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1 Abstract

This project investigates some problems associated with solutions of the wave
equation on time dependent domains, a problem whose solution is relevant to
modelling crack propagation in materials. Mainly, the use of bijective transfor-
mations from varying domains to a fixed domain complicate the PDE, and the
relationship between the behavior of the solution to the original equation and
the transformed solution becomes difficult to pin down. Despite these issues,
uniqueness of a solution to the problem can still sometimes be proved.

2 Introduction

Modelling and understanding growing cracks remains a mathematical challenge.
In order to possibly explain the branching effect commonly exhibited in physical
models, we would like to figure out the direction of the largest singularities in
tangential derivatives local to the crack formation. Similarly, to estimate the
speed at which the crack propagates at initiation, we estimate the energy local
to the crack formation in time interal for a ball of radius r. In order to perform
these calculations, the boundary value problem with a time dependent domain
can be reformulated as a more complicated one with a fixed domain, but only if
the speed of the crack, c, is less than the wave speed [1]. Despite this, we seek
to prove uniqueness of a solution that does not require this reformulation or the
restriction of speed c.

3 Calculating energy flowing into Br in [0, τ ]

In order to estimate speed at initiation, we estimate the energy in the ball of
radius r local to the crack formation. The integral we wish to calculate is

E(Br, τ) =

∫ τ

0

∫
∂Br

ut(∇u · ∂Br
n), (1)

where Br is the ball centered at the tip (considered to be the origin (0, 0))
with radius r, and 0 ≤ τ ≤ r.

1



At time t between 0 and τ , we have the following:
On the top half of ∂Br where ut and ∇u are nonzero (say, for θ between

θ0(t) and π where θ0(t) is between 0 and π
2 ) we have that ut = 1,∇u = (−1, 0).

We parametrize as follows:

θ0(t) ≤ θ ≤ π, x(θ) = r cos(θ), y(θ) = r sin(θ) (2)
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In which θ0(t) = arccos( tr ) = arcsin(
√
r2−t2
r ). Then note that we get for a fixed

t between 0 and τ :

∫
∂Br

ut(∇u · ∂Brn) =

∫ π

θ0(t)

ut(θ)(∇u(θ) · ∂Brn(θ))

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ (3)

which simplifies to

∫ π

θ0

1((−1, 0) · (cos θ, sin θ)

√
(−r sin θ)

2
+ (r cos θ)

2
dθ =

∫ π

θ0

−r cos θdθ (4)

But

∫ π

θ0

−r cos θdθ = −r [sin θ] |πθ0(t) = −r(0−
√
r2 − t2
r

) =
√
r2 − t2 (5)

By symmetry, our integral then becomes:

E(Br, τ) = 2

∫ τ

0

√
r2 − t2dt (6)

Making the substitution t = r sin(u) we obtain

E(Br, τ) = 2

∫ arcsin (τ/r)

0

(√
r2 − r2 sin2(u)

)
(r cos(u)du)

= 2r2

∫ arcsin (τ/r)

0

cos2(u)du

= 2r2

∫ arcsin (τ/r)

0

1 + cos(2u)

2
du

= 2r2

(
1

2
arcsin

(τ
r

)
+

1

4
sin
(

2 arcsin
(τ
r

)))
= r2 arcsin

(τ
r

)
+

1

2
r2 sin

(
2 arcsin

(τ
r

))
)

(7)

Note though that

sin
(

2 arcsin
(τ
r

))
= 2 sin

(
arcsin

(τ
r

))
cos
(

arcsin
(τ
r

))
= 2

τ

r

√
1−

(τ
r

)2
(8)

In all,
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E(Br, τ) = r2

(
arcsin

(τ
r

)
+
τ

r

√
1−

(τ
r

)2
)

(9)

And in particular,

E(B(0, r), r) = r2
(π

2

)
(10)

Since this energy is at most (in fact equal) to r2 π
2 , the length of the crack at

time t is at most t2, since the energy of the crack is its length, and total energy
of the system is conserved.

4 Modified PDE for a solution to the wave equa-
tion

One method of dealing with partial differential equations on time dependent
domains is translating and scaling the domain in such a way so that it is fixed.
However, such transformations often complicate the partial differential equation,
making it difficult to relate the two functions. We demonstrate by example with
the wave equation in R2.

Suppose that Ω ⊂ R2 is open, T > 0 and u ∈ C2(Ω × [0, T ]) satisfies the
wave equation, i.e.,

ü = ∆u (11)

For c > 0 given and α > 0 yet to be determined, we define the function

w(x1, x2, t) = u(αx1 + ct, x2, t) (12)

We seek to find a value for α such that ẅ−∆w is conveniently expressable in
terms of the partial derivatives of u and w. We proceed directly by calculating,
and define for convenience ~v := (x1, x2, t) and ~z := (αx1 + ct, x2, t) :

wx1
(~v) = αux1

(~z), wx1,x1
(~x) = α2ux1,x1

(~z)

wx2
(~v) = ux2

(~z), wx2,x2
(~v) = ux2,x2

(~z)

and for ẅ:

wt(~v) = cux1
(~z) + ut(~z)

wt,t(~v) = c [cux1,x1
(~z) + ux1,t(~z)] + cut,x1

(~z) + ut,t(~z)

= c2ux1,x1
(~z) + cux1,t(~z) + cut,x1

(~z) + ut,t(~z)
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Combining the above, we obtain that

(ẅ −∆w) (~v) = ut,t(z)+c
2ux1,x1(~z)+c [ux1,t(~z) + ut,x1(~z)]−α2ux1,x1(~z)−ux2,x2(~z)

If we take α =
√
c2 + 1, then c2 − α2 = −1 and thus

(ẅ −∆w) (~v) = ü−∆uc [ux1,t(~z) + ut,x1
(~z)]

= c [ux1,t(~z) + ut,x1
(~z)]

Since u ∈ C2(Ω× [0, T ]) we have that

(ẅ −∆w) (~v) = 2cux1,t(~z) (13)

Although the PDE in (13) has few terms, it also complicates the process of
understanding the behavior of u when we only know the behavior of w (with
for example, finding tangential derivatives).

4.1 Finding the tangential derivative of a transformed so-
lution of the wave equation

On domains changing in time, like Ωt := Ω \ Γ(t), formal calculation suggests
that if u solves the wave equation on Ω and ∂nu = 0 (where n is the unit normal
to Γ(t)) on Γ(t), a crack growing at speed c, then u admits a decomposition as
follows [2]:

If u ∈ H1(Ω) with ∆u ∈ L2(Ω) then there is a w ∈ H2(Ω) and a c ∈ R such
that

u = w + cψ (14)

where ψ given by

ψ : R2 → R, ψ(r, θ) :=
√
r sin(θ/2) (15)

Using this function, we demonstrate the complexity in understanding the
behavior of a simple transformation (that is, translation and scaling) in the x1

direction. Define by ψc the function ψ as given in cartesian coordinates, i.e.,

ψc(x1, x2) =
√
x2

1 + x2
2 sin

(
arctan(x1/x2)

2

)
and define the function

f c(x1, x2) := ψc(
x1 − ct
β

, x2)
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For 0 < c < 1 and β =
√

1− c2. Our goal in this section is to calcuate fθ
for time t = 0 where f is the function f c written in polar coordinates.

To write f as a composite of functions, we define the map

φ : R2 → R2

φ(r, θ) =(

√(
r cos θ

β

)2

+ (r sin θ)
2
, arctan

r sin θ

r cos θ
β)

= (r

√
cos2 θ

β2
+ sin2 θ, arctan (β tan θ))

So that in particular,

f = ψ ◦ φ(r, θ) (16)

and that

fθ(r, θ) = ψr(φ(r, θ))φrθ(r, θ) + ψθ(φ(r, θ))φθθ(r, θ) (17)

where φr and φθ are the first (r) and second (θ) components of the function
φ respectively.

Calculating directly, we obtain

φrθ =
r

2
√

cos2 θ
β2 + sin2 θ

[
−2 cos θ sin θ

β2
+ 2 cos θ sin θ

]

=
r cos θ sin θ√
cos2 θ
β2 + sin2 θ

[
1− 1

β2

]

and

φθθ(r, θ) =
1

(β tan θ)
2

+ 1
β sec2 θ

=
β

β2 sin2 θ + cos2 θ

ψr(r, θ) =
1

2
√
r

sin(θ/2)

ψθ(r, θ) =

√
r

2
cos(θ/2)
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and thus

ψr(φ(r, θ)) =
1

2
√
r
(

cos2 θ
β2 + sin2 θ

)1/4
sin

(
arctan (β tan θ)

2

)

ψθ(φ(r, θ)) =

√
r
(

cos2 θ
β2 + sin2 θ

)1/4

2
cos

(
arctan (β tan θ)

2

)
and thus we may calculate fθ(r, θ) directly for θ = 0, π/4, π/2.

4.2 fθ(r, 0)

φrθ(r, 0) = 0

φθθ(r, 0) =
β

0 + 1
= β

and

ψr(φ(r, 0)) =
1

2
√
r
(

1
β2

)1/4
sin

(
arctan 0

2

)
= 0

ψθ(φ(r, 0)) =

√
r

2
√
β

cos

(
arctan 0

2

)
=

√
r

2
√
β

Altogether then,

fθ(r, 0) = ψr(φ(r, 0))φrθ(r, 0) + ψθ(φ(r, 0))φθθ(r, 0)

= 0 +

√
r

2
√
β
β

=

√
rβ

2

4.3 fθ(r, π/2)

Note for θ = π/2 we may extend by (continuity) the definition of cos
(

arctan(β tan θ)
2

)
to include π/2 so that arctan(β tan(π/2))

2 = cos(π/4) = cos(−π/4) =
√

2/2. Al-

though the same cannot be applied to sin
(

arctan(β tan θ)
2

)
, this will not matter
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since φrθ(r, π/2) = 0 and since both limθ→π/2+ sin
(

arctan(β tan θ)
2

)
and limθ→π/2− sin

(
arctan(β tan θ)

2

)
exist in R.

φrθ(r, π/2) = 0

φθθ(r, π/2) =
β

β2
=

1

β

and

ψr(φ(r, π/2)) =
1

2
√
r (1)

1/4
sin(±π/4)

= ± 1

2
√

2r

(cannot be extended by continuity, but is bounded with respect to left and right limits)

ψθ(φ(r, π/2)) =

√
r (1)

1/4

2
cos

(
arctan(π/2)

2

)
=

√
r

2
√

2

Altogether then,

fθ(r, π/2) = ψr(φ(r, π/2))φrθ(r, π/2) + ψθ(φ(r, π/2))φθθ(r, π/2)

= 0 +

√
r

2
√

2

1

β

=

√
r

2
√

2β

4.4 Comments

Note that as c→ 1, we have that β → 0 and thus

fθ(r, 0) =

√
rβ

2
→ 0

fθ(r, π/2) =

√
r

2
√

2β
→ +∞

In the physical model of crack propagation, this larger derivative for θ 6= 0
for large enough c corresponds to angles in which cracks are more likely to
continue progressing. This may explain the phenomena of branching in crack
propagation.
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5 Uniqueness of Solution to Wave Equation with
Time-Dependent Domain

While the calculation above depends on the assumption that c be less than the
speed of the wave, we seek in this section to prove uniqueness of a solution
independent of the speed c for the simple case that the crack is a line growing
in the positive x1 direction in time.

Let Ω ⊂ R2 be an open set, and let Γ : [0, T ] → P(Ω) be an increasing set
function (s ≤ t ⇒ Γ(s) ⊂ Γ(t)) with H1(Γ(t)) bounded. Define the set Ωt :=
Ω \ Γ(t), and the time-dependent bilinear form for t ∈ [0, T ] and f, g ∈ H1

0 (Ωt)

B[f, g; t] :=

∫
Ωt

∇f · ∇g

Moreover, we work in the function spaces which are useful for solving weak
formulations of the wave equation [1]

Vt := {v ∈ H1(Ωt) | v = 0 on ∂Ω}

Consider the following initial/boundary value problem:

ü(t)−∆u(t) = 0 on Ωt (18)

u(t) = 0 on ∂Ω (19)

u(0) = g, u̇(0) = f, g ∈ H1
0 (Ω0), f ∈ L2(Ω0) (20)

A weak solution of the wave equation with a time-dependent domain [1]
is a function u(x1, x2, t) such that

u ∈ H1(0, T ;VT ) ∩W 1,∞(0, T ;L2(Ω))

∀t ∈ [0, T ] u(t) ∈ Vt
∀s ∈ [0, T ) u ∈W 2,∞(s, T ;V ∗s )

sup
s∈[0,T )

||ü||L∞(s,T ;V ∗s ) < +∞

∀s ∈ (0, T ) the functions

t→ 1

h
||u̇(t)− u̇(t− h)||2L2(Ω), h ∈ (0, s)

are equiintegrable on (s, T )

and u satisfies

〈ü(t), v〉H−1(Ωt) +B[u(t), v; t] = 0 ∀v ∈ H1
0 (Ωt)

u(0) = g, u̇(0) = f
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Proposition 1. For any t ∈ [0, T ], B[f, g; t] is a continuous bilinear form on
H1

0 (Ωt).

Proof. For f, g ∈ H1
0 (Ωt) we have that

|B[f, g; t]| = |
∫

Ωt

fx1
gx1

+

∫
Ωt

fx2
gx2
|

≤ |
∫

Ωt

fx1
gx1
|+ |

∫
Ωt

fx2
gx2
|

≤ ||fx1
||L2(Ωt)||gx1

||L2(Ωt) + ||fx2
||L2(Ωt)||gx2

||L2(Ωt)

≤ 2
√
||fx1
||2L2(Ωt)

||gx1
||2L2(Ωt)

+ ||fx2
||2L2(Ωt)

||gx2
||2L2(Ωt)

≤ 2

√(
||f ||2L2(Ωt)

+ ||fx1
||2L2(Ωt)

+ ||fx2
||2L2(Ωt)

)(
||g||2L2(Ωt)

+ ||gx1
||2L2(Ωt)

+ ||gx2
||2L2(Ωt)

)
= 2||f ||H1

0 (Ωt)||g||H1
0 (Ωt)

Hence, B is continuous.

Proposition 2. If v ∈ H1(0, T ;H1
0 (Ω0)) where spt v ⊂⊂ Ω then d

dtB[v(t), v(t); 0]
exists and equals 2B[v(t), v̇(t), 0] for t a.e. in [0, T ].

Proof. For h 6= 0, we have that

1

h
[B[v(t+ h), v(t+ h); 0]−B[v(t), v(t); 0]] =

1

h
[B[v(t+ h)− v(t), v(t+ h); 0]−B[v(t), v(t+ h)− v(t)]

=

[
B[
v(t+ h)− v(t)

h
, v(t+ h); 0]−B[v(t),

v(t+ h)− v(t)

h

]
Then since v ∈ H1(0, T ;H1

0 (Ω0)), we have that v is absolutely continuous
(and hence continuous), and differentiable almost everywhere [3]. Hence, as
h→ 0, we obtain for t a.e. in [0, T ],

v(t+ h)− v(t)

h
→ v̇(t) in H1

0 (Ω0)

v(t+ h)→ v(t) in H1
0 (Ω0)

We then see from Proposition 1 that

B[
v(t+ h)− v(t)

h
, v(t+ h); 0]→ Ḃ[v̇(t), v(t); 0]

B[v(t),
v(t+ h)− v(t)

h
; 0]→ Ḃ[v(t), v̇(t); 0]

For t a.e. in [0, T ]. Since B is symmetric, the claim is proven.
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Proposition 3. If u ∈ H1(0, T ;H1
0 (ΩT )), u(t) ∈ H1

0 (Ωt) ∀t ∈ [0, T ], and Γ(s)
has measure zero for all s ∈ [0, T ], then d

dt ||u(t)||2L2(Ωt)
exists a.e. for t ∈ [0, T ]

and

d

dt
||u(t)||2L2(Ωt)

= 2〈u̇(t), u(t)〉L2(Ωt)

Proof. As before, for h 6= 0 we calculate

1

h

(
||u(t+ h)||2L2(Ωt+h) − ||u(t)||2L2(Ωt)

)
=

1

h

(
〈u(t+ h), u(t+ h)〉L2(Ωt+h) − 〈u(t), u(t)〉L2(Ωt)

)
=

1

h

(
〈u(t+ h), u(t+ h)〉L2(Ωt) − 〈u(t), u(t)〉L2(Ωt)

)
(Since Ωt+h \ Ωt and Ωt \ Ωt+h have measure zero)

= 〈u(t+ h)− u(t)

h
, u(t+ h)〉L2(Ωt) + 〈u(t),

u(t+ h)− u(t)

h
〉L2(Ωt)

Again, since u ∈ H1(0, T ;H1
0 (ΩT )), u is continuous in t and differentiable

almost everywhere for t ∈ [0, T ] [3]. Hence as h→ 0 we get

u(t+ h)− u(t)

h
→ u̇(t) in H1

0 (Ωt)

u(t+ h)→ v(t) in H1
0 (Ωt)

Recall that H1
0 (Ωt) convergence implies L2(Ωt) convergence, so by Cauchy

Schwarz, we see that

〈u(t+ h)− u(t)

h
, u(t+ h)〉L2(Ωt) → 〈u̇(t), u(t)〉L2(Ωt)

〈u(t),
u(t+ h)− u(t)

h
〉L2(Ωt) → 〈u(t), u̇(t)〉L2(Ωt)

for t a.e. in [0, T ], proving the claim.

Proposition 4. Assume that u(x1, x2, t) is a weak solution to the above with g =
f = 0, where Γ(t) is a line extending in the positive x1 direction whose position
at time t is given by φ(t) where φ is an increasing continuous function from R to
R. In particular, Γ(l) has measure zero for each l ∈ [0, T ]. Assume also that u(t)
is compactly supported in Ωt for each t ∈ [0, T ] and that spt(u(t)) − φ(t) ⊂ Ω0

for each t ∈ [0, T ]. Then u = 0.

Proof. We modify a proof from Evans [4]. Define first the function

w(x1, x2, t) := u(x1 + φ(t), x2, t) (21)
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and remark that since u(t) ∈ H1
0 (Ωt) and by the restrictions of spt(u(t)) we

have that w(t) ∈ H1
0 (Ω0) for each t ∈ [0, T ]. Fix some s ∈ (0, T ] and define the

following function:

v(t) := χ[0,s](t)

∫ s

t

w(τ)dτ

For the interval [0, s], note that

v(t) =

∫ s

t

w(τ)dτ (22)

= v(s) +

∫ t

s

−w(τ)dτ (23)

(24)

Then since −w(τ) ∈ H1
0 (Ω0) we get that v ∈ H1(0, s;H1

0 (Ω0)) (see propo-
sition 2.4 - (iii) in [3]). Since v(s) = 0 and v is extended to 0 for t ≥ s, then
v ∈ H1(0, T ;H1

0 (Ω0)). From Propositions 2 and 3 we have that

d

dt
(B[v(t); v(t); 0]) = 2B[v(t), v̇(t); 0]

d

dt
||u(t)||2L2(Ωt)

= 2〈u̇(t), u(t)〉L2(Ωt)

Moreover, note that for t ∈ [0, s], v̇(t) = −w(t) = −u(x1 +φ(t), x2, t). Hence

B[v(t), v̇(t); 0] = −
∫

Ω0

∇v(t) · ∇u(x1 + φ(t), x2, t)

= −
∫

Ωt

∇v(x1 − φ(t), x2, t) · ∇u(t)

= −B[u(t), v(x1 − φ(t), x2, t); t]

Similarly,

〈u̇(t), u(t)〉L2(Ωt) = −〈u̇(t), v̇(x1 − φ(t), x2, t)〉L2(Ωt)

= 〈ü(t), v(x1 − φ(t), x2, t)〉H−1(Ωt)

Combining these two, we get that

∫ s

0

d

dt

(
1

2
||u(t)||2L2(Ωt)

− 1

2
B[v(t); v(t); 0]

)
=

∫ s

0

〈u̇(t), u(t)〉L2(Ωt) −B[v(t), v̇(t); 0]dt

=

∫ s

0

〈ü(t), v(x1 − φ(t), x2, t)〉H−1(Ωt) +B[u(t), v(x1 − φ(t), x2, t); t]dt
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Now v(x1−φ(t), x2, t) ∈ H1
0 (Ωt) so that we may apply the definition of weak

solution to obtain∫ s

0

d

dt

(
1

2
||u(t)||2L2(Ωt)

− 1

2
B[v(t); v(t); 0]

)
= 0 (25)

However, we also note that

0 =

∫ s

0

d

dt

(
1

2
||u(t)||2L2(Ωt)

− 1

2
B[v(t); v(t); 0]

)
=

(
1

2
||u(t)||2L2(Ωt)

− 1

2
B[v(t); v(t); 0]

)
|t=st=0

=
1

2
||u(s)||2L2(Ωs) +

1

2
B[v(0), v(0); 0]

since ||u(0)||L2(Ω0) = B[v(s), v(s); 0] = 0. Finally, this implies ||u(s)||L2(Ωs) =
0, showing that u = 0.

6 Conclusion

Studying PDEs on time-dependent domains is difficult since many methods
of transforming domains do not work. However, such PDEs are important to
physical modeling problems, such as crack propagation. While transforming the
domain of the PDE can alleviate this issue in some sense, it poses its own prob-
lems: these transformed solutions solve new and sometimes more complicated
PDEs, and their relationship between the behavior of the original solutions and
the transformed solutions is not always readily seen. In particular, these trans-
formation methods require the crack speed to be below the wave speed, yet
existence can be shown independently of the crack speed [1]. Here we have
shown that for a straight crack, uniqueness also holds independent of crack
speed.
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