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This thesis addresses the problem of generating smooth and efficiently executable

locomotion trajectories for legged robots under contact constraints. In addition,

we want the trajectories to have the property that small changes in the foot posi-

tion generate small changes in the joint target path. The first part of this thesis

explores methods to select poses for a legged robot that maximises the workspace

reachability while maintaining stability and contact constraints. It also explores

methods to select configurations based on a reduced-dimensional search of the

configuration space. The second part analyses time scaling strategy which tries

to minimize the execution time while obeying the velocity and acceleration con-

straints. These two parts effectively result in smooth feasible trajectories for legged

robots. Experiments on the RoboSimian robot demonstrate the effectiveness and

scalability of the strategies described for walking and climbing on a rock climbing

wall.
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Chapter 1

Introduction

Legged vehicles are potentially better than their wheeled counterparts in navigat-

ing cluttered environments and steep terrain primarily because of their ability to

step on or over obstacles. This unique ability of legs makes legged robots a prime

candidate for tasks such as search and rescue, planetary exploration, exploration of

volcanoes and cliffs. Despite this advantage, legged robots have not been demon-

strably efficient when compared to wheeled robots for most of the above mentioned

tasks. This is primarily due to the complexity involved in large number of degrees

of freedom in legged robots and their coordination to achieve high level goals such

as walking or running.

Motion planning can be described as the process of planning paths for a system

such that the configuration space path is obtained as a result of the planning

process. This configuration space path reaches the goal location/region by tak-

ing into consideration the constraints on the robot and the environment. Motion

planning can be applied to perform low level tasks of configuration space planning

where high level planning can be performed either by an operator or using high

level decision making algorithms which decide the goal. In case of legged robots,

the feasible region of the configuration space is unlike most other fixed base ma-

nipulators or wheeled robots. The configuration space is a manifold in the high

dimensional space of the degrees of freedom of the robot. These manifolds are

formed due to the constraints added by feet on the ground.

Planning in the configuration space for legged robots has to be performed in the

sub-manifold which includes stability constraints, torque constraints and contact

constraints due to the footfalls of the end effectors. Also, the configuration space

1



Introduction 2

changes when contacts are broken or added. This makes tasks like walking a

multi-modal planning problem, where each mode can be fully defined by the goal

(such as swinging a leg) and the constraints (such as maintaining ground contacts

in the non-moving legs).

The need for multi-modal planning is seen in grasping, legged locomotion and

dexterous manipulation. This thesis focuses only on legged locomotion for multi-

limbed robot in flat terrains and cliffs. It builds on the idea of multi-modal plan-

ning for legged robots to select configuration in a mode to come up with effective

paths between multiple modes. Its secondary focus is to generate effective trajec-

tories from the paths obtained by the multi-modal planners.

Figure 1.1: RoboSimian robot

The strategies and algorithms developed in this thesis have been used for various

tasks for JPL’s four legged RoboSimian robot (as shown in fig 1.1). These tasks

range from planning paths to walk on flat ground to selecting grasp configurations

for climbing on a rock-climbing wall. The selection strategies involve routines

which prune unnecessary configurations, improve search and come up with guesses

which are more effective in finding a path from the current mode to the next.

Also, approaches to find effective start configurations or natural poses for the

RoboSimian robot so as to improve its manipulability. Better timing generation

strategies are also explored.
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1.1 Overview of this thesis

This thesis addresses the following broad fields of motion planning research.

• Configuration Selection. The first component analyses methods for se-

lection of configurations for maintaining repeatability of motion, increase

probability of finding a path from the previous configuration and maximize

the reachability region(Chapter 2).

• Dimensionality Reduction and C-Space Analysis. The second component

analyses methods to visualize the configuration space and pick seed config-

urations to avoid singularities. This method can be effective in improving

sampling strategies(Chapter 3).

• Heuristic Based Velocity Optimization For Trajectories. The third com-

ponent analyses various velocity optimization strategies for a given configu-

ration space path. This thesis introduces a heuristic method of generating

trajectories from a configuration space path(Chapter 4).

These approaches are introduced in the following sections.

1.2 Configuration Selection

Most prior work on configuration selection has been a part of manipulability analy-

sis for grasping problems and has not been applied to legged locomotion. Also, this

manipulability analysis has been done for specific instances of grasping problems

and very little work has been done on configuration selection for high dimensional

legged robots. Chapter 2 comes up with algorithms for configuration selection for

legged robots that makes generating walking paths easy. Most multi-modal plan-

ners are capable of planning paths between two configurations in discrete modes

by taking into account the contact constraints. In case of high dimensional robots,

there can be numerous configurations which meet the constraints posed by the in-

dividual modes (fig 1.2). As these multi-modal planners still use sampling based

approaches like RRT and PRM to plan between these modes, they selection of a

configuration in a mode can play a major role in the quality of path generated by

the planning algorithm.
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Figure 1.2: Multiple configurations for the same end effector position of the
robot

1.3 Dimensionality Reduction and C-Space Anal-

ysis

One of the drawbacks of sampling based approaches and configuration selection

strategies is the inability to visualize configuration space manifolds for better selec-

tion of samples for planning feasible paths. This problem manifests itself in plan-

ning problems where suboptimal paths are formed for apparently small changes

in end effector position. This leads to difficult smoothing process for trajectory

optimization. This problem can also be reformulated as a redundancy resolution

problem. The idea behind this is, every task space position must solve to give a

single point in the configuration space. Chapter 3 explores existing techniques for

dimensionality reduction for a more sophisticated selection of samples for planning.

The idea of projecting the configuration space onto a lower dimensional space is one

of the two existing methods for visualizing configuration space, the other method

being sampling exhaustively the linear manifolds in the configuration space. In

this thesis, we explore a non-linear projection technique for selecting samples (as

illustrated in 1.3). This form of analysis of the configuration space can be quite

useful in repetitive tasks. By finding these configurations which would otherwise

not be found by the Jacobian based approach, high quality paths can be generated

without considering a large number of samples. This approach uses the analysis

of the C-space to find configurations which are useful in generating high quality

paths for tasks such as walking on flat ground.

Chapter 3 covers the approach considered for finding smooth paths for generating

walking trajectories using the analysis of the configuration space by dimensionality

reduction of the configuration space. This approach is used to generate walking

paths for the RoboSimian. Simulation results of this approach show the that
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Figure 1.3: Reduction in dimensionality from 3D space to a 2D plane

biasing samples based on results of dimensionality reduction can be effective in

generating high quality paths.

1.4 Heuristic Based Time Optimization

Chapter 4 covers a minimum-time trajectory generation strategy. This approach

works on a subset of the trajectory generation problems, i.e. the problems where

the path has already been generated. Time optimization is performed by modelling

curves for time to fit for paths between milestones. Two approaches are designed

for modelling the velocity profile. The first approach fits a curve for any given path

based on predefined curves for time values. The scale factor for the time curve

is determined by the path. This is a heuristic based approach. The effectiveness

of the time-optimization depends on the quality of the path. In the second case,

a quadratically constrained linear program is considered for generating minimum

time trajectories. In this case, velocity and acceleration limits of each joint is

considered.

This approach is different from the existing time optimization strategies because

current strategies solve an optimal control problems whereas this approach uses a

heuristic based time scaling. Also, most approaches consider the dynamics of the

robot while determining the minimum-time trajectory. The effectiveness of both

the proposed approaches is demonstrated.

Motion planning literature shows various algorithms which work effectively in cer-

tain scenarios where parameters have to be tweaked to make effective generation

of trajectories possible. Throughout the work of this thesis, the use of algorithms

involving tweaking of parameters has been minimized. Also, the improvement in

the quality of paths can be argued for other robots and scenarios as well, primarily

due to reduction in the number parameters required to tune.
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1.5 Summary Of Contributions

For this thesis work, I was able to develop:

• an effective configuration selection strategy for high dimensional legged robots

for locomotion tasks.

• an effective start configuration and natural start pose for the robot.

• a locomotion planner for the RoboSimian quadruped robot to navigate on

flat ground and a rock climbing wall.

• a heuristic based trajectory generation strategy.



Chapter 2

Configuration Selection

The problem of configuration selection is also called as the redundancy resolution

problem. This problem is quite pervasive in robotics with contributions being

made for grasping problems [1] and anthropomorphic movements [2] for exoskele-

tons on a regular basis. However, a generic configuration selection strategy has

not been applied to locomotion problems involving legs with redundant degrees

of freedom. This configuration selection strategy is quite important especially in

cases where there are multiple constraints on the system. These constraints can

be in the form of footstep locations, body posture or overall stability of the robot.

With added constraints, the motion of the robot is in a small manifold on the

configuration space. As the planning has to be done on this constrained manifold,

the probability of finding a path in the manifold is low. Constraint biased planning

techniques are effective in finding paths in the constrained manifold. However, in

case of redundant manipulators, numerous configurations can satisfy the required

constraints and the method to pick a configuration can significantly affect the

planning process.

To plan for paths between configurations that satisfy the constraints, it is necessary

to reduce the distance between the configurations in the constrained configuration

manifold. This maximises the chances of a random sampling based planner such

as PRM or RRT to find a configuration space path between the start and goal

configuration within a reasonable time. Also configuration selection strategies

must ensure that it does not move to a configuration difficult for it to get out of.

7
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This chapter explores two approaches for configurations selection. These ap-

proaches considered involve both randomized sampling, and a more informed sam-

pling of the configuration space.

In case of redundant robots, the default start configuration can play a major role

in deciding the effectiveness of repeatable paths. This chapter also attempts to

tackle the problem of selecting start configurations used to generate repeatable

motions.

2.1 Background

The open challenge of quasi-static limb motion planning for kinematically redun-

dant legged robots is a fairly new problem. This is primarily due to the fact that

legs robots were not designed to be redundant. However, as robots are challenged

to perform more complex tasks, legged robots with redundant degrees of freedom

in the leg are being designed. This leads to the problem of redundancy resolution.

Some promising work in this field was done by Satzinger et. al.[3] on the Ro-

boSimian robot. In this work, a reduced dimensional inverse kinematic look-up

table is generated for a practical approach to configuration selection and walking.

This approach consists of generating set of configurations with certain smooth-

ness properties such as a path-wise redundancy between the configurations in the

look-up table. This is done by classifying configurations into families of inverse

kinematic solutions and considering configurations of only a few favourable families

to populate the look-up table. This approach avoids picking a goal configurations

arbitrarily, which in turn helps plan intermediate paths effectively. However, this

approach keeps the robot in a conservative profile without utilizing the full capa-

bilities of redundancy of the robot.

A more rigorous approach in solving the problem of redundancy resolution ad-

dressed by Hauser [4]. Here, the problem is posed as a problem of mapping a

higher dimensional compact set to a lower dimensional set. This process also

considers the start configuration of the manipulator so that a smooth path can

be generated when the intermediate interpolated configurations between the start

and the resolved goal configuration are generated. It works by building a database

of configurations for a discretized set of points in the task space. Next, gradient
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descent is performed about the configurations to reduce the overall change in the

robot limb movement between the start and goal configuration.

Other approaches in configuration selection include computing quality indices of

configurations such as, the configuration’s distance from singularities, or obstacles.

One such approach is computing the manipulability index. This approach adapts

the usage of the Yoshikawa’s manipulability index [5] which is a quality measure for

redundant manipulators to describe distances from singular configurations. This

approach is based on the analysis of the ellipsoid spanned by the singular vectors

of the Jacobian matrix.

[6], [7] and [8] provide variations to the Yoshikawa’s manipulability index. The

variations include adding penalization functions for joint limits and obstacles and

including these parameters in the augmented Jacobian matrix. One of the methods

considered for the configuration selection derives from this analysis. However it

must be noted that these tasks involve selecting configurations for a fixed base

manipulator.

Some work on selecting configurations for mobile manipulators, given end effector

paths was done by Oriolo et. al.[9] where the ideas of fixed base manipulators

were modified by exploiting the partition of the generalized coordinates between

the manipulator and the moving base whose constraints were accounted for in the

planning problem. It also uses a randomized configuration generation compatible

with the end effector constraints. This problem, formulated as a Motion Planning

along End effector paths (MPEP problem) has been solved in many ways including

using an optimal control formulation [10], [11], [12]. This approach might not

necessarily guarantee success as it can lead to a two point boundary value problem.

Sampling based planning approaches are considered for the same as well. This

includes variations of the RRT where a tree is grown in the constraint manifold

along the discretized version of the task space path.

Zacharias et. al.[13] worked on methods for selecting the position of the robot to

generate trajectories for the manipulator given significant improvements in global

redundancy resolution. Global redundancy resolution methods must generate a

single configuration for a given task space position also having smoothness proper-

ties so that discontinuities caused by singularities can be avoided. But, it must be

noted that global redundancy resolution is still not efficiently solved for non-trivial

robots (or robots with high degrees of freedom).
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Finally, another approach considered is a learning based algorithms which tries

to generate anthropomorphous movement of the manipulators [14]. These ap-

proaches have been applied extensively in exoskeletons. Other approaches involve

constraining the swivel angle and solving the analytical inverse kinematic solu-

tion [15]. These are quite effective in case of movements which try to mimic

human motion. However, these approaches do not help realize the full potential

of non-anthropomorphic robots where the robot need not have any human like

movements.

2.2 Configuration Selection For RoboSimian

Selecting a configuration given the inverse kinematic goal for a redundant robot

manipulator can be performed using a simple heuristic based path-wise redundancy

resolution technique for most cases. However, if the configuration is close to a

singularity, this method might fail to provide a smooth path for which a different

singularity based configuration selection strategy is developed. The configuration

selection strategy consists two classes of approach. They can be described as

follows:

• Euclidean Distance Configuration Selection This method uses the robot start

configuration as the seed configuration. Using the Jacobian based inverse

kinematic solver and the right seed, configurations which can be achieved by

small movements in the joint positions can be produced.

• Manipulability based Configuration Selection This method uses the distance

from singularity as the method for configuration selection. This method is

especially effective in large movements of the manipulator.

Both these selection strategies are described in the following subsections.

2.2.1 Euclidean Distance Configuration Selection

For systems which require small movement of end effector, seeding the Jacobian

solver with the start configuration (or the current configuration) will lead to joints
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moving small distances to reach the inverse kinematic goal. The Jacobian can be

calculated numerically using the following:

J(~q) =


∂Q(~q)
∂x1

∂Q(~q)
∂x2

. . . ∂Q(~q)
∂xn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξ1z0(~q) ξ2z1(~q) . . . ξnzn-1(~q)

 (2.1)

If the Jacobian is calculated for the start configuration, a smooth inverse kinematic

solution is likely for the goal configuration if it is calculated using the jacobian

based inverse kinematic equation. The inverse kinematics can be given by the

equation:
d~q

dt
= J(~q)−1d~x

dt
(2.2)

Here ~q is the joint space position and ~x is the task space position. This method

works in most cases where the start configuration is close to the goal. Also, this

method ensures only one limb of the legged robot moves at a time. A major advan-

tage of this approach is that planning can be performed in a smaller configuration

space.

This process involves selecting random seed configurations and solving the Jaco-

bian based inverse kinematic solution for multiple seeds. The euclidean distance

between the generated configurations to the start configuration is measured and

the configuration with the lowest distance is considered. In case of constraints with

the inverse kinematic goal, a constraint biased configuration selection is performed.
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This process is explained in the algorithm 1.

Data: Robot body height, Robot Kinematics, End effector position and

orientation

Result: Configuration of the limb

database=[Configuration, Distance to start];

foreach count ≤ 100 do

Sample random start configurations;

if SolveInverseKinematicConstraints(IKGoals) then
distance=Calculate L2 norm of the new configuration and the start

configuration;

AddToDataBase(Configuration, distance);

end

Pick configuration with the lowest distance;
Algorithm 1: Configuration Selection

Figure 2.1: Euclidean distance heuristic for goal selection

For the RoboSimian robot, when a leg is to be moved forward, the euclidean

distance metric gives the goal configuration as shown in figure 2.1. The solid robot

arm is the current configuration and the translucent robot arm is the configuration

which is picked by the euclidean heuristic.

In more complex scenarios (when the configuration is close to a singularity), pick-

ing the right seed configuration to generate the Jacobian can be a non-trivial task.

Picking poses by analysing the configuration space can be performed using a more

informed approach. This is further discussed in chapter 3.
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2.2.2 Singularity Based Configuration Selection

When the euclidean distance based configuration selection strategy fails due to

proximity to a singularity, the quality metric based configuration selection is uti-

lized. This approach is based on the idea of Yosikawa’s manipulability index which

describes the distance to singular configurations. The manipulability measure is

given by the following:

w =
√
det(JJT ) = s1.s2.s3.. (2.3)

In equation 2.3, the w is calculated by considering the product of the singular

values of the SVD of the jacobian matrix. In this work, I extend this work to ensure

better selection of configurations. The fundamental problem with the Yoshikawa

index is the possibility to compensate a large singular value with a small singular

value which can lead to reduction in the manipulability index. This can have an

adverse impact on the overall goal configuration selection strategy.

A solution to this problem is the to consider the strategy of maximizing the mini-

mum singular value. This approach will ameliorate the problem of a large singular

value being multiplied with a small singular value [Algorithm 2]. For the purposes

of testing on the RoboSimian robot, the product of smallest two singular values

are considered instead of the product of all the singular values.

The effect of this approach is more pronounced in case of the robot making large

movements (such as the robot climbing a wall). The goal configuration selected

using this approach for climbing problems is shown in figure 2.2
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Figure 2.2: Euclidean distance heuristic for goal selection for climbing

A more comprehensive analysis of the results of this approach is presented in

chapter 5.

Data: Robot body height, Robot Kinematics, End effector position and

orientation

Result: Configuration of the limb

database=[Configuration, Singularity Based Maniplability Index];

foreach count ≤ 100 do

Sample random start configurations;

if SolveInverseKinematicConstraints()==true then

Calculate SVD Of Jacobian Matrix;

manipulability=Multiply smallest 2 singular values of jacobian

AddToDataBase(Configuration, manipulability);

end

Pick configuration with the largest singularity based manipulability index;
Algorithm 2: Configuration Selection

2.3 Start Configuration Selection

One of the many unforeseen problems in case of non-anthropomorphic robots is de-

signing their natural posture, start configuration and gait. In this section, we look

into the strategy designed to pick a start configuration. The start configuration
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Figure 2.3: Start configuration selection for the RoboSimian

selection has a significant impact on the robot walking gait. Some configurations

lead to walking gaits which are asymmetric due to the configuration’s proximity

to a singularity. This leads to more planning time to perform repetitive tasks in

robots. The approach followed for the start configuration selection is described in

algorithm 2. It must be noted that the limbs of the RoboSimian are symmetric.

The configuration generated for one limb can be used for all the other limbs of the

robot.

The algorithm to generate the start configuration involves discretizing the flat

ground to solve inverse kinematics of the end effector and discretizing the height

of the robot body to get a good clearance from the ground. This is followed by

the singularity based configuration selection for the entire discretized space. This

approach is explained in Algorithm 3.

It must be noted that this is a one time process which can be performed offline.

Also, after the solution is obtained for one limb, the same solution can be mirrored

to the other limbs.
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Data: Robot Kinematics

Result: Start position and configuration of the end effector

Discretize the reachability region of the manipulator and height of the robot

body;

database=[IK Goal, Robot Body Height, Configuration, Singularity Based

Maniplability Index];

foreach height in discretized heights do

foreach discretized IK goal position at height do

foreach count ¡100 do

SampleRandomSeeds();;

SolveInverseKinematicConstraints();;

AddToDataBase(IK Goal, Robot Body Height, Configuration,

SingularityBasedManipulability());;

end

end

end

Pick configuration and IK goal with the largest singularity based manipulability

index;
Algorithm 3: Start Configuration Selection

The various configurations considered for the RoboSimain are shown in figure 2.3.

The results of using these algorithms and their comparative study is provided in

chapter 5.

To conclude, this chapter describes in detail, the two methods used to generate

configurations using the start jacobian based method. It also extends these meth-

ods to a start configuration selection strategy. Configuration selection is employed

as a step right after footstep planning. Given the footstep location and other

positional constraints, the two methods described select the right configurations

which helps simplify the planning process.



Chapter 3

Configuration Space Analysis

Planning in high dimensional spaces can become computationally intractable even

in simple cases. Due to the nature of the configuration space, it becomes diffi-

cult to find demonstrably simple paths in the task space. Current methods in

analysing the configuration space involve taking slices of the configuration space

by discretizing the space. This method fails to give a sense of the entire space

especially in case of robots with a large number of degrees of freedom.

To analyse the configuration space for high dimensional spaces, I explored using a

non-linear mapping technique called Sammon mapping, which is a very effective

pattern recognition technique. This algorithm maps a data set of dimensionality

d onto a non-linear subspace of m dimensions (where m ≤ d). The one aspect of

this non-linear mapping idea which makes it attractive is the distance preserving

aspect in the lower dimensional manifold. This aspect can be powerful especially

when using algorithms like nearest neighbor classifiers or picking seeds for the

configuration selection.

3.1 Background

The simplest technique for dimensionality reduction is a straightforward linear

projection approach, for example, the Principal Component Analysis(PCA). This

approach maximizes the variance in the original data-set, but does not preserve

complex manifolds or structures. However, the most commonly quoted example

17
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(a) Data-set containing 8 sinusoids (b) PCA on the data-set (c) Sammon Mapping on the data-
set

Figure 3.1: In a data-set containing sinusoids, PCA projection leads to in-
tersections between the sinusoids (topology not preserved), Sammon mapping

projection has very few intersections (although not perfect)

[16] where PCA fails is of a structure being a regular pattern over a curved manifold

embedded in a high dimensional space (figure 3.1).

Work on generating a functional map of the inverse across the entire space is done

by Hauser [4] to tackle the redundancy resolution problem. This work attempts

to find resolution techniques where a given end effector position would yield only

one configuration. This approach solves a gradient descent to perform redundancy

resolution and is the basis of applying non-linear mapping for the configuration

space.

One interesting work on non-linear mapping is performed by [17] where a humanoid

motion planning is performed to swing a golf club using non-linear dimensionality

reduction. In this approach, a Gaussian process latent variable model is created

and its density function is used to generate a lower dimensional model. This lower

dimensional model is used to optimize paths and the generated paths are mapped

back to the pose space. This approach comes up with the notion of variance tubes

which maps the smaller displacements in the pose space to the lower dimensional

latent space.

The approach described in this chapter comes up with a natural way of preserving

the distances in the lower dimensional space. Clustering of points in the lower

dimensional space can be effective in planning smooth trajectories in the high

dimensional configuration space and in the task space.
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3.2 Sammon Mapping

To analyse the configuration space, we might not be interested in maximizing the

variance but might be interested in preserving other aspects such as the degree

to which the complex structures are preserved. Such measures, which are very

essential to configuration selection and obstacle avoidance are available in a non-

linear mapping strategy called Sammon mapping.

More specifically, the measure used by Sammon mapping is designed to minimize

the difference between the inter-point distances in the two spaces. This is described

as the transformation which conserves the distance between each pair of points.

Also, this process ensures that the topology is not affected by the mapping. The

effectiveness of the Sammon mapping is primarily because the function does not

find a mapping from the high dimensional data set to the lower dimensional space,

but to construct a lower dimensional data set which has a similar structure to that

of the high dimensional data-set.

The procedure to perform Sammon mapping of the configuration space is described

below. First, consider only one limb of the quadruped. Lock all the other limbs

and joints to a fixed configuration for the remainder of the process. Next, discretize

the reachable region of the movable end effector in the task space. Obviously, finer

discretization leads to more processing time. Also, the end effector joint can be

ignored as it just accounts for the position of the hook on the end effector and does

not affect the overall configuration. Each configuration can now be considered

as a vector (a 6 dimensional vector). Multiple samples must be considered for

individual end effector position so as to ensure most redundant configurations

are considered. Now, numerous 6 dimensional vectors are generated due to the

sampling of the discretized space. Next, the inter-point distances dij is calculated

and an error function is defined which shows how well the points the 6 dimensional

configuration space fits a 2 or 3 dimensional reduced space. The error function is

calculated as follows

E =
1∑

i<j dij

n∑
i<j

(d*ij − dij)2

d*ij
(3.1)

where dij is the pairwise distance between the points in the 6 dimensional config-

uration space and d*ij is the pairwise distance between the points in the reduced

space.
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Using the steepest descent procedure, the minimum error has to be calculated

so as to adjust the distance between the points in the lower dimensional space.

This process leads to generation of effective reduced dimensional points in a lower

dimensional space which has the same inter-point distances. One of the funda-

mental disadvantages of Sammon mapping is, unlike PCA, there is no algorithmic

mapping for previously unseen data. So, in case a new point is to be mapped, the

whole procedure is to be repeated again. This can be a significant problem if the

process is used for planning paths with obstacles on the robot. However, as the

proposed step is used more as an analysis tool to build repetitive motions offline

or to understand the configurations and the shape of the C-space.

Sammon mapping can be intractable when the discretized space is all over the

three dimensions of the task space. It is easier to consider multiple samples along

a line or along an end effector trajectory. This approach can be effective in finding

smooth trajectories along the end effector trajectory. Also, this process is quite

useful in finding the seed configurations to calculate the jacobian matrix so that

discontinuities in the inverse kinematic solution can be avoided.

3.3 Discussion

Now, to test the feasibility of a non-linear mapping strategy, we look at the sam-

mon map of the configurations generated by moving one leg of the RoboSimain

robot along the x axis. As shown in the figure 3.2, a discontinuity in the inverse

kinematic solution is seen during the Jacobian based approach. When these con-

Figure 3.2: Lower dimensional graph of the discontiunity
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figurations are mapped onto a lower dimensional space, a clear pattern emerges.

This can be seen in figure 3.3.

Figure 3.3: Discontinuity in the inverse kinematic solution found using the
Jacobian based approach

The x and y axes of this graph are just two dimensions in a lower dimensional

space that is representative of the joint values. Clearly, a discontinuity is observed.

Now, if the Jacobian is forced to seed a value whose lower dimensional equivalent

is close to (0,−1), we have a smooth solution along one axis. This is shown in

figure 3.4. The sammon mapping of the same is seen in figure 3.5.

Figure 3.4: Discontinuity removed by seeding the sample close to the previous
configuration in the configuration space

As the mapping(figure 3.5) looks like a parabola in the lower dimensional space,

the discontinuity which has been caused in the image later can be ameliorated by

picking a point along the parabola and mapping it back to the higher dimensional



Speed Optimization For Paths 22

Figure 3.5: Discontinuity removed by seeding the sample close to the previous
configuration in the configuration space

space as the seed configuration for the Jacobian solver. This approach has been

very effective in making smooth motions along a path.

Another approach has been to pick smooth trajectories given end effector position.

Sammon mapping can be performed along a discretized grid of the end effector

and smooth patterns in this lower dimensional space can be obtained. This lower

dimensional pattern can be mapped back to the higher dimensional samples which

will in turn generate smooth paths between configurations.

This approach can also be a test to check smoothness in case of convoluted designs

of robots.

To summarize, this approach is very effective in visualizing the configuration space

so as to pick the right configurations in a sampling based planning framework. But,

as this approach is computationally quite intensive, planning in real-time using the

Sammon mapping approach is not practical. Other optimization techniques have

to be developed to map paths from the lower dimensional space to the configuration

space.



Chapter 4

Speed Optimization For Paths

The minimum time required to execute a path has been studied since 1696 when

the brachistochrone problem was posed by Johann Bernoulli. The problem in-

volved finding the minimum time curve between 2 points for a frictionless ball .

Faster trajectories allow for getting more quickly to the needed location, winning

car races, intercepting enemy missiles and so on. Some of the more interesting

applications of the speed optimization involve aircraft climbing, optimizing ma-

nipulator paths, generating optimal tracks for a race car etc.

This problem focuses on a small subset of trajectory generation problem where

the path to the goal has already been determined. In this problem, we find a

speed profile which fits the generated path. The goal is to minimize time while

adhering to the path generated by the planner and avoiding collisions with the

environment. Also, ensuring that the dynamics of the system do not modify the

path of the planner is also important. This approach uses a high level generic

planning algorithm which produces a collision free path that accomplish a task.

The trajectory generator assigns the time to this generated path. This process is

in contrast to the approach where the collision free paths are generated by one

planner and the feasibility of the path given the dynamics are performed by the

the optimization planner which generated the speed profile.

In this thesis, we concentrate on the former approach where a speed profile is fit

to a path generated by a planner.

23
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4.1 Background

This problem of time optimization is a well studied problem with a long history.

Some of the early work such as the brachistochrone problem used calculus of

variations to generate minimum time trajectories[18]. This method is still being

used for many applications. Other promising approaches are discussed below.

Non-linear programming is a common approach for trajectory generation. This

approach involves discretization of the space followed by using direct shooting

methods. Some of the work on this topic are done by Betts et. al.[19] and Stryk

et. al[20]. This is still quite early work in the field and was followed up with

Pseudospectral methods[21] which generate a basis function to find solutions. The

fundamental problem with these approaches is the speed of computation and also

the effectiveness in following the trajectories of the planned path.

Other methods include graph search methods which discretize the configuration

space or use sampling based approaches where the velocity profiles are determined

by the nodes. These approaches include methods like potential fields, probabilistic

roadmaps and more general graph search methods. These methods usually have

uniform time assignment based on distance between the nodes in the configuration

space which is not an effective strategy.

A slightly different approach being considered is the problem of path tracking. This

mainly consists of 3 major approaches. The first type is using indirect methods

which involve searching exhaustively over the task space to determine the switching

points. This involves solving a planning problem using numerical methods and

forward and backward integration.

The second category in this approach involves using dynamic programming meth-

ods. And the third approach involves direct conscription methods. These methods

usually involve time energy optimality and other generic constraints which can be

traded of with one another[22]. They include constraints like energy which make

the system appear aggressive.

One of the most important works in this field is by Verscheure et. al.[23] which

deals with the optimal path tracking problem with a single stage through non-

linear change of variables. This approach goes beyond mere time optimality of



Speed Optimization For Paths 25

path tracking by performing direct transcription where it proposes a convex opti-

mization problem to minimize the time given the dynamics of the robot and the

velocity constraints.

Last, Hauser[24], where the time optimization is performed by mapping a func-

tion by monotonically mapping a path configuration to time values. The problem

requires the path to be continuous and twice differentiable. Also, another require-

ment for this function is the start and stop velocity to be zero. This process

performs a piecewise quadratic time-scaling of the path function.

All these approaches work on local optimality of the the time parametrization

problem. Getting a global optimal solution is not easy given these formulations.

Some work on this is done by Shiller et. al.[25] where the the problem is formulated

as an optimal control problem with linear system dynamics, differential states

and and control inputs subject to non-linear state dependent constraints. This

approach makes the problem of time optimization tractable.

It must be noted that all these methods are computationally inefficient and op-

timality in not a necessary condition for planning in case of legged robots. The

only consideration would be to have a timing profile faster than the uniform time

assignment to the interpolated path (which might be ineffective in many cases, but

quite effective for legged robots). So a simple yet effective strategy would involve

fitting a velocity profile which matches the constraints of the robot end effectors

and dynamics of the system to effectively generate a trajectory.

This approach of generating a timing or speed profile which meets the constraints

is explored in this thesis. Also, their computational simplicity and effectiveness is

exploited for legged locomotion making this a heuristic based approach to trajec-

tory generation.

4.2 Problem Formulation

The equations of motion of an n-DOF robot where torques q ∈ Rn can be written

as a function of the joint positions, velocities and accelerations.

τ = M(q)q̈ + C(q, q̇) +G(q)
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Here M(q) is the positive definite mass matrix,C(q, q̇) accounts for the Coriolis

terms and G(q) accounts for the gravity matrix.

Now, consider a joint-space path q(s) as a function of the scalar function s. The

trajectory is assumed to start at time t = 0 and end at t = T and s(0) = 0

and s(T ) = 1. s is a scaling/wrapping function which scales the path between 2

configurations based on the number of points in the interpolated path, N. Here,

∆s(t) =
1

N

The time optimal planning problem can be framed as

minimize T

subject to s(0) = 0,

s(T ) = 1,

ṡ(0) = ṡ0,

ṡ(T ) = ṡT,

τ = M(q)q̈ + C(q, q̇) +G(q)

t ∈ [0, T ]

In most cases ṡ0 and ṡT is 0. Now, the process involves fitting a curve which agrees

to the above mentioned time optimization problem.

4.3 Trajectory Generation Strategies

In this section, the heuristic based trajectory generation strategy used for legged

locomotion for the RoboSimian robot is explored. The process begins by consider-

ing the expected behavior: The legged robot must begin by moving its leg slowly

followed by an increase in velocity and end its movement by slowing down. This

behavior can be obtained by various curves which are capable of generating the

mentioned behavior.

Consider a path q(s) in the joint space where s ∈ [0, 1]. Here q(0) is the start

configuration and q(1) is the final configuration of the trajectory of one leg. So,

the parametrization for the time has to be done such that the function for time

t(s) gives the expected behavior.
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If the parametrization for time has to be performed, a function which generates

the expected behavior is needed. This function must have a steep slope close to 0

and 1 and a smaller slope in between. This can be obtained by the inverse cosine

function, which shows the same behavior. However fitting just a velocity profile is

not enough to create a quasi-static motion (as it might go beyond the velocity and

acceleration limits of the the motors). Also the robot motion might no longer be

quasi-static. The function needs to be scaled based on the total distance moved

in the joint space.

In the following subsections, I present the two approaches which were used for

time parametrization for generating trajectories.

4.3.1 Heuristic Based Time Parametrization

In this parametrization technique, the inverse cosine function is relied upon. The

interpolated path generated by a planning algorithm is used and the number of

configurations generated by the interpolation of the path generated by the planner

is taken into account. First, the time parametrization s is discretized based on the

number of terms in the interpolated path. This value of s is used as the input to

the time parametrization function. The function can be given as

t = scale ∗ cos -1(1− 2s)

π

The distance between the configurations in the configuration space is a parameter

to determine the scale factor. Intuitively, larger the distance between the configu-

rations, more time must be needed to execute the path. For walking trajectories,

the scale factor can be given by the euclidean distance considered in the configu-

ration space. The square root of the euclidean distance has been seen as a good

heuristic for the scale factor. The square root of the euclidean distance for the

scale factor has been obtained experimentally. Also, in case of an unsmoothend

path generated by the planner, the scale factor for the heuristic might not be

accurate especially if there are numerous milestones. To ameliorate this issue,

this time parametrization technique can be used between two milestones. The

practice of parametrization between milestones has proven to be more effective

on the robot experimentally. The intuition behind using time parametrization

between two milestones is due to the fact that the distance between milestones is
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not constant (due to the nature of the sampling based planners). In case of an

unsmoothened path, the limb can move in any direction, between two milestones.

To effectively nullify the effect of previous milestones in the path, coming to a halt

at every milestone is the safest strategy to not involve dynamics.

Figure 4.1: The heuristic based trajectory generation graph for time assign-
ment

The graph of this curve is shown in figure 4.1 which shows the expected behaviour

of the leg, where the x axis represents the parameter and the y axis represents the

time. This value of time is scaled based on the euclidean distance between the

start and goal configurations.

The one drawback with this approach is it does not take into consideration the

problem of being within the joint velocity limits. This issue has been addressed

next.

4.3.2 Optimization of Heuristic Based Parametrization

The problem of using a heuristic based parametrization technique is the disregard

for the velocity and acceleration limits of the robot. This can cause significant

issues with path tracking and might lead to collisions as some joint values cannot

keep up with the commanded joint values. To mitigate this problem, constraints

are imposed on the parametrization by the heuristic based technique. This is

discussed in detail below.
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The process begins by first generating the heuristic based time parametrization.

This heuristic based parametrization gives us the value of ti which is considered

as the ideal timing scheme. This heuristic based process acts as the input to the

optimization process. The optimization process is formulated as follows:

minimize tn
optimization − tncosine

subject to s(0) = 0,

s(T ) = 1,

ṡ(0) = 0,

ṡ(T ) = 0,

ṡ(t) ≤ tn ∗ vmax,

s̈(t) ≤ tn ∗ amax,

This is a linear programming problem which can be solved effectively using well

known optimization approaches. Also, it provides a more effective time optimiza-

tion process by taking into consideration the joint velocities and accelerations.

By constraining the end effector velocity constraints, the entire robot’s time opti-

mization can be performed.This approach has proved to be effective in generating

quasi-static motions of the legged robot for walking and climbing.

To summarize, this chapter talks about generating trajectories after the path is

generated by a planner. This can be considered as the final step before executing a

path on the robot. Also, this finishes the whole planning process for a robot, which

began with footstep planning, followed by configuration selection and planning

intermediate paths.

Quantitative results for the time scaling operation and trajectory generation are

provided in chapter 5.



Chapter 5

Results And Conclusions

The previous chapters gave details on the implementation of the various algorithms

for configuration selection and trajectory generation using heuristic based time

optimization. For an actual implementation on the robot, start configuration

selection is performed first, followed by footstep planning (which is beyond the

scope of this thesis). Configuration selection and path planning are performed

next. The trajectory generation is the final step in the planning process.

This chapter presents the results of the configuration selection, start configuration

selection strategy and trajectory generation strategies are presented. The effec-

tiveness of the various approaches are compared. This is followed by discussions

on gait analysis for the RoboSimain robot. Finally, some concluding remarks are

made.

5.1 Configuration Selection

Two approaches for configuration selection are presented in chapter 2. The effec-

tiveness of these approaches are discussed in this section. We begin by comparing

the effectiveness of these algorithms on flat ground. This is followed by testing

effectiveness on a rock climbing wall.

The euclidean distance heuristic approach is quite effective visually in generat-

ing small repeatable movements on flat ground. The selected configurations do

not need any other sampling based planning strategies (assuming no obstacles in

30
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the planning path) as the configurations can be interpolated directly. This gives

significant power to the configuration selection strategy.

The singularity based approach is also quite effective in planning paths from start

configuration to the goal inverse kinematic constraint. However, visually, a smooth

path is obtained even for large changes in inverse kinematic constraints. However,

the penalty is the computational time (as it requires more sampled configurations

and more processes such as calculating the SVD of the Jacobian).

A comparison between the euclidean distance metric and a pure Jacobian based

selection is made for finding feasible paths using a pure interpolation method and

a sampling based method. Also, singularity based analysis is performed for flat

ground walking configurations. This is shown in table 5.1.

Flat Ground Walking
Approach Configuration

Selection Time
(seconds)

Interpolation
Time (seconds)

RRT time (sec-
onds)

Jacobian 0.01 1.3 134.7
Euclidean
heuristic

0.23 1.2 8.6

Singularity 4.6 1.2 10.2

Table 5.1: Table with configuration selection and planning times for the Ro-
boSimian robot to walk on flat ground

From this analysis, it is clear that for simple flat ground walking trajectories,

although the Jacobian based configuration selection is faster, it is ineffective, pri-

marily due to collisions or longer planning times. The euclidean based approach is

the fastest with minimal overhead. Also, for all tests performed, a sampling based

planning strategy was not necessary as obstacles were not present. This makes

euclidean based configuration selection the most effective approach for flat ground

walking.

Now, in case of more complicated goals (which are found in rock climbing prob-

lems), a comparison of the time for configuration selection using the strategies is

performed in table 5.2.

This table shows the time required to plan two steps in sequence using the ap-

proaches mentioned in chapter 2. It is clear that the Jacobian approach is ineffec-

tive for planning a single step. But both the euclidean metric and the singularity

based approach is effective in finding a path for one leg. But when the second step
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Climbing
Approach Configuration

Selection
for first
leg(seconds)

RRT time
(seconds)

Configuration
Selection
for second
leg(seconds)

RRT time
(seconds)

Leg 1 followed by Leg 4(average of 5 tests)
Jacobian 1.20 - 0.81 -
Euclidean
heuristic

0.43 15.10 0.41 -

Singularity 9.19 9.40 14.20 16.30
Leg 4 followed by Leg 1 (average of 5 tests)

Jacobian 0.40 - 1.51 -
Euclidean
heuristic

0.71 52.83 1.04 -

Singularity 3.89 19.40 5.74 88.53

Table 5.2: Table with configuration selection and planning times for the Ro-
boSimian robot to climb a rock climbing wall

is to be calculated, the euclidean metric fails to find a path within 3 minutes and

the singularity based method is the only effective strategy when a path through

sequence of configurations is to be found.

An interesting point to note is the time required for the robot to select a configu-

ration for leg 4 is significantly more than leg 1. This is because of the proximity of

the robot to the climbing wall which leads to a larger number of rejected samples

(due to collisions), increasing the configuration selection time.

A linear interpolation approach is not effective for climbing. This is because,

interpolation without way-points leads to collisions with the wall.

Clearly, the most important takeaway from these results is that for smaller move-

ments, the euclidean based strategy works more effectively whereas for inverse

kinematic goals farther away from the start and having an axis constraint differ-

ent from the start, the singularity based approach is more effective. To generate

small and repeatable motions, the euclidean metric based heuristic is the most

effective.
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5.2 Start Configuration Selection

Based on the tests, it was clear that start configurations are very important in

generating effective paths. The impact of the start configuration for planning has

been seen in generating walking trajectories for the RoboSimian. If an arbitrary

start configuration is considered, configuration selection strategies fail to find a fea-

sible repeatable path for walking on flat ground. As discussed in chapter 2, using

singularity analysis, start configurations can be generated. The start configuration

generated using the singularity analysis has been quite effective in generating a

smooth trajectory. The effectiveness of the singularity based analysis can be shown

using interpolation between the selected configurations. Assuming a random sym-

metric start configuration, an interpolation between start and goal configuration

of a leg leads to change in a joint angle of over π radians. This is clearly not a

suitable walking strategy. However, when start configurations are picked using the

singularity analysis, these large changes in joint values are avoided.

The best configurations selected for the start of the robot are shown in figure 5.1.

Figure 5.1: Best start configuration for the RoboSimian

The effectiveness of selecting the start configuration is shown in figure. The first

half shows an approach where the configuration is selected manually (by the pro-

grammer). The second half shows the start configuration selection using the sin-

gularity based approach. The generated path is simpler in case of the singularity

based start configuration selection strategy. In case of the randomly selected

configurations, the path is quite convoluted. This is shown in the RandomStart-

Configuration.mp4.



Results And Conclusions 34

5.3 Trajectory Generation

For the trajectory generation, given the path, generation of timing values so as to

generate a time association to a configuration in the path is performed. This is

done in two ways as described in chapter 4. The effectiveness of these approaches

can only be evaluated using the time required to execute the path. The time

required for taking 4 steps on flat ground using these approaches are given in

table 5.3.

Time To Execute Trajectory
Approach Time To Execute Trajec-

tory
Uniform Time 32.2
Inverse Cosine 14.8
Inverse Cosine with Op-
timization

12.0

Table 5.3: Time to execute trajectories from a given approach

Clearly, the trajectory generation using the inverse cosine interpolation followed

by convex optimization is able to generate a trajectory which requires the least

time to execute. This is followed by the inverse cosine interpolation approach. It

must be noted that the convex optimization approach does not require any tuning

of parameters to get an effective trajectory where the robot is in quasi-static

equilibrium.

The inverse cosine interpolation approach does require tuning only one scale pa-

rameter and is by far more effective than the uniform trajectory generation.

The uniform trajectory generation technique generates the slowest trajectory (which

is not always effective as the quasi-static equilibrium conditions are violated). This

approach is not very effective for walking for legged robots.

Time To Generate Trajectory
Approach Time To Generate Tra-

jectory
Uniform Time 0.3
Inverse Cosine 1.8
Inverse Cosine with Op-
timization

4.02

Table 5.4: Table with time to generate trajectories from a given approach
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Finally, table 5.4 shows the time required to compute the trajectory for the tran-

sition from flat ground to a climbing wall. It is clear that the inverse cosine

interpolation with the convex optimization technique is the most computationally

expensive and requires the most time. However as the process is performed be-

tween individual milestones, the process can be parallelized. This can make the

trajectory generation and execution quick.

5.4 Gait Analysis

To walk on flat ground, two variants of gaits were considered. The first gait involves

moving the front legs forward followed by moving the hind legs. The second gait

involves moving the two legs on the right first followed by moving the two legs

on the left side. The disadvantage with the second gait is the smaller support

polygon making stability during walking more complex. To simplify the planning,

we concentrate more on the walking using the first gait (front legs followed by

hind legs). This gait is described in detail below.

The first step is moving the CoM of the robot backwards such that it is well

within the support polygon of when one of the front legs is lifted. Symmetry

in the configurations makes the movement simple (the symmetry is maintained in

the start configuration selection strategy). The moved configuration of the CoM is

performed by the configuration selection strategies described in Chapter 2. After

the CoM is moved back, leg 1 is lifted vertically (which can be done using Jacobian

based approach). This is followed by moving the end effector forward by 0.23m.

Heuristic based approaches for configuration selection is performed. Finally, the

leg is moved down so that it touches the ground. The same process (leg lift, move

and place down) is repeated for leg 4. Next, the CoM is moved forward (such

that if one of the hind legs is lifted, the stability is still maintained). Finally, the

same process of moving the legs is performed for the hind legs (leg 2 and leg 3).

Interpolation is performed between the selected configurations to generate a path.

A trajectory is generated using the heuristic based trajectory generation strategy.

Walking using this gait is shown in figure 5.2.
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(a) Start (b) Move CoM back (c) Lift leg 1

(d) Move leg 1 (e) Place leg 1 (f) Lift leg 4

(g) Move leg 4 (h) Place leg 4 (i) Move CoM forward

(j) Lift leg 2 (k) Move leg 2 (l) Place leg 2

(m) Lift leg 3 (n) Move leg 3 (o) Place leg 3

(p) Move CoM to start

Figure 5.2: RoboSimain Walking Gait
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The same approach involving moving leg 1 and 4 followed by moving legs 2 and 3

can be used for climbing as well.

Videos of the robot walking and climbing are submitted.

5.5 Future Work

This thesis discusses the problems of configuration selection for high DoF robots

and trajectory generation. Some of the future research areas to be explored which

follow the work done in this thesis are discussed below.

Global Redundancy Resolution This thesis touches upon few elements of con-

figuration selection for inverse kinematic goals. The approaches discussed in this

thesis do not guarantee feasible paths to the selected configuration. A natural pro-

gression is finding a global redundancy resolution technique such that an inverse

kinematic goal will always provide one solution in the configuration space and a

feasible path exists to the goal configuration in a quasi-static planner(if obstacles

are ignored).

Including Dynamics in Planning One of the major problems faced during the

planning process for climbing the wall was the unavailability of a path where the

intermediate configurations are statically stable. Some future work would include

integrating dynamics into a sampling based planner where nodes in the configu-

ration space can be connected even if they do not obey static stability conditions

by integrating dynamics and trajectory generation into the configuration space

planning. This makes tasks such as trotting, climbing and jumping feasible using

a sampling based planner.

Footstep selection Footstep selection is still an unsolved problem for legged

robots. Although footstep selection strategies exist for flat ground and rough

terrain, there is little work on selecting footsteps for climbing robots. There is

no clear process yet for selecting a good footstep/hold for climbing. This is an

important problem to solve because if the wrong footsteps/holds are selected, the

robot can get struck and not proceed in climbing the wall (this is experienced by

human climbers as well).
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5.6 Conclusions

This thesis addresses the problem of redundancy resolution for walking and climb-

ing for the RoboSimian robot. It also introduces two effective trajectory generation

strategies for the same tasks. However, difficulty certainly rises with more com-

plex terrain and constraints on the robot capabilities. Planning for legged robots

is difficult as the configuration space consists of manifolds of different dimension-

ality. The manifolds can also be overlapping one another. The work on this thesis

addressed two general areas. They are:

• Redundancy Resolution

• Trajectory Generation

The approaches described in this thesis will simplify the planning process for legged

locomotion.
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