
 

i 

 

 Simulation of the Propagation of Terahertz Waves in Linear 

& Nonlinear Isotropic Media 

 

A Major Qualifying Project Report 

Submitted to the Faculty of 

WORCESTER POLYTECHNIC INSTITUTE 

In partial fulfillment of the requirements for the 

Degree of Bachelor of Science 

By 

 

_____________________________________ 

Miguel A. Aranda R. 

April 26, 2018 

 

Approved by: 

 

_____________________________________ 

Professor Alex Zozulya, Advisor 

Physics Department 

 

_____________________________________ 

Professor Reinhold Ludwig, Advisor 

Electrical & Computer Engineering Department 

 

_____________________________________ 

Professor Lyubov Titova, Co-Advisor 

Physics Department  



 

ii 

 

Abstract 

 Terahertz (THz) spectroscopy offers the possibility to study and characterize the dielectric 

response of materials. Novel developments in the generation of THz pulses allow the creation of 

high peak electric fields which enable the observation of nonlinear effects. This MQP deals with 

the development of MATLAB code using the split-step method to simulate the propagation of THz 

pulses in linear and nonlinear isotropic media, more specifically, liquids. Programs were developed 

to determine the dielectric properties of a sample through the analysis of a pulse propagated 

through the sample, and to calculate threshold electric field values for observing nonlinearities. 

The code was tested with experimental data of propagation through water samples. 
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Introduction 

The study of terahertz (THz) waves and their interaction with matter has become a very 

productive scientific field, contributing advances in many fields. Ruben’s experiments on 

blackbody emission (at about 6 THz) at the start of the twentieth century led to Planck’s blackbody 

radiation law, and subsequently to the formulation of quantum mechanics. Nevertheless, progress 

in the field was delayed until the 1970s, when researchers discovered the use of THz frequencies 

for astronomical research [1]. Since then, discoveries, inventions and advances have been 

compounding to increase the depth and breadth of THz analysis. 

The goal of this project is the modelling of the propagation of THz waves in linear and 

nonlinear isotropic media and use this ability to compare it to experimental results, analyze data, 

and obtain a deeper understanding of the phenomena observed in the lab. This can be achieved 

through computer modelling, and mores specifically, the use of the split-step method for 

nonlinearities. For this implementation, the development of an appropriate model requires an 

understanding of the experimental setup used in the laboratory, the pieces of software used, in 

particular Matlab, the underlying mathematics involved in the program (partial differential 

equations, Fourier transforms, and various discretization issues), and the interaction between these 

components. 

 

The terahertz range 

THz waves are electromagnetic radiation between the milimeter wave and infrared portions 

of the EM spectrum, and ranges between 0.3THz-20THz (1012 Hz), or the corresponding 

wavelengths of 1 mm − 15 μm and energies of 1.2 −  8.3 meV, as seen in figure 1. The use of 

THz provides a high bandwidth and good resolution while remaining non-invasive and non-

destructive. THz analysis has become the method of choice for study in various fields. In material 

science and manufacturing it is used for property identification and defect detection [2]. In 

medicine, for non-invasive imaging [3] (even 3D imaging). For security purposes, THz are 

particularly useful, since many of the materials used in weapon manufacturing have a 

characteristic, identifiable resonance spectrum in the THz domain which can be taken advantage 

of for concealed weapon detection [4]. In the field of museum conservation, THz waves are used 
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to analyze the making of objects of interest without having to break them apart, and has provided 

a new method of studying painting techniques and restoration efforts [5]. THz waves are also being 

studied as an alternative to current communication frequencies, to provide higher bandwidths [6]. 

In particular, at WPI’s Ultrafast THz and Optical Spectroscopy Lab, THz waves are used to study 

nanomaterials for photovoltaic applications, the role of intermolecular dynamics in chemical 

reactions, and the properties of cells [7].  

 

Figure 1: EM spectrum highlighting the phenomena analyzed with THz (semiconductors, nanomaterials, modes of liquids and 

proteins) from [8]. 

Before its recent popularity, the use of THz radiation was unavailable to researchers, since 

it was beyond what was accessible for electronic circuity and below what could be accessed 

optically [8]. However, THz radiation can now be generated through a variety of methods, most 

notably optical rectification and electronic oscillators. Optical rectification is a nonlinear process 

in which a polarization is generated in a nonlinear medium through the use of an intense optical 

beam, and is the method capable of working at the highest efficiency and generating the strongest 

pulses [9]. Thanks to this technology it is possible to generate short, nearly single-cycle THz pulses 

using ultrafast optical and infrared lasers, most notably Ti:Sapphire lasers. Other systems include 

synchrotrons, quantum cascade lasers and free electron lasers [8]. The short duration and broad 

bandwidth of THz pulses lend themselves to application in spectroscopy. There are various 

specific spectroscopic techniques involving THz, some of which are time-domain spectroscopy 

(TDS), time-resolved spectroscopy (TRTS), emission spectroscopy (TES) and imaging. These 

distinct implementations allow the investigation of different features of interest. For instance, TDS 
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is used to determine the static properties of a sample (like complex permittivity), while TRTS helps 

to analyze dynamic properties of a sample (which is of use in semiconductor physics). A benefit 

of the use of THz is that coherent time domain detection allows researchers to determine the 

amplitude and phase of the pulse, and can be used to compute the complex frequency-resolved 

permittivity of the sample without Kramers-Kronig analysis [1]. A sample permittivity spectrum 

is shown in figure 2, which also outlines processes observed at each different section of the 

electromagnetic spectrum with atomic resonances characterizing the THz gap. 

 

Figure 2: Atomic interactions and frequency (borrowed from [10]) 

In typical THz spectroscopy experiments (as seen in figure 3) Ti:sapphire laser pulses 

traverse the sample and are then measured in the time domain. THz-TDS can be used for the 

analysis of solids, gases, and liquids, though this project focuses on the latter. For liquids, dielectric 

properties are determined by the formation, interaction and relaxation of dipoles [8], and water is 

of paramount importance to this area. Water has high absorption in the THz range, with an 

absorption coefficient of about 250 cm−1 at 1 THz [11]. This property leads to many practical 

applications, such as quantifying hydration in medicine or the analysis of dielectric properties of 

solutions. However, penetration into biological tissues is limited to a superficial layer of skin, and 

the propagation through air is hindered by the presence of water molecules in air. 
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Figure 3: A THz-TDS experimental setup using a broadband pulsed laser. 

 

Motivation 

This project has two main aims. First, to simulate linear propagation through liquids, to 

model results and extract their complex dielectric functions. Second, to simulate nonlinear effects 

for high peak electric fields, which will become more relevant through the use of new THz sources 

with peak field values of MV/cm. This will provide insight into the new phenomena that can be 

observed. The resulting simulation can be used to estimate the threshold electric field value for 

which the effects become pronounced. 

The study of THz spectroscopy and nonlinearities has many interesting applications. The 

THz range is coincident with the frequency of many important vibrational modes, as seen in figure 

4. 2D materials can be used for integrated photonic circuits operating at THz wavelengths, 

including the possibility of developing graphene based emitters, detectors, and modulators [12]. 

THz imaging can be used to investigate subsurface damages in solar cells [13]. In the realm of 

biotechnology, THz radiation can be used to recognize and characterize biomolecules since it 

coincides with the low-frequency vibration, rotation, and translation biological molecules [14]. In 

particular, for liquids, THz can be used to detect liquid explosives [15], improving airport security, 

to quantify refined oil mixtures [16], and multiple biological uses, such as drug analysis and 
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characterization and skin cancer imaging, amongst others [17]. These and many others show the 

potential that THz has as an area of interdisciplinary research and applications. 

 

Figure 4: The THZ spectrum and molecular modes, from  [18]. 
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Propagation of electromagnetic radiation in dielectric media 

The analysis of the phenomena observed in the lab requires the study of non-linear optics, 

the development of a pulse propagation model, an algorithm to implement the model in a computer, 

and a model to describe material properties in the THz domain. The mathematical formulation of 

the aforementioned aspects is outlined and discussed in the following sections. 

 

Pulse propagation model 

The behavior of electromagnetic radiation is governed, at its most fundamental level, by 

Maxwell’s Equations [19] (1-4): 

 ∇ ∙ 𝑫 = 𝜌𝑓 (1) 

 ∇ ∙ 𝑩 = 0 (2) 

 ∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 (3) 

 ∇ × 𝑯 = 𝑱𝑓 +
𝜕𝑫

𝜕𝑡
 (4) 

where 𝜌𝑓 is the free charge density and 𝑱𝑓 is the free current density, 𝑬 is the electric field, 𝑫 is 

the electric displacement field, 𝑩 and 𝑯 are the magnetic fields. Fields 𝑫 and 𝑯 are defined 

through the constitutive relations: 

 𝑫 ≡ 𝜀0𝑬 + 𝑷 (5) 

 𝑯 ≡
1

𝜇0
𝑩 − 𝑴 (6) 

here 𝜀0 and 𝜇0 are the permittivity and permeability of free space (𝜀0𝜇0 = 𝑐−2, where 𝑐 is the 

speed of light in vacuum), while 𝑷 and 𝑴 are polarization and magnetization, respectively.  

In the following we will be working with dielectric (𝜌𝑓 = 0, 𝑱𝑓 = 0) and nonmagnetic (𝑴 = 0) 

media. We can obtain a single equation for the propagation of the electric field 𝑬 by taking the 

curl of eq. (3): 
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 ∇ × ∇ × 𝑬 = −
𝜕

𝜕𝑡
∇ × 𝑩 (7) 

To transform eq. (7), we first use 𝑴 = 0 and eq. (6), to set  

𝑩 = 𝜇0𝑯 

Then, given that 𝑱𝑓 = 0, eq. (4), becomes 

∇ × 𝑩 = 𝜇0

𝜕𝑫

𝜕𝑡
 

which is now used to get 

 ∇2𝑬 − ∇(∇ ∙ 𝑬) = −𝜇0

𝜕2𝑫

𝜕𝑡2
 (8) 

Furthermore, eq. (6) can be used to replace the electric displacement field in favor of 𝑬 and 𝑷: 

 ∇2𝑬 − ∇(∇ ∙ 𝑬) =
1

𝑐2

𝜕2

𝜕𝑡2
(𝑬 +

𝑷

𝜀0
 )  (9) 

In an isotropic linear medium, ∇ ∙ 𝑬 = 0. In the presence of nonlinearity and transverse spatial 

effects, this is not necessarily the case. Nevertheless, in the following we will assume that the 

transverse effects are sufficiently small and set ∇ ∙ 𝑬 = 0. Additionally, we will assume that the 

electromagnetic field is polarized in the same direction and drop vector notation. 

 ∇2𝐸 =
1

𝑐2

𝜕2

𝜕𝑡2
(𝐸 +

𝑃

𝜀0
 )  (10) 

In general, the jth component of the polarization field is related to the electric field as 

 

1

𝜀0
𝑃𝑗 = ∫ 𝜒𝑗𝑘

(1)(𝑡 − 𝜏)𝐸𝑘(𝜏)𝑑𝜏
𝑡

−∞

+ 

∫ 𝜒𝑗𝑘𝑙
(2)(𝑡 − 𝜏1, 𝑡 − 𝜏2)𝐸𝑘(𝜏1)𝐸𝑙(𝜏2)𝑑𝜏1𝑑𝜏2

𝑡

−∞

+ 

∫ 𝜒𝑗𝑘𝑙𝑚
(3) (𝑡 − 𝜏1, 𝑡 − 𝜏2, 𝑡 − 𝜏3)𝐸𝑘(𝜏1)𝐸𝑙(𝜏2)𝐸𝑚(𝜏3)𝑑𝜏1𝑑𝜏2𝑑𝜏3

𝑡

−∞

+ ⋯ 

(11) 
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where 𝜒𝑗𝑘
(1)

 is the linear susceptibility and 𝜒(𝑛) is the nth order nonlinear susceptibility. We will 

consider the simplest case of interest, where the optical medium is centrosymmetric and isotropic. 

In this case, 𝜒(2) = 0, and eq. (4) can be simplified to  

 

1

𝜀0
𝑃 = ∫ 𝜒(1)(𝑡 − 𝜏)𝐸(𝜏)𝑑𝜏

𝑡

−∞

+ 

∫ 𝜒(3)(𝑡 − 𝜏1, 𝑡 − 𝜏2, 𝑡 − 𝜏3)𝐸(𝜏1)𝐸(𝜏2)𝐸(𝜏3)𝑑𝜏1𝑑𝜏2𝑑𝜏3

𝑡

−∞

 

=
1

𝜀0

(𝑃𝐿 + 𝑃𝑁𝐿) 

(12) 

where we have separated the polarization into linear and nonlinear parts. 

The Fourier transform of the electric field 𝐸(𝑡) defined by the following relations: 

 

𝐸(𝜔) =
1

2𝜋
∫ 𝐸(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡

∞

−∞

, 

𝐸(𝑡) = ∫ 𝐸(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔
∞

−∞

 

(13) 

Fourier transforms of 𝐷(𝜔) and 𝑃𝑁𝐿(𝜔) in (7) are defined analogously. 

By applying the transform to eq. (5), we arrive at: 

 𝐷(𝜔) = 𝜀(𝜔)𝐸(𝜔) + 𝑃𝑁𝐿(𝜔) (14) 

The quantity 𝜀(𝜔) in (6) is the linear dielectric constant of the medium, defined by the relations 

 𝜀(𝜔) = 1 + 𝜒(1)(𝜔) (15) 

where 

𝜒(1)(𝜔) = ∫ 𝜒(1)(𝜔)𝑒𝑖𝜔𝑡𝑑𝑡
∞

0

 

is the Fourier transform of the linear susceptibility. 

In the following we assume that the electric field 𝐸(𝑡) can be represented as  

 𝐸(𝑡) = 𝑒(𝑡)𝑒−𝑖𝜔0𝑡 + 𝑐. 𝑐.  (16) 
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where 𝑐. 𝑐. stands for the complex conjugate and 𝑒(𝑡) is a complex amplitude that changes slowly 

as compared to exp(−𝑖𝜔0𝑡): 

 |
𝑑𝑒

𝑑𝑡
| ≪ 𝜔0|𝑒| (17) 

Similarly, we write 

 𝑃𝑁𝐿(𝑡) = 𝑝𝑁𝐿(𝑡)𝑒−𝑖𝜔0𝑡 + 𝑐. 𝑐 (18) 

Assumption (16) means that 𝐸(𝜔) and 𝑃𝑁𝐿(𝜔) are both localized around 𝜔 = ±𝜔0. 

Fourier transform of eq. (10) reads 

 ∇2𝐸(𝜔) =
𝜔2

𝑐2
[𝜀(𝜔)𝐸(𝜔) + 𝑃𝑁𝐿(𝜔)] (19) 

Inverse Fourier transform of eq. (19) allows one to obtain an equation for the slowly varying 

envelope 𝑒(𝑡) given by eq. (16). 

We can represent 𝑘2(𝜔) = (
𝜔

𝑐
)

2

𝜀(𝜔) as a power series around 𝜔 = 𝜔0: 

 𝑘2(𝜔) = ∑
1

𝑚!

𝑑𝑚𝑘2

𝑑𝜔𝑚
|

𝜔0

(𝜔 − 𝜔0)𝑚 

∞

𝑚=0

  

This allows us to get (see [20]): 

 ∇2𝑒 + [ ∑
𝑖𝑚

𝑚!

𝑑𝑚𝑘2

𝑑𝜔𝑚
|

𝜔0

𝜕𝑚

𝜕𝑡𝑚

∞

𝑚=0

] 𝑒 +
𝜔0

𝑐2𝜀0
(1 +

𝑖

𝜔0

𝜕

𝜕𝑡
) 𝑝𝑁𝐿 = 0 (20) 

Further representing the envelope 𝑒(𝑡) as 

 𝑒(𝑟, 𝑡) = 𝐴(𝑟, 𝑡) exp[𝑖𝑘(𝜔0)𝑧] (21) 

where 𝑘(𝜔) =
𝜔

𝑐
√𝜀(𝜔),  substituting it into eq. (14) and dropping the subscript 0 on 𝜔0 allows 

us to get 

 2𝑖𝑘 (
𝜕

𝜕𝑧
+ 𝑘′

𝜕

𝜕𝑡
) 𝐴 +

𝜕2

𝜕𝑧2
𝐴 + ∇⊥

2 𝐴 (22) 
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+ [ ∑
𝑖𝑚

𝑚!

𝑑𝑚𝑘2

𝑑𝜔𝑚
|

𝜔0

𝜕𝑚

𝜕𝑡𝑚

∞

𝑚=2

] 𝐴 +
𝜔2

𝑐2𝜀0
(1 +

𝑖

𝜔

𝜕

𝜕𝑡
)

2

𝑝𝑁𝐿 = 0 

where 𝑘′ = 𝑑𝑘(𝜔)/𝑑𝜔. 

In the following we will neglect the second derivative with respect to 𝑧 in eq. (22) assuming that 

|
𝜕

𝜕𝑧
𝐴| ≪ |𝑘||𝐴|. 

We will also omit the transverse Laplacian ∇⊥
2  assuming that the electromagnetic field is 

sufficiently wade in the transverse dimension. We will also introduce the following notation for 

the Taylor expansion of 𝑘: 

 𝛽𝑚 = Re [(
𝜕𝑘(𝜔)

𝜕𝜔
)

𝜔0

]  

 𝛼𝑚 = Im [(
𝜕𝑘(𝜔)

𝜕𝜔
)

𝜔0

]  

 

�̂� = 𝑖
𝛼0

2
−

𝛼1

2
𝜕𝑡 + ∑

𝛽𝑚 +
𝑖𝛼𝑚

2
𝑚!

(𝑖𝜕𝑡)𝑚

∞ 

𝑚=2

 

 

This reduces eq. (22) to 

 𝜕𝑧𝐴 = 𝑖�̂�𝐴 +
𝜔2

𝑐2𝜀0
(1 +

𝑖

𝜔

𝜕

𝜕𝑡
)

2

𝑝𝑁𝐿 (23) 

Furthermore, we will only consider the lowest order and thus simpler contribution to 𝑝𝑁𝐿. We 

know that polarization is related to the electric field in the third order (eq. (12)), so we will combine 

its coefficients into a single nonlinear parameter 𝛾 as follows: 

 𝜕𝑧𝐴 = 𝑖�̂�𝐴 + 𝑖𝛾|𝐴|2𝐴 (24) 

Finally, for most simulations we do not need to consider every term in the Taylor expansion of 𝑘, 

so we will limit ourselves to three, which makes the final version of eq. (24) become: 

 𝜕𝑧𝐴 = (−
𝛼0

2
− 𝑖

𝛼1

2
𝜕𝑡 + (−𝑖

𝛽2

2
+

𝛼2

4
) (𝜕𝑡)2 + (

𝛽3

3!
+ 𝑖

𝛼3

2 ∗ 3!
) (𝜕𝑡)3 + 𝑖𝛾|𝐴|2) 𝐴 (25) 
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The result of the propagated envelope can be transformed back into the oscillating electric field by 

multiplying the envelope by 𝑒−𝑖(𝜔0𝑡). Furthermore, we are working in a reference frame moving 

at the speed of the wave, so we use 𝜏 = 𝑡 + 𝛽1𝑧 to get back to static reference frame and account 

for the different propagation time inside the medium. 

 

Kerr effect 

The main source of nonlinear effects observed in THz regime experiments is termed the Kerr 

effect, a change in the refractive index of a medium by an amount proportional to |𝑬|2. First of all, 

the complex refractive index of a medium, 𝑛, is related to the complex dielectric function by the 

following relations 

 𝜀 = 𝑛2 

(26) 

 Re[𝜀] = Re[𝑛]2 − Im[𝑛]2 

 Im[𝜀] = 2Re[𝑛]Im[𝑛] 

 Re[𝑛] = √
|𝜀| + Re[𝜀]

2
 

 Im[𝑛(𝜔)] = √
|𝜀| − Re[𝜀]

2
 

Recall, from eq. (14) the displacement field is separated using the nonlinear polarization: 

 𝐷 = 𝜀𝐸 + 𝑃𝑁𝐿 (27) 

The 𝜀 in eq. (27) can be now rewritten in terms of electric susceptibilities: 

 𝜀 = 1 + 4𝜋𝜒(1) (28) 

where 𝜒(1) is the linear electric susceptibility. Likewise, the nonlinear polarization can also be 

expressed using electric susceptibilities: 

 

𝑃𝑁𝐿 = 𝜀0𝜒𝑛𝑙𝐸 

𝑃𝑁𝐿 = 𝜀0(𝜒(1)𝐸 + 𝜒(2)𝐸2 + 𝜒(3)𝐸3 + ⋯ ) 

(29) 
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where 𝜒(𝑛) is called the nth order susceptibility. These values can be calculated by analyzing the 

potential well produced by the electric field. The optical Kerr effect causes the refractive index of 

a medium to become dependent on beam intensity. To express this, consider the nonlinear 

dielectric constant of a medium in which 𝜒(2) = 0: 

 𝜀𝑟𝑛𝑙
= 1 + 𝜒(1) + 𝜒(3)𝐸2 = 𝜀𝑟 + ∆𝜀 (30) 

from eq. (30), and by using eq. (26), 𝑛 must be: 

 𝑛 = √𝜀𝑟 + ∆𝜀 = √𝜀𝑟 +
∆𝜀

2√𝜀𝑟

= 𝑛0 +
𝜒3|𝑬|2

2𝑛0
 (31) 

by assuming that 𝜀𝑟 ≪ ∆𝜀 in the second equality. This shows that 𝑛 changes proportionally to the 

3rd order nonlinearity and the square of the electric field. Furthermore, since 𝜒(3) and 𝑛0 are 

constants, we can set: 

 𝑛 = 𝑛0 + 𝐾|𝐸|2 (32) 

where 𝐾 is called the Kerr constant of a medium. Notice that this parallels the nonlinear term in 

eq. (25), in which 𝛾 is the nonlinear parameter multiplying |𝐴|2.  

 

Split step method 

The split step method is a simulation scheme to account for nonlinearities in which 

propagation is performed in multiple steps. Each step is divided into two, half of the step is used 

for the linear propagation, and the other half for the non-linear. In mathematical terms, the 

differential equation employed must be divisible into linear and nonlinear operators [21]: 

 
𝜕𝐴

𝜕𝑧
= [�̂� + �̂�]𝐴 (33) 

with our particular differential equation the linear operator �̂� is the dispersion operator, while �̂� =

𝑖𝛾|𝐴|2. To perform the propagation, we separate the space we need to traverse into small steps of 

size ℎ. We first propagate the pulse a distance of ℎ/2 and act on it only with the linear operator. 

After that, we take a complete step of ℎ and act on the pulse with the nonlinear operator. Finally, 

we take another half step and act with the linear operator to get: 



 

13 

 

 𝐴(𝑧 + ℎ) = 𝑒
�̂�ℎ
2 𝑒�̂�ℎ𝑒

�̂�ℎ
2 𝐴(𝑧) (34) 

This symmetry helps to increase the precision of the result, notice that performing multiple steps 

in order produces eq. (35): 

 𝐴(𝑧 + 𝑛ℎ) = 𝑒
�̂�ℎ
2 𝑒�̂�ℎ𝑒

�̂�ℎ
2 𝑒

�̂�ℎ
2 𝑒�̂�ℎ𝑒

�̂�ℎ
2 … 𝐴(𝑧) = 𝑒

�̂�ℎ
2 𝑒�̂�ℎ𝑒�̂�ℎ𝑒�̂�ℎ … 𝑒

�̂�ℎ
2 𝐴(𝑧) (35) 

Since linear half steps are performed one after the other, they can be combined into a single full-

length step. The exact answer is given by acting on the pulse with both linear and nonlinear 

operators at the same time, which yields eq. (36): 

 𝐴(𝑧 + ℎ) = 𝑒(�̂�+�̂�)ℎ𝐴(𝑧) (36) 

If the two operators (linear and nonlinear) were commutative, the split-step result would be exact. 

Nevertheless, to analyze the error involved in this approximation we can Taylor expand the 

exponentials in eq. (34) [21] for each part of the propagation to obtain eqs. (37-38): 

 𝑒
�̂�ℎ
2 = 1 +

ℎ

2
�̂� +

ℎ2

8
�̂�2 + 𝑂(ℎ3) (37) 

 
𝑒�̂�ℎ = 1 + ℎ�̂� +

ℎ2

2
�̂�2 + 𝑂(ℎ3) 

(38) 

where 𝑂(ℎ3) indicates that the remaining terms in the expansion are of the order of ℎ3 or higher. 

The multiplication of these Taylor expansions results in: 

 𝑒
�̂�ℎ
2 𝑒�̂�ℎ𝑒

�̂�ℎ
2 = 1 + ℎ�̂� + ℎ�̂� +

ℎ2

2
�̂�2 +

ℎ2

2
�̂�2 +

ℎ2

2
�̂��̂� +

ℎ2

2
�̂��̂� + 𝑂(ℎ3) (39) 

In contrast, the Taylor expansion of the exact solution is given by: 

 𝑒(�̂�+�̂�)ℎ = 1 + ℎ(�̂� + �̂�) +
1

2
ℎ2(�̂� + �̂�)

2
+ 𝑂(ℎ3) (40) 

As seen in above, the Taylor expansions of the exact solution (eq. (36)) and the split step solution 

(eq. (39)) are identical up to the ℎ2 terms. This implies that the error in the approximation of the 

propagation of the wave will be a factor of the cube of the step size ℎ. Therefore, the split step 

method is second-order accurate.  
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The split step method was chosen in favor of other simulation schemes like the finite 

difference method because it relies on FFTs which can be efficiently computed. Furthermore, it’s 

second order accuracy is enough for the desired precision of the simulation. 

 

The Debye model 

 The Debye model is used to represent the (frequency-dependent) dielectric function of 

liquids by representing them as damped oscillations. In general, the dielectric function is divided 

into relaxation processes and vibrational modes. These are used to represent various physical 

phenomena, including molecular stretch, rotational modes and collective vibrational modes. The 

characteristic oscillatory modes of water are shown in figure 5. In eq. (41), these are represented 

through sums of up to N for relaxation processes and M vibrational modes: 

 𝜀(𝜔) =  ∑
∆𝜀𝑗

1 − 𝑖𝜔𝜏𝑗

𝑁

𝑗=1

+ ∑
𝐴𝑗

𝜔𝑗
2 − 𝜔2 − 𝑖𝜔𝛾𝑗

𝑀

𝑗=1

+ 𝜀∞ (41) 

where the coefficients 𝜏𝑗 are the characteristic relaxation time, 𝜔𝑗 the pulse carrier frequency, 𝐴𝑗 

the vibrational amplitudes, and 𝜀∞ the permittivity at infinite frequency [22]. In the computer 

simulations, this model is used to obtain the values for the 𝛼 and 𝛽 coefficients in the dispersion 

operator. 

 

Figure 5: Main vibration modes of water, from [17]. 
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Using THz-TDS to extract dielectric properties 

THz-TDS can be used to extract the properties of a material through which a wave has propagated. 

While mimicking the experimental setup shown in figure 6, the Fourier-space amplitude and phase 

of the reference pulse and sample pulse can be compared to obtain the propagation characteristics 

of the material.  

 

Figure 6: Experimental setup for dielectric property extraction 

To do so, first we recall that from the propagation section, we split the complex propagation 

constant 𝑘 into its real components 𝛽 and complex components 𝛼, and used those as sum of 𝜔0-

centered terms. Therefore, we can now define 

 𝑘(𝜔) = 𝛽(𝜔) + 𝑖𝛼(𝜔) (42) 

where 

 𝛽(𝜔) = ∑
𝛽𝑚

𝑚!
(𝜔 − 𝜔0)𝑚 

∞

𝑚=0

, 𝛼(𝜔) = ∑
𝛼𝑚

𝑚!
(𝜔 − 𝜔0)𝑚 

∞

𝑚=0

  

Furthermore, from the solution of the linear part of eq. (25) in the Fourier domain, we can see that 

a propagated pulse will differ from the initial pulse by: 
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 𝐸𝑖𝑛(𝜔) = 𝐸𝑜𝑢𝑡(𝜔)𝑒
−𝛼(𝜔)𝑑

2 𝑒𝑖(𝛽)𝑑 (43) 

where d is the distance covered inside the medium. We first separate the ratio of electric fields into 

amplitude and phase: 

 
𝐸𝑖𝑛(𝜔)

𝐸𝑜𝑢𝑡(𝜔)
= 𝑇(𝜔)𝑒𝑖𝜙(𝜔) (44) 

This relation can allow us to extract the 𝛼(𝜔) and 𝛽(𝜔) of a medium by using the following, 

 𝑇(𝜔) = 𝑒− 
𝛼(𝜔)𝑑

2   

 𝛼(𝜔) =  − (
2

𝑑
) ln[𝑇(𝜔)] (45) 

 𝑒𝑖𝜙(𝜔) = 𝑒𝑖(𝛽(𝜔)+
𝜔0
𝑐

)𝑑
  

 𝛽(𝜔) =
𝜙(𝜔)

𝑑
+

𝜔0

𝑐
 (46) 

The results for 𝛼 and 𝛽 in equations (45-46) describe the dielectric properties of the propagation 

medium, and can also be used, if needed, to calculate the dielectric function 𝜀(𝜔) or the refractive 

index 𝑛(𝜔) of the material. 
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Objective 

 Since THz spectroscopy is a new and rapidly developing field, experimental methods, and 

equipment are frequently improved and upgraded. More intense laser sources and more complex 

phenomena are being able to be studied The goal of this MQP is to develop MATLAB simulations 

in order to aid the development and understanding of the experiments performed at WPI’s 

Terahertz lab, in particular, when stronger sources allow the observation of nonlinear propagation. 

It is desired that the simulation should fit certain functionality goals. First of all, its performance 

should be accurate. THz experimental data has a large portion of noise components around the 

main pulse oscillations, and the experimental setups are fairly complex, with various transmission 

and reflection factors involved. The program is intended to serve as a guide for nonlinear effects 

and thresholds rather than a perfect linear propagation computation, so errors of up to 0.3 are 

considered acceptable. On the other hand, it is very useful to be able to determine the dielectric 

function of a medium through the comparison of two pulses, and this method allows for high 

accuracy, so a relative error of under 0.1 is expected. 

In terms of run-time, this type of simulation is typically not very computationally intensive, 

so long run-times are not the norm. Nevertheless, the simulation should be optimized for more 

efficient running (looking ahead for the future inclusion of more complex features), and runs 

should complete in a matter of seconds. Another requirement for the program is ease of use and 

extendibility. Since the program is intended to be used in the laboratory (as opposed to being a 

standalone result) ease of use and data visualization can be very helpful for comparing to 

experimental data. Furthermore, the extendibility of the code will allow for future improvements 

and the modelling of more complex media and phenomena. 
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Design 

The main concerns in developing the simulation were precision, ease of use and 

modification, and efficiency.  The split-step method, which was chosen in favor of other simulation 

methods like the finite-difference method, guarantees a precision that the error is at most the cube 

of the step size. Another benefit of the split-step is its generality and widespread use, which ensure 

it is appropriate for the current design and for future changes. The split-step is also a very 

generalized procedure to solve nonlinear equations, so that means that if we wished to alter eq. 

(25) to account for other effects or factors, that would require minimal work to do in code, since 

the solution and analysis procedure would remain the same. Furthermore, the ability to simulate 

the propagation of the wave through a medium, and to double-check the results by extracting the 

dielectric properties, is helpful to discover mistakes. 

 

Programming Language 

The two principal options for programming language were C++ and Matlab. C++, as a 

compiled language, is generally faster than Matlab. Nevertheless, Matlab has various benefits to 

its own. It supports complex number arithmetic, which would have to be independently written in 

C++. Matlab’s implementation of the Fast Fourier Transform (FFT) is based upon the highly-

efficient hand-optimized FFTW library, while in C++ it would have to be included through an 

external library. Since the Fourier transform is an integral part of the simulation process, given 

that every evaluation of the linear propagation requires an FFT and an inverse FFT, there is a speed 

increase brought by the FFT’s optimization. Matlab has various built-in features such as curve-

fitting, and envelope and phase calculation which ease the building process. Moreover, its plotting 

capabilities allow for fast and effective visualization of results [24].  

 

Numerical Implementation 

 The simulations were built using Matlab scripts to calculate the dispersion factor, obtain a 

pulse envelope, propagate it, and then study the results. The final result was modularized to ease 

the creation of possible additions to the current program. For ease of use, the numbers used in the 

implementation were normalized to picoseconds, Terahertz, MV/mm and millimeters.  
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As explained in the Propagation chapter, Kerr nonlinearity is the most dominant nonlinear 

term for the setup concerned. There are two main factors that define whether nonlinear effects can 

be observed in this system and the peak electric field size of the pulse the value of the Kerr 

constant. The measurement of the value of the Kerr constant in the THz domain has been 

performed in [25] using single-cycle pulses with electric field strengths of 250 kV/cm, which 

determined the upper bound for the Kerr constant as 1.5 × 10−16m/V2, which, normalized to the 

units used in the simulation is 0.15 mm/MV2. 

 

Debye model fit 

The Debye model for water requires two relaxation processes and one vibrational mode, 

the coefficients used are in Table 1, and the dielectric function waveform obtained for the 0.2-2.5 

THz range in figure 7: 

∆𝜺𝟏 𝝉𝟏 [ps] ∆𝜺𝟑 𝝉𝟑 [𝐩𝐬] 𝑨

(𝟐𝝅)𝟐
[𝐓𝐇𝐳]𝟐 

𝜸

𝟐𝝅
 [𝐓𝐇𝐳] 𝜺∞ 

72.3 8.34 2.12 0.36 28.4 7.06 2.68 

Table 1: Debye Model parameters of water from [22] 
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Figure 7: Debye model dielectric function of water. 

In the simulation process, the effects of 𝜀 are accounted for through the use of the complex 

propagation constant 𝑘 =
𝜔√𝜀

𝑐
, which is used as a sum of 𝛼 and 𝛽 terms. To ensure agreement 

between this decomposition of 𝑘 and the original function, rather than using its Taylor expansion, 

curve fitting was used to calculate 𝛼 and 𝛽 parameters. Matlab’s Curve Fitting Tool was used to 

fit both 𝛼(𝜔) and 𝛽(𝜔) to an equation of the form: 

 𝛼(𝜔) = 𝛼0 + 𝛼1(𝜔 − 𝜔0) +
𝛼2

2!
(𝜔 − 𝜔0)2 +

𝛼3

3!
(𝜔 − 𝜔0)3 (47) 

In addition to improving the accuracy of the simulations, the curve fitting shortens the time 

needed for computation, since it does not require the calculation of various derivatives of 𝑘 for its 

Taylor expansion. The values used in the simulation, and their comparison to the original wave 

are shown in table 2 and figures 8-9. 

 𝜶𝟎 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝝎𝟎 [𝐓𝐇𝐳] 

Linear test 0.0005 0 0 0 0 0 0.1 0 0 

Water 9.178 1.275 -0.133 0.0262 26.8 6.403 -0.0569 0.0022 0.55 

Table 2: Simulation parameters 
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Figure 8: Original wave and polynomial fit of 𝛽(𝜔) 

 

Figure 9: Original and polynomial fit of 𝛼(𝜔) 
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Input Pulse 

A typical wave produced by the equipment at the lab has a time-domain waveform similar to that 

of Figure 10: 

 

Figure 10: Electric Field sent through samples in the lab. 

For some uses of the program it can be useful to simplify this waveform. It was chosen to fit this 

curve to a sinusoid modulated by a Gaussian: 

 𝐸(𝑡) ≈ 𝐸0 cos(𝜔0 ∗ 𝑡 + 𝜑) ∗ exp (−
(𝑡 − 𝑡0)2

2𝜎2
) (48) 

This fitting eases the computation in two manners, it reduces noise around the peak electric field, 

and the Gaussian can be used in itself as the propagated envelope without needing to perform extra 

calculations. Furthermore, a simple input curve can make it easier to visualize certain nonlinear 

propagation features in order to study nonlinear thresholds or extract dielectric properties. The 

results of the fitting, using Matlab’s Curve Fitting Toolbox (which relies on the Levenberg-

Marquardt Method [26]) are shown in table 3, with the waveform comparison in figure 11: 

𝑬𝟎 501.2 

𝝎𝟎 [𝐓𝐇𝐳 ∗ 𝟐𝝅] 3.584 
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𝝋 [𝒓𝒂𝒅] -1.799 

𝒕𝟎 [𝒑𝒔] 19.62 

𝝈 0.4694 

Table 3: Electric Field fitting parameters 

 

Figure 11: Original Electric Field and fit. 

The frequency-domain waveforms of the original and fitted curves are in figure 12: 
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Figure 12: Fourier Transform of the original pulse and fit. 

Other methods of equation fitting were also attempted, including Taylor Expansions, Gaussian 

sums, and fitting the curve with a similar equation to eq. (45), but with a chirp added through the 

𝛽 parameter in eq. (46): 

 𝐸(𝑡) ≈ 𝐸0 cos(𝜔0 ∗ 𝑡 + 𝛽 ∗ 𝑡2 + 𝜑) ∗ exp (−
(𝑡 − 𝑡0)2

2𝜎2
) (49) 

Nevertheless, the results did not show much difference upon the equation used previously. 

A fitting process was also created in order to obtain electric field envelopes from 

experimental data without using Matlab’s Curve Fitting Toolbox. This was necessary in order to 

have fitting results readily available for any input waveform. The process assumes that the 

characteristic frequency of the electric field oscillation (typically close to 0.6 THz) is 

approximately known. As a first step, Matlab’s envelope function is used, which works by 

transforming the input pulse into Hilbert-space [27]. Yet since this maintains a low of the 

experimental noise around the main function peak, the pulse obtained from the previous step can 

be fit to a Gaussian by using the fit function, which results in a smooth, noiseless envelope. The 

phase of the original electric field, which is necessary to transform back to the output field after 
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propagation, is determined by using a stochastic gradient descent algorithm. An example result of 

this fitting process are shown in figure 13, and the code is available in Appendix B. 

 

Figure 13: Envelope calculation example 
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Results 

Linear Test 

The first step of testing the code was to run it and compare the result with a known 

analytical solution. This of course, requires the non-linear operator to be set to zero. Furthermore, 

this requires an input which has a known simple transformation to and from the frequency domain, 

which is why the Gaussian pulse was chosen. The simplest equation describing the Gaussian pulse: 

 𝜓(0, 𝑡) = 𝑒−𝑡2
 (50) 

Besides that, a simple definition can be used for the dispersion operator. Since this test is intended 

to test the correctness of the split-step approach, using a dispersion operator that models a real-life 

material is not required. Thus, we only need to use the lower-order parameters as in eq. (51) 

 �̂� =  −
𝛼0

2
+ 𝑖

𝛽2

2

𝜕2

𝜕𝑡2
 (51) 

in which 𝛼0 and 𝛽2 were numbers chosen arbitrarily (to 0.005 and 0.1) in order to produce a model 

in which attenuation and dispersion were visible. To propagate this Gaussian pulse, it first must be 

transformed to Fourier-space, which produces: 

 𝜓(0, 𝜔) =
1

√2𝜋
∫ exp(−𝑡2 − 𝑖𝜔𝑡) 𝑑𝑡

∞

−∞

= √𝜋 exp (−
𝜔2

4
) (52) 

Now the Gaussian pulse in eq. (50) must be acted on by the operator to propagate it, which yields 

the eq. (53): 

 𝜓(𝑧, 𝜔) =
1

√2
exp (−

𝜔2

4
) ∗ exp(�̂�𝑧) =

1

√2
exp (−

𝜔2

4
+ 𝑖

𝛽2

2
𝜔2𝑧 −

𝛼0

2
𝑧) (53) 

The propagated pulse, eq. (53), can once again be transformed back to the time-domain through 

the inverse Fourier transform: 

 𝜓(𝑧, 𝑡) = ∫ 𝜓(𝑧, 𝜔)
∞

−∞

exp(2𝜋𝑖𝜔𝑡) 𝑑𝜔  

 𝜓(𝑧, 𝑡) =
1

√2
exp (−

𝛼0

2
𝑧)

1

√2𝜋
∫ exp (−

𝜔2

4
+ 𝑖

𝛽2

2
𝜔2𝑧 + 𝑖𝜔𝑡) 𝑑𝑡

∞

−∞
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 𝜓(𝑧, 𝑡) =
exp (−

𝛼0

2 −
𝑡2

1 − 2𝑖𝛽2𝑧
)

2√1
4 + 𝑖

𝛽2

2 𝑧

 (54) 

The result, in eq. (54) was tested against the simulated output from the code with an input 

waveform shown in figure 14: 

 

Figure 14: Input Gaussian wave to the linear simulation 

The resulting waveform for propagation across 5 mm can be seen in figure 15. 
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Figure 15: Simulation input, output and expected result. Note that the expected result and output are almost perfectly 

overlapped. 

As seen in figure 15, the expected output matches the simulation output almost perfectly. Since 

the operation performed is linear, the number of steps performed does not affect the relative error. 

The code used to perform this simulation can be seen in Appendix C. 

 

Comparison to experimental data 

Another method of testing the simulation was by comparing the simulation output to actual 

experimental data from a test in which a THz pulse was propagated through 0.1mm of water. 

Simulations will never be able to fully replicate real-life experiments due to various experimental 

considerations like refraction, phase changes, and transmission through the quartz containing the 

water, or the effects of the measurement equipment. Noise and the envelope approximation are 

additional sources of error. Nevertheless, these comparisons still ensure that the output from the 

simulation corresponds to the real-life behavior of pulses.  

The experimental data used was for propagation across 0.1 mm of water. As a first step, 

and as discussed in the previous chapter, we must calculate an envelope of the initial pre-

propagation pulse, shown in figure 16. 
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Figure 16: Envelope calculation example 

The field is then propagated and transformed back into an oscillating waveform, which 

results in what is seen in figure 17. Though the simulation is unable to match the noisy waveforms 

surrounding the main peak, yet it is a fairly good match for the main oscillation. The relative error 

calculated from the comparison of these waveforms was 0.18, which can be mostly attributed to 

the noisy sidebands, and fits the design goals. The code used for this part of the project is shown 

in Appendix D. The average time to run the program (including the various plots used) was 3.2 

seconds, well within the design goal. 
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Figure 17: Comparison of experimental data & simulation 

 

Extraction of the complex refractive index 

 As discussed in the propagation chapter, it is possible to extract the complex refractive 

index of a material by comparing a pulse propagated through air and another through the sample. 

This process can be implemented in the code by using the output of the pulse propagation, and 

compering the result to the waveform used for propagation. This was performed by propagating 

an input approximation pulse (as that of figure 11)  through 0.1 mm, the result of which is shown 

in figure 18. 
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Figure 18: propagation across 0.1 mm of water 

 The resulting electric field in the Fourier domain can be used to extract the 𝛼(𝜔) and 𝛽(𝜔) 

values for the material. The extraction of 𝛼 was very close to the expected value, with a relative 

error of 3.7 ∙ 10−4, and the waveform comparison can be seen in figure 19. 

 

Figure 19: 𝛼(𝜔) extracted waveform 
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On the other hand, and since eq. (25) does not account for the value of 𝛽0, the extracted 

waveform for 𝛽 has an offset with respect to the original. Nevertheless, the relative error of 0.018 

is still within the design goals, and the waveform can be seen in figure 20. 

 

Figure 20: 𝛽(𝜔) extracted function 

These results can be used to calculate the refractive index or dielectric function of the 

medium. The extraction of 𝜀 is shown in figures 21-22 The code used for dielectric property 

extraction is shown in Appendix E. 
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Figure 21: Comparison of the real part of the dielectric function and the extracted value. 

 

Figure 22: Comparison of the imaginary part of the dielectric function and the extracted value. 

 

Nonlinear effect thresholds 

Due to the solution of the nonlinearity in eq. (25), which must be of the form exp(𝑖𝛾|𝐴|2ℎ), 

there are two ways in which we are interested in measuring the effect of nonlinearities, through 
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comparing the change in peak electric field, and the change in phase shift. Figure 23, compares 

the result of propagating a wave using two different nonlinear parameters to illustrate the effects. 

 

Figure 23: Propagation through 0.1 mm of water with different nonlinear parameters.  

It is known, as discussed previously, that the two main contributions to nonlinear effects 

are the initial peak electric field intensity and the nonlinear parameter. We wanted to determine 

the threshold for nonlinear effects for a given initial electric field. To do so, iterations of the 

program were evaluated by varying the initial peak field and nonlinear parameter to calculate the 

resulting produced time shift and change in peak field. The simulations were performed in a non-

dispersive medium in order to focus solely on the nonlinearities, and the results are shown in 

figures 24-25. 
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Figure 24: Change in peak field due to nonlinearities. 

 

Figure 25: Time shift due to nonlinear effects. 
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 As seen in the figures, there is a threshold indicated by the change of color in the mesh, a 

transition from purely linear propagation to having observable nonlinear effects. Furthermore, both 

effects start to be seen at the same time. This tool can be used to determine the threshold electric 

field needed to observe nonlinearities in a given material. The code used to calculate these graphs 

is shown in Appendix F. 
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Conclusion & Future Work 

 The simulations developed in their current state can serve to approximate and study the 

phenomena observed at the Ultrafast THz and Optical Spectroscopy Lab, including the appropriate 

modelling of water. The tool can also help to determine the threshold electric field and parameter 

values for observing nonlinear effects. Furthermore, it can be useful for determining the dielectric 

function (or refractive index) of a sample. Another extension of the simulation in which the 

nonlinear parameter of a sample can be evaluated through multiple iterations is already a work in 

progress. The program has been designed for adaptability in order to be easily used and easily 

expanded in the future, with some extra features already in place, such as the inclusion of higher 

order Taylor expansion terms, or the simulation of Raman scattering. Furthermore, it is very 

advantageous to use the split-step to perform the propagation because if needed, we could change 

the linear or nonlinear part of the equation to account for other effects, yet the solution procedure 

would remain the same. It is also possible to extend the program to simulate more complex media 

and to include other nonlinear effects. 

In addition, there is still a lot of testing that is needed to be performed on the code. When 

the experimental setup for observing nonlinearities is available, the results should be compared to 

those of the program. Furthermore, other materials should also be simulated and the results 

compared to the expected value. It is my hope that it will prove itself useful for the study performed 

at the Lab and that it can provide a unique insight into nonlinearities when they are observable.  
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Appendix A: General functions 

%% Propagate 

function [A_out] = propagate(A_in, dispersion, gamma, distance, 

steps, time) 

%% Performs symmetric split step propagation with steps number 

of steps across a length of distance 

%Inputs: ----- 

% A_in: electric field envelope 

% dispersion: zero-centered array of the frequency dependent 

effect of 

% dispersion 

% gamma: nonlinearity parameter 

% distance: length traversed 

% steps: number of steps to be taken 

% time: array of time domain values in which the field exists 

(only used for plotting) 

% ------ 

% Output: ----- 

% A_out: final electric field envelope 

% ----- 

  

deltaz = distance/(steps); % step size in z 

deltahalf = deltaz/2; %half step size 

transform = fftshift(fft(A_in)); % Take Fourier transform 

transform = exp(deltahalf*(dispersion)).*transform; % Advance 

half step linearly in Fourier space 

A_out = (ifft(fftshift(transform))); % Fourier transform back to 

timme Space 

  

for n=1:(steps-1) 

    A_Field_nl = exp(1i*deltaz*gamma*(abs(A_out)).^2).*A_out; % 

Propagate non-linear part of NLSE 

    transform = fftshift(fft(A_Field_nl)); % Take Fourier 

transform 

    transform = exp(deltaz*(dispersion)).*transform; % Advance 

in Fourier space 

    A_out = ifft(fftshift((transform))); % Fourier transform 

back to Physical Space 

    %---- Uncomment the following for plotting the evolution of 

the field 
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%     figure(1); 

%     plot(time, real(A_in), time, real(A_out)); 

     

end 

A_Field_nl = exp(1i*deltaz*gamma*(abs(A_out)).^2).*A_out; % 

Propagate non-linear part of NLSE 

transform = fftshift(fft(A_Field_nl)); % Take Fourier transform 

transform = exp(deltahalf*(dispersion)).*transform; % Advance 

half step linearly in Fourier space 

A_out = (ifft(fftshift(transform))); % Fourier transform back to 

time Space 

 

function [eps_w] = epsilon_water2(omega) 

%% Calculates the dielectric function of water 

%Dielectric function of water parameters 

% From 'Terahertz reflection spectroscopy of Debye 

% relaxation in polar liquids' by Moller, Cooke, Tanaka & Jepsen 

% Inputs: ----- 

% omega: frequency domain grid used in simulation in (THz*2*pi) 

(assumed to 

% be zero centered) 

% ------ 

% Outputs: ----- 

% eps_w: dielectric function of water for the given frequency 

array 

% ----- 

len = length(omega); 

%% Factors 

%Dielectric function of water parameters (2*pi) factor for 

normalization to 

%THz*(2*pi) 

del_epsilon1 = 72.3;  

tau_1 = 8.34/(2*pi); 

del_epsilon3 = 2.12; 

tau_3 = 0.36/(2*pi); 

gammav = 7.06*2*pi; 

epsilon_inf = 2.68; 

omegav = 5.01*2*pi; 

Av = 28.4*4*pi^2; 

  

%% General dielectric function 
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vibration = (omegav^2-omega.^2-1i*omega*gammav); 

eps_w = del_epsilon1./(1-1i*omega*tau_1)+del_epsilon3./(1-

1i*omega*tau_3)+ Av./vibration+epsilon_inf; 

eps_w(1:len/2) = eps_w(len:-1:len/2+1); % make it symmetric 

 

%% Plot & compare 

function err = plot_compare(Exp_in, Simul_in, time) 

%% Plots and computes the relative error between Exp_in and 

Simul_in 

% Note: only considers real parts of the waveforms 

% Note: assumes vectors are the same length, but matches the 

indexes of maxima 

% Inputs: ----- 

% Exp_in: Expected waveform input 

% Simul_in: Simulated waveform input 

% time: time-domain grid to which electric field values 

correspond 

% ----- 

% Output: ----- 

% err: relative error of Simul_in with respect to exp_in 

% ----- 

  

len = length(Exp_in); 

Exp = real(Exp_in); 

Simul = real(Simul_in); 

[max1,indexexp] = max(Exp); % Calculate locations of maxima 

[max2,indexsim] = max(Simul); 

startexp = indexexp > indexsim; % check which index is lower 

  

%% Calculate ranges for plotting 

rangeexp = 1+startexp*(indexexp - 

indexsim):len+not(startexp)*(indexexp - indexsim); 

rangesim = 1+not(startexp)*(indexsim - indexexp):len-

startexp*(indexexp - indexsim); 

if ((rangeexp(1) < 1) | (rangeexp(end) > len) | (rangesim(1) < 

1) | (rangesim(end) > len)) 

    rangeexp(1) 

    rangeexp(end) 

    rangesim(1) 

    rangesim(end) 

end 
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Exp_r = Exp(rangeexp); 

Sim_r = Simul(rangesim); 

timerange = 1:length(rangeexp); % calculate time range of the 

length needed 

  

%% Plotting 

% figure(1); 

% pl2 = plot(time(timerange), Exp_r); grid;  hold on; 

% pl1 = plot (time(timerange),Sim_r,"-."); 

% pl1(1).LineWidth = 2; 

% pl2(1).LineWidth = 2; 

% set(gca,'FontWeight','bold'); 

% legend([pl2,pl1],["Experimental result","Simulated output"]) 

% xlabel("\bf Time (ps)"); ylabel("Electric field (arb. 

units)"); 

  

%% Calculate error 

err = sum((Exp_r-Sim_r).^2)/sum(Exp_r.^2) 

 

%% Get Dispersion 

function [d_factor, alphas, betas] = getkdisp(omega, eps_in) 

% Calculates the dispersion to be used from a curve fitting of k 

% Inputs: ----- 

% omega: frequency-domain grid 

% eps_in: dielectric function of water input (only used for 

comparison to 

% fit) 

% ----- 

% Outputs: ----- 

% d_factor: dispersion for omega 

% alphas: coefficients for imag(k) fit 

% betas: coefficients for real(k) fit 

% d_factor: dispersion term 

% ----- 

%% Matlabs curve fitting results 

% General model: 

%      f(omega) = ka0+ka1*(omega-3.5)+ka2*(omega-

3.5)^2+ka3*(omega-3.5)^3 

% Coefficients (with 95% confidence bounds): 

%        ka0 =       9.178  (9.161, 9.196) 

%        ka1 =       1.275  (1.265, 1.285) 
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%        ka2 =    -0.133  (-0.06917, -0.06374) 

%        ka3 =    0.0262  (0.004192, 0.004545) 

%         

%        General model: 

%      f(omega) = kb0+kb1*(omega-3.5)+kb2*(omega-

3.5)^2+kb3*(omega-3.5)^3 

% Coefficients (with 95% confidence bounds): 

%        kb0 =        26.8   

%        kb1 =       6.403   

%        kb2 =    -0.0569   

%        kb3 =   0.0022   

  

% General model: 

%      f(omega) = ka0+ka1*(omega-3.5) 

% Coefficients (with 95% confidence bounds): 

%        ka0 =        9.04  (8.991, 9.089) 

%        ka1 =       1.076  (1.068, 1.083) 

% General model: 

%      f(omega) = kb0+kb1*(omega-3.5) 

% Coefficients (with 95% confidence bounds): 

%        kb0 =       26.95  (26.88, 27.02) 

%        kb1 =       6.158  (6.147, 6.168) 

       

%% Initialization 

alphas = [9.04, 1.076]; 

betas = [26.95, 6.158]; 

omega0 = 3.5; 

c = 0.3; 

len = length(eps_in); 

[a,ind1] = min(abs(omega-0.2*2*pi)); 

[a,ind2] = min(abs(omega-2*2*pi)); 

range1 = ind1:ind2; 

k = omega.*sqrt(eps_in)/c; 

terms = length(alphas); 

k_app = zeros(1,len); 

d_factor = zeros(1,len); 

  

%% Dispersion calculation 

for num=1:terms 

    k_app = k_app+(1i*alphas(num)+betas(num))*(omega-

omega0).^(num-1)/factorial(num-1); 
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    d_factor = d_factor - alphas(num)*(omega-omega0).^(num-

1)/(2*factorial(num-1)); 

    if num > 2 

        d_factor = d_factor + 1i*betas(num)*(omega).^(num-

1)/(factorial(num-1)); 

    end 

end 

d_factor(1:len/2) = d_factor(len:-1:len/2+1); 

  

%% Comparison plots 

figure(13); 

p1 = plot(omega(range1)/(2*pi), real(k(range1))); hold on; 

p2 = plot(omega(range1)/(2*pi), real(k_app(range1)),":"); grid; 

xlabel("Frequency (THz)"); ylabel("\alpha  (2\pi/mm)"); 

p1(1).LineWidth = 2; 

p2(1).LineWidth = 2; 

set(gca,'FontWeight','bold'); 

axis([0.2 2 10 85]); 

legend([p1 p2], ["Original" "Polynomial fit"]) 

  

figure(14); 

p1 = plot(omega(range1)/(2*pi), imag(k(range1))); hold on; 

p2 = plot(omega(range1)/(2*pi), imag(k_app(range1)),":"); grid; 

xlabel("Frequency (THz)"); ylabel("\beta  (2\pi/mm)"); 

p1(1).LineWidth = 2; 

p2(1).LineWidth = 2; 

set(gca,'FontWeight','bold'); 

axis([0.2 2 5 20]); 

legend([p1 p2], ["Original" "Polynomial fit"]) 

 

 

function [E1, E2,dt] = get_fields_from_files() 

%% Promts the user to select two files and returns the first 

colums as vector 

% Returns two vectors of the same size and even length. 

% Note: it is assumed that the sampling rate for both 

experimental inputs 

% is the same. 

% Outputs: ----- 

% E1: Electric field, the pre-propagation value 

% E2: experimental propagated electric field 
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% dt: time between samples (in ps) 

% ----- 

% Note: it is assumed that the field is in units of MV/mm 

%Parameters for your data (technical): 

%Where your files are (relative or absolute addresses are fine) 

        defaultPath = './data/'; 

         

%The spacing character used in the file to separate entries 

        fileDelimiter = '\t';           %(default is tab, \t ) 

  

%The columns in the file that have each set of information 

        colTime = 1;                    %time in picoseconds 

        colData = 2;                    %signed E field 

  

         

%Open file selection boxes (Empty cell 1 then Empty cell 2) 

try 

    if ~isempty(successfulLoad) && successfulLoad && 

~askForFiles 

        getFiles = false; 

    else 

        getFiles = true; 

    end 

catch 

    getFiles = true; 

end 

if getFiles 

    successfulLoad = false; 

    clc; 

    fprintf('Select Cell_1 file'); 

    [dataC1Name, dataC1Path] = uigetfile('*','Select the file 

with your Cell_1 data\n',defaultPath); 

    clc; 

    fprintf('Select Cell_2 file '); 

    [dataC2Name, dataC2Path] = uigetfile('*','Select the file 

with your Cell_2 data\n',defaultPath); 

    %throwing error 

    if isequal(dataC1Name,0) || isequal(dataC1Path, 0) ||... 

            isequal(dataC1Name, '') || isequal(dataC1Path, '') 

||... 
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            isequal(dataC2Name,0) || isequal(dataC2Path, 0) 

||... 

            isequal(dataC2Name, '') || isequal(dataC2Path, '') 

        clear dataC1Name dataC2Name dataC1Path dataC2Path; 

        clc; 

        error('File selection failed. Are you sure you selected 

both files?'); 

    else 

        clc; 

        fprintf('Opening ''%s''\n   and 

''%s''\n',dataC1Name,dataC2Name); 

        successfulLoad = true; 

    end 

else 

    clc; 

    fprintf('Using ''%s''\n  and 

''%s''\n',dataC1Name,dataC2Name); 

end 

clear askForFiles; 

  

%% Read the selected file and extract pertinent data 

rawC1Data = 

dlmread(strcat(dataC1Path,dataC1Name),fileDelimiter); 

rawC2Data = 

dlmread(strcat(dataC2Path,dataC2Name),fileDelimiter); 

T1 = rawC1Data( :, colTime); 

T2 = rawC2Data( :, colTime); 

E3 = rawC1Data( :, colData); 

E4 = rawC2Data( :, colData); 

clear colTime colData 

  

%% Make lenght even and equal 

len1 = length(E3); 

len2 = length(E4); 

lused = min(len1,len2); 

lused = lused -mod(lused,2); 

E1 = E3(1:lused)'; 

E2 = E4(1:lused)'; 

dt = T1(2)-T1(1); 

 

  



 

49 

 

Appendix B: Envelope calculation 

%% Get Envelope 

function [A_Field, in_phase] = get_envelope(E1, omega0, time, 

e_thres) 

% calculates the electric field envelope and phase of the input 

field 

% Inputs: ----- 

% E1: electric fied 

% omega0: center frequency of the input electric field 

% time: time domain array in which the field is represented 

% e_thres: error threshold accepted for ending the loop 

% ----- 

% Outputs: ----- 

% A_Field: electric field envelope 

% in_phase: initial phase of the input electric field 

% ----- 

% Note: Change step size and threshold error value to affect the 

rate of 

% convergence 

  

%% Fitting 

A_Field= envelope(E1); % as a first approximation use matlabs 

envelope function 

A_fit = fit(time',A_Field','gauss1'); % afterwards this is fit 

to a gaussian function 

A_Field = (A_fit.a1)*exp(-((time-(A_fit.b1))/(A_fit.c1)).^2); % 

Gaussian fit 

  

%% Phase calculation 

in_phase = 0; % phase guess 

step_size = pi/6; % step size 

err = sum((E1 - 

A_Field.*cos(omega0*time+in_phase)).^2)/sum(abs(E1).^2); % 

relative error 

while (abs(err) > e_thres) 

    in_phase = in_phase+err*step_size; % change the phase guess 

according to the error 

    err = sum((E1 - 

A_Field.*cos(omega0*time+in_phase)).^2)/sum(abs(E1).^2); % calc 

error 

end  
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Appendix C: Linear test 

%% Linear test 

% Propagates a gaussian pulse in the linear domain and compares 

the reuslt 

% to the expected analytical result 

close all; clc; clear all;  

  

distance = 5; 

step_num = 100; % No. of z steps 

deltaz = distance/step_num % step size in z 

deltahalf = deltaz/2; 

time_points = 3000; 

dtau = 10; 

time = (-time_points*dtau/2:dtau:((time_points-

1)*dtau/2))/time_points; % array of time points 

  

%% Propagation constant factors, change these for different 

results 

% arbitrarily chosen for easily visible results, all other 

factors are assumed to be 0. 

alpha0 =0.0005; % Dispersion operator coefficients 

beta2 = 0.1; 

  

E_Field=  exp(-time.^2); % Initial gaussian pulse 

E_Field1 = E_Field; 

  

omega = 2*pi*[-(time_points/2):time_points/2-1]/10; %fourier 

space array 

  

%% Propagation 

transform = fftshift(fft(E_Field)); % Take Fourier transform 

transform = exp(deltahalf*(0.5i*beta2*omega.^2-

alpha0/2)).*transform; % Advance half step in Fourier space 

E_Field = (ifft(fftshift(transform)));  

  

for n=1:(step_num-1) 

    E_Field_nl = E_Field; % Propagate non-linear part of NLSE 

    transform = fftshift(fft(E_Field_nl)); % Take Fourier 

transform 

    transform = exp(deltaz*(0.5i*beta2*omega.^2-

alpha0/2)).*transform; % Advance in Fourier space  
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    E_Field = (ifft(fftshift(transform))); % Fourier transform 

back to Physical Space 

end 

  

transform = fftshift(fft(E_Field)); % Take Fourier transform 

transform = exp(deltahalf*(0.5i*beta2*omega.^2-

alpha0/2)).*transform; % Advance half step in Fourier space 

E_Field = (ifft(fftshift(transform)));  

  

%% Expected output calculation 

exp1 = exp(-distance*alpha0*0.5); 

factor2 = sqrt(1/4-0.5i*beta2*distance); 

exp3 = exp(-time.^2/(1-2i*beta2*distance)); 

expected2 = pi*exp1*exp3/(factor2*2*pi); 

  

%% Result plotting and comparison 

figure(3) % Plot expected and result 

plot1 = plot(time, abs(expected2)); hold on; 

plot2 = plot(time, abs(E_Field),"--"); 

plot3 = plot(time, abs(E_Field1), ":"); grid; 

plot1(1).LineWidth = 2; 

plot2(1).LineWidth = 2; 

plot3(1).LineWidth = 2; 

xlabel("\bf Time (ps)"); ylabel("\bf Electric field (arb. 

units)"); 

legend([plot3,plot1, plot2],["Simulation Input","Expected 

result","Simulation output"])  

set(gca,'FontWeight','bold'); 
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Appendix D: Comparison to experimental data 

 

%% Experimental Propagation 

% Propagates the approximation of a THz electric field 

% Units normalized to mm, THz*2*pi, ps, MV/mm 

close all; clc; clear all;  

  

%% Initialization 

[E1, E2, dt] = get_fields_from_files(); %get electric fields 

% E1 is the field propagated and compared to E2 

tic  

N1 = length(E1); 

time = -dt*N1/2:dt:dt*(N1/2-1); 

omega = 2*pi*(-N1/2:N1/2-1)/(dt*N1); 

omega0 = 0.6*2*pi; 

[a,omega0_index] = min(abs(omega-omega0)); 

  

distance = .1; % In mm 

step_num = 100; % No. of z steps 

deltaz = distance/(step_num); % step size in z 

deltahalf = deltaz/2; 

c = 0.3; % Speed of light, mm/ps 

gamma = 0; % nonlinearity value 

  

%% Dielectric model calculation 

epsilon_w = epsilon_water2(omega);% dielectric function of water 

[d_factor, alphas, betas] = getkdisp(omega, epsilon_w); 

%% Propagation 

E1_init = E1; % copy of init electric field 

  

[A_Field, in_phase] = get_envelope(E1, omega0, time,0.205); % 

get the envelope of the field 

  

figure(1); 

plot(time, A_Field, time, E1, time, 

A_Field.*cos(omega0*time+in_phase)); 

  

[A_Field] = propagate(A_Field, d_factor, gamma, distance, 

step_num, time); % propagate, see propagate.m 
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E_res = real(A_Field.*exp(-1i*(omega0*time+in_phase))); % get 

back to the electric field 

  

time2 = time+betas(2)*distance; % going back to a static 

reference frame 

[a,zi1] = min(abs(time)); 

[a,zi2] = min(abs(time2)); 

E_res = circshift(E_res,zi1-zi2);  

%% Plotting  

figure(3); 

p1 = plot(time, E_res, time, E1_init, time, E2); hold on;  grid; 

p1(1).LineWidth = 2; 

p1(2).LineWidth = 2; 

p1(3).LineWidth = 2; 

set(gca,'FontWeight','bold'); xlabel("Time (ps)"); 

ylabel("Electric field (MV/mm)"); 

  

plot_compare(E2, E_res, time); 

toc 
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Appendix E: Dielectric property extraction 

%% Propagate approx 

% Propagates the approximation of a THz electric field 

% Units normalized to mm, THz*2*pi, ps, MV/mm 

close all; clc; clear all;  

  

%% Initialization 

time_points = 3600; % Granularity in the time domain 

points = [-time_points/2:time_points/2-1]; 

dtau = 120; % Time in ps 

time = (-time_points*dtau/2:dtau:((time_points-

1)*dtau/2))/time_points; % Array of time points 

c = 0.3; % Speed of light, mm/ps 

dt = time(2)-time(1); % time between samples 

  

% Curve fitting of initial pulse 

E0 =      2.506; % pulse amplitude 

in_phase =      -pi/2; % Initial phase 

sig =      0.4694; % Standard Deviation 

w0 =       3.548; %Pulse resonant freq. 

E1 = E0*cos(w0*time+in_phase).*exp(-0.5*(time/sig).^2); % 

Electric field 

  

%FFT  

N1 = length(E1); %length of pulse 

omega = 2*pi*(-N1/2:N1/2-1)/(dt*N1); % Frequency domain grid 

omega0 = w0; % center frequency 

[a,omega0_index] = min(abs(omega-omega0)); % calculate index of 

center frequency 

  

distance = .1; % In mm 

step_num = 100; % No. of z steps 

deltaz = distance/(step_num); % step size in z 

deltahalf = deltaz/2; 

c = 0.3; % Speed of light, mm/ps 

gamma = 0; % nonlinearity value 

  

%% Dielectric model calculation 

epsilon_w = epsilon_water2(omega);% dielectric function of water 

  

[d_factor, alphas, betas] = getkdisp(omega, epsilon_w); 
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%% Propagation 

E1_init = E1; % copy of init electric field 

  

A_field1 = E0*exp(-0.5*(time/sig).^2); % gaussian envelope of 

the field 

  

[A_field] = propagate(A_field1, d_factor, gamma, distance, 

step_num, time); % propagate, see propagate.m 

  

E_res = real(A_field.*exp(1i*(omega0*time+in_phase))); % return 

to oscillating electric field 

  

time2 = time+betas(2)*distance; 

[a,zi1] = min(abs(time)); 

[a,zi2] = min(abs(time2)); 

A_field = circshift(A_field,zi1-zi2); 

E_res = circshift(E_res,zi1-zi2); 

%% Plotting  

p_range = N1/2-199:N1/2+200; % plotting range 

figure(3); 

p2 = plot(time(p_range), E1_init(p_range)); hold on;  grid; 

p1 = plot(time(p_range), E_res(p_range),":"); 

p1(1).LineWidth = 2; 

p2(1).LineWidth = 2; 

set(gca,'FontWeight','bold'); xlabel("Time (ps)"); 

ylabel("Electric field (MV/mm)"); 

legend([p1 p2] , ["Input waveform" "Output waveform"]); 

  

  

%% Dielectric function extraction 

extract_n(A_field1,A_field,dt,epsilon_w,distance, omega); % 

extraction of dielectric function 

compare_eps(alphas,betas,epsilon_w,omega) 

 

 

 

function extract_n(Ref_in, Sam_in, dt,eps_in,d, omega) 

%% Extracts the refractive index and dielectric function of a 

sample  

%% by comparing pulses propagated through air and the sample 
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%Note: assumes both pulses have the same sampling frequency and 

length 

% Compares and plots extracted value to eps_in 

% Inputs: ----- 

% Ref_in: Reference electric field 

% Sam_in: Electric field propagated trough a sample  

% dt: time between seconds of the electric field values (in ps) 

% eps_in: dielectric function of the sample (if known), used for 

% comparison. (assumed to be zero-centered) 

% d: distance traveled by the pulse in the sample 

% omega: frequency-domain array corresponding to eps_in values 

(used only 

% for plotting) (in THz*2*pi) 

% ----- 

  

% Outputs: ----- 

% n: complex refractive index of the sample 

% eps: complex dielectric  function of the sample 

% errorn: relative error in the refractive index (by 

% comparing to eps_in) 

% ----- 

% Note: output waveforms are only calculated for the relevant 

part of the 

% spectrum (0.2-2.5 THz) and will have different frequency 

domain spacing 

% than the input dielectric function to attain higher 

resolution. 

% Note: Error calculations are based on spline interpolations of 

the input 

% dielectric function in order to match the spacing of the 

calculated 

% refractive index 

% ----- 

  

c=0.3; % speed of light in mm/ps 

len = length(Ref_in); % length of inputs 

omega = omega/(2*pi);% transform to THz 

omega0 = 3.5; 

  

%adding zeros to have a better definition in the fourier domain 

Ref = zeros(3*len,1); 
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Sam = zeros(3*len,1); 

Ref(1:len,1) = Ref_in; 

Sam(1:len,1) = Sam_in; 

  

  

len2 = length(Ref); % New length 

R_fft = fft(Ref); %compute fft 

S_fft = fft(Sam); 

  

dw1 = 1/(dt*len2); %step of frequency in THz 

  

Ref_fft = abs(R_fft(1:len2/2)); %We only care about half of the 

spectrum, the other is just a  repetition 

Sim_fft = abs(S_fft(1:len2/2)); 

  

% Get phase angles Ref: help unwrap 

phsref_unwr = unwrap(angle(R_fft),pi);  

phssim_unwr = unwrap(angle(S_fft),pi); 

  

w = 1.5; %max frequency for readable data 

W1 = 0:dw1:w; % Frequency grid of readable data in THz 

W_len = length(W1); % Length of the grid 

  

% Indexes of relevant frequency range bounds 

[a,indexw02] = min(abs(W1-0.2)); 

[a,indexo02] = min(abs(omega-0.2)); 

[a,indexo25] = min(abs(omega-w)); 

  

% Ranges for the relevant part of the spectrum 

range1 = indexo02:indexo25; 

range2 = 2+indexw02:W_len; 

  

% Fit phases to polynomials (see help polyval and polyfit) 

fitref = polyfit(W1,phsref_unwr(1:W_len)',1); 

phsref_fit = polyval(fitref,W1); 

fitsim = polyfit(W1,phssim_unwr(1:W_len)',1); 

phssim_fit = polyval(fitsim,W1); 

  

phs_diff = (-phsref_unwr(1:W_len)+phssim_unwr(1:W_len)); %Phase 

difference 

phs_diff= abs(phs_diff'); 
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T = abs(Sim_fft(1:W_len)')./abs(Ref_fft(1:W_len)'); % Ratio of 

amplitudes 

  

beta_calc = phs_diff/d+omega0/c; % beta calculated 

alpha_calc = -(2/d)*log(T); % calculate absorption coefficient 

eps_calc = ((beta_calc+1i*alpha_calc)*c./(W1*2*pi)).^2; % 

extracted dielectric function 

  

kappa_in = 2*pi*omega.*sqrt(eps_in)/c; % input propagation 

constant 

  

%% Plot values (comment if needed) 

figure(7) 

p1 = plot(omega(range1),real(kappa_in(range1))); hold on; 

p2 = plot(W1(range2), beta_calc(range2),"-."); grid; 

xlabel("Frequency (THz)"); ylabel("\beta  (2\pi/mm)"); 

p1(1).LineWidth = 2; 

p2(1).LineWidth = 2; 

set(gca,'FontWeight','bold'); 

legend([p1 p2], ["Expected" "Extracted"]); 

figure(8); 

p1 = plot(omega(range1),imag(kappa_in(range1))); grid; hold on; 

p2 = plot(W1(range2), alpha_calc(range2),"-."); 

xlabel("Frequency (THz)"); ylabel("\alpha  (2\pi/mm"); 

p1(1).LineWidth = 2; 

p2(1).LineWidth = 2; 

legend([p1 p2], ["Expected" "Extracted"]); 

set(gca,'FontWeight','bold'); 

  

figure(17) 

p1 = plot(omega(range1),real(eps_in(range1))); hold on; 

p2 = plot(W1(range2), real(eps_calc(range2)),"-."); grid; 

xlabel("Frequency (THz)"); ylabel(["Real" char(949)]); 

p1(1).LineWidth = 2; 

p2(1).LineWidth = 2; 

set(gca,'FontWeight','bold'); 

legend([p1 p2], ["Expected" "Extracted"]); 

figure(18); 

p1 = plot(omega(range1),imag(eps_in(range1))); grid; hold on; 

p2 = plot(W1(range2), imag(eps_calc(range2)),"-."); 
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xlabel("Frequency (THz)"); ylabel(["Imag" char(949)]); 

p1(1).LineWidth = 2; 

p2(1).LineWidth = 2; 

legend([p1 p2], ["Expected" "Extracted"]); 

set(gca,'FontWeight','bold'); 

  

%% Interpolation & error calc 

alpha_interp = 

interp1(omega(range1),(imag(kappa_in(range1))),W1(range2),'splin

e'); 

beta_interp = 

interp1(omega(range1),(real(kappa_in(range1))),W1(range2),'splin

e'); 

  

eps_interp = 

interp1(omega(range1),eps_in(range1),W1(range2),'spline'); 

  

alpha_err = sum((alpha_interp-

alpha_calc(range2)).^2/(alpha_interp).^2); 

beta_err = sum((beta_interp-

beta_calc(range2)).^2/(beta_interp).^2); 

eps_err = sum((eps_interp-eps_calc(range2)).^2/(eps_interp).^2); 
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Appendix F: Nonlinear effect threshold 

%% Gamma graph 

% Plots graphs of kerr nonlinearity thresholds by varying 

initial pulse 

% intensity and nonlinear parameter gamma 

close all; clc; clear all;  

  

distance = 0.1; % In m change to mm 

time_points = 1500; % Granularity in the time domain 

points = [-time_points/2:time_points/2-1]; 

dtau = 10; % Time in ps 

time = (-time_points*dtau/2:dtau:((time_points-

1)*dtau/2))/time_points; % Array of time points 

c = 0.3; % Speed of light, mm/ps 

  

% Curve fitting of initial pulse Several Gaussians?? 

E0 =       501.2/200;  

sig =      0.4694; % Standard Deviation 

t0 =       0; % I centered it around 0 

w0 =       3.584; %Pulse resonant freq. 

E_Field =  E0*exp(-0.5*((time-t0)/sig).^2)/10; % Electric field 

envelope (oscillation is added after propagation 

  

%% Change these two to vary the input field and gamma 

multiples = linspace(0.1,5,100); % multiples of the initial 

pulse amplitudes 

nld = linspace(0.1,5,100); 

  

maxi1 = time_points/2; % initial index of max value 

dt = time(2)-time(1); % time step 

  

%% Propagation 

for  count1=1:100 

    for count2=1:100 

        curr_field = E_Field*multiples(count1); % change field 

amplitude 

        curr_field = 

exp(1i*nld(count2)*(abs(curr_field)).^2).*curr_field; % 

propagate nonlinearly 

        curr_field = real(curr_field.*cos(-1i*w0*time)); % Add 

oscillation and take real part 

        [a,maxic] = max(curr_field); %index of max value 

        time_c = (maxi1-maxic)*dt; % calculate time shift 
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        max_change(count1,count2) = (max(curr_field)-

max(E_Field*multiples(count1)))*100/max(E_Field*multiples(count1

)); % percent change in peak 

        phase_shift(count1,count2) = time_c*w0; % phase shift 

         

    end 

end 

  

%% Plotting 

ticksx=multiples*max(E_Field); 

printx={num2str(round(nld(1),2))}; 

printy={num2str(round(ticksx(1),2))}; 

for count3=1:5 

    printx=[ printx, {num2str(round(nld(count3*20),2))} ]; 

    printy=[ printy, {num2str(round(ticksx(count3*20),2))} ]; 

end 

  

figure(4); 

mesh(max_change);  

c = colorbar; 

c.Label. String = 'Percent change in peak field'; 

ylabel("Peak electric field (MV/mm)") 

xlabel("Nonlinear parameter times distance (mm^2/MV^2)") 

set(gca,'FontWeight','bold'); 

set(gca, 'xtick', 0:20:100); 

set(gca, 'ytick', 0:20:100); 

xticklabels(printx); 

yticklabels(printy); 

  

figure(7); 

mesh(phase_shift);  

c = colorbar; 

c.Label.String = 'Phase shift (radians)'; 

ylabel("Peak electric field (MV/mm)") 

xlabel("Nonlinear parameter times distance (mm^2/MV^2)") 

set(gca,'FontWeight','bold'); 

set(gca, 'xtick', 0:20:100); 

set(gca, 'ytick', 0:20:100); 

xticklabels(printx); 

yticklabels(printy); 


