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Abstract

This thesis explores ML applied to wireless technologies in two different contexts: 5G cel-

lular networks and radar systems. In the case of 5G, classification ML models are used

to identify fundamental scheduling algorithms that a simulated network is using based on

a several types of data (UE performance metrics and spectrogram data). As for radar

systems, a monostatic radar simulation was built, opening opportunities for future cogni-

tive radar experiments involving adaptive NLFM waveforms via optimization. This thesis

exemplifies the importance of ML applied to wireless emissions and sets up future research

in the two domains considered.
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Chapter 1

Revolutionizing Wireless Emission

Technology via Machine Learning

1.1 The Motivation for Using Machine Learning in Wireless

Wireless technologies have become integral to modern society, providing several different

applications including from Internet-of-Things (IoT) devices [1], autonomous vehicles [2],

and intelligent tracking and monitoring [3]. As technologies continue to evolve rapidly, the

number of practical applications that use these technologies is exponentially growing [4].

These emerging use cases are often built on conventional wireless implementations, such

as wireless cellular networks and radar systems [5]. Despite the benefits, contemporary

wireless technologies face several challenges. These range from rudimentary challenges,

such as simple signal propagation phenomena, such as interference and attenuation [6, 7]

to more complex issues, such as limited bandwidth with increasing numbers of cellular

users [7] or system failure due to adversarial jamming [8]. Researchers have been actively

pursuing solutions years of experimentation and development.

Over the past several years, cognitive computing tools, such as Machine Learning (ML)

have been increasingly used in the wireless sector [9, 10], launching the next generation of

advancements in the industry [11].

This growth is expected as today’s society has entered a new phase of big data with
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increasing numbers of available data [12]. From this data, ML algorithms are capable of

addressing frequently-studied challenges in wireless such as intelligent resource management

and adaptive modulation [10]. The use of ML has become an important technology in

wireless while the community continues to generates of vast amounts of data to address

new challenges that continue to arise.

This thesis explores how ML can enhance different use cases in wireless transmission

systems. In particular, the two applications of interest are 5G networks and radar sys-

tems. In the case of 5G networks, this research employs classical ML methods to classify

different 5G scheduling algorithms. This could potentially lead to an improved understand-

ing of spectrum usage, potentially advancing development towards sought-after research

spaces in cellular communications, such as efficient spectrum utilization and opportunis-

tic scheduling. For radar systems, this thesis investigates waveform parameters and how

optimization algorithms could be used to identify better-performing radar waveforms for

certain environments. This can enhance radar performance by enabling more accurate and

precise target detection. By examining the possibilities of ML in both a 5G and a radar

use case, this thesis seeks to advance two of the more profound and conventional wireless

applications with practical implications.

1.2 5G Cellular Networks

One active research domain in cellular networks explores coexistence between two or

more different networks. In a network, a primary network owns a spectrum license where

other networks are not authorized to operate. The primary network may not always use the

entirety of this spectrum to its full capacity, leaving opportunities for a secondary network

to take advantage of these licensed frequencies. However, identifying unused spectrum in

real-time presents difficult challenges. This is a particularly interesting problem in 5G

networks as the new 5G standard allows high flexibility in resources assignment [13].

Several studies have explored different methods of predicting this unused spectrum. For

instance, one approach predicts future traffic loads based on classified application-layer use

cases, such as video streaming, voice calling, or web browsing [14]. Another approach at-
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tempts to predict significant spikes in network usage with packet data [15]. Other methods

perform traffic clustering with traffic volume data to forecast network utilization [16]. In

one case, deep reinforcement learning models were used to adaptively allocate resources

using past traffic patterns and channel conditions [14]. Other works have studied how deep

neural networks (DNN), recurrent neural networks (RNN), and convolutional neural net-

works (CNN) can use energy measurements of past resource blocks (RBs) to determine the

probability of user presence [13]. An alternative option is to use a long-short term memory

(LSTM) model, which can be performed by using data on the number of users and the

amount of bandwidth each user will occupy [17]. Furthermore, convolutional LSTM models

predict when a primary user on a network is idle to find opportunities for a secondary user

to communicate on the network [18]. All of these approaches attempt to forecast future

network utilization similarly by analyzing past network traffic patterns. Although these

solutions have their own benefits, there are drawbacks each of them carries. These include

the following:

1. An incomplete or narrow perspective

Some of the methods focus on identifying specific use cases or behaviors that may

not capture the full range of network traffic or events that can impact spectrum

utilization. For example, classifying application-layer use cases does not provide a

complete picture of how the network resources are utilized. Therefore, these state-

of-the-art methods are not feasible because they are not comprehensive approaches

to analyzing network traffic.

2. High model complexity and heavy data dependency

Many of the methods use deep learning (DL) models, such as neural networks and

LSTMs. These highly complex models require significant computational resources

which may not be practical in all cases. Furthermore, these models rely heavily large

datasets, which can be difficult to collect, store, and process, especially in predicting

future network utilization. As a result, the current solutions are potentially not

practical, given that they are expensive and may require high maintenance.
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While each of these solutions have made significant strides towards predicting traffic

utilization, the described drawbacks limit their effectiveness. A more comprehensive ap-

proach that considers the listed problems is necessary to get a complete understanding of

network behavior and identify opportunities for secondary networks to operate.

1.3 Cognitive Radar Systems

A common obstacle for radars is operating in challenging environments in which the

signal is prone to hindrance that limits the system’s operation. This hindrance can be a

result of natural interference, caused by attenuation, reflections, and other signal-distorting

elements when interfacing with certain environments. Hindrance can also be a result of

an adversary intentionally obfuscating the radar’s signal. In either case, these hindrances

degrade the radar signal and can limit the system’s ability to detect targets and measure

range, speed, and other properties. In some instances, the hindrance can be severe enough

to completely disrupt the radar operation and render the system ineffective.

As a result, several studies have attempted to design robust radar systems that can

operate in these environments. One paper explores using frequency hopping techniques

and predicting jamming models to avoid interference [19]. Another paper uses adaptive

beamforming methods to achieve low sidelobes which reduces noise jamming effects [20].

Other papers take the approach of frequency selection for active jamming devices by ana-

lyzing which frequency bands to avoid [21]. Despite the advances for each solution, there

also exists several pitfalls, including the following:

1. Handling dynamic interference

The described solutions may not be effective in environments with constantly chang-

ing interference, as the radar system’s techniques may not be able to keep up. For

example, repeat adversaries can adapt jamming strategies to specific frequency hop-

ping or adaptive beamforming patterns used.

2. Knowledge of the environment
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Some approaches rely on accurate knowledge of the environment or present jamming

signals to counteract the effects. For instance, adaptive beamforming techniques need

knowledge of a jammer’s tendencies to create nulls in the direction of the jamming

signals. If the hindrance is not well understood, these techniques may be ineffective.

As previous methods have helped radar systems avoid hindrance for different environ-

ments, there remains room for improvement. A solution account for the described pitfalls

is needed to further advance avoidance and anti-jamming techniques.

1.4 Thesis Contribution

This thesis seeks to address the aforementioned challenges of ML applied to two distinct

contexts in wireless. In the case of 5G cellular networks, the proposed solution considers

the following approach:

1. Classification of 5G network scheduling algorithms

Classifying a network’s scheduling algorithm can provide a comprehensive and gen-

eralizable understanding of the network’s behavior. Knowledge of the scheduling

behaviors is likely more applicable than current methods that identify categories of

network usage. Identifying the schedule type could provide insights as to how a

network allocates its resources.

2. Use of classical machine learning algorithms

Using traditional machine learning algorithms will reduce model complexity and com-

putational resources used. Non-DL models are often more accessible, easier to imple-

ment, and do not require as much training as DL models. Furthermore, they often

do not require as much data, therefore alleviating some of the challenges of handling

overly large datasets.

As for radar systems, this thesis proposes the following as a solution to address the

aforementioned pitfalls with current methods:
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1. Developing adaptive waveforms using frequency-defining parameters:

Using waveforms that can adjust frequency parameters to avoid areas of interference

will provide new advancements in radar systems. Unlike other solutions that rely on

predetermined patterns, adaptive waveforms have a wider range of flexibility.

2. Applying optimization algorithms to minimize defined cost functions:

By applying cognition techniques, radar systems can learn and identify the hindrance

of a given environment and adjust accordingly. This requires no previous knowledge

of interference patterns or jamming behaviors. This also addresses concerns of dy-

namic environments that are constantly changing, as the radar system would have

the capacity to change as well.

1.5 Thesis Organization

The remainder of this thesis is organized into the following chapters. Chapter 2 provides

an introduction to the basics of ML, an overview of the key techniques utilized in this

work, and prefaces two case studies for its application to wireless emissions: 5G cellular

networks and cognitive radar systems. Chapter 3 presents the first application – classifying

fundamental 5G scheduling algorithms. This chapter overviews data collection procedures,

feature engineering techniques, and analysis of the results. Chapter 4 presents the second

ML-applied use case – radar waveform optimization. This chapter discusses a simulation

used, the cost functions considered, and the waveform parameters. Chapter 5 summarizes

each experiment, highlights the contributions of this study, and discusses avenues for future

improvement.
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Chapter 2

Machine Learning Fundamentals

Prior to understanding how ML can be applied to wireless, it is first necessary to

understand the intricacies of how ML works. This chapter will overview what ML is,

explain how ML models are developed, highlight how data is prepared for a model, and

detail the ML algorithms seen in this thesis’ experiments. Additionally, this chapter will

provide background on the wireless emission applications this thesis experiments with, 5G

networks and radar systems, and how ML can benefit each.

2.1 The Premise of Machine Learning

ML is a subset of artificial intelligence (AI) that uses algorithms to learn from data

and improve through trial-and-error [22] to make predictions about some provided input

data. ML algorithms learn by example by analyzing the relationships between given input

data and its associated output data. Fundamentally, math is the language of ML, as

linear algebra and probability are both heavily used by ML algorithms. Linear algebra is

used to represent and operate on data passed to an algorithm, which is often organized into

matrices. Probability is used as many algorithms model uncertainty with a distribution [22]

to make probabilistic predictions. Two of the most powerful aspects of ML is its ability to

function purely from data. Rather than traditional programs that need precise instructions,

ML has the capacity to operate without explicitly being programmed. Instead, ML is
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fed vast amounts of data allowing the algorithm to learn trends and recognize patterns

to make predictions. Moreover, ML models improve with each additional data sample,

demonstrating the ability to adapt. This allows prediction refinement since models identify

more complex relationships between input and output data.

ML is often classified between supervised, requiring labeled data to train, or unsuper-

vised, capable of training on unlabeled datasets. Supervised ML learns by building a model

to estimate an output based on given examples inputs and their associated outputs. On

the other hand, unsupervised ML solely takes input data with no associated output data

to guide the model, and is responsible for identifying inherent structures in the data. Fig-

ure 2.1 shows a breakdown of these two families of ML. The experiments discussed in the

following chapters only involve supervised ML methods, therefore the remainder of this

thesis will solely focus on ML with labeled datasets. The goal in ML is to generate a

model that accurately relates input data to output data. A strong model understands the

relation between inputs and outputs enough to accurately predict the output for future

sets of input data that have not yet been passed to the model.

To illustrate an example, consider a model that estimates the amount of data a cellular

base station has serviced over the last hour. The model will use various elements of the

situation, such as distance to the city and time of day. Distance to the city is relevant

since population typically increases as distance to the city decreases. Therefore, this will

likely mean more users and more data that the base station will need to service. Time

of day is important as well because most users are active and working during the day

time, and resting at night. These elements are referred to as features – the data that the

model uses to make predictions [24]. Features are interchangeably referred to as input

variables, independent variables, predictors, and input features. On the other side, is the

output variable (also known as the dependent variable), what the ML model is trying

to predict or estimate [24]. In this example, the output variable is the amount of data

serviced by the base station. Via multiple examples, model quickly learns how each feature

effects the output – base stations located closer to cities and operation closer to mid-day,

independently, will generally result in higher amounts of data serviced for a base station.

Combining the features together, the model should provide a more accurate prediction
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Figure 2.1: The two families of ML: supervised and unsupervised. Supervised ML models
are given labeled data and train with ground truth knowledge of the output. Unsupervised
ML are given unlabeled data and are responsible for finding patterns on their own. Figure
from source [23], modified. Original version distributed under the terms of the Creative
Commons Attribution 4.0 International License.

than using only one.

The model described is an example of a regression model, since it predicts a continuous

output variable (data that can take on any value within an interval [24]). In a separate

example, consider a model that predicts wireless antenna types. This model uses features

such as antenna size and antenna shape. This is an instance of a classification model –

a model does not predict a numerical value like a regression model, but rather discrete,

finite values known as categorical data [24]. An application of classification models are be

discussed in greater detail in Chapter 3.

For any model, the input variables are usually represented by X with each features

distinguished by a subscript Xn. For example, from the base station example model,

distance to the city could be identified as be X1 and the time of day, X2. The output,

often denoted by Y , holds the relationship in Equation (2.1) with each feature X1, ..., Xp

for p total input features. This equation represents the general form for any ML model,
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where f is an unknown function of X and ϵ is some random Gaussian error [24]:

Y = f(X) + ϵ. (2.1)

Since ϵ has approximately a mean error of zero [24], the output, Y , can be estimated

with Equation (2.2), where Ŷ is a prediction for Y , and f̂ is an estimate for the function

f [24]:

Ŷ = f̂(X). (2.2)

A possible representation of Equation (2.2) is visualized in Figure 2.2 for a model that

predicts the amount of data processed by a base station in the last hour. This model takes

Figure 2.2: A visual demonstration of how a ML algorithm generates a model. The model
uses input features, distance to closest city and time of day, to predict the output, data
processed by a base station in the past hour. Each observation, denoted by a red point,
holds a value for each feature and its associated output, aiding the algorithm to create the
blue hyperplane based on trends in the data. Here, a shorter distance to cities and times
of the day closer to mid-day generally contribute to higher sums of data processed. The
black markers represent the difference between each respective sample’s true output versus
what the model would predict given that observation.

two input features – distance of the base station to the closest city and the time of day,
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represented by X1 and X2, respectively.

Each red point on the plot is used to train the model, creating a best fit plane that

represents the output of the ML model, Y . For any N number of input features an ML

algorithm generates an N + 1 dimensional hyperplane. For analytical purposes, X can be

organized into a two dimensional matrix, such as:

X =


x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...

xn1 xn2 · · · xnp

 . (2.3)

Here, xij represents the value of the jth feature for the ith sample, where i = 1, 2,

. . . , n and j = 1, 2, . . . , p. That is, each column represents the input features of the ML

model, and the rows represent the observations. In this thesis, an observation refers to a

set of input features that describes an output. For the example depicted in Figure 2.2, an

array to represent X from Equation (2.3) would consist of two columns for the two input

features, distance to closest city and time of day, and each row would represent one of the

red data points plotted within the figure, with respect to the plane created by the bottom

two axes.

2.2 Building Accurate Models

As stated, the goal in generating an ML model is to accurately predict the response

for future predictor data. That is, a well-performing ML model achieves as low an error

possible for the test data – observations that the ML algorithm did not use to train or fit

the model. Any observation that was considered when training the model is referred to

as training data. In general, achieving low training error is not as important as achieving

low test error. This is because training data is comprised of known entities, whereas the

test data consists of unseen examples. A model with a low training error does mean that

it has learned the patterns and relationships within the training data well, but does not

necessarily guarantee that the model will perform well on new data.
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In a practical example, consider a model that predicts the behavior of a wireless jammer.

While it is certainly possible to generate a model that achieves low error for the jammer’s

past behavior, it is much more valuable to be able to accurately predict the jammer’s

future behavior. In the context of Equation (2.2), suppose the training data for the model

depicted in Figure 2.2 consists of observations {(x1, y1), (x2, y2), . . . , (x29, y29)}. Although

f̂(x1), f̂(x2), . . . , f̂(x29) may approximately equal y1, y2, . . . , y29, that does not ensure that

f̂(x30) approximately equals y30, where (x30, y30) is an observation of the test data. That

is, when tested on new observations the error is can be large. This model is often called to

be overfit – the model simply memorizes the data rather than learning its patterns. It is

desirable to generate a model that can generalize to unseen situations. Overfitting occurs

when a model is too complex for the number of training observations it is given. That

is, a model either has too many input features, capturing small variations in the data, or

too few observations where it does not have enough information to capture the underlying

patterns.

While it is essential to avoid an overfit model, it is also important to avoid an underfit

model. Figure 2.3 provides a basic example of what an overfit, underfit, and optimally fit

model looks like. Underfitting occurs as a result of a model that is not complex enough

and has too few input features. An underfit model does not fit the training data well and

is too general for the test data, resulting in both a high training and test error. Therefore,

a robust model needs balance in its complexity to ensure it does not overfit or underfit,

minimizing the test error.

In ML, test error is comprised of three components: bias, variance, and irreducible

error. This is summarized in Equation (2.4), where the first term corresponds to bias; the

second term, variance; and the third, irreducible error [24]:

E[(Y − Ŷ )2] = (f − E[f̂ ])2 + E[(f̂ − E[f̂ ])2] + E[ϵ2] (2.4)

Bias refers to the amount in which a model’s prediction differs from the true value.

High bias can occur if a model is too simple and unable to capture the complexity of the

relationship in the data – similar to an underfit model. Variance, on the other hand, refers

to a model’s sensitivity to small fluctuations in the training data. High variance can occur
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Figure 2.3: An example of how an overfit model, underfit model, and well-fitting model
compare to one another. The overfit model matches the data too well, likely leading to
poor results on any new data. The underfit model doesn’t match the data well enough,
missing the overall pattern. The well-fitting model matches the data enough to capture
the trend, but not too much that it memorizes the data.

if a model is too complex and fails to generalize to new data – just as an overfit model.

Finally, irreducible error is error that from inherent randomness and noise in the data, and

is always present regardless of model complexity, hence the ϵ term in Equation (2.2). A

model should have low bias and low variance to ensure minimal test error. This balance in

model complexity is often called the bias-variance trade-off and is demonstrated in Figure

2.4.

2.3 Data Preprocessing

Prior to training a model, there are several steps taken to prepare the data to be used

by an ML algorithm. Some preprocessing steps include dimension reduction techniques,

feature engineering, and validation methods.
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Figure 2.4: The bias-variance trade-off. The plot shows test error is effected by the com-
plexity of a model. With low complexity, variance is low, however bias is too high, leading
to high test error. With high complexity, the bias is low, but the variance becomes too
high, resulting in high test error again. The best model is balances complexity to minimize
both bias and variance for as low a test error possible.

2.3.1 Dimension Reduction

Often times, a model is has too many input features which causes overfitting and

therefore poor generalization. One approach to obtain a better model involves dimension

reduction techniques to limit the number of features to those that are most relevant. In

many cases, a high-dimensional dataset contains features that are either narrowly relevant

or redundant. Removing these features reduces the complexity of the model, therefore

improving the model’s ability to generalize. Performing dimension reduction sometimes

requires analysis of the input features, specifically their correlation – a measure of the

relationship between two variables [24]. In a model, it is ideal to have input features that

vary independently from one another, so each one contributes unique information to the

model.

An effective way to analyze the correlation between multiple input features uses a

pairplot. A pairplot is a matrix of scatterplots in which each feature in a dataset is plotted

against every other feature to provide a visual representation of the correlations between
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the variables. This makes the relationships between a model’s parameters apparent and

understandable. The diagonal plots display the distribution of a single variable.

2.3.2 Feature Engineering

In ML, feature engineering refers to alterations that develop raw data into useful fea-

tures for a model. An example of this is scaling data using normalization or standard-

ization. Scaling data ensures that all features have the same distribution, mitigating any

bias towards features with larger values. This is a critical step prior to applying data to

any distance-based ML algorithm, such as k-Nearest Neighbors (KNN) or support vector

machine (SVM), which will be discussed later. Normalization confines data to a particular

range, usually between zero and one using:

Xnormalize =
X −Xmin

Xmax −Xmin
, (2.5)

where X is the original data, Xnormalize is the transformed data, and Xmin and Xmax

are the least and greatest samples in the dataset. Standardization, on the other hand,

transforms data such that the mean becomes zero and the standard deviation becomes

one [24]. Equation (2.6) defines the process of standardization mathematically:

Xstandardize =
X − µ

σ
, (2.6)

where X is the original data, Xstandardize is the transformed data, and µ and σ are the

mean and standard deviation of X, respectively. Features with vastly different scales can

negatively impact ML algorithms, as they may invoke unintentional weight to features with

larger values. Scaling the features using normalization and/or standardization counters

these problems, ensuring that all features contribute equally to the model.

2.3.3 Model Validation

Although low test error typically indicates a well-performing model, it does not neces-

sarily mean that model generalized and will perform well on all data. Sometimes a model

can produce a low test error by chance of luck as a result of the particular dataset it was
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tested on. This can occur especially when a test dataset is small or when a model isn’t

sufficiently tested. A common ML technique known as validation addresses this problem

by applying several additional datasets during the training phase. These dataset are re-

ferred to as the validation data, and are used to evaluate the performance of the model

and fine-tune its hyperparameters. This ensures the model generalizes to new data.

One of the challenges with with validation data is collecting additional data when

the data is limited. A popular method known as cross validation (CV) resolves this by

resampling the data into multiple subsets, emulating the effects of new datasets. For

example, the k-fold CV splits the set of observations into k folds of approximately equal

size [24].

2.4 Classification Models

As discussed in Section 2.1, one major type of supervised ML are classification models

[24]. The methods used in Chapter 3 relies extensively on classification models to identify

scheduling behaviors of 5G networks. The goal in classification is to model the probability

that the outcome of an experiment belongs to a certain class given the observation; this is

described mathematically as:

Pr(Y = k|X = x), (2.7)

where Pr indicates the probability measure, X is a random vector of the input data, Y

is a random variable of the class, and x is the input value of the random vector X, and

k is the class value of the random variable Y . Classification models fall in two different

approaches: discriminant function models and probabilistic generative models [25]. Dis-

criminant function models learn the probability equation directly. These models focus on

creating decision boundaries to separate the different classes in the data, which can be ei-

ther linear or non-linear. Logistic regression, SVM classification, and tree-based classifiers

fall under this category. Probabilistic generative models learn the probability distribution

using Bayes’ theorem to calculate Equation (2.7). The Näıve Bayes’ Classifier (NBC) falls

under this category [25]. Table 2.1 summarizes the key characteristics of each classifier

model used in this thesis.
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Table 2.1: Selection of ML models used in Chapter 3 and descriptive details about each.

ML Generative/ Linear/Non-Linear Advantages Disadvantages Feature
Model Discriminative Decision Boundary Engineering

Logistic Discriminative Linear Simple Does not perform well with Normalization,
Regression high number of non-linear variables Cross-validation

K-Nearest Discriminative Non-Linear Easy to control, Flexibile Poor generalization Normalization,
Neighbor Standardization,

Cross-validation

Näıve Bayes Generative Linear Handles large range Assumption of independent Standardization,
Classifier in scaled data features may be false Cross-validation

Decision Tree & Discriminative Non-Linear Interpretable Prone to overfitting Normalization,
Random Forest Cross-validation

Support Discriminative Non-Linear Robust to data fluctuation Performs poor Cross-validation
Vector Machine and high dimensional datasets with large datasets
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2.5 Optimization

One technique that many ML models, such as neural networks, use to train is opti-

mization [26]. Optimization refers to the process of finding the best possible solution to a

problem by minimizing or maximizing a given cost function. Gradient descent is a com-

mon example of an optimization algorithm [27]. Gradient descent works by calculating the

gradient of the cost function with respect to given parameters and updating the param-

eters in the direction of the negative gradient. Mathematically, consider a cost function

R that evaluates a metric to describe error. A set of parameters, represented by a vector

θ, are used to determine the cost. The gradient of the cost function with respect to the

parameters indicates the error given the current value of each parameter:

▽R(θm) =
∂R(θ)

∂θ
|θ=θm . (2.8)

Since the gradient identifies the direction in the θ-space which R increases the most, the

negative gradient identifies where R decreases the most. Decreasing the cost function is

desired as it minimizes the error. This process is summarized as [24]:

θm+1 ← θm − ρ▽R(θm), (2.9)

where θm+1 is a small step in the direction of negative gradient and p controls the size of

that step [24].

2.6 Machine Learning in Wireless: Case Studies

As previously discussed, ML has been used to enhance several wireless technology use

cases. The two wireless applications of interest this thesis concerns are cellular 5G networks

and radar systems. To provide context for the following chapters that exemplify ML

applied to these applications, it is first important to understand the fundamentals of each

technology and identify their associated challenges.
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2.6.1 5G Networks: Predicting Network Traffic

Research in network traffic patterns has grown since the launch of 5G, as the new

standard allows greater flexibility for wireless service providers (WSPs) to define their own

networking solutions. The 5G standard uses orthogonal frequency division multiple access

(OFDMA), which has enabled this flexibility for WSPs [28]. OFDMA uses subcarrier

spacing to define the operating frequency of orthogonal signals that do not interfere with

each other, giving WSPs control over resource allocation of users in frequency and time [29].

WSPs develop their own scheduling methods to optimize resource allocation in support of

enhanced mobile broadband, massive machine type communication, and ultra-low latency

reliable communication use cases [30].

Predicting network traffic is one challenge in wireless that ML has been used to address.

This thesis presents analyzing scheduling behaviors as a novel method to understand net-

work traffic. In particular, ML is used to classify different types of scheduling algorithms

employed in a simulated 5G network.

At a high level, the downlink communication between the base station and a user for a

stand-alone 5G network architecture works as follows. A user equipment (UE) (i.e., mobile

device, sensor node) can connect to base stations referred to as gNodeB (gNB) nodes using

a handshaking procedure based on the hybrid automatic repeat request (Hybrid-ARQ).

The Hybrid-ARQ defines a bit that indicates a successfully decoded information block on

the uplink and downlink and retransmits the information if the block was not successfully

decoded [31]. The gNB determines a schedule that prioritizes UEs based on Quality of

Service (QoS), throughput requirements, the number of UEs on the network, and the

number of retransmissions a UE has made [32].

The scheduling algorithm that the gNB uses is integral towards several network param-

eters that are indicative of patterns in its traffic: the throughput (TP), goodput (GP), and

buffer status (BUF) that devices achieve on the network. TP, GP, and BUF are calculated

based on the schedule resources for each UE. TP is directly proportional to the number of

resource blocks (RBs) used by the UE. Therefore, the number of scheduled resources cor-

relates to a higher throughput. Similarly, GP is also proportional to the number of RBs,
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but only accounts for the data that has been successfully transmitted on the network.

Therefore, a higher number of scheduled RBs correlates with a higher GP for data that

has been successfully transmitted on the first attempt, indicating a higher CQI. Finally,

BUF is correlated to the traffic on the network and the priority of the device required to

use the network. A UE’s BUF will be larger if it is not a high priority and has lower CQI,

resulting in a high latency for that specific device. Each of these metrics are dependent on

the scheduling algorithm a network is using.

There are several types of scheduling algorithms that networks can use to allocate re-

sources and schedule users. This thesis considers three fundamental types that demonstrate

different scheduling styles – Round Robin (RR), Best Channel Quality Indicator (BCQI),

and Proportional Fair (PF).

A RR algorithm cycles through the users within the network one-by-one based on a

predefined order. This is advantageous because all users get maximum fairness and it is

simple to implement [33,34]. However, RR does not account for channel quality, therefore

the throughput, latency, and spectral efficiency suffer performance.

A BCQI algorithm schedules the next user on the network based on the channel qual-

ity of the users [33, 35]. Channel quality indicator (CQI) is calculated based on the 5G

New Radio (NR) Medium Access Control standard that is representative of a gNB’s abil-

ity to connect to a user [32, 33]. Several factors that affect channel quality include the

environment, weather, and transmit power of the device. BCQI reduces the number of

retransmissions and increases efficiency since it schedules the user with the best CQI first,

thus eliminating the likelihood of needing to retransmit. The downside of BCQI is that it

is prone to starving users on the network that may not have as good a connection.

PF considers both the CQI of users on the network and the average data rate of each

user. The algorithm assigns resources so that the data rate remains equal from other users

on the network [33,36,37]. The PF algorithm is the best of both worlds for optimizing users

of the best CQI while sharing the resources fairly. Fairness comes at a disadvantage since

it is not as spectrally efficient and introduces latency that may ignore service requirements

for mission critical applications.
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2.6.2 Radar Systems: Operating in Challenging Environments

Radars face significant challenges when operating in interference and jamming-infested

environments. Cognitive radars, driven by ML techniques, are often used to help overcome

these challenges [19]. This thesis presents adaptive waveforms as a method to mitigating

the effects that interference and jammers have on a radar’s performance. Specifically,

a radar simulation is built to enable experiments involving waveform optimization with

defined cost functions. Before describing the simulation, it is first essential to understand

radar fundamentals.

Radar is one of the oldest forms of wireless technology that is still widely used today

and remains essential in modern systems [38]. Radars, which stands for radio detection and

ranging, are used to collect information about a target via signal echoes. Specifically, they

operate by transmitting radio-frequency (RF) electromagnetic waves at a target of interest,

and receiving the same signal reflected back off of the target [39]. Some of the information

radars are capable of obtaining includes range, velocity, angle, size, and shape [40].

In its simplest form, a radar consists of a transmitter, receiver, and antenna(s). Figure

2.5 illustrates two fundamental configurations of radar systems: monostatic and bistatic

[39]. Monostatic radars consist of a single antenna that both the transmitter and receiver

Figure 2.5: A bistatic radar configruation (left) versus a monostatic radar configuration
(right). Bistatic radar systems consist of two separate antennas, one for each the transmit-
ter and the receiver. Monostatic radar systems, on the other hand, consist of one antenna
that serves both. A duplexer is used to switch between which one the antenna is actively
serving.
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use, or an antenna for each set in the same location. Bistatic radar consists of two antennas

with separation between them [39]. This thesis focuses on the monostatic configuration for

simplicity [39].

In radar systems, various types of waveforms are used depending on the application.

The highlest level taxonomy of these waveforms are classified between continuous wave

(CW) or pulsed [39]. In CW radars, both the transmitter and receiver continuously operate.

CW typically adopts the a bistatic configuration [39], given that monostatic systems usually

consist of one antenna and therefore can only have one of either the transmitter or receiver

active at a time.

In contrast, pulse radars transmit RF waves in short bursts of finite duration, normally

at regular intervals [39]. Figure 2.6 explains the basic operation of pulse radar systems.

The duration at which the the pulses are transmitted is often referred to as the pulse

Figure 2.6: The general operation of a pulse radar system. On top shows periodically
transmitted pulses, and below shows the received echos.

width, denoted by τ [39]. The variable ∆t represents the elapsed time between the start of

a transmission to the initial time the echo returns. The time from the start of one pulse

to the start of the next is known as the pulse repetition interval (PRI) and is sometimes

denoted by T , as in Figure 2.6. Similarly, the number of PRIs per second is called the pulse

repetition frequency (PRF) and is measured in pulses per second (hertz). The relationship

between PRI and PRF is provided by [39]:

PRF =
1

PRI
=

1

T
. (2.10)
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The receiver is active any time the radar is not transmitting. This transmit period is

another important concept known as duty cycle – the amount of time in one cycle that the

radar is actively transmitting. This is mathematically described as [39]:

dt =
τ

PRI
= τ × PRF, (2.11)

where dt is the duty cycle. Since emitted RF waves travel through the air at the speed of

light, we can calculate the distance to a target, represented as:

r =
ct

2
, (2.12)

where r is the line of sight range between the radar and the target in meters, c is the speed

of light which is 299,792,458 meters per second, and t is the time elapsed between signal

transmission and the received echo in seconds [39]. The factor of two in the denominator

comes from the fact that the signal must to the target and back to the receiver.

One common problem in radar systems is known as range ambiguity. This occurs when

a radar is unable to accurately determine the range to a target. For example, refer to

Figure 2.6. We can observe that ranges corresponding to a ∆t within T is an unambiguous

range. However, ranges that correspond to ∆t greater than T are ambiguous, as the return

pulse could be interpreted as either the return from transmit pulse 1 or transmit pulse

2 [41]. Range ambiguity is avoided if the PRI is long enough such that the echo(es) from

a certain transmit return prior to the next transmit [39].

Another concept in radar systems, range resolution, describes the radar’s ability to

distinguish between multiple targets close in range [41]. Range resolution is important for

instances in which multiple targets are close enough in proximity that the reflected signals

overlap in time and appear as a single echo. Pulse width (the duration of a transmitted

signal) plays the biggest role in determining the minimum distance between two targets

for the system to be able to identify them as separate entities. To demonstrate this,

consider two targets at ranges r1 and r2, respectively. The difference between these ranges

is calculated as:

r2 − r1 =
c(∆t2 −∆t1)

2
, (2.13)
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where ∆t1 and ∆t2 is the time elapsed from transmission to return for target 1 at r1 and

target 2 at r2, respectively. The minimum that ∆t2-∆t1 can be such that the radar will be

able to identify the two separate targets is directly related to pulse width, τ . Two separate

return pulses will result assuming the targets are at least a distance of cτ/2 apart [41].

This can be rewritten using the pulse bandwidth, β, or the inverse of τ [41]:

r2 − r1 ≥
cτ

2
=

c

2β
. (2.14)

As a result, minimizing r2 − r1 and therefore the pulse width enhances a radar’s range

resolution. However, shorter pulses have less energy [39] and therefore decreases the power

of the transmit. Additionally, the pulse bandwidth will become too large if the pulse width

is minimized, as the two are inverses of one another. An important technique known as

pulse compression maintains both a reasonable pulse width and high range resolution.

Pulse compression is a powerful method for improving a radar’s range resolution, while

keeping a satisfactory pulse width. Most pulse compression techniques make use of a

matched filter at the receiver [41]. The matched filter convolves the return pulse with a

reference signal, which is the time-reversed complex conjugate of the transmitted pulse;

the following expression explains this operation:

y(t) = x(t) ∗ h(t), (2.15)

where y(t) is the resulting pulse compressed signal, x(t) is the return pulse, h(t) is the

reference signal (output of the matched filter), and the ∗ operator denotes convolution [41].

This operation amplifies the components that match the reference signal and attenuate

those that do not. An example of what this looks like in practice is depicted in Figure

2.7. Here, two the return pulse from different targets overlap in the time domain, making

it challenging to distinguish the targets. However, the resulting pulse compressed signals

clearly reveal them.

With pulse compression, radars achieve high range resolution using long pulses (high

τ); longer pulses result in higher average power, therefore improving the signal’s signal-to-

noise ratio (SNR). More specifically, the SNR improves by a factor of the time-bandwidth

product, or τβ [39]. The relationship between the SNR prior to pulse compression versus
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Figure 2.7: Two received pulses before pulse compression (top) versus after pulse compres-
sion (bottom).

after is defined as:

SNRpc = SNRuτβ, (2.16)

where SNRpc is the signal-to-noise ratio (SNR) after pulse compression, and SNRu is the

SNR without pulse compression [39].

The level of impact pulse compression has on a return pulse can depend on which

modulation scheme is used. Specifically, modulation schemes are selected to maximize the

pulse compression ratio [41]. The pulse compression ratio refers to the difference between

the power of a pulse compressed return signal’s main lobe and power of its sidelobes – it

is also called sidelobe height.

As with many wireless systems, in radar a message signal xm(t) is used to modulate a

carrier signal xc(t) prior to transmission. The carrier signal is defined mathematically as:

xc(t) = a(t)cos(2πfct+ ϕ(t)), (2.17)

where a(t) is the envelop of the carrier signal, fc is the carrier frequency, t is time, and ϕ(t)

is the phase modulation [41]. The carrier signal can be modulated in a variety of ways,
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modifying its amplitude, phase, or frequency [41]. This thesis mostly concerns frequency

modulation (FM), particularly two foundational types: linear frequency modulation (LFM)

and non-linear frequency modulation (NLFM) [42]. In frequency modulation, the frequency

of the carrier signal varies in accordance with the message signal. In the case of LFM,

frequency sweeps linearly for the duration of the pulse width as shown in Figure 2.8 for

both an increasingly LFM (up-chirp) and decreasing LFM (down-chrip) [41].

Figure 2.8: An increasing and decreasing LFM pulse plotted in time-frequency. The char-
acteristics of each pulse (pulse width and pulse bandwidth) are marked to visually demon-
strate their role in defining the pulse.

In general, the complex envelope of an increasing LFM waveform can be formulated as

a complex exponential expression:

x̃(t) = a(t)ejπ(β/τ)t
2
, (2.18)

where x̃(t) is the complex envelope of the increasing LFM waveform, a(t) is envelope that

defines the amplitude modulation of the pulse, β is the pulse bandwidth, τ is the pulse

width, t is time [43]. The frequency is defined by β
τ t – a linear function of time with a

slope of the pulse bandwidth divided by the pulse width [43]. The main advantage of LFM

waveforms is that they are easy to generate and provide excellent range resolution [44].

Therefore, they are one of the most commonly used waveforms in radars for maximizing

the benefits of pulse compression [45].

Similar to LFM waveforms, NLFM waveforms are frequency modulated. However,
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NLFM waveforms’ frequencies do not sweep linearly for the duration of the pulse width.

Rather, NLFM waveforms’ frequencies are defined by some non-linear function, for exam-

ple, a quadratic or logatithmic function [46]. For a quadratic NLFM waveform, frequency

is defined by the following:

f(t) = f0 + βt2, (2.19)

where f(t) is the frequency at t time and f0 is the initial frequency at time t = 0 in the pulse

duration [46]. The pulse bandwidth, β, is equal to (f1 − f0)/t
2 where f1 is the frequency

at a reference time [46].

In some instances, a NLFM waveform is better than a LFM waveform, offering improved

the sidelobe performance and range resolution [47, 48]. This is particularly true when

monitoring targets that reflect weak signals or targets in a cluttered environment [48].

However, NLFM waveforms can be challenging to generate [47] and it can be difficult

determining which NLFM waveform will provide optimal performance. This thesis seeks

to explore how an optimal NLFM waveform for radar systems can be identified.

2.7 Chapter Summary

This chapter explained the fundamentals of ML, highlighted how 5G cellular networks

schedule, and described the basic concepts behind radar systems. In ML, models are

generated to make predictions based on some provided data. One type of model this

thesis uses, classification, predicts discrete categories that observations belong to. Chapter

3 uses the following ML algorithms to develop several models: logistic regression, KNN,

NBC, DT, random forest, SVM. These models are used to classify scheduling algorithms

(RR, BCQI, PF) used by 5G networks. The models use UE performance metric data,

such as TP, GP, and BUF. A different technique many ML models use is optimization.

Chapter 4 establishes the framework of a radar simulation for waveform optimization. The

simulation is built using integral pulse-defining parameters, such as pulse width, pulse

bandwidth, modulation type, etc. Two fundamental modulation types in radar includes

LFM and NLFM.
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Chapter 3

Classifying 5G Scheduling

Algorithms

This chapter highlights how ML can contribute to 5G network implementations. The

experimented described in this chapter overviews a novel approach to predict future traffic

of a 5G network: analyzing 5G scheduling algorithms 1. This experiment uses several

ML classification models (multinomial logistic regression, KNN, NBC, DT, random forest,

and SVM) to classify the scheduling algorithm (RR, BCQI, PF) used by a simulated 5G

network.

3.1 Technical Challenges

There exist several obstacles in understanding network traffic. To implement a novel

approach, three relevant technical challenges were identified. These are listed and explained

as follows:

1. Collecting 5G network data in a repeatable and controlled environment

1The work presented in this chapter was completed in collaboration with fellow graduate student Mr.
Adriyel Nieves. My contributions to the presented research includes concept inception; experiment frame-
work discovery, such as the simulation and model input/output; ML model implementation; and spectro-
gram data experimentation. Mr. Nieves efforts focused on data collection; data preprocessing, formatting,
and preparation; model performance evaluation; and integrating the simulation’s physical layer.
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Real-world network traffic records sourced from WSPs are used as datasets for many

models [14, 16, 17, 49]. Although this approach has worked for many studies, much

of the metadata for the datasets is unknown (i.e., schedule algorithm, subcarrier

spacing, number of users, etc.). An alternative data collection method would be to

passively record 5G traffic over-the-air from a nearby base station [18], but similarly,

with no ground-truth knowledge of the metadata this approach was deemed infeasible.

2. Determining a method capable of interpreting 5G network behavior to

predict traffic

Previous studies explore various methods used to understand network traffic. These

methods involve tracking spikes in usage, determining users in an idle state, adap-

tively allocating resources, etc. Each method is similar in the way that they all

attempt to directly forecast utilization [13–18, 49]. Discovering new methods to an-

alyze network behaviors that previous studies have not attempted is key.

3. Identifying features that characterize 5G network behavior

Choosing which metrics to use as input to the ML models is critical. Previous studies

used a variety of different input features. Several papers used packet information to

predict network traffic volume [14, 15, 17]. Others use historical traffic utilization

to predict peak trends of the network [16, 49]. Furthermore, I/Q data and energy

levels have been used to predict the presence UEs [13,18]. Using the right amount of

data types to balance high accuracy and the use computational resources is another

consideration.

3.2 Proposed Approach

ML has served well in predicting network traffic, as the open literature explores the

previously tried methods. Several types of ML models have been used to predict network

utilization [13–18,49]. Most of these papers use some method of deep learning, whether it

was a convolutional neural network, recurrent neural network, or LSTM model [13,17,18].

However, these models are computationally expensive and require large amounts of data,
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this making deep learning techniques an unviable option. As a result, this experiment

uses classical ML methods. The following approach offers a novel method of predicting 5G

network traffic, while considering the previously outlined technical challenges:

1. Constrain the environment to a simulation that mimics the operation of

a 5G network

A simulated 5G network offers a repeatable and controlled environment to generate a

robust dataset. The simulation has parameters that define the physical layer, medium

access control layer, and control user attributes such as QoS and channel quality in-

dicator (CQI). One alternative to a pure simulation, emulating a hardware network

using open Radio Access Networks (O-RAN), was considered but was deemed inflex-

ible because the number of emulated devices was limited by the available hardware.

Therefore, a simulated environment that mimics a 5G network was determined as

the best option [13,15].

2. Classify the scheduling algorithm that the simulated 5G network is oper-

ating on

One paper uses a similar method [16], which applies k-nearest neighbor (KNN) to clas-

sify each user’s network usage type as an approach to predicting resource allocation.

This led to exploration of other ML methods that deviated from deep learning and

novel approaches to predict resource allocation that do not directly involve forecast-

ing network traffic, as many papers have already attempted. This method involves

trying a variety of ML models – logistic regression (multinomial), KNN, NBC (Gaus-

sian), DT, random forest, and SVM – to classify different scheduling algorithms. ML

offers both generative and discriminative models that can learn linear and non-linear

decision boundaries of a selected dataset which is advantageous because the optimal

decision boundary shape is unknown [24,25].

3. Use throughput, goodput, and buffer status from the 5G scheduling sim-

ulation as model predictor variables and format the data such that it can

be analyzed with ML techniques
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The resource grid (RG), a mapping of the resource allocation in the time and fre-

quency domain, has an inherent structure based on its scheduling algorithm. This

thesis proposes that time-series throughput (TP), goodput (GP), and buffer status

(BUF) measurements efficiently represent important aspects of the RG [14,15]. The

time-series data format was based on how many input features constitute a single ob-

servation – more timesteps per observation increases the model complexity. The end

goal for this experiment is a selection of traditional ML models that use simulated

5G user performance data to classify different scheduling algorithms.

The proposed solution poses a new approach to predicting network traffic, while con-

sidering the aforementioned challenges. The simulation that tied all of these steps together

was integral in implementing each of these steps.

3.3 The 5G Network Simulation

Before diving into the implementation of the experiment, it is first important to un-

derstand the simulation used, a modified version of the NR FDD Scheduling Performance

Evaluation example from MATLAB’s 5G ToolboxTM [50]. In the following subsection, the

operation of the simulation, its input parameters, and output data is explained in detail.

3.3.1 Simulation Input Parameters

The simulation generates various UE performance metrics on the simulated 5G network

based on several input parameters, by modeling scheduling of DL and UL resources. The

simulation schedules based on a number of parameters:

1. UE Distance Sets: Each UE’s distance from the base station.

2. CQI Update Periodicity: How often the base station requests a new CQI from each

UE.

3. ∆CQI: The amount by which the CQI changes every period.

4. Scheduling Algorithm: The algorithm the network uses to schedule UEs.
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Each of these parameters act as inputs to the simulation, and influences how the simula-

tion schedules. Several of these parameters are based on CQI, a measure used to represent

the quality of a communication channel between a transmitter and receiver; environmental

factors that hinder communications, such as a greater distance between nodes will result

in a worse CQI. CQI quantified as a number between 0 and 15, where greater values indi-

cate a stronger channel quality. CQI is one of the fundamental variables of the scheduling

algorithms studied in this experiment, hence, the three of the simulation parameters are

centered around it: UE distance sets, CQI update periodicity, and ∆CQI.

In the simulation, the number of UEs is defined; this experimented uses 4 UEs. The

distance between a UE and the base station is used to determine the initial CQI for each

UE. The distance for every UE is defined in the simulation, and each distance is associated

with a particular CQI measure. Table 3.1 summarizes each distance’s corresponding initial

CQI. A distance set refers to an array of N distances, where N is the number of UEs – in

Table 3.1: Mapping of several UE-to-base-station distances and the corresponding initial
CQI measure.

UE Distance CQI Value

200 15

500 12

800 10

1000 8

1200 7

this case that is 4. The simulation defines a distance set by randomly selecting 4 distances

from [1200, 800, 500, 200] meters, one for each of the 4 UEs. The these UE distance sets

are used for the first simulation input parameter, and introduces various scenarios of the

network users’ initial CQI values. For this experiment, the number UE distance sets was

chosen as 5, therefore the simulation used 5 different sets of randomly selected distances.

The particular randomly generated distance sets used are specified in Table 3.2

While the UE distance defines an initial CQI, the CQI for each UE does not remain

constant – this is meant to model a dynamic environment, which is similar to how a real-

world network operates, where channel conditions are constantly changing. CQI update

periodicity defines how often the CQI changes in the simulation. This experiment consisted
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Table 3.2: The randomly generated UE distance sets for the experiment. Each set consists
of four distances: the first distance corresponding to UE1, the second for UE2, the third
for UE3, and the fourth for UE4.

Set Number Distance Set (meters)

1 [1200, 1000, 200, 500]

2 [1000, 200, 500, 1000]

3 [800, 800, 500, 500]

4 [1200, 1000, 800, 500]

5 [1200, 1000, 1200, 1000]

of 2 update periodicities: 0.1 seconds and 0.2 seconds. Finally, the amount by which the

CQI changes is defined by the ∆CQI parameter. The value of ∆CQI is either added to or

subtracted from the CQI each update periodicity cycle. ∆CQI was chosen to be 2 for the

experiment. The last input parameter was the scheduling algorithm itself. This parameter

included a selection between RR, BCQI, and PF, and acted as the ground truth for the

ML algorithms to train – the output, or Y from Equation (2.1) and (2.2). A breakdown

of the simulation parameters is provided in Table 3.3

Table 3.3: Parameters used to iterate 30 total simulation iterations from which datasets
were derived.

Simulation Parameter Selection

UE Distance Sets Sets 1-5 from Table 3.2

CQI Update Periodicity 0.1, 0.2 seconds

∆CQI 2

Scheduling Algorithm RR, BQI, PF

3.3.2 Simulation Output Parameters

The output of the simulation, on the other hand, consisted of various time-series metrics

for each UE. This data included the TP, GP, and BUF. Based on the scheduling algorithm

and channel quality (e.g., CQI) captured by the simulation’s other three input parameters,

each user on the network will see a different TP, GP, and BUF [33]. TP is defined as the

bits-per-second transmitted from each user; GP is the successfully transmitted bits-per-
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second without including the retransmitted data; BUF is the data locally stored by the

user waiting to be transmitted. High quality channels exhibit high CQI values, where the

TP and GP approach the same value since there would be no need for retransmissions and

BUF would be empty for the same reason. However, this is not the case for real-world

scheduling algorithm implementations.

3.3.3 Data Generation and Format

Given the four different input parameters for the simulation, each unique combination

of the parameters was used to generate a robust dataset, that captures various different

looks for a 5G network. The dataset for the ML models consisted of an iteration of the

simulation for each unique combination of the input parameters, shown in Table 3.3. That

is, the simulation was run for every combination across the five different UE distance sets,

two different CQI update periodicities, one ∆CQI, and three scheduling algorithms. This

amounted to 30 distinct experiments that constitutes the entirety of the ML train/test

dataset. Each iteration of the simulation captured five seconds worth of data, generating a

sample of the output data every millisecond, for a total of 5,000 timesteps per simulation

iteration. Each timestep consists of a total of 12 measurements: three metrics, TP, GP,

and BUF, for each of the four UEs.

One consideration of the data format was defining the size of one observation for the

ML models. That is, how many timesteps are to be included for each observation. Here,

each additional timestep per observation contributes 12 more input features (from the 12

measurements per timestep). Recall the number of input features determines the complex-

ity of a model, and the model should not be too complex or not complex enough to balance

the bias-variance trade-off. Similarly, it is important to provide enough timesteps per ob-

servation for the models to learn the behavior of the scheduler across a subset of time,

but not too many timesteps for the model to overfit. Table 3.4 outlines different numbers

of timesteps per observation, and the corresponding number of total input features per

observation for each.

It is clear that with more timesteps per observation, the number of input features in-

creases, therefore increasing the model complexity. To determine how many input features



35

Table 3.4: Datasets with differing number of input features based on the number of
timesteps per observation.

Timesteps Input Features
per Observations per Observation

1 12

5 60

10 120

20 240

50 600

100 1200

200 2400

to use, Figure 3.1 demonstrates each model’s performance plotted over a varying number

of timesteps per observation (1, 5, 10, 20, 50, 100, and 200).

Figure 3.1: Certain machine learning models improve or degrade with performance based
on the number of timesteps per observation. Random forest and DT classifiers maintained
a high performance regardless of the number of time steps per observation

Based on Figure 3.1 most of the models perform with higher accuracy when they are less
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complex, where the number of timesteps per observation is equal about one to five. As the

complexity increases, the random forest and DT classifier is still able to achieve near-perfect

classification accuracy. The SVM classifier and the NBC exhibit a slight improvement as

the complexity of the model increases. Finally, the logistic regression shows a slight decrease

as model complexity increases and the KNN has the steepest decrease in accuracy as the

model complexity increases [24]. For the experiment, five timesteps per observation was

selected – a total of 60 input features for each.

3.4 Data Preprocessing

Prior to training ML models, several analysis and modification techniques were applied

the dataset. These preprocessing steps included data reduction, data scaling, validation,

in additional to several other.

In classification models, it is good practice to ensure that an approximately equal

number of observations belongs to each class. This is often done by reducing the number

of observations for classes with significantly more data. Since the dataset was simulated,

the dataset is balanced with an equal number of RR, BCQI, and PF observations, and

therefore no modifications were required.

Some of the classification types required a normalization and/or standardization step

prior to being passed into the model. In particular, normalization was applied to the

NBC and logistic regression models using the min-max transform, which scales the values

by the difference of the minimum and maximum values within the dataset, as explained

mathematically in Equation (2.5). Standardization was applied to the KNN and SVM

models using the standard scaler method, as explained in Equation (2.6).

A sufficient cross-validation step was also implemented to ensure that the trained models

did not get lucky with the dataset. The cross-validation method selected was K-fold cross-

validation with a size of five folds. The precision and recall were used as the scoring

mechanisms of the cross-validation step. The dataset was split with a test-train split of

10% and 90%, respectively. The train data was used as the test-validation data in the

cross-validation step. The corresponding score was averaged for each of the train models
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and the maximum score was selected as the best algorithm.

A small, but noteworthy step was defining any necessary hyperparameters that pertain

to a specific model. Some model types required additional parameters to control how the

algorithm trained that particular model. The first hyperparameter is k for a KNN model,

which was selected as 30 for this experiment. Another hyperparameter is the depth control

for DT models, which helps to prevent overfitting. A minimum number of observations per

split was used, and was set to 50. The last hyperparameter accounted for was the number

of trees within the RF model, which was chosen to be 100.

Analyzing the input features to visualize their correlation was the final data preprocess-

ing step. The relationship between the features can be assessed by plotting in a pairplot, as

shown in Figure 3.2. With observation having 60 input features, the pairplot was limited

to a 6 × 6 matrix, enough to capture the relevant relationships. This plot considers the

corresponding TP, GP, and BUF for two different UEs of a single timestep (the first six

input features). The correlation plot presents a strong positive correlation between TP

and GP: an expected result given the GP is calculated using TP measurements. Although

the throughput and goodput are highly correlated we decide to keep them to ensure that

the model has the degree-of-freedom when learning on other datasets.

3.5 Model Performance

The full performance of each model is displayed in Table 3.5, which includes multiple

measures. The results of the models show that the random forests model performs the best

with an accuracy greater than 99%. Overall, it appears that the models that performed the

best were non-linear models. The least accurate of any non-linear model, KNN, performed

at an accuracy level of 95%. Of the two linear models, the best performance achieved was

from the NBC with a prediction accuracy of 72% – a 23% drop from the worst performing

non-linear model.

The best-performing models are capable of creating non-linear decision boundaries,

which indicates that the datasets are non-linear. Random forest and DT models are capable

of isolating decision boundaries using piecewise functions. DT-based models being the most
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Figure 3.2: The pairplot shows the correlation between a subset of the input features with
a logarithmic function applied to each feature. This full dataset includes a total of 60 input
features but for the sake of brevity shows the correlation between two UE1 and UE2 for
the fifth timestep.

accurate performers indicates a segmented structure in the dataset that they are able to

learn well from. Possible signs of this structure in the dataset can be seen in the pairplot

(Figure 3.2) and are highlighted in Figure 3.3.

To ensure that the models did not overfit, they were tested using completely new

simulated datasets that were not introduced during training. In these simulation iterations,

the number of UE distance sets parameter was chosen as two, however, the distances were

not randomly selected. Instead, each UE was selected to have equal distance ([800, 800,

800, 800] for one set, and [1200, 1200, 1200, 1200] for the other), therefore providing the

same initial CQI value. ∆CQI was chosen to be 0 and 2, allowing one instance in which

the CQI remained constant and another in which the CQI changed as normal. The other

simulation parameters were kept the same. These new parameters are summarized in Table

3.6. The goal of the new dataset was to test if the models generalized to different situations
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Table 3.5: The performance of each ML model, measured by accuracy, precision, recall,
and F1 score.

Accuracy Precision Recall F1

Random 99.7% 99.7% 99.7% 99.7%
Forest

DT 98.9% 98.9% 98.9% 98.9%

SVM 96.4% 96.4% 96.4% 96.4%

KNN 95.0% 95.0% 95.0% 95.0%

NBC 72.1% 71.9% 72.2% 71.7%

Logistic 63.0% 63.2% 63.1% 63.0%
Regression

Table 3.6: Parameters used to iterate each simulation from which new datasets were
derived.

Simulation Parameter Selection

UE Distance Sets [800, 800, 800, 800]
[1200, 1200, 1200, 1200]

CQI Update Periodicity 0.1, 0.2 seconds

∆CQI 0, 2

Scheduling Algorithm RR, BQI, PF
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Figure 3.3: The pairplot highlights several noticable indications of a piecewise structure in
the dataset, marked by red boundaries. It is likely that this entirety of the dataset follows
a similar pattern, leading to high performance in the DT-based models.

that were not captured in the training data. The performance of each model after testing

on this new data is shown in Table 3.7.

Both the random forest and DT models maintained a high accuracy. This increases con-

fidence that the model does not overfit the training data, and generalized to new situations

– potentially ones relevant to real-world 5G networks. SVM experiences the largest de-

crease in accuracy of the non-linear models. The linear models performed with a near 50%

accuracy, demonstrating that they are not good for classifying the scheduling algorithm

and do not generalize well to new data.

3.6 Utilizing Spectrogram Data

Although the ML models were successful in accurately classifying the scheduling algo-

rithm that the simulated network was using, the network traffic parameters used to train
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Table 3.7: The performance of the ML models when tested on an untrained dataset.

Accuracy Precision Recall F1

Random 99.0% 99.0% 99.0% 99.0%
Forest

DT 98.2% 98.2% 98.3% 98.2%

SVM 80.1% 80.1% 86.5% 79.1%

KNN 89.3% 89.3% 91.5% 89.5%

NBC 55.2% 55.2% 72.5% 55.2%

Logistic 46.9% 46.9% 62.8% 45.2%
Regression

the models, TP, GP, and BUF, are not realizable in practice. Expanding to real-world

5G networks will require data that can be passively collected. TP, GP, and BUF for this

experiment were successfully calculated as a result of having full knowledge of each node on

the network – the base station and every UE. However, complete knowledge of a network

is not attainable in most instances for practical applications. The use of spectrogram data

addresses these challenges. A spectrogram can capture network activity by collecting the

power of signals communicated by network’s devices.

The 5G network simulation was altered to include physical layer integration, a modified

version of the NR Cell Performance Evaluation with Physical Layer Integration example

from MATLAB’s 5G ToolboxTM [51]. These modifications allowed spectrogram data for

each UE to be collected from the simulation. Each spectrogram contained an energy mea-

sure plotted in a frequency-time grid, where the resolution in frequency was one resource

element (RE), and the resolution in time was one symbol.

With the modified simulation, a new set of input parameters was used. This new set

of parameters excluded CQI update periodicity and ∆CQI, since CQI was a method of

modeling channel conditions at the MAC layer – with a PHY layer implementation, CQI is

no longer necessary. Instead, channel conditions are determined by a UE’s distance to the

base station, and a dynamic environment was modeled using a random seed. The random

seed was used in the place of the CQI parameters instead. The new set of parameters

consisted of UE distance sets, random seed, and scheduling algorithm. Each of these
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parameters and their selection is summarized in Table 3.8 The new dataset consisted of

Table 3.8: Parameters used to iterate each simulation from which spectrogram data was
derived.

Simulation Parameter Selection

UE Distance Sets [500, 1000, 800, 200, 800]

Random Seed 63, 68, 73, 78, 83, 88, 93, 98

Scheduling Algorithm RR, BQI, PF

24 spectrograms for each UE, which was increased to five, thus yielding a total of 120

spectrograms.

Similar to the data formatting procedure of the previous dataset in defining how many

timesteps constituted an observation, it was important to define how many symbols per

observation. This was set to four symbols, where a symbol included energy measures for

all REs at a particular index in time.

Each model from the previous experiments was trained on this new dataset, given

that the data is different and it was unclear if the top-performers would remain for the

subsequent experiments. As suspected, the top performing models from the spectrogram

data versus the network metrics were not the same. The results for the top two models are

outlined in Table 3.9. The continued success of the models caused for further analysis. One

Table 3.9: The performance of the top performing ML models using spectrogram data.

Accuracy Precision Recall F1

Logistic 87.3% 87.1% 87.3% 87.1%
Regression

NBC 73.0% 73.1% 73.2% 72.6%

of the challenges of the spectrogram data used is the amount used to train the models. The

resolution of the spectrogram data was reduced to lower the size of the dataset, while still

capturing activity over the same number of REs and symbols. Several additional datasets

were produced from the original spectrogram dataset, by averaging over m REs and n

symbols. A breakdown of the chosen number of m symbols by n REs to average over is
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shown in Table 3.10. The results of each of these modified datasets for the models listed in

Table 3.10: The number of m symbols and n REs averaged across to generate lower reso-
lution datasets.

Number of m symbols
and n REs averaged

across displayed as m× n

2×2
2×4
7×6

14×12
7×12
14×6

Table 3.9 is summarized in Table 3.11. The results show generally as the granularity of the

Table 3.11: The accuracy of the ML models when tested on an untrained dataset.

Model Accuracy

Spectrogram Data Averaged Over
m Symbols × n REs

Model Type 1×1 2×2 2×4 7×6 14×12 7×12 14×6
Logistic 87.3% 85.3% 81.9% 83.5% 80.7% 86.7% 81.0%

Regression

NBC 73.0% 72.6% 64.6% 53.8% 42.2% 54.0% 43.3%

spectrogram data decreases, the model accuracy decreases. This is especially noticable for

in NBC. For NBC, its highest accuracy reaches 73% coming from resolution of 1 symbol

and 1 RE. However, its lowest accuracy is as low as 42% from resolution of 14 symbols and

12 REs. The file size for the 1 × 1 dataset was the largest at 2.6 Gigabytes. The file size

for the 14× 12 dataset was the smallest at only 14.6 Megabytes.

3.7 Chapter Summary

The goal of this experiment was to use several ML models to classify one of three

scheduling algorithms (RR, BCQI, or PF) that a simulated network is operating. First,
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this was achieved using time-series TP, GP, and BUF data for each UE. To generate plenty

of data, several simulation parameters (UE distance sets, CQI update periodcity, ∆CQI,

and scheduling algorithm) were used to generate a complete dataset. It was observed that

non-linear models performed significantly better than linear models, indicating that the

dataset used may be non-linear. Some of the models classified with questionably high

accuracy, suggesting that the they may not have been generalizing well. New datasets

were generated by altering the simulation parameters again, and testing the models on this

un-trained-on data. Some of the models took a significant hit in accuracy, however others

performed at nearly the same rate. The best performers were the DT-based models (DT

and random forest).

To use data that is more applicable to real-world networks, the type of data in the

dataset was changed from MAC layer network metrics to PHY layer spectrograms captures

from each UE on the network. The spectrogram data included an energy measure at each

RE for every symbol for the duration of the simulation. The results demonstrated success

for some of the models’ ability to classify the scheduling algorithm. To lessen the size of

the data and retain the amount of data represented, the resolution of the spectrogram data

was reduced by averaging over subsets the data in both the frequency and time dimenions.

The data was reduced in the frequency dimension by averaging over subsets of REs, and in

the time dimension by averaging over subsets of symbols. The results for several of these

modified datasets were observed and demonstrated a decrease in performance given a lower

resolution.

In summary, several models are capable of classifying 5G scheduling behavior based

on the time-series network metrics for each UE that the simulation produced, as well as

simulated spectrogram data for each UE. It is unclear whether the models will generalize

to real world datasets, but this study gives confidence that a model can be trained to

classify rudimentary scheduling algorithms, and could potentially be expanded to classify

customized 5G scheduling algorithms.
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Chapter 4

Waveform Optimization for

Monostatic Radar Systems

This thesis focuses on establishing the framework to enable future research for cogni-

tive radar systems. Cognitive radar can be defined as a radar system capable of learning

and adapting to achieve improved performance [52]. The application this thesis will dis-

cuss involves intelligent selection of waveforms, specifically an optimal NLFM waveform.

That is, which NLFM waveform will produce the highest performance possible in a given

environment.

A simulation tool was built to set the framework of NLFM waveform optimization for

radar systems. The simulation was designed with the focus of adaptability for future ex-

pansion to capture various applications via different radar characteristic and differently

modeled environments. The simulation consists of a simple program to model the theoret-

ical behavior of a monostatic radar.

4.1 Monostatic Radar Simulation

At its core, the simulation is comprised of two functions that generate the transmit

pulse train and simulate the return signal. This simulation makes practical use of methods

implemented in [53]. These functions lay the initial groundwork for a basic monostatic
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radar implementation. Several parameters, such as pulse width and pulse bandwidth,

described in detail in Chapter 2, are used to define the characteristics of the radar system.

These are combined with other related elements as the input parameters to the transmit

and return functions. A full list of the each function’s parameters are specified in Table

4.1.

Transmit Train Function Return Pulse Function
Repetitions Sampling Rate (Hz)
Sampling Rate Transmit Train
PRF (Hz) Targets
Pulse Width, τ (s) Carrier Frequency (fc) (Hz)
Pulse Bandwidth, β (Hz) System Loss (dB)
Envelope Type Transmit Gain, Gt (dB)
Pulse Type Receive Gain, Gr (dB)

SNR (dB)
Coefficients

Some of these parameters have been previously explained, including PRF, pulse width,

and pulse bandwidth. The remainder of the parameters and their effect on the system will

be discussed in this chapter. Repetitions indicates how many pulses the radar transmits.

Sampling rate simply refers to the number of points per second the signal is constructed

using, or the number of points per second the signals is measured. Envelope type is

represented in Equation (2.17) and Equation (2.18) by a(t), and controls the amplitude

modulation of the pulse [43]; rectangular and Gaussian envelopes are two of the most

popular types. Pulse type simply indicates the modulation scheme used for the pulse,

and includes a selection between increasing LFM, decreasing LFM, and NLFM. As for

the return pulse function, transmit trains comes from the output of the pulse generation

function. Targets is defined by a struct in which several instances can be defined. Each

includes distance and attenuation values. System loss, transmit gain, and receive gain are

all used to determine the total attenuation. SNR helps define the noise in the system.

Coefficients will be explained later. Table 4.1 summarizes the values for some of these

parameters that are used in any example result generated from the simulation in this

chapter.
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Table 4.1: A summary of the default value used for several parameters that are used to
produce and later shown example result from the radar simulation.

Parameter Value Used for Example Results

Repetitions 128

Sampling Rate 100 MHz.

PRF 100 Hz.

Pulse Width 1.5 ms

Pulse Bandwidth 1 MHz.

Envelope Type Rectangular

Targets 1 Target at 560094 m

Carrier Frequency 900 MHz.

System Loss 6 dB

Transmit Gain 40 dB

Receive Gain 45 dB

SNR 100 dB

The pulse train generation begins by defining a single pulse and repeating based on the

number of repetitions. Producing a single pulse starts with defining time domain samples

using the provided sampling rate and PRF. The pulse is then shaped using the given

envelope type, which consists of a selection of two types: rectangular or Gaussian. Each

envelope type can be expressed with simple expressions, such as a rectangular envelope

type [43]:

: a(t) =

1 0 ≤ t ≤ τ

0 otherwise
(4.1)

where a(t) is the envelope, t is time, and τ is the pulse width [43]. Alternatively, a Gaussian

envelope type can be defined by [43]:

a(t) = e−t2/τ2 t ≥ 0. (4.2)

The pulse is the modulated depending on the pulse type specified. The selection consists

of three types – increasing LFM, decreasing LFM, and NLFM. Similar to the envelope type,

each can be defined using equations. The increasing LFM has been previous defined in

Equation (2.18) and a single pulse of an increasing LFM produced from the simulation can

be seen in Figure 4.1. The decreasing LFM pulse type is defined as (4.3):
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Figure 4.1: An example increasing LFM pulse generated from the monostatic radar
simulation.

x̃(t) = a(t)e−jπβ/τ(t2−2τt), (4.3)

where x̃(t) is the resulting modulated pulse, a(t) is the envelope, β is the pulse bandwidth,

τ is the pulse width, and t is time [43].

The NLFM definition is drawn from the increasing LFM expression specified in Equa-

tion (2.18). A simplified version can be expressed as:

x̃(t) = a(t)ejπft. (4.4)

Here, the instantaneous frequency is condensed to a single term represented by f . There-

fore, the instantaneous frequency can be expressed as:

f(t) =
β

τ
t, (4.5)

which is a linear function of time, where the slope equals βτ [43]. To produce a non-linear

frequency modulated waveform from Equation (4.4), the frequency specified in Equation

(4.5) can be defined as a non-linear function. That is, the frequency can be defined as a

non-linear function, such as a polynomial [54] of t, resulting in Equation (4.5) producing a
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NLFM waveform. This non-linear function to define the frequency can be expressed as a

polynomial:

f(t) = a1t+ a2t
2 + a3t

3 + · · ·+ ant
n, (4.6)

where f(t) is the frequency with respect to time t to define the NLFM waveform and

a = [a1, a2, a3, . . . , an] are arbitrarily defined coefficients that control the shape of the

frequency function. For the simulation, the frequency is defined by Equation (4.7):

f(t) = (β/τ)
1+1
2 a1t+ (β/τ)

2+1
2 a2t

2 + (β/τ)
3+1
2 a3t

3 + · · ·+ (β/τ)
n+1
2 ant

n, (4.7)

and is controlled by an array input to the transmit function a. The variable a is of

arbitrary size, where the number of elements dictates the order polynomial. An example

NLFM pulse produced by the simulation is shown in Figure 4.2. The source program

Figure 4.2: An example increasing NLFM pulse generated from the monostatic radar
simulation. In the simulation, a is set to [0, 1] to create a quadratic pulse. As a result, the
pulse takes the shape of a parabola of frequency f(t) = t2.

that was used to produce this waveform is shown in Figure 4.3. Since the goal of the

simulation is to set up NLFM waveform optimization, a can act as the parameters of an

optimization algorithm. Stated mathematically, recall Equation (2.9), which explains how

optimization works. Vector θ represents the parameters of an optimization algorithm –

a = [a1, a2, a3, . . . , an] from Equation (4.7) are designed to represent θ in the simulation.
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Figure 4.3: The source code used to produce NLFM waveforms in the radar simulation.

The resulting output of the pulse train generation function is an array of in-phase

and quadrature (I/Q) samples representing the data for the transmit pulse based on the

parameters input to the function. The return pulse function operates by modeling effects on

the transmitted signal, such as pathloss, attenuation, timing offset, and noise using several

function inputs including carrier frequency, system loss, transmit/receive gain, range of the

target(s), and SNR. A functional monostatic radar simulation is achieved as a result of the

defined transmit and receive functions with the variety of inputs that each uses.

4.2 Defined Cost Functions

To define what an optimization algorithm will optimize in the radar simulation, two

cost functions were defined:

1. Range Accuracy: How close the radar’s estimated target range is to the target’s true

distance.

2. Sidelobe Height: The ratio between the pulse compressed return signal’s main lobe

peak and highest sidelobe peak.

Range accuracy and sidelobe height are two metrics that describe the performance of a

radar system [55]. Here, the details of each cost function and how they are calculated are

described.

Range accuracy is defined as the difference in meters between the true target range and

what the simulation predicts as the range to a target. Recall that a target’s range can
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be measured using Equation (2.12). In the simulation, t is determined using the defined

sampling rate and the number of samples to where the highest peak of the pulse compressed

return signal occurs. An example pulse compressed return signal using an increasing LFM

generated from the simulation is shown in Figure 4.4 for visual purposes. This plot is what

Figure 4.4: An example return signal from the simulation after pulse compression. The
time of the peak is used to determine the simulated radar’s predicted range to a target.

the following source code in Figure 4.5 uses to determine a target’s range, and hence the

range accuracy.

Figure 4.5: The source code used to calculate the range accuracy in the radar simulation.

In radar systems, sidelobe height refers to energy level received by an antenna in direc-

tions other than the main lobe direction. The main lobe is the direction the antenna re-

ceives the strongest signal and typically corresponds to the target. Sidelobes are unwanted

receives that occur at angles away from the main lobe. Achieving low sidelobe height is

important because if sidelobes are too high the radar may detect false targets [56]. Sidelobe
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Figure 4.6: An example return signal from the simulation after pulse compression (close
up). The difference between the main lobe peak and the peak of the first sidelobe is used
to determine the simulated radar’s sibelobe height.

height is defined as the difference in decibels between the main lobe peak of the pulse com-

pressed return signal and the highest peak of the first sidelobe. Figure 4.6 provides a close

look at an example pulse compressed return signal, where the main lobe and its sidelobes

are visible. Here, the main lobe corresponds to a target and the difference between its peak

and the peak of the first sidelobe is approximately 13 dB. Figure 4.7 shows the code used

to determine the sidelobe height for a return signal.

Figure 4.7: The source code used to calculate the sidelobe height in the radar simulation.
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4.3 Chapter Summary

The goal of this experiment was to set up the framework for future algorithms to

optimize the coefficients of an NLFM waveform using several cost functions. A functional

monostatic radar simulation was built to provide the tools needed for such experimentation.

The basic operation of the radar uses two functions which transmit and receive, respectively.

A number of parameters for each function are used to alter the behavior of the system, such

as pulse width, pulse bandwidth, envelope type, pulse type, and others. The simulation was

designed to allow for easy expansion in modeling interference, noise, new waveforms, etc.

The pulse type parameter for the transmit function defines whether LFM or NLFM is used.

The frequency for the NLFM option is defined by an array corresponding to the coefficients

of a polynomial. Additionally, two functions are defined to evaluate the simulated radar’s

effectiveness. These functions include range accuracy and sidelobe height, which calculate

different metrics that describe the radar’s performance.

Next steps would include employing an optimization algorithms, such as gradient de-

scent on the radar simulation. Here, the NLFM coefficients can be used as parameters

of the optimization. Doing so will help identify the optimal NLFM waveform for a given

environment. Moreover, the cost functions can be used as what the algorithm is opti-

mizing for. Additional cost functions can be defined to capture more elements of the

radar’s performance. These functions could even be combined into a weighted value to

describe all elements with one measure. Modeling the effects of interference and jammers

that mimic different environments to test the optimization will help prepare for real-world

experiments.
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Chapter 5

Conclusions

5.1 Research Outcomes

This thesis detailed ML applied to wireless technologies in two different contexts. These

contexts included predicting network traffic for 5G cellular networks, and building a sim-

ulation to enable future cognitive radar experiments.

The first example demonstrated a novel method for helping prediction of 5G network

traffic using ML. Specifically, classification ML models were used to classify fundamental

scheduling algorithms used by a simulated 5G network as a method of analyzing a network’s

scheduling behaviors. This was done first using UE performance metrics (TP, GP, and BUF

for each UE) and the top two models achieved accuracies over 98%. Next, spectrogram data

was used to test if the models could repeat the success with realizable data that is easier

to collect from real networks. The top two models achieved accuracies over 70%. Next, the

resolution of spectrogram data was altered by averaging power levels over several numbers

of symbols in time and resource elements in frequency. This was done to reduce the size

of the data, which would make it easier to process and transport if a similar set-up were

to be used to analyze scheduling behaviors in real-time for a real-world 5G network. The

results demonstrated that as the granularity of the data decreases, the accuracy decreases.

The highest resolution data used resulted in the highest accuracy, and the lowest resolution

used gave the lowest accuracy.
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The second example establishes the framework for adaptive radar waveform experimen-

tation in support of advancing cognitive radar systems. In particular, a simulation, which

interfaces with the methods implemented in [53], is controlled by several pulse-defining

parameters that enable optimization of frequency-controlled NLFM waveforms. The fre-

quency of the NLFM waveform is defined by an array of arbitrary length consisting of

coefficients. Each coefficient corresponds to a polynomial term. These coefficients can be

used as the parameters of an optimization algorithm in the simulation. Additionally, the

simulation measures the performance of the radar using two cost functions: range accuracy

and sidelobe height. The range accuracy determines how close the radar’s predicted target

range is, and the sidleobe height measures the difference between the pulse compressed

return signal’s main lobe and its highest sidelobe. These functions can be used as the cost

for an algorithm to optimize.

5.2 Future Work

Regarding the 5G classification, there remains room for future improvement. First,

the experiment should be expanded to an emulated network rather than a simulation.

This would involve a testbed with physical hardware, for example, several software-defined

radio running OpenAirInterface. This would provide more realistic results that are closer

to those observed in real-world 5G networks, and provide insights for the performance of

the models using real data. Second, it would also be interesting to classify non-rudimentary

scheduling algorithms. Currently, the models only identify three fundamental scheduling

types. However, service providers are able to customize their own scheduling algorithms

and therefore real networks often operate using proprietary scheduling types. This would

likely involve using unsupervised ML methods, as the scheduling types would be unknown.

The results from this experiment gives confidence in a possible 5G sensor network in which

several distributed sensing devices collect spectrogram data. This data would then be

processed to identify areas of opportunity for secondary networks to operate in a primary

network’s licensed spectrum [53]

There also remains clear next steps with respect to the radar simulation. For instance,
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improvement in the modeling of interference would be useful. This could be natural inter-

ference as a result of a particular environment the simulated radar is operating in, or an

active adversary jamming the radar. Another future step would be applying an algorithm

to the simulation to optimize the operating waveform. This would likely involve an opti-

mization algorithm, such as gradient descent (stochastic, batch, etc.), to use the NLFM

coefficients as parameters to optimize according to the defined cost functions, range accu-

racy and sidelobe height. Furthermore, additional cost functions can be defined to capture

other important elements of the radar’s performance. Combining these costs together by

weighting them to form a single metric could serve additional benefits as well.

Each experiment exemplifies the use of ML in different wireless domains. Applying

cognitive tools to wireless technologies will become increasingly more important as the

relevance of ML continues to increase.
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