Physics IQP

Ongoing Advancement of the Physics Toolbox

Bennie Jones Bennett Lessard John McGinley Konrad Perry Kyle Pydynkowski

Outline

- I. Introduction (Bennie Jones MGE)
- II. Doppler Lab (Kyle Pydynkowski ME)
- III. Applets (Bennett Lessard ECE)
- IV. Energy Lab (Konrad Perry AE)
- V. Energy Video (John McGinley ME)
- VI. Overall Conclusion (Bennie Jones MGE)

I. Introduction

By Bennie Jones

Project Goals

- Give the first year students a more hands on experience
- Aid in the transition from high school to college
- Develop a Physics toolbox

My Goals

- Help in the designing process for the physics department
- Enhance my knowledge of physics
- Suggest how to grab the attention of incoming freshmen
- Make sure the tools are interesting, eye popping, and comprehensible

II. Doppler Effect Experiment

By Kyle Pydynkowski

My Goals

- Creative Idea
 - Keep the interest of students
- First Doppler Effect lab

• Use classroom learning and a new idea to explain the

same topic

Setup

Spectrum Lab

Experiment

Results

Results

Going Forward

- Different Buzzer
 - Louder
 - Single frequency peak
- Completion of Lab
 - Setup
 - Write-up

III. Applets

By Bennett Lessard

My Goals

- Advance Java Knowledge
- Produce Applets For Web
 - Assisting Applets
 - Simulation Applets
- Explanatory Text Surrounding Applets
- Why Use Applets?
 - One Applet Can Be Applied To Many Areas

Applets Created

- Assisting Applets
 - Greek Letters
 - Upper Case and Lower Case
 - Powers of Ten
 - 3 Different Applets
 - Statistical Analysis Tool
- Simulation Applets
 - Projectile Motion
 - Collisions
 - Hooke's Law

Greek Letters

- Upper and Lower Case
- Various Uses of GreekLetters

Zeta
Total Correct: 1
Time: 68

Powers of 10

- 3 Versions
- Kilograms to Microfarads

Statistical Analysis Tool

- User Enters Data
- Standard Deviation
- Mean, Max, Min,Number of Terms
- Plots Data, Auto Scaling
- Histogram Capabilities

Projectile Motion

- Simulates Projectile Motion
- User Enters Velocities and Height
- Max Height
- Time in Air
- Position Readings

Collision

- Elastic Collisions
- Physics Equations
- Objects size
- Velocity Graph

Hooke's Law

Calculates Spring Constant

Available Online At...

http://www.wpi.edu/Academics/Depts/Physics/Courses/Labs/Physlets.html

Going Forward

- Specific to created applets
 - Projectile Motion
 - Collision
 - Statistical Analysis Tool
- Other Applet Ideas
 - Significant Digits
 - Unit Conversion
 - Physics Topics
- Web Development

IV. Energy Lab

Konrad Perry

My Goals

- Portray energy in a new light
- Excite Incoming Freshman
- Involve students
- Complement classroom learning

Hot Wheels Energy Lab

- Attempted Experiments
 - Photogates
 - Collision -- X
 - Force Sensor
 - Launch/Jump -- X
- Chosen Experiments
 - Photogates
 - Force Sensor

Photogate Experiment

Force Sensor Experiment

Lab Procedure

- Setup ·
- Photogate Experiment
- Force Sensor Experiment
- Data Sheet
- Lab Worksheet

Lab Procedure

- Setup
- Photogate Experiment→
- Force Sensor Experiment
- Data Sheet
- Lab Worksheet

Lab Procedure

- Setup
- Photogate Experiment
- Force Sensor Experiment —
- Data Sheet
- Lab Worksheet

Data: Photogate

1st Height: 35 cm

Expected Velocity (m/s): 2.619

Photogate	Trial 1 Velocity (m/s)	Trial 2 Velocity (m/s)	Trial 3 Velocity (m/s)	Average Velocity (m/s)
1	2.544	2.532	2.524	2.533
2	2.500	2.469	2.483	2.485

2nd Height: 45 cm

Expected Velocity (m/s): 2.968

Photogate	Trial 1 Velocity (m/s)	Trial 2 Velocity (m/s)	Trial 3 Velocity (m/s)	Average Velocity (m/s)
1	2.788	2.845	2.816	2.816
2	2.751	2.796	2.686	2.744

3rd Height: 55 cm

Expected Velocity (m/s): 3.283

Photogate	Trial 1 Velocity (m/s)	Trial 2 Velocity (m/s)	Trial 3 Velocity (m/s)	Average Velocity (m/s)
1	3.172	3.168	3.162	3.167
2	3.106	3.100	3.095	3.100

Relationship

Height	V	$\sqrt{Y} * 4.427$	% Dev.	% Dev.
(m)	(m/s)	(m/s)	(Theory)	(Friction)
.35	2.533	2.619	-3.28%	-1.89%
.45	2.816	2.969	-5.15%	-2.56%
.55	3.167	3.283	-3.53%	-2.12%

Data: Force Sensor

Mass of Car (kg): .0343

Length of Car: .075m

1st Height

	Trial 1	Trial 2	Trial 3	Average
Max Force (N)	12.40	12.36	12.73	12.50
Impulse (N*s)	.0925	.0924	.0929	.0926

Expected Impulse (N*s): .0898

2nd Height

	Trial 1	Trial 2	Trial 3	Average
Max Force (N)	15.43	16.16	15.67	15.75
Impulse $(N*s)$.1043	.1074	.1053	.1056

Expected Impulse (N*s): .1019

3rd Height

	Trial 1	Trial 2	Trial 3	Average
Max Force (N)	20.98	20.56	20.19	20.58
Impulse (N*s)	.1199	.1187	.1209	.1198

Expected Impulse (N*s): .1126

Difficulties in Experimentation

- Force Sensor Issues
- Data Sampling Rates
- Time Constraints
- Equations

Going Forward

- Lessons Learned
- For the Future

V. Energy Video

By John McGinley

My Goals

- Provide an additional tool for learning
- Excite students
- Helpful demonstration of labs

The Video

Part 1 (Introduction)

Attention Grabbing

Part 2 (Materials)

• Show materials used

Part 3 (Photogate)

• Provide a visual aid of the final Photogate setup

Part 4 (Force Sensor)

Provide a visual aid of the final force sensor setup

Part 5 (Conclusion)

• Leave the students interested

Going Forward

- Lessons learned
- Present material in several ways
- Create videos for other lab experiments

VI. Overall Conclusion

By Bennie Jones

My Part

- Organizational team-manager
- Head critique
- Unbiased experiment and applet evaluator
- Editor and moderator

Conclusions

- Beginning feelings about Physics labs
- Ran through trials several times
 - Reworked, reworded, sharpened and shined
- Ending feelings about Physics lab

Going Forward

- Sample crowd
- Conduct surveys
- Implementation in classroom

Physics IQP

Questions?

http://www.tuition.com.hk/pics/Physics-GCSE.jpg