

Project Number: DXF EB93

Memory Dash - a Multiplayer iPhone Game

A Major Qualifying Project Report:

Submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Elisabeth Beinke

Keilin Bickar

Joshua Doyle

Alexander Schwartz

Date: March 6, 2009

Approved:

Professor David Finkel, Major Advisor

i

Abstract

Memory Dash is a casual, puzzle-based multiplayer game that is available for the iPhone and

iPod touch. It is similar to the classic game Memory, but includes real-time multiplayer. Memory

Dash consists of two rounds, a memory matching competitive multiplayer round and an opinion

sorting and guessing cooperative multiplayer round. This game was designed to be enjoyable to

play by users of all ages in addition to providing data about users opinions of eBay items for

eBay Research Labs.

ii

Table of Contents

Abstract ... i

Table of Figures ..iv

1 Introduction.. 1
1.1 Introduction Summary .. 1
1.2 Background ...2

1.2.1 Purpose... 2
1.3 Development Process...2

2 Requirements .. 4
2.1 Hardware ..4

2.1.1 Apple Computers ... 4
2.1.2 iPhone/iPod... 4

2.2 Software ..5
2.2.1 Maya... 5
2.2.2 Photoshop ... 5
2.2.3 iPhone SDK ... 6
2.2.4 Development Environment .. 6

2.2.4.1 Objective C .. 6
2.2.4.2 Stonetrip ... 7
2.2.4.3 Torque... 7
2.2.4.4 Unity with iPhone ... 7

2.3 iPhone Developer Account and Program ...8

3 Game Design ...10
3.1 Game Summary ... 10
3.2 Overview ... 10

3.2.1 Concept ...10
3.2.2 Genre .. 11
3.2.3 Novel Features ... 11
3.2.4 Target Audience ...12
3.2.5 Target Platform ..12

3.3 Game Play and Flow .. 12
3.3.1 Part A – Matching ..12
3.3.2 Part B – Sorting..15
3.3.3 Scoring..18

4.1 Art Design: Incorporating eBay Branding.. 19
4.1.1 Visual Choices ...19
4.1.2 Use of the eBay Logo ..21

4.2 Restrictions...22
4.2.1 Artistic Restrictions... 22

4.2.1.1 Low Poly and Performance Restrictions ... 22
4.2.1.2 Visibility at Low Resolutions .. 24
4.2.1.3 Texture and Audio Restrictions .. 26

4.2.2 Copyright Restrictions .. 27
4.2.2.1 Art Assets... 27
4.2.2.2 Logo and Branding ... 27

4.3 Timeline ..28
4.3.1 Art Asset Listing .. 28

iii

4.3.2 Art Asset Schedule .. 28

5 Technical Design .. 30
5.1 Technical features timeline..30
5.2 Implementation .. 31

5.2.1 iPhone specific features ..31
5.2.1.1 Controls...31

5.2.2 Cart Movement and Path work ..31
5.2.2.1 Node-based.. 32
5.2.2.2 Finding Paths .. 33
5.2.2.3 Drawing Paths... 36
5.2.2.4 Following Paths .. 36

5.2.3 Networking and Data from eBay ...37
5.2.3.1 Card Images... 37
5.2.3.2 Matchmaking .. 39
5.2.3.2 Main Gameplay... 39

6 Project Post-Mortem...46
6.1 Result ..46
6.2 Successes ..46
6.3 Problems... 47

6.3.1 Obtaining Hardware and Software ... 47
6.3.2 Memory Issues .. 48
6.3.3 Multiplayer .. 49

6.4 Analysis...50
6.4.1 Hardware and software choices .. 50

6.4.1.1 Hardware ... 50
6.4.1.2 Software... 50

6.4.2 Requirements...51
6.5 Future ... 51

7 Conclusion ..53

References...54

Appendices .. 57
Appendix A – Art Asset List... 57
Appendix B – Art Schedule..60
Appendix C – Tech Schedule ...62
Appendix D – Server setup details...64

For problems with ar not found:.. 65
Configuring mySQL: .. 65
Configuring and Compiling PHP: ... 65
Setup for mySQL: ... 65

Players Table:.. 65
Game Table: .. 65

iv

Table of Figures

Figure 1: The Sports Store Level .. 13

Figure 2: A Selected Card Zooming In... 14

Figure 3: A Screenshot of the Sorting Round... 17

Figure 4: eBay's main header on eBay.com.. 20

Figure 5: Memory Dash’s Main Screen.. 20

Figure 6: The footer GUI element in the main menu.. 21

Figure 7: Cart model with alpha channel.. 23

Figure 8: A 3D Render of the Sports Shop... 23

Figure 9: Static Texture Image of the Sports Shop... 24

Figure 10: Sample Node Structure.. 34

Figure 11: Process of creating a card image (images not to scale)... 38

Figure 12: Message types.. 40

Figure 13 Network interactions between iPhones and server... 44

1

1 Introduction

Note: There will be many mentions in this paper to the iPhone and iPod Touch hardware on which Memory Dash

runs. If no further specification is made, assume that iPhone refers to both iPhone and iPod Touch due to the

similarity in hardware, software, and compatibility.

1.1 Introduction Summary

Memory Dash is a casual, puzzle-based multiplayer game designed for the iPhone. It was

inspired by the classic Memory/Concentration games, but there’s a twist: players compete

against each other in real-time. Memory Dash consists of two rounds, a memory matching

competitive multiplayer round and an opinion sorting and guessing cooperative multiplayer

round. In the first round, players move their carts around the screen to different cards, trying to

match cards before their opponents can. All the cards have images of eBay items that are pulled

from listings. In the second round, four product cards are presented to each player and they must

sort these cards based on opinion-gathering categories. Players then have to guess how their

opponent sorted the cards, with points being awarded for correct card sortings.

The purpose of creating an iPhone game for eBay was to create a game that would obtain

meaningful data for eBay Research Labs as well as be fun and popular, gathering many players.

The memory-matching round serves to get people introduced to a fun and competitive game

rather than a direct questionnaire of opinions. The sorting round gives players the opportunity to

give their opinions on eBay items as well as guess how their opponent thinks. Both rounds of

the game together produce a complete game that is addicting and purposeful.

2

1.2 Background

1.2.1 Purpose

The requirements of the project sponsor were the most important thing to consider in the creation

of the game. Before any game ideas could be discussed, it was necessary to determine what eBay

wanted from the project. In order to accomplish this, several meetings were held with Neel

Sundaresan, the project sponsor for the group and the head of eBay’s Research Labs, in order to

discuss eBay’s expectations of the project. Neel stressed that the game’s purpose should be more

than just entertainment, but that it should also obtain useful data for eBay or serve some purpose

to the user An example of a game employing data mining techniques that Neel suggested is the

ESP Game. [1] The ESP game shows two players an image, asks them to come up with tags for

it and awards them points for matched tags. As well as having a purpose, Neel also wanted the

game to be fun and virally popular, similar to other iPhone apps such as iBeer [2], and Razor -

Electric Shaver Simulation [3]. These requirements and Neel’s other requirements of

innovativeness, eBay integration, and social networking heavily influenced the final design of

the game.

1.3 Development Process

From the beginning, the goal was to create a working, playable demo as soon as possible before

moving on to finishing all elements of the game. During the first couple of days, the design of

the game was discussed and planned. The core elements of the gameplay were planned out, from

which lists of necessary art assets and technical features were created (see Appendix A for the

list of art assets). From this list, both sections of the development team (artistic and technical)

devised a schedule according to priority (see Appendix B for the art schedule and Appendix C

for the tech schedule).

3

It was very important to get a playable prototype of the game first so potential problems could be

resolved early on. The focus was firstly on getting a single-player prototype working before

networking could be established. The artistic team created only one level map per district in

order to test the functionality of having multiple districts. The art team also created a simple

graphical user interface (GUI) for testing purposes. The technical team’s focus was on getting

basic elements such as touch-input, path drawing and following, and card matching logistics.

Once the design could be tested and visualized, the process of building upon this base prototype

could begin.

After the basic prototype was complete, priority shifted towards networking, polishing, and

overall completion of the game. The artistic team worked to create 3 additional levels for a total

of 6 levels, sounds for feedback purposes, complete GUI mockups, and logo designs for

submission to the Apple App Store (see Section 4 for a complete analysis of the artistic design

process). The technical team focused their priorities on the difficult task of making multiplayer

competition a reality as well as fixing minor problems that were impeding gameplay (see Section

5 for a complete analysis of the technical design process).

4

2 Requirements

2.1 Hardware

2.1.1 Apple Computers

Unlike developing for platforms such as the PC, there are many strict hardware and software

requirements one must follow when developing on the iPhone. Most of these requirements are

set in stone due to the fact that Apple Inc. has only released Xcode, the software needed for

iPhone development, for the latest version of their operating system. Therefore, iPhone

development requires an Apple computer. Since Apple created the iPhone, their development

tools are restricted to Mac OS X only. Apple’s iPhone development requires an Intel-based Mac

running OS X Leopard 10.5.4 or higher with a minimum of 2gb of ram. These requirements are

essential as there is currently no other way to develop software for the iPhone. Apple has not

released a version compatible with the old PowerPC architecture of Apple computers, so Intel

chips are required [4].

2.1.2 iPhone/iPod

Although the iPhone SDK does come with a built-in simulator of how a game or application will

run on an iPhone, a real iPhone or iPod Touch is also required for true software testing. The first

generation iPhone, iPhone 3g or the iPod Touch will work for testing custom applications, but

the newest firmware must be installed before doing any SDK work [5]. Without the physical

device, it is difficult to predict performance issues when running on native hardware. Also the

nature of the iPhone makes it difficult to simulate game mechanics due to the motion sensors and

touch screen. Although there are slight variations in the iPhone and an iPod touch, such as the

availability of a microphone and the cell phone data networks on the iPhone, the operating

5

system is the same on both devices allowing software to run natively on both without

modifications [5]. However, even though applications may run on both systems adequately,

there are often slight variations in the computing power that warrant testing on both an iPod and

an iPhone.

2.2 Software

2.2.1 Maya

Autodesk Maya is a powerful 3D modeling, animation and rendering solution for the creation of

the project’s 3D elements [6]. Maya is the tool of choice because of the ease of use of the

software as well as the fact that the artists on the team have training with this program. Other 3D

modeling tools were considered, such as Cheetah3D, Blender, and 3dsMax, but due to the

unfamiliarity with these tools, Maya was decided to be the best option. Both the 2008 and the

2009 editions of Maya were considered, but due to the inability to locate resellers with last year’s

Maya 2008 edition, the 2009 edition was chosen as the primary 3D modeling program. In

addition, Maya project files can be imported directly into the Unity game engine for quick and

easy testing cycles.

2.2.2 Photoshop

Adobe Photoshop is a powerful and intuitive image editor for the projects 2D art needs, as well

as being the professional standard for 2D art [7]. Similarly to Maya, the artists’ familiarity with

the program from past work at WPI and its ease of use made it the best tool for the project. Since

the older version, Photoshop CS3, was no longer available for purchase and eBay had previously

purchased licenses of Adobe software, the CS4 version of Photoshop was chosen to create the

2D art assets for the project.

6

2.2.3 iPhone SDK

The iPhone SDK contains all the tools a developer needs to develop, test, run, debug, and tune an

application for the iPhone [5]. It is a free download for anyone interested in making iPhone

applications running the latest version of OS X [4]. The main development tool included with

the iPhone SDK is Xcode, which is a powerful integrated development environment (IDE)

created by Apple. Xcode includes the ability to edit source code, compile and build programs, as

well as the ability to debug the application using a graphical debugger. Most importantly, Xcode

can use the signatures given by Apple to registered developers to create authorized applications

that can be tested on a device such as the iPod Touch and iPhone. Also included in the SDK is

the iPhone Simulator, a program that simulates an iPhone application locally on a Mac;

Instruments, a tool for collecting performance data; and Interface Builder, a tool to assist

developers in designing a user interface [8].

2.2.4 Development Environment

One of the most important aspects of the planning phase was choosing a development

environment. The major requirements were that it be fast and easy to develop in and create

quality applications for the iPhone. Several possibilities were investigated before choosing the

Unity Engine.

2.2.4.1 Objective C

The first option that was investigated when choosing development environments was coding in

Objective C using Xcode. Objective C is the language used to create many programs for OS X

and all applications on the iPhone. It is a superset of the language C that uses syntax most

similar to the language Smalltalk [9]. The advantages to using Objective C for development are

the fact that it is freely available so development could begin immediately, and that there are

7

plenty of examples and tutorials available on how to develop iPhone applications using

Objective C. The disadvantages are that no one on the team had experience with Objective C

and that most elements of the app would need to be written from scratch, including any 3D

graphics engine.

Another option was to use a game-developing program, with a graphics and physics engine

included, which could be ported to the iPhone. The Unity engine was decided upon based on

one member of the team’s previous experience with it, but other engines were investigated for

comparison.

2.2.4.2 Stonetrip

One of the engines considered was Stonetrip. Stonetrip is a small French company and their

game engine includes support for all of the standard iPhone interfaces. The tool, named ShiVa,

has unlimited publishing rights and includes all the features necessary to create a full iPhone

game without purchasing additional add-ons. As a bonus, Stonetrip was having a sale on the

product for a price of only 750 Euros [10]. Although there were many tutorials and a full

reference library, the forums were mostly in French, so this engine was hurriedly rejected.

2.2.4.3 Torque

Another engine proposed was the Torque game engine. The Game Development Club at WPI

had used Torque in the past and had dismissed it as difficult to use and learn, in addition to being

plagued with problems. Knowing this, the Torque engine was rejected.

2.2.4.4 Unity with iPhone

The engine found to be the most beneficial for this project was the Unity with iPhone support.

Unity is a 3D engine that was developed by Unity Technologies, a company based in Denmark.

8

However, it also has a small office in San Francisco (about 40 miles away from eBay’s offices).

It contains most of the same features as Stonetrip with some extra graphics and rendering

features including occlusion culling and texture compression. Unity also includes a simulator

that allows the iPhone to act as an input device to the computer to let developers run the program

directly in the editor with the ability to modify game scripts and variables on the fly [11].

Another main advantage of using Unity is the high level of customer support that they provide,

including support from the CEO himself on this project.

The Unity engine comes at a price of $1,500 for the professional version and another $1,500 for

the iPhone Advanced add-on needed for developing iPhone games. Although they do not offer a

trial version of their iPhone development platform, their staff was very cooperative in working

with eBay’s software acquisition process and was able to give out special trial keys to allow

development to proceed.

2.3 iPhone Developer Account and Program

The iPhone developer account is required for anyone wishing to create iPhone applications.

Creating an account is a free and easy process consisting of registering an Apple ID on the

development section of Apple’s website. Once the account has been created, a wealth of

resources including tutorials, examples, and instructional videos are available [12]. In addition

to the developer account, it is necessary to enroll in the iPhone Developer Program in order to

publish applications. Before proceeding, a yearly enrollment fee of $99 is required, and basic

checks are done to verify the creator of the account is a real person (including comparing the

credit card address to the computer address). Account activation can sometimes take long

periods of time because if the account cannot be verified correctly, an Apple employee must then

manually activate it.

9

The iPhone Developer Program Portal is the section of the developer website specific to the

developer program and the utilities included. iPhone developers can manage devices for which

software can be tested on, create certificates needed to verify program authenticity, create App

IDs to identify applications created, make provisioning profiles that allow applications to be

installed on specific devices, and finally submit applications to be distributed by Apple using the

iTunes store [13].

10

3 Game Design

3.1 Game Summary

Memory Dash was inspired by the classic Memory/Concentration games, but with the additional

feature of players competing against each other in real-time. In the first of two rounds, the

player’s objective is to guide a cart avatar around the map by using the touch screen to create a

path by dragging from the cart’s location to a destination. The cart then moves along this path to

its destination. Once the cart has reached a card pickup point, players can tap the card to flip it

over. Once players find corresponding cards, a match point is awarded. The more matches a

player gets, the higher their score. Once round one is over, the second round begins and both

players now have to work together towards a common goal. Four product cards are presented to

the player and four to the player’s opponent. Players must sort these cards based on the current

criteria by dragging the cards around with their finger, their relative sorting representing their

opinions on the matter. Once the time is up, players then receive their opponent's cards. The

better players can read their opponent’s mind and match their exact card sortings, the more

points they both gain (see Section 3.3.3 for more information on the scoring system).

3.2 Overview

3.2.1 Concept

Memory Dash had the difficult task of having to fulfill many requirements. The game had to be

enjoyable to play and catchy. In addition, the game also had to have an underlying purpose aside

from entertainment in order to be useful to eBay Research Labs. Memory Dash encompasses

both of these objectives, within its 2 rounds of gameplay. In the first round, players are asked to

match identical cards together by moving a cart avatar on the screen towards the given card in

11

order to select it. Each card displays a random item listing pulled from eBay’s listing database.

The chosen listing corresponds to the items normally found in the level’s district. For example,

electronics and computer items can be found in the technology district.

Once all cards are matched, the second round begins. The purpose of the second round is to

gather opinions on eBay items from players. Players are asked to sort four items according to a

category (for example: which items do they think are most expensive as compared to least

expensive, which items would they be most/least likely to buy, etc), after which their opponent

guesses how the items were sorted. More points are given the closer players come to matching

sorting choices. Therefore, not only are opinions gathered from users, but also the players are

rewarded for working together.

3.2.2 Genre

Memory Dash is a casual, puzzle-based game consisting of two parts. The first part is a puzzle

matching game, which integrates a real-time multiplayer aspect. The second part however, is a

strategy sorting game that includes a guessing element where the player must predict their

opponent’s actions to gain points.

3.2.3 Novel Features

Because Memory Dash was designed to be played on the iPhone/iPod, there were numerous

technical features that could be utilized in the game. One such feature is the touch-screen input.

Although Memory Dash has the basic structure of a memory matching game, it differs in that

players draw paths on the screen towards the cards they want to match, instead of just clicking on

cards. In addition, the second part of the game allows for opinion gathering by having players

guess their opponent’s opinions.

12

3.2.4 Target Audience

Memory Dash can be played by users of any age. The game is easy to learn and has a bright

color scheme, which appeals to players both young and old. However, since Memory Dash will

be distributed for the iPhone and iPod only, the game was designed to include categories that

appeal more towards the technologically inclined user.

3.2.5 Target Platform

Because Memory Dash was developed using Unity iPhone and the Apple iPhone SDK, it can

only be run on an iPhone or iPod touch. Even if the game were ported to alternate hardware, the

input relies solely on the iPhone’s touch-screen. Knowing that the hardware was pre-defined,

technical limitations were considered in the game design (see Section 4.2) as well as the possible

technical features that could be implemented (see Section 5.2.1).

3.3 Game Play and Flow

3.3.1 Part A – Matching

The first section of gameplay in Memory Dash is referred to as Game Part A, or the matching

game. This concept was arrived at during a Pre-Qualifying Project (PQP) planning and

brainstorming session. The matching game’s purpose is to create a fun game idea that also

incorporated a way to present eBay item listings to the user. The idea of using product cards to

show a listing to the user was decided upon, and thus formulated Memory Dash’s gameplay.

The first thing the programmers implemented was the early cart movement code of the matching

game. This movement did not restrict the player to any paths and allowed for the ability to drive

anywhere on the screen. At this point, the artists were in the process of creating 3d level designs

that would contain paths on which the player could move. Because these scenes were flattened

down to textures and applied to a flat plane, the programmers developed a way to keep the player

13

cart on a set track. Restricted path movement made the illusion of a 3-D space complete so that

the cart could not drive over the flat image of a table or a wall. Instead, the cart was confined to

hallways and pre-set paths on the levels. Once the level art and the rail system were in place, the

matching game became playable.

When a player starts the game and begins the matching section, they are dropped into the level at

the pre-determined spawn points. These points were pre-determined for balance purposes and

reduces the chance that one player will spawn next to a card while their opponent must traverse

the map to get to their first card. Dragging a finger on the iPhone touch-screen from the cart’s

current location toward a destination point moves the cart around the level (See Figure 1 for the

path movement on the iPhone).

Figure 1: The Sports Store Level

14

The cart then moves toward the destination by following the underlying rail system. When the

cart reaches a card, the player can tap their finger on the card to reveal it. The card then flips over

and presents itself to the player by zooming to fit the screen (See Figure 2 for a screenshot of the

card selection on the iPhone).

Figure 2: A Selected Card Zooming In

After a quick pause, the card moves back to its location, face up. The player can then direct the

cart to another card location and tap on this second card. At this point, both cards will be

presented to the screen side by side. If the products on the cards match, the player receives a

point and is notified of a correct match via audio feedback. In addition, when a player has

collected a pair, the cards disappear, giving visual feedback. The scores of both players are

shown in the bottom left on the GUI. When all of the matches have been found, the round ends

15

and the player with the most matches is the winner. In the case of a tie, each player is rewarded

with half the score of a full win (see Section 3.3.3 for more information on the scoring system).

This gameplay structure makes for interesting situations such as in the case where one player has

a card flipped up and the opponent wishes to flip that same card over to make his match. This

conundrum was taken into account when designing the game and a solution was devised to

declare a stalemate situation if the game is down to only two remaining matching cards with each

player holding one of the cards. In this case, the winning points are awarded to the player with

the most card matches.

3.3.2 Part B – Sorting

The programming behind the sorting round was created after the matching round was feature

complete for the single player prototype. The first step in creating the sorting game was to

implement the dragging and placing of cards in a linear fashion. The dragging around of cards

was implemented early, but the actual details of the design of the sorting game were not

completed until much later, as there was not sufficient data gathered from the project sponsor.

All that was known was that eBay would want to gather certain information from each play

session and that some data was more valuable than others. During the first four weeks of

development, the project sponsor expressed many ideas through meetings, but nothing concrete

was decided upon. The design was not locked down until week 5 of the 8-week development

period.

The problem with the design of the sorting round was that two of the project requirements were

conflicting. The fun and addictive game side of the project dictated that game part B be less

about surveying the user and more about doing something fun and competitive, much like game

16

part A. On the other hand, the other goal of the project was to obtain or ‘mine’ useful data from

gameplay. These two requirements were conflicting due to the fact that traditional surveying

lacks any semblance of enjoyability and is perceived by users as ‘doing work’. Balancing the

gathering of user opinion and having players enjoy the game was difficult as was not making the

data mining blatantly apparent. It was determined that the only plausible way to successfully

merge these two aspects was to align one player’s opinion with the competitor’s opinion to make

a game out of predicting or guessing what the other had decided.

After the difficulties with making the sorting round enjoyable and useful were resolved, the

design of this part of the game was complete. When the matching round ends, (regardless of who

won, lost, or tied) each player moves on to the sorting round. The round starts by giving four

unique product cards to each player. Each player is then asked to sort the four cards based on a

certain criteria. An example of one sorting criteria is “Willingness to Buy”. This means that on

the left side will be “Least Likely to Buy” and on the right side, “Most Likely to Buy” (See

Figure 3 for a screenshot of the sorting round with the criteria, “Rate the Durability”).

17

Figure 3: A Screenshot of the Sorting Round

Each player sorts the cards based on personal opinions and is not aware of how the other player

is sorting their cards. Each player is given 15 seconds to sort and lock in answers. Once each

player has finished sorting, the product cards are swapped, with player one receiving player

two’s cards, and vice versa. At this point, each player is presented with the sorting question that

their opponent just tackled, and the goal is to guess the exact order that their opponent had

ordered their cards. Once again, each player is given 15 seconds to complete this task. Once the

time is up, all 8 cards are presented and the correct guesses are marked and tallied. This number

equivocates to a score bonus for each player. For example, if 6 of the 8 card sortings were

correctly guessed, each player would get 6 points added to their total score.

18

This design was also determined after many discussions about balance and the issues that arise

with competitive guessing games. If for example, the game was designed to make game part B

competitive in that each player gets points for the correct guesses they make on the other player’s

sorting, huge problems could crop up. If a player could get a leg up on an opponent by lying and

changing answers to opposite opinions, the system would break. Players would have difficulty

realistically guessing the sortings of their opponent if their opponent was not truthful. Making

this round into a cooperative game ensures truth from both participants. Because the players

work together to try to get as many correct as possible, they both receive more points based on

how well they work together. This eliminates the potential for bluffing to make the other player

lose the round. If both benefit from each other’s win, then there is no reason to lie or give false

information, thus confirming the information’s validity two-fold; firstly, each person is trying to

be as honest as possible and secondly, each positive sorting match has been confirmed by two

human subjects, thus showing that two people have overlapping opinions on the subject.

3.3.3 Scoring

Memory Dash includes a global scoring system visible in the High Score menu. A player can

view the top ten highest-ranking Memory Dash players as well as the player’s own personal

score. Both parts of the game are combined and added to form the game score. In part A, the

matching section, the player with the most matches is awarded 20 points for the round, with the

loser receiving 0 points. In the event of a tie, both players are awarded 10 points. In part B, the

sorting section, players are awarded one point for each matching sorting choice, with a maximum

of eight points possible for the round. These points are added to each player’s first part score for

a total score for the game. This total game score is finally added to the player’s global score,

which determines the ranking.

19

4 Art Assets and Art Style

There are many things to keep in mind when planning out a game’s core art style and content.

The design is a very important aspect to think about. One of the first aspects of art design that

has to be kept in mind when deciding on an art style is the company’s pre-existing branding.

Does the existing intellectual property already have a certain art style to adhere to? In addition,

companies often have specific color values that are used in branding. Not only is branding

important to consider, but also the outstanding technical restrictions on how to produce the art is

important as well. For example, producing a game for the PS3 is very different from producing a

Nintendo DS game in both design and development. In addition to developmental restrictions

and branding issues, other considerations to keep in mind are copyright issues like whether it is

acceptable to use royalty free assets or mention specific company names or logos. Finally,

another important consideration when planning out an art style for a game is the issue of

deadlines. When does the game need to ship and what can be done to keep to that schedule? All

of these factors were considered when designing the game and its artistic style.

4.1 Art Design: Incorporating eBay Branding

4.1.1 Visual Choices

The initial concept for the art style for the game was heavily influenced by eBay’s style

guidelines. eBay’s official colors consist of four primary colors: red, blue, green, and yellow.

Not only are these colors shown directly in the company logo, but they are also used throughout

eBay’s branding. The red-green-blue values of eBay’s colors are red (255R, 0G, 0B), blue (0R,

0G, 153B), yellow (255R, 204G, 0B), and green (153R, 204G, 0B) [14]. When designing each

art asset in the game, these colors were kept in mind and used wherever possible. It would be

20

contradictory to the eBay style to make a game with many desaturated colors and browns for

example.

Significant research was done to examine the style used on eBay’s website and emulate the

nuances when creating the user interface elements. For example, the gradient background

headers on eBay’s landing page were examined and used in the design of the game UI (See

Figure 4 and Figure 5).

Figure 4: eBay's main header on eBay.com

Figure 5: Memory Dash’s Main Screen

21

Other subtle design cues used in the game were also influenced by eBay’s front page and were

used to suggest eBay affiliation. The use of solid colored outlines on the edges of select objects

also mimicked the art style on eBay’s promotional materials. In addition, the rainbow-colored

thread below eBay’s search bar is used in the header of the main screen’s user interface.

Similarly, the lighting used for interface gradients was also applied in the game.

In addition to visual guidelines, the typeface rules were adhered to. eBay’s primary font face is

Helvetica Neue [15], therefore this typeface was used within the game. The combination of all of

these artistic choices create a game that is not just financially backed by the eBay Corporation,

but also an extension of their family of applications.

4.1.2 Use of the eBay Logo

Another concern when adhering to eBay’s style guide was the proper use of eBay’s logo. Most

brands keep specific style guidelines as to how the company logo can be used. For example,

most companies will not allow stretching, shearing, or warping of the aspect ratio of their logo in

any way. eBay has many guidelines as to the spacing that should be used when using a logo:

where in a document a logo should not be put, as well as other guidelines such as no stretching,

no drop shadows, no rotations, etc of the logo that need to be adhered to (see [16] for an

extended list). Keeping these guidelines in mind, the placement and use of the eBay logo was

done in a careful and calculated way. The eBay Research Labs logo was placed in the bottom

right of the main menu screen. (see Figure 6).

Figure 6: The footer GUI element in the main menu

22

4.2 Restrictions

4.2.1 Artistic Restrictions

4.2.1.1 Low Poly and Performance Restrictions

Throughout the development of the iPhone game, many technical and physical restrictions

became apparent, the first of which regards the processing power of the iPhone itself. While

there are slight differences among the different revisions of the iPod Touch and iPhone, all of

these devices have effectively the same processing power. Due to the low power of the GPU and

CPU of the iPhone, art assets had to be budgeted strictly. The first aspect of a 3D mesh that

required careful thought was the vertex count. Unity states that, “to achieve 30 fps on the iPhone,

you should keep per frame visible vertex count below 7000” [17]. The number 7,000 may seem

high, but with the complexity of recent 3d scenes, it is low by comparison. The Unreal 3 engine,

for example, allows for environments of 500,000 to 1.5 million [18]. For this reason, careful

forethought was necessary when crafting each art asset in order to keep within the budget.

Certain low polygon modeling tactics were used in the creation of the art elements. Alpha-

textured planes are one example of a technique used to keep polygon count down. This term

refers to the technique of using flat planes to represent complicated structures. On these flat

planes, an alpha texture is used to create areas of transparency and opacity in the image, giving

the appearance of a complex shape. This technique was used for assets such as store signs and

small triangular flags in the auto district, in addition to the metal bars on the shopping cart avatar

(see Figure 7).

23

Figure 7: Cart model with alpha channel

If the 3d cart model had used actual polygons to represent every metal bar, the polygon count

would have increased the vertex count immensely. Alpha-textured planes are used regularly,

even in current PC and console games, and are a must when working with the iPhone due to the

hardware restrictions.

Figure 8: A 3D Render of the Sports Shop

Another way the artistic members of the team dealt with the vertex limit of the iPhone was to

render complex 3d models as flat textures to be used in game. For the actual game levels

involving cart racing, the backgrounds were created using Maya, the chosen 3d modeling

software (see Figure 8 for a render of the 3D scene).

24

Figure 9: Static Texture Image of the Sports Shop

Due to the static, top-down camera angle and the nature of the gameplay, it was decided that it

would be best to render the level as a single texture and apply it to a flat plane in Unity (see

Figure 9 for the final map texture used in the game). This way, the cart would be the only 3d

model being rendered by the iPhone, thus reducing the polygon count on-screen.

4.2.1.2 Visibility at Low Resolutions

Another restriction when developing for an iPhone is the low screen resolution. The resolution of

the iPhone screen is 480 pixels wide by 320 pixels tall [19]. This is relatively low compared to

the sizes of common computer monitors, which have screens with a resolution between

1024x768 and 1600x1200, so the iPhone’s screen size is a definite constraint when it comes to

visual screen real estate. Due to this fact, many different precautions had to be taken. Firstly,

readability was a priority for all text presented to the user. Careful testing was done to confirm

that all text on-screen was legible and readable for the user. Different font sizes were

implemented and compared on the iPhone internally for their relative legibility, readability, and

25

overall aesthetics on the small screen. In addition, this testing of adequate font sizes was a

particular challenge when used on cards in game.

Each of the product cards displays an eBay product listing pulled directly from the Internet,

along with its listing title. For the sorting bonus round in the game, four of these cards are

simultaneously displayed on-screen. This was a challenge when balancing the font size of the

text, for readability, and the space for other cards. During the design process, four cards were

chosen to be displayed on the screen because more than four would clutter the screen immensely

and reduce visibility to an unacceptable level. During the sorting round, four full cards are

displayed on the screen. However, in the matching round five matches, or ten cards are

displayed very small on the map. The problem arose that it would be very difficult to show ten

cards on the screen at a large enough size to discern the different cards. Therefore, the game was

designed so that the card zoomed to the center of the screen when selected, presenting the card to

the user at the highest resolution possible. When two cards were selected, both appeared side-

by-side on the screen for comparison. This effectively solved the problem of small card sizes on-

screen.

Another issue arose from the relatively low screen resolution of the iPhone. Certain art assets

that looked clear and visible on the computer screen became too small to visually distinguish on

the iPhone. One major challenge pertained to the aesthetics of the shopping cart model. Due to

the high percentage of transparent sections, the shopping cart literally disappeared at high

distances on the iPhone. In addition, the cart was viewed solely from a vertical angle in game, so

it was difficult to distinguish as a shopping cart. Special considerations were made for this model

to increase visibility. The top rim was reinforced with a thick border, allowing the model to be

viewed clearly from above. In addition, the bars on the sides were scaled up in size, increasing

26

visibility. After these changes, the cart model became much more visible, but the textures lacked

the clarity of other objects that were viewed head-on. Therefore, research on this problem was

done. It was discovered that applying anisotropic filtering to the model’s shader clears up the

blurriness of the texture when viewed at steep angles. This was the first of many texture issues

presented on the iPhone.

4.2.1.3 Texture and Audio Restrictions

Dealing with textures in Unity and on the iPhone was a process with many explicit restrictions.

First, all textures imported into Unity were suggested to be sized in square powers of two. This

restricted the texture sizes to be in pixel dimensions of 128x128, 256x256, 512x512, and so on.

Initially, for the background scenes, images of 480x320 pixels were used to keep with the exact

sizing of the iPhone screen. It was later learned that the math involved in working with textures

that are not powers of two makes the hardware work much harder. For this reason, the

background textures were changed to 512x512 pixels, leaving black bars on the top and bottom

where the texture would be cropped off by the screen size. In addition, there was also the general

restriction of the iPhone’s video memory. Texture sizes of 1024x1024 pixels were simply not

possible. Instead, texture sheets were kept very compact using texture resolutions of 128x128

pixels or 256x256 pixels. Lastly, some of the texturing procedures the artists were comfortable

with, such as bump maps or normal maps, were not available for use on the iPhone [17]. Due to

the heavy processing power needed to compute normal maps on a 3D model, special texturing

techniques such as normal mapping, were not used and instead, flat-shaded and solid-colored

shapes were used. This worked quite nicely for the game due to the fact that it saved precious

iPhone resources and also helped in adhering to eBay’s style guidelines.

27

In contrast to graphical restriction, sound effects were an area of relative ease, specifically, Unity

supports .aiff, .wav, .mp3, and .ogg files [20]. The ability to import .mp3 audio was important

because this type of compression allows for the use of sound effects without needing to worry

about the large size of using uncompressed audio in a downloadable game.

A list of audio selections used in the game was added to a list of the items in need of legal

consultation and sent to eBay’s legal department for approval.

4.2.2 Copyright Restrictions

4.2.2.1 Art Assets

Often, when working on indie or small games, the tendency is to use free and royalty-free assets

to help reduce the workload for artists. In the case of Memory Dash, it was necessary to operate

under the restrictions of a large corporation. Because of this fact, public art resources, such as

game textures were not freely used. Often, sites like cgtextures.com or other free texture sites are

turned to for a quick art asset such as a brick wall texture or wooden fence reference picture. In

the case of Memory Dash, these types of images in the game were not used due to copyright

restrictions. The same problem came up when free sound effects were found to put in the game.

Although many of the sites claimed that the sound effects available for download on their site

were both completely free and royalty free, the validity of these claims could not be confirmed

until checking with eBay’s legal department. Because of these issues, all art assets, besides

sound effects, were created by the art team and thus, completely original.

 4.2.2.2 Logo and Branding

In addition to physical art assets, the legal issues of using another company’s logo and branding

were also a concern during the development of the game. One example of this problem occurred

when designing the computer store level in the tech district of Memory Dash. The idea of the

28

level was to emulate the look and feel of an Apple Store. This aesthetic included the use of

wooden tables, white walls, gray floors, Mac laptops and iPods positioned around the store, and

other Apple-specific styles. When weighed with the fact that the use of a specific brand name

such as “Apple Stores” would possibly cause legal troubles in the future, it was decided that the

level would be stripped of any specific references to the Apple brand and label it as a generic

computer store.

4.3 Timeline

4.3.1 Art Asset Listing

One of the most important ways to prepare for development of a game is to carefully plan out

every art asset that will be needed in the game before jumping into asset creation. During the first

few days of planning, an art asset list for reference and scheduling purposes was developed. For

the complete art asset list, see Appendix A.

4.3.2 Art Asset Schedule

This list was useful in making a proper 8-week timeline. This helped by not only organizing the

assets into manageable chunks, but also in assessing whether an 8-week development cycle was

enough time to complete all artistic elements. For the complete art schedule, see Appendix B

This timeline was designed in order to help effectively produce the quickest working prototype

of the game. The first two weeks were critical to make sure that the game would work and end

up being fun and manageable. The only way to ensure this was to get a playable demo as soon as

possible. The organization of elements beyond the playable demo were sorted by importance,

tackling the must-have features first and then moving to the assets that would be completed if

there was time. The schedule was also organized in a way that would leave ample time for bug

29

fixes, problem solving, and playtesting near the end of the project. This time period of

playtesting and bug reporting is critical in making the game stable and cohesive as a whole.

30

5 Technical Design

Programming a game requires a well thought out plan and design in order to avoid difficulties in

the implementation. When planning the design of the game, there were several major

considerations that needed to be taken into account. Chief among these concerns was the

platform being used. The iPhone presented several unique difficulties in development including

its relative low performance compared with modern computers as well as its unique touch based

input. In addition, networking on the iPhone also proved to be a major concern for development.

However, careful planning helped to minimize these potential difficulties during game

development.

5.1 Technical features timeline

Before beginning any major programming project, it is important to have a clear idea of the

requirements of the project. To this end, before any code was written, a list of technical features

was drawn up to aid in the planning of development. This list included all of the features of the

game believed to be hurdles in the development of the game, such as networking and path

finding.

 In order to ensure the success of the project, an iterative development process was used.

Keeping this in mind, a timeline (see Appendix C) was created that allowed for creation of a

playable version of the game as soon as possible so that more features could be added to as

development continued. The initial focus of development was on Game Part A, the matching

game (further explained in Section 3.4.1), which contains the majority of the core gameplay. Part

B, the sorting game, was developed later on as part of the iterative development once the major

features of Part A had been implemented. In order to make a working demo as quickly as

31

possible, early development focused on creating a single player version of the game that was

expanded into multiplayer once networking had been implemented. The timeline also left several

weeks at the end of the development cycle for debugging, play testing and any unexpected delays

in development. Scheduling plenty of time for this is especially important, due to the constrained

time frame of the project, in ensuring a complete and cohesive product at the end of

development.

5.2 Implementation

5.2.1 iPhone specific features

5.2.1.1 Controls

An important difference in developing for the iPhone as opposed to another platform is that all

the input for the iPhone is done via touch screen. Interpreting the touch input from the iPhone

and turning it into useful data in Unity was the first major programming hurdle. Luckily, Unity

iPhone provides functions for retrieving and processing iPhone touch data [21]. Although these

functions allowed easy access to input data, this data still needed to be interpreted from touches

on a screen to the user’s intentions in game. Besides giving screen coordinates for each touch,

which needed to be translated into the coordinate system used in Unity, a phase was given which

told when the touch was started and when it ended. This information proved invaluable in

interpreting user input for path drawing as well as clicking.

5.2.2 Cart Movement and Path work

One of the technical hurdles was how to code movement of the cart around the level. If the

graphics of the levels were actually rendered by the graphics engine based on a 3D world instead

of pre-rendered onto the background, then the movement of the cart could be based on physical

32

contact with the surroundings and actual movements much like any first person shooter game.

However, due to artistic restrictions (see Section 4.2.1.1), the level was pre-rendered as a static

image. Given that from that cart’s point of view the level is a big flat plane, it was necessary to

create another system to confine the player to the set spaces of the level.

5.2.2.1 Node-based

The solution to the problem of restricting cart movement was to create a node map for each level

consisting of the available points for the cart to go on. Each node contains an x and y position

relative to the screen (values 0-320 pixels in the y-axis and 0-480 pixels in the x-axis), an x and y

position relative to the Unity coordinates of the level (screen values offset and scaled by 1/37), a

list of connections consisting of the numbers of the neighboring nodes, and number defining

which side of the node a card could be placed (or 0 if the node could not have a card).

The advantages of this system are that it greatly simplifies the number of points on which the

cart could move and that it defines a set network for the cart to traverse. It also allowed cards to

have easy reference points to be placed on, which made generating levels much simpler.

The disadvantages are that the cart has a more limited movement around the level and that the

network of nodes needs to be created for each level. The first problem was partially solved by

putting enough nodes on the map that the cart could go to most areas, and through path following

techniques (described in Section 5.2.2.2). The second problem was made easier through a better

data entry system.

The first step of making the node maps was for the artists to label all the points on the level with

the numbers of the corresponding nodes drawn onto the image for reference. This was useful not

only for creating the initial node maps, but later for debugging problems that occurred from

33

either data entry mistakes or code problems. The next step was for the artists to enter the

relevant data into an Excel spreadsheet with four columns: the x and y locations of the node

relative to the screen, the list of nodes that the node connects to, and the card position, with each

row corresponding to a different node. The artists would then export the spreadsheet as a

Comma Separated Values (CSV) file and send all the files involved in the level to the

programmers.

Once the programmers had received the files from the artists, they were converted into a form

that could be read easily in JavaScript by Unity. This was done by running a custom made

Python script on the CSV file that converted the data into a collection of StoreMap and Node

data structures that are read directly by the program. These objects could then be used for all the

cart movement including finding paths and placing cards.

5.2.2.2 Finding Paths

In a perfect world, users would only try to move the cart exactly from node to node, but it was

discovered through early play testing that this is not the case at all. In the first versions of the

game, there was no path following at all, just a ribbon that appeared wherever the user touched

the screen. This was kept in the game to give some feedback to the user and show where people

actually were trying to draw a path.

The actual path is stored in a 200-element points array that works as a queue continually

wrapping around as new input is received. Input is only received from the user every 0.1

seconds in order to not fill up the points array with duplicate values. If the points array is ever

completely filled, it will no longer accept input from the user until more space is available, but it

34

should be noted that it takes 20 seconds of input to fill the entire array. The points in the array

are the numbers of the nodes that the path takes.

To determine which point to add next into the array, the game takes the last point (white dot in

Figure 10) and looks at its list of connections (light blue dots in Figure 10). It then takes every

node on that list and adds on their connections (dark blue dots in Figure 10) resulting in a list of

every node within two nodes of the previous point. For each point in the list it compares the

distance from the point to the position of the user’s finger and chooses the closest point. If the

closest point is more than one node away, the intermediate node is added to the list first, then the

closest point. This method works better than directly taking the closest node because it can take

input twice as fast if the user is moving his finger very quickly, and it improves the path finding

around corners in situations where the user is bad at following the node paths.

Figure 10: Sample Node Structure

When this method was implemented, it was discovered that tapping on the opposite side of the

level would just draw a path automatically from the cart to the point tapped. Since part of the

design of the game was to draw the path around the level, a check was added at the beginning of

the user touching the screen to make sure that the first point added is actually connected to the

previous path or is on the cart if there is not a previous path.

35

After the points have been inputted into the points array, the final step is to smooth out the path.

Often when a user is drawing a path straight through a crossing of nodes (such as straight along

the top in Figure 10), he will have his finger slightly off the line so at the crossing, the path will

go one node down and then back up making a T shape in the path. This is not a desirable

behavior; so any backtracking in the path is removed.

Example:
Starting Path: (1,2,3,9,3,4,5)
Resulting Path: (1,2,3,4,5)

This also works for longer paths; the nodes are removed one at a time until it is a smooth line,

allowing the user to backtrack by just following the path in the other direction without having the

cart trace the entire route.

Example:
Starting Path: (1,2,3,9,15,20,20,15,9,3,4,5)
Smoothed Path: (1,2,3,9,15,9,3,4,5)
Smoothed Path: (1,2,3,9,3,4,5)
Resulting Path: (1,2,3,4,5)

The final step in finding the path is to make the ending point better if possible. During internal

testing in the development stage, many users had trouble getting the cart exactly on the node next

to a card (required before the card can be flipped over) because stray movements when lifting the

finger would often shift the cart to the next point. This was solved by searching the connections

of the point where the touch input ended for a node with a card, and adding that to the points

array if found. Not only did this make it easier to get to the cards, but it also made the cart not

jump around if the user missed the card and tapped on a node next to the card instead.

36

5.2.2.3 Drawing Paths

The path of the cart is stored in the points array when the user draws it, but it is also helpful for it

to be displayed on the screen. Several methods were tried to achieve this in Unity. The first

solution was to create a Trail Renderer (similar to the one following the finger) attached to the

input object that follows the finger on the node network. Although this was visually appealing,

there is no way to modify the trail once it has started, so the path would not show modifications

due to smoothing or backtracking, and it would often fade out before the cart reached it or

remain after the cart had already passed.

The solution used was to create a series of primitive objects spanning from one node to the next

node on the list. These objects did not look as good as the trail renderer as they are created and

destroyed in a more jerky manner, but they have the ability to be added and removed easily by

destroying the object if the path changes or the cart passes over one. As objects also can be

modified to show different colors, the paths could be customized to the color of the cart that

would be following them, even though it was decided not to show the paths of both players at the

same time to avoid cluttering the screen.

5.2.2.4 Following Paths

Getting the cart to smoothly follow the path generated posed to be another challenge. As a

gameplay decision, it was decided that the cart should always move at a constant speed, meaning

the normal methods of moving objects would not work since the nodes can be any distance apart

from each other. Furthermore, the card needed to face the direction it was moving, in order to

look realistic.

After much experimentation, the following of paths was accomplished through two objects. The

first object was an invisible block that would trace the path given by the points array. This block

37

moves in the direction of the next node with a normalized vector so it moves at a consistent

speed at all times. However, when the cart was directly linked to this object, it proved hard to

identify the direction it was moving, especially when there were duplicate nodes in the points

array, so the cart would often flip around and look jerky. Having the actual cart object follow

behind the block using the linearly interpolating “Lerp” function solved this problem. The same

function was also applied to the turning so the cart would always make the full turn instead of

flipping directly to the next direction. As an added side effect, this also made the cart slow down

as it arrived at the final point, which added realism to the cart’s movement.

5.2.3 Networking and Data from eBay

One of the great touted features of the iPhone and iPod Touch by Apple is its network

connectivity. Network connections can be obtained either through the cell phone networks on an

iPhone or using a local wifi connection for either the iPhone or iPod. Memory Dash was

designed to take full advantage of this in order to improve the user’s experience and produce

more valuable data for eBay (see Section 3.4.2 for more information). The network connection

is used both for downloading new content from eBay servers and connecting users in multiplayer

games.

5.2.3.1 Card Images

The game was designed such that each card would pull a separate image from an eBay listing,

therefore making the matching cards different in each game. The first step in applying eBay-

listed items to cards in the game is to find the items that will be on the cards. This is fairly

simple as eBay provides a free public API that allows developers to do queries on auctions and

get a list of results in an XML format [22].

38

In order for the iPhone to be able to pull listings from eBay’s API, a web server running Apache

and PHP was setup that could make calls using the API to get results. The server does all the

processing necessary to produce an image of an item on a card using the PHP GD image-

processing library. The first step of the process is to load a blank card stored on the server into

the script (see Step 1 in Figure 11). The URI returned from the eBay Dev API call is used (see

Step 2 in Figure 11) to download the full sized image from eBay’s image server. The image is

then resized into the center of the blank card image (see Step 3 in Figure 11) and a small rounded

border is drawn around it (see Step 4 in Figure 11). Finally, in the fifth step, the image is resized

to 256x256 pixels and saved to a file for multiplayer games, or returned as an image to the caller

of the script for single player games (see Step 5 in Figure 11). The images are stored as files for

multiplayer so that both players will receive the exact same items.

Figure 11: Process of creating a card image (images not to scale)

The use of a web server for the images was chosen because of the ease of importing images

using Unity’s WWW class. The WWW class can take the results of a web request and convert it

directly into a texture (if desired) that can be applied to an object such as a card. The WWW

class also handles all the details behind the scene for making the connection as well as for timing

out the connection. Since an Internet connection is not always available, several images are

39

stored on the device permanently in case the image server cannot be reached, or if the

downloading of an image is not completed within five seconds.

5.2.3.2 Matchmaking

In order for users to be able to play against each other on the Internet, they need to be able to find

someone to play, hence the creation of a matchmaking server. Although some matchmaking

services will match players based on location or experience, Memory Dash simply matches any

two players that are playing the same district. This was also done using a web server to take

advantage of the WWW class.

The process for matching players is quite simple. The first player who wants to join an Internet

game sends a game request to the server. The server then checks for recent open games and

finding none, will create a new game in the game database and return the game ID back to the

player. When the second player sends a game request to the server, the server sees that another

game has been created recently on the same district and returns the same game ID as the first

player. At this point the players have been matched and it is up to the gameplay server to start

the match.

5.2.3.2 Main Gameplay

Although web connections work great for simple requests, the actual gameplay needed to be

something that would work faster and be optimized for messages that the game communicates.

Unity includes a clever network class that makes any network communication between players

easy. Unfortunately that class was not included in the iPhone version at the time the app was

made. This meant that all communications between devices needed to be coded using raw socket

connections available in the .NET library.

40

In order to simplify communications, a standardized message class was developed. Each

message sent contains a four byte game id, a one-byte message type, and a one-byte sub-

type/action. This allows any device that is in contact with a packet to easily identify what kind

of message it is without heavy processing. These message types are listed in Figure 12.

Type Sub-Type Description
0 # Network connection
0 0 Keep alive
0 1 Join internet game
0 2 Broadcast search for other clients
0 3 Reply to broadcast, request to join
0 4 Game Part A Over
0 5 Game Part B Over

1 # Gameplay
1 1 Start game on first map
1 2 Start game on second map

2 0 Cart movement

3 0 Starting list of card locations
3 1 List of cards ordered

4 # Card flipping
4 0 Notify flipping card
4 1 Confirm flipping card
4 2 Card flip accepted
4 3 Card flip rejected

Figure 12: Message types

The standard communication packets are converted into an array of bytes before they are sent,

but the protocol used for communications needs to be considered. The game design calls for the

game to work over the Internet and on local networks, with many people who would be on a

private network without an external IP. With this in mind, there are two protocol options:

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP), each with its own

good and bad points, and both without the ability to traverse private networks easily.

41

5.2.3.2.1 TCP vs. UDP
Before deciding which protocol to use, significant research was done on the major advantages

and disadvantages between TCP and UDP. TCP establishes a connection between the two

machines and sends a continuous steam of bytes without distinction of boundaries. It will

automatically resend packets that are lost and adapt to congested network connections, making it

very reliable. UDP is a connectionless protocol that sends datagrams from host to client without

any knowledge of what happens to them. Packets may be lost or arrive out of order to the client

without any correction methods built in [23]. In essence, TCP can be compared to making a

phone call to someone where both parties need to be on the line and talking, and UDP is more

like sending letters in the mail where neither party knows anything about the transfer.

Memory Dash makes use of both protocols in order to take advantage of good attributes from

each. As stated in Sections 6.2.3.1 and 6.2.3.2, the card images and matchmaking are done

through a web server that makes use of the TCP protocol. Transfers of image files are very

reliant on having the packets all successfully transferred, and all received in the correct order.

The image transfers also were not under a serious time constraint when downloading as the

transfer is done within the several seconds that the game is launching. In addition to transferring

image files, TCP is also used for transmitting the results of the game to the server because, in

order to have useful data, the results need to be correctly ordered.

Although Memory Dash uses TCP for many of its transfers, UDP is also used. In the main

gameplay, UDP is used for communications. The unreliability of UDP is not such a pressing

issue for the main game, as the next command will typically overwrite it anyways. For example,

the movement of the player’s cart is sent as an array of points to the other player (see Section

5.2.2.2). Since the cart will always follow to the last item in the array, a missing message will

42

just mean that it will skip a point and go directly to the next one without issue. In comparison, if

the arrays were sent using TCP, then a packet loss would delay the next message until the lost

one was successfully transferred, adding lag to the gameplay.

Some items such as the card flips, which required a more reliable communication, also

incorporated acknowledgements using UDP to make sure that the action happened. Having this

also allowed a solution to when the two players tried to get the same card at the same time, as it

is designed so that one chosen player will be given the card while sending a negative

acknowledgment back to the other player that this player cannot select the card.

The other advantage to using UDP is its ability to traverse networks. Although there are some

firewalls that will block UDP packets sent and received on strange ports, those are usually only

on computers. Since after testing, this was not a problem on the iPhone, firewall problems were

not a concern. Due to the fact UDP does not need to maintain a connection between client and

host, it is possible to trick routers into passing traffic by getting introduced by a server to the

other client’s public IP, and then both sending to each other’s public address. As the router has

just sent a packet to the other address, it assumes incoming packets from that address should be

routed back to the same location and a “connection” will be made [24]. While this works great

in theory, in practice there are many routers that are not configured correctly, so this method

does not work in situations with a lot of routers along the communication path.

5.2.3.2.2 Multiplayer Internet Gameplay
One of the gameplay modes included in Memory Dash is multiplayer Internet gameplay. This

mode is aimed at players who want to play a multiplayer game, but are not within the proximity

of another player. This mode uses the matchmaking server to find players that will be in a

specific game. In order to make this mode work for as many players as possible, all

43

communications go through a central gameplay server with communications directly between

clients.

When a player receives a game ID from the matchmaking server, they send a message to the

gameplay server containing their name (the name of the iPhone) and the game ID that indicates

they are ready to start. As soon as both players have notified the server that they are ready, the

server sends a game start message out to both clients, which starts the game. The server then has

no involvement in messages going between players other than relaying them to the other player

until the game ends and the server is notified that the game has finished. The flow of messsages

is shown in Figure 13.

44

Figure 13 Network interactions between iPhones and server

The other action unique to the multiplayer Internet mode is that the scores are reported back to

the matchmaking server for the high scores list and the results of the sorting are reported to eBay

for analysis. Both these items are submitted through a simple web interface to the server.

5.2.3.2.3 Local Network Gameplay
The local network gameplay mode is very similar to the Internet gameplay mode with the

exception that it does not utilize any servers other than the image server. This mode is designed

for players that are on the same local network, such as two people using the wireless network at

their local coffee shop. It can also work on a network completely disconnected from the Internet

such as someone setting up a wireless network using a laptop on a train.

45

Since local play does not use a matchmaking server, players need to be discovered in order to

connect to each other. This is done by broadcasting a UDP message out to everyone on the local

network, notifying them of a device looking to play a game. When a second player looking for a

local network game receives this message, the second player’s iPhone sends back a reply to the

first player asking to join a game. The initial sender then takes the first response and sends the

launch game message in the same way the Internet server does, with the name of their device.

When the second player receives this, the person’s iPhone knows that it’s a part of the game and

sends the launch game message back to the initial player with the iPhone’s name, thus starting

the game for both players. Once both players are connected, all communications are sent

between the devices in the same way they are in Internet play, just without the server relaying.

Although the iPhones do not need to be connected to the Internet, a network is still necessary.

There is an undocumented technical limitation of the iPhone that prevents it from creating an ad-

hoc network between two devices, leaving no method of connecting two players without relaying

through a router.

46

6 Project Post-Mortem

6.1 Result

Overall, the project yielded a feature-complete and fun game that will be available for free on the

Apple app store (see Section 6.3 for details about app submission). It is a fully working game

that includes all elements of the original game design, satisfies the project requirements, and is

essentially a fun and marketable product.

6.2 Successes

Memory Dash followed the original game design very closely throughout development. The

original game design called for two separate sections of gameplay: game part A, or the matching

round; and game part B, or the sorting round. In the final game, users can compete against each

other in the matching round in order to get as many matches as they can out of the possible five.

Then, users work together to try to guess how the other player thinks in the sorting round. Both

of these rounds serve to satisfy the initial project requirements.

All of the major project requirements were met in the final game. Memory Dash serves to be an

enjoyable and engaging game that will immerse the user in competitive gameplay. In addition, it

also serves to mine data about users’ opinions that will be useful to eBay Research Labs. For

more information, see Section 6.4.2.

In addition to having a feature-compete game that meets all requirements, the schedule devised

in the beginning of development served as a useful guide that was followed fairly accurately.

Both the tech and the art teams adeptly planned for the last three weeks to be a buffer for any

overflow of work that was unfinished, new work that was necessary for completion, and any

47

playtesting and bug fixing needed. Scheduling this padding of time at the end of the project was

a successful decision because there were found to be many problems and bugs that needed to be

fixed in addition to additional assets that needed to be created. This served to help the

development team in producing a working and marketable product that will be released to the

public.

6.3 Problems

Although the development for Memory Dash was completed on time and the schedule was

followed, there were a few major unforeseen issues that arose during the development of the

game itself. Overall, these issues included difficulties in obtaining software and hardware in a

timely manner, iPhone latency issues, low memory issues, and several multiplayer issues.

6.3.1 Obtaining Hardware and Software

In order to develop Memory Dash, several pieces of hardware and software needed to be

obtained. Although intensive research went into choosing optimal hardware and software for

development (see Section 2 for more detail) and the list of requirements were specified before

the project began, actually obtaining these elements quickly proved to be difficult. Since Unity

Pro licenses were not received until one month after the project began, the team worked with

Unity Technologies’ local branch in San Francisco to obtain trial versions of Unity Pro with

iPhone Advanced that were used until the purchase order was completed. In addition, licenses

for Maya 2009 took a long time to obtain and were received in the second to last week of the

project. In comparison, Photoshop CS3 only took 2 weeks to obtain due to the fact that eBay

already owned the licenses and IT simply installed it on the computers once the request went

through. Thankfully, free trials were available for Photoshop and Maya until both licenses were

obtained, however the process to obtain all necessary elements was much longer than expected.

48

In addition to software, hardware procurement was also a lengthy process. Unfortunately, there

were no computers to begin development for the first three days. The team used this time to

extensively map out the game design of Memory Dash. Also, iPods for development and testing

arrived three weeks after development began. iPhones arrived 6 weeks into the project after it

was approved and shipped out. Because of the length of time it took to obtain the physical

hardware, testing was pushed back to the very end of the project.

6.3.2 Memory Issues

Another main issue was uncovered once the iPhones were obtained. Previously, all testing was

done on the iPod and it was not until testing was done on the iPhone that several problems

emerged. It was discovered during testing that the iPhone uses 10% of its memory towards

checking for calls and therefore has fewer resources available to allocate towards applications.

This meant that Memory Dash ran noticeably slower on the iPhone when compared to the iPod.

This was unexpected and required a complete analysis of the game assets and code to determine

the specific things that were slowing down the system.

Therefore, several methods were attempted to decrease the amount of memory the game used.

The use of texture sheets and compressed textures were used in several instances. In the main

district select menu, the amount of textures used went from 30 to 11 with the use of texture

sheets. This meant that several textures had to be scaled down and re-UV mapped within Maya,

which was time-consuming, but necessary to save memory. In addition to texture compression,

alternate methods of line rendering were researched. Originally, the game was programmed to

create a series of boxes to simulate the cart movement path. However, since this increased the

amount of vertices displayed on the screen and slowed the game, it was determined that Unity’s

built-in line renderer was a better choice.

49

6.3.3 Multiplayer

One other issue that arose was the problem with configuring the server, which runs the game.

This server runs the Solaris operating system and was responsible for passing game logic from

one player to another, hosting the website, and pulling data from the internet using the eBay API.

eBay provided access to a server capable of handling all these functions. This server

unfortunately required the installation of many pieces of software. Apache, PHP, and mySQL all

needed to be compiled and installed on the Solaris server before it could be used for

development. This proved to be a lengthy process, as many of the necessary build dependencies

were missing and had to be retrieved before compiling each piece of software. In addition to

being a lengthy process, the server was also hosting other Research Labs projects and many users

connect to it daily to monitor their work. At one point, after modifying the apache server

installation, many other developers realized their websites were not functioning properly and

contacted the tech team about this issue. The team was able to quickly revert the changes and

avoid any widespread problems caused by the server use.

In addition, during the testing of Memory Dash, a problem occurred when trying to access the

website labs.ebay.com. The address is only accessible from outside of eBay's network, so only

the internal hostname works from within network. A solution was devised that effectively

switches between an internal server address and an external server address depending on which

address is currently pingable.

50

6.4 Analysis

6.4.1 Hardware and software choices

6.4.1.1 Hardware

During most of the development, testing was done using iPod Touches rather than iPhones due

primarily to the costs and difficulties in obtaining iPhones for testing purposes. Even though

iPhones were eventually acquired, development and testing was not impeded because iPods were

obtained early on. iPhones were only acquired and used in the last two weeks for final testing.

When the game was being tested on the iPhone, it was discovered that there were performance

issues that weren’t apparent on the iPods. The 2nd generation iPod Touch’s processer was

increased from 412MHz to 532MHz over the 1st generation and the iPhone [25] accounting for

the performance difference. This necessitated the testing and optimization of the code and art

during the last few weeks of development. If the iPhones were received early on in the

development cycle, last minute optimization could have been avoided.

6.4.1.2 Software

Many Software choices needed to be made as well as the hardware choices. The choice to use

Unity to create the game rather then attempting to code everything in Objective C proved

immensely valuable throughout the development process. Unity’s editor allowed many parts of

the game to be built and modified without everything having to be coded. Unity’s built-in code

for rendering, movement, networking, and integration with the iPhone took a lot of the load off

of the programmers. Overall, the choice to use an existing game engine with built in iPhone

support, instead of attempting to write a game from scratch, greatly reduced development time

and allowed the creation of a nicely polished game at the end of the project. In addition to the

usefulness of the engine itself, Unity’s staff proved very helpful throughout the project, granting

51

trial software while eBay was still attempting to purchase the engine, and even providing a beta

of the new version to help with networking issues.

In addition to the software engine choice of Unity, the artistic software choices of Autodesk

Maya and Adobe Photoshop proved to be sufficient as well. The artists were proficient in both

Maya and Photoshop, which saved time in learning how to use alternate software. In addition,

Maya is officially supported for importing models into Unity, which makes quick changes simple

and efficient. Neither of the software choices proved to be difficult to use and allowed for quick,

detailed artistic development.

6.4.2 Requirements

There were several expectations about what the purpose of the game would be. Although it was

difficult to predict all of what eBay wanted from the project, the several meetings with the

project sponsor at the beginning were helpful in determining a general idea of what purpose the

game would serve. The project sponsor, Neel Sundaresan, stressed that he wanted the game to

have a dual purpose: to be fun to play, and to obtain data useful to eBay Research Labs. Memory

Dash meets both of these requirements in that it is a fun, catchy game to play, but it also has a

section that mines user opinions and pairs them with the other players’ opinions. Some examples

of data being mined is users opinions on coolness of items, cost, and durability. Although this

game compiles potentially numerous amounts of data, it is up to the Research Labs to determine

how they will use this data.

6.5 Future

Memory Dash will be submitted to Apple’s app store on Thursday, March 5, 2009. Once an app

is submitted, Apple must approve it before it is distributed through the app store. This can take

52

anywhere from one day to a month or more. Once Memory Dash is approved, it will be available

to download for free from the app store. Any future changes or releases will be done by eBay

Research Labs, including management of data gathered from the game. Although Memory Dash

compiles and stores data received from players, it is up to the Research Labs to determine how

they will interpret and utilize the data gathered.

53

7 Conclusion

Memory Dash was completed and will be submitted to Apple’s app store on Thursday, March 5,

2009. The final result was a feature-complete and fun game that served its purpose of obtaining

meaningful opinions from players about eBay items. Several elements helped the development

team complete the project on time including using the game engine Unity Pro instead of coding

in objective C from scratch and working with art tools that the art team already knew. In

addition, because the game was thoroughly designed from the beginning and schedules were

drawn up, there were clear milestones and deliverables expected every week.

Although the game was completed on schedule, there were many issues that occurred that

hindered progress including memory issues on the iPhone that resulted in necessary optimization

of art assets and code, difficulties in obtaining necessary software and hardware in a timely

manner, and several multiplayer networking issues. The project team learned how to work

around issues that came up and adapted the game development because of certain memory

problems.

Although the development process included several issues that needed addressing, overall the

game was very enjoyable and challenging to create in the specified time limit, eight weeks. It is

expected that it will be accepted into Apple’s app store and will be played by numerous users,

creating copious amounts of meaningful user opinions for eBay. A website developed for the

game is available at http://labs.ebay.com/memorydash/.

54

References

[1]. Gwap. ESP Game. gwap.com. [Online] [Cited: Febuary 19, 2009.]

http://www.gwap.com/gwap/gamesPreview/espgame/.

[2]. Hottrix. iBeer 2.0. hottrixdownload.com. [Online] 2008. [Cited: Febuary 19,

2009.] http://www.hottrixdownload.com/secure/iBeer/iBeer.html.

[3]. KinVibe. Razor. KinVibe. [Online] 2009. [Cited: Febuary 19, 2009.]

http://www.kinvibe.com/Razor.html.

[4]. Apple, Inc. About Xcode and iPhone SDK. Apple. [Online] 2008. [Cited: Jan 21,

2009.]

http://developer.apple.com/iphone/download.action?path=/iphone/iphone_sdk_for_i

phone_os_2.2__9m2621__final/iphone_sdk_for_iphone_os_2.2_readme_final.pdf.

[5]. —. iPhone OS overview. Apple. [Online] 2008. [Cited: Jan 21, 2009.]

http://developer.apple.com/iphone/gettingstarted/docs/iphoneosoverview.action.

[6]. Autodesk. Autodesk Maya. Autodesk. [Online] 2009. [Cited: Jan 21, 2009.]

http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=7635018.

[7]. Adobe. Adobe Photoshop CS4. Adobe. [Online] 2009. [Cited: January 22, 2009.]

http://www.adobe.com/products/photoshop/photoshop/.

[8]. Apple, Inc. iPhone developer program. Apple. [Online] 2008. [Cited: Jan 21,

2009.] http://developer.apple.com/iPhone/program/develop.html.

[9]. —. Learning Objective-C: A Primer. Apple. [Online] 2008. [Cited: Jan 22, 2009.]

http://developer.apple.com/iphone/gettingstarted/docs/objectivecprimer.action.

[10]. Stonetrip. iPhone Publishing. Stonetrip. [Online] 2008. [Cited: Jan 22, 2009.]

http://www.stonetrip.com/shiva/publish-3d-game-on-iphone.html.

[11]. Unity Technologies. iPhone Publishing. Unity. [Online] 2009. [Cited: Jan 22,

2009.] http://unity3d.com/unity/features/iphone-publishing.html.

55

[12]. Apple, Inc. iPhone Dev Center. [Online] 2008. [Cited: Jan 21, 2009.]

http://developer.apple.com/iphone/.

[13]. —. iPhone Developer Program Portal. Apple. [Online] 2008. [Cited: Jan 21, 2009.]

http://developer.apple.com/iphone/download.action?path=/iphone/iphone_developer

_program_user_guide/iphone_developer_program_user_guide__standard_program

_v2.4.pdf.

[14]. eBay, Inc. Color Palette. 2009. eBay Brand Portal.

[15]. —. Typeface. 2009. eBay Brand Portal.

[16]. —. Logo Guidelines. March 2006. eBay Brand Portal.

[17]. Unity Technologies. Unity iPhone Basics. January 29, 2009. Reference Manual:

Developing for the iPhone.

[18]. Firewyre. Poly Counts - How Other Games Count 'Em. MMORPGMaker.

[Online] [Cited: January 29, 2009.]

http://mmorpgmaker.vault.ign.com/phpBB2/viewtopic.php?t=597&sid=03bfd3ee60a3

bc52717dec33537fee16.

[19]. Apple, Inc. Technical Specifications. iPhone 3G. [Online] 2009. [Cited: January

29, 2009.] http://www.apple.com/iphone/specs.html.

[20]. Unity Technologies. Sound. Unity Manual User Guide. [Online] [Cited:

January 29, 2009.] http://unity3d.com/support/documentation/Manual/Sound.html.

[21]. —. iPhone Input. Unity Script Reference. [Online] [Cited: February 5, 2009.]

[22]. eBay, Inc. About the eBay Developers Program. eBay Developers Program.

[Online] [Cited: Feb 18, 2009.] http://developer.ebay.com/businessbenefits/aboutus/.

[23]. Lay Networks. Comparative analysis - TCP - UDP. Lay Networks. [Online]

[Cited: Feb 19, 2009.]

http://www.laynetworks.com/Comparative%20analysis_TCP%20Vs%20UDP.htm.

56

[24]. Kegel, Dan. NAT and Peer-to-peer networking. [Online] July 17, 1999. [Cited:

Feb 19, 2009.] http://alumnus.caltech.edu/~dank/peer-nat.html.

[25]. Arn. 2nd Generation iPod Touch Faster than iPhone. Touch Arcade. [Online]

November 23, 2008. [Cited: Febuary 19, 2009.]

http://toucharcade.com/2008/11/23/2nd-generation-ipod-touch-faster-than-iphone/.

57

Appendices

Appendix A – Art Asset List
Below is a list of all the different art assets that were necessary for the game. This list was

created in the first week of production.

GUI

• Intro Screen

o Logo (name of game)

o Background art

• HUD (Game)

• High Scores

o Background art

CITY MAP

• Tech district

o Building 1

o Laptop

o Building 2

o iPod

o Building 3

o Cell Phone

• Sports center

o Building 1

o Soccer Ball

58

o Building 2

o Trophy

o Building 3

o Baseball Cards

• Auto shop

o Building 1

o Tire

o Building 2

o Generic Car

o Tube man

GAME PART A (card matching)

• Level Maps

o 2 Tech levels

 Apple/computer type store

 Generic tech store (Best Buy)

o 2 Sports levels

 Flea market in basketball court

 Sporting goods store (sports authority)

o 2 Auto levels

 Auto parts store

 Car dealership (outdoor area)

• In-game

o Card and card spinning animation

o Shopping cart

59

o Path effects

GAME PART B (card sorting)

• Background art

• (Use cards from game part A)

AUDIO

• Getting a match

• You win

• You lose

• Flipping a card

• Choosing/clicking sounds (sound feedback from choices)

IF WE HAVE TIME:

• GUI

o Achievement icons for conquering areas

• Map

o Other district areas (department store, clothing store, jewelry)

• Game part A

o Variations on the shopping cart

o Path variations (oil on the floor slows you down, etc... different paths have

hazards)

o Boosts/bonuses on paths (add speed, etc)

o Other district areas mean 2 extra area levels per district.

• Audio

o Time's up sound

o Received an achievement

60

o Menu/Game map music

o Game A music

o Game B music

Appendix B – Art Schedule

Below is the art schedule that was created for all 8 weeks of the project according to the art

assets that needed completion (see Appendix A for the art asset list).

Week 1:

• Get software set up

• Unity Tutorials

• Whiteboard planning of game design

• Start working on Tech district and sports center map

Week 2:

• Complete Tech district and sports district for main map

• Compile districts into one map that's under 7000 vertices

• Create a sample level to be used in testing (Tech level - computer store)

• Create card and spin animation

• Compile all sample assets to create test game

• Complete levels:

o Computer store (tech district)

o Flea market on field (sports district)

Week 3:

• Create shopping cart model

61

• Complete auto district for main map

• Complete levels:

o Car dealership (auto district)

• Obtain required audio files

• Logo/game name

• HUD design for game

Week 4:

• Complete level:

o Generic tech store (tech district)

o Sporting goods store (sports district)

o Car dealership (auto district)

• Background art

o Intro screen

o Card sorting (Game part B)

• Finalize HUD

Week 5:

• Background art

o High scores

• Path effects

• Do the items marked "if we have time"

Week 6:

• Playtest and polish

• Documentation

• Maybe do items marked "if we have time"

62

Week 7:

• Playtest and polish

• Documentation

• Maybe do items marked "if we have time"

Week 8:

• Playtest and polish

• Documentation

• Maybe do items marked "if we have time"

Appendix C – Tech Schedule
Below is the tech schedule that was created for all 8 weeks of the project according to the

technical features that needed implementation.

Week 1:

• Get computers

• Investigate server

• Get Unity license

• Learn how to use Unity

Week 2:

• Create basic app

• Deploy basic application to iPhone

Week 3:

• Use iPhone input - clicking

• Use iPhone input - drawing/dragging

Week 4:

63

• City Selection Scene

• Make Cards pop up and stuff

• Place Cards on map

• Make input only start when near cart

• Show path block will take

• Block following input

• Path finding thing from input

• General matching game

• Moving avatar

Week 5:

• Card image server

• Make game multiplayer - Matchmaking

• Make game multiplayer - game synced

• Make game multiplayer - cards synced

• Add GUI

• Add Sounds

• Make game multiplayer - carts synced

• Use iPhone input - network interface

• Talk over network - Send numbers

• Talk over network - Receive numbers

• Talk to master server

• Fetch eBay data

• Sorting game

Week 6:

64

• High Scores List pull rankings

• Part B revised

• Results server

• Gameplay server

• Local Multiplayer

• Make standard controls

• Submit Scores

Week 7:

• Bugfixing

Week 8

• Bugfixing

Appendix D – Server setup details
Here are some helpful scripts required for the setup of php with gd on apache on Solaris.

The following libraries need to be compiled/installed:

• curl-7.19.3

• freetype-2.1.4

• httpd-2.2.11

• jpeg-6b

• libxml2-2.6.30

• mysql-5.1.31

• openssl-0.9.8j

• php-5.2.8

• readline-5.2

65

• zlib-1.2.3

For problems with ar not found:

PATH=/usr/local/bin:/usr/bin:/usr/sfw/bin:/opt/sfw/bin:/usr/xpg4/bin

Configuring mySQL:
CC=gcc CFLAGS="-O6" CXX=gcc CXXFLAGS="-O6 -felide-constructors -fno-exceptions -fno-rtti"
./configure --prefix=/home/kbickar/mysql --with-low-memory --with-zlib-dir=/usr/local

Configuring and Compiling PHP:
./configure --prefix=/home/kbickar/php --with-gd --without-iconv --with-
apxs2=/home/kbickar/apache2/bin/apxs --with-config-file-path=/home/kbickar/php --with-
curl=/home/kbickar/curl --with-libxml-dir=/home/kbickar/libxml --with-jpeg-dir=/usr/lib --with-
mysql=/home/kbickar/mysql --with-zlib-dir=/usr/local/ --with-freetype-dir=/home/kbickar/freetype

Note that PHP will not compile if there are multiple mySQL installations in the path (specifically

libmysqlclient.so). All the libraries listed will proble

Setup for mySQL:

Root Account: root:Zc7uFD9aDy

Account used by PHP (can only DELETE, INSERT, SELECT, and UPDATE) : erl:ea4dxKKk

Database Name: memory_dash

Players Table:

CREATE TABLE players (id VARCHAR(40), name VARCHAR(32), color ENUM('Blue', 'Red', 'Green', 'Yellow'),
games INT(4), points INT(5), PRIMARY KEY(id));

Game Table:

 CREATE TABLE games (game_id INT(6) AUTO_INCREMENT, state INT(2), time VARCHAR(10), district INT(2),
player1 VARCHAR(40), player2 VARCHAR(40), map INT(2), sort INT(4), sorted_1 VARCHAR(8), sorted_2
VARCHAR(8), points_1 INT(3), points_2 INT(3), item0 VARCHAR(20), item1 VARCHAR(20), item2
VARCHAR(20), item3 VARCHAR(20), item4 VARCHAR(20), item5 VARCHAR(20), item6 VARCHAR(20), item7
VARCHAR(20), PRIMARY KEY(game_id));

