
A discrete model for the default risk of
inter-banking networks

Master’s Thesis submitted to
the Faculty of

Worcester Polytechnic Institute
In partial fulfillment of the requirements for the

Degree of Master of Science in
Financial Mathematics

Mihnea Stefan Andrei

Adviser: Stephan Sturm

Department Head: Luca Capogna

May 1, 2014

1

Acknowledgments

I would like to thank my parents for supporting me throughout my education and I
would also like to thank professor Stephan Sturm, without whom this project would not
have been possible.

2

Abstract

During the most recent financial crisis, a myriad of banks defaulted. This
scenario encouraged the development of a mathematical model for how de-
fault spreads through a system of banks. As we will see, the problem brings
together ideas from many fields in Mathematics: Combinatorics, Linear Al-
gebra, Calculus, Statistics and Probabilities. Afterwards, we will turn our
attention not only towards implementing the model in MATLAB, but also
towards interpreting the results obtained.

3

Contents

1 Introduction 6
1.1 Financial Context . 6
1.2 The Model . 7

2 Discrete Time Model 7
2.1 Two Banks . 7
2.2 Generalization of the two bank model . 10

3 Implementation in MATLAB 14

4 Results and Simulations 23

5 Future Work 33

4

List of Figures

1 Unemployment by country . 6
2 System with two banks . 7
3 System of 3 banks with 3 connections . 10
4 3 banks 3 connections default time . 26
5 3 banks 2 connections default time . 26
6 3 banks 2 connections b=15 default probability 28
7 3 banks 2 connections c=15 default probability 28
8 3 banks 3 connections c=15 default probability 29
9 3 banks 2 connections b=20 default probability 30
10 3 banks 2 connections c=20 default probability 31
11 3 banks 3 connections c=20 default probability 31
12 3 banks 2 connections c=15 conditional default probability 32
13 3 banks 2 connections b=15 conditional default probability 33
14 3 banks 3 connections b=15 conditional default probability 34

List of Tables

1 Expected Time of Default for 3 Bank Networks 24

5

1 Introduction

1.1 Financial Context

During the most recent financial crisis many companies went bankrupt and had to be
bailed out by the Government1. In the process, the Federal Reserve spent a total of
$615B. Albeit the total remaining net that the U.S. Government is due to receive is
only $27.1B, some of those companies with financial difficulties even failed to repay their
liabilities. This financial crisis caused economic and, especially in Europe, social distress.
The latter is a result of job insecurity and rising unemployment. The following figure2

depicts some of the European countries that have been facing the biggest problems with
unemployment.

Figure 1: Unemployment by country

It is important to remember however, that the data presented accounts only for the
people that could work, but cannot find a job. Hence, for example, people that have
certain disabilities or people that are receiving unemployment benefits from their Gov-
ernment are not accounted for. We now realize that, in Spain and Greece, there is less
than 3 people that have to provide not only for their young and elder members of their
families, but, together, they also have to provide for at least another person that could
not find a job. The consequences of such high unemployment for a long period of time
are devastating. For example, the young cannot get the experience necessary when they
get out of school or experienced workers that have been unemployed for a long period
of time start loosing their skills.

Although the rest is history, it is important to try to learn from the mistakes of
the past. But what are those mistakes? Many reasons can be found for the financial
crisis, but an unmistakable one is the strong connections that institutions have with
each other. There are more companies, conducting business faster and faster, mainly

1For a complete list visit http://projects.propublica.org/bailout/list
2Data obtained from Eurostat

6

due to the advances in technology. It is those advances that brought not only individuals
closer, but also country’s economies closer. As we become more and more aware of the
importance that connections have in a system, we would like to be able to investigate
which ones do not facilitate the spread of default.

One way in which we could do this is by studying how contagion spreads through
a banking system. In this paper, we will develop a discrete model that characterizes
the spread of contagion by finding the expected time until the first bank defaults, the
probabilities that each bank will default and some conditional probabilities.

1.2 The Model

We consider that the chances for a certain bank to default depend on the capital that it
retains and on the liabilities and assets that it has with respect to other institutions.

Now, that we have established the 2 most important criteria for the default of a bank,
the next question is how we would mathematically represent the assets and the liabilities
that each bank might have to other banks. One way is to use graphs. We consider the
vertices of a graph to be our banks. Each vertex has a weight equal to the capital that
it retains. We draw a directed edge from vertex i to vertex j if the bank with a starting
capital of i (for the rest of the paper we will refer to it simply as bank i) has a liability
to bank j. This edge has a weight equal to the amount of money that bank i has to pay
to bank j.

2 Discrete Time Model

2.1 Two Banks

Before venturing any further into thinking about our problem in the general case, for
any number of banks, we will first present the problem when there are only 2 banks in a
financial system. The only configuration of 2 banks that interests us is the one in which
one of them has liabilities to the other one.

−a bxn

O• •

Figure 2: System with two banks

In the above picture, a and b are the starting capitals for the two banks, and WLOG,
assume that the bank with a capital of a has liabilities to pay to the other bank. Let us
use a weight on the edge between the two banks equal to the value of a random walk at
time n:

xn =

n∑
i=1

yi (1)

7

Here

yi =

{
1 with probability 1

2

−1 with probability 1
2

For example, if xn > 0 then the bank with a starting capital of a owes xn to the bank
with starting capital b. Meanwhile, if xn < 0, the bank with a starting capital of b owes
money to the second bank. One way to think about this configuration is to consider the
edge of the graph between the two banks to be the real line. This way, in order to be
consistent with this new framework, we can relabel the bank with a starting capital of
a with −a. Also, our random walk starts at 0 and, as time passes by, it will move either
to the left, closer to −a, or to the right, closer to b. With this set-up, the first bank will
default when xn = −a and the second bank will default when xn = b. Hence, we are
interested in studying when is the first time when one of the 2 banks defaults and what
are the chances that they will default. The first time when either of the banks defaults
can be represented as a stopping time defined in the following way:

τ = inf{n|xn = −a or xn = b} (2)

Moreover, consider Fn to be the filtration associated with our random walk xn.
We are interested in finding E[τ], P (xτ = −a) and P (xτ = b). However, before finding

those values, we will first prove two useful lemmas.

Lemma 1. y2i and 1{τ>i−1} are independent random variables for any i.

Proof. Since τ is a stopping time, from the definition, we know that {τ = j} ∈ Fj for
any j. Hence, by using the closure under union and the closure under complementarity
for a sigma algebra, we obtain that

i−1⋃
j=1

{τ = j} ∈ Fi−1 ⇔ {τ ≤ i− 1} ∈ Fi−1 ⇔ {τ > i− 1} ∈ Fi−1

But, since yi ∈ Fi ⇒ y2i ∈ Fi and since yi are independent for any i, we conclude that
y2i and 1{τ>i−1} are independent random variables for any i.

Lemma 2. If j > i then yj and yi1{τ>i−1}1{τ>j−1} are independent random variables.

Proof. Just like in the proof for the lemma presented above, we can show that {τ >
k − 1} ∈ Fk−1 for any k ≥ 1. Therefore, {τ > i − 1} ∈ Fi−1 and {τ > j − 1} ∈ Fj−1.
Since yi ∈ Fi, we conclude that yi1{τ>i−1} ∈ Fi. But since i ≤ j − 1 ⇒ Fi ⊂ Fj−1 we
observe that yi1{τ>i−1}1{τ>j−1} ∈ Fj−1. The last step is to remember that yj ∈ Fj and
Fj−1 are independent.

Now that we proved those useful lemmas, we are able to find E[τ]. Using definition
(1) for n = τ , we obtain that3

xτ =
τ∑
i=1

yi =
∞∑
i=1

yi1{τ>i−1}

3Karl Sigman

8

The second equality can easily be verified by starting from the right hand side and
proving the left hand side. Next, if we square the equation obtained above and if we
take the expected value of both sides, we obtain that

E[xτ
2] = E

(∞∑
i=1

yi1{τ>i−1})

)2
 =

=
∞∑
i=1

E
[
y2i 1{τ>i−1}

]
+

∞∑
i,j=1,i 6=j

E
[
yiyj1{τ>i−1}1{τ>j−1}

]
Using Lemma 2 and the fact that yi are independent and identically distributed

with E[yi] = 1 · 1
2 − 1 · 1

2 = 0, we can conclude that E
[
yiyj1{τ>i−1}1{τ>j−1}

]
=

E[yj]E
[
yi1{τ>i−1}1{τ>j−1}

]
= 0 for any i 6= j.

Hence, the double sum in the right hand side of the equation that was presented above
is equal to 0. Furthermore, by using Lemma 1, we obtain that:

E
[
xτ

2
]

=

∞∑
i=1

E
[
y2i 1{τ>i−1}

]
=

∞∑
i=1

E
[
y2i
]
E
[
1{τ>i−1}

]
=

∞∑
i=1

E
[
y2i
]
P (τ > i − 1)

But E[y2i] = 12 12 + (−1)2 12 = 1 for any i. Therefore, we found that

E[xτ
2] =

∞∑
i=0

P (τ > i) = E[τ].

Remark 1. We were able to interchange the series with the expectation because xn =∑n
i=1

(
yi1{τ>i−1}

)2 ≥ 0 and xn is monotone increasing.

For two banks, we have found so far that E[xτ
2] = E[τ].

Before we continue in our quest of finding P (xτ = −a) and P (xτ = b), let us make
the observation that E[xn] =

∑n
i=1E[yi] = 0 and let us also prove the following useful

result:

Lemma 3. If E[xn] = 0 then E[xτ] = 0.

Proof. Using the fact that P (τ < ∞) = 1, we observe that xτ = limn→∞ xτ∧n. By
taking expectation, we arrive at E[xτ] = E [limn→∞ xτ∧n]. But since we also have that
xτ∧n ≤ τ , we obtain

E[xτ] = lim
n→∞

E[xτ∧n]

Therefore, we would have to show that limn→∞E[xτ∧n] = 0.
Let us make use of the indicator function: E[xτ∧n] = E

[
xτ1{τ<n} + xn1{τ≥n}

]
. Be-

cause −a ≤ xn ≤ b, we conclude that −a1{τ≥n} ≤ xn1{τ≥n} ≤ b1{τ≥n}. By tak-
ing expectation, we obtain that −aP (τ ≥ n) ≤ E

[
xn1{τ≥n}

]
≤ bP (τ ≥ n). Now,

9

by taking the limit as n goes to infinity and using the squeeze law, we conclude that
limn→∞E

[
xn1{τ≥n}

]
= 0

Let us turn our attention to E
[
xτ1{τ<n}

]
. From the definition of xτ , we obtain that

xτ =
∑∞

i=1 xi1{τ=i}. Therefore

E
[
xτ1{τ<n}

]
= E

[∞∑
i=1

xi1{τ=i}1{i<n}

]
= E

[
n−1∑
i=1

xi1{τ=i}

]
=

n−1∑
i=1

E[xi]P (τ = i) = 0

Hence, we showed that limn→∞E[xτ∧n] = 0, which concludes our proof.

Theorem 1. P (xτ = −a) = b
a+b and P (xτ = b) = a

a+b

Proof. From the way in which we defined our stopping time in (2), we realize that we
can write xτ = −a1{xτ=−a} + b1{xτ=b}. By taking expectation and by using Lemma
3, we obtain that 0 = E[xτ] = −aP (xτ = −a) + bP (xτ = b). However, since P (xτ =
−a) + P (xτ = b) = 1 we obtain that P (xτ = −a) = b

a+b and P (xτ = b) = a
a+b .

2.2 Generalization of the two bank model

For the general case, we will use the same graph representation as before. This time,
each edge in the graph will be weighted by a different random walk. The picture below
illustrates a three bank system with three connections (i.e. each bank has liabilities or
assets to all the others).

a

b

c

xn yn

zn
•

•

•

Figure 3: System of 3 banks with 3 connections

Using the configuration presented in the picture and knowing that a bank defaults on
its debt when it doesn’t have sufficient capital to pay all the liabilities that it has, we
know that our system will not have a bank that defaults as long as the following system
of inequalities is satisfied: 

a+ xn − zn > 0

b− xn + yn > 0

c− yn + zn > 0

10

In general, any system of banks will not default as long as we have that AWn > ~0, where
A is a mxn matrix with m = number of banks in the system and

n=number of edges in the system + 1, Wn =
(

1 xn yn . .
)T

and the inequality is
component-wise. In the example showed in the above picture,

A =

 a 1 0 −1
b −1 1 0
c 0 −1 1

 and

Wn =


1
xn
yn
zn


.

Hence, we have to find the first time at which at least one component of AWn ≤ 0 and,
just like in the previous section, let it be τ . We can think of AWn as a multidimensional
random walk in Rm and let us consider the points for which AWn > 0 to be transition
points and the points for which AWn ≤ 0 to be absorption points. Therefore, AWn is
an absorbed Markov process.

Observation 1. If m is the number of banks in our system and if S is the sum of the
capitals that each bank has, then the number of transition points is at most

(
S−1
m−1

)
.

Proof. We first notice that if we add all the left hand side quantities in our inequalities
from one of our linear system, the result will just be S. This is because what is a liability
for a bank becomes an asset for the other. Let us denote by (AWn)i the ith component
of the vector AWn. In this new framework, we are trying to find the number of positive
integer solutions to the equation

∑m
i=1(AWn)i = S. But the number of positive integer

solutions to m independent variables that sum up to S is
(
S−1
m−1

)
. However, our (AWn)i

are not pairwise independent, since a particular value for some might uniquely determine
other components of AWn.

Now that we know that the number of transition states is bounded, we move on to
finding some information about the number of absorption states.

Observation 2. If m is the number of banks in our system, then the number of absorp-
tion states is at most 2m − 2.

Proof. The number of absorption states is at most equal to the number of ways in which
we can choose one component to be non-positive+the number of ways in which we can
choose 2 components to be non-positive+...+ the number of ways in which we can choose
m−1 components to be non-positive. This, in turn, is equal to

(
m
1

)
+
(
m
2

)
+ ...+

(
m
m−1

)
=

(1 + 1)m −
(
m
0

)
−
(
m
m

)
= 2m − 2.

11

Let P =

(
T ~r1 ~r2 ... ~rna
0 I

)
be the transition matrix that corresponds to the

random walk AWn, where T is the transition matrix for the transition states and ri are
vectors with probabilities of arriving in the ith absorption states. More specifically,

Tij = P (AWn reaches the jth transition point from the ith transition point)

(~ri)j = P (AWn reaches the ithabsorption point from the jth transition point)

Just as before, (~ri)j denotes the jth component of ~ri. Moreover, since P is stochastic,
the sum of the probabilities across each row has to be 1. We obtain that T~1+

∑na
i=1 ri = ~1,

where ~1 =
(

1 1 ... 1
)T

. Furthermore, let us denote by R =
(
r1 r2 ... r2m−2

)
the absorption matrix. Hence, we have that

T~1 +R~1 = ~1 (3)

.
Before we can continue on our quest of modeling default in a system of banks, we will

have to introduce a new concept4.

Definition 1. The distribution of the time τ until absorption for a random walk with
transition matrix P and initial probability distribution ~p is called a PH distribution.

Remark 2. In our model:

(i) The random walk for which we want to use this concept is AWn

(ii) ~p =
(

1 0 0 ... 0
)T

The following theorem gives the distribution of a PH random variable.

Theorem 2. Let τ follow a PH(~p,T) distribution. Then:

(i) P (τ = k) = ~p(T k−1 − T k)~1;

(ii) Fτ (k) = P (τ ≤ k) = ~p(I − T k)~1

Proof. We will first prove (ii). Since AWn is an absorbed Markov Chain, the chance
that the time to default is smaller than some integer k is the same as the chance that the
random walk AWk will be absorbed. Now, by conditioning on all the possible starting
points for our random walk, we obtain:

Fτ (k) = P (τ ≤ k) = P (AWk ≤ 0) =

=

k∑
i=0

P (AWk ≤ 0|AW0 = vi)P (AW0 = vi) =

= ~p(I + T + T 2 + ...+ T k−1)R~1 = ~p(I − T k)(I − T)−1R~1

4Latouche and Ramaswami (1999)

12

By using equation (3), we can deduce that

Fτ (k) = ~p(I − T k)(I − T)−1(~1− T~1) = ~p(I − T k)(I − T)−1(I − T)~1 = ~p(I − T k)~1

Please note that Proposition 2 assures us that (I − T) is invertible. Sub-point (i)
follows more easily:

fτ (k) = P (τ = k) = F (τ ≤ k)− F (τ ≤ k − 1) =

= ~p(I − T k)~1− ~p(I − T k−1)~1 = ~p(T k−1 − T k)~1

Now that we know the distribution for the time to default random variable, we can
find E[τ] and P (default in α), the latter probability been just the likelihood that our
random walk will be absorbed in state α.

Proposition 1. Let τ be the time to default random variable. Then τ has a PH distri-
bution with transition matrix T , initial probability distribution given by ~p and:

(i) E[τ] = ~p(I − T)−1~1;

(ii) P (AWn = ~rα) = ~p(I − T)−1 ~rα

Before we can start proving this proposition, we will need to prove the following 2
results.

Theorem 3. The probability that an absorbed Markov chain will eventually be absorbed
is 1.

Proof. We have to show that limn→∞ T
n = 0. Let us take tj a transition point. Let

mj be the minimum number of steps that it takes for our process to reach an absorbing
state from tj .Finally, consider pj to be the probability that starting from tj the process
will not reach an absorbing state in mj and let p = maxj pj and m = maxjmj . From
the way in which we constructed the notations, we know that we can reach an absorbing
state from point tj in mj steps. Hence, pj < 1 and we know that the probability of not
been absorbed in m steps is at most p. Using the fact that AWn has independent time
increments, we can also conclude that the probability of not been absorbed in 2m steps
is at most p2. In general, the probability of not been absorbed in km steps is at most
pk. If we let k →∞ we obtain that limn→∞ T

n = 0.

Now that we have proved this theorem, we are ready to show that I − T is invertible.

Proposition 2. If T is a transition matrix, then I − T is invertible.

Proof. Let us start from the equation (I−T)~x = 0⇔ ~x = T~x. If we repeatedly multiply
the last equation by T to the left, we will obtain that ~x = T k~x for any integer k.
However, by letting k →∞ and by using Theorem 3, we obtain that ~x = 0. Therefore,
I − T is invertible and let N be its inverse. We know that the following identity holds:
(I−T)(I+T +T 2 + ...+T k) = I−T k+1 for any positive integer k. By multiplying both
sides with N to the left, we obtain that I+T+T 2+...+T k = N(I−T k+1). By letting once
again k →∞ and by using Theorem 3 we conclude that (I−T)−1 = N =

∑∞
i=0 T

i.

13

Since we have shown that I−T is invertible, we can start giving the proof for Propo-
sition 1.

Proof. The proof uses Theorem 2 as follows.

(i) By applying the definition of expectation, we obtain that

E[τ] =

∞∑
k=1

k~p
(
T k−1 − T k

)
~1 = ~p

(∞∑
k=1

kT k−1 − kT k
)
~1 = ~p

(∞∑
k=1

T k

)
~1

Using Proposition 2, we can conclude that E[τ] = ~p(I − T)−1~1.

(ii) By conditioning on all the possible values that the time to default random variable
can take, we obtain

P (default in α) =
∞∑
k=0

P (default in α, τ = k) =
∞∑
k=1

~pT k−1rα

The last equality holds because in order for the system to default in the absorption
case α after k steps, it has to have k − 1 transition points and the last step has
to absorb the random walk. Hence, P (default in α) = ~p(

∑∞
k=0 T

k)rα and by using
again Proposition 2 we conclude that P (default in α) = ~p(I − T)−1rα.

3 Implementation in MATLAB

We would like to be able to implement the ideas presented in the previous section in
order to be able to study how different banking networks react under the spread of
contagion. Also, for each such network, we would like to see the impact that different
starting capitals has. As we have seen in the previous section, we have managed to find
both the expected time until the first bank defaults and the probability that we will
end up in a certain defaulting scenario. Hence, in order to find the probability that a
bank will default, we just have to add all the probabilities of the outcomes in which the
bank’s capital becomes non-positive. However, as Proposition 1 suggests, before doing
so, we have to be able to compute the transition matrix and the absorption matrix. But
in order to be able to fill in those matrices, we have to know all the transition points
and all the absorption points for our multidimensional random walk. Observation
1 and Observation 2 from the previous section suggest that the two matrices might
become large for big systems of banks with big starting capitals, which, in turn, will
affect drastically the run time.

Each system of banks has associated with it a system of linear inequalities, which,
in turn, have an augmented matrix, denoted here by A. This time, for the purposes of

implementation, we define Wn =
(
xn yn . . zn

)T
and A to be the matrix that

14

has as entries only the coefficients of the random walks. Using the example of 3 banks
with 3 connections given in the previous section, this time

A =

 1 0 −1
−1 1 0
0 −1 1


Moreover, from the definition of our random walks in (2), we realize that xn+1−xn = ±1.
Hence, we obtain that

AWn+1 −AWn = A(Wn+1 −Wn) = A


±1
±1
.
.
±1

 (4)

For simplicity, let us consider a network that has 4 banks. We can think of our linear

system as a multidimensional random walk that starts at
(
a b c d

)T
and can only

move in the directions given by (4). This geometric interpretation gives us an idea of
implementing the model. We can start from the origin and we can add to it the step
vectors found in (4) until one of the components of the result becomes non-positive.

Algorithm 1. Finding The Step Vectors
for i=0:1:1

for j=0:1:1
for k=0:1:1

for l=0:1:1
v(:,counter)=[(−1)i; (−1)j ; (−1)k; (−1)l];
SV(:,counter)=A*v(:,counter);
counter=counter+1;

end
end

end
end

Observation 3. Since we are adding the step vectors to the origin, we are only inter-
ested in those that are linearly independent, since the others can be obtained as a linear
combination of the independent vectors.

Algorithm 2. Linearly Independent Step Vectors
rrefSV=rref(SV);
rows=size(SV,1);
columns=size(SV,2);
counter=1;
counter1=1;
max=0;

15

for i=1:1:columns
flag=0;
for j=1:1:rows

if rrefSV(j,i)==1
flag=1;
k=j;

end
end
flag1=-1;
if flag==1

flag1=1;
for j=1:1:rows

if k 6= j
if rrefSV(j,i) 6= 0

flag1=0;
end

end
end

end
if flag1==1

SVli(:,counter)=SV(:,i);
counter=counter+1;

else
if norm(SV(:,i),1)>max

max=norm(SV(:,i),1);
end

end
end

As we can see in the algorithm presented above, we are row reducing the matrix that
has as columns the step vectors obtained from Algorithm 1. By picking those columns
from the original matrix that have pivot positions in the row reduced one, we obtain a
set of linearly independent vectors. Moreover, we notice that this algorithm also finds
the step vector that has the biggest norm. As we will see in the following algorithm, we
need to know this since we have to impose a condition on when to stop searching for
transition and absorption points. Since we have to keep on searching until the condition
is not met anymore, we decide to use while loops.

Algorithm 3. Searching for Points
W=zeros(banks,1);
v1=SVli(:,1);
v2=SVli(:,2);
v3=SVli(:,3);
T=zeros(1,1);

16

vstop=-max*ones(4,1);
Abs=zeros(banks,1);
W(:,1)=[a;b;c;d];
j=2;
k=0;
l=0;
m=0;
while (W(:,1)+k*v1+l*v2+m*v3>vstop)

while (W(:,1)+k*v1+l*v2+m*v3>vstop)
while (W(:,1)+k*v1+l*v2+m*v3>vstop)

W(:,j)=W(:,1)+k*v1+l*v2+m*v3;
j=j+1;
m=m+1;

end
l=l+1;
m=0;
end

k=k+1;
m=0;
l=0;
end

Notice that we imposed the condition W (:, 1) +k ∗ v1 + l ∗ v2 +m∗ v3 > vstop instead
of W (:, 1) + k ∗ v1 + l ∗ v2 + m ∗ v3 > 0. This is because, in the latter situation it is
possible that the code finds a negative coordinate for a certain combination of k, l,m,
albeit, on the next iteration, that same coordinate would become positive. In order to
make sure that this will not happen, we impose the condition that has vstop (the step
vector with the biggest norm).

Observation 4. Since we have to loop through all possible k, l,m, we would have to con-
struct, in a similar manner, while loops that take into account all the possible orderings
of those 3 parameters and the fact that they can also be negative.

Once we construct the matrix W with columns the points of our multidimensional
random walk can reach, we are ready to find the transition points (those that have all
their coordinates positive).

Algorithm 4. Transition Points
WT=zeros(banks,1);
counter=1;
for i=1:1:(j-1)

if W(:,i)>0
WT(:,counter)=W(:,i);
counter=counter+1;

end
end

17

In order to find the absorption points, we have to choose those columns in W that have
at least one negative coordinate and they have to be one step away from a transition
point.

Algorithm 5. Absorption Points
Abs=zeros(banks,1);
sizeSV=size(SV,2);
counter=1;
for k=1:1:sizeSV

for l=1:1:(j-1)
if (W(:,l)+SV(:,k)>0)

counter=counter;
else

Abs(:,counter)=W(:,l)+SV(:,k);
counter=counter+1;

end
end

end

However, the points found by the presented algorithms might not be unique. Thus,
we need to create a different matrix with the unique points

Algorithm 6. Unique Transition Points
WU=zeros(banks,1);
WU(:,1)=WT(:,1);
sizeWT=size(WT,2);
su=1;

for p=2:1:sizeWT
flag=1;

for q=1:1:su
if WT(:,p)==WU(:,q)

flag=0;
end

end
if flag==1

su=su+1;
WU(:,su)=WT(:,p);

end
end

In a similar manner, we can find the unique absorption points. Now that we finally
have both our unique transition points and our unique absorption points, we can start
constructing our transition and absorption matrices. We notice that

T (i, i) =
number of step vectors equal to ~0

2edges

18

Moreover, if two transition points (let them be the pth and qth point in WU) are one
step away from each other, then

T (p, q) = T (q, p) =
number of ways of moving from point p to point q

2edges

.

Algorithm 7. Transition Matrix Construction
zerov=zeros(banks,1);
count=0;
for k=1:1:sizeSV

if(SV(:,k)==zerov)
count=count+1;

end
end
T (1, 1) = count

2edges ;
for p=1:1:su

for q=1:1:su
count1=0;
for k=1:1:sizeSV

if ((WU(:,p)-WU(:,q)==SV(:,k))&(p 6=q))
count1=count1+1;

end
end
T (p, q) = count1

2edges ;

T (q, p) = count1
2edges ;

end
T (p, p) = count

2edges ;
end

For the absorption matrix, we have to make sure that the absorption point found is
only one step away from a transition point. Once this is confirmed, we set

R(q, p) =
number of ways of moving from point q to p

2edges

Algorithm 8. Absorption Matrix Construction
siu=size(AbsU,2);
R=zeros(su,siu);
for p=1:1:siu

for q=1:1:su
count=0;

for k=1:1:sizeSV
if (WU(:,q)-AbsU(:,p)==SV(:,k))

count=count+1;
end

19

end
R(q, p) = count

2edges
;

end
end

Finally, by using Proposition 1 from the previous section, we can easily find the
expectation and the probability of default in each scenario.

Algorithm 9. Expectation and Probabilities of Default in each Scenario
tauinv=(tau/(eye(s,s)-T));
for j=1:1:siu

str=[’The chance of default in the scenario ’, mat2str(AbsU(:,j)),
’ is ’, num2str(tauinv*R(:,j))];

disp(str);
sum1=sum1+(tauinv*R(:,j));

end

Now, we have everything we need to compute the chances that each bank, in a given
network, will default. In order to do so, we first have to know how many banks have
defaulted in any given absorption scenario. Afterwards, as mentioned at the beginning
of this section, we would just have to add the probabilities of all the outcomes in which
the bank (or banks) that interests (interest) us defaults (default).

Algorithm 10. Probability of Bank(Banks) Defaulting
pbank=zeros(banks,banks);
AbsCond=AbsU;
count=zeros(siu,1);
for k=1:1:siu

for j=1:1:banks
if (AbsU(j,k)≤0)

count(k,1)=count(k,1)+1;
end

end
end
for k=1:1:siu

if count(k,1)==1
for j=1:1:banks

if AbsU(j,k)≤0
pbank(j,j)=pbank(j,j)+tauinv*R(:,k);

end
end

else
if count(k,1)==2

for j=1:1:banks

20

for l=(j+1):1:banks
if ((AbsU(l,k)≤0)&&(AbsU(j,k)≤0))

pbank(l,j)=pbank(l,j)+tauinv*R(:,k);
pbank(j,l)=pbank(l,j);

end
end

end
end

end
end
disp(’Probability of default matrix:’);
disp(pbank);

We can also compute conditional probabilities, by assuming that, for example, if a
bank defaults, its neighboring banks will have to equally pay the loss recorded throughout
the bank’s lifetime. It is easier to implement this assumption when there is only one
bank defaulting, as opposed to when there are 2. Let us deal with the easier case first.
The formula in this scenario is

new capital = old capital− initial capital of defaulting bank

number of neighboring banks
−

− ending capital of defaulting bank

number of neighboring banks
(5)

Algorithm 11. Capitals Adjustment if 1 Bank Defaults
for k=1:1:siu

if (count (k,1)==1)
for l=1:1:banks

if (AbsU(l,k)≤0)
[v,counter]=adjacentVertecies(B,l);
for j=1:1:counter-1
AbsCond(v(j, 1), k) = AbsCond(v(j, 1), k)− WU(l,1)−AbsCond(l,k)

degree(B,l) ;
end

end
end

end
end

We also note that we have used another function, adjacentVertecies that takes as ar-
gument the incidence matrix of a graph and a vertex and returns a vector that contains
all the neighboring vertices of the specified one and the number of neighbors. The im-
plementation of this function and of the whole code can be found in the Appendix.

21

Now, let us focus the attention on the situation in which 2 banks default at the same
time. In this scenario, the formula (5) might be different. For example, if the defaulting
banks have a common neighbor and they also have an edge between them, then its new
capital will be:

new capital = old capital− (initial-ending) capital 1st defaulting bank

number of neighboring banks− 1
−

− (initial-ending) capital 2nd defaulting bank

number of neighboring banks− 1

For the scenario in which there is no edge between the 2 defaulting banks, we simply do
not have to subtract 1 at the denominator.

Algorithm 12. Capitals Adjustment if 2 Banks Default
if count(k,1)==2

for l=1:1:banks
for j=l:1:banks

if (AbsU(l,k)≤0)
if (AbsU(j,k)≤0)

if (l6=j)
[vl,counter1]=adjacentVertecies(B,l);
[vj,counter2]=adjacentVertecies(B,j);
lasteqvl=0;

for p=1:1:counter1-1
for q=1:1:counter2-1

if ((vl(p,1)==vj(q,1)))
if B(l,j)==1

lasteqvl=vl(p,1);
AbsCond(lasteqvl, k) = AbsU(lasteqvl, k)−
−WU(l,1)+WU(j,1)−AbsU(l,k)−AbsU(j,k)

degree(B,l)−1 ;
else

lasteqvl=vj(q,1);

AbsCond(lasteqvl, k) = AbsU(lasteqvl, k)− WU(l,1)−AbsU(l,k)
degree(B,l) ;

inter=AbsCond(lasteqvl,k);

AbsCond(lasteqvl, k) = inter − WU(j,1)−AbsU(j,k)
degree(B,j)) ;

end
else

if ((lasteqvl 6=vl(p,1))&&(B(l,j)==1) && (vl(p,1)6=j))

AbsCond(vl(p, 1), k) = AbsU(vl(p, 1), k)− WU(l,1)−AbsU(l,k)
degree(B,l)−1 ;

end
if ((lasteqvl 6=vj(q,1))&&(B(l,j)==1) && (vl(p,1)6=j))

AbsCond(vj(q, 1), k) = AbsU(vj(q, 1), k)− WU(j,1)−AbsU(j,k)
degree(B,j)−1 ;

end
if ((lasteqvl 6=vl(p,1))&&(B(l,j)==0) && (vl(p,1)6=j))

22

AbsCond(vl(p, 1), k) = AbsU(vl(p, 1), k)− WU(l,1)−AbsU(l,k)
degree(B,l) ;

end
if ((lasteqvl 6=vj(q,1))&&(B(l,j)==0) && (vl(p,1)6=j))

AbsCond(vj(q, 1), k) = AbsU(vj(q, 1), k)− WU(j,1)−AbsU(j,k)
degree(B,j) ;

end
end

end
end

end
end

end
end

end
end

4 Results and Simulations

In this section, we will present some results obtained using the code explained in the
previous section. But before we delve into them, let us first look at the limitations of
the code, as they impact its running speed.

Remark 3. Limitations of the code and possible improvements

• The code uses an exhaustive method to find the absorption and transition points,
which is time consuming, especially as the initial capitals and number of banks
increase.

• Vectorizing the code would increase speed.

We are concerned with speed since, on a typical computer, the above code would have
to run for around 1 week in order to simulate a specific four bank network with initial
capitals for each bank ranging from 1 to 10, in increments of 1. This is also the reason
why most of our results are obtained for networks with 3 banks. As the following table
depicts, there are only 2 different possible such networks. This is because if we would
reduce the number of edges to 1, we would obtain a vertex that is not connected to any
of the others and, thus, we would deal with a two bank network.

For the first test, all the starting capitals ranged from 1 to 20 in increments of 1. For
each such initial distribution of capitals, the expected time to default was computed.
The figure presented in the first column of the following table represents the average of
all the expected times to default. By taking the standard deviation of those expected
times to default, we obtain the figures in the second column:

Using the table, the first observation that we can make is one that goes in tandem
with our intuition.

23

Table 1: Expected Time of Default for 3 Bank Networks

Mean Time Default Std Time Default Network
48.8452 40.4897

34.1891 27.1418

Observation 5. 3 Bank Network conclusions

• The more connected the network, the smaller the time to default.

• The more connected the network, the less sensitive it is to changes in capitals.

The second observation follows from the standard deviation figures. Since the standard
deviation of the network presented first in the table is bigger than that of the second
network, the expected time of default for the former, when the initial capitals are small,
is smaller than those of the latter. In the same way, when the initial starting capitals
get bigger, the expected value of the default time for the network that has 2 edges is
bigger than that of the second network.

Next, let us try to make a plot of the sum of the capitals that banks have versus the
expected time to default. Since there are multiple ways of obtaining a given sum using
3 integers, we would have to create a vector that contains the unique sums. Moreover,
we would like to average the expected time of default in the scenarios in which the sum
of capitals are equal.

Algorithm 13. Plotting Sum of Capitals Versus Expected Default Time
counterexpect=0;
for a=1:1:20

for b=1:1:20
for c=1:1:20

sumCap(counterexpect,1)=a+b+c;
counterexpect=counterexpect+1;

end
end

end
sumCapU(1,1)=sumCap(1,1);
counter=1;
for i=2:1:counterexpect-1

flag=0;
for j=1:1:counter

24

if (sumCap(i,1)==sumCapU(j,1))
flag=1;

end
end
if flag==0

sumCapU(counter+1,1)=sumCap(i);
counter=counter+1;

end
end
countSum=zeros(counter,1);
expectSum=zeros(counter,1);
for i=1:1:counterexpect-1

for j=1:1:counter
if (sumCap(i,1)==sumCapU(j,1))

countSum(j,1)=countSum(j,1)+1;
expectSum(j,1)=expectSum(j,1)+expect(1,i);

end
end

end
for i=1:1:counter

if countSum(i,1)>0
expectSum(i,1)=expectSum(i,1)/countSum(i,1);
end

end
grid on;
plot(sumCapU,expectSum);

Remark 4. Note that we had to create another vector, countSum, that counts how
many times a certain sum has been obtained.

The following figures depict the plot that we wanted to obtain.

25

Figure 4: 3 banks 3 connections default time

Figure 5: 3 banks 2 connections default time

26

Observation 6. From the pictures above, we can observe that the more capital there is
in the whole network, the longer we expect to take until the first bank defaults. Moreover,
the relationship between the two is almost exponential.

For the next test, we will fix one of the bank’s capital to equal 15 and we will let the
other 2 to range from 1 to 35 with increments of 1. As, usual, on each iteration through
the initial starting capitals we can compute not only the expected time to default, but
also probabilities that the banks will default. Since we already have used the expectation,
let us turn our attention towards how to make use of the latter. We are fixing one of
the bank’s capitals because we would like to see how the other banks’ money impact the
likelihood that either one or the other will default. Before we delve into the results, let
us see how we would implement this idea.

Algorithm 14. counterexpect=0;
for a=1:1:20

for b=15
for c=1:1:20

zaxis(counterexpect)=pbank(1,1)+pbank(3,3)-pbank(1,3);
xaxis(counterexpect)=a;
yaxis(counterexpect)=c;
counterexpect=counterexpect+1;

end
end

end
limit=floor(counterexpect/N);
hold on;
grid on;
for i=1:1:limit

xaxisnew=xaxis(((i-1)*limit+1):(i*limit));
yaxisnew=yaxis(((i-1)*limit+1:(i*limit)));
zaxisnew=zaxis(((i-1)*limit+1):(i*limit));
plot3(xaxisnew,yaxisnew,zaxisnew);
view(3);

end
plot3(xaxis,yaxis,zaxis);

Remark 5. Note that:

• We had to divide the vectors xaxis, yaxis and zaxis in equal parts of length N
because every N iterations c starts looping from 1 all over again. If this would
have been omitted, the plot would have had some extra lines.

• This particular code loops through a and c.

27

Figure 6: 3 banks 2 connections b=15 default probability

Figure 7: 3 banks 2 connections c=15 default probability

28

Finally, we are ready to see the results of our plots. We will first compare the plots
that resulted for a network in which we have 3 banks and 2 connections:

As we can see, the surface obtained when fixing the central bank (bank b) is shifted
up slightly compared to the one that we obtain by fixing one of the other banks (in this
case bank c). This is more evident as the capitals of the varying banks increase. This
leads us to the following:

Observation 7. The chances that default happens in a system are smaller when isolated
banks have as much capital as possible, than it is when the central bank has big reserves.

Moreover, in the scenario in which we fix the central bank, the rate at which the
chances that either of the other two banks will default decrease faster than in the other
scenario.

The following figure is obtained in the same way as described before, the only difference
been that now we are in a network of 3 banks with 3 connections. Since this network in
symmetric in any of the 3 banks, we can just pick at random one of the banks for which
we want to fix the capital. The following simulation was obtained by fixing bank c to
equal 15.

Figure 8: 3 banks 3 connections c=15 default probability

We notice that this scenario seems to give a curve that is in between the other two.
As we have seen in Observation 5, we are expecting this more connected network to
facilitate the spread of default. On the other hand, in case of default, a bank that
has many connections should influence the chances of default in our system less than a
bank that is very isolated. This is because, in the former situation, the capital that the
defaulting bank lost is distributed equally to its neighbors (from equation (5)).

29

Observation 8. K3 (the complete graph with 3 vertices) not only facilitates the spread
of default because of its strong connectivity, but also hinders it because of the higher
degree that each vertex has.

Moreover, we would like to see how our curve changes if we fix our bank at a capital
of 20. Our intuition tells us that the curve should shift upwards:

Figure 9: 3 banks 2 connections b=20 default probability

Observation 9. All the observations previously made for the test in which one of the
banks had a fixed capital of 15 can be applied here also.

30

Figure 10: 3 banks 2 connections c=20 default probability

Figure 11: 3 banks 3 connections c=20 default probability

31

In our simulations we have only used the expected time to default and the probabil-
ities that banks will default. However, it would be interesting to see how conditional
probabilities are affected as the capitals for those banks increase. This gives us an idea
of a similar test to the one before, that makes use of conditional probabilities. Again, for
a given 3 bank network, we will fix a bank’s capital to 15 and we will let the others to
range from 1 to 35 in increments of 1. For each such iteration, we will be computing and
plotting probabilities conditional on the fact that the bank with a fixed capital defaults.
The only modification that we have to do to Algorithm 14 is to replace the assignation
of the vector zaxis with zaxis(counterexpect) = pbankCond(1, 3) + pbankCond(2, 3).
Please note that this code is specific for the scenario in which we fix bank c’s capital.

The following figures depict the results obtained for systems of 3 banks with 2 connec-
tions. As we can see on the next page, in the scenario in which we fix the capital for one
of the banks that has only one connection, the whole curve gets close to the xy plane. As
a comparison, in the other scenario, in which we fixed the capital for the central bank,
only part of the curve seems to get closer and closer to the xy plane. This is because, in
the former case, the loss generated by bank c is completely incurred by bank b. Hence,
it is important for bank b to hold sufficient funds and, as we have seen previously, the
more capital it has, the less likely it is that default will spread. Meanwhile, if the central
bank defaults, two banks will be affected. If one of them has a capital small enough, it
is very likely that it will default, no matter what the third bank’s capital is. This rea-
soning leads us to a conclusion similar to Observation 9, but this time for conditional
probabilities, and therefore, better at characterizing how default spreads in the system:

Figure 12: 3 banks 2 connections c=15 conditional default probability

32

Figure 13: 3 banks 2 connections b=15 conditional default probability

Observation 10. The chances of contagion are smaller when isolated banks have as
much capital as possible, than it is when the central bank has big reserves.

Now, we will turn our attention towards a K3 network. The parameters were chosen
in the same way as in the previous network simulation. The figure on the following page
depicts our results.

Again, just like in the previous test in which we made use of the probabilities of
default, the K3 network produces a graph that is between the first two. Even when it
comes to the continuity of the lines, the 3 banks with 3 connections network seems to be
the middle ground of the other 2 scenarios tested before. Hence, this test only enforces
Observation 9.

As we have seen, the way in which the program is coded and the computing power
limited the simulations that could have been performed. However, the results obtained
are strongly connected to what our intuition tells us. With a faster running time, the
algorithm presented in the paper would not only be useful at determining the charac-
teristics of an inter-banking system that does not facilitate the spread of default, but it
would also be useful at determining probabilities of default and expected time until the
first default for a given big network with given big starting capitals.

5 Future Work

In the future, as suggested by Remark 3, the code should be implemented in a program-
ming language that facilitates vectorization. One such programming language would be

33

Figure 14: 3 banks 3 connections b=15 conditional default probability

the open source R. This programming language permits certain operations on vectors,
without having to write a for loop. However, there is another big advantage that R
has over MATLAB when it comes to implementing this algorithm. In order to become
aware of this advantage, let us look back at Algorithm 3, which was searching for the
points that can be reached by our random walk AWn. The number of nested while
loops is equal to the number of independent step vectors, which, in turn, varies with the
number of banks in the system. Therefore, implementing a function that also takes in
as parameter the number of banks in the system is impossible in MATLAB. However,
this trick can be done in R, if we use the function do.call().

Moreover, from equation (5), we realize that our code stops as soon as we find the
first default. However, once this happens, we could delete the respective vertex in the
graph and all its adjacent vertices, re-allocate the starting capitals and rerun the same
function. Actually, we could keep on doing this, until the network is reduced to only
one bank. This will give us a complete picture of how default contagion spreads in the
whole network. Implementing this idea would come after optimizing the run time of the
current algorithm.

However, the future work is not solely limited to making the code run faster. Already,
there have been developments made towards finalizing a continuous time model, based
on the same graph representation of our problem as the one used in discrete time.

34

References

[1] G. Latouche and V. Ramaswami Introduction to matrix analytic methods in stochastic
modeling SIAM (1999).

[2] Yvik C. Swan and F. Thomas Bruss A Matrix-Analytic Approach to the N-player
ruin problem. Journal of Applied Probability 43, 755-766 (2006)

[3] Karl Sigman Stopping Times http://www.columbia.edu/ ks20/stochastic-I/
stochastic-I-ST.pdf (2009)

35

