

i

 Simulation of the Propagation of Terahertz Waves in Linear

& Nonlinear Isotropic Media

A Major Qualifying Project Report

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Miguel A. Aranda R.

April 26, 2018

Approved by:

Professor Alex Zozulya, Advisor

Physics Department

Professor Reinhold Ludwig, Advisor

Electrical & Computer Engineering Department

Professor Lyubov Titova, Co-Advisor

Physics Department

ii

Abstract

 Terahertz (THz) spectroscopy offers the possibility to study and characterize the dielectric

response of materials. Novel developments in the generation of THz pulses allow the creation of

high peak electric fields which enable the observation of nonlinear effects. This MQP deals with

the development of MATLAB code using the split-step method to simulate the propagation of THz

pulses in linear and nonlinear isotropic media, more specifically, liquids. Programs were developed

to determine the dielectric properties of a sample through the analysis of a pulse propagated

through the sample, and to calculate threshold electric field values for observing nonlinearities.

The code was tested with experimental data of propagation through water samples.

iii

Acknowledgements

 I would like to acknowledge and thank my advisors, Professors Alex Zozulya, Reinhold

Ludwig and Lyubov Titova, for their help and guidance throughout the completion of this Major

Qualifying Project. I also want to thank Kateryna Kushnir for her feedback and support.

iv

Table of Contents

Abstract ... ii

Acknowledgements .. iii

Introduction ... 1

The terahertz range ... 1

Motivation ... 4

Propagation of electromagnetic radiation in dielectric media .. 6

Pulse propagation model ... 6

Kerr effect ... 11

Split step method... 12

The Debye model .. 14

Using THz-TDS to measure complex refractive index ... 15

Objective ... 17

Design ... 18

Programming Language .. 18

Numerical Implementation ... 18

Input Pulse .. 22

Results ... 26

Linear Test .. 26

Comparison to experimental data ... 28

Extraction of the complex refractive index ... 30

Nonlinear effect thresholds ... 33

Conclusion & Future Work ... 37

Bibliography ... 38

Appendix A: General functions .. 41

Appendix B: Envelope calculation ... 49

Appendix C: Linear test .. 50

Appendix D: Comparison to experimental data .. 52

Appendix E: Dielectric property extraction .. 54

Appendix F: Nonlinear effect threshold ... 60

1

Introduction

The study of terahertz (THz) waves and their interaction with matter has become a very

productive scientific field, contributing advances in many fields. Ruben’s experiments on

blackbody emission (at about 6 THz) at the start of the twentieth century led to Planck’s blackbody

radiation law, and subsequently to the formulation of quantum mechanics. Nevertheless, progress

in the field was delayed until the 1970s, when researchers discovered the use of THz frequencies

for astronomical research [1]. Since then, discoveries, inventions and advances have been

compounding to increase the depth and breadth of THz analysis.

The goal of this project is the modelling of the propagation of THz waves in linear and

nonlinear isotropic media and use this ability to compare it to experimental results, analyze data,

and obtain a deeper understanding of the phenomena observed in the lab. This can be achieved

through computer modelling, and mores specifically, the use of the split-step method for

nonlinearities. For this implementation, the development of an appropriate model requires an

understanding of the experimental setup used in the laboratory, the pieces of software used, in

particular Matlab, the underlying mathematics involved in the program (partial differential

equations, Fourier transforms, and various discretization issues), and the interaction between these

components.

The terahertz range

THz waves are electromagnetic radiation between the milimeter wave and infrared portions

of the EM spectrum, and ranges between 0.3THz-20THz (1012 Hz), or the corresponding

wavelengths of 1 mm − 15 μm and energies of 1.2 − 8.3 meV, as seen in figure 1. The use of

THz provides a high bandwidth and good resolution while remaining non-invasive and non-

destructive. THz analysis has become the method of choice for study in various fields. In material

science and manufacturing it is used for property identification and defect detection [2]. In

medicine, for non-invasive imaging [3] (even 3D imaging). For security purposes, THz are

particularly useful, since many of the materials used in weapon manufacturing have a

characteristic, identifiable resonance spectrum in the THz domain which can be taken advantage

of for concealed weapon detection [4]. In the field of museum conservation, THz waves are used

2

to analyze the making of objects of interest without having to break them apart, and has provided

a new method of studying painting techniques and restoration efforts [5]. THz waves are also being

studied as an alternative to current communication frequencies, to provide higher bandwidths [6].

In particular, at WPI’s Ultrafast THz and Optical Spectroscopy Lab, THz waves are used to study

nanomaterials for photovoltaic applications, the role of intermolecular dynamics in chemical

reactions, and the properties of cells [7].

Figure 1: EM spectrum highlighting the phenomena analyzed with THz (semiconductors, nanomaterials, modes of liquids and

proteins) from [8].

Before its recent popularity, the use of THz radiation was unavailable to researchers, since

it was beyond what was accessible for electronic circuity and below what could be accessed

optically [8]. However, THz radiation can now be generated through a variety of methods, most

notably optical rectification and electronic oscillators. Optical rectification is a nonlinear process

in which a polarization is generated in a nonlinear medium through the use of an intense optical

beam, and is the method capable of working at the highest efficiency and generating the strongest

pulses [9]. Thanks to this technology it is possible to generate short, nearly single-cycle THz pulses

using ultrafast optical and infrared lasers, most notably Ti:Sapphire lasers. Other systems include

synchrotrons, quantum cascade lasers and free electron lasers [8]. The short duration and broad

bandwidth of THz pulses lend themselves to application in spectroscopy. There are various

specific spectroscopic techniques involving THz, some of which are time-domain spectroscopy

(TDS), time-resolved spectroscopy (TRTS), emission spectroscopy (TES) and imaging. These

distinct implementations allow the investigation of different features of interest. For instance, TDS

3

is used to determine the static properties of a sample (like complex permittivity), while TRTS helps

to analyze dynamic properties of a sample (which is of use in semiconductor physics). A benefit

of the use of THz is that coherent time domain detection allows researchers to determine the

amplitude and phase of the pulse, and can be used to compute the complex frequency-resolved

permittivity of the sample without Kramers-Kronig analysis [1]. A sample permittivity spectrum

is shown in figure 2, which also outlines processes observed at each different section of the

electromagnetic spectrum with atomic resonances characterizing the THz gap.

Figure 2: Atomic interactions and frequency (borrowed from [10])

In typical THz spectroscopy experiments (as seen in figure 3) Ti:sapphire laser pulses

traverse the sample and are then measured in the time domain. THz-TDS can be used for the

analysis of solids, gases, and liquids, though this project focuses on the latter. For liquids, dielectric

properties are determined by the formation, interaction and relaxation of dipoles [8], and water is

of paramount importance to this area. Water has high absorption in the THz range, with an

absorption coefficient of about 250 cm−1 at 1 THz [11]. This property leads to many practical

applications, such as quantifying hydration in medicine or the analysis of dielectric properties of

solutions. However, penetration into biological tissues is limited to a superficial layer of skin, and

the propagation through air is hindered by the presence of water molecules in air.

4

Figure 3: A THz-TDS experimental setup using a broadband pulsed laser.

Motivation

This project has two main aims. First, to simulate linear propagation through liquids, to

model results and extract their complex dielectric functions. Second, to simulate nonlinear effects

for high peak electric fields, which will become more relevant through the use of new THz sources

with peak field values of MV/cm. This will provide insight into the new phenomena that can be

observed. The resulting simulation can be used to estimate the threshold electric field value for

which the effects become pronounced.

The study of THz spectroscopy and nonlinearities has many interesting applications. The

THz range is coincident with the frequency of many important vibrational modes, as seen in figure

4. 2D materials can be used for integrated photonic circuits operating at THz wavelengths,

including the possibility of developing graphene based emitters, detectors, and modulators [12].

THz imaging can be used to investigate subsurface damages in solar cells [13]. In the realm of

biotechnology, THz radiation can be used to recognize and characterize biomolecules since it

coincides with the low-frequency vibration, rotation, and translation biological molecules [14]. In

particular, for liquids, THz can be used to detect liquid explosives [15], improving airport security,

to quantify refined oil mixtures [16], and multiple biological uses, such as drug analysis and

5

characterization and skin cancer imaging, amongst others [17]. These and many others show the

potential that THz has as an area of interdisciplinary research and applications.

Figure 4: The THZ spectrum and molecular modes, from [18].

6

Propagation of electromagnetic radiation in dielectric media

The analysis of the phenomena observed in the lab requires the study of non-linear optics,

the development of a pulse propagation model, an algorithm to implement the model in a computer,

and a model to describe material properties in the THz domain. The mathematical formulation of

the aforementioned aspects is outlined and discussed in the following sections.

Pulse propagation model

The behavior of electromagnetic radiation is governed, at its most fundamental level, by

Maxwell’s Equations [19] (1-4):

 ∇ ∙ 𝑫 = 𝜌𝑓 (1)

 ∇ ∙ 𝑩 = 0 (2)

 ∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 (3)

 ∇ × 𝑯 = 𝑱𝑓 +
𝜕𝑫

𝜕𝑡
 (4)

where 𝜌𝑓 is the free charge density and 𝑱𝑓 is the free current density, 𝑬 is the electric field, 𝑫 is

the electric displacement field, 𝑩 and 𝑯 are the magnetic fields. Fields 𝑫 and 𝑯 are defined

through the constitutive relations:

 𝑫 ≡ 𝜀0𝑬 + 𝑷 (5)

 𝑯 ≡
1

𝜇0
𝑩 − 𝑴 (6)

here 𝜀0 and 𝜇0 are the permittivity and permeability of free space (𝜀0𝜇0 = 𝑐−2, where 𝑐 is the

speed of light in vacuum), while 𝑷 and 𝑴 are polarization and magnetization, respectively.

In the following we will be working with dielectric (𝜌𝑓 = 0, 𝑱𝑓 = 0) and nonmagnetic (𝑴 = 0)

media. We can obtain a single equation for the propagation of the electric field 𝑬 by taking the

curl of eq. (3):

7

 ∇ × ∇ × 𝑬 = −
𝜕

𝜕𝑡
∇ × 𝑩 (7)

To transform eq. (7), we first use 𝑴 = 0 and eq. (6), to set

𝑩 = 𝜇0𝑯

Then, given that 𝑱𝑓 = 0, eq. (4), becomes

∇ × 𝑩 = 𝜇0

𝜕𝑫

𝜕𝑡

which is now used to get

 ∇2𝑬 − ∇(∇ ∙ 𝑬) = −𝜇0

𝜕2𝑫

𝜕𝑡2
 (8)

Furthermore, eq. (6) can be used to replace the electric displacement field in favor of 𝑬 and 𝑷:

 ∇2𝑬 − ∇(∇ ∙ 𝑬) =
1

𝑐2

𝜕2

𝜕𝑡2
(𝑬 +

𝑷

𝜀0
) (9)

In an isotropic linear medium, ∇ ∙ 𝑬 = 0. In the presence of nonlinearity and transverse spatial

effects, this is not necessarily the case. Nevertheless, in the following we will assume that the

transverse effects are sufficiently small and set ∇ ∙ 𝑬 = 0. Additionally, we will assume that the

electromagnetic field is polarized in the same direction and drop vector notation.

 ∇2𝐸 =
1

𝑐2

𝜕2

𝜕𝑡2
(𝐸 +

𝑃

𝜀0
) (10)

In general, the jth component of the polarization field is related to the electric field as

1

𝜀0
𝑃𝑗 = ∫ 𝜒𝑗𝑘

(1)(𝑡 − 𝜏)𝐸𝑘(𝜏)𝑑𝜏
𝑡

−∞

+

∫ 𝜒𝑗𝑘𝑙
(2)(𝑡 − 𝜏1, 𝑡 − 𝜏2)𝐸𝑘(𝜏1)𝐸𝑙(𝜏2)𝑑𝜏1𝑑𝜏2

𝑡

−∞

+

∫ 𝜒𝑗𝑘𝑙𝑚
(3) (𝑡 − 𝜏1, 𝑡 − 𝜏2, 𝑡 − 𝜏3)𝐸𝑘(𝜏1)𝐸𝑙(𝜏2)𝐸𝑚(𝜏3)𝑑𝜏1𝑑𝜏2𝑑𝜏3

𝑡

−∞

+ ⋯

(11)

8

where 𝜒𝑗𝑘
(1)

 is the linear susceptibility and 𝜒(𝑛) is the nth order nonlinear susceptibility. We will

consider the simplest case of interest, where the optical medium is centrosymmetric and isotropic.

In this case, 𝜒(2) = 0, and eq. (4) can be simplified to

1

𝜀0
𝑃 = ∫ 𝜒(1)(𝑡 − 𝜏)𝐸(𝜏)𝑑𝜏

𝑡

−∞

+

∫ 𝜒(3)(𝑡 − 𝜏1, 𝑡 − 𝜏2, 𝑡 − 𝜏3)𝐸(𝜏1)𝐸(𝜏2)𝐸(𝜏3)𝑑𝜏1𝑑𝜏2𝑑𝜏3

𝑡

−∞

=
1

𝜀0

(𝑃𝐿 + 𝑃𝑁𝐿)

(12)

where we have separated the polarization into linear and nonlinear parts.

The Fourier transform of the electric field 𝐸(𝑡) defined by the following relations:

𝐸(𝜔) =
1

2𝜋
∫ 𝐸(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡

∞

−∞

,

𝐸(𝑡) = ∫ 𝐸(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔
∞

−∞

(13)

Fourier transforms of 𝐷(𝜔) and 𝑃𝑁𝐿(𝜔) in (7) are defined analogously.

By applying the transform to eq. (5), we arrive at:

 𝐷(𝜔) = 𝜀(𝜔)𝐸(𝜔) + 𝑃𝑁𝐿(𝜔) (14)

The quantity 𝜀(𝜔) in (6) is the linear dielectric constant of the medium, defined by the relations

 𝜀(𝜔) = 1 + 𝜒(1)(𝜔) (15)

where

𝜒(1)(𝜔) = ∫ 𝜒(1)(𝜔)𝑒𝑖𝜔𝑡𝑑𝑡
∞

0

is the Fourier transform of the linear susceptibility.

In the following we assume that the electric field 𝐸(𝑡) can be represented as

 𝐸(𝑡) = 𝑒(𝑡)𝑒−𝑖𝜔0𝑡 + 𝑐. 𝑐. (16)

9

where 𝑐. 𝑐. stands for the complex conjugate and 𝑒(𝑡) is a complex amplitude that changes slowly

as compared to exp(−𝑖𝜔0𝑡):

 |
𝑑𝑒

𝑑𝑡
| ≪ 𝜔0|𝑒| (17)

Similarly, we write

 𝑃𝑁𝐿(𝑡) = 𝑝𝑁𝐿(𝑡)𝑒−𝑖𝜔0𝑡 + 𝑐. 𝑐 (18)

Assumption (16) means that 𝐸(𝜔) and 𝑃𝑁𝐿(𝜔) are both localized around 𝜔 = ±𝜔0.

Fourier transform of eq. (10) reads

 ∇2𝐸(𝜔) =
𝜔2

𝑐2
[𝜀(𝜔)𝐸(𝜔) + 𝑃𝑁𝐿(𝜔)] (19)

Inverse Fourier transform of eq. (19) allows one to obtain an equation for the slowly varying

envelope 𝑒(𝑡) given by eq. (16).

We can represent 𝑘2(𝜔) = (
𝜔

𝑐
)

2

𝜀(𝜔) as a power series around 𝜔 = 𝜔0:

 𝑘2(𝜔) = ∑
1

𝑚!

𝑑𝑚𝑘2

𝑑𝜔𝑚
|

𝜔0

(𝜔 − 𝜔0)𝑚

∞

𝑚=0

This allows us to get (see [20]):

 ∇2𝑒 + [∑
𝑖𝑚

𝑚!

𝑑𝑚𝑘2

𝑑𝜔𝑚
|

𝜔0

𝜕𝑚

𝜕𝑡𝑚

∞

𝑚=0

] 𝑒 +
𝜔0

𝑐2𝜀0
(1 +

𝑖

𝜔0

𝜕

𝜕𝑡
) 𝑝𝑁𝐿 = 0 (20)

Further representing the envelope 𝑒(𝑡) as

 𝑒(𝑟, 𝑡) = 𝐴(𝑟, 𝑡) exp[𝑖𝑘(𝜔0)𝑧] (21)

where 𝑘(𝜔) =
𝜔

𝑐
√𝜀(𝜔), substituting it into eq. (14) and dropping the subscript 0 on 𝜔0 allows

us to get

 2𝑖𝑘 (
𝜕

𝜕𝑧
+ 𝑘′

𝜕

𝜕𝑡
) 𝐴 +

𝜕2

𝜕𝑧2
𝐴 + ∇⊥

2 𝐴 (22)

10

+ [∑
𝑖𝑚

𝑚!

𝑑𝑚𝑘2

𝑑𝜔𝑚
|

𝜔0

𝜕𝑚

𝜕𝑡𝑚

∞

𝑚=2

] 𝐴 +
𝜔2

𝑐2𝜀0
(1 +

𝑖

𝜔

𝜕

𝜕𝑡
)

2

𝑝𝑁𝐿 = 0

where 𝑘′ = 𝑑𝑘(𝜔)/𝑑𝜔.

In the following we will neglect the second derivative with respect to 𝑧 in eq. (22) assuming that

|
𝜕

𝜕𝑧
𝐴| ≪ |𝑘||𝐴|.

We will also omit the transverse Laplacian ∇⊥
2 assuming that the electromagnetic field is

sufficiently wade in the transverse dimension. We will also introduce the following notation for

the Taylor expansion of 𝑘:

 𝛽𝑚 = Re [(
𝜕𝑘(𝜔)

𝜕𝜔
)

𝜔0

]

 𝛼𝑚 = Im [(
𝜕𝑘(𝜔)

𝜕𝜔
)

𝜔0

]

𝐷̂ = 𝑖
𝛼0

2
−

𝛼1

2
𝜕𝑡 + ∑

𝛽𝑚 +
𝑖𝛼𝑚

2
𝑚!

(𝑖𝜕𝑡)𝑚

∞

𝑚=2

This reduces eq. (22) to

 𝜕𝑧𝐴 = 𝑖𝐷̂𝐴 +
𝜔2

𝑐2𝜀0
(1 +

𝑖

𝜔

𝜕

𝜕𝑡
)

2

𝑝𝑁𝐿 (23)

Furthermore, we will only consider the lowest order and thus simpler contribution to 𝑝𝑁𝐿. We

know that polarization is related to the electric field in the third order (eq. (12)), so we will combine

its coefficients into a single nonlinear parameter 𝛾 as follows:

 𝜕𝑧𝐴 = 𝑖𝐷̂𝐴 + 𝑖𝛾|𝐴|2𝐴 (24)

Finally, for most simulations we do not need to consider every term in the Taylor expansion of 𝑘,

so we will limit ourselves to three, which makes the final version of eq. (24) become:

 𝜕𝑧𝐴 = (−
𝛼0

2
− 𝑖

𝛼1

2
𝜕𝑡 + (−𝑖

𝛽2

2
+

𝛼2

4
) (𝜕𝑡)2 + (

𝛽3

3!
+ 𝑖

𝛼3

2 ∗ 3!
) (𝜕𝑡)3 + 𝑖𝛾|𝐴|2) 𝐴 (25)

11

The result of the propagated envelope can be transformed back into the oscillating electric field by

multiplying the envelope by 𝑒−𝑖(𝜔0𝑡). Furthermore, we are working in a reference frame moving

at the speed of the wave, so we use 𝜏 = 𝑡 + 𝛽1𝑧 to get back to static reference frame and account

for the different propagation time inside the medium.

Kerr effect

The main source of nonlinear effects observed in THz regime experiments is termed the Kerr

effect, a change in the refractive index of a medium by an amount proportional to |𝑬|2. First of all,

the complex refractive index of a medium, 𝑛, is related to the complex dielectric function by the

following relations

 𝜀 = 𝑛2

(26)

 Re[𝜀] = Re[𝑛]2 − Im[𝑛]2

 Im[𝜀] = 2Re[𝑛]Im[𝑛]

 Re[𝑛] = √
|𝜀| + Re[𝜀]

2

 Im[𝑛(𝜔)] = √
|𝜀| − Re[𝜀]

2

Recall, from eq. (14) the displacement field is separated using the nonlinear polarization:

 𝐷 = 𝜀𝐸 + 𝑃𝑁𝐿 (27)

The 𝜀 in eq. (27) can be now rewritten in terms of electric susceptibilities:

 𝜀 = 1 + 4𝜋𝜒(1) (28)

where 𝜒(1) is the linear electric susceptibility. Likewise, the nonlinear polarization can also be

expressed using electric susceptibilities:

𝑃𝑁𝐿 = 𝜀0𝜒𝑛𝑙𝐸

𝑃𝑁𝐿 = 𝜀0(𝜒(1)𝐸 + 𝜒(2)𝐸2 + 𝜒(3)𝐸3 + ⋯)

(29)

12

where 𝜒(𝑛) is called the nth order susceptibility. These values can be calculated by analyzing the

potential well produced by the electric field. The optical Kerr effect causes the refractive index of

a medium to become dependent on beam intensity. To express this, consider the nonlinear

dielectric constant of a medium in which 𝜒(2) = 0:

 𝜀𝑟𝑛𝑙
= 1 + 𝜒(1) + 𝜒(3)𝐸2 = 𝜀𝑟 + ∆𝜀 (30)

from eq. (30), and by using eq. (26), 𝑛 must be:

 𝑛 = √𝜀𝑟 + ∆𝜀 = √𝜀𝑟 +
∆𝜀

2√𝜀𝑟

= 𝑛0 +
𝜒3|𝑬|2

2𝑛0
 (31)

by assuming that 𝜀𝑟 ≪ ∆𝜀 in the second equality. This shows that 𝑛 changes proportionally to the

3rd order nonlinearity and the square of the electric field. Furthermore, since 𝜒(3) and 𝑛0 are

constants, we can set:

 𝑛 = 𝑛0 + 𝐾|𝐸|2 (32)

where 𝐾 is called the Kerr constant of a medium. Notice that this parallels the nonlinear term in

eq. (25), in which 𝛾 is the nonlinear parameter multiplying |𝐴|2.

Split step method

The split step method is a simulation scheme to account for nonlinearities in which

propagation is performed in multiple steps. Each step is divided into two, half of the step is used

for the linear propagation, and the other half for the non-linear. In mathematical terms, the

differential equation employed must be divisible into linear and nonlinear operators [21]:

𝜕𝐴

𝜕𝑧
= [𝐷̂ + 𝑁̂]𝐴 (33)

with our particular differential equation the linear operator 𝐷̂ is the dispersion operator, while 𝑁̂ =

𝑖𝛾|𝐴|2. To perform the propagation, we separate the space we need to traverse into small steps of

size ℎ. We first propagate the pulse a distance of ℎ/2 and act on it only with the linear operator.

After that, we take a complete step of ℎ and act on the pulse with the nonlinear operator. Finally,

we take another half step and act with the linear operator to get:

13

 𝐴(𝑧 + ℎ) = 𝑒
𝐷̂ℎ
2 𝑒𝑁̂ℎ𝑒

𝐷̂ℎ
2 𝐴(𝑧) (34)

This symmetry helps to increase the precision of the result, notice that performing multiple steps

in order produces eq. (35):

 𝐴(𝑧 + 𝑛ℎ) = 𝑒
𝐷̂ℎ
2 𝑒𝑁̂ℎ𝑒

𝐷̂ℎ
2 𝑒

𝐷̂ℎ
2 𝑒𝑁̂ℎ𝑒

𝐷̂ℎ
2 … 𝐴(𝑧) = 𝑒

𝐷̂ℎ
2 𝑒𝑁̂ℎ𝑒𝐷̂ℎ𝑒𝑁̂ℎ … 𝑒

𝐷̂ℎ
2 𝐴(𝑧) (35)

Since linear half steps are performed one after the other, they can be combined into a single full-

length step. The exact answer is given by acting on the pulse with both linear and nonlinear

operators at the same time, which yields eq. (36):

 𝐴(𝑧 + ℎ) = 𝑒(𝐷̂+𝑁̂)ℎ𝐴(𝑧) (36)

If the two operators (linear and nonlinear) were commutative, the split-step result would be exact.

Nevertheless, to analyze the error involved in this approximation we can Taylor expand the

exponentials in eq. (34) [21] for each part of the propagation to obtain eqs. (37-38):

 𝑒
𝐷̂ℎ
2 = 1 +

ℎ

2
𝐷̂ +

ℎ2

8
𝐷̂2 + 𝑂(ℎ3) (37)

𝑒𝑁̂ℎ = 1 + ℎ𝑁̂ +

ℎ2

2
𝑁̂2 + 𝑂(ℎ3)

(38)

where 𝑂(ℎ3) indicates that the remaining terms in the expansion are of the order of ℎ3 or higher.

The multiplication of these Taylor expansions results in:

 𝑒
𝐷̂ℎ
2 𝑒𝑁̂ℎ𝑒

𝐷̂ℎ
2 = 1 + ℎ𝐷̂ + ℎ𝑁̂ +

ℎ2

2
𝐷̂2 +

ℎ2

2
𝑁̂2 +

ℎ2

2
𝐷̂𝑁̂ +

ℎ2

2
𝑁̂𝐷̂ + 𝑂(ℎ3) (39)

In contrast, the Taylor expansion of the exact solution is given by:

 𝑒(𝐷̂+𝑁̂)ℎ = 1 + ℎ(𝐷̂ + 𝑁̂) +
1

2
ℎ2(𝐷̂ + 𝑁̂)

2
+ 𝑂(ℎ3) (40)

As seen in above, the Taylor expansions of the exact solution (eq. (36)) and the split step solution

(eq. (39)) are identical up to the ℎ2 terms. This implies that the error in the approximation of the

propagation of the wave will be a factor of the cube of the step size ℎ. Therefore, the split step

method is second-order accurate.

14

The split step method was chosen in favor of other simulation schemes like the finite

difference method because it relies on FFTs which can be efficiently computed. Furthermore, it’s

second order accuracy is enough for the desired precision of the simulation.

The Debye model

 The Debye model is used to represent the (frequency-dependent) dielectric function of

liquids by representing them as damped oscillations. In general, the dielectric function is divided

into relaxation processes and vibrational modes. These are used to represent various physical

phenomena, including molecular stretch, rotational modes and collective vibrational modes. The

characteristic oscillatory modes of water are shown in figure 5. In eq. (41), these are represented

through sums of up to N for relaxation processes and M vibrational modes:

 𝜀(𝜔) = ∑
∆𝜀𝑗

1 − 𝑖𝜔𝜏𝑗

𝑁

𝑗=1

+ ∑
𝐴𝑗

𝜔𝑗
2 − 𝜔2 − 𝑖𝜔𝛾𝑗

𝑀

𝑗=1

+ 𝜀∞ (41)

where the coefficients 𝜏𝑗 are the characteristic relaxation time, 𝜔𝑗 the pulse carrier frequency, 𝐴𝑗

the vibrational amplitudes, and 𝜀∞ the permittivity at infinite frequency [22]. In the computer

simulations, this model is used to obtain the values for the 𝛼 and 𝛽 coefficients in the dispersion

operator.

Figure 5: Main vibration modes of water, from [17].

15

Using THz-TDS to extract dielectric properties

THz-TDS can be used to extract the properties of a material through which a wave has propagated.

While mimicking the experimental setup shown in figure 6, the Fourier-space amplitude and phase

of the reference pulse and sample pulse can be compared to obtain the propagation characteristics

of the material.

Figure 6: Experimental setup for dielectric property extraction

To do so, first we recall that from the propagation section, we split the complex propagation

constant 𝑘 into its real components 𝛽 and complex components 𝛼, and used those as sum of 𝜔0-

centered terms. Therefore, we can now define

 𝑘(𝜔) = 𝛽(𝜔) + 𝑖𝛼(𝜔) (42)

where

 𝛽(𝜔) = ∑
𝛽𝑚

𝑚!
(𝜔 − 𝜔0)𝑚

∞

𝑚=0

, 𝛼(𝜔) = ∑
𝛼𝑚

𝑚!
(𝜔 − 𝜔0)𝑚

∞

𝑚=0

Furthermore, from the solution of the linear part of eq. (25) in the Fourier domain, we can see that

a propagated pulse will differ from the initial pulse by:

16

 𝐸𝑖𝑛(𝜔) = 𝐸𝑜𝑢𝑡(𝜔)𝑒
−𝛼(𝜔)𝑑

2 𝑒𝑖(𝛽)𝑑 (43)

where d is the distance covered inside the medium. We first separate the ratio of electric fields into

amplitude and phase:

𝐸𝑖𝑛(𝜔)

𝐸𝑜𝑢𝑡(𝜔)
= 𝑇(𝜔)𝑒𝑖𝜙(𝜔) (44)

This relation can allow us to extract the 𝛼(𝜔) and 𝛽(𝜔) of a medium by using the following,

 𝑇(𝜔) = 𝑒−
𝛼(𝜔)𝑑

2

 𝛼(𝜔) = − (
2

𝑑
) ln[𝑇(𝜔)] (45)

 𝑒𝑖𝜙(𝜔) = 𝑒𝑖(𝛽(𝜔)+
𝜔0
𝑐

)𝑑

 𝛽(𝜔) =
𝜙(𝜔)

𝑑
+

𝜔0

𝑐
 (46)

The results for 𝛼 and 𝛽 in equations (45-46) describe the dielectric properties of the propagation

medium, and can also be used, if needed, to calculate the dielectric function 𝜀(𝜔) or the refractive

index 𝑛(𝜔) of the material.

17

Objective

 Since THz spectroscopy is a new and rapidly developing field, experimental methods, and

equipment are frequently improved and upgraded. More intense laser sources and more complex

phenomena are being able to be studied The goal of this MQP is to develop MATLAB simulations

in order to aid the development and understanding of the experiments performed at WPI’s

Terahertz lab, in particular, when stronger sources allow the observation of nonlinear propagation.

It is desired that the simulation should fit certain functionality goals. First of all, its performance

should be accurate. THz experimental data has a large portion of noise components around the

main pulse oscillations, and the experimental setups are fairly complex, with various transmission

and reflection factors involved. The program is intended to serve as a guide for nonlinear effects

and thresholds rather than a perfect linear propagation computation, so errors of up to 0.3 are

considered acceptable. On the other hand, it is very useful to be able to determine the dielectric

function of a medium through the comparison of two pulses, and this method allows for high

accuracy, so a relative error of under 0.1 is expected.

In terms of run-time, this type of simulation is typically not very computationally intensive,

so long run-times are not the norm. Nevertheless, the simulation should be optimized for more

efficient running (looking ahead for the future inclusion of more complex features), and runs

should complete in a matter of seconds. Another requirement for the program is ease of use and

extendibility. Since the program is intended to be used in the laboratory (as opposed to being a

standalone result) ease of use and data visualization can be very helpful for comparing to

experimental data. Furthermore, the extendibility of the code will allow for future improvements

and the modelling of more complex media and phenomena.

18

Design

The main concerns in developing the simulation were precision, ease of use and

modification, and efficiency. The split-step method, which was chosen in favor of other simulation

methods like the finite-difference method, guarantees a precision that the error is at most the cube

of the step size. Another benefit of the split-step is its generality and widespread use, which ensure

it is appropriate for the current design and for future changes. The split-step is also a very

generalized procedure to solve nonlinear equations, so that means that if we wished to alter eq.

(25) to account for other effects or factors, that would require minimal work to do in code, since

the solution and analysis procedure would remain the same. Furthermore, the ability to simulate

the propagation of the wave through a medium, and to double-check the results by extracting the

dielectric properties, is helpful to discover mistakes.

Programming Language

The two principal options for programming language were C++ and Matlab. C++, as a

compiled language, is generally faster than Matlab. Nevertheless, Matlab has various benefits to

its own. It supports complex number arithmetic, which would have to be independently written in

C++. Matlab’s implementation of the Fast Fourier Transform (FFT) is based upon the highly-

efficient hand-optimized FFTW library, while in C++ it would have to be included through an

external library. Since the Fourier transform is an integral part of the simulation process, given

that every evaluation of the linear propagation requires an FFT and an inverse FFT, there is a speed

increase brought by the FFT’s optimization. Matlab has various built-in features such as curve-

fitting, and envelope and phase calculation which ease the building process. Moreover, its plotting

capabilities allow for fast and effective visualization of results [24].

Numerical Implementation

 The simulations were built using Matlab scripts to calculate the dispersion factor, obtain a

pulse envelope, propagate it, and then study the results. The final result was modularized to ease

the creation of possible additions to the current program. For ease of use, the numbers used in the

implementation were normalized to picoseconds, Terahertz, MV/mm and millimeters.

19

As explained in the Propagation chapter, Kerr nonlinearity is the most dominant nonlinear

term for the setup concerned. There are two main factors that define whether nonlinear effects can

be observed in this system and the peak electric field size of the pulse the value of the Kerr

constant. The measurement of the value of the Kerr constant in the THz domain has been

performed in [25] using single-cycle pulses with electric field strengths of 250 kV/cm, which

determined the upper bound for the Kerr constant as 1.5 × 10−16m/V2, which, normalized to the

units used in the simulation is 0.15 mm/MV2.

Debye model fit

The Debye model for water requires two relaxation processes and one vibrational mode,

the coefficients used are in Table 1, and the dielectric function waveform obtained for the 0.2-2.5

THz range in figure 7:

∆𝜺𝟏 𝝉𝟏 [ps] ∆𝜺𝟑 𝝉𝟑 [𝐩𝐬] 𝑨

(𝟐𝝅)𝟐
[𝐓𝐇𝐳]𝟐

𝜸

𝟐𝝅
 [𝐓𝐇𝐳] 𝜺∞

72.3 8.34 2.12 0.36 28.4 7.06 2.68

Table 1: Debye Model parameters of water from [22]

20

Figure 7: Debye model dielectric function of water.

In the simulation process, the effects of 𝜀 are accounted for through the use of the complex

propagation constant 𝑘 =
𝜔√𝜀

𝑐
, which is used as a sum of 𝛼 and 𝛽 terms. To ensure agreement

between this decomposition of 𝑘 and the original function, rather than using its Taylor expansion,

curve fitting was used to calculate 𝛼 and 𝛽 parameters. Matlab’s Curve Fitting Tool was used to

fit both 𝛼(𝜔) and 𝛽(𝜔) to an equation of the form:

 𝛼(𝜔) = 𝛼0 + 𝛼1(𝜔 − 𝜔0) +
𝛼2

2!
(𝜔 − 𝜔0)2 +

𝛼3

3!
(𝜔 − 𝜔0)3 (47)

In addition to improving the accuracy of the simulations, the curve fitting shortens the time

needed for computation, since it does not require the calculation of various derivatives of 𝑘 for its

Taylor expansion. The values used in the simulation, and their comparison to the original wave

are shown in table 2 and figures 8-9.

 𝜶𝟎 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝝎𝟎 [𝐓𝐇𝐳]

Linear test 0.0005 0 0 0 0 0 0.1 0 0

Water 9.178 1.275 -0.133 0.0262 26.8 6.403 -0.0569 0.0022 0.55

Table 2: Simulation parameters

21

Figure 8: Original wave and polynomial fit of 𝛽(𝜔)

Figure 9: Original and polynomial fit of 𝛼(𝜔)

22

Input Pulse

A typical wave produced by the equipment at the lab has a time-domain waveform similar to that

of Figure 10:

Figure 10: Electric Field sent through samples in the lab.

For some uses of the program it can be useful to simplify this waveform. It was chosen to fit this

curve to a sinusoid modulated by a Gaussian:

 𝐸(𝑡) ≈ 𝐸0 cos(𝜔0 ∗ 𝑡 + 𝜑) ∗ exp (−
(𝑡 − 𝑡0)2

2𝜎2
) (48)

This fitting eases the computation in two manners, it reduces noise around the peak electric field,

and the Gaussian can be used in itself as the propagated envelope without needing to perform extra

calculations. Furthermore, a simple input curve can make it easier to visualize certain nonlinear

propagation features in order to study nonlinear thresholds or extract dielectric properties. The

results of the fitting, using Matlab’s Curve Fitting Toolbox (which relies on the Levenberg-

Marquardt Method [26]) are shown in table 3, with the waveform comparison in figure 11:

𝑬𝟎 501.2

𝝎𝟎 [𝐓𝐇𝐳 ∗ 𝟐𝝅] 3.584

23

𝝋 [𝒓𝒂𝒅] -1.799

𝒕𝟎 [𝒑𝒔] 19.62

𝝈 0.4694

Table 3: Electric Field fitting parameters

Figure 11: Original Electric Field and fit.

The frequency-domain waveforms of the original and fitted curves are in figure 12:

24

Figure 12: Fourier Transform of the original pulse and fit.

Other methods of equation fitting were also attempted, including Taylor Expansions, Gaussian

sums, and fitting the curve with a similar equation to eq. (45), but with a chirp added through the

𝛽 parameter in eq. (46):

 𝐸(𝑡) ≈ 𝐸0 cos(𝜔0 ∗ 𝑡 + 𝛽 ∗ 𝑡2 + 𝜑) ∗ exp (−
(𝑡 − 𝑡0)2

2𝜎2
) (49)

Nevertheless, the results did not show much difference upon the equation used previously.

A fitting process was also created in order to obtain electric field envelopes from

experimental data without using Matlab’s Curve Fitting Toolbox. This was necessary in order to

have fitting results readily available for any input waveform. The process assumes that the

characteristic frequency of the electric field oscillation (typically close to 0.6 THz) is

approximately known. As a first step, Matlab’s envelope function is used, which works by

transforming the input pulse into Hilbert-space [27]. Yet since this maintains a low of the

experimental noise around the main function peak, the pulse obtained from the previous step can

be fit to a Gaussian by using the fit function, which results in a smooth, noiseless envelope. The

phase of the original electric field, which is necessary to transform back to the output field after

25

propagation, is determined by using a stochastic gradient descent algorithm. An example result of

this fitting process are shown in figure 13, and the code is available in Appendix B.

Figure 13: Envelope calculation example

26

Results

Linear Test

The first step of testing the code was to run it and compare the result with a known

analytical solution. This of course, requires the non-linear operator to be set to zero. Furthermore,

this requires an input which has a known simple transformation to and from the frequency domain,

which is why the Gaussian pulse was chosen. The simplest equation describing the Gaussian pulse:

 𝜓(0, 𝑡) = 𝑒−𝑡2
 (50)

Besides that, a simple definition can be used for the dispersion operator. Since this test is intended

to test the correctness of the split-step approach, using a dispersion operator that models a real-life

material is not required. Thus, we only need to use the lower-order parameters as in eq. (51)

 𝐷̂ = −
𝛼0

2
+ 𝑖

𝛽2

2

𝜕2

𝜕𝑡2
 (51)

in which 𝛼0 and 𝛽2 were numbers chosen arbitrarily (to 0.005 and 0.1) in order to produce a model

in which attenuation and dispersion were visible. To propagate this Gaussian pulse, it first must be

transformed to Fourier-space, which produces:

 𝜓(0, 𝜔) =
1

√2𝜋
∫ exp(−𝑡2 − 𝑖𝜔𝑡) 𝑑𝑡

∞

−∞

= √𝜋 exp (−
𝜔2

4
) (52)

Now the Gaussian pulse in eq. (50) must be acted on by the operator to propagate it, which yields

the eq. (53):

 𝜓(𝑧, 𝜔) =
1

√2
exp (−

𝜔2

4
) ∗ exp(𝐷̂𝑧) =

1

√2
exp (−

𝜔2

4
+ 𝑖

𝛽2

2
𝜔2𝑧 −

𝛼0

2
𝑧) (53)

The propagated pulse, eq. (53), can once again be transformed back to the time-domain through

the inverse Fourier transform:

 𝜓(𝑧, 𝑡) = ∫ 𝜓(𝑧, 𝜔)
∞

−∞

exp(2𝜋𝑖𝜔𝑡) 𝑑𝜔

 𝜓(𝑧, 𝑡) =
1

√2
exp (−

𝛼0

2
𝑧)

1

√2𝜋
∫ exp (−

𝜔2

4
+ 𝑖

𝛽2

2
𝜔2𝑧 + 𝑖𝜔𝑡) 𝑑𝑡

∞

−∞

27

 𝜓(𝑧, 𝑡) =
exp (−

𝛼0

2 −
𝑡2

1 − 2𝑖𝛽2𝑧
)

2√1
4 + 𝑖

𝛽2

2 𝑧

 (54)

The result, in eq. (54) was tested against the simulated output from the code with an input

waveform shown in figure 14:

Figure 14: Input Gaussian wave to the linear simulation

The resulting waveform for propagation across 5 mm can be seen in figure 15.

28

Figure 15: Simulation input, output and expected result. Note that the expected result and output are almost perfectly

overlapped.

As seen in figure 15, the expected output matches the simulation output almost perfectly. Since

the operation performed is linear, the number of steps performed does not affect the relative error.

The code used to perform this simulation can be seen in Appendix C.

Comparison to experimental data

Another method of testing the simulation was by comparing the simulation output to actual

experimental data from a test in which a THz pulse was propagated through 0.1mm of water.

Simulations will never be able to fully replicate real-life experiments due to various experimental

considerations like refraction, phase changes, and transmission through the quartz containing the

water, or the effects of the measurement equipment. Noise and the envelope approximation are

additional sources of error. Nevertheless, these comparisons still ensure that the output from the

simulation corresponds to the real-life behavior of pulses.

The experimental data used was for propagation across 0.1 mm of water. As a first step,

and as discussed in the previous chapter, we must calculate an envelope of the initial pre-

propagation pulse, shown in figure 16.

29

Figure 16: Envelope calculation example

The field is then propagated and transformed back into an oscillating waveform, which

results in what is seen in figure 17. Though the simulation is unable to match the noisy waveforms

surrounding the main peak, yet it is a fairly good match for the main oscillation. The relative error

calculated from the comparison of these waveforms was 0.18, which can be mostly attributed to

the noisy sidebands, and fits the design goals. The code used for this part of the project is shown

in Appendix D. The average time to run the program (including the various plots used) was 3.2

seconds, well within the design goal.

30

Figure 17: Comparison of experimental data & simulation

Extraction of the complex refractive index

 As discussed in the propagation chapter, it is possible to extract the complex refractive

index of a material by comparing a pulse propagated through air and another through the sample.

This process can be implemented in the code by using the output of the pulse propagation, and

compering the result to the waveform used for propagation. This was performed by propagating

an input approximation pulse (as that of figure 11) through 0.1 mm, the result of which is shown

in figure 18.

31

Figure 18: propagation across 0.1 mm of water

 The resulting electric field in the Fourier domain can be used to extract the 𝛼(𝜔) and 𝛽(𝜔)

values for the material. The extraction of 𝛼 was very close to the expected value, with a relative

error of 3.7 ∙ 10−4, and the waveform comparison can be seen in figure 19.

Figure 19: 𝛼(𝜔) extracted waveform

32

On the other hand, and since eq. (25) does not account for the value of 𝛽0, the extracted

waveform for 𝛽 has an offset with respect to the original. Nevertheless, the relative error of 0.018

is still within the design goals, and the waveform can be seen in figure 20.

Figure 20: 𝛽(𝜔) extracted function

These results can be used to calculate the refractive index or dielectric function of the

medium. The extraction of 𝜀 is shown in figures 21-22 The code used for dielectric property

extraction is shown in Appendix E.

33

Figure 21: Comparison of the real part of the dielectric function and the extracted value.

Figure 22: Comparison of the imaginary part of the dielectric function and the extracted value.

Nonlinear effect thresholds

Due to the solution of the nonlinearity in eq. (25), which must be of the form exp(𝑖𝛾|𝐴|2ℎ),

there are two ways in which we are interested in measuring the effect of nonlinearities, through

34

comparing the change in peak electric field, and the change in phase shift. Figure 23, compares

the result of propagating a wave using two different nonlinear parameters to illustrate the effects.

Figure 23: Propagation through 0.1 mm of water with different nonlinear parameters.

It is known, as discussed previously, that the two main contributions to nonlinear effects

are the initial peak electric field intensity and the nonlinear parameter. We wanted to determine

the threshold for nonlinear effects for a given initial electric field. To do so, iterations of the

program were evaluated by varying the initial peak field and nonlinear parameter to calculate the

resulting produced time shift and change in peak field. The simulations were performed in a non-

dispersive medium in order to focus solely on the nonlinearities, and the results are shown in

figures 24-25.

35

Figure 24: Change in peak field due to nonlinearities.

Figure 25: Time shift due to nonlinear effects.

36

 As seen in the figures, there is a threshold indicated by the change of color in the mesh, a

transition from purely linear propagation to having observable nonlinear effects. Furthermore, both

effects start to be seen at the same time. This tool can be used to determine the threshold electric

field needed to observe nonlinearities in a given material. The code used to calculate these graphs

is shown in Appendix F.

37

Conclusion & Future Work

 The simulations developed in their current state can serve to approximate and study the

phenomena observed at the Ultrafast THz and Optical Spectroscopy Lab, including the appropriate

modelling of water. The tool can also help to determine the threshold electric field and parameter

values for observing nonlinear effects. Furthermore, it can be useful for determining the dielectric

function (or refractive index) of a sample. Another extension of the simulation in which the

nonlinear parameter of a sample can be evaluated through multiple iterations is already a work in

progress. The program has been designed for adaptability in order to be easily used and easily

expanded in the future, with some extra features already in place, such as the inclusion of higher

order Taylor expansion terms, or the simulation of Raman scattering. Furthermore, it is very

advantageous to use the split-step to perform the propagation because if needed, we could change

the linear or nonlinear part of the equation to account for other effects, yet the solution procedure

would remain the same. It is also possible to extend the program to simulate more complex media

and to include other nonlinear effects.

In addition, there is still a lot of testing that is needed to be performed on the code. When

the experimental setup for observing nonlinearities is available, the results should be compared to

those of the program. Furthermore, other materials should also be simulated and the results

compared to the expected value. It is my hope that it will prove itself useful for the study performed

at the Lab and that it can provide a unique insight into nonlinearities when they are observable.

38

Bibliography

[1] E. Bründermann, H. Hübers, and M. F. Kimmitt, Terahertz techniques (Springer, Heidelberg

[u.a.], 2012), 151.

[2] Toshihiko Kiwa, Masayoshi Tonouchi, Masatsugu Yamashita, and Kodo Kawase, Optics

Letters 28, 2058 (2003).

[3] C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P.

Wallace, Physics in Medicine and Biology 55, 4825 (2010).

[4] J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars,

Semiconductor Science and Technology 20 (2005).

[5] C. Koch Dandolo, M. Picollo, C. Cucci, and P. Jepsen, Appl. Phys. A 122, 1 (2016).

[6] T. Kürner and S. Priebe, J Infrared Milli Terahz Waves 35, 53 (2014).

[7] L. Titova, WPI - Terahertz Lab, 2018.

[8] J. B. Baxter and G. W. Guglietta, Analytical chemistry 83, 4342 (2011).

[9] K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner,

Optics express 23, 5253 (2015).

[10] Wikipedia, Permittivity, 2018.

[11] C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P.

Wallace, Physics in Medicine and Biology 55, 4825 (2010).

39

[12] M. Wang and E. Yang, Nano-Structures & Nano-Objects (2017).

[13] U. Blumröder, H. Hempel, K. Füchsel, P. Hoyer, A. Bingel, R. Eichberger, T. Unold, and S.

Nolte, physica status solidi (a) (2016).

[14] X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, Trends in Biotechnology 34,

810 (2016).

[15] N. Krumbholz, C. Jansen, M. Scheller, T. Müller-Wirts, S. Lübbecke, R. Holzwarth, R.

Scheunemann, R. Wilk, B. Sartorius, H. Roehle, et al, in , Sep 17, 2009), p. 748504.

[16] Y. Li, J. Li, Z. Zeng, J. Li, Z. Tian, and W. Wang, Applied optics 51, 5885 (2012).

[17] E. Pickwell and V. P. Wallace, Journal of Physics D: Applied Physics 39 (2006).

[18] H. Fröhlich, Biological coherence and response to external stimuli (Springer, Berlin u.a,

1988).

[19] J. D. Jackson, Classical electrodynamics (Wiley, New York [u.a.], 1999).

[20] R. W. Boyd, Nonlinear Optics (Elsevier, Acad. Press, Amsterdam [u.a.], 2008).

[21] S. MacNamara and G. Strang, Operator Splitting (Springer, 2016), p. 1.

[22] Uffe Møller, David G. Cooke, Koichiro Tanaka, and Peter Uhd Jepsen, Journal of the Optical

Society of America B 26 (2009).

[23] P. U. Jepsen, D. G. Cooke, and M. Koch, Laser & Photonics Reviews 5, 124 (2011).

40

[24] A. Gilat, MATLAB (Wiley, Hoboken, NJ, 2015).

[25] Peter Zalden, Xiaojun Wu, Liwei Song, Haoyu Huang, Oliver D. Mucke, Christian Bressler,

and Franz X. Kartner, in (The Institute of Electrical and Electronics Engineers, Inc. (IEEE),

Piscataway, Jan 1, 2016), p. 1.

[26] MathWorks, Least-Squares (Model Fitting) Algorithms, 2018.

[27] MathWorks, Envelope extraction.

41

Appendix A: General functions

%% Propagate

function [A_out] = propagate(A_in, dispersion, gamma, distance,

steps, time)

%% Performs symmetric split step propagation with steps number

of steps across a length of distance

%Inputs: -----

% A_in: electric field envelope

% dispersion: zero-centered array of the frequency dependent

effect of

% dispersion

% gamma: nonlinearity parameter

% distance: length traversed

% steps: number of steps to be taken

% time: array of time domain values in which the field exists

(only used for plotting)

% ------

% Output: -----

% A_out: final electric field envelope

% -----

deltaz = distance/(steps); % step size in z

deltahalf = deltaz/2; %half step size

transform = fftshift(fft(A_in)); % Take Fourier transform

transform = exp(deltahalf*(dispersion)).*transform; % Advance

half step linearly in Fourier space

A_out = (ifft(fftshift(transform))); % Fourier transform back to

timme Space

for n=1:(steps-1)

 A_Field_nl = exp(1i*deltaz*gamma*(abs(A_out)).^2).*A_out; %

Propagate non-linear part of NLSE

 transform = fftshift(fft(A_Field_nl)); % Take Fourier

transform

 transform = exp(deltaz*(dispersion)).*transform; % Advance

in Fourier space

 A_out = ifft(fftshift((transform))); % Fourier transform

back to Physical Space

 %---- Uncomment the following for plotting the evolution of

the field

42

% figure(1);

% plot(time, real(A_in), time, real(A_out));

end

A_Field_nl = exp(1i*deltaz*gamma*(abs(A_out)).^2).*A_out; %

Propagate non-linear part of NLSE

transform = fftshift(fft(A_Field_nl)); % Take Fourier transform

transform = exp(deltahalf*(dispersion)).*transform; % Advance

half step linearly in Fourier space

A_out = (ifft(fftshift(transform))); % Fourier transform back to

time Space

function [eps_w] = epsilon_water2(omega)

%% Calculates the dielectric function of water

%Dielectric function of water parameters

% From 'Terahertz reflection spectroscopy of Debye

% relaxation in polar liquids' by Moller, Cooke, Tanaka & Jepsen

% Inputs: -----

% omega: frequency domain grid used in simulation in (THz*2*pi)

(assumed to

% be zero centered)

% ------

% Outputs: -----

% eps_w: dielectric function of water for the given frequency

array

% -----

len = length(omega);

%% Factors

%Dielectric function of water parameters (2*pi) factor for

normalization to

%THz*(2*pi)

del_epsilon1 = 72.3;

tau_1 = 8.34/(2*pi);

del_epsilon3 = 2.12;

tau_3 = 0.36/(2*pi);

gammav = 7.06*2*pi;

epsilon_inf = 2.68;

omegav = 5.01*2*pi;

Av = 28.4*4*pi^2;

%% General dielectric function

43

vibration = (omegav^2-omega.^2-1i*omega*gammav);

eps_w = del_epsilon1./(1-1i*omega*tau_1)+del_epsilon3./(1-

1i*omega*tau_3)+ Av./vibration+epsilon_inf;

eps_w(1:len/2) = eps_w(len:-1:len/2+1); % make it symmetric

%% Plot & compare

function err = plot_compare(Exp_in, Simul_in, time)

%% Plots and computes the relative error between Exp_in and

Simul_in

% Note: only considers real parts of the waveforms

% Note: assumes vectors are the same length, but matches the

indexes of maxima

% Inputs: -----

% Exp_in: Expected waveform input

% Simul_in: Simulated waveform input

% time: time-domain grid to which electric field values

correspond

% -----

% Output: -----

% err: relative error of Simul_in with respect to exp_in

% -----

len = length(Exp_in);

Exp = real(Exp_in);

Simul = real(Simul_in);

[max1,indexexp] = max(Exp); % Calculate locations of maxima

[max2,indexsim] = max(Simul);

startexp = indexexp > indexsim; % check which index is lower

%% Calculate ranges for plotting

rangeexp = 1+startexp*(indexexp -

indexsim):len+not(startexp)*(indexexp - indexsim);

rangesim = 1+not(startexp)*(indexsim - indexexp):len-

startexp*(indexexp - indexsim);

if ((rangeexp(1) < 1) | (rangeexp(end) > len) | (rangesim(1) <

1) | (rangesim(end) > len))

 rangeexp(1)

 rangeexp(end)

 rangesim(1)

 rangesim(end)

end

44

Exp_r = Exp(rangeexp);

Sim_r = Simul(rangesim);

timerange = 1:length(rangeexp); % calculate time range of the

length needed

%% Plotting

% figure(1);

% pl2 = plot(time(timerange), Exp_r); grid; hold on;

% pl1 = plot (time(timerange),Sim_r,"-.");

% pl1(1).LineWidth = 2;

% pl2(1).LineWidth = 2;

% set(gca,'FontWeight','bold');

% legend([pl2,pl1],["Experimental result","Simulated output"])

% xlabel("\bf Time (ps)"); ylabel("Electric field (arb.

units)");

%% Calculate error

err = sum((Exp_r-Sim_r).^2)/sum(Exp_r.^2)

%% Get Dispersion

function [d_factor, alphas, betas] = getkdisp(omega, eps_in)

% Calculates the dispersion to be used from a curve fitting of k

% Inputs: -----

% omega: frequency-domain grid

% eps_in: dielectric function of water input (only used for

comparison to

% fit)

% -----

% Outputs: -----

% d_factor: dispersion for omega

% alphas: coefficients for imag(k) fit

% betas: coefficients for real(k) fit

% d_factor: dispersion term

% -----

%% Matlabs curve fitting results

% General model:

% f(omega) = ka0+ka1*(omega-3.5)+ka2*(omega-

3.5)^2+ka3*(omega-3.5)^3

% Coefficients (with 95% confidence bounds):

% ka0 = 9.178 (9.161, 9.196)

% ka1 = 1.275 (1.265, 1.285)

45

% ka2 = -0.133 (-0.06917, -0.06374)

% ka3 = 0.0262 (0.004192, 0.004545)

%

% General model:

% f(omega) = kb0+kb1*(omega-3.5)+kb2*(omega-

3.5)^2+kb3*(omega-3.5)^3

% Coefficients (with 95% confidence bounds):

% kb0 = 26.8

% kb1 = 6.403

% kb2 = -0.0569

% kb3 = 0.0022

% General model:

% f(omega) = ka0+ka1*(omega-3.5)

% Coefficients (with 95% confidence bounds):

% ka0 = 9.04 (8.991, 9.089)

% ka1 = 1.076 (1.068, 1.083)

% General model:

% f(omega) = kb0+kb1*(omega-3.5)

% Coefficients (with 95% confidence bounds):

% kb0 = 26.95 (26.88, 27.02)

% kb1 = 6.158 (6.147, 6.168)

%% Initialization

alphas = [9.04, 1.076];

betas = [26.95, 6.158];

omega0 = 3.5;

c = 0.3;

len = length(eps_in);

[a,ind1] = min(abs(omega-0.2*2*pi));

[a,ind2] = min(abs(omega-2*2*pi));

range1 = ind1:ind2;

k = omega.*sqrt(eps_in)/c;

terms = length(alphas);

k_app = zeros(1,len);

d_factor = zeros(1,len);

%% Dispersion calculation

for num=1:terms

 k_app = k_app+(1i*alphas(num)+betas(num))*(omega-

omega0).^(num-1)/factorial(num-1);

46

 d_factor = d_factor - alphas(num)*(omega-omega0).^(num-

1)/(2*factorial(num-1));

 if num > 2

 d_factor = d_factor + 1i*betas(num)*(omega).^(num-

1)/(factorial(num-1));

 end

end

d_factor(1:len/2) = d_factor(len:-1:len/2+1);

%% Comparison plots

figure(13);

p1 = plot(omega(range1)/(2*pi), real(k(range1))); hold on;

p2 = plot(omega(range1)/(2*pi), real(k_app(range1)),":"); grid;

xlabel("Frequency (THz)"); ylabel("\alpha (2\pi/mm)");

p1(1).LineWidth = 2;

p2(1).LineWidth = 2;

set(gca,'FontWeight','bold');

axis([0.2 2 10 85]);

legend([p1 p2], ["Original" "Polynomial fit"])

figure(14);

p1 = plot(omega(range1)/(2*pi), imag(k(range1))); hold on;

p2 = plot(omega(range1)/(2*pi), imag(k_app(range1)),":"); grid;

xlabel("Frequency (THz)"); ylabel("\beta (2\pi/mm)");

p1(1).LineWidth = 2;

p2(1).LineWidth = 2;

set(gca,'FontWeight','bold');

axis([0.2 2 5 20]);

legend([p1 p2], ["Original" "Polynomial fit"])

function [E1, E2,dt] = get_fields_from_files()

%% Promts the user to select two files and returns the first

colums as vector

% Returns two vectors of the same size and even length.

% Note: it is assumed that the sampling rate for both

experimental inputs

% is the same.

% Outputs: -----

% E1: Electric field, the pre-propagation value

% E2: experimental propagated electric field

47

% dt: time between samples (in ps)

% -----

% Note: it is assumed that the field is in units of MV/mm

%Parameters for your data (technical):

%Where your files are (relative or absolute addresses are fine)

 defaultPath = './data/';

%The spacing character used in the file to separate entries

 fileDelimiter = '\t'; %(default is tab, \t)

%The columns in the file that have each set of information

 colTime = 1; %time in picoseconds

 colData = 2; %signed E field

%Open file selection boxes (Empty cell 1 then Empty cell 2)

try

 if ~isempty(successfulLoad) && successfulLoad &&

~askForFiles

 getFiles = false;

 else

 getFiles = true;

 end

catch

 getFiles = true;

end

if getFiles

 successfulLoad = false;

 clc;

 fprintf('Select Cell_1 file');

 [dataC1Name, dataC1Path] = uigetfile('*','Select the file

with your Cell_1 data\n',defaultPath);

 clc;

 fprintf('Select Cell_2 file ');

 [dataC2Name, dataC2Path] = uigetfile('*','Select the file

with your Cell_2 data\n',defaultPath);

 %throwing error

 if isequal(dataC1Name,0) || isequal(dataC1Path, 0) ||...

 isequal(dataC1Name, '') || isequal(dataC1Path, '')

||...

48

 isequal(dataC2Name,0) || isequal(dataC2Path, 0)

||...

 isequal(dataC2Name, '') || isequal(dataC2Path, '')

 clear dataC1Name dataC2Name dataC1Path dataC2Path;

 clc;

 error('File selection failed. Are you sure you selected

both files?');

 else

 clc;

 fprintf('Opening ''%s''\n and

''%s''\n',dataC1Name,dataC2Name);

 successfulLoad = true;

 end

else

 clc;

 fprintf('Using ''%s''\n and

''%s''\n',dataC1Name,dataC2Name);

end

clear askForFiles;

%% Read the selected file and extract pertinent data

rawC1Data =

dlmread(strcat(dataC1Path,dataC1Name),fileDelimiter);

rawC2Data =

dlmread(strcat(dataC2Path,dataC2Name),fileDelimiter);

T1 = rawC1Data(:, colTime);

T2 = rawC2Data(:, colTime);

E3 = rawC1Data(:, colData);

E4 = rawC2Data(:, colData);

clear colTime colData

%% Make lenght even and equal

len1 = length(E3);

len2 = length(E4);

lused = min(len1,len2);

lused = lused -mod(lused,2);

E1 = E3(1:lused)';

E2 = E4(1:lused)';

dt = T1(2)-T1(1);

49

Appendix B: Envelope calculation

%% Get Envelope

function [A_Field, in_phase] = get_envelope(E1, omega0, time,

e_thres)

% calculates the electric field envelope and phase of the input

field

% Inputs: -----

% E1: electric fied

% omega0: center frequency of the input electric field

% time: time domain array in which the field is represented

% e_thres: error threshold accepted for ending the loop

% -----

% Outputs: -----

% A_Field: electric field envelope

% in_phase: initial phase of the input electric field

% -----

% Note: Change step size and threshold error value to affect the

rate of

% convergence

%% Fitting

A_Field= envelope(E1); % as a first approximation use matlabs

envelope function

A_fit = fit(time',A_Field','gauss1'); % afterwards this is fit

to a gaussian function

A_Field = (A_fit.a1)*exp(-((time-(A_fit.b1))/(A_fit.c1)).^2); %

Gaussian fit

%% Phase calculation

in_phase = 0; % phase guess

step_size = pi/6; % step size

err = sum((E1 -

A_Field.*cos(omega0*time+in_phase)).^2)/sum(abs(E1).^2); %

relative error

while (abs(err) > e_thres)

 in_phase = in_phase+err*step_size; % change the phase guess

according to the error

 err = sum((E1 -

A_Field.*cos(omega0*time+in_phase)).^2)/sum(abs(E1).^2); % calc

error

end

50

Appendix C: Linear test

%% Linear test

% Propagates a gaussian pulse in the linear domain and compares

the reuslt

% to the expected analytical result

close all; clc; clear all;

distance = 5;

step_num = 100; % No. of z steps

deltaz = distance/step_num % step size in z

deltahalf = deltaz/2;

time_points = 3000;

dtau = 10;

time = (-time_points*dtau/2:dtau:((time_points-

1)*dtau/2))/time_points; % array of time points

%% Propagation constant factors, change these for different

results

% arbitrarily chosen for easily visible results, all other

factors are assumed to be 0.

alpha0 =0.0005; % Dispersion operator coefficients

beta2 = 0.1;

E_Field= exp(-time.^2); % Initial gaussian pulse

E_Field1 = E_Field;

omega = 2*pi*[-(time_points/2):time_points/2-1]/10; %fourier

space array

%% Propagation

transform = fftshift(fft(E_Field)); % Take Fourier transform

transform = exp(deltahalf*(0.5i*beta2*omega.^2-

alpha0/2)).*transform; % Advance half step in Fourier space

E_Field = (ifft(fftshift(transform)));

for n=1:(step_num-1)

 E_Field_nl = E_Field; % Propagate non-linear part of NLSE

 transform = fftshift(fft(E_Field_nl)); % Take Fourier

transform

 transform = exp(deltaz*(0.5i*beta2*omega.^2-

alpha0/2)).*transform; % Advance in Fourier space

51

 E_Field = (ifft(fftshift(transform))); % Fourier transform

back to Physical Space

end

transform = fftshift(fft(E_Field)); % Take Fourier transform

transform = exp(deltahalf*(0.5i*beta2*omega.^2-

alpha0/2)).*transform; % Advance half step in Fourier space

E_Field = (ifft(fftshift(transform)));

%% Expected output calculation

exp1 = exp(-distance*alpha0*0.5);

factor2 = sqrt(1/4-0.5i*beta2*distance);

exp3 = exp(-time.^2/(1-2i*beta2*distance));

expected2 = pi*exp1*exp3/(factor2*2*pi);

%% Result plotting and comparison

figure(3) % Plot expected and result

plot1 = plot(time, abs(expected2)); hold on;

plot2 = plot(time, abs(E_Field),"--");

plot3 = plot(time, abs(E_Field1), ":"); grid;

plot1(1).LineWidth = 2;

plot2(1).LineWidth = 2;

plot3(1).LineWidth = 2;

xlabel("\bf Time (ps)"); ylabel("\bf Electric field (arb.

units)");

legend([plot3,plot1, plot2],["Simulation Input","Expected

result","Simulation output"])

set(gca,'FontWeight','bold');

52

Appendix D: Comparison to experimental data

%% Experimental Propagation

% Propagates the approximation of a THz electric field

% Units normalized to mm, THz*2*pi, ps, MV/mm

close all; clc; clear all;

%% Initialization

[E1, E2, dt] = get_fields_from_files(); %get electric fields

% E1 is the field propagated and compared to E2

tic

N1 = length(E1);

time = -dt*N1/2:dt:dt*(N1/2-1);

omega = 2*pi*(-N1/2:N1/2-1)/(dt*N1);

omega0 = 0.6*2*pi;

[a,omega0_index] = min(abs(omega-omega0));

distance = .1; % In mm

step_num = 100; % No. of z steps

deltaz = distance/(step_num); % step size in z

deltahalf = deltaz/2;

c = 0.3; % Speed of light, mm/ps

gamma = 0; % nonlinearity value

%% Dielectric model calculation

epsilon_w = epsilon_water2(omega);% dielectric function of water

[d_factor, alphas, betas] = getkdisp(omega, epsilon_w);

%% Propagation

E1_init = E1; % copy of init electric field

[A_Field, in_phase] = get_envelope(E1, omega0, time,0.205); %

get the envelope of the field

figure(1);

plot(time, A_Field, time, E1, time,

A_Field.*cos(omega0*time+in_phase));

[A_Field] = propagate(A_Field, d_factor, gamma, distance,

step_num, time); % propagate, see propagate.m

53

E_res = real(A_Field.*exp(-1i*(omega0*time+in_phase))); % get

back to the electric field

time2 = time+betas(2)*distance; % going back to a static

reference frame

[a,zi1] = min(abs(time));

[a,zi2] = min(abs(time2));

E_res = circshift(E_res,zi1-zi2);

%% Plotting

figure(3);

p1 = plot(time, E_res, time, E1_init, time, E2); hold on; grid;

p1(1).LineWidth = 2;

p1(2).LineWidth = 2;

p1(3).LineWidth = 2;

set(gca,'FontWeight','bold'); xlabel("Time (ps)");

ylabel("Electric field (MV/mm)");

plot_compare(E2, E_res, time);

toc

54

Appendix E: Dielectric property extraction

%% Propagate approx

% Propagates the approximation of a THz electric field

% Units normalized to mm, THz*2*pi, ps, MV/mm

close all; clc; clear all;

%% Initialization

time_points = 3600; % Granularity in the time domain

points = [-time_points/2:time_points/2-1];

dtau = 120; % Time in ps

time = (-time_points*dtau/2:dtau:((time_points-

1)*dtau/2))/time_points; % Array of time points

c = 0.3; % Speed of light, mm/ps

dt = time(2)-time(1); % time between samples

% Curve fitting of initial pulse

E0 = 2.506; % pulse amplitude

in_phase = -pi/2; % Initial phase

sig = 0.4694; % Standard Deviation

w0 = 3.548; %Pulse resonant freq.

E1 = E0*cos(w0*time+in_phase).*exp(-0.5*(time/sig).^2); %

Electric field

%FFT

N1 = length(E1); %length of pulse

omega = 2*pi*(-N1/2:N1/2-1)/(dt*N1); % Frequency domain grid

omega0 = w0; % center frequency

[a,omega0_index] = min(abs(omega-omega0)); % calculate index of

center frequency

distance = .1; % In mm

step_num = 100; % No. of z steps

deltaz = distance/(step_num); % step size in z

deltahalf = deltaz/2;

c = 0.3; % Speed of light, mm/ps

gamma = 0; % nonlinearity value

%% Dielectric model calculation

epsilon_w = epsilon_water2(omega);% dielectric function of water

[d_factor, alphas, betas] = getkdisp(omega, epsilon_w);

55

%% Propagation

E1_init = E1; % copy of init electric field

A_field1 = E0*exp(-0.5*(time/sig).^2); % gaussian envelope of

the field

[A_field] = propagate(A_field1, d_factor, gamma, distance,

step_num, time); % propagate, see propagate.m

E_res = real(A_field.*exp(1i*(omega0*time+in_phase))); % return

to oscillating electric field

time2 = time+betas(2)*distance;

[a,zi1] = min(abs(time));

[a,zi2] = min(abs(time2));

A_field = circshift(A_field,zi1-zi2);

E_res = circshift(E_res,zi1-zi2);

%% Plotting

p_range = N1/2-199:N1/2+200; % plotting range

figure(3);

p2 = plot(time(p_range), E1_init(p_range)); hold on; grid;

p1 = plot(time(p_range), E_res(p_range),":");

p1(1).LineWidth = 2;

p2(1).LineWidth = 2;

set(gca,'FontWeight','bold'); xlabel("Time (ps)");

ylabel("Electric field (MV/mm)");

legend([p1 p2] , ["Input waveform" "Output waveform"]);

%% Dielectric function extraction

extract_n(A_field1,A_field,dt,epsilon_w,distance, omega); %

extraction of dielectric function

compare_eps(alphas,betas,epsilon_w,omega)

function extract_n(Ref_in, Sam_in, dt,eps_in,d, omega)

%% Extracts the refractive index and dielectric function of a

sample

%% by comparing pulses propagated through air and the sample

56

%Note: assumes both pulses have the same sampling frequency and

length

% Compares and plots extracted value to eps_in

% Inputs: -----

% Ref_in: Reference electric field

% Sam_in: Electric field propagated trough a sample

% dt: time between seconds of the electric field values (in ps)

% eps_in: dielectric function of the sample (if known), used for

% comparison. (assumed to be zero-centered)

% d: distance traveled by the pulse in the sample

% omega: frequency-domain array corresponding to eps_in values

(used only

% for plotting) (in THz*2*pi)

% -----

% Outputs: -----

% n: complex refractive index of the sample

% eps: complex dielectric function of the sample

% errorn: relative error in the refractive index (by

% comparing to eps_in)

% -----

% Note: output waveforms are only calculated for the relevant

part of the

% spectrum (0.2-2.5 THz) and will have different frequency

domain spacing

% than the input dielectric function to attain higher

resolution.

% Note: Error calculations are based on spline interpolations of

the input

% dielectric function in order to match the spacing of the

calculated

% refractive index

% -----

c=0.3; % speed of light in mm/ps

len = length(Ref_in); % length of inputs

omega = omega/(2*pi);% transform to THz

omega0 = 3.5;

%adding zeros to have a better definition in the fourier domain

Ref = zeros(3*len,1);

57

Sam = zeros(3*len,1);

Ref(1:len,1) = Ref_in;

Sam(1:len,1) = Sam_in;

len2 = length(Ref); % New length

R_fft = fft(Ref); %compute fft

S_fft = fft(Sam);

dw1 = 1/(dt*len2); %step of frequency in THz

Ref_fft = abs(R_fft(1:len2/2)); %We only care about half of the

spectrum, the other is just a repetition

Sim_fft = abs(S_fft(1:len2/2));

% Get phase angles Ref: help unwrap

phsref_unwr = unwrap(angle(R_fft),pi);

phssim_unwr = unwrap(angle(S_fft),pi);

w = 1.5; %max frequency for readable data

W1 = 0:dw1:w; % Frequency grid of readable data in THz

W_len = length(W1); % Length of the grid

% Indexes of relevant frequency range bounds

[a,indexw02] = min(abs(W1-0.2));

[a,indexo02] = min(abs(omega-0.2));

[a,indexo25] = min(abs(omega-w));

% Ranges for the relevant part of the spectrum

range1 = indexo02:indexo25;

range2 = 2+indexw02:W_len;

% Fit phases to polynomials (see help polyval and polyfit)

fitref = polyfit(W1,phsref_unwr(1:W_len)',1);

phsref_fit = polyval(fitref,W1);

fitsim = polyfit(W1,phssim_unwr(1:W_len)',1);

phssim_fit = polyval(fitsim,W1);

phs_diff = (-phsref_unwr(1:W_len)+phssim_unwr(1:W_len)); %Phase

difference

phs_diff= abs(phs_diff');

58

T = abs(Sim_fft(1:W_len)')./abs(Ref_fft(1:W_len)'); % Ratio of

amplitudes

beta_calc = phs_diff/d+omega0/c; % beta calculated

alpha_calc = -(2/d)*log(T); % calculate absorption coefficient

eps_calc = ((beta_calc+1i*alpha_calc)*c./(W1*2*pi)).^2; %

extracted dielectric function

kappa_in = 2*pi*omega.*sqrt(eps_in)/c; % input propagation

constant

%% Plot values (comment if needed)

figure(7)

p1 = plot(omega(range1),real(kappa_in(range1))); hold on;

p2 = plot(W1(range2), beta_calc(range2),"-."); grid;

xlabel("Frequency (THz)"); ylabel("\beta (2\pi/mm)");

p1(1).LineWidth = 2;

p2(1).LineWidth = 2;

set(gca,'FontWeight','bold');

legend([p1 p2], ["Expected" "Extracted"]);

figure(8);

p1 = plot(omega(range1),imag(kappa_in(range1))); grid; hold on;

p2 = plot(W1(range2), alpha_calc(range2),"-.");

xlabel("Frequency (THz)"); ylabel("\alpha (2\pi/mm");

p1(1).LineWidth = 2;

p2(1).LineWidth = 2;

legend([p1 p2], ["Expected" "Extracted"]);

set(gca,'FontWeight','bold');

figure(17)

p1 = plot(omega(range1),real(eps_in(range1))); hold on;

p2 = plot(W1(range2), real(eps_calc(range2)),"-."); grid;

xlabel("Frequency (THz)"); ylabel(["Real" char(949)]);

p1(1).LineWidth = 2;

p2(1).LineWidth = 2;

set(gca,'FontWeight','bold');

legend([p1 p2], ["Expected" "Extracted"]);

figure(18);

p1 = plot(omega(range1),imag(eps_in(range1))); grid; hold on;

p2 = plot(W1(range2), imag(eps_calc(range2)),"-.");

59

xlabel("Frequency (THz)"); ylabel(["Imag" char(949)]);

p1(1).LineWidth = 2;

p2(1).LineWidth = 2;

legend([p1 p2], ["Expected" "Extracted"]);

set(gca,'FontWeight','bold');

%% Interpolation & error calc

alpha_interp =

interp1(omega(range1),(imag(kappa_in(range1))),W1(range2),'splin

e');

beta_interp =

interp1(omega(range1),(real(kappa_in(range1))),W1(range2),'splin

e');

eps_interp =

interp1(omega(range1),eps_in(range1),W1(range2),'spline');

alpha_err = sum((alpha_interp-

alpha_calc(range2)).^2/(alpha_interp).^2);

beta_err = sum((beta_interp-

beta_calc(range2)).^2/(beta_interp).^2);

eps_err = sum((eps_interp-eps_calc(range2)).^2/(eps_interp).^2);

60

Appendix F: Nonlinear effect threshold

%% Gamma graph

% Plots graphs of kerr nonlinearity thresholds by varying

initial pulse

% intensity and nonlinear parameter gamma

close all; clc; clear all;

distance = 0.1; % In m change to mm

time_points = 1500; % Granularity in the time domain

points = [-time_points/2:time_points/2-1];

dtau = 10; % Time in ps

time = (-time_points*dtau/2:dtau:((time_points-

1)*dtau/2))/time_points; % Array of time points

c = 0.3; % Speed of light, mm/ps

% Curve fitting of initial pulse Several Gaussians??

E0 = 501.2/200;

sig = 0.4694; % Standard Deviation

t0 = 0; % I centered it around 0

w0 = 3.584; %Pulse resonant freq.

E_Field = E0*exp(-0.5*((time-t0)/sig).^2)/10; % Electric field

envelope (oscillation is added after propagation

%% Change these two to vary the input field and gamma

multiples = linspace(0.1,5,100); % multiples of the initial

pulse amplitudes

nld = linspace(0.1,5,100);

maxi1 = time_points/2; % initial index of max value

dt = time(2)-time(1); % time step

%% Propagation

for count1=1:100

 for count2=1:100

 curr_field = E_Field*multiples(count1); % change field

amplitude

 curr_field =

exp(1i*nld(count2)*(abs(curr_field)).^2).*curr_field; %

propagate nonlinearly

 curr_field = real(curr_field.*cos(-1i*w0*time)); % Add

oscillation and take real part

 [a,maxic] = max(curr_field); %index of max value

 time_c = (maxi1-maxic)*dt; % calculate time shift

61

 max_change(count1,count2) = (max(curr_field)-

max(E_Field*multiples(count1)))*100/max(E_Field*multiples(count1

)); % percent change in peak

 phase_shift(count1,count2) = time_c*w0; % phase shift

 end

end

%% Plotting

ticksx=multiples*max(E_Field);

printx={num2str(round(nld(1),2))};

printy={num2str(round(ticksx(1),2))};

for count3=1:5

 printx=[printx, {num2str(round(nld(count3*20),2))}];

 printy=[printy, {num2str(round(ticksx(count3*20),2))}];

end

figure(4);

mesh(max_change);

c = colorbar;

c.Label. String = 'Percent change in peak field';

ylabel("Peak electric field (MV/mm)")

xlabel("Nonlinear parameter times distance (mm^2/MV^2)")

set(gca,'FontWeight','bold');

set(gca, 'xtick', 0:20:100);

set(gca, 'ytick', 0:20:100);

xticklabels(printx);

yticklabels(printy);

figure(7);

mesh(phase_shift);

c = colorbar;

c.Label.String = 'Phase shift (radians)';

ylabel("Peak electric field (MV/mm)")

xlabel("Nonlinear parameter times distance (mm^2/MV^2)")

set(gca,'FontWeight','bold');

set(gca, 'xtick', 0:20:100);

set(gca, 'ytick', 0:20:100);

xticklabels(printx);

yticklabels(printy);

