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Abstract

This work addresses the problem of generating a 3D mesh grid model of a tree by a

climbing robot for tree inspection. In order to generate a consistent model of the tree

while climbing, the robot needs to be able to track its location while generating the

model. Hence we explored this problem as a subset of Simultaneous Localization and

Mapping problem. The monocular camera based Visual Simultaneous Localization

and Mapping(VSLAM) algorithm was adopted to map the features on the tree.

Multi-scale grid based FAST feature detector combined with Lucas Kande Optical

flow was used to extract features from the tree. Inverse depth representation of

feature was selected to seamlessly handle newly initialized features. The camera

and the feature states along with their co-variances are managed in an Extended

Kalman filter. In our VSLAM implementation we have attempted to track a large

number of features. From the sparse spatial distribution of features we get using

Extended Kalman filter we attempt to generate a 3D mesh grid model with the

help of an unordered triangle fitting algorithm. We explored the implementation in

C++ using Eigen, OpenCV and Point Cloud Library. A multi-threaded software

design of the VSLAM algorithm was implemented. The algorithm was evaluated

with image sets from trees susceptible to Asian Long Horn Beetle.
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Chapter 1

Introduction

Map creation is an active field of research in robotics. Automation of map creation

not only saves time and effort but also helps in model generation of environments

that are manually inaccessible for hand-based drawings. Model generation from

images and video has been a core problem of research in computer vision and has

been studied under the Structure from Motion(SfM) problem. In this project we

have applied the concepts of the SfM to help aid in combating the Asian Longhorn

Beetle, one of the most destructive and invasive species that has caused the damage

and death of several trees in the United States, particularly in the New England

area.

1.1 The Motivation

Invasive pests when introduced in an uncontrolled environment pose threat to forestry

and agriculture. Asian Long Horned beetle (ALB) is one such pest that is a serious

threat to the hardwood industry in the New England area. ALB is native to east-

ern Asian countries and has been introduced into US forests accidentally through

import packaging. The ALB infestation in central Massachusetts is the largest in
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USA. Approximately 30,000 trees have been infested in Worcester, MA alone.

ALB usually affects Maple, Willow, Elm and similar trees. ALB infestation destroys

the cambium of the trees and eventually the internal structure of the tree trunk thus

making them weak and vulnerable to disease. This reduces the economic value of

the trees.

The US department of Agriculture (USDA) is the chief government agency re-

sponsible for the eradication of the ALB in USA. The current approach for the

eradication of ALB requires visual inspection of the trees near the vicinity of af-

fected region. An infested tree is identified by[show image]

• 3/4th inch exit holes

• oviposition holes - scar marks from female laying eggs

• frass that is generated by the larvae eating the trunk

• specific leaf feeding pattern

• presence of the beetle

Figure 1.1: The Asian Long Horn Beetle with the exit hole on a tree.
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In order to eradicate the ALB infestation the USDA sends ground survey and aerial

survey teams to determine the extend of the ALB infestation. Nearly 62% of New

England is forested. Survey of trees is a time consuming process. So far nearly 2

million trees have been surveyed in Worcester, MA alone. Additionally, climbing

trees poses a safety hazard for humans.

A robotic inspection of such trees will greatly help in speeding up the process

and provide USDA with a tool for remote monitoring of trees.

1.2 Robotic Mapping

With the progress in robotics remote surveillance of building, tunnels, bridges and

disaster zones has become a reality. Remote surveillance is used when it is not

possible to access the environment directly or when very detailed information is

required. In forestry, monitoring of trees can help determine details about the

condition of the tree such pests, diseases and other harmful stress affecting the tree.

Visual information about the tree bark and structure plays an important role in

detection of ALB. Converting the image of a tree to a 3D model provides a spatial

information about the structure and features of the tree. This can play an important

role in the detection of infestation by insects. A similar problem is solved in robot

navigation in terms of environment mapping. SLAM (short for Simultaneous Lo-

calization and Mapping) is a map generation algorithm popularly used by robotics

community in this regard. SLAM[6] uses sensor information as a feedback for fea-

ture estimation. It gives the robot the ability to visualize and see the environment

with respect to itself thus helping it make more suitable actions on the environment.
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(a) Tree Climbing robot 2012

(b) Tree Climbing robot 2013

Figure 1.2: The tree climbing robot developed by WPI MQP teams

Figure 1.3: The Overall system architecture for the Tree climbing robot

At WPI, MQP teams have been working on developing a tree climbing robot

(figure 1.2). The current robots have limited payload and use minimal sensors. Due

to the constrained payload capacity, it is feasible to use only a monocular camera

for mapping. Since the robot has limited processing capabilities, it is necessary to

process the images from the camera on a workstation computer. Images are expected

to be transferred wirelessly to the workstation. Figure( 1.3) describes the system

architecture. The idea behind this work is to make use of the images captured by the

MQP robot to generate the 3D models of the tree using suitable mapping algorithm.
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Chapter 2

Preliminaries

Some mathematical notations have been used for this work and the same have been

reported in this document. The first section in this Chapter summarizes a list

of these notations and quaternions. The following sections deal with the camera

model and radial distortion model that have been used to convert features from

image coordinate to world coordinate.

2.1 Notations

2.1.1 Vectors

Vectors are represented with boldface font. The frame of reference is indicated as a

super script. For example vA represents a vector v in the reference frame A.

2.1.2 Matrices

A matrix is also represented using boldface font. In the equations we frequently

make use of the Identity matrix, I and Zero matrix 0. The dimensions of the matrix

is represented using subscripts. Xm denotes a matrix of dimension m x m and Xmn
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denotes a matrix of dimension m x n.

2.1.3 Frame conventions

Figure 2.1: Various frame of references in the system.

Camera Frame: The camera frame is the frame the camera is in. This is usually

denoted by with a subscript C eg:- Fc

Image Frame: This is the optical frame on which the image is projected. The

z axis is usually assumed to be perpendicular to the image plane. This is

represented with a subscript I. eg:- FI

World Frame: This is the frame in which the camera and the features exist. This

is assumed to be the root frame. This frame is represented with the subscript

W. eg:- Fw

To represent a transformations between frames we use the following notation FA
B

which represents a transformation from frame B to frame A (the reference frame is

A).
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The transformation from the Camera frame to the Image frame FC
I is fixed based

on the camera configuration.

Figure 2.2: The frame conversions for a point in image coordinate to a point in
world coordinate.

2.2 Quaternions

Quaternions are a number system that extends the complex numbers. It can be

used to represent orientation effectively.

A quaternion is generally defined as,

q = (q0,q) = q0 + q1i + q2j + q3k (2.1)

where q0 represents the scalar part and q represents the vector part. The vectors i,

j and k satisfy,

i2 = j2 = k2 = ijk = −1 (2.2)

2.2.1 Angle-axis form

A unit quaternion represents any rotation in the SO(3) i.e. a rotation by an angle

θ about a fixed axis defined by an unit vector r = (rx, ry, rz). The angle-axis
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representation of an unit quaternion is

q =

[
cos(θ/2) rT sin(θ/2)

]T
(2.3)

2.2.2 Conversion to Rotation Matrix

A quaternion rotation can be converted into a rotation matrix, by simplifying the

quaternion multiplications qpq∗. If q represents a quaternion in angle axis form.


cos θ + r2x(1− cos(θ)) rxry(1− cos(θ)− rz sin(θ) rxrz(1− cos(θ)) + ry sin(θ)

ryrx(1− cos(θ)) + rz sin(θ) cos(θ) + r2y(1− cos(θ)) ryrz(1− cos(θ))− rx sin(θ)

rzrx(1− cos(θ))− ry sin(θ) rzry(1− cos(θ)) + rx sin(θ) cos(θ) + r2z(1− cos(θ))


(2.4)

2.3 Camera Model

The configuration of the camera is described mathematically using the camera

model. The Pin hole camera model is a simple model commonly used in com-

puter vision. In the Pin hole camera model, an inverted projection of the scene is

assumed to be formed behind the camera aperture. This model assumes a small

aperture with no lenses. For a point Xc = (x1, x2, x3) observed using a camera with

intrinsic parameter,

K =


fx 0 cx

0 fy cy

0 0 1

 (2.5)
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Figure 2.3: The Pinhole camera model.

if represents a feature in the camera coordinate frame, its projection Y I = (y1, y2)

is defined as,

y1 = −fx ∗
x1
x3

+ cx

y2 = −fy ∗
x2
x3

+ cy

(2.6)

2.4 Radial Distortion Model

Distortion occurs in camera due to defects/aberrations in the lenses used. The

Distortion due to spherical aberrations can be removed by modelling the camera

distortion as Radial distortion. Radial distortion, whilst primarily dominated by

low order radial components, can be corrected using Brown’s distortion model.

xu = (xd − xc)(1 +K1r
2 +K2r

4)

yu = (yd − yc)(1 +K1r
2 +K2r

4)

r =
√

(xd − xc)2 + (yd − yc)2

(2.7)
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Chapter 3

Background

In Chapter 1 we have discussed the motivation behind this project and my interest

in solving the challenge by using robotic mapping as a tool. Chapter 2 summarizes

the notations used in this work. In the current chapter, the concepts of SLAM and

its subset VSLAM will be introduced as the robotic mapping techniques in focus.

For the purpose of determining the pose of the camera and locating features on

trees, a non-linear optimal state estimator, the extended Kalman Filter is used. A

theoretical background on Kalman filter and extended Kalman Filter is reviewed

in section 2 and 3 of this Chapter. A brief overview of the notions, conventions

and mathematical tools in SLAM is presented, along with a literature review on the

current state of the art in robotic mapping.

3.1 SLAM

Simultaneous Localization and Mapping(SLAM) is a technique used in robotic com-

munity to localize the robot and at the same time generate a map of the environment

around it. This can be considered as a chicken and egg problem as the localization

depends on how accurate the robot knows the map of the environment and the
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mapping depends on how accurate the robot knows its location.

Simultaneous Localization and Mapping(SLAM) is a technique used in robotics

community for generating map of an unknown environment. SLAM has been for-

mulated and applied in multiple mobile and aerial robots. [7][1] give a survey of the

current state of the art SLAM algorithms. SLAM aggregates a number of approaches

for automated map generation without any additional pose knowledge apart from

sensor information. Information from the map is required to correctly localize your-

self ; at the same time, localization is going to affect how accurate you can build

the map[15]. It is commonly referred to as a chicken and egg problem.

The underlying methods used to solve SLAM are dominated by the type of sensors

used, the time available for processing, the representation of the environment and

the dimensionality of the resulting map. Similar to SLAM we intend to generate a

model of the tree with unknown structure while climbing it. This model will help

us identify the existence of the invasive pests.

3.2 VSLAM

Visual Simultaneous Localization and Mapping(VSLAM) is a technique that uses

only the input from a monocular camera to generate a map of the environment

around the robot. In VSLAM, the visual features in the environment as landmarks

to generate the map of the environment. VSLAM uses a monocular camera which

is a light weight, small, cheap and passive sensor that is readily available.

In our problem a three dimensional model of tree is to be generated using only vi-

sual information from the camera on the robot. We decided to implement an on-line

technique instead of batch technique as quicker the model is available to the foresters

in the field, the more useful the tool will be. Also the processing is limited by the
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field computer that is carried. The end model is expected to be represented as a

mesh grid that can be used to inspect the tree surface. The most suitable solution

based on the requirements is an EKF based MonoSLAM.

MonoSLAM was first introduced by Andrew J. Davison in [4]. Davison demon-

strated real time processing for Simultaneous Localization and Mapping using a

single hand-held camera. He presented a Bayesian Framework for single camera Lo-

calization via active tracking of a sparse set of features. An extended Kalman Filter

was used to propagate the uncertainty in the system[5]. He introduced an undelayed

automatic initialization of the features unlike previous work where a batch process

was involved for initialization[]. Davison et al introduced the Inverse Depth repre-

sentation of the features which neatly deals with the nonlinearities of the Euclidean

space. Inverse Depth representation has caught on with the Vision based SLAM

community for its simplicity in design and power in representation.

3.3 Kalman Filter

Kalman filter[9] is a discrete filtering technique that uses a series of measurements

observed over time to produce the best estimate. It is an optimal estimator that

minimizes the error between the current estimate of the observation and the actual

observation. In Kalman filter the system is observed to be linear with gaussian

white noise. Assuming the states of the system at time step k is represented as Xk

and the covariance of the system is represented by Pk.

The first step in Kalman filter is to propagate the states of the system using the

system matrix A to the next state using 3.1

12



Xk|k−1 = AXk|k−1 +Wk

Pk|k−1 = APk−1A
T +Q

zk|k−1 = HXk|k−1

(3.1)

The next step is to calculate the Kalman gain at time step k using 3.2

Kk = Pk|k−1H
T (HPk|k−1H

T +R)−1 (3.2)

Once observations for a time step k are available as zk|k, a Kalman update is

performed using 3.3

Xk|k = Xk|k−1 +Kk(zk|k − zk|k−1)

Pk|k = (I −KkH)Pk|k−1

(3.3)

3.4 Extended Kalman Filter

Since most real world problems are non linear the Extended Kalman Filter[10](EKF)

provides a tool for such conditions. In EKF the system model and the measurement

model is assumed to be non linear functions f(X) and h(X). The Jacobian of the

system and the measurement model is calculated at each time step3.4.

Ak−1 =
∂f

∂X
|Xk−1|k−1

Hk =
∂h

∂X
|Xk|k−1

(3.4)

The EKF prediction is performed using 3.5
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Xk|k−1 = f(Xk|k−1,Wk)

Pk|k−1 = Ak−1Pk−1Ak−1
T +Q

zk|k−1 = h(Xk|k−1)

(3.5)

followed by kalman gain calculated using 3.6

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +R)−1 (3.6)

finally the EKF update is performed using equation 3.7

Xk|k = Xk|k−1 +Kk(zk|k − zk|k−1)

Pk|k = (I −KkHk)Pk|k−1

(3.7)
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Chapter 4

Approach

There are three main layers required to solve Visual SLAM algorithm (figure: 4.1):

1. Image Processing Layer

2. Filtering Layer

3. Model Management Layer

All steps pertaining to images such as feature extraction and feature matching is

done in the image processing layer. Filtering layer implements the Extend Kalman

Filter which is used to estimate the states of the system. By analyzing VSLAM in

layers it makes it easy to evaluate the different implementation for the individual

components without having to worry about the interactions between them. The

model management layer ensures synchronization between the layers.
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Figure 4.1: A block diagram of the processes in the approach

4.1 Image Processing Layer

Image Processing in general is used to extract information from images. Information

from images are usually in the pixel coordinate frame. Using the projection model

and the distortion model of the camera it is possible to convert these features to

world coordinate frame.

4.1.1 Feature Detection

In computer vision there are many types of features extracted from the images

such as lines, edges, corner points, ridges etc. Corner points are easy to detect and

manage, and these are what we have used in VSLAM. For good solutions in VSLAM

it is necessary to have well distributed corner points. A good corner detector as scale,

rotation and lighting invariant. This provides the detected corners with robustness.

Corners are mathematically well defined points in the image which can be repeatably

16



found.

4.1.2 Interest Point detectors

The terms corners and interest points are used interchangeably and refer to features

in an image, which are represented in the image coordinate system.

FAST

Features from Accelerated Segment Test is a feature detector that is computationally

fast[13]. A feature is extracted by comparing 16 pixels around it in the Bresenham

circle of radius 3 (figure 4.2). A pixel declared interest point if it satisfies either of

the following conditions:

• Condition 1: A set of 12 contiguous pixels is greater than the intensity of the

pixel plus the threshold.

• Condition 2: A set of 12 contiguous pixels is greater than the intensity of the

pixel is minus the threshold.

Figure 4.2: The FAST detector comparison operator.

A High Speed test can be applied to reject candidates by examining 4 example pixel

locations in 1, 9, 5 and 13.

FAST can be further modified to use more than 16 pixels but in such cases a machine

learning algorithm is used to speed up the detection.
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Good Features to Track

Good Features to Track is also known as Shi-Thomshi feature detector[14]. Shi-

Thomsai interest point detector is based upon the harris corner[8] detector where

the weighted sum of squared distances S between a patch and the patch shifted by

(x, y) is calculated as

S(x, y) =
∑
u

∑
v

w(u, v) (I(u+ x, v + y)− I(u, v))2 (4.1)

which can be reduced into the form,

S(x, y) ≈
(
x y

)
H

x
y

 (4.2)

H is the Harris matrix and is represented as,

H =
∑
u

∑
v

w(u, v)

 I2x IxIy

IxIy I2y

 =

 〈I2x〉 〈IxIy〉

〈IxIy〉 〈I2y 〉

 (4.3)

The angle brackets denote averaging. An interest point is characterized by a

large variation of S in all directions of the vector (x, y). Shi Thomasi claim the

minimum (min(λ1, λ2)) of the eigen value of H is more stable to determine if the

pixel is an interest point.

SURF

Speed Up Robust Feature[2] is another interest point detector and descriptor. SURF

has very good robustness and repeat-ability.

The SURF detector is based on the determinant of the Hessian Matrix of Gaussians.

The Hessian detector is dened as det(H(u, v, σ)) with
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H(u, v, σ) =

Luu(u, v, σ) Luv(u, v, σ)

Luv(u, v, σ) Lvv(u, v, σ)

 (4.4)

where Luu(u, v, σ) = ∂2L(u,v,σ)
∂u2

denotes the second order derivative of the Gaussian

convolution of the image.Luv and Lvv are defined analogously.In Luu, Luv and Lvv

are roughly approximated by box filters Duu, Duv, Dvv.

Integral images are used to improve the performance speed, so the search in σ

can be carried out in scale space.

4.1.3 Matching

There are two general methodologies for matching.

Descriptor Based

When the features are detected, in addition to the feature location, a descriptor

based on the neighborhood of the features is also generated. A match is found

by calculating the norm between the different pairs of descriptors. The pair of

descriptors with the with the minimum distance between them is usually defined as

a match.

Local Consistency Based

Between frames there is usually a well defined local consistency in small neighbor-

hood window around the point of interest. By applying these constrains it is possible

to track points between two frames.

19



In Optical Flow algorithm, For a 2D+ t dimensional case (x, y, t) with intensity

I(x, y, t) will have moved by ∆x,∆y and ∆t between the two image frames, and the

following brightness constancy constraint can be given:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (4.5)

Assuming the movement to be small, the image constraint at I(x, y, t) with

Taylor series can be developed to get:

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ H.O.T. (4.6)

The LucasKanade method[11] makes the following assumptions the intensity

displacement

• between two nearby instants (frames) is small

• approximately constant within a neighborhood of the point p under consider-

ation.

Within a small window, the equation 4.6 is assumed to be true. By using least

square for all the windows in the image, the optical flow and the corresponding

matches is estimated.

4.2 Extended Kalman Filter

The pose of the camera and the location of the features are estimated using the

Extended Kalman Filter in Visual SLAM. In monocular VSLAM, the camera is

assumed to move with a constant velocity while the features are stationary.
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4.2.1 State Representation

The state vector Xt in a Kalman filter is not directly observed. It is indirectly

estimated using measurements from the camera. The entire VSLAM system is

described both by the camera and the position of the features.

Camera States

The camera state vector xs is parameterized as 13 states as described below,

xs =



rwc

qwc

vwc

ωwc


(4.7)

Where, rwc = (xc, yc, zc)
T represents the 3D position of the optical center of the

camera in the world coordinate system. It is represented by a 3x1 vector.

qwc represents the unit quaternion specifying the orientation of the camera in the

world coordinate system. It is represented using a 4x1 vector

vwc represents the linear velocity of the camera in the world coordinate system. ωwc

represents the angular velocity of the camera in the world coordinate system.

Initially the camera is assumed to start from the origin of the world coordinate

system rcw = (0, 0, 0) looking in the direction of positive z axis qcw = (1, 0, 0, 0)T . It

is assumed to be stationary with vcw = (0, 0, 0) and ωcw = (0, 0, 0). The uncertainty

in the camera state is described using Ps. Ps is a symmetric positive definite matrix

of dimension 13X13.
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Features States

The features are represented using the inverse depth encoding.A feature yi in inverse

depth encoding[3] is comprised by the following 6 dimensional vector:

ywi =



xci

yci

zci

θi

φi

ρi


(4.8)

where,[
xci yci zci

]
specifies the 3D position of the cameras optical center at the rst ob-

servation of feature ywi

θi and φi are azimuth and elevation of the feature in reference to the camera coor-

dinate system

ρi is the inverse depth of ywi

The conversion of inverse depth feature to 3D representation is given by

Xi =


xi

yi

zi

 =


xci

yci

zci

+
1

φ
m(θi, φi) (4.9)

m(θi, φi) =

[
sin(θi) cos(φi) sin(φi) cos(θi) cos(phii)

]T
(4.10)

The full state vector xt for a map composed of n features in inverse depth is
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therefore composed of

Xt =

(
xTs yT1 yT2 yT3 . . . yTn

)T
(4.11)

4.2.2 Process Model

The Process Model describes the state transition function from the previous camera

state xk−1 to the current camera state xk. Since we assume a continuous velocity

model in visual SLAM. The equation 4.12 defines it.

fk(xk−1) =



rcwk

qcwk

vcwk

ωcwk


=



rcwk−1 + vcwk−1∆t

qcwk−1 × quat(ωcwk−1∆t)

vcwk−1

ωcwk−1


(4.12)

In Extended Kalman filter, Jacobian of the transition function fk(xk1) defined

in equation (4.12)at the current state is used to update the covariance
∑

k in the

system. Jacobian Fk is of dim(Fk) = 13x13 of the following form

Fk =



∂rcwk

∂rcwk−1
0

∂rcwk

∂vcwk−1
0

0
∂qcwk

∂qcwk−1
0

∂qcwk

∂ωc
wk−1

0 0
∂vcwk

∂vcwk−1
0

0 0 0
∂ωc

wk

∂ωc
wk−1


(4.13)

The process noise that is added to the covariance
∑

k is defined as follows
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Rk = F̃kVmax,kF̃k
T

=



∂rcwk

∂vcwk−1
0

0
∂qcwk

∂ωc
wk−1

∂vcwk

∂vcwk−1
0

0
∂ωc

wk

∂ωc
wk−1


Vmax,k



∂rcwk

∂vcwk−1
0

0
∂qcwk

∂ωc
wk−1

∂vcwk

∂vcwk−1
0

0
∂ωc

wk

∂ωc
wk−1



T

(4.14)

4.2.3 Measurement Model

In Extended Kalman filter the measurement function is used to convert state esti-

mates to estimated measurement ẑk. According to the pinhole camera model (see

chapter 2) an observed point on the image sensor is defined by hc = (hxhyhz)
T

in the camera coordinate system. For a point in inverse depth encoding yi the

measurement is given by,

hci = Rc
w

ρi


xc,i

yc,i

zc,i

− rwc
+m(θi, φi)

 (4.15)

Rc
w is the rotation matrix between the world coordinate frame and the camera

coordinate frame.

The jacobian of the measurement equation (4.15) with respect to the camera

states is defined by ∂h(yi)
∂xs

. It is required to update the covariance
∑

k of the system.

∂h(yi)

∂xs
=

(
∂h(yi)
∂rwc

∂h(yi)
∂qwc

0

)
(4.16)

where dim(∂h(yi)
∂xs

) = 2× 13.
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4.3 Model Management Layer

Model management layer is responsible for

• synchronize the features with the state model in the Extended Kalman Filter

• provide debug and display information

• convert the features in inverse depth to 3D representation

• provide interface to generate the mesh grid

Synchronization

Often the feature detector might find an invalid feature that might go out of field

of view or be obscured before the features depth has been well estimated. In such

situations it is necessary to delete the feature from the system.

Debug & Display

All the debug outputs and the display of features in images can be implemented in

the Model Management layer and thus avoid overheads on the other layers.

Convert to 3D

The features need to be represented in 3D representation inorder to visualize the

points. This operation can be performed using the equation (4.9).

Generation of mesh grid

Since the points converted into 3D need not be ordered in time or space, the mesh

grid algorithm need to be flexible. The Fast triangulation of unordered points

algorithm[12] from the PCL library is used to generate the 3D model of the tree. It is
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a greedy triangulation algorithm. It works by maintaining a list of fringe points.By

extending it until all possible points are connected the mesh grid is created. It can

deal with unorganized points, coming from one or multiple scans, and having mul-

tiple connected parts. It is also suitable for point clouds with non uniform density.
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Chapter 5

Implementation

The algorithm was finally implemented using threads. 5.1 shows different threads

and how they communicate between each other.

Figure 5.1: A block diagrams of the threads in the implementation
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5.1 Image Grabber Thread

The image grabber thread loads the images into the program memory as a queue.

An image pyramid is created by from the single original image by successively down-

sampling until some desired stopping point is reached. The number of levels in the

pyramid are specified in the config file. Higher the level, smaller the size of the

image.

Figure 5.2: A visualization of image pyramid with 4 level

5.2 Frontend Thread

The frontend is responsible all the features in the model. The frontend implements

a multi-scaled grid based FAST feature detector for generating new features. It uses

optical flow based matching algorithm to perform feature matches.

5.2.1 Multi-Scaled FAST grid

Since the tree need not be uniformly illuminated, a single threshold for the entire

tree might not be a good choice. Hence the image is divided into grid depending

on the maximum number of features to be extracted. The fast algorithm discussed
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in Chapter 4 is implemented repeatedly to these sub grids of image with increasing

threshold. The threshold that provides significant number of features within the

grid is selected. The interest point with the maximum response is declared as the

feature of interest with the grid. This algorithm is repeated to all the levels in the

image pyramid.

Once the features are detected they are stored in Quadtree that facilitates faster

search of these features. Quadtree is a tree data structure where each node has 4

children. Each feature is inserted into the quadtree based on the quadrant in which

they occur.

In order to search for a quadtree, all the nodes that intersect an area of interest

is found. Following this, the elements in it are checked. This helps in avoiding the

hassle of searching through the entire list of features.

(a) Level 0

(b) Level 1

(c) Level 2

Figure 5.3: The FAST features detected in all the three levels. In Level 2 we find
features that were not detected in the blurred part in Level 0
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5.2.2 OpenCV

FAST and other detectors are implemented in features2d module of OpenCV. OpenCV

is implemented under BSD license. OpenCV was implemented with the aim to im-

prove computational efficiency and with a strong focus on real-time applications in

image processing.The library is primarily written in C/C++. It has a strong active

development community.

5.3 Kalman Thread

The Kalman Filter is implemented based on the equations (3.7). When there are

n features in the system, the size of the mean vector is 13 + 6n and the size of

the co-variance matrix is 13 + 6n× 13 + 6n. Table (5.1) describes the EKF SLAM

procedure.

Event SLAM EKF

New Feature point de-
tected

Landmark Initialization Append the mean and co-
variance of the states

Camera obtains new im-
age

Robot Motion perform prediction on the
states

Feature matches between
two frames

Map correction Perform EKF update

Feature goes out of view Landmark deletion remove corresponding
states

Table 5.1: Different steps in VSLAM and the corresponding action within the EKF
system

5.3.1 Sparse Matrix

Since the cross correlation between one feature to another is zero, most of the ele-

ments in the Jacobian Matrix and the Covariance matrix is 0. To prevent wastage
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of space and computation power on these 0 elements, the matrix is stored in the

compressed column order Storage format.

In Compressed Column Order (CCO) Storage format three smaller arrays are

used to represent the matrix. For instance, let m be a column-major sparse matrix.

Then its non-zero coefficients are sequentially stored in memory in a column-major

order (values array). A second array of integer stores the respective row index of each

coefficient (inner indices array). Finally, a third array of integer, having the same

length than the number of columns, stores the index in the previous arrays(i.e. either

values or inner indices array) of the first element of each column (outer indices).

Here is an example, with the matrix:

m =



0 3 0 0 0

22 0 0 0 17

7 5 0 1 0

0 0 0 0 0

0 0 14 0 8


(5.1)

Its sparse matrix representation using the Compressed Column Storage format:

Values: 22 7 3 5 14 1 17 8

Inner indices: 1 2 0 2 4 2 1 4

Outer indices: 0 2 4 5 6 7

5.3.2 Eigen

The Eigen Library was used to implement all the matrix multiplication. It sup-

ports sparse Matrices and is released under LGPL3+. Being a template library, it
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has less overhead. It makes use of the SSE3/SSE2 vectorizations to achieve faster

computation times.

5.4 Display Thread

The PCL’s vizualizer is implemented in this thread. It displays

• the path traversed by the camera.

• the mesh grid generated by the Fast Triangulation of unordered points.

5.4.1 Point Cloud Library

Point Cloud Library is a opensource project for point cloud processing. PCL is

distributed under the BSD license. The Fast triangulation of unordered points is

implemented[12] in PCL as a part of the image surface reconstruction module.

5.5 Model Management Thread

As described in chapter 4, the model management synchronizes the different threads.

Threading was implemented using boost. for synchronization between the image

thread and the frontend threads, a producer consumer paradigm was used. Mutex

was used when resources were used to prevent race conditions and data corruptions.

Memory for all the resources was declared using shared pointer thus ensuring no

memory leaks.
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Chapter 6

Evaluation

6.1 Data Sets

A total of 5 data sets were collected for testing the algorithms. The trees (data set)

that were sampled for this purpose, belong to the categories that are susceptible

to infestation by the Asian Long Horn Beetle. A list of trees used for testing are

summarized in the Table below.

Name Description

Tree 1 Tree with dry bark in indoor lighting
Tree 2 Maple Tree big ridge bark (outdoor)
Tree 3 Pine Tree with thick scaly bark (outdoor)
Tree 4 Tree with smooth bark (outdoor)
Tree 5 Maple Tree with small ridge bark (outdoor)

Table 6.1: The data-sets that were collected with brief description
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(a) Tree 1
(b) Tree 2

(c) Tree 3 (d) Tree 4

(e) Tree 5

Figure 6.1: Sample image from all the date sets
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6.2 Features vs Bark type

For each of the above data set, the Multi-scale grid based FAST algorithm was

used to obtain an average number of features. The average number of features in

short, was the mean of the features counted by the algorithm for 20 frames. This is

summarized in the following Table.

# Data Set Type Average no of features in a frames

1 Data Set 1 Dry Bark 175
2 Data Set 2 Smooth Bark 258
3 Data Set 3 Big Ridge 281
4 Data Set 4 Small Ridge 250
5 Data Set 5 Scaly Bark 239

Table 6.2: Average no of features is calculated in batches of 20 frames

It has been demonstrated that more number of features in the VSLAM system

will yield in better solution[16]. Since We are getting more 150 features per frame

reliably, the algorithm is suitable for the different tree types.

6.3 Comparison of Feature Detectors

A comparative study of the average number of features obtained for a single frame

using different feature detector algorithms was done. Data set 1 was used for this

study. The results indicated that Grid based FAST detector was able to detect more

number of features in a single frame compared to the other algorithms. The grid

based FAST detector algorithm was thus chosen in order to aid in better estimation

of the tree features[16].
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# Data Set Type of detector average no of features in a frames

1 Data Set 1 FAST 43
2 Data Set 1 Grid based FAST 87
3 Data Set 1 Good Features to track 50
4 Data Set 1 SURF 47

Table 6.3: Comparison between different types of feature detector used for the dry
bark dataset with indoor lighting

6.4 Matching vs Bark type

Once the grid based FAST was finalized as the feature detection algorithm, an

optical flow matching algorithm was used to compare the matching percentages in

all the data sets. A higher matching percentage indicated better ability to keep

track of the features in different frames. The matching percentage is defined by the

following equation.

matching% =
matchesinconsecutiveimages

Featuresdetectedinn1stimage
(6.1)

# Data Set Average matching %

1 Data Set 1 58.75
2 Data Set 2 85.45
3 Data Set 3 80.32
4 Data Set 4 78.43
5 Data Set 5 79.89

Table 6.4: Average no of matches using the formula in 6.1

The average matching percentage for all the data sets lie in the range 58 - 85,

indicating that the optical flow matching algorithm is a suitable tool for feature

matching.
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6.5 Comparison of Matching techniques

Similar to the study carried out for comparing feature detection algorithms, a com-

parison of matching algorithms was also performed. Optical flow and descriptor

based matching algorithms were compared for Data set 1. In this study, the optical

flow algorithm emerged as a better option, yielding a matching percentage of 58.78.

# Data Set Matching Technique % of Matches

1 Data Set 1 Optical Flow 58.78
2 Data Set 1 Descriptor Based 40.87

Table 6.5: Comparison between the matching techniques

6.6 Sparse vs dense

The extended Kalman filter was implemented using Sparse matrix and dense matrix.

A comparison between the performance of both is presented in the following table.

It was concluded that the sparse matrix based implementation was faster than the

dense matrix.

Operation Sparse(Avg) in msec Dense(Avg) in msec

Add a new feature 0.10 0.36
Delete a feature 0.10 2 0.20
Kalman Measurement 2.0 10.0
Prediction 5.00 9.00
Kalman Update 120.00 300.00

Table 6.6: Average time for the different operations in the EKF filter. The processor
used is Intel i7-3630QM CPU 2.40GHz
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Chapter 7

Conclusion

Visual Simultaneous Localization and Mapping is a suitable algorithm for generat-

ing 3D mesh grid of the tree. The multi-scaled grid based FAST feature extractor is

successful in generating large number of features in trees usually affected by ALB. In

addition to finding the features, matches need to be determined in order to update

the Extend Kalman Filter. We see that by using Quad tree combined with optical

flow we can get reasonable number of matches to correct the system estimates.

Large Matrix sizes implemented in dense memory format can lead to slow com-

putation in system. Hence by using Sparse memory format for the matrices, we can

achieve near real time processing. Finally implementing Visual SLAM for mesh grid

generation needs effective use of the computing resources such as multi-threading,

shared pointers, corner detection etc available in tools such as OpenCV, Eigen, PCL.
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Chapter 8

Future Work

The current implementation produces a model that is of arbitrary scale to the actual

tree. It is possible to introduce scale into monocular system by using external

observations. One such observation about the scale can be introduced by counting

the number of steps the robot takes and the amount of distance traveled in each

step.

In Image processing front, the matching algorithm currently only produces an

average of 80% matches. This is mainly due to the local inconsistencies that occur

when using optical flow. By improving upon the prediction of features in the next

image, we can get better matches and thus provide a more robust estimate of the

system.

From a computation point of view, the Extended Kalman filter computation

speed can be further increased by exploiting properties of symmetric matrix. Also

further parallelism can be introduced in computation of measurements by using

GPU to get faster speeds.

Radius estimation and other characteristics of the tree can be extracted from the

mesh grid by performing addition estimation, which will be useful for tree surveying.
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Loop closure in SLAM is a constantly researched upon topic, incorporating loop

closure techniques with VSLAM can extended this project to give better results

over a long time. Finally by incorporating potential ALB related features in the

3D model can further facilitate the USDA authorities in identifying probable tree

candidates.
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