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Abstract 
The purpose of this Major Qualifying Project was to develop and evaluate a digital baseband 

predistortion approach for radio frequency power amplifiers (RFPA).  We also aimed to 

develop a hardware implementation of the system.  The predistorter implements a look-up-

table (LUT) to restore a baseband signal constellation and is simulated using actual RFPA 

characteristics.  The testing includes the use of MATLAB, a Xilinx Spartan-3 FPGA as a 

pattern generator, a digital-to-analog converter (DAC), a modulator, an RFPA, and a 

demodulator.  
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1 Introduction 
 

As technology advances in areas such as communication systems, so does power 

amplifier (PA) linearity requirements.  There is an increasing demand for faster data 

transmission, which demands higher bitrates.  When the bitrate of a signal increases within 

its finite bandwidth, the transmission of the signal is more prone to errors.  Problems are 

further complicated due to the fact that PAs are intrinsically nonlinear, which leads to 

distortion of the transmitted signals.  Therefore, PA linearization is an area of importance in 

data transmission [1].  Many linearization techniques have been explored, but some have 

proven more effective than others. 

Analog Diode Predistortion is a simple and inexpensive predistortion technique that 

relies on a diode’s gain expansion and phase lag.  This method does not take into account 

aging and temperature effects, and the PA characteristics must be known beforehand.  

Feedforward linearization is a method consisting of two closed loops.  Unfortunately, this 

method requires the PA to be very linear.  Another simple, common linearization method is 

Cartesian feedback linearization, which employs two feedback loops separately for the in-

phase (I) and quadrature (Q) signals.  A disadvantage of this method is the bandwidth 

limitation.  The method of linearization implemented in this project is digital predistortion.  

This technique has the advantage of adapting to PA characteristics that change over time due 

to temperature or aging.  It also has the ability to linearize amplifier output up to the full 

saturation level of the amplifier [1]. 

The designed predistorter runs on a PC in MATLAB and creates a look-up-table 

(LUT) derived from either an Agilent Advanced Design System (ADS) model or S-parameter 

measurements of a PA.  We used the LUT to determine what input magnitude and phase to 

the PA is required to obtain the desired, ideal output.  We ran simulations in MATLAB to 

verify the effectiveness of the predistortion algorithm using S-parameter measurements 

obtained with the Agilent E8363B network analyzer.  With these measurements, we adjusted 

the predistortion algorithm to fit the various PA characteristics. 
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We programmed a Xilinx Spartan-3 FPGA to output the predistorted signal to our 

hardware test equipment.  The equipment included the use of an AD9777 digital-to-analog 

converter (DAC) with an AD8349 modulator as a transmitter.  We used three PAs for the 

testing of the predistorter: Mini-Circuits ZHL-42W, Hittite Microwave HMC308, and Hittite 

Microwave HMC474.  The system receiver consisted of an attenuator and an AD8347 

demodulator.  We verified the output of each piece of hardware used in the setup and 

measured the demodulator output using an oscilloscope. 
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2 Background 
In this section, we discuss the characteristics of power amplifiers (PAs) that affect the 

linearity of amplified signals.  We also discuss typical uses of PAs and the problems faced 

with each application.   We explain the modulation scheme we used in this project, and we 

explore existing predistortion schemes and discuss the shortcomings of each.  Finally, we 

discuss the concept of our predistortion process. 

2.1 Power Amplifier Linearity 

Linearity is a critical characteristic of an RF power amplifier (PA).  Linearity of a PA 

is dependent on its conduction angle, the fraction of the signal cycle during which current 

flows through the load.  Based on this conduction angle, power amplifiers are categorized in 

four essential classes: A, B, AB, and C. 

In class A amplifiers, current flows constantly through the load, resulting in a 

conduction angle of 360°.  Though a class A amplifier’s performance is very linear, its power 

efficiency is the poorest of the four classes of power amplifiers at 50 percent.  Amplifier 

efficiency, η , is defined by (1), dependent on the conduction angle, Θ.  Class A amplifiers 

are most commonly used in small-signal applications where the benefits of linearity outweigh 

the downfalls of inefficiency [2]. 

 sin

2[ cos( ) 2sin( )]
2 2

η Θ − Θ
=

Θ Θ
Θ −

 (1) 

 
Class B amplifiers bias the PA near the cutoff, producing a conduction angle of 180°.  

This means current flows only half of the RF cycle, and the efficiency of these amplifiers is 

greater than class A amplifiers at 78.5 percent.  The downside to this efficiency is waveform 

distortion that takes place, adversely affecting linearity and weakening performance [2].  

Class AB amplifiers allow current to flow as necessary, and their conduction angle is 

between 180° and 360°.  Any bias point between these two angles can be selected, resulting 

in low-distortion, low-efficiency operation; high–distortion, high efficiency operation; or 
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anywhere in-between.  Class AB amplifiers are commonly used in Single Side Band (SSB) 

linear amplifier applications [2].  

Class C amplifiers bias the PA beyond cut-off, and waveforms can be vastly 

distorted.  Efficiency for these amplifiers is very high, however, at about 90 percent [2].  

Class C amplifiers’ non-linearity makes them unacceptable for AM or SSB signal 

amplification [2]. 

The conduction angle of an amplifier has an inverse relationship with the gain 

compression and intermodulation distortion (IMD) of the amplifier output.  Amplifiers with a 

large conduction angle experience the least gain compression and IMD, while amplifiers with 

a small conduction angle (180° or below) experience significant gain compression and IMD.  

These two amplifier nonlinearities will be discussed in this section.  An ideal amplifier has a 

perfectly linear transfer characteristic.  This means that the gain of the amplifier is not 

dependant on input frequency and does not increase or decrease as the input voltage changes, 

causing no gain compression [3].   

2.1.1 Gain Compression and Phase Shift 

Gain compression in an amplifier is defined as a reduced gain due to the nonlinear 

transfer function of the amplifier.  This nonlinearity can be caused by power dissipation or by 

overdriving the amplifier with a large input power, driving it past its linear region.  As the 

input power to an amplifier is increased beyond the amplifier’s linear region, the gain is 

reduced and causes a nonlinear increase in output power.  A graphical explanation of this 

compression can be seen in Figure 1 [4] where the output power reaches saturation when the 

input exceeds a certain power level.   
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Figure 1 - Gain compression of a PA occurs when the device is driven past its linear region [4]. 

 
Gain compression proves a problem when driving an amplifier with a high input 

power signal.  In the compression region, the output of the amplifier is distorted: some of the 

amplifier output appears in harmonics, which means it does not only occur at the 

fundamental frequency of the input signal [4].  These harmonics cause distortion of the 

signal. 

The relationship between input and output power of an amplifier is typically shown 

with a plot on a log-log scale, such as that seen in Figure 1.  The point on the plot where the 

gain digresses from the linear output by 1 dB is called the 1 dB compression point.  This 

point is commonly used to characterize power amplifiers [5].  The higher the 1 dB 

compression point, the greater the power handling capability of the PA. 

 Phase shift is the displacement of a waveform or signal in time.  The difference in 

phase between the input and output signals change depending on the input power due to 

intrinsic nonlinearities of amplifiers.  An example of the phase shift versus input power 

relationship, referred to as AM-PM, can be seen in Figure 2.  The example shows phase 

advance as input power increases, but depending on its transfer characteristic, an amplifier 

may instead exhibit phase lag. 
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Figure 2 - PA phase advance in response to input power. 

  
 Characterization of these PA nonlinearities is important in order to predict the 

performance of an amplifier.  Linearity of a PA can be guaranteed by operating at an input 

power level well below the compression point.  However, PAs are most power efficient when 

operating close to their 1 dB point; power can be wasted by operating the amplifier far below 

this point [6]. 

2.1.2 Intermodulation Distortion 

Harmonics appear at the output of any nonlinear amplifier.  IMD occurs when a 

signal composed of two frequencies (a dual-tone signal) or more is sent through a nonlinear 

amplifier or other device.  Closely spaced input frequencies generate harmonics which are 

close to the fundamental frequencies and are therefore difficult to filter.  The lowest odd-

order intermodulation products pose the biggest problem for filtering since they are the 

closest to the fundamental frequencies.  The 3rd and 5th order products are of most concern 

since higher order products are usually too small to cause any significant distortion [7]. 

As an example, consider an input to an amplifier consisting of two sinusoidal waves 

at frequencies f1 = 1 GHz and f2= 1.01 GHz.  The 3rd order products will be at 2f1-f2 = 990 

MHz and 2f2-f1 = 1.02GHz.  The 5th order products will be at 3f1-f2 = 980 MHz and 3f2-f1 

= 1.03GHz.  The odd-order intermodulation products for this example are illustrated in 

Figure 3. 
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Figure 3 - Odd-order intermodulation distortion products, of which the 3rd order product has the highest 
amplitude and is the most difficult to filter out. 

 
The intermodulation distortion of an amplifier can be defined by its output third order 

intercept point (OIP3).  The OIP3 is found using a dual-tone test and measuring a 

fundamental signal and a 3rd order product.  If the output power versus input power is plotted 

on a log-log scale, the fundamental signal will have a slope of 1 in its linear region.  The 3rd 

order product will exhibit a gain of 3dB for every 1dB increase in input power, so its slope 

on the plot will be 3.  Therefore, at a high enough input power, the ideal fundamental and 3rd 

order product output power will be equal.  The input power at which this occurs is the OIP3, 

and it is typically much higher than the gain compression of the device [8].  A low OIP3 is a 

characteristic of an amplifier with a high amount of distortion.  The theoretical point can be 

determined mathematically or graphically, as illustrated in Figure 4. 
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Figure 4 - Third order intercept point (IP3) is the point at which the fundamental and third-order 

intermodulation product plots intercept. 
 

The OIP3 can also be found with an approximation if the 1 dB compression point of a 

PA is known.  The output voltage at the third order intercept point, VIP3, is defined by (2), 

where k1 and k3 are Taylor series coefficients for the PA nonlinear transfer function: 

 1
IP3

3

k
V  = 2 

3 k
 (2) 

 
The 1 dB compression point voltage can be defined by (3): 

 1
1dB

3

k
V  = 0.38 

k
 (3) 

 
To determine the relationship between the two points, we determine the ratio of the OIP3 

voltage and the 1 dB compression point voltage: 

 

1

3IP3

1dB 1

3

k
2

3 kV
3.04

V k
0.38

k

= =  (4) 

 
The voltages are related by a factor of 3.04, or 9.66 dB [9].  Therefore the OIP3 can be 

approximated by adding +9.66dB to the 1 dB compression point of a PA. 
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2.2 Typical PAs and Applications 

Different types and classes of power amplifiers are used for a variety of applications, 

such as in cellular phones, in base stations, and in wireless LANs.  The uses of the PAs in 

these applications also provide various benefits and drawbacks.  This section discusses the 

design of RF amplifier circuits, PA applications, and power reduction techniques currently 

used for PAs. 

2.2.1 RF PA Circuitry Design Considerations 

When designing circuitry for RF power amplifiers, considerations must be accounted 

for that may not be issues when dealing with lower frequency circuit design.  In order to 

achieve the maximum transfer of power through the system, the input and output circuitry 

must be properly matched.  The impedance of the input transmission line must be matched to 

the input impedance of the amplifier at the frequency of interest.  Likewise, the output 

impedance of the amplifier must be matched to the impedance of the output line.  The DC 

biasing circuitry must be properly matched as well.  Finally, the DC signal must be isolated 

from the RF signal through the use of RF chokes and blocking capacitors. 

An input or output matching circuit may consist of discrete resistors, capacitors, and 

inductors, or microstrip transmission lines.  At RF, the parasitics of lumped components 

become a problem and the design should use microstrip lines instead.  Microstrip lines have 

the additional benefit of taking up less space than lumped components. 

An example of RFPA input and output matching circuits which incorporate 

microstrip lines can be found in [10], and we have included the schematic for this example in 

Figure 5.  In the schematic, the input matching network consists of TL1 through TL5 to 

match the 50Ω line to the input impedance ZIN.  The RF input to the amplifier enters through 

TL5, while the DC bias enters at the connection between TL2 and the blocking capacitor.  

The resistor is used for stability purposes.  The output matching network consists of TL6 

through TL10 as well as another blocking capacitor, which match the output impedance ZOUT 

to the 50Ω line at the output of the amplifier circuit. 
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Figure 5 – Typical power amplifier matching network schematic, in which the goal is to match the 50Ω 

lines to both the input and output impedances of the amplifier. 

2.2.2 PA Use in Cellular Phones 

Typical modern cellular phones function on a single cell Li-ion battery, which has a 

voltage of 4.2V when fully charged.  In GSM (Global System for Mobile Communications) 

phones, which use narrowband TDMA, a large portion of the power provided by this battery 

is needed by the power amplifier. Table 1 shows the current drawn by subcircuits of a second 

generation GSM phone [11], of which the current drawn by the PA is the largest of any 

single subsection.  When the phone is in Talk mode, the amplifier draws 200mA of current, 

and while in Standby mode, it draws 770µA of current. 

 
Table 1 - Power consumption in a GSM cellular phone [11] demonstrates that the PA draws more 

current from the battery than any other single subcircuit of the phone. 
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The PA circuit consists of a grounded source amplifier driving a choke and the 

antenna through a matching network.  The circuit is usually driven in class AB.  The network 

is isolated from other subsystems of the GSM phone by a voltage regulator to protect 

sensitive circuitry from the transient voltage changes of the battery.  The PA of a GSM phone 

typically draws up to 1.6A, causing a voltage transient of up to 0.5V [11].  

The PA of a CDMA cellular phone requires a large portion of the power provided by 

the battery of these phones as well.  In CDMA phones, two supply voltages are required for 

the PA, VREF and VCC.  VREF supplies bias for the internal driver and power-amplifier stages, 

and VCC biases the collectors for the driver and power amplifiers.  In full duplex, the PA is on 

whenever the phone is on, unlike in a GSM phone.  A typical CDMA cellular phone power 

amplifier circuit can be seen in Figure 6 [12].  This figure depicts the biasing networks which 

protect sensitive circuitry, the matching networks which ensure the maximum power is 

delivered to the amplifiers and output, and the voltage supplies needed to drive the PA. 

 
Figure 6 - Typical CDMA phone power amplifier [ ] requires b12 oth voltages VREF and VCC.   

 

2.2.3 PA Use in Base Stations 

Base station power amplifiers are typically class AB, since class A amplifiers 

consume an undesirable amount of DC current.  These PAs require biasing to ensure proper 

performance.  Most base stations employ the lateral DMOS (LDMOS) MOSFET as a power 

device, which requires managing DC content in the current across temperature and supply 
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variations to make certain the RF gain of the PA varies in the limits of the requirements.  The 

equation used to determine the gain of a LDMOS is: 

 

  (5) ( 2
out GS thI K V V= − )

 

In (5), K is a constant reflecting gain based on electron mobility, VGS is the input voltage, 

and Vth is the threshold voltage.  Both these variables are temperature dependent.  An 

advantage in implementing the LDMOS amplifier is that the device has very minor memory 

effects [13]. 

With a dual, temperature-controlled variable resistor, like the DS1847, controlling the 

gate of an LDMOS amplifier, the variable resistor’s internal temperature sensor provides a 

temperature reading to its lookup tables.  The lookup tables consist of 2°C increments, which 

appropriately regulate the IC’s two 256-position variable resistors so that the amplifier’s gate 

receives the proper bias voltage.  These tables must be manually programmed by the user.  

This system can be seen in Figure 7 [14].   

 
Figure 7 - A DS1847 controls the gate voltage of the LDMOS amplifier [ ].   14 The DS1847 is a dual, 

temperature-controlled variable resistor. 
 

The system does experience hysteresis, or memory effects.  The temperature conversion 

hysteresis approximation for the DS1847 can be seen in Figure 8 [15]. 
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Figure 8 - DS1847 Temperature conversion hysteresis [15] causes the system to experience memory 

effects. 
 

2.2.4 PA Use in Wireless LANs 

Due to FCC regulations, Wireless Local Area Networks (WLANs) must operate in 

the industrial, scientific, and medical (ISM) frequency bands.  These bands were defined as 

902-928, 2400-2483.5, and 5725-5850 MHz at power levels up to 1W [16].  Typical wireless 

LANs operate in a frequency band from 2.4 to 2.462 GHz [17].  One commercial wireless 

LAN transceiver, the P35-4712-1 MMIC, can be seen in Figure 9 [18]. 
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Figure 9 - P35-4712-1 IC single chip transceiver [ ] 18 performs amplification, routing, oscillator, and 

mixing functions. 
 
Amplification, routing, oscillator, and mixing functions are performed on the chip.  The 

transceiver is designed for use with the P35-4775-1 power amplifier and transmit/receive 

switch, both of which have input ports that can be seen in the figure above.   

Approximately 2 to 3 dB of insertion loss on the transmit path of the transceiver 

means that the PA output power level has to be increased 2 to 3 dB to compensate for this 

loss.  The higher output power a PA has to produce, the less linear it typically becomes and 

the higher its spectral growth becomes.  Due to this spectral growth, the transceiver spectrum 

may fail the FCC limits if it does not have a high enough level of linearity [19]. 

2.2.5 Current PA Power Reduction Techniques 

Most cellular phones still deploy inefficient class A or AB power amplifiers, and 

therefore, reducing the amount of power the PA uses is essential to increase battery life.  In 

GSM phones, a high bandwidth switching regulator can be used to reduce power 

consumption of the PA.  The regulator is used to operate in switching mode, carrying the 

phase information and adding the amplitude information as a supply modulation [11].  

According to [11], operating in switching mode could double the efficiency of the PA in 

GSM phones. 
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Power savings can be seen in a CDMA phone PA quiescent current by lowering the 

reference voltage VREF, which provides bias for the internal driver and power-amplifier 

stages [12].  As can be seen in [12], reducing VREF from 3.0V to 2.9V results in a drop of 

about 20mA in the quiescent current.  Another way to increase power savings in CDMA cell 

phones is to reduce VCC, which biases the collectors for the driver and power amplifiers.  In 

standard CDMA handsets the PA VCC is supplied straight from the cellular phone’s battery at 

3.2 to 4.2V, but the PA operates at much lower power levels most of the time [12].  

Therefore, VCC can be reduced without losing linearity in the PA.  According to [12], the 

CDMA cell phone can properly function with VCC reduced down to 0.6V.     

To reduce power consumption in wireless LANs, the power level of both channels of 

the LAN can be reduced using control loops in software.  This helps monitor the output 

power and sets the gain and bias voltages in order to produce a power level where the 

spectrum passes the FCC limits.  A negative aspect of this method is the decrease of 

coverage area of the LAN [19]. 

2.3 Digital Modulation Schemes 

In this section, the topics of Phase Shift Keying (PSK) and Quadrature Amplitude 

Modulation (QAM) are presented.  Both methods are employed in a variety of 

communications systems, including cellular phones and cable television.  We used 64-QAM 

modulation in our software simulations, which will be discussed in later sections. 

2.3.1 Phase Shift Keying 

PSK is a modulation scheme used in transmitting digital data on a sinusoidal carrier 

signal.  The analog output waveform amplitude remains constant, and its phase varies 

corresponding to the digital input.  The most basic form, Binary Phase Shift Keying (BPSK), 

is used to transmit data one bit at a time.  In BPSK, a digital 1 translates to an analog signal 

phase shift of 0°, and a digital 0 translates to a phase shift of 180°.  Quadrature Phase Shift 

Keying (QPSK) is a popular method of transmitting two bits at a time.  The amplitude of the 

resulting waveform remains constant, with the phase taking on four values at intervals of π/2.  

In general, as the number of symbols in a PSK constellation increases, so does the error rate 

in symbol detection.  Therefore, PSK is usually only used for one to four bits per symbol, 
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whereas a Quadrature Amplitude Modulation scheme is usually used to transmit four or more 

bits per symbol [20]. 

2.3.2 Quadrature Amplitude Modulation 

QAM is another modulation scheme used in transmitting digital data over an analog 

carrier signal, but unlike PSK, the modulated signal varies in amplitude.  For an M-QAM 

constellation, there are N bits encoded in each symbol such that M = 2N.  The incoming 

digital data can be represented on a QAM symbol constellation, where each symbol on the 

constellation defines a set of N bits of data.  The symbols are arranged on a complex plane, 

typically in a rectangular shape for high-level QAM, and gray-coded to reduce error rates.  In 

a constellation diagram, the In-phase (I) axis is the real axis and the Quadrature (Q) axis is 

the imaginary axis.  The phasor formed by each symbol defines the amplitude and phase of 

the resulting modulated analog signal.  An example of a 16-QAM constellation is shown in 

Figure 10. 

 
Figure 10 - 16-QAM constellation diagram, created in MATLAB, where In-Phase is the real axis and 

Quadrature is the imaginary axis.  Each symbol is represented by four bits.  
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When transmitting the signal, the digital data is first sent through a flow splitter.  The 

splitter separates the signal into the in-phase and quadrature signals such that the I signal 

contains all even bits and the Q signal contains all odd bits.  As a result, the bit rates of the I 

and Q signals are half of the original signal.  The digital I and Q signals are then sent through 

digital-to-analog converters (DACs) before being mixed with the carrier signals.  The I signal 

is multiplied by a sinusoidal carrier wave, and the Q signal is multiplied by the same wave 

but with a phase shift of 90°.  It could be said that the I and Q signals are multiplied by a 

cosine and a sine, respectively.  The two signals are then added, and in the case of this 

project, the signal would then be sent to the amplifier.  Figure 11 shows a diagram of the 

operation of a QAM transmitter. 

 
Figure 11 - QAM transmitter splits the input into I and Q signals, converts to analog, and modulates. 

 
The QAM receiver separates the incoming signal into the cosine and sine 

components.  Since the cosine and sine waves are orthogonal, the receiver simply multiplies 

the incoming signal by a cosine on one line and a sine on the other line to separate the signal.  

After the signals are sent through a low pass filter (LPF), the analog signal is then converted 

back to the digital I and Q signals.  Finally, the signals are sent through a flow merger to be 

combined back into a single digital signal [20].  Figure 12 displays a diagram of a QAM 

receiver. 
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Figure 12 - QAM receiver demodulates the incoming signal, converts it to digital, and merges I and Q. 
 

2.4 Literature Review and Prior Art 

The function of a predistorter is to introduce distortion that is the inverse of the power 

amplifier distortion.  The resulting transfer function of the system from the predistorter input 

to the amplifier output would ideally consist of a linear gain and 0° phase shift.  Figure 13 

shows a diagram of the predistorter concept as it applies to an AM-AM characteristic of a 

PA. 

 
Figure 13 - Predistorter conceptual diagram, showing that the combination of the predistorter and PA 

transfer functions results in a linear output. 
 

To linearize power amplifiers, a few conventional techniques are currently employed 

in industry.  In this section we describe a few of these techniques, including the technique 

used in this project. 

2.4.1 Analog Schottky Diode Predistortion 

The series diode predistorter technique is relatively simple and inexpensive compared 

to other conventional techniques used for modest linearity improvements.  In the circuit 

shown in Figure 14, the diode functions as a nonlinear resistor (RD) with a parasitic 

capacitance in parallel (CP).  This resistance and capacitance form a nonlinear RC phase shift 
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network, counteracting gain compression and phase advance by exhibiting gain expansion 

and phase lag. 

 
Figure 14 - Schottky diode open-loop predistortion circuit introduces gain expansion and phase lag.  The 

diode functions as a nonlinear resistor with a parasitic capacitance in parallel.  
 

The forward gain, Gf, for the RC network is defined by: 

 
2

,     Y   
1 2

O
f P

O

Z Y
G j

Z Y
ω= =

+ DC R+  (6) 

 

where ZO is the characteristic line impedance and Y is the admittance of the RC network.  A 

network with ZO = 50Ω, f = 1.96GHz, and CP = 3pF can be plotted with the results of 

equation (1) versus a varying RD on a logarithmic scale to obtain the plots of Figure 15 and 

Figure 16 [21]. 
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Figure 15 - Magnitude of forward voltage gain versus resistance, RD,  in Shottky diode predistortion 

circuit [ ]21
 
 

 
Figure 16 - Phase of forward voltage gain versus resistance, RD, in Shottky diode predistortion circuit 

[ ]21
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These results suggest that the diode circuit results in gain expansion (for RD > 60Ω) 

and decrease in phase shift for decreasing RD, which corresponds to an increasing input 

power.  This gain expansion characteristic is the inverse of that of a PA and therefore should 

counterbalance the PA gain compression.  The induced phase lag can also be adjusted to 

cancel out the PA phase advance [21].    

The disadvantages of the series diode predistortion technique are the need for the PA 

distortion to be known in advance and the inability to adapt to changing PA characteristics.  

Consequently, the technique does not take into account aging and temperature effects. 

2.4.2 Feedforward Linearization 

Feedforward linearization is a desirable technique because it has the ability to 

linearize over the full bandwidth of personal communication systems [22].  The technique 

utilizes two circuits; the first is an input signal cancellation circuit, and the second is a 

distortion-cancellation circuit.  The entire feedforward linearization circuit can be found in 

Figure 17 [23]. 

 
Figure 17 - Feedforward linearization circuits [ ], where t23 he first circuit cancels the input signal by 

subtracting the input signal from the scaled-down output signal.  The second circuit cancels the distortion 
by subtracting the amplified error signal from the amplifier output.  

 

The first circuit suppresses the input signal from the output of the PA, leaving only 

the error signal.  This is done by reducing the amplifier output to the same level as the input 
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and taking the difference of the two, leaving the distortion.  The distortion-cancellation 

circuit then suppresses the error component from the output signal.  The error signal is 

amplified by the gain of the amplifier and is subtracted from the output signal, leaving a 

theoretically linearly amplified signal [23].   

There are, however, disadvantages to this linearization technique.  Losses in the phase 

shifter and the couplers at the PA output prevent retrieval of undistorted output close to the 

saturation power levels.  The auxiliary amplifier must also be very linear to prevent distorting 

the IMD products being amplified. 

2.4.3 Cartesian Feedback Linearization 

The Cartesian feedback linearization technique obtained its name because it is based 

on the Cartesian coordinates of the baseband symbol, I and Q, as opposed to polar 

coordinates.  Two closed feedback loops are separately used for each of the I and Q signals.  

The primary concept behind the system is negative feedback.   

The baseband I and Q signals are compared with the I and Q signals after PA 

demodulation, and the resulting distortion signal is used to drive an IQ demodulator.  A 

coupler at the output samples the post PA signal and attenuates the signal before it is sent to 

the IQ demodulator.  To match the input and output I and Q signals, a delay is used.  Such a 

system can be seen in Figure 18 [24], where each H(s) block represents a loop driver 

amplifier. 

A major restrictive factor in the Cartesian feedback system is the existence of 

nonlinearities in the demodulator.  The technique is also limited due to the bandwidth 

limitations of digital baseband feedback systems. 
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Figure 18 - Typical Cartesian feedback system [ ] uses t24 wo closed feedback loops for the I and Q signals.  

The primary concept behind the system is negative feedback. 
 

2.4.4 Digital Adaptive Predistortion 

Digital adaptive predistortion is a popular predistortion scheme due to its ability to 

accurately update the predistorter transfer function to varying PA characteristics.  Since the 

predistortion is performed on the digital baseband signal, the transfer function of the 

predistorter can be updated without the need to modify any physical components.  If the 

predistorter is implemented using a digital signal processor (DSP), the updating could be 

done in real time to adjust to changing PA characteristics, such as a change in the 

temperature. 

One of the most popular methods of implementing digital adaptive predistortion is 

through a lookup table (LUT).  In general, a LUT is an array of values which are calculated 

before they are needed and stored in memory.  It is more efficient to retrieve LUT values for 

repeatedly used calculations than performing the calculations every time values are needed.  

As it relates to predistortion, a LUT stores the values used to scale the amplitude and phase 

of the input signal.  The creation of the lookup table is done in a calibration mode.  A 

predistorter using a LUT may be periodically recalibrated to correct effects from temperature 

changes or aging.  The LUT predistorter is not, however, capable of correcting memory 

effects in which the distortion at the output of the power amplifier depends on its past values. 
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While memoryless models typically perform well in narrowband applications, 

frequency-dependent memory issues become more of a problem in wideband transmission 

[25].  For a memoryless amplifier with input x(t), the output y(t) can be defined using the 

Taylor series around an operating point: 

 

  (7) 
0

y(t) = ( )n
n

n

c x t
∞

=
∑

 
where cn is the Taylor coefficient for the nth term in the series. For an amplifier with memory, 

the output can be defined as the convolution integral: 

 

 
-

y(t) = ( ) ( - )h x t dτ τ τ
∞

∞
∫  (8) 

 
where ( )h τ  is the impulse response of the system.  If equations (7) and (8) are combined, as 

in equation (9), the result can be used to model an amplifier with memory. 
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= + − −∑ ∫ ∫ τ  (9) 

 
Equation (9) is a Volterra series representation of a signal.  The  values are the coefficients 

or Volterra kernels of the model [

nh

26].  In a typical PA, it is only necessary to use the first few 

terms since high order terms tend to have negligible magnitudes and do not significantly 

improve modeling.  There are special cases of the Volterra series which may be used to 

model power amplifier characteristics, including the Wiener model and the memory 

polynomial model, which are described in detail in [27] and [28].  Although models with 

memory may reduce distortion better than LUTs, they are much more complex and difficult 

to implement. 
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2.4.5 Non-adaptive Predistortion Algorithm 

Some functionality of the predistorter algorithm used in this project has already been 

developed in MATLAB by a previous MQP [29].  The MATLAB code for the predistorter 

written prior to this project is included in Appendix B. 

The previously developed predistorter used static values for the PA transfer function, 

defined using the Saleh model [30].  Using the model, equation (10) defines the input to the 

PA. 

 0x(t) ( ) cos[ ( )]r t t tω ψ= +  (10) 

 
where r(t) and ψ(t) are the normalized amplitude and the phase of the input signal, 

respectively.  Equation (11) was used to define the magnitude of the PA output A[r(t)] in 

response to the normalized input magnitude, or the AM-AM characteristics. 

 2
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Equation (12) was used to define the PA output phase Φ[r(t)] in response to the 

normalized input magnitude, or the AM-PM characteristics. 
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In equations (11) and (12), aα , aβ , φα , and φβ  are the coefficients which produced 

the best fit model of the measured amplifier characteristics.  The overall output of the PA, 

y(t), was then defined by equation (13). 

 0y(t) [ ( )]cos{ ( ) [ ( )]}A r t t t r tω ψ= + + Φ  (13) 
 

Equations (8) and (9) were used to create arrays of values for the PA characteristics.  

The digital input was randomly generated in MATLAB.  The predistorter found the ideal 

output for any given input by multiplying the input by a constant which defines the linear 

gain in the model.  Once the ideal output was determined, the AM-AM and AM-PM arrays 
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were used to find the appropriate magnitude and phase of the input to the PA to achieve the 

desired linear gain and constant phase shift.  The magnitude was determined by searching the 

AM-AM index i for the closest value to the desired linear gain and returning the input value 

at that index point.  To determine the input phase, the AM-PM output value at that same 

index point was subtracted from the actual input phase, resulting in a zero phase shift through 

the system.  Having determined the input magnitude and phase, the signal was then separated 

into the in-phase and quadrature signals.  By separating the vector of input magnitude and 

phase into its Cartesian components, first the I signal is determined using equation (14). 

 
2

( )
( )

1 tan( ( ))
in

PD
P i

I i
iθ

=
+

 (14) 

 
( )PDI i  is the predistorted I signal and  and ( )inP i ( )iθ  are the phase and magnitude of 

the input signal, respectively.  The predistorted Q signal, , is calculated using equation ( )PDQ i

(15). 

 2( ) ( ) ( )PD in PDQ i P i I i= − 2  (15) 

 
The predistorted I and Q signals are then ready to be analyzed or exported for use in 

hardware components.  Figure 19 displays a block diagram of the described predistortion 

algorithm. 

 
Figure 19 - Predistortion algorithm block diagram. 
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3 Software: Predistorter and Pattern Generator 
The software-based design of the system consists of MATLAB code to generate a 

lookup table (LUT) of predistorted symbols and VHDL code to cycle through the symbols 

and output them from a field-programmable gate array (FPGA). 

3.1 MATLAB Predistorter 

The purpose of the MATLAB code is to generate LUTs for the predistortion of the in-

phase and quadrature (I and Q) signals.  Figure 20 shows the block diagram for the 

MATLAB predistorter used in this project. 

 
Figure 20 - MATLAB predistorter block diagram. 

 
Our MATLAB predistorter allows the user to enter S-parameter measurements from a 

network analyzer or values exported from an Advanced Design System (ADS) model of the 

PA, instead of relying on the Saleh model.  The algorithm uses the PA measurements to 

calculate the expected gain compression and phase rotation for each symbol, with n possible 

values for n-QAM.  Each symbol is then predistorted by compensating for the expected 

nonlinearities as described in Section 2.4.5.  Each predistorted symbol is separated into 16-bit 

I and 16-bit Q components which are stored in arrays.  The arrays of predistorted I and Q 

values are written to text files to be used as LUTs in VHDL.  Appendix A includes the 

MATLAB code written or updated for this project. 
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3.2 FPGA Pattern Generator 

We programmed an FPGA to act as a pattern generator to send the digital predistorted 

signal to the hardware components of our system.  The code for the pattern generator was 

written in VHDL.  Xilinx ISE was used to create a schematic of the design and to program 

the FPGA.  A block diagram of the FPGA pattern generator is shown in Figure 21. 

 
Figure 21 - FPGA pattern generator block diagram. 

 
The design emulates a sine wave as an input to the system.  This is accomplished 

using a counter to cycle through LUT values of a 16-bit sine wave sampled at 44.1 kHz over 

one period of the wave.  The values of the sine wave LUT are output six bits at a time to 

represent 64-QAM symbols.  Each 6-bit symbol is input into the I and Q LUT defined by the 

list of predistorted symbols exported from MATLAB.  The output of each LUT is a 16-bit 

value.  The 16-bit I and Q values are sent to I/O ports on the FPGA board.  Two 40-pin ports 

are used, with one outputting IPD and the clock signal and the other outputting QPD.  When 

testing the predistorter, we set the clock to 20 kHz, resulting in a symbol rate of 20,000 baud 

and a bit rate of 120 kbit/s.  The VHDL code for the FPGA pattern generator is listed in 

Appendix C. 
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4 Hardware Implementation 
To implement the proposed predistortion algorithm, we assembled a hardware 

configuration that transmits a predistorted signal through a PA.  This hardware assembly 

consisted of a transmitter, a power amplifier, and a receiver.  An overview of the entire 

system can be seen in Figure 22, and the system will be described in detail throughout this 

section. 

 
Figure 22 - Hardware system overview, where the system consists of transmitter, power amplifier, and 
receiver modules.  The transmitter includes a digital-to-analog converter (DAC) and a modulator.  The 

PA output is attenuated by 20dB before being sent to the receiver.  
 

4.1 Transmitter 

The transmitter consists of a symbol generation and predistortion block, real-time 

signal generation, a Digital-to-Analog (DAC) converter, and a quadrature modulation stage. 

The symbol generation and predistortion block was implemented in MATLAB, and the 

signal generation was completed using a Xilinx Spartan-3 FPGA.  The signal was then 

converted to an analog signal and upconverted at 1.96GHz.  The transmitter module is 

depicted in Figure 23. 
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Figure 23 - Test hardware transmitter module consists of a symbol generation and predistortion block 

(MATLAB), a signal generator (Spartan-3), a Digital-to-Analog converter, and quadrature modulation. 
 

As described in the previous chapter, the MATLAB function emulates a random 

incoming bit pattern and maps every six bits to a symbol in a 64-QAM constellation.  The in-

phase (I) and quadrature (Q) components of each symbol are transmitted from the Spartan-3 

FPGA acting as a pattern generator.  The two channels are sent to the Analog Devices 

AD9777 16-bit dual-channel digital-to-analog converter (DAC) via ribbon cables.  The 

FPGA can be seen in Figure 24. 

 

Figure 24 - Xilinx Spartan-3 FPGA 
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The input to the AD9777 DAC from the FPGA is through two 16 bit ports, and the 

DAC configuration is set to two-port mode via LabView software.  To configure the DAC, 

data registers were set in the software, as seen in Figure 25.  We also specified that the input 

was unsigned bits and to use an interpolation rate of 2x.  Each data bit from the FPGA sends 

a high or low value of 3.3V or 0V to the DAC.  The FPGA also produces a clock signal of 

5MHz which is input to the DAC through a pin on port A.  The power supplied to the DAC is 

a single 3.3V to the analog supply, digital supply, and clock supply.  The DAC typically 

draws about 160mA current at this voltage.  The DAC then outputs an I and Q signal to the 

modulator, both varying from 0 to 1V.   

 

Figure 25 - LabView software for DAC configuration is used to set the interpolation rate of the DAC 
evaluation board, specify the type of input bits, and set the DAC to two-port mode. 

 
 

To test the DAC output before sending the signal to the modulator, we unsoldered 

four jumpers on the board, JP13-16.  Once there jumpers were no longer connecting the DAC 

to the modulator, we were able to view the DAC outputs via the DATAOUT SMA 

connectors with an oscilloscope.  The jumpers were then re-soldered to connect the 

modulator. 
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The analog I and Q signals are input to the AD8349 quadrature modulator, which is 

on the same board as the DAC.  This board can be seen in Figure 26.  A local oscillator (LO) 

at 1.96GHz with an input power of -6dBm is required for the modulator to upconvert the 

signal to the RF band.  We generated the local oscillator using an RF signal generator, the 

Agilent 8648D.  The modulator power is supplied by a single 5V source.  The modulated 

output ranges from -22dBm to -2dBm in power.  We then feed the upconverted output to the 

amplifier.   

 
Figure 26 - Analog Devices AD9777 DAC and AD8349 modulator 

4.2 Power Amplifier 

Various power amplifiers were considered on multiple criteria before choosing a PA 

to use in the hardware assembly.  One of these criteria was the PA’s operational frequency.  

We wanted a PA with a minimum operational frequency of 400MHz or lower and maximum 

operational frequency of at least 2.7GHz to test a wide range of frequencies in the RF 

spectrum.  Another criterion considered while choosing a PA was the Output Third-Order 
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Intercept Point (OIP3).  We also considered the output power of the amplifier; if the output 

power is very low, we may not be able to see the results of our predistorter. 

The Hittite Microwave HMC308 amplifier has a wide operating frequency of 0.8-3.8 

GHz.  The typical gain of the amplifier is 18dB, and the maximum output power is +20dBm; 

this comparable low-power amplifier could not be used in base-stations.  The maximum input 

power to the amplifier must not exceed +10dBm, which would not be a problem in our 

application.  The OIP3 for this amplifier, per the data sheet, is typically +30dBm [31].  We 

used the amplifier with the evaluation board provided by Hittite Microwave, seen in Figure 

27.  This board requires only a supply voltage and an input RF signal; the input impedance to 

the board is 50Ω, which allows use of 50Ω coax cables with no additional impedance 

matching. 

 
Figure 27 - Hittite Microwave HMC308 with evaluation board. 

 
The HMC474MP86 amplifier has a very wide operating frequency of DC-6GHz, 

which is beyond the requirements for our system.  The typical gain of this amplifier is 

15.5dB, with a maximum output power of +10dBm, which is a very low-power amplifier for 

our purposes.  The maximum input power to the amplifier should not be more than +5dBm, 

which our system will not surpass, but would not be acceptable for use in base-stations.  The 

typical OIP3 for this amplifier is +22dBm, according to the data sheet [32].  This amplifier 

was also used on the evaluation board provided by Hittite Microwave, seen in Figure 28.  

This board also required no additional impedance matching with the used of 50Ω coax 

cables. 
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Figure 28 - Hittite Microwave HMC474 with evaluation board 

 
The Mini-Circuits ZHL-42W power amplifier has a wide operating frequency of 10-

4200 MHz.  The amplifier has a typical 30dB gain and a maximum output power of 

+28dBm.  This amount of power is more suitable for our application than the Hittite 

Microwave amplifiers’ capabilities.  The maximum input power to the power amplifier must 

be no more than 0dBm, which is acceptable for our system.  To determine the OIP3 of this 

amplifier at 1.96GHz, we used the Agilent Advanced Design System (ADS) model of the 

ZHL-42W to simulate the typical fundamental and third harmonic outputs with respect to 

input power.  This plot, seen in Figure 29, can be used to estimate the OIP3 to be around 

+36dBm.  This result is very close to the IP3 given in the data sheet of +38dBm. 

 

Figure 29 - Fundamental and third harmonic output of ADS simulation for the ZHL-42W PA at 
1.96GHz, enables us to estimate the OIP3 of the amplifier to be approximately +36dBm. 
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The ZHL-42W power amplifier requires a supply voltage of +15V.  The maximum 

input power to avoid damaging the PA is 0dBm.  In our system, the maximum input power 

was 0dBm, producing a maximum output power of +28dBm.  This output needs to be 

attenuated before being fed into the demodulator. 

4.3 Receiver 

The receiver consists of an attenuator and a quadrature demodulation stage, as 

depicted in Figure 30. 

 
Figure 30 - Test hardware receiver module consists of a 20dB attenuator and an AD8349 quadrature 

demodulator. 
 

The PA output needs to be attenuated before being sent to the demodulator, and we 

used a 20dB attenuator for this purpose.  The maximum input power recommended for the 

AD8347 demodulator is +10dBm.  Since the maximum output of our power amplifier during 

our tests is +28dBm, we know that demodulator will not be damaged by the input if we 

attenuate the input signal power by 20dB.  The quadrature demodulator will be used to 

retrieve the baseband representation of the analog I and Q signals.  The Agilent 8648D signal 

generator provides a Local Oscillator frequency of 1.96GHz to the demodulator, the same 

signal used as a local oscillator for the modulation stage.  A supply voltage of +5V is needed 

to power the device, which is also the same source required by the AD8349 modulator.  The 

AD8347 board can be seen in Figure 31. 

40 



 
Figure 31 - Analog Devices AD8347 demodulator. 
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5 Results 
 

In this section, we present our results of predistorter simulations and hardware tests.  

First we present results of running dual tone test and predistorter simulations with an ADS 

model of a power amplifier.  We also produced simulation results using S-parameter 

measurements to define the PA characteristics.  Finally, we show the test results from using 

the FPGA and other hardware components. 

5.1 Simulation Results Using ADS Model of ZHL-42W PA 

The ADS model of the Mini-Circuits ZHL-42W PA was useful in simulating tests that 

we were not able to conduct in the lab.  We used the model to simulate the output spectrum 

of the amplifier using a dual tone test at different input powers and fundamental frequencies.  

We conducted one set of simulations at fundamental frequencies 899.95MHz and 

900.05MHz and another at frequencies 1.95995GHz and 1.96005GHz.  The simulations were 

conducted at these frequencies in order to demonstrate the amplifiers’ output in different 

frequency bands, including the frequency at which we tested our predistorter.  Each 

frequency was tested with an input power of -2dBm and -20dBm, representing values used 

during our hardware testing of the predistorter.  These results can be seen in Figure 32 and 

Figure 33. 
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Figure 32 - ADS Simulation of ZHL-42W output spectrum at 900MHz shows that the harmonics are 

greater when inputting -2dBm (left plot) to the ZHL-42W amplifier, than when inputting -20dBm (right 
plot) to the amplifier at frequencies around 900MHz.   
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Figure 33 - ADS Simulation of ZHL-42W output spectrum at 1960 MHz shows that the harmonics are 

greater when inputting -2dBm (left plot) to the ZHL-42W amplifier, than when inputting -20dBm (right 
plot) to the amplifier at frequencies around 1960MHz.   

 
From these output spectrum results, we determined that harmonics would be present 

during our predistorter testing, showing the nonlinearity of the amplifier.  At a frequency of 

1.96GHz the third order product is attenuated by approximately 23dB with an input power of 

-2dBm and attenuated by approximately 60dB with an input power of -20dBm. 

The ADS model of the ZHL-42W power amplifier was also used to create look-up 

tables and plots for our predistorter.  These can be seen in Table 2 and Figure 34.  The AM-

AM table expresses how close to the ideal gain the output of the amplifier is reached for 

varying input powers.  The output is normalized, the ideal would be 1.000, and we are able to 

clearly see how the gain decreases as the input power increases.  The AM-PM table show the 

degree offset experienced by the output of the amplifier for varying input powers.  From this 

table we can see that phase shift is not a large concern for this PA; even near the maximum 

input power, at -0.5dBm input, the phase shift is only -1.876E-8 degrees.  This is such a 

small change that it cannot be represented by a 16-bit digital signal. 
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Table 2 - AM-AM and AM-PM Table based on the ADS ZHL-42W PA model. 
RF Power (dBm) AM-AM  AM-PM 

-24.5 0.998  -8.308E-11 
-23.5 0.998  -1.045E-10 
-22.5 0.997  -1.316E-10 
-21.5 0.996  -1.657E-10 
-20.5 0.996  -2.085E-10 
-19.5 0.994  -2.624E-10 
-18.5 0.993  -3.303E-10 
-17.5 0.991  -4.157E-10 
-16.5 0.989  -5.231E-10 
-15.5 0.986  -6.582E-10 
-14.5 0.982  -8.281E-10 
-13.5 0.977  -1.042E-9 
-12.5 0.972  -1.310E-9 
-11.5 0.964  -1.647E-9 
-10.5 0.955  -2.069E-9 
-9.5 0.942  -2.599E-9 
-8.5 0.927  -3.263E-9 
-7.5 0.907  -4.093E-9 
-6.5 0.882  -5.128E-9 
-5.5 0.850  -6.416E-9 
-4.5 0.808  -8.014E-9 
-3.5 0.753  -9.983E-9 
-2.5 0.680  -1.239E-8 
-1.5 0.582  -1.531E-8 
-0.5 0.447  -1.876E-8 
0.5 0.287  0.001 

 
 

 
Figure 34 - AM-AM and AM-PM charts based on the ADS ZHL-42W model. 
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The predistorter was simulated within MATLAB using ADS model parameters of a 

Mini-Circuits ZHL-42W power amplifier.  The behavior of the predistorter under ideal 

conditions is shown in Figure 35 and Figure 36.  Figure 35 demonstrates the effects of PA 

nonlinearity on the signal constellation, whereas Figure 36 shows the received signal 

constellation realigned with the input constellation. 

 

 
Figure 35 - Simulation of ZHL-42W PA response without predistortion, without noise. 
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Figure 36 - Simulation of ZHL-42W PA response with predistortion, without noise. 

 

The algorithm successfully predistorted the signal up to the saturation point of the PA 

characteristic.  Since the simulation was run using ideal conditions, the error vector 

magnitude (EVM) of the received constellation with predistortion was zero.  The EVM was 

typically 0.013 when the simulation was run without predistorting the signal. 

The simulation was run once again with simulated noise added to the system.  The 

energy-per-bit (Eb) per noise power spectral (N0) density was 35dB.  With noise simulation, 

the EVM of the received signal is typically 0.005 with the predistorter and 0.017 without the 

predistorter.  This demonstrates that the predistorter is able to reduce the EVM by about a 

factor of three even when transmitting a noisy signal.  The received signals are shown with 

and without predistortion, in Figure 37 and Figure 38, respectively. 
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Figure 37 - Simulation of ZHL-42W PA response without predistortion, with noise, Eb/N0 = 35dB. 

 
 

 
Figure 38 - Simulation of ZHL-42W PA response with predistortion, with noise, Eb/N0 = 35dB. 
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A plot demonstrating the effectiveness of the predistorter is shown in Figure 39.  

Without predistortion, there is gain compression in the high power region of operation, 

whereas with predistortion there is a linear response for the entire range of input power. 

 
Figure 39 - Simulated predistorter effectiveness using ZHL-42W PA. 

 

5.2 PA Characterization 

We measured the S21 parameter, the forward voltage gain [5], of each power 

amplifier in order to observe the gain at various power levels.  These measurements, made at 

varying frequencies and with different supply voltages, also allow us to see the nonlinearities 

of the amplifiers for different applications.  With the data collected from these 

measurements, we were able to plot the output of the amplifiers against the input power.  

These plots, which demonstrate the gain compression of the amplifiers, can be seen in Figure 

40, Figure 41, Figure 42, Figure 43, and Figure 44.   

The Hittite Microwave HMC308 amplifier output power levels level off slightly as 

the recommended maximum input powers are approached.  This is the most linear of the 

three amplifiers whether using a 3.3V or 5V supply voltage.  The amplifier experiences less 
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gain compression when using a 3.3V supply.  When using a 5V supply voltage, the amplifier 

experiences the most gain compression with an input frequency of 2.4GHz. 

The other Hittite Microwave amplifier, the HMC474, is less linear than the previous.  

This amplifier operates better when using a 5V supply voltage rather than a 3.3V supply.  

The amplifier experiences the most gain compression with an input frequency of 2.4GHz. 

The Mini-Circuits ZHL-42W amplifier was tested using only a 15V power supply, as 

this is the only recommended source per the data sheet.  This PA’s gain compression is much 

more obvious than the two Hittite Microwave PAs, as can be seen in the output-input power 

plots.  Based on these figures, we can determine that our predistortion technique will be most 

effective using the ZHL-42W. 

 

 
Figure 40 - Gain compression of HMC308 amplifier with a 3.3V supply is not dramatic when a supply 

voltage of 3.3V is used. 
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Figure 41 - Gain compression of HMC308 amplifier with a 5V supply is most obvious with an input 

frequency of 2.4GHz. 
 

 
Figure 42 - Gain compression of HMC474 amplifier with a 3.3V supply is noticeable at all frequencies 

tested except at 6.0GHz. 
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Figure 43 - Gain compression of HMC474 amplifier with a 5V supply is most obvious with an input 

frequency of 2.4GHz. 

 
Figure 44 - Gain compression of ZHL-42W amplifier is noticeable at all frequencies tested with the 

exception of 900MHz. 
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From the S21 parameter measurements used to demonstrate the gain compression of 

the amplifiers, we calculated the 1-dB compression point for the ZHL-42W PA.  The Hittite 

amplifiers’ gain did not decrease by 1 dB or more with our measurements at any input 

frequency and an input power up to 0dBm, the maximum for our hardware testing.  The 

ZHL-42W amplifier’s gain also did not decrease by 1dB when an input frequency of 

900MHz was used.  The 1-dB compression point of the ZHL-42W PA occurred when the 

input power reached -3.5dBm when inputting a signal at 1.96GHz, when the input power 

reached -4.8dBm when inputting a signal at 2.4GHz, and when the input power reached         

-6.4dBm when inputting a signal at 4.2GHz. 

Using the obtained 1-dB compression points, we were also able to approximate the 

OIP3 of the ZHL-42W when operating at the tested frequencies by adding 9.66dB, per (4).  

The OIP3 at 1.96GHz is +6.16dB, at 2.4GHz is +4.86dB, and at 4.2GHz is +3.26dB. 

5.3 Simulation Results Using S-parameter Measurements 

Using the S21 forward voltage gain measurements we made for each amplifier, we 

were able to create simulations of expected results for our predistortion system.  These 

simulations neglected the effect of phase shift, which we believed to be acceptable due to the 

negligible amount of measured phase shift during our amplifier characterization and ADS 

simulations.  The simulations demonstrated that the ZHL-42W power amplifier performed 

worse without the predistorter than the HMC308 or HMC474 amplifiers, which we expected 

based on the gain compression charts for the three PAs.  The simulation results for the ZHL-

42W can be found in Figure 45, Figure 46, and Figure 47.  These results provide greater 

precision, since the simulations were created using actual measurements for this particular 

ZHL-42W amplifier, rather than a generalized model. 
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Figure 45 - ZHL-42W received signal without predistortion shows gain compression at the outermost 

symbols. 
 

 
Figure 46 - ZHL-42W received signal after predistortion showing the corrected output. 
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Figure 47 - Signal constellation for ZHL-42W predistortion compensates for the compression of the 

outermost points of the constellation. 
 

 The simulation results for the HMC308 and HMC474 were not as dramatic as those 

for the ZHL-42W.  The difference between the received signals before and after predistortion 

could not be seen by eye.  The effectiveness of the predistorter for these amplifiers was better 

seen by viewing the normalized output-input power plots in Figure 48 and Figure 49.  These 

plots show that the predistorter did have positive results for the amplifiers, but the system is 

not as useful for these low-power amplifiers as with the high-power ZHL-42W. 
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Figure 48 - Predistortion effectiveness plot for HMC308 shows that the predistorted received signal does 

not experience the gain compression that the non-predistorted received signal does.  The input and 
output power are viewed only from 50-100% of the maximum power. 

 
Figure 49 - Predistortion effectiveness plot for HMC474 shows that the predistorter does reduce gain 
compression in the received signal.  The input and output power are viewed only from 80-100% of the 
maximum power.  The effectiveness is small, with a difference not seen until the input power reaches 

about 90% of its maximum. 
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5.4 Hardware Results 

The FPGA output was measured using a First-In-First-Out (FIFO) board and ADC 

Analyzer software.  The FPGA output cable was modified in order to connect the signal 

directly to the FIFO evaluation board.  This output, seen in Figure 50 using the ADC 

Analyzer software, verified that our signal was sent properly to the rest of our system.  The 

symbols are changing at a rate of 20kHz for this test. 

 

 
Figure 50 - FPGA output was captured using the FIFO evaluation board and ADC Analyzer software.  

We see that the levels of the In-phase channel vary appropriately at a rate of 20kHz. 
 

To test the next component, the AD9777 DAC, output we used the HP 8596E 

Spectrum Analyzer.  This measurement can be seen in Figure 51.  With this measurement we 

verified the proper function of the DAC.  The ideal input to the modulator according to the 

data sheet is a 600mV peak-to-peak voltage at a 400mV offset.  The DAC output appears 

desirable for our application. 
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Figure 51 - DAC output viewed at 500kS/s 

To test the modulator output, we used the HP 8596E Spectrum Analyzer again.  This 

measurement made at a high sampling rate of 50 MS/s can be seen in Figure 52 to 

demonstrate that the amplitude is actually being modulated.  With this measurement, we 

were able to verify that the changing symbols were being sent to the PA appropriately.  The 

symbol rate for this test was 20kHz, and the RF carrier signal was 1.96GHz. 
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Figure 52 - Modulator output is changing symbols with a high frequency carrier wave, being viewed at 

50MS/s. 
 

Next, to verify the changing output of the PA, we viewed the signal again on the HP 

8596E Spectrum Analyzer.  This measurement, showing that the symbols are being 

transmitted correctly, can be seen in Figure 53.  Again, the symbol rate for this test was 

20kHz with a carrier signal at 1.96GHz. 

 
Figure 53 - PA output after attenuation is changing symbols with a high frequency carrier wave, being 

viewed at 50MS/s. 
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Finally, we tested the output of the demodulator, the receiver of our system.  The I 

and Q signals were viewed separately with the HP 8596E Spectrum Analyzer.  The baseband 

signals seen in Figure 54 and Figure 55, with peak-to-peak voltages of about 600mV, are the 

signals output from the demodulator.  These signals are changing at a rate of 20kHz.  

Unfortunately, due to the sensitivity of RF transmission, the demodulator output was 

inconsistent.  Therefore, the system output could not be conclusively verified in the hardware 

set-up we were able to complete using coax transmission lines.  The system induced too 

much noise to achieve the level of precision we would have required to confirm the 

effectiveness of our predistortion hardware set-up. 

 
Figure 54 – Voltage versus time IMXO output of demodulator showing the baseband linearized I signal.  

The signals is changing at a rate of 20kHz and being sampled at a rate of 1MS/s. 
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Figure 55 – Voltage versus time QMXO output of demodulator showing the baseband linearized Q 

signal.  The signals is changing at a rate of 20kHz and being sampled at a rate of 1MS/s. 
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 Conclusions and Recommendations 
This report presented our investigation of RFPA characteristics and predistortion 

methods for linearization.  We focused our efforts on characterizing the nonlinearities of 

available PAs in order to implement a method of correcting gain compression and phase 

rotation which occur in the high power region of PA operation.  Predistortion of the digital 

baseband signal was our chosen method because of its adaptability to varying PA 

characteristics. 

A predistortion algorithm developed in MATLAB by a previous MQP served as the 

foundation of our project.  That algorithm relies on a general nonlinear PA transfer function 

defined by the Saleh model [30].  Our modified algorithm employs data from Advanced 

Design System models or S-parameter measurements.  After running the predistortion 

algorithm, the predistorter writes the value of each predistorted symbol to a text file.  This 

text file is imported into a lookup table (LUT) written in VHDL.  The rest of the VHDL 

system is designed to cycle through the values of the LUT and output the predistorted symbol 

associated with each value.  The VHDL system is programmed to an FPGA for hardware 

testing. 

Once the VHDL design for the predistorter was implemented on the FPGA, its 

operation is verified using a logic analyzer.  The output was also captured onto a PC using an 

Analog Devices’ First-In First-Out (FIFO) evaluation kit.  Furthermore, Analog Devices’ 

ADC Analyzer software captures the output from the FIFO board onto the PC.  The output 

coming from the digital-to-analog converter (DAC), modulator, and power amplifier appear 

as expected when viewed on the Tektronix TDS-784C oscilloscope. 

The output of our demodulator, though changing symbols as desired, does not 

produce consistent results.  The noise in the system and the sensitivity involved with RF 

signal transmission are too large to achieve the level of precision necessary to conclusively 

verify the effectiveness of our predistortion hardware set-up. 

If the predistorter is to be used to compensate for temperature and other short-term 

effects, it must be used in a closed-loop configuration.  The preferable method for 
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implementing a digital adaptive predistorter is using a digital signal processor (DSP).  

However, the design of a truly adaptive predistorter, which takes into account memory 

effects and other non-linear characteristics, may be beyond the time frame of an 

undergraduate level project. 

We have shown that our predistorter is capable of adapting to specific PA 

characteristics each time the MATLAB function is executed with updated PA measurements.  

This allows for correction of the nonlinearities of a specific PA rather than a general model, 

as well as correction of long-term effects such as aging.  The predistorter was simulated 

within MATLAB and found to completely eliminate nonlinearities in the output signal up to 

the saturation point of the PA.  This resulted in an error vector magnitude of zero, even 

without any back off of the input signal.  We showed the performance of the predistorter 

under non-ideal conditions by simulating noise.  We also presented simulated results of the 

predistorter performance with multiple models of PAs, and we found that our predistorter 

was equally effective at linearizing each PA model. 
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Appendix A: MATLAB Code 
I) Evaluate predistorter performance 

<filename: test_predistorter_txt.m> 
 
% Author: Rahul Gupta and Saad Ahmad 
% Modified: Christopher Serrano 
% 
% Predistorter test script 
% 
% Calls hpa_sweep to characterize PA, 
% Calls predistorter_v2 to run predistortion algorithm, 
% Calls hpa_v2 to distort signal according to PA characteristics, 
% Calculates EVM of the received signals 
% Generates plots demonstrating predistorter effectiveness, 
% predistorted input constellation, distorted output, 
% and linearized output, 
% Generates lookup table values for the predistorted input constellation 
  
clear all; 
clc; 
close all; 
  
%% Define constellation parameters 
M = 64; % Size of signal constellation  
k = log2(M); % Number of bits per symbol 
nsamp = 1; % Oversampling rate 
  
%% Modulation 
% Modulate using M-QAM. 
xsym = 0:M-1; 
y = qammod(xsym,M); 
  
%% Perform Power Sweep and Record the AMAM and AMPM characteristics 
r = 0:1e-4:1;           % normalized range of power sweep 
o_power = hpa_sweep(r); 
AMAM = abs(o_power); 
AMPM = angle(o_power); 
  
%% Calculate linear gain using first 20% of AMAM values 
lin_max=round(length(AMAM)*0.20); 
lin_gain = mean(diff(AMAM(1:lin_max)))*length(AMAM); 
  
%% Set backoff percentage from saturation 
backoff_percent = 0; 
saturation = 1/lin_gain; % defines saturation point 
backoff = (100 - backoff_percent)/100*saturation; 
y = backoff*y ./ (max(abs(y))); % normalization 
  
%% Invoke the predistorter 
y_pd = predistorter_v2(y, y, r, AMAM, AMPM, lin_gain); 
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% Distorted output (without predistortion) 
ydist = hpa_v2(y, AMAM, AMPM); 
ydist = ydist/lin_gain; % Scale down to match original signal 
  
% Linearized output (after predistortion) 
ytx = hpa_v2(y_pd, AMAM, AMPM); 
ytx = ytx/lin_gain; % Scale down to match original signal 
  
  
%% Plot AM-AM after predistortion 
figure;   %subplot(2,1,1); 
plot(sort(abs(y)), sort(abs(ytx)), 'b', 'LineWidth', 3);   hold on; 
plot(sort(abs(y)), sort(abs(ydist)), 'r', 'LineWidth', 3); 
xlabel('Input power (normalized)');    ylabel('Output power 
(normalized)'); 
legend('After predistortion', 'Before predistortion'); 
title('Predistortion effectiveness analysis'); 
axis([min(abs(y)) max(abs(y)) 0 1]);    hold off; 
  
% Plot AM-PM after predistortion 
subplot(2,1,2);   
title('AM-PM performance after predistortion'); 
plot(sort(abs(y)), sort(angle(ytx) - angle(y)), 'r--', 'LineWidth', 4);    
xlabel('Input Amplitude r'); 
ylabel('AMPM(r)'); 
axis([min(abs(y)) max(abs(y)) -0.2 0.2]); 
  
%% Noise simulation 
EbNo = 35; % In dB 
snr = EbNo + 10*log10(k) - 10*log10(nsamp); 
ytx_noise = awgn(ytx,snr,'measured'); 
ydist_noise = awgn(ydist,snr,'measured'); 
  
% Include the following two lines to generate plots without noise: 
%ytx_noise=ytx;  
%ydist_noise=ydist; 
  
%% Error Vector Magnitude 
% EVM with and without predistortion, with noise 
evm_pd = evm(y,ytx_noise); 
evm_nopd = evm(y,ydist_noise); 
  
%% Scatter Plots 
% Create scatter plot of input signal and distorted PA output 
% (with predistortion) on the same axes. 
h = scatterplot(y,nsamp,0,'ko'); 
hold on; 
scatterplot(ytx_noise,1,0,'r.',h); 
title('Simulation with predistortion'); 
legend('Original Signal constellation','Received Signal Constellation 
after Predistortion'); 
axis([-1 1 -1 1]); % Set axis ranges 
hold off; 
  
% Create scatter plot of input signal and distorted PA output 
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% (without predistortion) on the same axes. 
i = scatterplot(y,nsamp,0,'ko'); 
hold on; 
scatterplot(ydist_noise,1,0,'b.',i); 
legend('Original Signal constellation','Received Signal Constellation 
without Predistortion'); 
title('Simulation without predistortion'); 
axis([-1 1 -1 1]); % Set axis ranges 
hold off; 
  
% Observe the signal constellation for the predistorted input 
j = scatterplot(y_pd,1,0,'ko'); 
axis([-1 1 -1 1]); % Set axis ranges 
title('Signal constellation for the predistorted signal'); 
  
  
%% Export I and Q signals to text files 
export_iq(y_pd,'pd_out.txt ; ')
export_iq(y,'iq_out.txt'); 
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II) The predistorter function 

<filename: predistorter_v2.m> 

 
% Author: Saad Ahmad and Rahul Gupta 
% Modified: Christopher Serrano 
% Predistorter function 
% predistorter.m modified to run faster, 
% using LUT with N values for N-QAM 
  
function y_pd = predistorter_v2(y, y_lut, r, AMAM, AMPM, lin_gain) 
  
%% Using unique set of input symbols (y_lut), define predistorted LUT 
values (ypd_lut) 
  
for i=1:length(y_lut) 
    expected_gain_of_y_lut(i) = lin_gain * abs(y_lut(i));   % Compute 
expected gain based upon the linear gain 
    if(expected_gain_of_y_lut(i) > max(AMAM) ) 
        expected_gain_of_y_lut(i) = max(AMAM); 
    end 
        % Backtrack to find the index that gives the AMAM closes to the 
        % expected gain 
        pd_index = find( abs(AMAM - expected_gain_of_y_lut(i)) < 1e-4);  
        tmp = r(pd_index(1)); 
        % Find the corresponding input. This will be the amplitude of the 
        % predistorted input. 
        pin(i) = tmp;   
  
  
        % Theta is the arctan(Q_pd/I_pd) that is the angle of the vector 
represented by I_pd * j*Q_pd  
        theta(i) = angle(y_lut(i)) - AMPM(pd_index(1));               
        I_pd(i) = (pin(i) ./ sqrt (1 + tan( theta(i) ).^2 ) );   % Solve 
for I_pd(i) and Q_pd(i) 
        Q_pd(i) = sqrt(pin(i).^2 - I_pd(i).^2); 
         
        % Make sign corrections if necessary 
        theta_d(i) = theta(i) * 180 / pi; 
         
        if ((theta_d(i) >= 0) && (theta_d(i) < 90) ) 
            do nothing  %
        end 
         
        if ((theta_d(i) >= 90) && (theta_d(i) < 180) ) 
        I_pd(i) = -abs(I_pd(i));    % Second quadrant I must be negative, 
while Q must be positive 
        Q_pd(i) = abs(Q_pd(i));  
        end 
         
        if ((theta_d(i) >= -180) && (theta_d(i) < -90) ) 
        I_pd(i) = -abs(I_pd(i));    % Third quadrant: Both I and Q must be 
the same 
        Q_pd(i) = -abs(Q_pd(i));  
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        end 
  
        if ((theta_d(i) >= -90) && (theta_d(i) < 0) ) 
        I_pd(i) = abs(I_pd(i));    % Fourth quadrant I must be positive 
and Q must be negative 
        Q_pd(i) = -abs(Q_pd(i));  
        end 
         
        if ((theta_d(i) < -180) ) 
        I_pd(i) = -abs(I_pd(i));    % Fourth quadrant I must be positive 
and Q must be negative 
        Q_pd(i) = abs(Q_pd(i));  
        end 
  
        if ((theta_d(i) < -180) && (theta_d(i) > 180) ) 
        display('Error!! Error!! Error!! Error!!') 
        end 
         
        ypd_lut(i) = I_pd(i) - j*Q_pd(i);   % Compute predistorted symbol 
ypd_lut(i) corresponding to y(i) 
end 
  
%% Perform predistortion using input signal (y) and LUT values (ypd_lut) 
  
y_pd = 0:0:length(y); % Preallocate space for y_pd to improve speed 
  
% LUT assignment loop 
for i=1:length(y) 
    y_pd(i) = ypd_lut(y(i)==y_lut); 
end 
  
y_pd = y_pd';   % Transpose 
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III) Define power amplifier transfer function from measurements 

<filename: hpa_sweep.m> 
% Author: Christopher Serrrano 
% 
% Read a text file with PA power and phase measurements, 
% generate AM-AM and AM-PM best fit values 
function output = hpa_v2(input_symbol); 
  
%% input_symbol(complex number) represents the mapped symbols on a 
constellation  
r = abs(input_symbol);  % Magnitude 
theta = angle(input_symbol); % Phase 
  
%% Read in PA characteristics exported from ADS 
N=length(dlmread('Pin_Pout.txt'))-1; % number of samples -1 
p_in = ((0:1:N)./N).';      % normalized Pin 
  
% Read in second column of Pin vs. Pout 
p_out=dlmread('Pin_Pout.txt','',[0,1,N,1]); 
  
% Read in second column of Pin vs. Phase 
phase_out=dlmread('Pin_Phase.txt','',[0,1,N,1]); % for ADS 
  
%% Normalization 
% Shift p_out values such that minimum value is zero 
p_out = p_out-min(p_out); 
  
% Scale such that maximum p_out value is one 
p_out = p_out/max(p_out); 
  
% Shift phase values such that first value is zero 
phase_out=phase_out-phase_out(1); 
  
%% Polynomial fitting 
degree=10; 
p_poly = polyfit(p_in,p_out,degree); 
phase_poly = polyfit(p_in,phase_out,degree); 
  
range = 0:1e-4:1; 
AMAM = polyval(p_poly,range); 
AMPM = polyval(phase_poly,range); 
  
%% Re-computing phase of the output  
theta = theta + AMPM; 
  
% Applying PA characteristic distortion to calculate the output 
output = AMAM.*cos(theta)+ j*AMAM.*sin(theta); 
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IV) Distort input according to PA characteristics 

<filename: hpa_v2.m> 
function output = hpa_v2(input_symbol, AMAM, AMPM); 
 
for i=1:length(input_symbol) 
    % input_symbol represents the mapped symbols on a constellation, 
    % where the maximum magnitude is normalized 
    r = abs(input_symbol(i));   % Magnitude 
    theta = angle(input_symbol(i)); % Phase 
    % Distort input symbol using PA characteristics 
    if(round(r*length(AMAM)) > length(AMAM)) % if power is in saturation 
region: 
        dist_power=AMAM(length(AMAM));       % power = maximum power 
        dist_phase=theta+AMPM(length(AMAM)); % set phase according to AMPM 
    else                                          % otherwise: 
        dist_power = AMAM(round(r*length(AMAM))+1); % set power according 
to AMAM  
        dist_phase = theta+AMPM(round(r*length(AMAM))+1); % set phase 
according to AMPM 
    end 
     
    % dist_phase is the arctan(Q_d/I_d) that is the angle of the vector 
represented by I_d * j*Q_d  
    I_d(i) = (dist_power ./ sqrt (1 + tan( dist_phase ).^2 ) );   % Solve 
for I_d(i) and Q_d(i) 
    Q_d(i) = sqrt(dist_power.^2 - I_d(i).^2); 
         
    % Make sign corrections if necessary 
    dist_phase_d = dist_phase * 180 / pi; % Phase in degrees 
  
    if ((dist_phase_d >= 0) && (dist_phase_d < 90) ) 
        % First quadrant I and Q are both positive 
    end 
  
    if ((dist_phase_d >= 90) && (dist_phase_d < 180) ) 
    I_d(i) = -abs(I_d(i));    % Second quadrant I is negative and Q is 
positive 
    Q_d(i) = abs(Q_d(i));  
    end 
  
    if ((dist_phase_d >= -180) && (dist_phase_d < -90) ) 
    I_d(i) = -abs(I_d(i));    % Third quadrant: Both I and Q are both 
negative 
    Q_d(i) = -abs(Q_d(i));  
    end 
  
    if ((dist_phase_d >= -90) && (dist_phase_d < 0) ) 
    I_d(i) = abs(I_d(i));    % Fourth quadrant I is positive and Q is 
negative 
    Q_d(i) = -abs(Q_d(i));  
    end 
  
    output(i) = I_d(i) + j*Q_d(i);   % Set output using I_d and Q_d 
end 
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V) Calculate Error Vector Magnitude of the received signal 

<filename: evm.m> 
% Author: Christopher Serrano 
% 
% Function to calculate error vector magnitude 
% Input tx and rx constellations with proper scaling: 
% tx = transmitted constellation 
% rx = received constellation 
% Output evm as floating point value 
  
function evm=evm(tx,rx) 
  
%% Separate into I and Q 
i_tx=real(tx); 
q_tx=imag(tx); 
i_rx=real(rx); 
q_rx=imag(rx); 
  
%% Perform EVM calculation 
% EVM formula 
evm = sqrt(mean((i_tx-i_rx).^2+(q_tx-q_rx).^2))/abs(max(tx)); 
  
% return EVM 
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Appendix B: MATLAB Code from Previous MQP 
I) Evaluate predistorter performance via constellation prewarping and dual-tone analysis 

<filename: test_predistorter.m> 

 
% Author: Rahul Gupta and Saad Ahmad 
% Program to assess  
% predistorter performance 
 
 
clear all; 
clc; 
close all; 
 
% Defining constellation parameters 
M = 64; % Size of signal constellation  
k = log2(M); % Number of bits per symbol 
n = 3e4; % Number of bits to process 
nsamp = 1; % Oversampling rate 
 
%%Signal Source 
% Emulates a real-world binary input 
x = randint(n,1); % Random binary data stream 
 
%% Bit-to-Symbol Mapping 
% Convert the bits in x into k-bit symbols. 
xsym = bi2de(reshape(x,k,length(x)/k).','left-msb'); 
 
%% Modulation 
% Modulate using M-QAM. 
y = qammod(xsym,M); 
backoff = 0.8;                     % Specify backoff percentage from 
saturation 
y = backoff*y ./ (max(abs(y)));    % normalization 
 
%% Characterize the PA 
ytx = hpa(y);                       % see hpa.m 
 
 
%% Perform Power Sweep and Record the AMAM and AMPM characteristics 
r = 0:1e-4:1; 
o_power = hpa(r); 
AMAM = abs(o_power); 
AMPM = angle(o_power); 
 
 
% Linear gain setpoint (computed using the initial slope of the 
characteristic) 
lin_gain = 1.69461 ; 
 
% Invoke the predistorter 
y_pd = predistorter(y, r, AMAM, AMPM, lin_gain); 
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% Distorted output (without predistortion) 
ydist = hpa(y); 
 
% Linearized output (after predistortion) 
ytx = hpa(y_pd);  
 
%% Plot AM-AM after predistortion 
figure;   subplot(2,1,1); 
plot(sort(abs(y)), sort(abs(hpa(y_pd))), 'r', 'LineWidth', 3);   hold on; 
plot(sort(abs(y)), sort(abs(hpa(y))), 'b', 'LineWidth', 3); 
xlabel('Input Amplitude r');    ylabel('Output Amplitude AMAM(r)'); 
legend('After predistortion', 'Before predistortion'); 
title('Predistortion effectiveness analysis'); 
axis([min(abs(y)) max(abs(y)) 0 1]);    hold off; 
 
%% Plot AM-PM after predistortion 
subplot(2,1,2);   
title('AM-PM performance after predistortion'); 
plot(sort(abs(y)), sort(angle(hpa(y_pd)) - angle(y)), 'r--', 'LineWidth', 
4);    
xlabel('Input Amplitude r'); 
ylabel('AMPM(r)'); 
axis([min(abs(y)) max(abs(y)) -0.2 0.2]); 
 
 
%% Channel 
% Add noise 
EbNo = 35; % In dB 
snr = EbNo + 10*log10(k) - 10*log10(nsamp); 
ynoisy = awgn(ytx,snr,'measured'); 
ynoisy2 = awgn(ydist,snr,'measured'); 
 
 
%% Scatter Plot1 
% Create scatter plot of input signal and distorted PA output 
% (without predistortion) on the same axes. 
h = scatterplot(y(1:nsamp*5e3),nsamp,0,'k*'); 
hold on; 
scatterplot(ynoisy(1:5e3),1,0,'m.',h); 
legend('Original Signal constellation','Received Signal Constellation 
after Predistortion'); 
axis([-1 1 -1 1]); % Set axis ranges 
hold off; 
 
 
%% Scatter Plot2 
% Create scatter plot of input signal and distorted PA output 
% (WITh predistortion) on the same axes. 
i = scatterplot(y(1:nsamp*5e3),nsamp,0,'k*'); 
hold on; 
scatterplot(ynoisy2(1:5e3),1,0,'r.',i); 
legend('Original Signal constellation','Received Signal Constellation 
without Predistortion'); 
axis([-1 1 -1 1]); % Set axis ranges 
hold off; 
 
%% Scatter Plot3 
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% Observe the signal constellation for the predistorted input 
j = scatterplot(y_pd(1:5e3),1,0,'b*'); 
axis([-1 1 -1 1]); % Set axis ranges 
title('Signal constellation for the predistorted signal'); 
 
 
%% Pulse shape the data after converting it to 16-bit binary words 
%  Take only single occurences for each unique symbol in y 
reps = 1; 
yuniq = zeros(M, reps); 
y = unique(y); 
for i=1:reps 
    yuniq(:,i) = y; 
end 
yuniq = reshape(yuniq,1,reps*length(y)); 
 
IDATA = real(yuniq); 
QDATA = imag(yuniq); 
 
Interpoltype = 'gauss'; % Gaussian pulse shaping 
timestep = 1e-9;   % 1ns - for computing the FFT 
symboltime = 1e-7;  % 10MSym/sec 
Nbits = 16;  % 16-bit quantization 
[totaltime, t,icomponent,qcomponent,interleaved] = 
pulseshape(interpoltype, timestep, IDATA, QDATA, symboltime, Nbits); 
 
 
%%% Prepare for multi-tone test %%% 
n = [0:1e4]; 
% Defining a four-tone signal closely centered around 0.25 f / Fs 
omega0 = 2*pi*(0.235); 
omega1 = 2*pi*(0.245); 
omega2 = 2*pi*(0.265); 
omega3 = 2*pi*(0.255); 
 
A0 = 0.175; 
A1 = 0.175; 
A2 = 0.175; 
A3 = 0.175; 
 
x1 = A0*cos(omega0*n) + A1*cos(omega1*n) + A2*cos(omega2*n)+ 
A3*cos(omega3*n); 
 
% Number of a FFT points. Must be of the form 2X where X is an integer 
N = 8192; 
% Computing FFT 
X_fft = (fft(x1,N)); 
X = fftshift(abs(X_fft)); % Shift zero-frequency component of discrete 
Fourier transform to center of spectrum 
Power = X.^2; % Power spectrum 
freq = [-N/2:N/2-1]/N; 
 
% Computing FFT of the PA output without PD 
yampout = hpa(x1); 
Y_fft = (fft(yampout,N)); 
Y = fftshift(abs(Y_fft)); 
Powery = Y.^2; 
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phasey = angle(Y_fft); 
 
dimen1 = length(freq)/2 + 1; 
dimen2 = length(freq); 
 
% Computing FFT of the PA output WITH PD 
x1_pd = predistorter(x1, r, AMAM, AMPM, lin_gain); 
y_ampout_withpd = hpa(x1_pd); 
Ypd_fft = (fft(y_ampout_withpd,N)); 
Ypd = fftshift(abs(Ypd_fft)); 
Powerypd = Ypd.^2; 
phaseypd = angle(Ypd_fft); 
 
%% Plot power spectral density to visualize improvement in IMD suppression 
(if any) 
% Input power spectral density 
figure; 
semilogy(freq(dimen1:dimen2),Power(dimen1:dimen2)./max(Power), 'r', 
'LineWidth', 1.5); 
xlabel('Normalized Frequency (f / F_{S})') 
ylabel('(dB)'); 
title ('Power Spectral Density of a four-tone input spectrum'); 
axis([0 0.5 10.^(-3.5) 10]); 
 
% Output power spectral density (without predistortion) 
figure; 
semilogy(freq(dimen1:dimen2),Powery(dimen1:dimen2)./max(Power), 'b',  
'LineWidth',1.5); 
xlabel('Normalized Frequency (f / F_{S})') 
ylabel('(dB)'); 
title ('Power Spectral Density of PA output illustrating Intermodulation 
Distortion '); 
axis([0 0.5 10.^(-3.5) 10.^2]); 
 
% Output power spectral density (with predistortion) 
figure; 
semilogy(freq(dimen1:dimen2),Powerypd(dimen1:dimen2)./max(Power), 'k',  
'LineWidth',1.5); 
xlabel('Normalized Frequency (f / F_{S})') 
ylabel('(dB)'); 
title ('Power Spectral Density of PA output illustrating Predistorter in 
action '); 
axis([0 0.5 10.^(-3.5) 10.^2]); 
 
%%% End of multi-tone routine%%%   

 
 

 

 

 

 

II) The predistorter function 
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<filename: predistorter.m> 

 
%% Author: Rahul Gupta 
%% Predistort the input signal one symbol at a time 
%  Predistorter function requires the AMAM and AMPM curves 
function y_pd = predistor(y, r, AMAM, AMPM, lin_gain) 
 
for i=1:length(y) 
    expected_gain_of_y(i) = lin_gain * abs(y(i));    
% Compute expected gain based upon the linear gain 
 
    if(expected_gain_of_y(i) > max(AMAM) ) 
        expected_gain_of_y(i) = max(AMAM); 
    end 
        % Backtrack to find the index that gives the AMAM closes to the 
        % expected gain 
        pd_index = find( abs(AMAM - expected_gain_of_y(i)) < 1e-4);  
        tmp = r(pd_index(1)); 
        % Find the corresponding input. This will be the amplitude of 

  % the predistorted input. 
        pin(i) = tmp;   
 
 
        % Theta is the arctan(Q_pd/I_pd) that is the angle of the 

  % vector represented by I_pd * j*Q_pd  
 

        theta(i) = angle(y(i)) - AMPM(pd_index(1));      
 

  % Solve for I_pd(i) and Q_pd(i) 
        I_pd(i) = (pin(i) ./ sqrt (1 + tan( theta(i) ).^2 ) );    
        Q_pd(i) = sqrt(pin(i).^2 - I_pd(i).^2);          
        % Make sign corrections if necessary 
        theta_d(i) = theta(i) * 180 / pi;          
        if ((theta_d(i) >= 0) && (theta_d(i) < 90) ) 
            % do nothing 
        end          
        if ((theta_d(i) >= 90) && (theta_d(i) < 180) ) 
        I_pd(i) = -abs(I_pd(i));     

  % Second quadrant I must be negative, while Q must be positive 
        Q_pd(i) = abs(Q_pd(i));  
        end          
        if ((theta_d(i) >= -180) && (theta_d(i) < -90) ) 
        I_pd(i) = -abs(I_pd(i));     

  % Third quadrant: Both I and Q must be the same 
        Q_pd(i) = -abs(Q_pd(i));  
        end 
 
        if ((theta_d(i) >= -90) && (theta_d(i) < 0) ) 
        I_pd(i) = abs(I_pd(i));     

   % Fourth quadrant I must be positive and Q must be negative 
        Q_pd(i) = -abs(Q_pd(i));  
        end          
        if ((theta_d(i) < -180) ) 
        I_pd(i) = -abs(I_pd(i));     

  % Fourth quadrant I must be positive and Q must be negative 
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        Q_pd(i) = abs(Q_pd(i));  
        end          
        y_pd(i) = I_pd(i) - j*Q_pd(i);    

  % Compute predistorted symbol y_pd(i) corresponding to y(i) 
end 
 
y_pd = y_pd';   % Transpose 
 

 
III) Pulse shaping of the I and Q data 

<filename: pulseshape.m> 

 
function [totaltime, t,inphase,quadrature,inter] = pulseshape(interp, 
tstep, idata, qdata, symduration, Nbits); 
%% Author: Rahul Gupta 
%% Program to shape the digital I and Q datastream to reduce 
%% intersymbolic interference as well as scale data to the number of 
%% bits as specified in 'Nbits'. 'idata' and 'qdata' are the vectors  
%% representing the I and Q data. 'tstep' represents the chosen 
%% timestep while symduration corresponds to the duration of each bit 
%% of 'Nbits' constituting the symbols. 
 
if(length(idata)==length(qdata)) 
    t = 0:tstep:((symduration.*length(idata)./2) - tstep); 
else 
    disp('Error!!I and Q datastreams should be of the same length!'); 
    return 
end 
 
fs = 1./tstep; 
f = linspace(0,fs,length(t)); 
totaltime = 0:tstep:((symduration*length(idata)) - tstep); 
 
 
%% Initializations for the I and Q components 
inphase = 0; 
quadrature = 0; 
 
%% Choose whether or not to interpolate 
switch lower(interp) 
    case('no') 
        % NO INTERPOLATION 
        % In-phase (I) component 
        for pos=1:length(idata) 
            inphase_tmp = idata(pos)*(trapmf(t,[(pos-1).*symduration (pos-
1).*symduration+tstep pos.*symduration pos.*symduration+tstep])); 
            inphase = inphase + inphase_tmp; 
        end              
       % Quadrature-phase (Q) component    
       for pos=1:length(qdata) 
            quadrature_tmp = qdata(pos)*(trapmf(t,[(pos-1).*symduration 
(pos-1).*symduration+tstep pos.*symduration pos.*symduration+tstep])); 
            quadrature = quadrature + quadrature_tmp; 
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       end         
    case('gauss') 
         % GAUSSIAN PULSE-SHAPING 
         % In-phase (I) component 
         for pos=1:length(idata) 
            inphase_tmp = idata(pos)* (gbellmf(t,[0.5*symduration 4.5 
(pos-0.5).*symduration])); 
            inphase = inphase + inphase_tmp; 
         end                    
        % Quadrature-phase (Q) component  
         for pos=1:length(qdata) 
            quadrature_tmp = qdata(pos)*(gbellmf(t,[0.5*symduration 4.5 
(pos-0.5).*symduration])); 
            quadrature = quadrature + quadrature_tmp; 
        end 
end 
 
%% Bipolar to unipolar conversion and re-scale to Nbits out 
inphase = ( (inphase+1)/2)*(2^Nbits-1); 
quadrature = ( (quadrature+1)/2)*(2^Nbits-1); 
 
%% Account for overflows / underflows 
inphase(find(inphase>(2^Nbits-1))) = (2^Nbits-1); 
quadrature(find(quadrature>(2^Nbits-1))) = (2^Nbits-1); 
inphase(find(inphase<0)) = 0; 
quadrature(find(quadrature<0)) = 0; 
 
%% Generate inter data 
iandq = [inphase;quadrature]; 
inter = round(iandq(:)); 
inphase = round(inphase); 
quadrature = round(quadrature); 
 
 
 
%% Plots 
% Plot parameters 
axis_size = 12; title_size = 9; title_weight = 'normal'; 
axis_weight = 'normal'; plot_width = 1.5; 
% I component 
figure; 
subplot(2,1,1); plot(t,(inphase)./max(inphase), 'c', 'LineWidth', 
plot_width); 
grid on; ylabel('I-channel Bit Pattern');   hold on;    ylim([-0.1 1.1]); 
xlim([0 2e-7]); 
switch lower(interp) 
    case ('no') 
        title('No Pulse Shaping', 'FontSize', title_size-3, 'FontWeight', 
title_weight); 
    case ('gauss') 
        title('Gaussian windowing', 'FontSize', title_size-3, 
'FontWeight', title_weight); 
end 
text(0.5e-7, 0.5, '1st Symbol'); 
text(1.5e-7, 0.5, '2nd Symbol'); 
 
% Q component 
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subplot(2,1,2); plot(t,(quadrature)./max(quadrature), 'm', 'LineWidth', 
plot_width); 
grid on; ylabel('Q-channel Bit Pattern');   hold on;    ylim([-0.1 1.1]); 
xlim([0 2e-7]); 
switch lower(interp) 
    case ('no') 
        title('No Pulse Shaping', 'FontSize', title_size, 'FontWeight', 
title_weight); 
    case ('gauss') 
        title('Gaussian windowing', 'FontSize', title_size, 'FontWeight', 
title_weight); 
end 
 
 
IV)      Exporting the data to the HP16500C Logic Analyzer  

<filename: export_bit_pattern_16500C.m> 

 
function dummy_var= export_bit_pattern_16500C(filename, data, data_label, 
ClckPeriod, Nbits) 
% Author: Rahul Gupta 
% Program to export a stream of data, <data> to the logic analyzer 
% Open the file as indicated by its data_label <filename>  
% in text mode and enable write mode. Create the file if it does not 
% already exist. 
 
fid = fopen(filename, 'wt'); 
% The syntax for the logic analyzer is device-specific and  
% was extensivey adopted from [20] 
 
% Specify ASCII mode 
fprintf(fid,'ASCII     000000\n'); 
fprintf(fid,'ASCDOWN\n'); 
 
% Enable 'fullport' operation mode 
% Maximum speed available is 100Mbits/sec 
fprintf(fid,'FORM:MODE FULL\n'); 
 
% Specify clock period 
fprintf(fid,'FORM:CLOC INT, %iE-9\n', ClckPeriod); 
 
% Specify the clock and the data ports 
fprintf(fid,'LABEL ''CLK'',%i\n', 1); 
% Simulate seven dummy port bits to obtain access to a different data POD 
fprintf(fid,'LABEL ''Dummy'',%i\n', 7);  
fprintf(fid,'LABEL ''%s'',%i\n', data_label, Nbits); 
 
% Device specific syntax derived from [20] 
fprintf(fid, 'VECT\n'); 
fprintf(fid, '*M\n'); 
 
i = 1; 
while(i<=size(data,1)) 
       % Format of data being written  
       % <clock state> <dummy7-0> <hex representation of IQ data> 
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       fprintf(fid,'0 0 %X\n', data(i)); 
       fprintf(fid,'1 0 %X\n', data(i)); 
       i = i+1; 
end; 
 
fprintf(fid, '0 0 0 %X\n'); 
fclose(fid); 
dummy_var = 0; 

 
 
V) Decode sampled data stream to reconstruct input constellation 

<filename: QAMReceiver.m> 

 
 
% Author: Rahul Gupta  
% Function to recover the symbols from the sampled I and Q datastream 
% symboltime and timestep are the same, as defined in the 
QAM_Transmitter.m 
function symbols = QAMReceiver(symboltime, timestep, icomponent, 
qcomponent, Nbits); 
t = 0:timestep:symboltime;  % Define the time vector 
% Plot the received data 
plot(icomponent,'r'); hold on; plot(qcomponent, 'b'); hold off; 
 
% Unipolar to bipolar conversion 
icomponent = round(icomponent - 2^(Nbits-1)); 
qcomponent = round(qcomponent - 2^(Nbits-1)); 
 
% Design a Gaussian-pulse shaped matched filter to decode 
gaussfilter = gbellmf(t,[0.5*symboltime 4.5 0.5*symboltime]); 
 
% Convolve to get original data back 
idata = conv(gaussfilter, icomponent); 
qdata = conv(gaussfilter, qcomponent); 
 
% Plot retrieved data 
plot(idata,'r'); hold on; plot(qdata, 'b'); hold off; 
if (length(idata) ~= length(qdata)) 
    display ('Error! Lengths of vectors I and Q data must be equal!'); 
end 
 
% Perform decimation of datastream in the ratio symboltime/timestep so as 
% to only retain datapoints of interest 
idatatmp = reshape(idata, round((symboltime/timestep)), round( 
length(idata)./(symboltime/timestep) )); 
qdatatmp = reshape(qdata, round((symboltime/timestep)), round( 
length(qdata)./(symboltime/timestep) )); 
idatatmp = idatatmp(round((symboltime/timestep)),:); 
qdatatmp = qdatatmp(round((symboltime/timestep)),:); 
 
idata_rx =  round((idatatmp) ./(2.^Nbits -1)); 
qdata_rx =  round((qdatatmp) ./(2.^Nbits -1)); 
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% Convert to symbols 
j = sqrt(-1); 
symbols = idata_rx + j*qdata_rx; 
symbols = symbols(1:64); 
% Plot constellation 
 
scatterplot(symbols); 
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Appendix C: VHDL Pattern Generator Code 
Sine Wave Lookup Table 
<filename: Sine_LUT.vhd> 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use IEEE.NUMERIC_STD.ALL; -- for conversion: SLV to int, etc. 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity Sine_LUT_v3 is 
    Port ( Sine : out  STD_LOGIC_VECTOR (5 downto 0); 
           Index : in  STD_LOGIC_VECTOR (7 downto 0)); 
end Sine_LUT_v3; 
 
architecture Behavioral of Sine_LUT_v3 is 
 
-- Define LUT as an array 
 
type LUT is array(0 to 255) of std_logic_vector (5 downto 0); 
 
constant Table: LUT := ( 
"100000", 
"000000", 
"0000
... 

10", 

"111111"); 
 
begin 
 
-- Symbol is SLV, must convert to integer, 
-- then set Sine to the 6-bit value within Table that Index points to 
Sine <= Table(conv_integer(unsigned(Index))); 
 
end Behavioral; 
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In-phase Lookup Table 
<filename: I_LUT.vhd> 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use IEEE.NUMERIC_STD.ALL; -- for conversion: SLV to int, etc. 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity I_LUT_ADS is 
    Port ( Ipd : out  STD_LOGIC_VECTOR (15 downto 0); 
           Symbol : in  STD_LOGIC_VECTOR (5 downto 0)); 
end I_LUT_ADS; 
 
architecture Behavioral of I_LUT_ADS is 
 
-- Define LUT as an array 
type LUT is array(0 to 63) of std_logic_vector (15 downto 0); 
 
constant Table: LUT := ("0010010110000001", 
"0010101011001110", 
"0010
... 

101111101001", 

"1101101001111100"); 
 
begin 
  
 process(Symbol) 
  
 begin 
  -- Symbol is SLV, must convert to integer, 
  -- then set Ipd to the 16-bit value within Table that Symbol 
points to 
  Ipd <= Table(conv_integer(unsigned(Symbol)));  
  
 end process; 
 
end Behavioral; 
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Quadrature Lookup Table 
<filename: Q_LUT.vhd> 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use IEEE.NUMERIC_STD.ALL; -- for conversion: SLV to int, etc. 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity Q_LUT_ADS is 
    Port ( Qpd : out  STD_LOGIC_VECTOR (15 downto 0); 
           Symbol : in  STD_LOGIC_VECTOR (5 downto 0)); 
end Q_LUT_ADS; 
 
architecture Behavioral of Q_LUT_ADS is 
 
-- Define LUT as an array 
 
type LUT is array(0 to 63) of std_logic_vector (15 downto 0); 
 
constant Table: LUT := ("1101101001111100", 
"1011110011011000", 
"1010
... 

010000001000", 

"0010010110000001"); 
 
begin 
 
 process(Symbol) 
  
 begin 
  -- Symbol is SLV, must convert to integer, 
  -- then set Ipd to the 16-bit value within Table that Symbol 
points to 
  Qpd <= Table(conv_integer(unsigned(Symbol)));  
  
 end process; 
 
end Behavioral; 
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