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Abstract 
 

In this thesis, we perform analysis and prediction for community structures in graphs using 

unsupervised learning. The methods we use require the data matrices to be of low rank, and such 

matrices appear quite often in real world problems across a broad range of domains. Such a 

modelling assumption is widely considered by classical algorithms such as principal component 

analysis (PCA), and the same assumption is often used to achieve dimensionality reduction. 

Dimension reduction, which is a classic method in unsupervised learning, can be leveraged in a 

wide array of problems, including prediction of strength of connection between communities 

from unlabeled or partially labeled data. Accordingly, a low rank assumption addresses many real 

world problems, and a low rank assumption has been used in this thesis to predict the strength 

of connection between communities in Amazon product data. In particular, we have analyzed 

real world data across retail and cyber domains, with the focus being on the retail domain.  

 

Herein, our focus is on analyzing the strength of connection between the communities in Amazon 

product data, where each community represents a group of products, and we are given the 

strength of connection between the individual products but not between the product 

communities. We call the strength of connection between individual products first order data 

and the strength of connection between communities second order data. This usage is inspired 

by [1] where first order time series are used to compute second order covariance matrices where 

such covariance matrices encode the strength of connection between the time series.  In order 

to find the strength of connection between the communities, we define various metrics to 

measure this strength, and one of the goals of this thesis is to choose a good metric, which 

supports effective predictions. However, the main objective is to predict the strength of 

connection between most of the communities, given measurements of the strength of 

connection between only a few communities. To address this challenge, we use modern 

extensions of PCA such as eRPCA that can provide better predictions and can be computationally 

efficient for large problems. However, the current theory of eRPCA algorithms is not designed to 

treat problems where the initial data (such as the second order matrix of communities strength) 

is both low rank and sparse.  Therefore, we analyze the performance of eRPCA algorithm on such 

data and modify our approaches for the particular structure of Amazon product communities to 

perform the necessary predictions. 
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Definitions & Basic Notation 
 
In this Section, we define the following notations, some of which represent parameters used in 

the eRPCA algorithm. eRPCA takes as one of its inputs a second order data matrix and outputs a 

low rank matrix and a sparse matrix. The matrix formed by converting the first order matrix of 

communities and products, into a matrix that represents the relationship between communities 

is called a second order matrix and is denoted by 𝑴.  The number of rows or columns of the 

second order matrix (𝑀) of Amazon community data, which represents the number of 

communities is denoted by 𝑪𝒔 (sometimes in this thesis, we refer to the same idea as community 

size or length of communities). The total number of entries in a second order matrix 𝑀, which is 

nothing but 𝐶𝑠 ×  𝐶𝑠, is denoted by 𝑵. The number of zeros in the second order matrix 𝑀 is 

denoted by 𝑴𝒛 and this represents the sparsity of 𝑀. The number of non-zeros in the second 

order matrix 𝑀 is denoted by 𝑴𝒏𝒛. 

 

The low rank matrix that arises from an eRPCA decomposition is denoted by 𝑳. We measure two 

main components of the low rank matrix.  One is the number of zeros in the low rank matrix 𝐿 

and it is denoted by 𝑳𝒔. The other is the number of non-zeroes in the low rank matrix 𝐿 and it is 

denoted by 𝑳𝒏𝒛. The individual entries in 𝐿 are denoted by 𝑳𝒊𝒋. The rank of the low rank matrix is 

denoted by 𝑳𝑹. 

 

The sparse matrix decomposed from eRPCA, is denoted by 𝑺. We measure two main components 

in the sparse matrix 𝑆. One is the number of zeros in the sparse matrix 𝑆 and it is denoted by 𝑺𝒛. 

The other is the number of non-zeroes in the sparse matrix 𝑆 and it is denoted by 𝑺𝒏𝒛. The 

individual entries in 𝑆 are denoted by 𝑺𝒊𝒋. 
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Chapter 1 

Introduction 

 
The main challenge addressed in this thesis is the analysis and prediction of the strength of the 

connection between Amazon products communities [2] using robust dimension reduction 

techniques [1]. Herein, we begin by tracing back to the roots of solving such problems using 

Principal Component Analysis (PCA) [3], which is a statistical method that transforms a set of 

observed data into a group of linearly uncorrelated variables. A typical application of PCA is for 

dimensionality reduction and the prediction of a set of unknown values of the variables from a 

set of known values of the variables. There are various dimensionality reduction techniques for 

performing PCA, and the Singular Value Decomposition (SVD) is the standard technique in this 

domain [3]. In this thesis, we use three main techniques SVD [4], RPCA [5] and eRPCA [1] on 

Amazon communities to analyze and predict the strength of connection between the 

communities. We explain the challenges faced in predicting the strength of connection between 

the communities and we derive several approaches for making such predictions. 

 

The results obtained in our experiments provide better understanding of performance of the 

eRPCA algorithm, and the ways it can be used for novel prediction problems. The prediction of 

entries in second order matrix 𝑀 can be substantially improved, by a deeper and richer 

understanding of the parameters of the algorithm, and this analysis has been a novel contribution 

in our thesis. In addition, the results also show the best way of measuring the errors between the 

entries of the second order matrices we study. 

 

1.1 Motivation  
 

We are seeing the burgeoning of technological devices and their users every year, therefore there 
has been an exponential increase in the data collected because of users activity on these devices 
[6]. The data collected from these activities can be categorized mainly into two types, one is 
structured data and the other is unstructured data [7]. The growth of unstructured data has been 
increasing more rapidly with various new forms of unstructured data such as text data, audio 
data, network data (which can be both structured and unstructured) [8] and video data occurring 
all the time [9].  
 
Our interest in this thesis has been mainly on analyzing network data. Networks or graphs can be 
mathematically represented as a set of points or vertices joined in pairs by lines or edges. In 
practical settings, networks are a natural way to represent social, biological, technological and 
information systems [10]. There are various types of network data spread across different 
domains, such as social network data, web network data, electronic circuit data, biochemical 
network data and many more [10] [11]. Nodes in many such networks organize naturally into 
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densely linked groups that are commonly referred to as network communities or clusters [12]. 
There are many reasons why nodes in network organize into densely linked groups. For instance, 
society is organized into social groups, families and associates. Similarly on the Internet, topic 
related pages link more closely among themselves. As the amount of data is growing, the 
communities are becoming bigger in size and the numbers of communities are increasing. With 
such a rapid increase, prediction of the strength between the communities becomes much more 
important for various reasons. Today, as we have huge number of social and internet groups, 
predicting the strength or similarities between the groups is essential to provide actionable 
information for various socio-economic and business decisions, and providing such information 
has become a substantial challenge. Therefore, there are prominent methods that help to predict 
the strength between the large groups by just knowing the strength between a few groups and 
this thesis demonstrates how to leverage one such method for prediction of communities 
connection strength. 
 
There are many research papers on community definition and detection [7], [2] , [12] and [10], 
and our problem leverages that body of literature by assuming that we know the communities 
either by structural (mathematically calculated) or functional (naturally formed) methods. We 
have taken a few of the best community definitions from the research done in [12], and having 
the community definition in hand, we try to predict the strength of connection between many 
communities given the strength of connection between a few communities. Many real world 
problems are very similar to the one on which we are working, for example in social network data 
and protein molecule data, we already know the communities based on different kinds of user 
interaction and protein molecule reaction behavior. Unfortunately, in many kinds of such 
network data there are only a few communities whose strength is known and most of them are 
unknown [12], and this makes our problem pragmatically challenging to find the strength 
between those unknown communities.  
 
In this thesis we have focused on the Amazon communities data as it represents real world 
communities or network data, and this data presents interesting opportunities for analysis that 
are quite similar to many problems in different domains of network data. The Amazon data has 
co-purchasing frequency of many Amazon products and the product’s ground truth communities 
based upon the categories of the products [12]. The questions that we attempt to answer in this 
thesis are of practical importance because they assist in marketing by cross selling of products. 
In addition, for the new products that are launched in the market, it is very useful to predict their 
best affiliation with present product communities. With such a huge number of communities and 
products, we can identify the strength between the communities by knowing the strength of just 
a few communities. Unfortunately, such problems are difficult to solve using PCA or RPCA type 
techniques because they are simultaneously low rank and sparse. As we will detail in Chapter 2, 
3 and 4 such sparse connections between communities leads to problems that are quite difficult, 
but tractable using the techniques developed here. 

Second order matrices are formed by filling in the values of the strength of the connections 

between the communities. If we look at the structure of the second order matrices of Amazon 

product communities, the exact structures of interest are ill defined at the onset. However, as 
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we demonstrate here such matrices with large numbers of communities can be analyzed as a 

dimension reduction problem, which is a classic example of unsupervised learning.  To remove 

the curse of dimensionality we must leverage the fact that such data are intrinsically low 

dimensional, e.g. that they lie on some low-dimensional subspace [13] [3], are sparse in some 

basis [13], or lie on some low-dimensional manifold [3].  In addition, as we examine the quality 

of our data, we note that we have many values that are missing or incorrect, and these aspects 

of our data make the problem much more complicated. Therefore, we use robust techniques like 

RPCA, and our own eRPCA, which as we demonstrate can make accurate predictions even in the 

presence of such complicating factors. 

 

1.2 Background 

One of the most important properties of a matrix to be considered in our thesis is its rank. The 

rank of a matrix is defined as the maximum number of linearly independent columns (or rows) in 

the matrix. We can look at the rank of matrices in practical settings, where it can be interpreted 

as the amount of redundancy in a matrix. Lower rank means more redundancy and therefore 

more predictable entries. In effect, low rank implies that we require fewer entries to predict 

other entries in the matrix. In the Amazon communities data, a low rank second order matrix 

allows us to use the strength of only a few communities to predict the strength of many other 

communities (but not all) in the matrix.  

Before we proceed further, we need to understand why the assumption of low rank is so 

important and reasonable. A low-rank matrix can be understood in many ways. It is a matrix with 

small number of non-zero singular values in its singular value decomposition (SVD). It is also a 

matrix with a small number of linearly independent rows (or columns), which produce the 

remaining rows (or columns) as the linear combination of those few. A matrix always has column 

rank equals row rank [14] [13]. In visual terms, it means there are a small number of basis rows 

(columns) that span the range space of the matrix. In many domains, low rank matrices are 

encountered quite often, so the assumption of low rank is a reasonable one. For an 𝑛 ×  𝑛 

matrix, a low-rank matrix by definition has rank 𝑘, where 𝑘 <  𝑛, and this property has various 

benefits as it helps to reduce computational cost, make prediction of entries and detect 

anomalies. Accordingly, the low rank property of a matrix is important in many applications [15]. 

Especially, in our case for making predictions, working with low rank matrices can be extremely 

advantageous. 

PCA is arguably the most widely used statistical tool for data analysis and dimensionality 

reduction today. Consider a matrix 𝑀, whose columns have been normalized to mean zero and 

each row represents one record of the collected data, and each column represents one field. In 

PCA analysis, the assumption is that the data all lie near some low-dimensional subspace. More 

precisely, it means that if we stack all the data points as column vectors of a matrix 𝑀, the matrix 
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should have (approximately) low rank. Classical PCA decomposition can be written as 𝑀 =  𝐿0 +

𝑁0, where 𝐿0 is the true low rank component, and  𝑁0 is small noise, and 𝐿 is the approximation 

of 𝐿0. Classical PCA [3] seeks the best (in a 𝑙2sense) rank-𝑘 estimate of 𝐿0 by solving as showing 

in equation 1) 

 𝐿 = arg min
𝐿

||𝑀 − 𝐿||
𝐹

2
,   

𝑠. 𝑡. 𝑟𝑎𝑛𝑘(𝐿) ≤ 𝑘, 

1) 

 

where the Frobenious norm ‖ ‖𝐹  is defined in Chapter 2. The most common way to compute 

PCA is by using the SVD. This is a common linear algebra technique used to factorize matrix in to 

three main components. The equation for the SVD is shown in 2) 

 𝑀 =  𝑈Σ𝑉𝑇 , 2) 
 

where 𝑈 and 𝑉 are unitary, so multiplying by their respective (conjugate) transposes yields 
identity matrices i.e. 𝑈𝑈𝑇 = 𝐼 𝑎𝑛𝑑 𝑉𝑇𝑉 = 𝐼. In addition,  Σ is a diagonal matrix and the entries 
of Σ  are known as the singular values of 𝑀, and the columns of 𝑈 and 𝑉 are known as left singular 
vectors and right singular vectors of 𝑀. The relationship between PCA and SVD is explained in 
detail in Chapter 2. 
 
Our Amazon communities data has two main properties that make its analysis challenging: 1) 
Many of the entries in  Σ  are small from the beginning, 2) Changing just a small number of entries 
in 𝑀 can have a large effect on Σ (since so many entries in 𝑀 are already zero).  
 
In addition, PCA is brittle with respect to grossly corrupted observations that can put its validity 

in jeopardy for making predictions in the Amazon Community Data. For example, a single grossly 

corrupted entry in 𝑀 could render the estimated 𝐿 arbitrarily far from the true  𝐿0. 

Unfortunately, gross errors are frequent in modern applications such as image processing, web 

data analysis, and bioinformatics, where some measurements may be arbitrarily corrupted (due 

to occlusions, malicious tampering, or sensor failures). When one has grossly corrupted entries, 

one could use many modern techniques, which are the extensions of PCA. As we will discuss such 

modern extensions of PCA like RPCA [5] can solve the problem when 𝑀 includes corrupted data 

and, eRCA technique can solve similar problems for data which has corruptions or uncertainty in 

all points, and potentially large and varied amounts of it. 

The RPCA technique can be used to treat many real world data matrices and recover their low 

rank component (𝐿0) and sparse matrix component(𝑆0). In particular, we use RPCA to 

decompose 𝑀 as  𝑀 =  𝐿 + 𝑆, where 𝐿 is low rank and 𝑆 is sparse. The low rank matrix represents 

those parts of the data that can be represented by limited number of basis (vectors) and this is 

where we can make easy predictions. The sparse matrix cannot be explained by the basis 

obtained by the low rank approximation but the entries in the sparse matrix represent, perhaps, 
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important effects in the data. There are many applications of RPCA and it has been utilized in a 

number of different domains [15].  

Finally, we explain some high level ideas regarding a formulation of RPCA that combines 

robustness to noise with partial observations. This method uses entry wise error constraints that 

allow entries of the matrix to have different noise properties, as opposed to classic approaches 

of RPCA that apply a single global noise constraint. We call this method eRPCA, and it can be used 

to decompose 𝑀 =  𝐿 + 𝑆 + 𝑍 , where 𝐿 is a low rank matrix, 𝑆 is a sparse and 𝑍 is a dense matrix 

of small noise terms. Classically, one treats a low rank matrix 𝑀, which is incomplete but dense 

(i.e. not too many zeros), however in our problem we are forced to treat a low rank 𝑀, which on 

one hand has many zeros and on the other is dense with anomalies.  Accordingly, a method for 

analyzing a matrix 𝑀, which is incomplete, sparse (many of the observed entries are zero) and 

low rank (which the Amazon data forces on us) needs to developed. The development of such a 

method is a key novelty of our thesis. 

 

1.3 Experiments & Results 
 

Our focus here is mainly on the predictive capabilities of the eRPCA algorithm, with a practical 
mindset of analyzing Amazon community data. There are number of features of eRPCA algorithm 
that would allow us to improve the prediction accuracy and understand the way the parameters 
need to be changed for better prediction. Our thesis work revolves around understanding all such 
parameters and we mainly categorize our work into three parts.  

The raw data that we get from Amazon product communities is very challenging as there is no 
direct measurement of the strength between the communities. Therefore, our first objective is 
to form a second order matrix of Amazon communities that gives us a matrix whose rows and 
columns represent communities, and whose values give us a measurement that represents the 
strength between the communities. After forming the second order matrix of different 
measurements of strength of connection between the communities, the second objective is to 
validate the applicability of the second order matrix using algorithms like SVD and eRPCA, and 
choose the most appropriate definition of community connection strength going forward in our 
analysis. 

In the eRPCA algorithm, there are many parameters to explore but we restrict our analysis to 
those parameters that would help in prediction, which is our third objective. We experiment on 
various parameters of eRPCA involved in predicting the entries, and analyze various ways to make 
the better prediction of entries. We have mainly experimented with using the controlling 
parameter 𝜆 to understand the low rank and sparse matrix to make better predictions.  We have 
also found a formula for the empirical relation between 𝝀 and non-zero entries in the sparse 
matrix, which would help us to predict the number of non-zeroes in the sparse matrix given a 
value of 𝝀. Finally, we have proposed a different way to measure the errors between the entries 
of the second order matrix and the low rank matrix.  
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 1.4 Our Contribution 

 
In this work, we make several contributions to the current understanding of the problem at hand. 
As we look into the raw data of the Amazon communities product data [2], there are many ways 
to measure the strength of communities connection, and our contribution revolves around 
analyzing various ways to measure the communities strength, and we use SVD to measure the 
better way of representing the strength of the communities connection for eRPCA algorithm. We 
leveraged three definitions from the literature [12] and derived one novel definition of our own. 

The current theory of the eRPCA algorithm is not designed to deal with a second order matrix 𝑀 
which is sparse (many of the observed entries are zero) [1]. Accordingly, we develop a method 
for analyzing a matrix 𝑀, which is incomplete, sparse and low rank (which the Amazon data forces 
on us), and this method is a novel contribution of this thesis. 

We have experimented on balancing the entries of a second order matrix filling between the low 
rank and the sparse components. A study has also been made to understand the behavior of the 
low rank and the sparse matrix by changing the controlling parameter 𝜆, where higher 𝜆 values 
will make putting non-zero entries into the sparse matrix more difficult. In other words, a low 𝜆 
value will make 𝐿 lower rank by putting more entries in 𝑆. We have also found an empirical 
relationship between the number of non-zeroes in the sparse matrix and the controlling 
parameter 𝜆, which would give us the ability to predict the non-zeroes in the sparse matrix for a 
given value of 𝜆. When dealing with such a second order data matrix, which is sparse, it becomes 
difficult to understand how to measure the errors in the various entries with usual way of 
measuring errors. Therefore, we layout a different way of looking into such problems, we have 
used the percentile values to measure the errors between the entries. Such an analysis gives a 
clear understanding of the errors of the entries than usual methods. 

 

1.5 Structure of thesis 

 
In this work, we attempt to provide the reader with background information on the problem that 
is being solved. Chapter 2 describes the theory and mathematical analysis on the problem. 
Chapter 3 describes the Amazon communities dataset. Chapter 4 focus on the experiments and 
analysis done in this thesis. Chapter 5 concludes this work and mentions further enhancements. 
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Chapter 2 

 

Theoretical & Mathematical Derivation 
 
This Section includes the background theory and mathematical analysis of the thesis work and 

describes the prediction of Amazon community structure using the eRPCA algorithm. We present 

the basic concepts of dimensionality reduction and principal component analysis, and then 

extend these concepts by way of the SVD. We explain about singular values that are essential 

components of our analysis. They are the key parameters for our prediction of the strength of 

connection between the communities. We then explain the limitation of using PCA on the 

Amazon data and then derive extensions to PCA, such as Robust PCA and eRPCA, which are the 

focus of our thesis work. 

 

2.1 Principal Component Analysis 

 

PCA is a statistical method that is used to convert high dimensional data into low dimensional 

data that does not involve any response (or dependent) variable [16]. It is also defined as a 

method that uses an orthogonal transformation to convert a set of observations of possibly 

correlated variables into a set of linearly uncorrelated variables called principal components, 

where the number of principal components is less than or equal to the number of original 

variables. This transformation is defined in such a way that the first principal component has the 

largest possible variance (that is, accounts for as much of the variability in the data as possible), 

and each succeeding component in turn has the highest variance possible under the constraint 

that it is orthogonal to the preceding components.  

PCA can be performed on the covariance matrix or the correlation matrix (in which each variable 

is scaled to have its sample variance equal to one). For the covariance or correlation matrix, the 

eigenvectors correspond to principal components (PC) and the eigenvalues to the variance 

explained by the principal components. Principal component analysis of the correlation matrix 

provides an orthonormal eigen-basis for the space of the observed data. In this basis, the largest 

eigenvalues correspond to the principal components that are associated with most of the 

covariability among the observed data. 

Let 𝑀 be the second order matrix of size 𝑚 ×  𝑚, an eigenvector or characteristic vector of a 

square matrix 𝑀 is a vector that does not change its direction under the associated linear 

transformation. 
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In other words, if 𝑣 is a vector that is not zero, then it is an eigenvector of a square matrix 𝑀 if 

𝑀𝑣 is a scalar multiple of 𝑣. This condition can be written as  𝑀. 𝑣 =  𝜆 . 𝑣 , 

where, 

𝑀: 𝑚 𝑥 𝑚 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑟𝑑𝑒𝑟 𝑚𝑎𝑡𝑟𝑖𝑥, 

𝑣: 𝑚 𝑥 1 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑟 𝑒𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟, and 

𝜆: 𝑠𝑐𝑎𝑙𝑎𝑟. 

 

The resulting vectors are an uncorrelated orthogonal basis set. The principal components are 

orthogonal because they are the eigenvectors of the covariance matrix, which is real and 

symmetric. The value of 𝜆 for which this equation has a solution is called the eigenvalue of 𝑀 and 

the vector 𝑣, which corresponds to this value, is called the eigenvector of 𝑀. 

How is PCA related to our thesis? When we convert high dimensional data to low dimensional 

data using PCA, the low dimensional PCs are a faithful representation of the high dimensional 

data. Accordingly, we can use PCs to do prediction of variables or features. In addition, we can 

use a small number of PCs or a large number of PCs based on the required percentage of variance 

to be captured in our dataset (and there for the accuracy of our predictions).  

 

 
 
Figure 2: In this figure, the blue dots represent the sample data points, for these data points we draw two 
principal components that can explain the maximum variance of the data. The principal components we 
get from PCA are PCA 1st dimension (the direction of largest variance) and PCA 2nd dimension (the second 
largest direction of variance).   As you can see, these two direction are, by definition, orthogonal. 

 

PCA is often used as a tool in exploratory data analysis and for making predictive models. PCA is 

the simplest of the eigenvector-based methods for multivariate analysis. PCA can be done by 

eigenvalue decomposition of a data covariance (or correlation) matrix or singular value 
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decomposition of a data matrix, usually after mean centering and normalizing the data matrix for 

each attribute.  Often, its operation can be thought of as revealing the internal linear structure 

of the data in a way that best explains the variance in the data. If a multivariate dataset is 

represented as a set of coordinates in a high-dimensional data space (1 axis per variable), PCA 

can supply the user with a lower-dimensional visualization, i.e. a projection or "shadow" of this 

object when viewed from its most informative viewpoint. This is done by using only the first few 

principal components so that the dimensionality of the transformed data is reduced. PCA is 

sensitive to the relative scaling of the original variables. In the Figure 2, the data points (blue 

dots) are represented in the original coordinates, and we draw two PCs (PCA 1st and 2nd 

Dimension) to explain the variance of the data points, where the PCA 1st Dimension captures 

more variance compared to PCA 2nd Dimension. 

 

2.2 Singular Value Decomposition 
 
The PCA algorithm is usually implemented by computing the eigenvalues and eigenvectors of the 
covariance matrix 𝑀, which is the product 𝑋𝑋𝑇, where 𝑋 is a normalized data matrix of size 𝑚 ×
𝑛. Since the covariance matrix is symmetric, the matrix is diagonalizable, and the eigenvectors 
can be normalized such that they are orthonormal. The columns of 𝑊 are the eigen-vectors 
of 𝑋𝑋𝑇, and 𝐷 is a diagonal matrix containing the eigen-values of 𝑋𝑋𝑇. So,  
 
 𝑀 = 𝑋𝑋𝑇 = 𝑊𝐷𝑊𝑇. 

 
3) 

Analogously, applying the SVD to the data matrix 𝑋𝑋𝑇 produces the following decomposition:  
 
 𝑋 = 𝑈𝛴𝑉𝑇 , 4) 

 
where,  

𝑈 is an 𝑚 × 𝑚 orthogonal matrix of the left singular-vectors of 𝑀, 
𝑉 is an 𝑛 × 𝑛 orthogonal matrix of the right singular-vectors of 𝑀, and 
𝛴 is an 𝑚 × 𝑛 matrix with non-zero diagonal entries, the diagonal values inside of which 
are referred to as the  "singular-values" of 𝑀. 

 
Attempting to construct the covariance matrix from this decomposition gives 

 𝑋𝑋𝑇  =  (𝑈𝛴𝑉𝑇)(𝑈𝛴𝑉𝑇)𝑇 
𝑋𝑋𝑇  = (𝑈𝛴𝑉𝑇)(𝑉𝛴𝑈𝑇) 

5) 

 
 and since 𝑉 is an orthogonal matrix we have that  𝑉𝑇𝑉 = 𝐼. Therefore the equation 5) becomes 
 
 𝑀 = 𝑋𝑋𝑇 = 𝑈𝛴2𝑈𝑇 6) 
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and the correspondence between the two approaches is easily seen (the square roots of the 
eigenvalues of 𝑋𝑋𝑇 are the singular values of X, etc.). 
 
The singular values computed by the SVD allow one to determine what combination of variables 
is most informative (high variance), and which ones are not useful (low variance), and thereby 
perform PCA. The way it works is simple. You perform SVD over your training data (call it matrix 
𝑋), to obtain 𝑈, 𝑆 or Σ and 𝑉𝑇. Then, set to zero all values of 𝑆 less than a certain arbitrary 
threshold (e.g. 0.1), call this new matrix 𝑆′. Then obtain 𝑋′ =  𝑈𝑆′𝑉𝑇 and use 𝑋′ as low rank 
matrix as your PCA projection. Some of your features are now set to zero and can be removed, 
sometimes without a negligible performance penalty (depending on your data and the threshold 
chosen).  The SVD allows you to predict when information and features are redundant and when 
some features are linear combination of others, and therefore predictable.  
 

2.3 Low Rank Matrices 
 

A low rank matrix can be thought of in multiple ways. It is a matrix, which has small number of 

non-zero singular values in its SVD [16]. It is also a matrix with small number of linearly 

independent rows (or columns), which means it needs a small number of rows (or columns) to 

predict the remaining rows (or columns) as linear combination of those independent rows (or 

column).  In a low rank matrix, column rank is always equal to row rank [13]. 

In addition, low-rank approximation can be thought of as a minimization problem, in which 

the cost function measures the fit between a given matrix (the data) and an approximating matrix 

(the optimization variable), subject to a constraint that the approximating matrix has 

reduced rank.  The rank constraint is related to the complexity of a model that fits the data. Let 

𝑋 be a data matrix of size 𝑚 × 𝑛, and 𝑘 be a positive integer, we would like to find an 𝑚 × 𝑛 

matrix 𝑋𝑘 of rank at most 𝑘, so as to minimize the 𝐹𝑟𝑜𝑏𝑒𝑛𝑖𝑢𝑠 𝑛𝑜𝑟𝑚 of the matrix difference  

𝐶 =  𝑋 − 𝑋𝑘, defined to be 

 
‖𝐶‖𝐹 = √∑ ∑ 𝐶𝑖𝑗

2𝑛
𝑗=1

𝑚
𝑖=1  . 7) 

 

Therefore, the Frobenius norm of 𝐶 measures the discrepancy between 𝑋 and 𝑋𝑘. Our goal is to 

find a matrix 𝑋𝑘 that minimizes this discrepancy, while constraining 𝑋𝑘 to have rank at most 𝑘. If 

𝑟 is the rank of 𝑋 then 𝑋 =  𝑋𝑟 and the Frobenius norm of the discrepancy is zero in this case. 

When 𝑘 is smaller than 𝑟, we refer 𝑋𝑘 as low rank approximation of 𝑋. 
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The problem with fit measured by the Frobenius norm is 

 

 min
𝑋𝑘

‖𝑋 −  𝑋𝑘‖𝐹
2
, 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑟𝑎𝑛𝑘(𝑋𝑘)  ≤ 𝑟. 
8) 

 

Perhaps surprisingly, this optimization has and analytic solution in terms of the singular value 

decomposition of the data matrix.  The result is referred to as the matrix approximation theorem 

or the Eckart–Young–Mirsky theorem [17]. 

In brief, the Eckart–Young–Mirsky theorem teaches us that the minimization of this optimization 

can be computed using the following deterministic procedure.  Let 𝑋 be a second order matrix 

then 

𝑋 = 𝑈𝛴𝑉𝑇 ∈  𝑅𝑚𝑥𝑛, 𝑚 ≤ 𝑛 

is the singular value decomposition of 𝑋 and partition 𝑈, 𝑉  and Σ =: 𝑑𝑖𝑎𝑔(𝜎1, … . , 𝜎𝑚) 

as follows 

𝑈 =: [ 𝑈1  𝑈2] , [
Σ1 0
0 Σ2

]  𝑎𝑛𝑑 𝑉 =: [ 𝑉1  𝑉2] , 

 

where  Σ𝑘 is  𝑟 𝑋 𝑟,  U𝑘 is  𝑚 𝑋 𝑟, and  V𝑘  is  𝑛 𝑋 𝑟. Then the rank-𝑟 matrix, obtained from the 

truncated singular value decomposition is 

𝑋𝑘 =  𝑈𝑘Σ𝑘𝑉𝑘
𝑇 , 

and we have that 

 

 
‖𝑋 −  𝑋𝑘‖𝐹 =  min

𝑟𝑎𝑛𝑘( 𝑋𝑘)≤𝑟
‖𝑋 −  𝑋𝑘 ‖𝐹 =  √𝜎𝑟+1

2 + ⋯ 𝜎𝑚
2 . 

9) 

 

The minimizer 𝑋𝑘 is unique if and only if   𝜎𝑟+1  ≠ 𝜎𝑟 [ ]. This low rank approximation appears in 

most of the practical situations as explained in Chapter 1 and we use this idea as a key component 

of our prediction methodology. 
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2.4 Robust PCA 
 

Traditional PCA recovers a low rank matrix from a high dimensional matrix 𝑀 in the presence of 

small perturbation as represented in the below equation, 

 𝑀 =  𝐿0 + 𝑁0 , 10) 
 

Where      

𝑀 – high dimensional matrix, 

𝐿0 – Low rank matrix (unobserved) and 

𝑁0 – Small perturbations. 

 

From equation (10), we can optimize the rank of 𝑀 using the solution given by the SVD, but as 

mentioned before PCA is highly sensitive to outliers or corrupted data. Small errors in 𝑀  will 

make small changes to the singular values of 𝑀, and as the result of which the actual singular 

values with small noise and without small noise will have a similar values which could be 

neglected in our case as that wouldn’t affect the approximate rank of the matrix [5]. However, 

large errors may make large changes to the singular values, and drastically alter the non-zero 

singular values. This makes the optimization of the rank of 𝑀 harder and may give rise to 

inaccurate results. This disadvantage of PCA is ameliorated by RPCA in order to solve the 

optimization of the rank of 𝑀, when the data is highly corrupted. 

Robust Principal Component Analysis (RPCA) is a modification of the widely used statistical 

procedure PCA that works well with respect to grossly corrupted observations. A number of 

different approaches exist for Robust PCA, including an idealized version of Robust PCA, which 

aims to recover an approximate low-rank matrix 𝐿 from highly corrupted measurements 𝑀 =

 𝐿0 + 𝑆0, unlike the small noise term 𝑁0 in classical PCA, the entries in 𝑆0 can have arbitrarily 

large magnitude, and their support is assumed to be sparse but unknown [5]. The unknown 

support of the errors makes the problem more difficult than the matrix completion problem that 

has been recently well studied [18]. This decomposition into low-rank and sparse matrices can 

be achieved by techniques such as Principal Component Pursuit method (PCP), Stable PCP 

[19], Quantized PCP [1], Block based PCP [1], and Local PCP [19] under some basic assumptions 

about the rank and sparsity of 𝐿0 and 𝑆0 [20] and, in reality, these assumptions are often satisfied 

by real world data. 

The RPCA decomposition [21], with unobserved entries [18] is constructed by the following 

optimization. We are given a matrix 𝑀 𝜖 𝑅𝑚𝑥𝑛, 𝑚 ≤ 𝑛  that is formed by If 𝑀 =  𝐿0 + 𝑆0 and we 

are given only 𝑃Ω(𝑀) (defined below), and if certain identifiability, rank, and sparsity conditions 
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on 𝐿0, 𝑆0 and Ω (defined below), and are met; then, with high probability, the decomposition can 

be recovered by the following Principal Component Pursuit (PCP) convex optimization problem 

 

 min
𝐿,𝑆

‖𝐿‖∗ +  𝜆 ‖𝑆‖1 

Subject to 𝑃Ω(𝑀) =  𝑃Ω(𝑀 + 𝑆), 
11) 

 

 

with 𝜆 = √
𝑚

|Ω|⁄   , or for the fully observed case which we have 𝜆 = √1
max (𝑚, 𝑛)⁄   ,  exactly 

recovering the low rank matrix 𝐿0 as well as the entries of the sparse matrix  𝑆0 =  𝑃Ω(𝑆0). ‖𝐿‖∗ 

is defined as the nuclear norm of a matrix or sum of the singular values, ‖𝐿‖∗ = ∑ 𝜎𝑘(𝐿)𝑛
𝑘=1 , 

and the one-norm is represented as ‖𝑀‖1 = ∑ |𝑀𝑘|𝑛
𝑘=1  and is defined as the sum of the 

magnitudes. We denote by Ω the locations of the observed entries i.e. (𝑖, 𝑗)𝜖 Ω , if 𝑀𝑖𝑗 is 

observed as  

 Ω (𝑖, 𝑗) = {
1
0

 𝑖,𝑗 𝜖 Ω
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 12) 

 

We denote by  𝑃Ω(𝑀) the projection of the matrix 𝑀 onto the set of entries indexed by the 

indices 𝑖, 𝑗 in the Ω as 

 [ 𝑃Ω(𝑀)]𝑖,𝑗 ∶= {
𝑀𝑖,𝑗

0    
  𝑖,𝑗 𝜖 Ω

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 13) 

 

We must tease out the underlying low rank matrix 𝐿0, and identify the sparse anomalies 

introduced by 𝑆0, without knowing a priori the true rank of 𝐿0, and without knowing the number 

or locations of the nonzero entries in 𝑆0. Furthermore, the magnitude of the few nonzero entries 

in may be of arbitrarily large size. These challenges may be further compounded by failure to 

observe a subset of entries in 𝑀, and by noise, that adds small errors to each of the observed 

entries. Technically speaking, the second order matrices 𝑀 in this thesis are all fully observed. 

However the use of 𝑣𝐸𝐻 plays the role of designating the “unobserved” entries in this thesis [1]. 

 

2.5 eRPCA 
 

Building upon the RPCA derivation in the previous section, here we present some high level ideas 

regarding a new formulation of Robust Principal Component Analysis, called eRCPA that 

combines robustness to noise with partial observations [1]. This method uses point wise error 

constraints that allow entries of the matrix to have different noise properties, as opposed to the 
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standard Frobenius norm approach that applies a single global noise constraint.  This derivation 

closely follows that in [1]. 

In [1], we find theorems and algorithms for addressing noisy problems with partial observations, 

based upon an equivalent problem formulation, which allows solution of the optimization using 

a standard Alternating Direction Method of Multipliers [1]. Herein, we apply that method to 

second-order matrices to detect sparsely correlated phenomena in measured data from the 

SKAION network and make predictions in the Amazon Network Communities dataset.  

The RPCA algorithm for performing matrix decomposition into low rank and sparse components 

has been extended further with addition of small but dense noise. To that end, we are interested 

in recovering 𝑀 from 𝑀 = 𝐿0 + 𝑆0 + 𝑍0, where 𝑍0 is a dense matrix of small noise terms. In this 

case, the convex program of interest is Principal Component Pursuit with Frobenius Constraints 

given by 

  min
𝐿,𝑆

||𝐿||∗ + 𝜆||𝑆||1 , 

                            𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑀 − 𝐿 − 𝑆‖𝐹 ≼ 𝛿 , 
 

14) 

 

Where 𝜆 is the tradeoff parameter between the rank of 𝐿 and sparsity of 𝑆 and 𝛿 ≔  ||𝑍0||𝐹 . 

Algorithms for solving the matrix decomposition problem have been presented in [22] and [20] 

and the Principal Component Pursuit with Entry-Wise Constraints [1] is given by equation 

 min
𝐿,𝑆

||𝐿||∗ + 𝜆||𝑆||1 , 

                      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |𝑃Ω(𝑀) −  𝑃Ω(𝐿 + 𝑆)|  ≼ 𝜖, 
15) 

 

 

where 𝜖 represents a matrix of entry-wise error bounds. We define 𝜖 as  

  

𝜖 = {
 𝜖𝑖𝑗, 𝑖, 𝑗 ∈  Ω

∞ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑠𝑒
 

16) 

 

However, in practical application, we make 𝜖𝑖𝑗 =  𝑣𝐸𝐻 in order for the eRPCA algorithm to predict 

the corresponding entry (𝑖, 𝑗) of 𝑀. We refer to our algorithm for solving PCP in noisy 

environments using inequality constraints as eRPCA. In this acronym, the RPCA stands for 

“Robust Principal Component Analysis”, while the ‘e’ in eRPCA is a reminder that inequality 

constraints are enforced point-wise with matrix epsilon. 

There are many attributes of the eRPCA algorithm and we use only a few of them in our thesis. 

The maximum rank of 𝑀 to consider for completion, is denoted by 𝚸𝐦𝐚𝐱. The value of the coupling 

constant between 𝐿 and 𝑆 is denoted by 𝛌. This constant is used to balance the density between 
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the low rank and sparse matrix. The number of entries observed in eRPCA is denoted by K. The 

number of entries in 𝑀 to be predicted is denoted by 𝑴𝒑.  

 

The point wise error bounds for each of the entries in 𝑀, that is used by eRPCA to make 

predictions is denoted by 𝒗𝑬, the values of 𝑣𝐸 used in our thesis is either High (1e+5 and denoted 

by 𝒗𝑬𝑯) or low (1e-5 and denoted by 𝒗𝑬𝑳). In particular, we use 𝑣𝐸𝐻, in order to designate those 

entries we wish to use the eRPCA algorithm for making predictions. The indices that are observed 

on the matrix 𝑀 are denoted by 𝑢, 𝑣. The decomposed low rank and sparse matrix constructed 

by eRPCA, where some of the entries are used for prediction by using 𝑣𝐸𝐻, are denoted 

by 𝑳𝒑 and 𝑺𝒑. In the analysis of our matrices, if we consider all the entries of 𝐿 or 𝑀 is called 

Complete Entries. The entries of 𝐿 𝑜𝑟 𝑀 whose corresponding entries of sparse matrix are zero 

are called GPE - Good Predictable Entries (as these entries are always predicted well (with small 

error). 

 

2.6 What Makes our Second Order Matrix Novel? 
 

Let 𝑋 be a data matrix of size 𝑛 𝑥 𝑝, where 𝑛 is the sample size and 𝑝 is the number of variables 

(we refer to 𝑋 as a first order matrix). Let us assume that variables are centered i.e., the column 

means have been subtracted are now equal to zero. Then the covariance matrix 𝑀 is formed by 

taking the dot product of first order matrix and its inverse, it is defined mathematically as 𝑀 =

𝑋𝑇𝑋/(𝑛 − 1) which is of size 𝑝 𝑥 𝑝. The three important properties of  𝑀 that are important for 

our work are 1) The values of the covariance matrix lies in the range of −∞ < 𝑀 < ∞  2) In most 

practical applications, there are a few zeros and many non-zero values (𝑀𝑧 ≪  𝑀𝑛𝑧) 3) 𝑀 is a 

symmetric matrix. This is a typical kind of second order matrix 𝑀 that has been dealt with by 

eRPCA in the literature [1]. 

On the other hand, the formation of the second order matrix of Amazon communities data is 

different. The second order matrix of Amazon communities data has been formed by taking the 

edges and nodes between the communities to represent the strength of connection between the 

communities, where each communities represent the group of nodes (Amazon products) and the 

details of this formulation is explained in Chapter 3. In short, the typical 𝑀 represents the 

correlation, or linear similarity, between the random variables, whereas the 𝑀 being dealt with 

here represents a derived definition of similarity well suited for the Amazon communities data.  

The three important properties of  𝑀 that are important for our work on Amazon communities 

data are 1) The values of the second order matrix lies in the range of 0 ≤ 𝑀 < ∞ 2) There are 

many zeros and a few non-zero values (𝑀𝑧 ≫  𝑀𝑛𝑧) 3) 𝑀 is a symmetric matrix. This is the kind 

of second order matrix 𝑀 that has never been dealt by eRPCA so far.  In particular, property 2) 
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above is quite challenging for standard techniques and the ability to treat these type of problems 

is a key novelty of this thesis. 

We will illustrate with a diagrammatic representation the two kinds of 𝑀 discussed in the above 

paragraphs. In the figure 2.1, the typical second order matrix 𝑀 does not have many zeroes. In     

the figure 2.3 and 2.4, the second order matrix 𝑀 that we are mainly dealing with in our thesis 

work has many zeroes and classic eRPCA is not designed for such matrices. 

 

Figure 2.1: In this Figure, it shows a typical second order matrix that is not much spare, and most these matrices are 
being solved using dimensionality reduction techniques like RPCA or eRPCA, the color with different intensity 
represents the values inside the matrix. 

 

The decomposition of the second order matrix gives us a low rank matrix 𝐿 and sparse matrix 𝑆. 

We can compute 𝐿 and 𝑆 from 𝑀 as discussed in Sections 2.4 and 2.5. With a decomposition of 

a typical 𝑀 using eRPCA, the low rank matrix 𝐿 in Figure 2.1 has less than 6 linearly independent 

columns (or rows) (i.e., at least one part of one column can be predicted from the rest). And, the 

sparse matrix has many values that are zero and a few anomalies which represent a classic  

example of the decomposition of typical second order matrix into 𝐿 and 𝑆. The above 

decomposition using eRPCA is performed with 𝜆0, where 𝜆0 = 1 max (𝑚, 𝑛)⁄ , in other 

words 𝜆 = 𝑙 × 𝜆0,where 𝑙 𝜖 ℝ. In this case 𝑙 = 1, however a judicious choice of 𝑙 is a 

fundamental aspect of treating problems where is 𝑀 is low rank and sparse simultaneously. 

This problem would have been much more straightforward if the above decomposition had 

occurred in a similar fashion for our Amazon communities second order matrix but unfortunately, 

this did not happen. In the first place, the Amazon communities second order matrix is the kind 

of 𝑀 where most of the values are zero and a few of the values are non-zero (𝑀𝑧  ≫  𝑀𝑛𝑧). An 

example of such a matrix is shown in Figure 2.2 and 2.3, and such matrices are much harder for 

eRPCA to decompose. 

When we use techniques like eRPCA on the Amazon communities data 𝑀, we find that all the 

singular values of 𝐿 for such a matrix are zero when we use 𝜆0 𝑜𝑟 𝜆 = 1 × 𝜆0, and this means 

that no entries in 𝐿 can be effectively predicted (i.e., every entry in 𝑀 is viewed as an 

unpredictable  anomaly). This makes our second order matrix special, which is already a low rank 
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with a few outliers as shown in Figure 2.2. In addition, to our surprise, the sparse matrix 𝑆 is 

actually not sparse anymore. This means that the sparse matrix 𝑆 has many non-zero values as 

compared to the low rank matrix 𝐿 (i.e.,𝐿𝑛𝑧 ≪  𝑆𝑛𝑧) as seen in the Figure 2.2. In other words, the 

low rank matrix is acting as the sparse matrix, and the sparse matrix is acting as the low rank 

matrix in terms of the number of zeroes it contains. 

The above observation creates for us new opportunities to explore the controlling parameter 𝜆, 

to make the sparse matrix much sparser and to optimize the rank of low rank matrix for making 

better predictions of the second order matrix, which is the scope of our thesis. As we understand 

the limitation of using eRPCA with default value  𝜆0 on such sparse second order matrices, we 

explore the possibilities of using eRPCA on such sparse second order matrix by varying the 

controlling parameter 𝜆 = 𝑙 × 𝜆0. 

In the Figure 2.2 and 2.3, we illustrate that by using the eRPCA algorithm with increasing value 

of 𝜆 that the low rank matrix becomes denser and sparse matrix becomes sparser for every 

increased value of 𝜆. We see that for a high value of 𝜆, as depicted in Figure 2.3, the number of 

zeroes in this sparse matrix has decreased relative to the low rank matrix. In other words, the 

number of non-zeroes in 𝐿 has increased relative to 𝑆 ( 𝑖. 𝑒. , 𝐿𝑛𝑧 ≫  𝑆𝑛𝑧). Also by increasing the 

value of  𝜆0 𝑡𝑜 𝜆, the rank of the low rank matrix increases from 0 to 𝑟𝑎𝑛𝑘(𝐿) ≤ 6 and, 

surprisingly, this higher rank (but not too high) helps us to predict entries in 𝑀. 

 

 
 
Figure 2.2: In this figure, we show a second order matrix 𝑀 that is too sparse for the standard eRPCA theory to apply. 
The 𝐿 and the 𝑆 matrices show a typical decomposition that a classic eRPCA problem would give for the low rank 
and sparse matrices. In this case, the “sparse’ matrix 𝑆 is relatively not sparse as compared to the low rank matrix 
𝐿 or the original matrix 𝑀.  In fact, and low rank matrix 𝐿 is highly sparse as see from this figure, which is not desirable 
from the prediction point of view. The color with different intensity represents the values inside the matrix. 
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Figure 2.3: In this figure, we show a second order matrix 𝑀 that is too sparse for the standard eRPCA theory to apply, 
so we use eRPCA with high value of 𝜆 on 𝑀. The 𝐿 and the 𝑆 matrices show a decomposition that a classic eRPCA 
problem would give for the low rank and sparse matrices for high value of 𝜆. In this case, the “sparse’ matrix 𝑆 is 
relatively more sparse as compared to the low rank matrix 𝐿 or the original matrix 𝑀.  In fact, and low rank matrix 𝐿 
is dense as compared to 𝐿 in Figure 2.2. The color with different intensity represents the values inside the matrix. 

 

2.7 Various scenarios that exists in eRPCA 

 
For real world data, when converted in to second order form, there could be many unknown 

entries in the matrix 𝑀, and one would like to predict the values of those unknown entries. 

Therefore, in such cases we observe all the entries of 𝑀 (in the technical RPCA sense of every 

entry of  Ω being 1).  

However, in the eRPCA sense, we make 𝜖𝑖𝑗 = 𝑣𝐸𝐿 for those entries we feel confident that we know 

and make 𝜖𝑖𝑗 = 𝑣𝐸𝐻 for those entries we do not know and wish to predict. So, harkening back to 

the definition of Ω in Section 2.5, we write  

 

 𝑢, 𝑣 ∈  𝑃Ω, 
𝑢𝑝, 𝑣𝑝  ∈  𝑣𝐸𝐻, 

17) 

 

to denote the entries we wish to predict. 
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Figure 2.4: This shows the decomposition of Second order matrix to low rank matrix (𝐿) and sparse matrix(𝑆), the 
yellow color in ′𝑀′ indicates the entries which we need to predict. The red color entries in 𝐿 means we may not make 
good prediction relative to other and the entries in 𝐿 whose corresponding entries are green color in 𝑆 means we 
can make better prediction relative to the red color entries. 

 

In the case of a second order matrix 𝑀 with many unknown entries, we understand from the 

principles of eRPCA that not all the entries could be predicted well. The errors of each of the 

entries in the matrix could vary, and so there are entries which could have relatively high errors, 

and we call them 𝑇𝑦𝑝𝑒 − 𝐻𝐸 errors, and those entries with low errors, which we call 𝑇𝑦𝑝𝑒 − 𝐿𝐸 

errors. As per the principles of eRPCA, 𝑇𝑦𝑝𝑒 − 𝐻𝐸 errors are generated by those entries whose 

corresponding entries in sparse matrix 𝑆 are non-zeroes and have anomalies. 𝑇𝑦𝑝𝑒 − 𝐿𝐸 errors 

are generated by those entries whose corresponding sparse entries are zeroes and have no 

anomalies.  

Accordingly after the eRPCA algorithm is complete we know which are the entries have 𝑇𝑦𝑝𝑒 −

𝐻𝐸 errors and 𝑇𝑦𝑝𝑒 − 𝐿𝐸 errors merely by examining 𝑆. Accordingly, we can write that  

 𝑖, 𝑗 𝜖 𝑆𝑖𝑗 = 0 ∶  𝑇𝑦𝑝𝑒 − 𝐿𝐸 

𝑖, 𝑗 𝜖 𝑆𝑖𝑗 ≠ 0 ∶  𝑇𝑦𝑝𝑒 − 𝐻𝐸 
18) 

 

In the Figure 2.4, the red color in the low rank matrix is classifies as those entries which could 

cause 𝑇𝑦𝑝𝑒 − 𝐻𝐸 errors, and the white color in the low rank matrix is classifies as those entries 

which could cause 𝑇𝑦𝑝𝑒 − 𝐿𝐸 errors. 

From the above ideas, we know how to make use of eRPCA for prediction, and we know the 

possibilities of different error points. Moreover, having understood the above two ideas, we 

focus on some of the practical aspects of using eRPCA from a business or an applied point of view. 

In a real situation, we may need to predict some specific entries, as predicting those entries may 
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involve generating money to the business directly or indirectly, or could have much value from 

any problem perceptive. In the Figure 2.4, we see that yellow color entries (there are seven 

entries) represent those entries, which we want to predict for the business needs. Among those 

seven entries, we can say with a tolerance limit that five entries could fall in 𝑇𝑦𝑝𝑒 − 𝐿𝐸 and two 

entries would fall under 𝑇𝑦𝑝𝑒 − 𝐻𝐸 error. 

In any given situation, from a business prediction perspective, if the business wants a few of the 

entries that come with 𝑇𝑦𝑝𝑒 − 𝐿𝐸 errors to be predicted more precisely, then we may compute 

those entries with more accuracy but at the cost of more data (i.e., higher rank of low rank matrix 

by increasing the value of 𝜆). In addition, we can say that out of 𝑀𝑝 entries, how many of the 

entries may fall under 𝑇𝑦𝑝𝑒 − 𝐻𝐸 or 𝑇𝑦𝑝𝑒 − 𝐿𝐸  errors. 
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Chapter 3 

 

Description of Datasets 
 

3.1 Overview 
 

In this chapter, we explain the structure and preprocessing of the Amazon product community 

data set [2] and the SKAION [23] network dataset.  

In the SKAION data set, the raw data represents the data packets exchanged between sensor 

nodes (source and destination IP address and ports). In other words, the raw data has rows 

labeled by IP addresses and ports, and the columns represent data packets received or sent by 

the respective sensor node. We have analyzed various ways of converting the first order matrix 

of raw packet data to a second order matrix for better representation of the similarities between 

the sensor nodes. 

In the Amazon product community data set, the original raw dataset has two representations, 

one with the connections between individual products and the other listing the communities of 

Amazon products.   We call this raw dataset our first order matrix. We analyze various ways to 

form the second order matrix of Amazon communities, where the values represent the strength 

of connection between the communities. We have discussed the formation of second order 

“similarity” matrices in four different ways by using different definitions of strength of connection 

between the communities, and have chosen the best among them based upon their effectiveness 

for prediction. 

 

3.2 SKAION Network data 
 

The raw data or first order matrix (𝐹𝑂𝑀) of the SKAION Network data consists of rows of Source 

and Destination IP address and their ports, and the column represents Internet packets (P1, P2 

and so on until P10000 for this particular dataset). Each of the rows represents all of the Internet 

packet data for the given sensor node. We convert the first order matrix into a second order 

matrix by taking the dot product of the normalized first order matrix and its transpose, which 

gives the covariance matrix between the sensor nodes. 
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 𝑀 = 𝐹𝑂𝑀 ×  𝐹𝑂𝑀𝑇, 19) 
 

where, 

                                      𝐹𝑂𝑀  is of the order of 759 ×  10000,  

                                     𝐹𝑂𝑀𝑇  is of the order of 10,000 ×  759. 

 

 

Sensor Nodes  P1 P2 P3 P4 P5 … P10000 

12.100.178.10 1 0 1 0 1 0 ….10000 

12.100.178.11 0 1 0 1 0 0 ….10000 

…. 0 1 1 0 0 1 ….10000 

100 1 0 0 0 1 0 ….10000 

200 0 0 0 0 1 1 ….10000 

…..        
 
Table 3.1: The table shows a small sample of first order matrix of SKAION data, with rows representing the senor 
nodes of source and destination IP address and ports, and columns represent 10000 internet packets of the sensor 
nodes. 

The raw data from SKAION Network that comprises the first order matrix has binary values of 0’s 

and 1’s, with 10,000 packets of data, a sample of which is shown in the Table 3.1. In effect, each 

IP Address and each port is thought of as a sensor. Therefore, for example a one in the row 

labelled 12.100.178.10 means the packet originated at this IP Address. Similarly, a one in the row 

labelled 100 means the packet originated from port 100. First 225 rows of sensor nodes represent 

Source IP address, from 226 row to 425 row of sensor nodes represent destination IP address, 

from 426 row to 610 row of sensor nodes represent source ports and the remaining from 611 

row to 759 row represent destination ports. 

The first order matrix is converted to a second order matrix by taking the dot product of the 𝐹𝑂𝑀 

and the transpose of the 𝐹𝑂𝑀. Then, the size of second order matrix becomes 759 × 759 and 

that is what is used for analysis. In the SKAION data, as the first order matrix is mainly categorical 

(binary) in nature, we normalize the first order matrix by rows (i.e., on each sensor node). We 

then take the dot product on the normalized data of 𝐹𝑂𝑀 and its transpose to get the second 

order matrix (i.e., the data is normalized so the diagonal of the second order matrix is one). In 

Figure 3.1, the first order matrix of normalized SKAION data is shown, the x-axis represents the 

sensor nodes and y-axis represents the internet packets. The colors in the plot represent the 

normalized values inside the first order matrix, the red color indicates the lowest value −1 and 

black color indicates the highest value+1, and the contrast from red to black is the values in the 

range from −1 to +1. In the plot, we see four patterned roughly slanted black lines, the first 

pattered black line from left represent the source IP address (first 225 sensor nodes) which is 

transmitting the data and the second black line from left represent the destination IP address 

(226 to 425 sensor nodes) which is receiving the data. Similarly, the third black line (426 to 610 
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sensor nodes) and fourth black line (611 to 759 sensor nodes) represent the source and 

destination ports, the former one is transmitting and later one is receiving the data. 

 

 
 
Figure 3.1: In the above graph, x-axis represents sensor nodes and y-axis represents internet packets (which is 
normalized across each sensor nodes), there are 10,000 packets and 759 sensor nodes, the values in the color bar 
shows, with red representing the lowest value of -1 and black representing the highest value of +1. 

 

3.2.1 First Order Matrix from SKAION data   

 

Based upon our preliminary analysis we felt that modifying the raw data of SKAION network data 

based on the needs of different problems would improve our analysis and therefore we augment 

the first order matrix using three different structures. The three structure differ by modifying the 

IP address of both source and destination, Table 3.2 shows the original form of IP address and 

three representations of those IP Addresses.  
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IP Address IP  Address Distinct IP Address  SUBNET1 IP Address SUBNET2 

192.168.5.130  192.168.5.130  192.168.5.x 192.168.x.x 

192.168.5.130  192.168.5.131  192.168.6.x  

192.168.5.131  192.168.5.132    

192.168.5.132  192.168.6.134   

192.168.5.132     

192.168.6.134    
 
Table 3.2: This table shows the example of converting the IP Address of sensor nodes to unique value of IP Address 
to SUBNET-1 and SUBNET-2. 

 

In building the first order matrix, we take unique values of all the IP address to get the column IP 

Address Distinct. In building the second and third structure of IP Addresses, we start with the 

column IP Address Distinct, and take SUBNET-1 and SUBNET-2 of IP Address Distinct to create two 

additional columns IP Address SUBNET1 and IP Address SUBNET2. For instance in the table 3.2, If 

we take unique values of the above IP address, we get 192.168.5.130, 192.168.5.131, 

192.168.5.132, 192.168.5.132, 192.168.6.134 which is represented in column IP Address Distinct. 

Similarly, we take the unique values of SUBNET-1 (192.168.5.x, 192.168.6.x, 192.168.5.x, 

192.168.6.x) to get rows 192.168.5.X, 192.168.6.X, and we take the unique value of SUBNET-2 

(192.168.x.x, 192.168.x.x) to get row 192.168.X.X. 

We construct three forms of the second order matrix of SKAION data from three different 

structures of the first order matrix. These different forms of second order matrix can be used for 

various purpose based on the area of interest in cyber network problems. If the distributed attack 

is made by varying only SUBNET values then using distinct IP Address will unnecessarily increase 

the computation time, so choosing SUBNET-1 and SUBNET-2 may give better results and 

therefore, we experiment with the three different structure of formation of the second order 

matrix. 

We analyze the singular values of the three different structures of the second order matrix of 

SKAION using the SVD. In order to do this experiment, we have taken 1000 rows (sensor nodes) 

for IP Address Distinct from which we get 900 rows for IP Address SUBNET1 and 850 rows for IP 

Address SUBNET2. Figure 3.2 and 3.3 shows the singular value plot of SUBNET-1 and SUBNET-2, 

the singular values decreases exponentially and has approximately 318 non-zero singular values, 

which implies that we can predict (759-318 = 441) sensor nodes from 318 sensor nodes. The 

singular values in the Figure 3.2 and 3.3 are very similar to Figure 4.1, where 320 sensor nodes 

have non-zero singular values, which shows that although we are taking the IP Address structures 

SUBNET1 and SUBNET2 that reduces the number of rows in the matrix and therefore the amount 

computation. However, we get almost same number of nonzero singular values around 320. We 

see from the graph of the SVD that it does not make much of a difference by taking unique values 

of SUBNET and we are not concluding that taking SUBNET values is helpful in this case. However, 

it may be that for different problems taking SUBNETs would be helpful. In this situation, we are 
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taking the IP Address Distinct because we do not want to lose information as the number of rows 

decreases by taking the SUBNETs. 

 

 
 

Figure 3.2: In the above graph, the y-axis represents the size of singular values, the x-axis represents the index of the 
singular values ordered from largest to smallest, and this is from the second order matrix of SKAION data using 
SUBNET-1 

 
 

Figure 3.3: In the above graph, the y-axis represents the size of singular values, the x-axis represents the index of the 
singular values ordered from largest to smallest, and this is from the second order matrix of SKAION data using 
SUBNET-1 

Singular Values of SUBNET -1 

Singular Values of SUBNET -2 
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3.3 Amazon Communities Network Data 
 

The second type of network we consider is the Amazon product co-purchasing network. The 

Amazon Communities Network data set is downloaded from Stanford Large Network Dataset 

Collection [11].  It is based on the Customers Who Bought This Item Also Bought feature of the 

Amazon website.  The nodes of the network represent products and edges link commonly co-

purchased products.  If a product i is frequently co-purchased with product j, the graph contains 

an undirected edge from i to j.  In addition, Amazon defines product categories and calls these 

categories “ground-truth” communities [12]. Each product (i.e., node) belongs to one or more 

hierarchically organized product categories and products from the same category define a group 

that Amazon, and we, view as a ground-truth community [12]. In this case, nodes that belong to 

a common ground-truth community share a common function or purpose. 

The Amazon product co-purchasing network has FromNodeId to ToNodeId connection data, this 

is an undirected graph where FromNodeId represents the origin node (which represents one 

Amazon products) and ToNodeId represents the destination node (which represents another 

Amazon product).  A small sample of this data is shown in table 3.3. For instance, in the first row, 

we can say that product 1 is frequently co-purchased with product 88160.   

 

FromNodeId ToNodeId 

1 88160 

1 118052 

1 447165 

1 500600 

2 27133 

2 62291 

4 16050 
 
Table 3.3: In this table, the two columns represent the nodes that are Amazon products, and the table as a whole 
represents the relationship between two nodes, which is the Amazon product co-purchasing network 

 

In the Amazon ground truth communities data, a sample of which is shown in the Table 3.4, each 

row in the community has a different number of nodes depending on the size of the ground truth 

community.   In the table below C1, C2….etc. represent the communities and the values inside 

represents the NodeId which are the products in that communities. For instance, the community 

C1 may be bread and the three nodes in C1 may represent three kinds of bread (maybe white, 

multigrain and wheat).  Unfortunately, we do not know exactly the name of the communities nor 

the name of its products. 
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C1 164985 225214 232761         

C2 167906 288975 421279 442612 451312     

C3 69880 231953 518997 523128       

C4 135499 160294 304770         

C5 112813 112814 112821 112823       

C6 112813 112814 112821 112823       

C7 199372 399560 447268 471226 522928 439998 280502 

C8 179001 391697 412528         

C9 21166 207188 405926 531532 540207     

C10 118948 191846 209822 455700 482725     

C11 55727 78359           

C12 246337 301834 389644         

C13 99505 126694 133115 264885       

C14 75000 156489 207684 278335 533982     

C15 112813 112814 112821 112823 213617     
 

Table 3.4: In this table of the Amazon ground truth communities data, the first column or the row names represent 
the communities and the columns after first column represent the nodes for each of the communities in their 
respective row (or communities) inside each of the communities.  

 

In our analysis, we combined these two datasets to form a second order matrix that gives us the 

strength between the communities, the rows and columns represents the communities, and the 

values in the second order matrix gives the strength of connection between the communities. 

The strength of connection between the communities can be expressed in many ways and we 

present four different ways and chose the best metric among the four that would be most 

suitable for our analysis. For instance in the Table 3.5, the strength of connection between 

communities C1 and C2 is 0 which means that none of the products in C1 are co-purchased with 

C2. The strength of communication between C1 and C100 is 1 which means that “some” of the 

products in C1 are co-purchased with the products in C100 (the precise definition of what “some” 

means will be the focus of the rest of this Section). Our methodology of second order matrix 

formation enforces that the matrix be symmetric. However, a different sort of data, one could 

definitely imagine a non-symmetric second order matrix (say, if you knew which product was 

purchased first). Note, this is contrast to the covariance based SKAION data second order matrix 

by definition is symmetric. 
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Communities C1 C2 C3 … C100 

C1 2.2 0 0 0 1 

C2 0 4.5 0 5.5 0 

C3 0 0 6.5 0 0 

.. 0 5.5 0 7.8 0 

C100 1 0 0 8 7.6 
 

Table 3.5: In this table, it shows the sample of second order matrix of Amazon data, formed from Amazon 
communities’ and product data, the values inside the above matrix represents the strength of connection between 
two communities. 

 

Dataset statistics 

Nodes 334863 

Edges 925872 

Nodes in largest WCC 334863 (1.000) 

Edges in largest WCC 925872 (1.000) 

Nodes in largest SCC 334863 (1.000) 

Edges in largest SCC 925872 (1.000) 

Average clustering coefficient 0.3967 

Number of triangles 667129 

Fraction of closed triangles 0.07925 

Diameter (longest shortest path) 44 

90-percentile effective diameter 15 

 
Table 3.6: In this table, we show all of the statistics mentioned in the original data description of the Amazon 

dataset, which is extracted from Stanford Large Network Dataset 

We regard each connected nodes in a product category as a separate ground-truth community. 

We remove the ground-truth communities, which have less than three nodes. We also provide 

the top 5,000 communities with highest quality, which are described in [2]. As for the network, 

we analyze the largest connected component. The metrics in Table 3.6 represents various metrics 

of nodes and edges of the original data from Stanford Large Network Dataset [11] 

 

3.3.1 Metrics of Communities strength 

 

In order to define precisely, the strength of connection between the communities, we introduce 

four different methods of representing the community strength of Amazon data and we call them 

as Community Density-1 (CD-1), Community Density-2 (CD-2), Community Density-3 (CD-3) and 
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Community Density-4 (CD-4). We referred to the literature in [12] for CD-1, CD-2, CD-3, and we 

came up with CD-4 from the inspiration of previous three metrics. 

Beginning with CD-1, if a community C1 is connected to C2 then the value in the second order 

matrix between row C1 and column C2 would be defined as the number of edges between these 

two communities.  In Figure 3.6 and equation (20), there are two communities represented by 

the left and right circles, with dots represents the number of nodes in each of the communities. 

The edges represent the nodes from each of the communities are connected in the co-purchasing 

network. 

 𝐶𝐷1 =  𝑁𝑜 𝑜𝑓 𝐸𝑑𝑔𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠 (𝑁𝐸𝐵𝑁) 20) 
 

 
 
Figure 3.6: In the Figure there are two communities C1 and C2, the nodes are represented by N1, N2….N8. The lines 
represent the edges connecting between two nodes. C1 has five nodes and C2 has three nodes. In this example CD1 
is 3. 

 

The definition of community strength CD1 (for instance in the Figure 3.6 CD1 is 3) does not take 

into account the number of nodes in each of the communities. This definition is adequate for all 

communities that have same number of nodes but in our dataset the communities have different 

number of nodes. For instance, consider two pairs of communities. In the first pair, each 

community has 4 nodes and there are three edges between the communities. In the second pair 

each communities has 100 nodes and again there are three edges between them. Clearly, the 

first pair of communities have a stronger connection then the second pair but CD1 does not 

recognizes this fact.  

So, as it is clear that the number of nodes in the communities should influence the strength of 

connection between communities, [12] formulates a new metric that would take the number of 

nodes in each community along with the number of edges. Hence, we call this metric  Community 
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Density – II (CD2) and define it as the number of edges between the communities divided by the 

product of the number of nodes in the two communities. 

 

 
𝐶𝐷2 =

𝑁𝐸𝐵𝑁

𝑁𝐶1 ∗ 𝑁𝐶2
 

21) 

 

Thirdly, as we observe from the literature [12], the strength of connection between communities 

C1 and C2 should be influenced by the strength of connection C1 with other communities apart 

from C2, so equation (22) includes the relative strength with other communities in the metric. 

For instance, in the Figure 3.5, we see that C1 and C2 are connected with 3 edges, C1 and C3 are 

connected with 2 edges, so in total the edges connected from C1 to other communities is (3+2=5). 

Accordingly, it is desirable to consider these other edges in the definition of the community 

strength between C1 and C2 or C1 and C3. Therefore, Community Density –III is defined as the 

edges connecting between C1 and C2 (NEBN) divided by the edges outgoing from C1 (NOEC1). 

 

 
𝐶𝐷3 =

𝑁𝐸𝐵𝑁

𝑁𝑂𝐸𝐶1
  

22) 

 

 

 
 

Figure 3.7: in the Figure there are three communities C1, C2 and C3, the nodes are represented by N1, N2….N11. 
The lines represent the edges connecting between two nodes, essentially when viewed from the communities. C1 
has five nodes, C2 and C3 has three nodes. 



31 

Finally, inspired by the three different metrics from the literature [12], we wanted to alter the 

second and third metric to form a new metric that would consider giving importance to the 

number of nodes in these two communities, and the relative strength between communities C1 

with C2 relative to the strength of connection between C1 and other communities. Therefore, 

the new metric we define as Community Density - IV, which counts the edges connecting C1 and 

C2 divided by the product of edges outgoing from C1, and the number of nodes in the two 

communities. 

 
𝐶𝐷4 =

𝑁𝐸𝐵𝑁

𝑁𝑂𝐸𝐶1 ∗ 𝑁𝐶1 ∗ 𝑁𝐶2
 

23) 

 

 

In the next Section, we provide results that compare and contrast these various definitions.  
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Chapter 4 

Experiments & Results 
 

4.1 Overview of Experiments 
 

In this Chapter, we present the experiments conducted on the SKAION network data and the 

Amazon communities network data. In Section 4.2 and 4.3, we take the SKAION network data as 

a reference for analyzing the typical kind of second order matrix that appears in most of the real 

world problems. In the SKAION network data, we analyze the singular values obtained from the 

SVD, RPCA and eRPCA techniques. In addition, we understand the behavior of the low rank matrix 

and the sparse matrix arising from SKIAON’s second order matrix. The other analysis involves 

evaluating various ways of using the first order form of the SKAION network data and finding the 

anomalies in the low rank and the sparse matrix. 

In Section 4.4 and 4.5, we evaluate the four methods of forming a second order matrix from the  

Amazon communities data. The three main parameters of eRPCA that we observe are Prediction 

Error, 𝝀 and number of non-zeroes. We have mainly divided the prediction experiments into 

Section 4.7 and 4.8 based on the target matrix used for prediction. In Section 4.7, we do the 

prediction of one low rank matrix from another low rank matrix by varying 𝜆 (i.e. 

between 𝐿0 and 𝐿𝑝). In Section 4.8, we use the low rank matrix to predict the second order 

matrix by varying  𝜆 (i. e. between 𝑀 −  𝐿0 and 𝑀 −  𝐿𝑝). In Section 4.9, we find the empirical 

relation between 𝜆 and the non-zero entry values in a sparse matrix. In Section 4.10, we find the 

distribution of error entries in prediction of 𝑀 −  𝐿𝑝, and find the best technique to capture the 

errors. 

4.2 Singular values of SKAION data 

 
The second order matrix of SKAION data has the size of 759 × 759 and is analyzed using the SVD 

technique. In Figure 4.1, the y-axis represents the size of the singular values and x-axis represents 

the index of the singular value order from largest to smallest. We observe that the singular values 

decreases exponentially and it takes approximately 0 at the sensor node of 318, which implies 

that we can predict the entries of 441 (759-318 = 441) sensor nodes using the entries of only 318 

sensor nodes. This happens because of the low rank property which implies that we may not 

need the entries of all of the 759 (high dimensional) sensor nodes, we may just need the entries 

of 318 (low dimensional) sensor nodes to predict the entries of remaining 441 sensor nodes. The 

question here is, can we predict more nodes using a lesser number of nodes? Yes, using 

techniques like RPCA and eRPCA we can improve our ability to predict many sensor nodes from 

just a few sensor nodes that we need to measure. 
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Figure 4.1: In this graph, the y-axis represents the size of singular values, the x-axis represents the index of the 

singular value order from largest to smallest, the singular values decrease and becomes almost zero and constant 

after 318 sensor nodes. This implies that given 318 sensor nodes we can predict rest of the other sensor nodes. 
 

 
 

Figure 4.2: In this graph, the y-axis represents the size of singular values, and the x-axis represents the index of the 

singular value order from smallest to largest. It shows that the singular values of three techniques: SVD, RPCA and 

eRPCA. We see that SVD produces larger number of non-zero singular values than RPCA and eRPCA. These singular 

values of RPCA and eRPCA are similar and that is why the lines are coincided. 

 

We use three dimensionality reduction techniques, SVD, RPCA and our own eRPCA, to compare 

the singular values of the second order matrix of SKAION network data. In Figure 4.2, the y-axis 

represents the size of the singular values and x-axis represents the index of the singular value 

order from largest to smallest. We observe that the singular values decrease for all the three 
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techniques. We find that SVD produces larger number of non-zero singular values compared to 

Robust and point wise error techniques like RPCA and eRPCA. This implies that SVD requires many 

sensor nodes to predict all of the rest of the entries in other sensor nodes. The small number of 

non-zero singular values for RPCA and eRPCA imply that these algorithms can predict almost all 

of the sensor nodes from a tiny fraction of other sensor nodes. The essential idea is that a few 

sensor nodes are hard to predict and account for the majority of non-zero singular values. 

However, most of the sensor nodes can be predicted using just a few non-zero singular values. 

Partitioning the sensor nodes into those that are easy to predict and those that are hard to 

predict is the essence of RPCA and eRPCA. Therefore, we use RPCA techniques for further analysis 

in our thesis. 

 

4.3 Understanding of Low Rank and Sparse Matrix of eRPCA 
 

We use eRPCA on SKAION’s second order matrix to understand the decomposition of 𝑀 into a 

low rank and a sparse matrix, and take this decomposition as typical for eRPCA. As we understand 

the behavior of the low rank and the sparse matrix using SKAION data, we will be able to 

foreshadow using eRPCA on Amazon communities data. 

The principles of eRPCA algorithm give us the freedom to observe all the entries of the data (or 

part of it) based on our problem requirements [1]. We observe all the entries except the diagonal 

entries, following [1], as the diagonal entries represent the auto-correlation of the variables, and 

our main objective is to find the relationship between different variables. In the eRPCA algorithm, 

one sets 𝜖𝑖𝑗 = 𝑣𝐸𝐿  for all the entries we know and sets 𝜖𝑖𝑗 = 𝑣𝐸𝐻 for all entries we wish to 

predict. In effect, setting 𝜖𝑖𝑗 = 𝑣𝐸𝐿  gives the algorithm no freedom in optimizing that entry, since 

the user measured that entry. On the other hand, setting 𝜖𝑖𝑗 = 𝑣𝐸𝐻 gives the algorithm the 

freedom to optimize that entry, and the optimal entry is the predicted value.  

There are many input parameters to consider in the eRPCA algorithm, and the following are the 

parameters that are important for our analysis. The parameters 𝑢, 𝑣  represent the indices that 

are observed from the matrix 𝑀 (In this thesis, we actually observe all of the entries in 𝑀 and we 

use 𝜖𝑖𝑗 = 𝑣𝐸𝐿to label entries we wish to predict). 𝑣𝐸  is point wise error bounds which takes on 

values 𝑣𝐸𝐿 or 𝑣𝐸𝐻 . 𝜌𝑚𝑎𝑥  denotes maximum rank of 𝑀 to consider for completion. 𝜆 is the value 

of the coupling constant between 𝐿 and 𝑆 (and 𝜆 is a key focus of our work) . The output 

parameters from the decomposition using eRPCA algorithm are 𝑈, 𝐸, 𝑉𝑇 and 𝑆. The 𝑈, 𝐸 and 𝑉𝑇 

components represent the SVD components of the matrix 𝐿. The 𝑈 denotes the left singular 

vectors of the matrix 𝐿. The 𝐸 denotes the diagonal matrix of singular values of 𝐿. The 𝑉𝑇 denotes 

the right singular vectors of the matrix 𝐿. The 𝑆 denotes the sparse matrix. The output 

components are used to construct the low rank matrix by multiplying as 𝐿 =  𝑈 ∗

 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 (𝐸)  ∗  𝑉𝑇. The low rank matrix 𝐿 and the sparse matrix 𝑆 have the same dimensions. 
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The key observation of this thesis is that the values of 𝑀 whose corresponding values of 𝑆 are 

zero can be predicted from the low rank matrix 𝐿 with small error. These are precisely the entries 

we called 𝑇𝑦𝑝𝑒 − 𝐿𝐸 in Chapter 2! Similarly, the values of 𝑀 whose corresponding values of 𝑆 

are non-zero can be predicted from the low rank matrix 𝐿 with large error. These are precisely 

the entries we called 𝑇𝑦𝑝𝑒 − 𝐻𝐸 in Chapter 2. Using PCA, differentiating 𝑇𝑦𝑝𝑒 − 𝐻𝐸 and 

𝑇𝑦𝑝𝑒 − 𝐿𝐸 is extremely difficult. However, using our techniques such differentiation is quite 

easy. 

In the Figure 4.3, the plot on the left side is the low rank matrix and the plot on the right side is 

the sparse matrix. As we can see from the graph, the low rank matrix 𝐿 represents the classical 𝐿 

which is much lower rank than 𝑀, where the striped lines in 𝐿 are normal for a very low rank 

matrix. We also observe from the graph that most of the values in low rank matrix are not zero 

i.e., only a few values are zero. 

The right graph in the Figure 4.3 represents a sparse matrix, where there are many zero entries 

and there are a few non-zero entries. The non-zeros entries are called anomalies as per the 

principles of eRPCA [1], and the corresponding entries in the low rank matrix with these 

anomalies comes are of 𝑇𝑦𝑝𝑒 − 𝐻𝐸. We can predict with high accuracy (low error) of all the 

entries of the low rank matrix whose corresponding sparse matrix entries are zero (i.e., green in 

color), and these entries are of 𝑇𝑦𝑝𝑒 − 𝐿𝐸. 

 

 
 

Figure 4.3: Low Rank Matrix and Sparse Matrix of SKAION Dataset has 759 sensor nodes, the color code bar 

represents the values in the matrix. The entries of 𝐿 whose corresponding entries of 𝑆 are zero come with 𝑇𝑦𝑝𝑒 −

𝐿𝐸 errors in prediction, the entries of 𝐿 whose corresponding entries of 𝑆 are non-zero come with 𝑇𝑦𝑝𝑒 − 𝐻𝐸 errors 

in prediction. This is a real example of the behavior we described in Figure 2.4. 
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In the typical settings of analyzing the second order matrix (𝑀) using eRPCA, the number of 

zeroes and non-zeroes in the low rank matrix and the sparse matrix are given by the equations 

below. The number of zeroes in the sparse matrix is classically more than the number of zeroes 

than the low rank matrix. 

 

 𝑆𝑧  ≫ 𝐿𝑧   and 𝑆𝑛𝑧 ≪  𝐿𝑛𝑧, 24) 
 

Where, 

          𝑆𝑧: The number of zeroes in Sparse matrix 

 𝐿𝑧: The number of zeroes in Low Rank matrix 

 𝑆𝑛𝑧: The number of non-zeroes in sparse matrix 

 𝐿𝑛𝑧: The number of non-zeroes in Low Rank matrix 

 

The Figure 4.4 represents the singular values of the 𝐿 produced by eRPCA, the y-axis represents 

the size of singular values, and the x-axis represents the index of the singular value order from 

largest to smallest. The singular values decreases and becomes almost zero and constant after 1 

sensor nodes. The singular values imply the number of variables that is required to predict other 

variables. Having only, a single non-zero singular value implies we require just one variable to 

predict rest of the other 758 variables in the matrix of 759*759. 

 

 
 

Figure 4.4: In this Figure the y-axis represents the size of singular values, the x-axis represents the index of the 

singular value order from largest to smallest, the singular values decreases and becomes almost zero and constant 

after 1 sensor node. A single non-zero singular value implies we require just one variable to predict rest of the other 

758 variables. 
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The minimum, maximum, mean(𝜇) and standard deviation(𝜎) of the entries in the sparse matrix 

are -1987.34, 579.47, 0.16, and 0.37 respectively. Similarly, the minimum, maximum, mean and 

standard deviation of the entries in the low rank matrix are 0.98, 3186.08, 22.62, and 29.95 

respectively. The above graph of low rank and sparse matrix is extracted from the range of (𝜇 +

 2 𝜎 , 𝜇 − 2 𝜎) the values beyond this range can be considered as outliers and anomalies. These 

anomalies just act as an alert, and there could be multiple reasons for this anomalous behavior. 

This information helps us to mitigate the risk of being attacked. The anomalies act as an alarm to 

the user to go back and validate the reason on sensor nodes transmission of such data. 

 

4.4 Amazon Communities dataset 
 

In this Section, we present the experiments conducted on singular values of second order 

matrices using the community definitions (CD) for the Amazon communities data mentioned in 

Chapter 3. In Section 4.4.1 and 4.4.2., we analyze the singular values using the SVD on the four 

different community definitions and choose the best CD. We compare the singular values using 

the best CD between SVD, RPCA and eRPCA techniques. 

 

4.4.1 Singular values of Communities Strength  

 

In Section 3.3.1, we have defined four metrics to construct the second order matrix from first 

order matrix of Amazon communities product dataset. However, theoretically we believe that 

CD-II was better metric to consider than other metrics, as CD-II includes not only the edges but 

also the number of nodes in each of the communities. However, we wanted to understand the 

practical significance of each of the three metrics, and we use the SVD technique to practically 

understand the difference among the metrics. 

We analyze the second order matrix of Amazon communities data of size 𝐶𝑆 = 1000. Figure 4.5 

represents the singular values of the second order matrix using CD-I metric of size 𝐶𝑆 = 1000. The 

x-axis represents the index of the singular values ordered from largest to smallest, and y-axis 

represents the size of the singular values of the matrix. We observe the exponential decrease of 

singular values, which is a good indication of a decreasing smooth trend, which captures each of 

the singular values correctly. The first non-zero singular value is 500, which implies that we 

require only 500 variables to predict rest of the other variables in the second order matrix of CD-

I, but as the CD-I doesn’t consider using nodes in the communities, so we would be skeptical of 

using the CD-I metric. 
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Figure 4.5: In this Figure, the y-axis represents the size of singular values of the matrix 𝐿, which is constructed by the 

CD-I, and the x-axis represents the index of the singular values ordered from largest to smallest. The singular values 

decrease and becomes almost zero and constant after 500 sensor nodes, but as the CD-I doesn’t consider using 

nodes in the communities, so we would be skeptical of using the CD-I metric. 

 

Figure 4.6 represents the singular values of the second order matrix using CD-II metric of size 𝐶𝑆 

= 1000. The x-axis represents the index of the singular values ordered from largest to smallest, 

and y-axis represents the size of the singular values of the matrix. We observe the exponential 

decrease of singular values, which is a good indication of a decreasing smooth trend, which 

captures each of the singular values correctly. The first non-zero singular value is 500, which 

implies that we require only 500 variables to predict rest of the other variables in the second 

order matrix of CD-II. 

 

Figure 4.7 shows the singular values of the second order matrix that is formed by CD-III. The x-

axis represents the index of the singular values ordered from largest to smallest, and y-axis 

represents the size of singular values of the matrix. We see that there is no consistent exponential 

decrease of singular values, and most importantly, the singular values remain constant until 500 

and suddenly drops almost to zero after 500. This is anomalies graph for a graph of SVD, which is 

highly insensitive until singular value 500. In conclusion, among all these three metric, the CD-II 

has an exponential decrease in singular values and cuts off to almost zero at 500, which shows 

that we can perform dimensionality reduction techniques like SVD, RPCA and eRPCA better using 

CD-II.  
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Figure 4.6: In this Figure, the y-axis represents the size of singular values of the matrix 𝐿 whose corresponding 𝑀 is 

constructed by the CD-II, and the x-axis represents the index of the singular values ordered from largest to smallest. 

The singular values decrease and becomes almost zero and constant after 500 sensor nodes, and we observe the 

exponential decrease of singular values, which is a good indication of a decreasing smooth trend, which captures 

each of the singular values correctly. 

 

 

 
 

Figure 4.7: In this Figure, the y-axis represents the size of singular values of the matrix 𝐿 whose corresponding 𝑀 is 

constructed by the CD-III, and the x-axis represents the index of the singular values ordered from largest to smallest. 

The singular values decreases and becomes almost zero and constant after 500 sensor nodes, but there is no 

consistent exponential decrease of singular values, and most importantly, the singular values remain constant until 

500 and suddenly drops almost to zero after 500. This is anomalies graph for a graph of SVD, which is highly 

insensitive until singular value 500. 
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Figure 4.71 In this Figure, the y-axis represents the size of singular values of the matrix 𝐿, which is constructed by 

the CD-IV, and the x-axis represents the index of the singular values ordered from largest to smallest. The singular 

values decrease and becomes almost zero and constant after 500 sensor nodes, but the decrease of singular values 

is a discretely continuous trend, which shows the instability of decomposition of such a matrix, so we would be 

skeptical of using the CD-IV metric. 

 

Figure 4.71 shows the singular values of the second order matrix that is formed by CD-IV. The x-

axis represents the index of the singular value ordered from largest to smallest, and the y-axis 

represents the size of singular values of the matrix. We observe that the singular values decrease 

in discretely continuous trend, which shows the instability of decomposition of such a matrix, so 

we would be skeptical of using the CD-IV metric. 

Figure 4.72 shows the second order matrix of Amazon communities data constructed from metric 

CD-2, x-axis and y-axis represents the communities, the values inside represent the strength of 

community connection of CD-2. As we can see from the graph, most of the values are zero and 

only a few of them are nonzero values. 
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Figure 4.72: In this second order matrix, which is constructed by CD2 metric. The x-axis and y-axis represents the 

individual communities, the values inside that represent the strength of connection between two communities 

measured using CD2. 

 

 

4.4.2 Singular Values Comparison of SVD, RPCA and eRPCA 

 
In the Figure 4.8, we have used dimensionality reduction techniques like SVD, RPCA and our own 

eRPCA to compare the singular values of the second order matrix of the Amazon communities 

data [2], which is constructed using the CD-II metric. We observe that the SVD produces larger 

number of non-zero singular values compared to Robust and point wise error techniques like 

RPCA and eRPCA. The first non-zero singular value for the eRPCA is the eighth singular value and 

for the SVD is much larger. This implies that using the eRPCA techniques require a very few 

variables for prediction or dimensionality reduction as compared to the SVD. In practical settings 

of the Amazon communities data, the large number of non-zero singular values for the SVD 

implies that we require a large number of communities for the SVD to predict the strength of 

connection between the other communities. In contrast RPCA and eRPCA requires fewer 

communities to predict rest of the entries for other communities. Therefore, we use eRPCA 

technique for further analysis in our thesis with the CD-II metric definition of the second order 

matrix of the Amazon communities data. 

Amazon Communities Second Order Matrix 



42 

 

 
 

Figure 4.8: In this Figure, the y-axis represents the size of singular values, and the x-axis represents the index of the 

singular value order from smallest to largest. It shows that the singular values of three techniques: SVD, RPCA and 

eRPCA. We see that SVD produces larger number of non-zero singular values than RPCA and eRPCA. These singular 

values of RPCA and eRPCA are similar and that is why the lines are coincided. 

 

In using the eRPCA algorithm for the second order matrix of the Amazon communities data with 

community definition metric of the CD-II, we mainly experimented on three scenarios. In the 

following sections, we detail those experiments on some of the eRPCA parameters and observe 

the corresponding matrices generated from eRPCA. In particular, first, we change 𝜆 values. 

Second, we change the error values to understand the relationship between the low rank and 

the sparse matrix. Third, we measure the prediction error for low rank matrix. 

 

4.5 Effect of 𝝀 values on Low Rank and Sparse Matrices 
 

The idea of experimenting with 𝜆 is based on the observation that the second order matrix of the 

Amazon communities data was highly low rank and sparse using the default value 𝜆0 [1]. From 

the principles of the eRPCA algorithm, a dense low rank matrix is easily predictable, however a 

sparse matrix is not easily predictable since all of the entries can be viewed as anomalies[ ]. 

Technically speaking, those entries of 𝐿 whose corresponding sparse entries are zero (𝑆𝑖𝑗 = 0) 

are of 𝑇𝑦𝑝𝑒 − 𝐿𝐸. However, if the entries of 𝐿 whose corresponding sparse entries are not zero 

 (𝑆𝑖𝑗 ≠ 0) are of 𝑇𝑦𝑝𝑒 − 𝐻𝐸. The purpose of using 𝜆 in the second order matrix of Amazon 

communities data is to adjust the density of non-zero values between the low rank and the sparse 

Singular Values of SVD, RPCA and eRPCA 
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matrix. In other words, the control parameter 𝜆 helps us to control the rank of the low rank matrix 

and the prediction usability of 𝐿, and to control the sparsity in the sparse matrix.  

In the case of applying the eRPCA algorithm to the Amazon communities data, the default value 

of 𝜆 = 1 ∗ 𝜆0 does not yield any non-zero values in 𝐿 . All of the non-zero entries of 𝑀 appear in 

in 𝑆 and all of the singular value of 𝐿 is zero. A low rank matrix 𝐿 with no non-zero singuar values 

or, in other words, no non-zero entries provides no information for prediction. Therefore, the 

experiment of increasing the 𝜆 value is intended to get more non-zero values in 𝐿, and hence 

increase the singular value of 𝐿, which would help us to predict the strength of connection 

between the communities. When eRPCA is run with 𝜆 = 0.1 × 𝜆0 to decompose 𝑀 into 𝐿 and 𝑆, 

as shown in Figure 4.9, there are no non-zero entries in the low rank matrix and the largest 

singular value is zero. In addition, in the sparse matrix, all of the non-zero entries appear. This 

observation is quite opposite to what happens in the classical decomposition of typical second 

order matrix (where  𝑆𝑧  ≫ 𝐿𝑧   and 𝑆𝑛𝑧 ≪  𝐿𝑛𝑧). 

 

 
 

Figure 4.9: In this Figure, the left plot is the visualization of the low rank matrix and the right graph is the visualization 

of the sparse matrix. These plots are obtained from the decomposition of 𝑀 using eRPCA with 𝝀 = 𝟎. 𝟏 × 𝝀𝟎. We 

can see from the above Figure, there are no non-zero values in the low rank matrix, and all of the non-zero values 

appear in sparse matrix. 

 

 

The Figure 4.9 shows the visualization of the entry values in the low rank and the sparse matrix 

obtained by the decomposition of 𝑀 using the eRPCA algorithm for 𝜆 = 1 ∗ 𝜆0 shown on the left 

and right side of the graph respectively. We observe that the low rank matrix has no non-zero 

entries, whereas all of the non-zero values appear in sparse matrix. This can be observed from 

the color dots, where the sparse matrix has more dots than the low rank matrix. Comparing 
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Figure 4.3, which is a classic example of an 𝐿 and 𝑆 from the eRPCA algorithm, to Figure 4.9, one 

can easily that the 𝐿 matrices are substantially different. 

Figure 4.10 shows the visualization of the entries in the low rank and the sparse matrix, shown 

on the left and right side of the graph respectively, obtained by the decomposition of 𝑀 using 

the eRPCA algorithm for 𝜆 = 8 ∗ 𝜆0. We observe that the low rank matrix has a large number of 

non-zero entries, whereas the sparse matrix has a smaller number of non-zero entries as 

compared to 𝐿. This can be observed from the color dots, where the sparse matrix has lesser dots 

than the low rank matrix.  

The sparse matrix is denser than the low rank matrix in the Figure 4.9 compared to the Figure 

4.10. With the increased value of 𝜆, 𝑆 becomes more sparse (i.e., less dense, as observed from 

the color dots). This accounts for more entries in the low rank matrix (i.e., more dense), which is 

helpful for prediction but at the cost of a greater number of known community strengths. The 

various values of 𝜆 in the experiment are shown in the Table 4.1. 

 

 
 

Figure 4.10: In this Figure, the left plot is the visualization of the low rank matrix and the right graph is the 

visualization of the sparse matrix. These plots are obtained from the decomposition of 𝑀 using eRPCA with 𝝀 =

𝟖 ×  𝝀𝟎. We can see from the above Figure, there is large number of non-zero entries in the low rank matrix, and 

there is lesser number of non-zero entries in the sparse matrix. 

 

In the Figure 4.11, the x-axis represents the 𝜆 values and the y-axis represents the number of 

non-zero entries in the sparse matrix 𝑆. We observe that the number of non-zero entries in 

𝑆 for 𝜆 = 0.1 ∗ 𝜆0 is high, and as we increase the value of 𝜆 the number of non-zero entries in 𝑆 

decreases. We observe that the number of non-zero entries in 𝑆 is 4300 for 𝜆 = 0.1 ∗ 𝜆0, and the 

number of non-zero entries in 𝑆 is 800 for 𝜆 = 8 ∗ 𝜆0.  
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Figure 4.11: In this Figure, x-axis represents the 𝜆 values and y-axis represents the number of non-zero entries in 
sparse matrix. This plot shows the decrease in non-zero entries in sparse matrix with increasing 𝜆.  

 

In the Figure 4.12, the x-axis represents the 𝜆 values and y-axis represents the number of non-

zero singular values. We observe that the all the singular values are zero for 𝜆 = 0.1 ∗ 𝜆0, which 

means we cannot predict any of the entries in 𝑀. As we increase the value of 𝜆, the number of 

non-zero singular values increases in the low rank matrix, which means we need to observe more 

of the strengths between the communities but we are actually able to predict something. We 

observe that the number of non-zero singular values is around 20 for 𝜆 = 8 ∗ 𝜆0 which means we 

require 20 dimensions to predict rest of the 980 dimensions.  

 

 
 
Figure 4.12: In this Figure, x-axis represents the 𝜆 values and y-axis represents the number of non-zero singular 
values of the low rank matrix. This plot shows the increase in the number of non-zero singular value of the low rank 
matrix with increasing 𝜆. 
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𝝀 = 𝒍 ∗ 𝝀𝟎 
  𝒍= 

Singular values  Sparse Matrix 
Non-Zeros 

Sparse Matrix 
Zeros 

0.1 0 4324 995676 
0.2 0 4324 995676 
0.5 0 4324 995676 
1.2 0 4324 995676 
1.5 2 4126 995874 
2.0 5 2763 997237 
2.2 7 2742 997258 
2.5 7 2188 997812 
2.7 8 2183 997817 
3.0 11 1786 998214 

3.2 12 1696 998304 
3.5 15 1676 998324 
4.0 18 1164 998836 
5.0 20 973 999027 
6.0 21 920 999080 

7.0 23 871 999129 
8.0 31 722 999278 

 

Table 4.1: This table shows the details of the 𝜆 values used in our experiment and it shows the corresponding 

singular values and number of non-zero and zero entries of the sparse matrix. 

 

As seen can be seen from Figures 4.11 and 4.12 there is a balance between the large and small 

values of 𝜆. In particular, small values of 𝜆 force all entries into 𝑆 and accordingly 𝐿 does not 

allow you to predict anything. Similarily, large values of 𝜆 cause too many non-zero singular 

values in 𝐿 requiring many observations in 𝑀 to make accurate predictions. So our goal is to 

choose a value of 𝜆 that balances these two competing interests. 
 

4.6 Changing 𝒗𝑬 values on 𝑴𝒑to understand the Error in prediction 

 

This Section explains the analysis we conducted on various forms of error due to prediction of 

entries. These errors arise by changing the number of entries to be predicted (𝑀𝑝), and by 

keeping the controlling parameter 𝜆 constant. We use 𝑣𝐸𝐻 in the eRPCA algorithm to designate 

the entries that needs to be predicted. Further, we have analyzed a few different ways to 

measure errors in this scenario. 

When the eRPCA algorithm decomposes 𝑀 by using 𝑣𝐸𝐿 on the off-diagonal entries and 𝑣𝐸𝐻  on 

the diagonal entries, we get 𝐿 and 𝑆. We analyze both 𝐿 and 𝑆 by looking for entries where 𝑆𝑖𝑗 ≠

0. Since these entries are not predictable we set 𝑣𝐸𝐻 on those entries and recompute the 

decomposition to get 𝐿𝑝 and 𝑆𝑝. We test whether 𝐿𝑝 is a good approximation of 𝐿 and we repeat 



47 

the process of using the eRPCA algorithm by changing the number of entries to be predicted (𝑀𝑝) 

in incremental value and measure the error for each of the 𝑀𝑝 = {2,5,10,..100 ,..5000 ,…996000). 

We measure various forms of error, to understand the effect of 𝑀𝑝. As we change 𝑀𝑝, the error 

of each of the entries changes as well, and we want to account for the error for each of the 𝑀𝑝 

values used in the error metric, so we normalize the error based upon the value of 𝑀𝑝. We define 

the first error metric, to account for 𝑀𝑝 and call it the 𝑙𝑖𝑧𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑁𝐸) , it is the error between 

the low rank matrices divided by the number of entries taken for prediction. It is represented 

mathematically as  

 𝑁𝐸 =  
∑ |𝐿𝑝−𝐿|𝑖,𝑗

2 × 𝑀𝑝
. 25) 

 

Where 𝑀𝑝, represents number of communities that needs to be predicted, and we multiply by 2 

in the denominator because the second order matrix is symmetric across the diagonals, 𝐿 is the  

low rank matrix arising from 𝑀 with 𝑣𝐸𝐿 on all off-diagonal entries and 𝐿𝑝  is the low rank matrix 

arising from 𝑀 with 𝑣𝐸𝐻 on 𝑀𝑝 entries.  

In the above equation, our hypothesis is that as we increase the number of entries 𝑀𝑝 to be 

predicted, the error should converge to some mean error. Surprisingly it seems not to happen as 

we hypothesize. In the Figure 4.13, which represents the error metric 𝑁𝐸, x-axis represents the 

increasing number of  𝑀𝑝 (from 2 to 99600, and refer to the appendix for detailed values of x-

axis), and y-axis represents the error metric 𝑁𝐸. As we observe, the errors (𝑁𝐸) do not appear 

to be converging to any mean (at least for the range of value of 𝑀𝑝 we have studied). Figure 4.13 

seems to raise many questions on the nature of fluctuating pattern of errors 𝑁𝐸. 

Accordingly, we delve into the error metric (𝑁𝐸) in order to understand the reasons for the 

fluctuations of 𝑁𝐸. Mathematically, the 𝑁𝐸 trend line for specific 𝑀𝑝 decreases because the 

value in denominator 𝑀𝑝 has changed relatively more than the numerator in the equation 

( 𝑖. 𝑒. , ∑ |𝐿𝑝 − 𝐿|   <  2 ×  𝑀𝑝)𝑛=𝑛
𝑛=1 , which means the errors of individual entries accounted by 

those additional entries are relatively small as compared to the previous entries. In addition, the 

𝑁𝐸 trend line for specific 𝑀𝑝 increases because of the denominator  𝑀𝑝 has changed relatively 

more than the numerator in the equation ( 𝑖. 𝑒. , ∑ |𝐿𝑝 − 𝐿|  >  2 ×  𝑀𝑝)𝑛=𝑛
𝑛=1  which means the 

error accounted by those additional entries are relatively small as compared to the previous 

entries. 

Figure 4.13 demonstrates that the distributions of errors in approximating 𝐿 by 𝐿𝑝 are almost 

certainly not stationary as a function of 𝑀𝑝. Accordingly, we need to be very careful in analyzing 

the prediction errors. 
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Figure 4.13: In this Figure, it represents the error metric 𝑁𝐸, the x-axis represents the number of entries to be 
predicted (𝑀𝑝), and the y-axis represents the absolute un-normalized error or in short, we call Normalized 

error(𝑁𝐸). The 𝑁𝐸 is not showing any trend and is fluctuating even for large values 𝑀𝑝. 

 

In the previous error metric 𝑁𝐸, we observe the errors are not stationary as a function of 𝑀𝑝 , so 

we examine 𝑁𝐸 carefully to see if there is a better way to measure the errors in the entries. In 

order to do this, we define a new error metric called as absolute value of un-normalized error 

denoted by 𝐴_𝑈𝑁𝐸. 𝐴_𝑈𝑁𝐸 is defined as the absolute difference between the default low rank 

matrix (𝐿), and the predicted low rank matrix (𝐿𝑝), mathematically it is represented in the 

equation below. As we observe in the error metric it does not include 𝑀𝑝, which would give us a 

better picture of the error variation of the entries between the low rank matrices. Therefore, we 

define  

 𝐴_𝑈𝑁𝐸 = ∑ |𝐿𝑝 − 𝐿|𝑖,𝑗 . 26) 

 

 

In Figure 4.14, represents the error metric 𝐴_𝑈𝑁𝐸. The x-axis represents the increasing number 

of 𝑀𝑝 and the y-axis represents the error metric 𝐴_𝑈𝑁𝐸. We observe from the graph that the 

error increases as a non-linear exponential function.  
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Figure 4.14: In this Figure, it represents the error metric 𝐴_𝑈𝑁𝐸, the x-axis represents the number of entries used 
to predict (𝑀𝑝), and the y-axis represents the absolute un-normalized error(𝐴_𝑈𝑁𝐸). It shows the trend that with 

the increase in number of entries to be predicted the error keeps increasing. 

 

We observe the graph in the Figure 4.14, with the increase in number of entries to be predicted, 

the algorithm tries to find the predicted value of those entries, which would be slightly different 

from the actual values, and the error keeps increasing with increasing number of entries to be 

predicted. However, the rate of increase keeps changing. Therefore, this means the normalized 

error keeps fluctuating because of the large values of 𝑀𝑝 with small change in numerator or 

relatively large change in numerator and small change in 𝑀𝑝. 

 

4.7 Prediction of 𝑴 using Low Rank matrix by changing 𝝀 and 𝐏𝐦𝐚𝐱 
 

Attributes of Error Metrics: When we do prediction of entries of 𝑀, such predictions always 

comes with a cost of error. In order to know the effect of these errors on the problems of 

interest, we need to quantify the error metrics based on the specific problem situation. We 

present primarily four metrics to measure the error of prediction. First, we use SSE (Sum of 

Squared Errors) which is defined as the sum of the squares of the difference between predicted 

matrix (𝐿 or 𝐿𝑝) and the second order matrix 𝑀. Second, we use Absolute Error which is 

defined as the sum of the absolute values of the differences between the entries of predicted 

matrix (𝐿 or 𝐿𝑝) and 𝑀.  

 

In practice, we evaluate the prediction accuracy by comparing the second order matrix 𝑀 (which 

represents the real world data) and various low rank matrices obtained by changing the 

parameters of the eRPCA algorithm. In this Section, we understand the nature of the prediction 

error of 𝑀 using 𝐿 by varying the values of 𝜆 and Pmax. We take three different values of Pmax, 

one is the optimal singular value using SVD (i.e., Pmax =  300) . This  Pmax value was derived using 



50 

an analysis similar to that in Chapter 3 using a 500 × 500 second order matrix. To study how the 

algorithm performs away from the optimal value of  Pmax =  300 we also use the values of  Pmax 

= 100 and 400. 

 

In this Section of the experiment, we consider 𝐶𝑆 = 500 which implies that  𝑁 = 250,000 and 

we do not use 𝑀𝑝 (in other words we compare 𝐿 to 𝑀 instead of comparing 𝐿 to 𝐿𝑝). We measure 

the error for a given 𝜆 in three different settings ( Pmax =100, 300 and 400). We start by taking 

the default value of 𝜆 = 𝜆0 and increment the value of 𝜆  in a range from 1 to 40, and measure 

the error between 𝑀 and 𝐿 using an error metric, similar to  𝐴_𝑈𝑁𝐸, for each of the 𝜆 values 

defined as 

 𝐴_𝑈𝑁𝐸 = ∑|𝑀 − 𝐿|

𝑖,𝑗

. 27) 

 

In the Figure 4.16, the x-axis represents the λ values, and the y-axis represents the 𝐴_𝑈𝑁𝐸 error. 

There are two lines, which are captured with  Pmax values of 300 and 400. Herein, we observe 

that after  Pmax is changed from the optimal value of  Pmax = 300 to 400, there is negligible 

difference in the measure of error with changing values of 𝜆 for both of the values of Pmax, hence 

we observe from Figure 4.16 that the gray line coincides with orange line.  In addition, we observe 

that after 𝜆 = 25, the error becomes completely zero which shows that all the entries of 𝐿 are 

perfectly predictable after 𝜆 = 25 (but we do require many singular values to make these 

predictions). In particular, we need to note that as we increase the value of 𝜆, we are making the 

low rank matrix denser (i.e., we are moving all the values from sparse matrix to low rank matrix). 

This increase comes at the cost of the rank of the low rank matrix. By increasing the value of 𝜆, 

though we are making the low rank matrix denser but the rank of low rank matrix may be much 

higher as compared to the default value of 𝜆 = 𝜆0.  

In Figure 4.17, the x-axis represents the λ values, and the y-axis represents the A_UNE error. 

There are two lines, which are captured with the  Pmax values of 100 and 300.  Herein, we observe 

that after the Pmax is changed from the optimal value of  Pmax = 300 to 100, there is slight 

difference in the measure of error with changing values of 𝜆 when compared to Figure 4.16. 

There is a gap in the error metric at  𝜆 = 25 when measured for  Pmax= 100 and 300. The error is 

zero for  Pmax = 300 at 𝜆 = 25 whereas the error is not zero for  Pmax= 100. This observation allows 

us to draw an inference that by using  Pmax less than optimal value of singular value (< 300), the 

error may converge to nearly zero after some higher values of 𝜆 (> 25) than using the optimal 

value( Pmax  ≥ 300). In other words, the error converging to almost zero is slightly faster for 

 Pmax  ≥ 300 than for  Pmax  < 300. Though the trend of the error line is very similar to both 

 Pmax = 300 and 100. In addition, the error at different values of 𝜆 could have slightly more error 

for  Pmax  < 300 compared to Pmax  ≥ 300. 
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Figure 4.16: In this Figure, x-axis represents the 𝜆 values, and the y-axis represent the 𝐴_𝑈𝑁𝐸 error. This graph shows 
the variation of error with variation of 𝜆 values, with two different values of  𝑃𝑚𝑎𝑥  = 300 and 400. The orange line 
represent the  𝑃𝑚𝑎𝑥  of 300 and the gray line represents the  𝑃𝑚𝑎𝑥  of 400, both the lines coincides as seen in the 
graph. 

 

 
 
Figure 4.17: In this Figure, x-axis represents the 𝜆 values, and the y-axis represent the 𝐴_𝑈𝑁𝐸 error. This graph shows 
the variation of error with variation of 𝜆 values, with two different values of  𝑃𝑚𝑎𝑥  = 100 and 300. The orange line 
represent the  𝑃𝑚𝑎𝑥  of 300 and the blue line represents the  𝑃𝑚𝑎𝑥  of 100, both the lines coincides as seen in the 
graph. 
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 4.8 Prediction of 𝑴 using the low Rank matrix (𝑳) by changing 𝝀 and 𝒗𝑬 on 𝑴𝒑 

 

In Section 4.7, we demonstrated that we should keep Pmax  ≥ 300 to optimize errors, so we 

proceed with that value in this Section. In addition, we measured errors with only one metric. 

However, in this Section, we will be measuring different kinds of error metrics in prediction 

between 𝑀 and 𝐿. We sub-divide this section into 4.8.1 and 4.8.2, where the former one deals 

with 𝑀 −  𝐿0 and the latter one deals with 𝑀 − 𝐿𝑝. In this Section, we vary two parameters of 

eRPCA i.e. 𝜆 and 𝑣𝐸, and we keep 𝑀𝑝 constant at 100,000 entries. We measure two metrics of 

errors i.e. SSE (Sum of Squared Errors) and Absolute errors. 

 

When we run the eRPCA algorithm on the second order matrix, it is decomposed into a low rank 

and a sparse matrix. With different value of 𝜆 the low rank and sparse matrix are different. As we 

observed previously, as we increase the value of 𝜆, the matrix becomes much denser. With this 

understanding of the principles of the eRPCA algorithm, we study the effect of 𝜆 on various kinds 

of errors. In addition, when we measure the error, we have four different views of observing the 

entries. 1) Complete Entries without Diagonal entries, herein, we consider only off diagonal 

entries to calculate the error. 2) Complete Entries, herein, we consider all the entries to calculate 

the error. 3) GPE Entries: In here, we consider only the GPE-Good predictable Entries (𝑆𝑖𝑗 ≔

0 𝑜𝑟 𝑇𝑦𝑝𝑒 − 𝐿𝐸) to calculate the errors. 4) GPE Entries without Diagonal entries: In here, we 

consider all the Good Predictable Entries (𝑆𝑖𝑗 ≔ 0 𝑜𝑟 𝑇𝑦𝑝𝑒 − 𝐿𝐸) without diagonal entries to 

calculate the errors. 

We will first analyze the second order matrix using eRPCA using the default value of 𝑣𝐸, i.e., using 

𝑣𝐸𝐻 on the diagonals and 𝑣𝐸𝐿 on all off diagonal elements. We run the eRPCA algorithm to get a 

low rank and a sparse matrix, and we analyze each of the differences between the entries from 

the low rank matrix (𝐿) with the second order matrix(𝑀).  

We use sum of squared errors to magnify the tiny errors of each entries, which is helpful for 

better analysis. In addition, we used absolute difference of the entries to understand the actual 

error difference of each entries. SSE is given by the below equation and here 𝐿 = 𝐿0 in 4.8.1 and 

𝐿 = 𝐿𝑝 in section 4.8.2 

 𝑆𝑆𝐸 =  |𝑀 −  𝐿|2, 28) 
 

Absolute valued error is given by the below equation and here 𝐿 = 𝐿0 

 𝐴𝑏𝑠 =  |𝑀 − 𝐿|, 29) 
 

Where, 

 𝑀 Represents the second order matrix 

 𝐿 Represents the low rank matrix (𝐿0 or 𝐿𝑝) 
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4.8.1 Prediction by default 𝒗𝑬 [𝑴 − 𝑳𝟎] 

 
Figure 4.18 shows the SSE error distribution of 𝑀 − 𝐿0, the x-axis represents the λ value and the 

y-axis represents the SSE. The four different lines represent four different views of measuring 

error. The L0 represent the low rank matrix produced by the eRPCA algorithm using default value 

of 𝑣𝐸, i.e., using 𝑣𝐸𝐻 on diagonals and 𝑣𝐸𝐿 on off diagonals.  

 

In the Figure 4.18 and 4.19, in the yellow line “GPE- diagonal”, we subtract the entries of second 

order matrix and low rank matrix of those off diagonal GPE entries. We observe that most of the 

errors of GPE are focused on diagonals (by comparing GPE and GPE-diagonal), so there are hardly 

any errors on off diagonal entries, which imply that we make very best prediction on GPE for off 

diagonal entries. In addition, the trend line for the error is flat which also shows that, its 

dependency on 𝜆 is almost negligible. 

 

 
 
Figure 4.18: This Figure represents the SSE error distribution of 𝑀 − 𝐿0, the x-axis represents the 𝜆 value and the y-
axis represents the SSE. The four different lines represent four different views of measuring error.The 𝐿0 represents 
the low rank matrix by processing eRPCA with 𝑣𝐸𝐿  on non diagonal entries and 𝑣𝐸𝐻  on diagonal entries. 
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Figure 4.19: This Figure represents the Absolute error distribution of 𝑀 − 𝐿0, the x-axis represents the 𝜆 value and 

the y-axis represents the Absolute error. The four different lines represent four different views of measuring 
error.The 𝐿0 represents the low rank matrix by processing eRPCA with 𝑣𝐸𝐿  on non diagonal entries and 𝑣𝐸𝐻  on 
diagonal entries. 

 

For the gray line in Figure 4.18 and 4.19, we subtract the entries of second order matrix and low 

rank matrix of all the Good Predictable Entries. We observe that the error becomes completely 

constant after 𝜆 = 11, this shows that in order to predict GPE very well. We may need to use 𝜆 = 

11 or more to find the best prediction, increasing the value of 𝜆 after 11 would cost more 

computation, but gives the same error results, so we suggest to use 𝜆 = 11 for this case. In 

addition, when we compare the yellow and gray line, we see that most of the errors are 

concentrated at the diagonal entries. 

 

In the Figure 4.18 and Figure 4.19, we see from the blue line “Whole - Diagonal” that the error 

are high relative compared to other lines in the Figure, which is obvious because we are 

considering all the entries for error calculation. We can also make an inference that the errors 

becomes constant between 𝜆 = 11 and 𝜆 = 22, and after 𝜆 = 25. From  𝜆 = 1 to 4, we observe that 

the errors has a greater negative slope, which means the errors drastically change in this range 

of  𝜆, and the error change after  𝜆=4 is not so drastic. In the gray and orange line, we observe 

that from 𝜆 = 4 to 25 they become similar in their error profile and after 𝜆 = 25 we observe that 

they completely converge in error value, becoming constant after that. In addition, there is a 

similar trend between the blue and yellow lines after 𝜆 =25, the errors converge to zero and 

become constant. Now carefully observing these all four lines, we can infer that there are some 

super anomalies, whose error cannot be decrease further with increasing 𝜆, and interestingly this 

fall under diagonal entries.   Such, super anomalies are not predicted by the standard eRPCA 

theory []. 

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45

A
b

so
lu

te
 v

al
u

e
 o

f 
Er

ro
r

λ

Abs of (𝑀− 𝐿o)
Whole - Diagonal

Whole

GPE - Diagonal

GPE



55 

4.8.2 Prediction by varying 𝒗𝑬 [𝑴 − 𝑳𝒑] (high 𝒗𝑬 for 𝑺𝒊𝒋 = 𝟎 entries) 

 

Figure 4.18 shows the SSE error distribution of 𝑀 − 𝐿𝑝, the x-axis represents the λ value and the 

y-axis represents the SSE. The four different lines represent four different views of measuring 

error. The Lp represent the low rank matrix produced by the eRPCA algorithm using 𝑣𝐸𝐻 on 

diagonals and on 𝑀𝑝 = 100000 off diagonal entries.   

In all the four lines except blue line “Whole-Diagonal”, there is a drastic increase in error from 𝜆 

= 1 to 4, from 4 to 10, there is drastic decrease in the error, and later it becomes much constant.  

As we increase 𝜆 from 4 to 10, the low rank matrix becomes more dense and correspondingly 

increases the sparsity of sparse matrix, so the error decreases drastically. After 𝜆 =10, there are 

entries which are super anomalies which could not be predicted and hence the error remains 

almost constant after 𝜆=10. There is negligible increase in error from 𝜆=20 to 22 and then there 

is negligible decrease from 22 to 25 in all the 4 lines. 

 

 
 
Figure 4.21: This Figure represents the SSE error distribution, the x-axis represents the increasing 𝜆 value 
and the y-axis represents the SSE, and all the four different lines represent various ways to observe the 
entries. 𝐿𝑝 is the low rank matrix , which is decomposed by eRPCA using 𝑣𝐸𝐻 for 𝑀𝑝 . 
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Figure 4.22: This Figure represents the Absolute error distribution, the x-axis represents the increasing 
𝜆 value and the y-axis represents the SSE, and all the four different lines represent various ways to observe 
the entries. 𝐿𝑝 is the low rank matrix , which is decomposed by eRPCA using 𝑣𝐸𝐻 for 𝑀𝑝 . 

 

For the yellow line “GPE- diagonal” in Figure 4.22, we subtract the entries of the second order 

matrix and the low rank matrix of those off diagonal GPEs. In here, we find that most of the errors 

of GPEs are focused on the diagonals, so there are small errors on off- diagonal entries.  This 

observation implies that we make good predictions for GPEs for off diagonal entries. In addition, 

the trend line for the error is flat after  𝜆 =10, which show that, its dependency on,  𝜆 is almost 

negligible after certain value of 𝜆. 

 

For the gray line “GPE” in Figure 4.22, we subtract the entries of the second order matrix and low 

rank matrix of all the GPEs. In here, we find that the error becomes completely constant after 𝜆 

= 10, this shows that in order to predict GPEs very well we may need to use 𝜆 = 11 or more to 

find the best prediction.  Increasing the value of 𝜆 after 10 would cost more computation but 

with the same results, so we suggest to use 𝜆 = 10 for this case. In addition, when we compare 

case-3 and case-4, we see that most of the errors are concentrated at diagonal entries in GPE. 

 

For the orange line “Whole” in Figure 4.22, we subtract all the entries of second order matrix and 

low rank matrix. We find that the error is high relative to other lines in the Figure, which is obvious 

because we are considering all the entries for error calculation. We can also make an inference 

that the errors becomes constant between 𝜆 = 11 and 𝜆 = 12, and after 𝜆 = 25 we see that errors 

becomes negligible. From  𝜆 = 1 to 4, we observe that the errors has greater negative slope, which 

means the errors drastically change in this range of 𝜆, and the error change after  𝜆 = 4 is not that 

drastic. 
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From the blue and yellow line in Figure 4.22, we see that from 𝜆 = 4 to 25, they are similar in 

error profile and after 𝜆 = 25, we see that they completely converge in the error values and 

become constant. In addition, there is a similar trend between orange and gray line, after 𝜆 =25, 

these lines error converge to zero and become constant. Now carefully observing these two 

scenarios, we can infer there are some super anomalies whose error cannot be decreased further 

by changing 𝜆, and interestingly these are diagonal entries. 

 

4.9 Empirical relation between 𝝀 and number of non-zeroes in 𝑺 
 

In this Section, we analyze the relationship between the number of non-zeroes entries in the 

sparse matrix (𝑆0 𝑎𝑛𝑑 𝑆𝑝) with changing 𝜆. We conducted the experiment in five different 

settings of 𝑀𝑝 and observe the relationship between 𝜆 and 𝑆𝑛𝑧: 1) Running eRPCA and getting 

low rank matrix 𝐿 and sparse matrix 𝑆 2) Running eRPCA with  𝑀𝑝 as 20,000 entries 3) Running 

eRPCA with  𝑀𝑝 as 50,000 entries 4) Running eRPCA with  𝑀𝑝 as 100,000 entries 5) Running 

eRPCA with  𝑀𝑝 as 200,000 entries. We vary  𝑀𝑝 values on those entries, which gives 𝑇𝑦𝑝𝑒 − 𝐿𝐸 

errors. In each of the above settings, we vary the 𝜆 value and measure the number of non-zeroes 

in the sparse matrix for every change in 𝜆 value and Table 4.2 shows the results of the analysis.  

 

 

 
 

Figure 4.23 (a): The Figure shows the variation of 𝑆𝑛𝑧 and 𝜆, x-axis represents the 𝜆 values and the y-axis represents 

𝑆𝑛𝑧 . The different colored lines represent non-zero entries in 𝑆0, 𝑆𝑝 from 𝑀𝑝 entries of 20k, 50k, 100k, 200k. 
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In the Figure 4.23(a), the x-axis represents the 𝜆 values and the y-axis represents 𝑆𝑛𝑧. The 

different colored lines represent  𝑆0,  Sp from Mp entries of 20k, 50k, 100k, 200k. The graph 

shows that there is an exponential decay of number of non-zeroes in sparse matrix with 

increasing value of 𝜆. Interestingly, complete entries in sparse matrix become zero after 𝜆 = 25 

and this does not depend on the 𝑀𝑝 entries. We observe that if the entries of  𝑀𝑝 is higher, than 

the number of non-zeroes in sparse matrix is high compared to the lower entries of  𝑀𝑝 for given 

value of 𝜆. 

We construct the relationship between the number of non-zero entries in sparse matrix and the 

𝜆 values using the exponential curves from the Figure 4.23(a) and from the Table 4.2.In the 

various settings of 𝑀𝑝, we observe the relationship between 𝑆𝑛𝑧 and 𝜆 which appears to be 

exponential. Therefore, we fit the above values with the nonlinear equation using R’s nls function 

and we get the below generalized equation from each of the different settings of 𝑀𝑝. 

 𝐿𝑜𝑔(𝑆𝑁𝑍) =  7.2788 –  0.19704 ∗  (𝜆) 30) 
 

 

 

Where,  

𝑆𝑁𝑍 represents the number of non-zeroes in sparse matrix 

 𝜆 is the controlling parameter to control the sparsity of 𝑆𝑁𝑍 

Therefore, the equation is with intercept value of 7.2788, and the coefficient value for 𝜆 

is -0.1970.  
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Figure 4.23: The Figure shows the variation of 𝑆𝑛𝑧 and 𝜆, x-axis represents the 𝜆 values and the y-axis represents 𝑆𝑛𝑧 . 

The different colored lines represent non-zero entries in 𝑆0, 𝑆𝑝 from 𝑀𝑝 entries of 20k, 50k, 100k, 200k, and the 

predicted value. 
 

 𝝀 𝑺𝒏𝒛 NZ_20k NZ_50k NZ_100k NZ_200k Predicted 

1 1413 1413 1410 1408 1402 1190 

2 961 1261 1190 1108 969 977 

2.5 733 923 1123 944 748 886 

3 577 843 938 846 600 802 

3.5 465 611 800 743 456 727 

4 333 518 695 708 370 659 

4.5 268 363 561 656 306 597 

5 243 374 520 580 280 541 

5.5 243 320 520 556 280 490 

6 203 263 334 503 234 444 

8 179 193 262 383 218 300 

10 183 209 232 310 228 202 

12 113 126 158 201 158 136 

15 105 119 133 161 139 75 

18 105 106 112 142 127 42 

20 104 108 115 137 121 28 

22 103 108 117 129 138 19 

25 0 0 0 0 0 11 

30 0 0 0 0 0 4 

35 0 0 0 0 0 1 

40 0 0 0 0 0 1 
 

Table 4.2: This table shows the experimental results between 𝜆 values and the number of non-zeroes corresponding 

to the 𝜆 value. The predicted value corresponds to the values we have predicted based on the experiments on other 

columns. 
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Table 4.2 has the 𝜆 values used in our experiment, 𝑆𝑛𝑧 is the number of non-zero values with 

no 𝑀𝑝, NZ_20k represents the number of non-zero values in sparse matrix obtained by using 

𝑀𝑝 = 20000 entries. NZ_50k represents the number of non-zero values in sparse matrix 

obtained by using 𝑀𝑝 = 50000 entries. NZ_100k represents the number of non-zero values in 

sparse matrix obtained by using 𝑀𝑝 = 100000 entries. NZ_200k represents the number of non-

zero values in sparse matrix obtained by using 𝑀𝑝 = 200000 entries. Predicted is the number of 

non-zeroes predicted from all the five settings. 

In the Figure 4.23, the x-axis represents the 𝜆 values and the y-axis represents 𝑆𝑛𝑧. The different 

colored lines represent  𝑆0,  Sp from Mp entries of 20k, 50k, 100k, 200k, and the predicted line. 

The graph shows that there is an exponential decay of number of non-zeroes in sparse matrix 

with increasing value of 𝜆. Interestingly, complete entries in sparse matrix become zero after 𝜆 =

25 and this does not depend on the 𝑀𝑝 entries. We observe that if the entries of  𝑀𝑝 is higher, 

than the number of non-zeroes in sparse matrix is high compared to the lower entries of  𝑀𝑝 for 

given value of 𝜆. The predicted dot line shows the fit line from the above equation, which fits the 

exponential curves. 

 

4.9.1 Making a few Non Zero Entries as High 

 

 
 
Figure 4.24: The Figure shows the variation of Snz and λ, x-axis represents the λ values and the y-axis represents Snz. 

The different colored lines represent non-zero entries in S0, Sp from Mp entries of 20k, 50k, 100k, 200k. In those Mp 

entries that needs to be predicted, 100 entries of those Mp entries are used for prediction whose corresponding 

sparse entries are not zero. 
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In the previous experiments, we predict only those entries of 𝑀 𝑜𝑟 𝐿 whose corresponding 

sparse entries are zero. In this experiment, we use 𝑣𝐸𝐻 for 100 of those entries, whose 

corresponding sparse matrix are non-zero.  There are 1000 non-zero entries in the sparse matrix 

and we use 𝑣𝐸𝐻 for 100 of those entries and run the eRPCA as mentioned in the Section 4.9. In 

the Figure 4.24, shows the variation of 𝑆𝑛𝑧 and 𝜆, x-axis represents the 𝜆 values and the y-axis 

represents 𝑆𝑛𝑧 . The different colored lines represent non-zero entries in 𝑆0, 𝑆𝑝 from 𝑀𝑝 entries 

of 20k, 50k, 100k, 200k. In those 𝑀𝑝 entries that needs to be predicted, 100 entries of those 𝑀𝑝 

entries are used for prediction whose corresponding sparse entries are not zero. We observe that 

Figure 4.24 and 4.23(a) are very similar in the exponential curve pattern, which makes us to draw 

inference that, the relationship between 𝜆 and the number of non-zero entries in sparse 

matrix 𝑆𝑛𝑧, doesn’t depend on the entries which are either of  𝑇𝑦𝑝𝑒 − 𝐿𝐸 or 𝑇𝑦𝑝𝑒 − 𝐻𝐸. 

 

4.10 Distribution of Error entries in prediction of 𝑴 −  𝑳𝒑 

 

The decomposition of 𝐿 and 𝑆 helps us to predict the entries of 𝑀 using 𝐿. The interesting 

observation is that each of the entries has different errors, and most of the entries have very 

small errors and only a few of the entries have large errors. These large errors tend to dominate 

the overall error metric of the matrix prediction, so in this Section we analyze the distribution of 

the errors of each of the entries. 

To explain the distribution of errors, we take the results obtained by the eRPCA algorithm using 

the parameters 𝜆 = 10 ×  𝜆0, 𝑀𝑝 = 100000 and Pmax =  300 (based upon the analysis in 

previous Sections). The sparse matrix obtained from the decomposition of 𝑀 using the eRPCA for 

these parameters, is highly sparse as compared to the low rank matrix 𝐿. Therefore, we expect 

the errors of most of the entries to be very low as we are only attempting to predicts GPEs. 

Histogram of errors of all entries: In Figure 7.1, the y-axis represents the number of entries and 

the x-axis represents the absolute error of each of the entries, the histogram shows the error 

distribution of all the entries of the predicted matrix (𝑀 − 𝐿𝑝). We observe from the graph that 

the maximum error of all the entries is less than 0.45 and minimum error of all the entries is zero. 

The mean of errors is 0.05, the standard deviation is 0.0005, and the median of the distribution 

is 0.04. 95% of the entries are below 0.0504 which demonstrates that the distribution is highly 

skewed towards lower values of errors. In addition, there are a very few entries, in fact less than 

0.01 % of all entries, whose errors are in the range of 0.075 to 0.155 and 0.25 to 0.42. 
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Figure 7.1: This Figure shows the plot of histogram of errors of all the entries. The x-axis represents the absolute 
error and the y-axis represents the number of entries. 

 

Histogram of outlier entries (Only top ~ 2000 entries): In the Figure 7.2, the y-axis represents 

the number of entries and the x-axis represents the absolute error of each of the entries. It shows 

the error distribution of only the outlier entries (magnified view of histogram of error greater 

than 0.28) from Figure 7.1. As we see from the graph that all of the entries have relatively high 

absolute error in the range of 0.28 to 0.45. The minimum value is 0.285 and maximum value is 

0.418. As we can see from the distribution shown in Figure 7.2, there are 350 highly concentrated 

entries in the error range from 0.365 to 0.38, and around 220 entries in the error range from 

0.402 to 0.418. There are also other cohorts of 150 and 80 entries, which have different error 

range. We observe from Figure 7.1 and 7.2 the distribution of error entries is completely non-

normal. 

 

 
 

Figure 7.2: It shows the plot of histogram of top 2000 large error entries. The x-axis represents the absolute error 
and the y-axis represents the number of entries.  These entries are difficult to predict and dominate the errors 

shown in many of the plots in this Section. 
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Histogram of non-outlier entries (excluding top ~ 2000 entries): In Figure 7.3, the y-axis 

represents the number of entries and the x-axis represents the absolute error of each of the 

entries. It shows the error distribution of non-outlier entries, we can see from the graph the 

errors of the entries are in the range from zero that is the minimum value and to 0.025 that is 

the maximum value. More than 99% entries (total ~ 250,000 entries) lie in the small error range 

(< 0.025). 

 

 
 

Figure 7.3: It shows the plot of histogram of error entries excluding top 2000 large error entries. The x-axis 
represents the absolute error and y-axis represents the number of entries. 

 

The scenario distribution pattern of error entries that is explained above will be mostly same for 

any value of 𝜆, 𝑀𝑝 and Pmax. In addition, we found that the high outlier errors are due to 𝑇𝑦𝑝𝑒 −

𝐻𝐸, and most interestingly, the entries of 𝑇𝑦𝑝𝑒 − 𝐻𝐸 error are mostly focused on the diagonals. 

In addition, there are large number of entries with small errors that is because of the 𝑇𝑦𝑝𝑒 − 𝐿𝐸. 

As we increase the value of 𝜆, we observe that the entries move from 𝑇𝑦𝑝𝑒 − 𝐻𝐸 to 𝑇𝑦𝑝𝑒 − 𝐿𝐸 

which is explained in detail in Section 4.10.1. 

 

4.10.1 Percentile to measure the entries of errors 

 

In the previous Section, we observed that the distribution of errors is quite non-normal and has 

interesting structure.   After analyzing the distribution of errors of all the entries, we find that 

each of the cohorts of entries is going to have different errors with changing 𝜆, and we need to 

quantify error metric for each of such cohort of entries. In this scenario, the better way to 

quantify such errors is to look at the percentiles of the errors. 

In this problem, we observe that below 99.25 percentile of the entries, most of their errors are 

zero and therefore the errors would start much above 99 percentile. Hence, we chose to start by 

looking at the 99.25 percentile of error entries and increasing the percentile gradually from there. 
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We look at 7 different percentile ranges, 99.25, 99.40, 99.50, 99.60, 99.75, 99.85 and 99.99 and 

compare the error percentiles across increasing 𝜆 values as shown in Figure 7.4 (keeping with our 

previous analysis we take 𝑀𝑝 = 100000 and  Pmax = 300 as parameters used in eRPCA). 

In Figure 7.4, the x-axis represents 𝜆 of ranging from 1 to 40 (× 𝜆0) and the y-axis represents 

absolute error, and each of the lines represents the corresponding percentile values. The orange 

and gray line, which is percentile value of 99.40 and 99.5, shows that the error remains constant 

until for 𝜆 = 2 and suddenly we see a drastic decrease in error from 𝜆 = 2 to 2.5.  

In the Figure 7.4, the blue line represents 99.25 percentile, we see that the error is very low and 

the error becomes completely zero after  𝜆 > 2.5. The orange represents 99.40 percentile, the 

error becomes zero after 𝜆 =3.5. The gray line represents 99.50 percentile, from 𝜆 = 2.5 to 5, 

there is a gradual decrease in error and then the error drops to zero for 𝜆 ≥ 5. It tells us a story 

that some of these entries would move from 𝑇𝑦𝑝𝑒 − 𝐻𝐸 to 𝑇𝑦𝑝𝑒 − 𝐿𝐸 and be better predicted 

after  𝜆=2.5 for 99.25 percentile , after 𝜆=3.5 for 99.40 percentile, after 𝜆=5 for 99.50 percentile. 

 

 
 
Figure 7.4:  The percentile values of various error entries for 𝜆 as the x-axis (1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 8, 
10, 12, 15, 18, 20, 22, 25, 30, 35, 40 ) and absolute errors as the y-axis. Each of the line represents the percentile 
value of the error entries starting from 99.25 percentile to 99.99 percentile. 

 

The error entries for percentile 99.85 could be changed to an extent but after the value of 𝜆 > 25, 

the errors for these entries would remain completely constant. We observe that for the range of 

𝜆 values from 18 to 25, the errors increases, remain constant and decrease, which is a peculiar 

behavior as seen in the plot. 
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The dark blue color represents 99.99 percentile, the errors would mostly remain constant 

irrespective of large change in 𝜆 value. This is because of super anomalies behavior of sparse 

values, which cannot be changed with any increasing in value of 𝜆. All the percentile values 

except 99.99 and 99.85, the errors would come down to zero after 𝜆 = 11. Therefore, for the 

entries of this kind, the errors could not be changed with change in 𝜆 values.  

This idea of super anomalies is not part of the current eRPCA or RPCA literature. A full explanation 

of Figure 7.4 and super anomalies would be an excellent avenue for future work.    In particular, 

understanding such super anomalies requires a delicate analysis of the interplay of 𝜆 and 𝑣𝐸𝐻.   

In effect, a large value of 𝜆 not only reduces the number of entries in S, but can also serve to 

move them into different positions.  Understanding the precise mechanism of how such 

anomalies move is beyond the scope of the current work.   
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Chapter 5 

Conclusion  
 

5.1 Summary 
 

The Amazon communities data in its raw form provides challenges to analyze the strength of 
communities connection. Firstly, we have analyzed several methods for measuring the strength 
of communities connection, including three definitions from the literature [12] and derived one 
novel definition of our own. We have used SVD to asses the better way of representing the 
strength of the communities connection for the eRPCA algorithm. 

The second order matrix 𝑀 is sparse (many of the observed entries are zero) and highly low rank 
which makes the current theory of the eRPCA algorithm ill suited for such data. Accordingly, we 
develop a method for analyzing a matrix 𝑀, which is incomplete, sparse and low rank (which the 
Amazon data forces on us), and this method is a novel contribution of this thesis. 

We conducted experiments on balancing the entries of a second order matrix filling between the 
low rank and the sparse components. We understand the behavior of the low rank and the sparse 
matrix by changing the controlling parameter 𝜆, where higher 𝜆 values will make putting non-
zero entries into the sparse matrix more difficult. In other words, a low 𝜆 value will make 𝐿 lower 
rank by putting more entries in 𝑆.  

We have also found an empirical relationship between the number of non-zeroes in the sparse 
matrix and the controlling parameter 𝜆, which would give us the ability to predict the non-zeroes 
in the sparse matrix for a given value of 𝜆.  

When dealing with such a second order data matrix, which is sparse, it becomes difficult to 
understand how to measure the errors in the various entries with usual way of measuring errors. 
Therefore, we layout a different way of looking into such problems, we have used the percentile 
values to measure the errors between the entries. Such an analysis gives a clear understanding 
of the errors of the entries than usual methods. 

 

5.2 Future work 
 

The Amazon communities data which has been analyzed using the eRPCA algorithm, has given us 

the direction of using various parameters from the eRPCA. However, there are still many more 

parameters of the eRPCA algorithm, which could be analyzed on this data. In practical settings of 

using Amazon communities data, we are still not aware of what those products or communities 

actual mean, that is we are currently dealing with real data of Amazon communities data but 

those products and communities are anonymous to us. The interesting problem to work is to 
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measure the practical implication of these predictions by knowing the business context (real 

products and communities) and tweaking the algorithm based on the understanding of the 

business implications of these products and communities.  

 

We also want to analyze the various parameters of the eRPCA algorithm on the second order 

matrix, which is not much sparse, as we have currently dealt with Amazon data, which is sparse 

and low rank.  We also want to understand the super anomalies behavior in detail by varying the 

parameters 𝜆 and 𝑣𝐸𝐻. As we have explored on the prediction of entries in this thesis, we want 

to build this algorithm in real time predictions of various other data sources and make it more 

robust. 
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Appendix 
 

Changing 𝒗𝑬 values for 𝑀𝑝to understand the Error in prediction:  

Observations Error 
Un-normalized 
Error 

 

2 0.00E+00 0.00E+00  
5 1.50E-04 1.50E-03  
10 1.18E-04 2.35E-03  
20 9.15E-05 3.66E-03  
50 4.49E-05 4.49E-03  
60 3.74E-05 4.48E-03  
100 3.02E-05 6.04E-03  
200 2.54E-05 1.02E-02  
500 1.44E-05 1.44E-02  
1000 5.23E-05 1.05E-01  
1500 4.81E-05 1.44E-01  
2000 4.41E-05 1.76E-01  
5000 1.04E-03 1.04E+01  
20000 4.76E-04 1.90E+01  
50000 4.84E-04 4.84E+01  
60000 4.22E-04 5.07E+01  
70000 3.62E-04 5.07E+01  
100000 2.61E-04 5.22E+01  
300000 3.94E-04 2.36E+02  
400000 5.83E-04 4.66E+02  
500000 6.52E-04 6.52E+02  
600000 7.22E-04 8.66E+02  
800000 5.54E-04 8.87E+02  
996000 4.45E-04 8.87E+02  

 

Figure A.1: This figure mainly represents the x-axis values of the Figure 4.13 and the Figure 4.14, the observations 
in this table represents the x-axis values ordered in the same order as it appears of both the figures. The y-axis in 
the Figures 4.13 and Figure 4.14  represents the second and third column of this table. 
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