage is the lack of proprioceptive 

feedback from the phantom limb. 

Training duration is an important issue for prosthesis users. As noted previously, we envision a 

protocol in which optimal site selection of the preferred number of electrodes (e.g., optimal four of 16 

candidate electrode sites) is performed by a prosthetist when fitting a permanent socket. During such a 

fitting, the several minutes of training time (or more) required when using our data collection protocol 

would not seem problematic, as the current process of manually siting two electrodes within a socket is 

already time consuming. Thereafter, a fielded prosthesis would only need an ability to calibrate the 

permanent (e.g., four) electrode channels. Further, it is also possible that the dynamics of each channel 

might be fixed during fitting, leaving only the channel gains for field calibration—existing prostheses 

have fixed dynamics that are the same for all users, only permitting gain adjustments of each EMG 

channel. In either case, such a small number of free parameters might be trained in only a few seconds 

[25, 27]. Reasonable field recalibration might be facilitated. 

While we limited ourselves to hand grip in combination with one wrist DoF, the long-term goal is 

the development of upper-limb prostheses that also control individual finger actuation. Limited efforts 

have been made to do so based on surface EMG from the forearm [7, 41-46]. 

8.5 Conclusions 

This laboratory study provided evidence that 2-DoF EMG-force estimation in the hand-wrist can be 

successfully accomplished with the use of four electrodes, which are optimally selected from 16 

electrodes via backward stepwise selection. These models should be calibrated using both 1 - and 2-DoF 

trials and there did not seem to be a preference as to which wrist DoF to pair with hand grip. With this 

training, Table I shows that 2-DoF estimation had average RMS testing errors of 9.2 %MVC for each 

DoF pair. Transition of these techniques to testing in hand-wrist prosthesis users is an appropriate next 

step. 
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Chapter 9: A Pilot Study Assessing Ipsilateral vs. Contralateral 

Feedback in EMG-Force Models of the Wrist for Upper-Limb 

Prosthesis Control 

This chapter has been published as: Edward A. Clancy, Chenyun Dai, Marek Wartenberg, Carlos 

Martinez Luna, Thane R. Hunt and Todd R. Farrell, "A Pilot Study Assessing Ipsilateral vs. 

Contralateral Feedback in EMG-Force Models of the Wrist for Upper-Limb Prosthesis Control," 2015 

IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Temple University, 

Philadelphia, PA, 12 December 2015. Color versions of one or more of the figures in this paper are 

available online at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7002963. 

 

Abstract—Many advanced EMG-based upper-limb prosthesis control methods require model 

training in which subjects produce supervised forces/movements. Since unilateral limb-absent 

subjects cannot produce forces/movements on their affected side, one technique (mirrored bi -

lateral training) relates forces/motions produced on the sound side to EMG on the affected side. 

However, the efforts made by the phantom limb may not fully reflect those of the sound limb. To 

understand this issue, three able-bodied subjects produced mirrored bi-lateral forces during 

constant-posture contraction at the wrist. EMG-force models were formed for 1- and 2-degree of 

freedom tasks and results compared to previous trials in which ipsilateral training had been 

conducted. We found that contralateral training generally, but not always, produced errors (in 

percent maximum voluntary contraction) that were 6–56% larger than those found from 

ipsilateral training. Our results suggest that a substantial portion—but not all—of the errors 

found in mirrored tasks may be due to contralateral tracking errors. Further study with a larger 

population is indicated. 

 

Keywords—EMG, electromyogram, prosthesis, prosthesis control, myoelectric control, EMG 

signal processing  

9.1 Introduction  

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7405454
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Many people with transradial limb absence use electromyogram (EMG)-controlled, powered hand 

and wrist prostheses to provide partial functional replacement. Existing commercial EMG-controlled 

prostheses typically use EMG from the residual flexors and extensors of the forearm to actuate 

prosthetic hand closing and opening, respectively. Wrist rotation is not controlled simultaneously, rather 

some form of mode switching (via EMG or mechanical switch) is used to sequence between hand and 

wrist activation [1]. This lack of proportional, simultaneous and independent control represents a 

substantial limitation of existing upper-limb prosthetic systems [2]. 

To improve upper-limb prosthesis control, Kuiken and colleagues [3, 4] have developed targeted 

muscle reinnervation surgery, in which muscles of the chest wall are denervated, after which nerves 

formerly associated with the lost limbs are grafted to these chest muscles. Activation of the phantom 

limb causes actual contraction of chest muscles, providing proportional, simultaneous and independent 

control signals. The cost and lengthy rehabilitation (3–6 months) required by this technique may make it 

most appropriate for bilateral limb-absent patients and those with high-level unilateral limb absence. 

Alternatively, pattern recognition techniques have related EMG from the residual forearm to a set of 

preselected hand-wrist movements [1, 5-9]. Multiple-joint movement is possible, albeit still generally 

comprised of only one degree of freedom (DoF). This method recently became available in a 

commercial system (COAPT LLC, Chicago, IL).  

For a large class of transradial limb-absent persons, there is a need for proportional, simultaneous 

and independent EMG-based prosthesis control using the residual forearm musculature. Several studies 

have addressed this problem, primarily in able-bodied volunteers. Initial studies largely focused on the 

scientific establishment of a hand/wrist EMG-force relationship. These studies applied high-density 

electrodes to the forearm (often 64+ electrodes), studying finger forces/pose or wrist forces [10 -12]. A 

convincing, multiple-DoF EMG-force relationship in the wrist was demonstrated in ab le-bodied 

subjects. Nonetheless, high-density electrodes were never intended for commercial prosthetic use. 

In the past few years, research has focused on adapting the EMG-force modeling for use with 

conventional bipolar electrodes and commercial prosthesis systems [13-18]. Most modeling methods are 

supervised, thus some form of subject “output” (i.e., subject force, position or effort) must exist to which 

the (input) EMG signal is related. In persons with limb absence, finding an appropriate output is 

challenging, as no limb is available on the affected side to produce hand/wrist forces or movement. One 

method uses only the affected side and a target on the computer screen [15, 18]. The subject produces an 
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effort in their phantom limb to match the effort associated with the location and/or orientation of the 

target. This method is direct, but does not provide any feedback.  

The interest of this work is in another training method known as mirrored bi-lateral (contralateral) 

contractions, in which the affected hand/wrist mirrors the contraction profile of the sound side 

hand/wrist [11, 14, 17-19]. EMG recordings from the affected side are related to the actual forces/  

movements measured on the sound side. Feedback is available, but only from the contralateral side. This 

method is only available to those with unilateral limb-absence. Past research work suggests that 

performance when using the contralateral training approach is poorer than that found in identical tasks 

using an ipsilateral training approach [17, 18]. These past studies investigated forces in the wrist, 

applying 7–8 bipolar electrodes, performing specific tasks (1- and 2-DoF wrist movement or isometric 

attempted movement or sinusoidal contractions) using the coefficient of determination (R2) for 

assessment. We have been studying constant-posture EMG-force in the wrist with either quasi-constant-

force contractions that span ±30% maximum voluntary contraction (MVC) or band-limited uniform 

random dynamic force contractions that span this same force range. Our studies also reduce the number 

of bipolar electrodes used from 16 to 4 for 2-DoF tasks. A subset of three able-bodied subjects 

completed both ipsilateral training and mirrored bi-lateral (contralateral) training. Herein we compare 

their EMG-force performance with our assessment metric—RMS EMG-force error, normalized to 

MVC. 

9.2 Methods  

9.2.1 Experimental Apparatus and Procedures 

Experiments and data analysis were approved by the New England IRB (Newton, MA) and the 

WPI IRB. Each of three male subjects (aged 25, 37 and 53 years) provided written informed consent. 

Each subject participated in two, half-day experiments on separate days, with ~6 months between the 

two sessions. Subjects performed ipsilateral training in the first session and contralateral training in the 

second session. 

For the first experimental session (ipsilateral trials), skin about the proximal forearm of the 

dominant arm (right arm for each subject) was scrubbed with an alcohol wipe and electrode gel was 

massaged into the skin. Sixteen bipolar electrodes were mounted equidistant in a row, transversely about 

the forearm, each centered 5 cm distal from the elbow crease. One electrode pair was aligned at the most 
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dorsal aspect. Each electrode pair consisted of 5 mm diameter, stainless steel, hemispherical contacts 

separated 1 cm edge-to-edge, oriented along the long axis of the forearm. The average transverse 

spacing between bipolar electrode pairs was 1.9 cm center-to-center. A reference electrode was gelled 

and secured on the ventral side of the forearm, just distal to the bipolar electrodes. Each bipolar EMD 

signal was differentially amplified (Liberating Technologies, Inc. BE328 amplifier; pass band from 30 –

500 Hz, CMRR > 100 dB over the pass band) and selectable gain applied. EMG were acquired at 2048 

Hz using a 16-bit ADC. 

                  
Fig. 1.  Ipsilateral data collection apparatus. The dominant hand was 

tightly secured via a thermo-formable plastic splint and Velcro to a six-
axis load cell. The wrist was maintained in a neutral position by a 
padded restraint. Sixteen electrodes (not visible) were secured about the 
proximal aspect of the forearm. Display screen is visible in front of the 

subject. 

Fig. 2.  Contralateral data collection apparatus. Both hands are 

constrained, but load cell measurements are only made from the 
dominant (right) side. Electrodes mounted about non-dominant (left) 
forearm. 

 

As shown in Fig. 1, subjects sat and extended their dominant arm to place their hand in a thermo-

formable plastic splint that was rigidly attached to a load cell (AMTI, Watertown, MA; model MC3A-

100 transducer, Gen 5 signal conditioner). The metacarpal region of the hand was tightly secured to the 

splint using Velcro, while the phalanges were free. This attachment isolated measurement of forces at 

the wrist. The palm of the hand was perpendicular to the plane of the floor, the hand was in a neutral 

position with respect to the wrist, the elbow was extended and the upper arm was rotated ~45o forward 

from the anatomical position. The arm was supported just distal to the olecranon process. The load cell 

measured three DoFs, which were displayed on a computer screen directly in front of the subject via an 

arrowhead cursor. Wrist extension-flexion (Ext-Flx) specified the x-axis location of the arrowhead, 
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radial-ulnar deviation (Rad-Uln) the y-axis location and pronation-supination (Pro-Sup) moment the 

angular rotation. A second computer-generated target arrowhead could also be displayed. The three load 

cell signals were also sampled at 2048 Hz at 16-bit resolution. 

MVCs and 50% MVCs were measured in each of wrist extension, flexion, radial and ulnar 

deviation, pronation and supination, along with a rest recording. These calibration contractions were 

used for force normalization, EMG noise assessment and calibration of advanced EMG processing 

techniques [20, 21]. Contractions for model training and testing followed.  First, 1 -DoF quasi-static 

trials were conducted separately for Ext-Flx, Rad-Uln and Pro-Sup. For Ext-Flx, subjects followed the 

computer screen force target as it took 30 s to linearly ramp from the force midpoint, to 30% MVC 

flexion, to 30% MVC extension, back to 30% MVC flexion and then back to the force range midpoint. 

Analogous ramp trajectories were used for Rad-Uln and Pro-Sup trials. Four trials per DoF were 

recorded (12 trials in total), randomized by DoF. During each trial, the on-screen arrowhead cursor that 

was controlled by the subject was only permitted to move along the active DoF. Second, 2 -DoF quasi-

static trials were conducted by eliciting ramp co-contraction of pairs of contraction directions. Two 

DoFs were active and their target effort levels were coincident. The same 30 s ramp trajectory was used. 

Two repetitions of six randomized trials were conducted (12 trials in total), the trials being identified by 

the contraction directions associated with the first 30% MVC co-contraction achieved. The subject-

controlled arrowhead was only permitted to move/rotate along the two active DoFs. Third, 40-s 

duration, 1-DoF dynamic force trials were conducted separately for each of the three DoFs. For Ext -Flx, 

the target followed a random, uniform trajectory between 30% MVC extension and 30% MVC flexion, 

band-limited between 0–1 Hz. Three such trials were conducted for each DoF, randomized by DoF. The 

subject-controlled arrowhead was only permitted to move along the active DoF. Fourth, 40 -s duration, 

2-DoF dynamic force trials were conducted for each of the three pairs of DoFs. For these 2-DoF tasks, 

the target moved randomly and independently in each DoF. Three such trials were conducted for each 

DoF pair, randomized in order. All four sets of contractions were conducted at an interval of at least two 

minutes, to avoid accumulated fatigue. Subjects were released from the hand cuff between experiment 

stages. 

For the second experimental session (contralateral trials), the apparatus differed only in that the 

electrodes were mounted on the contralateral forearm and that the contralateral arm was identically 

constrained with its hand secured to a second hand cuff (Fig. 2). Load cell measurement was still only 
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provided for the dominant hand. MVC calibrations were not repeated; rather, the values from the first  

experimental session were used. Subjects completed the 50% MVC trials and the four sets of 

contractions for model training and testing (see previous paragraph). Subjects were provided load cell 

feedback from their dominant arm and instructed to mirror this effort level on their non-dominant 

(contralateral) side. 

9.2.2 Methods of Analysis 

Analysis was performed offline using MATLAB (The MathWorks, Inc., Natick, MA). Only causal 

algorithms were studied. EMG amplitude was estimated from each EMG signal. Each EMG signal was 

highpass filtered (5th-order Butterworth, cut-off at 15 Hz), notch filtered at the power-line frequency of 

60 Hz (2nd-order notch filter, 1 Hz bandwidth) and rectified. Data from quasi-static trials were then 

lowpass filtered (cut-off frequency of 1.6 Hz; Chebyshev Type 1 filter, 9th-order, 0.05 dB peak-to-peak 

passband ripple) and downsampled to 4.096 Hz. Data from dynamic force trials were then lowpass 

filtered (cut-off frequency of 16 Hz; Chebyshev Type 1 filter, 9th-order, 0.05 dB peak-to-peak passband 

ripple) and downsampled to 40.96 Hz. Separately, the three mechanical signals were each normalized to 

their respective MVC value per DoF, and then similarly decimated depending on the trial type (to 4.096 

Hz for quasi-static trials and to 40.96 Hz for dynamic trials). Hence, the input-output data sets available 

for EMG-force modeling were sampled at a rate that was approximately ten times the bandwidth of the 

output, which is appropriate for system identification [22, 23]. 

First, 1-DoF models were fit for each subject, using the quasi-static 1-DoF trials. For Ext-Flx, 

EMGs were least squares fit to Ext-Flx force (the remaining mechanical measures were ignored) via the 

model: 

   
 

 
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eqeFE qmcmT
1 0
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Where 
FET 

  was Ext-Flx force, m was the decimated discrete-time sample index, E was the 

number of electrodes (initially set to 16), ce,q  were the fit coefficients and  qme   were the EMG 

amplitude values. Model order Q was set to 0, since the quasi-static trials had essentially no dynamics. 

Fit coefficients were determined using least squares via the pseudo-inverse technique, in which singular 

values were removed if the ratio of that singular value to the largest singular value in the design matrix 

was less than a tolerance value of 0.01. This tolerance was selected after some initial evaluation over a 

range of tolerance values. Two quasi-static trials were used to train a model. Backward stepwise 
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selection was then used to progressively reduce the number of EMG channels (i.e., omit the channel 

whose absence resulted in the lowest error), making all decisions only on the training trials. The two 

remaining 1-DoF trials were used for testing at each step (normalized RMS error in %MVC, averaged 

across the two trials). This process was repeated after exchanging the training and testing trials, for 

cross-validation. The average of the cross-validated results is reported. An identical process was then 

repeated for 1-DoF models relating EMG to Rad-Uln force and, separately, Pro-Sup moment. 

Second, 2-DoF models were fit for each subject, using the quasi-static trials and the static model of 

(1). The EMG-force model and backward stepwise selection were applied identically, except that the 

model always simultaneously estimated two mechanical DoFs (the third, unused mechanical 

force/moment was ignored). Model training optionally consisted of 1 -DoF trials (the first repetition of 

two trials from each relevant DoF), or 2-DoF trials (the first repetition of four trials, one per 2 -DoF 

contraction direction), or both. For testing, RMS error was assessed separately for 1 -DoF test trials and 

2-DoFs trials, always for the two available mechanical d imensions. (During 1-DoF trials, the second 

mechanical dimension remained near zero throughout the trial.) The trial repetitions were switched and 

the overall error assigned as the average of the two-fold cross validation. 

 

Third, 1-DoF models were fit for each subject, using the dynamic trials and the model of (1), with 

model order selected as Q = 25 [24]. For each DoF, three trials were available. Two were used for 

training and one for testing, with full cross-validation. The average cross-validated result is reported. 

 Fourth, 2-DoF models were fit for each subject, using the dynamic trials and model order Q = 25. 

For each pair of DoFs, three trials were available. Two were used for training and one for testing, with 

full cross-validation and the averaged result reported. As before, training from 1-DoF, 2-DoF or both 

trials was separately pursued. 

Note that statistical comparisons will not be presented, as only three subjects participated in this 

study. Rather, trends will be noted in the EMG-force errors. In addition, direct comparison of the 

absolute error values between 1-DoF models and 2-DoF trials must be approached cautiously, since the 

underlying data differ. 

9.3 Results 

Quasi-Static Models: Fig. 3 shows sample time-series test results of contralateral EMG-force for 

the 1-DoF models based on the quasi-static trials. Fig. 4 shows similar (contralateral) results for the 2 -
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DoF models based on quasi-static trials and training from both 1- and 2-DoF trials. Table 1 shows 

summary quasi-static results for the three subjects, where we have concentrated on two-channel systems 

for the 1-DoF models and four-channel systems for the 2-DoF models. Table I shows that each 1-DoF 

model had average errors that were 10–56% higher for contralateral-trained models. If effect size is 

taken as the difference of the paired means divided by their average standard deviation, then it ranges 

from 0.29–0.69. When assessing on 2-DoF models, overall lower errors were achieved when training 

from both 1- and 2-DoF trials. And, these average performance differences were similar in percentage as 

to the 1-DoF models, with contralateral-trained models performing 3–65% poorer (effect size: 0.08–

1.04). 

 
Fig. 3.  Contralateral, 1-DoF Model, Quasi-Static: Example time-

series plots of one-degree-of-freedom models, contralateral trials, quasi-
static, two electrodes. Solid black lines are actual forces/moment, dashed 
blues lines are EMG-estimated. 

 

Fig. 4. Contralateral, 2-DoF Model, Quasi-Static:  Example time-

series plots of two-degree-of-freedom models. Contralateral trials, quasi-
static, four electrodes. Training was from both 1- and 2-DoF trials. Key: 
solid black = actual Ext-Flx, dashed blue = estimated Ext-Flx, solid red 

= actual Rad-Uln, dash green = estimated Rad-Uln. Positive %MVC 
corresponds to Ext/Rad. 

 

Dynamic Models: Fig. 5 shows sample time-series test results of contralateral EMG-force for the 2-

DoF models based on the dynamic trials. Fig. 6 shows dynamic model contralateral results as a function 

of the number of electrodes for 2-DoF models, when training was from only the 2-DoF trials. Results 

when training from only the 1-DoF trials or from both followed the same trends. For all three DoF pairs, 

average errors varied little as the number of electrodes was reduced from 16 down to 4. Further 
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decreases in electrodes led to progressive increases in the average error. For Rad-Uln & Pro- Sup, errors 

were always larger (compared to the other DoF pairs), particularly for 2 -DoF assessment. Tables II and 

III show summary dynamic results for the three subjects. For 1 -DoF models (Table II), contralateral-

trained models performed better for Ext-Flx, but poorer for the two other DoFs. With two electrodes, the 

differences ranged from 6–19%. As the number of electrodes was increased, some limited error 

improvement seemed to result. For 1-DoF models (Table III), contralateral training errors using four 

electrodes were 9–18% higher, except when pairing Rad-Uln with Pro-Sup (errors were both higher and 

lower). Note that the Rad-Uln & Pro-Sup errors were larger than those of the other two pairings, thus 

this 2-DoF pairing would seem to be least valuable for use in prosthesis control. Again, as the number of 

electrodes was increased, there appeared to be some limited reduction in error. 

 
Fig. 5.  Contralateral, 2-DoF Model, Dynamic: Example time-series 
plots of 2-DoF models, contralateral contractions, dynamic tracking with 

four electrodes. Key: solid black = actual Ext-Flx, dashed blue = 
estimated Ext-Flx, solid red = actual Pro-Sup, dashed green = estimated 
Pro-Sup. Training from both 1- and 2-DoF trials. 

 
Fig. 6.  Contralateral, 2-DoF Model, Dynamic: Comparison of (cross-
validated) mean plus std. dev. results between contraction types for 2-
DoF models vs. number of electrodes. Training from only 2-DoF trials. 
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9.4 Discussion 

Under both quasi-static and dynamic contractions, the majority of error comparisons found that when 

comparing ipsilateral vs. contralateral training, errors were greater (by 6–56 %MVC) when contralateral 

training was used. Note that this result does not imply that forces produced by the two arms of the 

subjects varied by 6–56%.  In particular, if the force on one side was a constant fraction of that of the 

other, the gains of the EMG-force models would appropriately adjust to correct this error entirely. 

Further, dynamic models (i.e., those used to model the dynamic trials) can adjust for systematic linear 

differences between the left- and right-side forces, at least those consistent with the systems available in 

our model (25th-order FIR filters). Hence, the differences in errors shown in Table I–III are most 

indicative of differences in contraction profiles (left- vs. right-side) and not absolute strength. 

Accordingly, it would be interesting to simultaneously measure the forces produced by bo th arms, to 

better understand the ability of able-bodied subjects to match contralateral efforts. Regardless, subjects 

with limb absence likely have more difficulty in matching contralateral efforts than do able -bodied 

subjects, since limb-absent subjects also lack aspects of motor feedback (proprioception and force). 

9.5 Conclusion 

In summary, the trend in our results was for larger errors in contralateral-trained models than in 

ipsilateral-trained models. The average error differences in quasi-static 1-DoF trials varied from 6–56%, 

when measured in %MVC (effect size: 0.29–0.69). Differences were as large as 65% (effect size 1.04) 

in quasi-static 2-DoF trials (Ext-Flx & Rad-Uln). These results suggest that differences in contralateral 

contraction profiles account for some of the additional errors commonly found when training EMG-

force models using bi-lateral mirrored contractions. Additional study in a larger able -bodied population 

is warranted, in which it would also be useful to simultaneously measure the forces produced by both 

wrists, providing a more complete comparison of the ability—and limitations—of subjects to match 

contraction profiles contralaterally. With the cases giving the better effect sizes of 1.04 and 0.69, this 

pilot study finds that, in a full study, paired comparisons at =0.05 would require a sample size of 10 

and 19, respectively, for 80% statistical power [25]. 
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Abstract: 

BACKGROUND : Traditional hand-wrist prostheses provide proportional control of only 1 degree of 

freedom (DoF) at a time, requiring the user to mode-switch between them. Research using large 

numbers of electrodes on able-bodied subjects has related the EMG of the forearm muscles to two 

degrees of freedom at the wrist. Initial evaluation in limb-absent subjects also shows this relationship, 

albeit with higher errors. However, using such large numbers of electrodes in a commercial prosthes is is 

not presently practical.  Hence, we studied the ability to extract EMG-force information using a 

minimum number of electrodes. 

METHODS: For 10 able-bodied subjects, 16 conventional bipolar electrodes were mounted 

transversely about the proximal forearm. The hand was secured to a load cell which measured forces 

generated during wrist extension-flexion, radial-ulnar deviation and pronation-supination. A screen 

target produced slowly-moving (quasi-static) force targets along one of these three contraction 
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dimensions per trial, and also produced targets with equal levels of co -contraction for pairs of 

dimensions (2-DoF tasks). Effort ranged over 0–30% MVC. Linear, static, 1-DoF and 2-DoF models 

relating EMG amplitude to force were then trained, using regularized linear least squares. Initially, all 16 

electrodes were used as inputs. Thereafter, backward stepwise selection of the training data sequentially 

reduced the number of electrodes. RMS error on a separate test trial was evaluated at each step. 

RESULTS: For 1-DoF models, stepping down to fewer than two electrodes was unacceptable; and 

retaining more than two electrodes provided limited benefit. This result was expected and consistent 

with existing prosthesis practice. With 2 electrodes, the 1-DoF average error ranged from 6.5–9.5%, 

depending on the DoF; pronation-supination exhibited the highest errors. For 2-DoF tasks, there was 

little or no change in error stepping from 16 down to 4 electrodes. Errors generally increased 

progressively as the number of selected electrodes decreased from 4 to 1. With 4 electrodes, the 2 -DoF 

error averaged 6.3–8.1%, depending on the DoFs. Minimum errors occurred when combining flexion-

extension with ulnar-radial deviation. 

 This experiment was piloted with 4 unilateral limb-absent subjects. Force was measured from their 

sound side and mirrored contractions produced on the limb-absent side. Electrodes were mounted on the 

limb-absent side. For 1-DoF models using 2 electrodes, errors ranged from 12.8–18.3%, depending on 

the DoF. For 2-DoF models using 4 electrodes, errors ranged from 13.8–16.1%. Result trends matched 

those of the able-bodied subjects, but with higher errors overall. 

CONCLUSION: These results are encouraging that as few as 4 conventional electrodes, optimally 

located about the forearm, could provide 2 DoFs of simultaneous, independent and proportional control 

with error rates similar to the 1-DoF approach currently used for commercial prosthesis control. 


