

WORCESTER POLYTECHNIC INSTITUTE

 Analysis and Prediction of Community

Structure Using Unsupervised Learning

By

Rakesh Biradar

A thesis submitted to the faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Data Science

Jan-2016

APPROVED:

Professor: Randy C Paffenroth, Advisor

Professor: Xiangnan Kong, Reader

i

Contents

Abstract ... iii

Acknowledgement .. iv

Definitions & Basic Notation .. v

1. Introduction .. 1

1.1 Motivation ... 1

1.2 Background ... 3

1.3 Experiments & Results .. 5

1.5 Structure of thesis ... 6

2. Theoretical & Mathematical Derivation .. 7

2.2 Singular Value Decomposition .. 9

2.3 Low Rank Matrices .. 10

2.4 Robust PCA .. 12

2.5 eRPCA .. 13

2.6 What Makes our Second Order Matrix Novel? ... 15

2.7 Various scenarios that exists in eRPCA ... 18

3. Description of Datasets .. 21

3.1 Overview ... 21

3.2 SKAION Network data ... 21

3.2.1 First Order Matrix from SKAION data ... 23

3.3 Amazon Communities Network Data ... 26

3.3.1 Metrics of Communities strength ... 28

4. Experiments & Results ... 32

4.1 Overview of Experiments .. 32

4.2 Singular values of SKAION data ... 32

4.3 Understanding of Low Rank and Sparse Matrix of eRPCA .. 34

4.4 Amazon Communities dataset .. 37

4.4.1 Singular values of Communities Strength .. 37

4.4.2 Singular Values Comparison of SVD, RPCA and eRPCA .. 41

4.5 Effect of 𝜆 values on Low Rank and Sparse Matrices ... 42

4.6 Changing 𝑣𝐸 values on 𝑀𝑝to understand the Error in prediction ... 46

4.7 Prediction of 𝑀 using Low Rank matrix by changing 𝜆 and Pmax .. 49

4.8 Prediction of 𝑀 using the low Rank matrix (𝐿) by changing 𝜆 and 𝑣𝐸 on 𝑀𝑝................................. 52

ii

4.8.1 Prediction by default 𝑣𝐸 [𝑀 − 𝐿0] .. 53

4.8.2 Prediction by varying 𝑣𝐸 [𝑀 − 𝐿𝑝] (high 𝑣𝐸 for 𝑆𝑖𝑗 = 0 entries) 55

4.9 Empirical relation between 𝜆 and number of non-zeroes in 𝑆 ... 57

4.9.1 Making a few Non Zero Entries as High.. 60

4.10 Distribution of Error entries in prediction of 𝑀 − 𝐿𝑝 ... 61

4.10.1 Percentile to measure the entries of errors ... 63

5. Conclusion .. 66

5.1 Summary ... 66

5.2 Future work ... 66

Appendix ... 68

Bibliography.. 69

iii

WORCESTER POLYTECHNIC INSTITUTE

Abstract
Data Science

Master of Science

By Rakesh Biradar

Abstract

In this thesis, we perform analysis and prediction for community structures in graphs using

unsupervised learning. The methods we use require the data matrices to be of low rank, and such

matrices appear quite often in real world problems across a broad range of domains. Such a

modelling assumption is widely considered by classical algorithms such as principal component

analysis (PCA), and the same assumption is often used to achieve dimensionality reduction.

Dimension reduction, which is a classic method in unsupervised learning, can be leveraged in a

wide array of problems, including prediction of strength of connection between communities

from unlabeled or partially labeled data. Accordingly, a low rank assumption addresses many real

world problems, and a low rank assumption has been used in this thesis to predict the strength

of connection between communities in Amazon product data. In particular, we have analyzed

real world data across retail and cyber domains, with the focus being on the retail domain.

Herein, our focus is on analyzing the strength of connection between the communities in Amazon

product data, where each community represents a group of products, and we are given the

strength of connection between the individual products but not between the product

communities. We call the strength of connection between individual products first order data

and the strength of connection between communities second order data. This usage is inspired

by [1] where first order time series are used to compute second order covariance matrices where

such covariance matrices encode the strength of connection between the time series. In order

to find the strength of connection between the communities, we define various metrics to

measure this strength, and one of the goals of this thesis is to choose a good metric, which

supports effective predictions. However, the main objective is to predict the strength of

connection between most of the communities, given measurements of the strength of

connection between only a few communities. To address this challenge, we use modern

extensions of PCA such as eRPCA that can provide better predictions and can be computationally

efficient for large problems. However, the current theory of eRPCA algorithms is not designed to

treat problems where the initial data (such as the second order matrix of communities strength)

is both low rank and sparse. Therefore, we analyze the performance of eRPCA algorithm on such

data and modify our approaches for the particular structure of Amazon product communities to

perform the necessary predictions.

iv

Acknowledgement

I would like to express my sincere gratitude to my advisor Prof. Randy Paffenroth for the
continuous support of my thesis study and related research, for his patience, motivation, and
immense knowledge. His guidance helped me in all the time of research and writing of this thesis.
I could not have imagined having a better advisor and mentor for my thesis work.

iv

Definitions & Basic Notation

In this Section, we define the following notations, some of which represent parameters used in

the eRPCA algorithm. eRPCA takes as one of its inputs a second order data matrix and outputs a

low rank matrix and a sparse matrix. The matrix formed by converting the first order matrix of

communities and products, into a matrix that represents the relationship between communities

is called a second order matrix and is denoted by 𝑴. The number of rows or columns of the

second order matrix (𝑀) of Amazon community data, which represents the number of

communities is denoted by 𝑪𝒔 (sometimes in this thesis, we refer to the same idea as community

size or length of communities). The total number of entries in a second order matrix 𝑀, which is

nothing but 𝐶𝑠 × 𝐶𝑠, is denoted by 𝑵. The number of zeros in the second order matrix 𝑀 is

denoted by 𝑴𝒛 and this represents the sparsity of 𝑀. The number of non-zeros in the second

order matrix 𝑀 is denoted by 𝑴𝒏𝒛.

The low rank matrix that arises from an eRPCA decomposition is denoted by 𝑳. We measure two

main components of the low rank matrix. One is the number of zeros in the low rank matrix 𝐿

and it is denoted by 𝑳𝒔. The other is the number of non-zeroes in the low rank matrix 𝐿 and it is

denoted by 𝑳𝒏𝒛. The individual entries in 𝐿 are denoted by 𝑳𝒊𝒋. The rank of the low rank matrix is

denoted by 𝑳𝑹.

The sparse matrix decomposed from eRPCA, is denoted by 𝑺. We measure two main components

in the sparse matrix 𝑆. One is the number of zeros in the sparse matrix 𝑆 and it is denoted by 𝑺𝒛.

The other is the number of non-zeroes in the sparse matrix 𝑆 and it is denoted by 𝑺𝒏𝒛. The

individual entries in 𝑆 are denoted by 𝑺𝒊𝒋.

1

Chapter 1

Introduction

The main challenge addressed in this thesis is the analysis and prediction of the strength of the

connection between Amazon products communities [2] using robust dimension reduction

techniques [1]. Herein, we begin by tracing back to the roots of solving such problems using

Principal Component Analysis (PCA) [3], which is a statistical method that transforms a set of

observed data into a group of linearly uncorrelated variables. A typical application of PCA is for

dimensionality reduction and the prediction of a set of unknown values of the variables from a

set of known values of the variables. There are various dimensionality reduction techniques for

performing PCA, and the Singular Value Decomposition (SVD) is the standard technique in this

domain [3]. In this thesis, we use three main techniques SVD [4], RPCA [5] and eRPCA [1] on

Amazon communities to analyze and predict the strength of connection between the

communities. We explain the challenges faced in predicting the strength of connection between

the communities and we derive several approaches for making such predictions.

The results obtained in our experiments provide better understanding of performance of the

eRPCA algorithm, and the ways it can be used for novel prediction problems. The prediction of

entries in second order matrix 𝑀 can be substantially improved, by a deeper and richer

understanding of the parameters of the algorithm, and this analysis has been a novel contribution

in our thesis. In addition, the results also show the best way of measuring the errors between the

entries of the second order matrices we study.

1.1 Motivation

We are seeing the burgeoning of technological devices and their users every year, therefore there
has been an exponential increase in the data collected because of users activity on these devices
[6]. The data collected from these activities can be categorized mainly into two types, one is
structured data and the other is unstructured data [7]. The growth of unstructured data has been
increasing more rapidly with various new forms of unstructured data such as text data, audio
data, network data (which can be both structured and unstructured) [8] and video data occurring
all the time [9].

Our interest in this thesis has been mainly on analyzing network data. Networks or graphs can be
mathematically represented as a set of points or vertices joined in pairs by lines or edges. In
practical settings, networks are a natural way to represent social, biological, technological and
information systems [10]. There are various types of network data spread across different
domains, such as social network data, web network data, electronic circuit data, biochemical
network data and many more [10] [11]. Nodes in many such networks organize naturally into

2

densely linked groups that are commonly referred to as network communities or clusters [12].
There are many reasons why nodes in network organize into densely linked groups. For instance,
society is organized into social groups, families and associates. Similarly on the Internet, topic
related pages link more closely among themselves. As the amount of data is growing, the
communities are becoming bigger in size and the numbers of communities are increasing. With
such a rapid increase, prediction of the strength between the communities becomes much more
important for various reasons. Today, as we have huge number of social and internet groups,
predicting the strength or similarities between the groups is essential to provide actionable
information for various socio-economic and business decisions, and providing such information
has become a substantial challenge. Therefore, there are prominent methods that help to predict
the strength between the large groups by just knowing the strength between a few groups and
this thesis demonstrates how to leverage one such method for prediction of communities
connection strength.

There are many research papers on community definition and detection [7], [2] , [12] and [10],
and our problem leverages that body of literature by assuming that we know the communities
either by structural (mathematically calculated) or functional (naturally formed) methods. We
have taken a few of the best community definitions from the research done in [12], and having
the community definition in hand, we try to predict the strength of connection between many
communities given the strength of connection between a few communities. Many real world
problems are very similar to the one on which we are working, for example in social network data
and protein molecule data, we already know the communities based on different kinds of user
interaction and protein molecule reaction behavior. Unfortunately, in many kinds of such
network data there are only a few communities whose strength is known and most of them are
unknown [12], and this makes our problem pragmatically challenging to find the strength
between those unknown communities.

In this thesis we have focused on the Amazon communities data as it represents real world
communities or network data, and this data presents interesting opportunities for analysis that
are quite similar to many problems in different domains of network data. The Amazon data has
co-purchasing frequency of many Amazon products and the product’s ground truth communities
based upon the categories of the products [12]. The questions that we attempt to answer in this
thesis are of practical importance because they assist in marketing by cross selling of products.
In addition, for the new products that are launched in the market, it is very useful to predict their
best affiliation with present product communities. With such a huge number of communities and
products, we can identify the strength between the communities by knowing the strength of just
a few communities. Unfortunately, such problems are difficult to solve using PCA or RPCA type
techniques because they are simultaneously low rank and sparse. As we will detail in Chapter 2,
3 and 4 such sparse connections between communities leads to problems that are quite difficult,
but tractable using the techniques developed here.

Second order matrices are formed by filling in the values of the strength of the connections

between the communities. If we look at the structure of the second order matrices of Amazon

product communities, the exact structures of interest are ill defined at the onset. However, as

3

we demonstrate here such matrices with large numbers of communities can be analyzed as a

dimension reduction problem, which is a classic example of unsupervised learning. To remove

the curse of dimensionality we must leverage the fact that such data are intrinsically low

dimensional, e.g. that they lie on some low-dimensional subspace [13] [3], are sparse in some

basis [13], or lie on some low-dimensional manifold [3]. In addition, as we examine the quality

of our data, we note that we have many values that are missing or incorrect, and these aspects

of our data make the problem much more complicated. Therefore, we use robust techniques like

RPCA, and our own eRPCA, which as we demonstrate can make accurate predictions even in the

presence of such complicating factors.

1.2 Background

One of the most important properties of a matrix to be considered in our thesis is its rank. The

rank of a matrix is defined as the maximum number of linearly independent columns (or rows) in

the matrix. We can look at the rank of matrices in practical settings, where it can be interpreted

as the amount of redundancy in a matrix. Lower rank means more redundancy and therefore

more predictable entries. In effect, low rank implies that we require fewer entries to predict

other entries in the matrix. In the Amazon communities data, a low rank second order matrix

allows us to use the strength of only a few communities to predict the strength of many other

communities (but not all) in the matrix.

Before we proceed further, we need to understand why the assumption of low rank is so

important and reasonable. A low-rank matrix can be understood in many ways. It is a matrix with

small number of non-zero singular values in its singular value decomposition (SVD). It is also a

matrix with a small number of linearly independent rows (or columns), which produce the

remaining rows (or columns) as the linear combination of those few. A matrix always has column

rank equals row rank [14] [13]. In visual terms, it means there are a small number of basis rows

(columns) that span the range space of the matrix. In many domains, low rank matrices are

encountered quite often, so the assumption of low rank is a reasonable one. For an 𝑛 × 𝑛

matrix, a low-rank matrix by definition has rank 𝑘, where 𝑘 < 𝑛, and this property has various

benefits as it helps to reduce computational cost, make prediction of entries and detect

anomalies. Accordingly, the low rank property of a matrix is important in many applications [15].

Especially, in our case for making predictions, working with low rank matrices can be extremely

advantageous.

PCA is arguably the most widely used statistical tool for data analysis and dimensionality

reduction today. Consider a matrix 𝑀, whose columns have been normalized to mean zero and

each row represents one record of the collected data, and each column represents one field. In

PCA analysis, the assumption is that the data all lie near some low-dimensional subspace. More

precisely, it means that if we stack all the data points as column vectors of a matrix 𝑀, the matrix

4

should have (approximately) low rank. Classical PCA decomposition can be written as 𝑀 = 𝐿0 +

𝑁0, where 𝐿0 is the true low rank component, and 𝑁0 is small noise, and 𝐿 is the approximation

of 𝐿0. Classical PCA [3] seeks the best (in a 𝑙2sense) rank-𝑘 estimate of 𝐿0 by solving as showing

in equation 1)

 𝐿 = arg min
𝐿

||𝑀 − 𝐿||
𝐹

2
,

𝑠. 𝑡. 𝑟𝑎𝑛𝑘(𝐿) ≤ 𝑘,

1)

where the Frobenious norm ‖ ‖𝐹 is defined in Chapter 2. The most common way to compute

PCA is by using the SVD. This is a common linear algebra technique used to factorize matrix in to

three main components. The equation for the SVD is shown in 2)

 𝑀 = 𝑈Σ𝑉𝑇 , 2)

where 𝑈 and 𝑉 are unitary, so multiplying by their respective (conjugate) transposes yields
identity matrices i.e. 𝑈𝑈𝑇 = 𝐼 𝑎𝑛𝑑 𝑉𝑇𝑉 = 𝐼. In addition, Σ is a diagonal matrix and the entries
of Σ are known as the singular values of 𝑀, and the columns of 𝑈 and 𝑉 are known as left singular
vectors and right singular vectors of 𝑀. The relationship between PCA and SVD is explained in
detail in Chapter 2.

Our Amazon communities data has two main properties that make its analysis challenging: 1)
Many of the entries in Σ are small from the beginning, 2) Changing just a small number of entries
in 𝑀 can have a large effect on Σ (since so many entries in 𝑀 are already zero).

In addition, PCA is brittle with respect to grossly corrupted observations that can put its validity

in jeopardy for making predictions in the Amazon Community Data. For example, a single grossly

corrupted entry in 𝑀 could render the estimated 𝐿 arbitrarily far from the true 𝐿0.

Unfortunately, gross errors are frequent in modern applications such as image processing, web

data analysis, and bioinformatics, where some measurements may be arbitrarily corrupted (due

to occlusions, malicious tampering, or sensor failures). When one has grossly corrupted entries,

one could use many modern techniques, which are the extensions of PCA. As we will discuss such

modern extensions of PCA like RPCA [5] can solve the problem when 𝑀 includes corrupted data

and, eRCA technique can solve similar problems for data which has corruptions or uncertainty in

all points, and potentially large and varied amounts of it.

The RPCA technique can be used to treat many real world data matrices and recover their low

rank component (𝐿0) and sparse matrix component(𝑆0). In particular, we use RPCA to

decompose 𝑀 as 𝑀 = 𝐿 + 𝑆, where 𝐿 is low rank and 𝑆 is sparse. The low rank matrix represents

those parts of the data that can be represented by limited number of basis (vectors) and this is

where we can make easy predictions. The sparse matrix cannot be explained by the basis

obtained by the low rank approximation but the entries in the sparse matrix represent, perhaps,

5

important effects in the data. There are many applications of RPCA and it has been utilized in a

number of different domains [15].

Finally, we explain some high level ideas regarding a formulation of RPCA that combines

robustness to noise with partial observations. This method uses entry wise error constraints that

allow entries of the matrix to have different noise properties, as opposed to classic approaches

of RPCA that apply a single global noise constraint. We call this method eRPCA, and it can be used

to decompose 𝑀 = 𝐿 + 𝑆 + 𝑍 , where 𝐿 is a low rank matrix, 𝑆 is a sparse and 𝑍 is a dense matrix

of small noise terms. Classically, one treats a low rank matrix 𝑀, which is incomplete but dense

(i.e. not too many zeros), however in our problem we are forced to treat a low rank 𝑀, which on

one hand has many zeros and on the other is dense with anomalies. Accordingly, a method for

analyzing a matrix 𝑀, which is incomplete, sparse (many of the observed entries are zero) and

low rank (which the Amazon data forces on us) needs to developed. The development of such a

method is a key novelty of our thesis.

1.3 Experiments & Results

Our focus here is mainly on the predictive capabilities of the eRPCA algorithm, with a practical
mindset of analyzing Amazon community data. There are number of features of eRPCA algorithm
that would allow us to improve the prediction accuracy and understand the way the parameters
need to be changed for better prediction. Our thesis work revolves around understanding all such
parameters and we mainly categorize our work into three parts.

The raw data that we get from Amazon product communities is very challenging as there is no
direct measurement of the strength between the communities. Therefore, our first objective is
to form a second order matrix of Amazon communities that gives us a matrix whose rows and
columns represent communities, and whose values give us a measurement that represents the
strength between the communities. After forming the second order matrix of different
measurements of strength of connection between the communities, the second objective is to
validate the applicability of the second order matrix using algorithms like SVD and eRPCA, and
choose the most appropriate definition of community connection strength going forward in our
analysis.

In the eRPCA algorithm, there are many parameters to explore but we restrict our analysis to
those parameters that would help in prediction, which is our third objective. We experiment on
various parameters of eRPCA involved in predicting the entries, and analyze various ways to make
the better prediction of entries. We have mainly experimented with using the controlling
parameter 𝜆 to understand the low rank and sparse matrix to make better predictions. We have
also found a formula for the empirical relation between 𝝀 and non-zero entries in the sparse
matrix, which would help us to predict the number of non-zeroes in the sparse matrix given a
value of 𝝀. Finally, we have proposed a different way to measure the errors between the entries
of the second order matrix and the low rank matrix.

6

 1.4 Our Contribution

In this work, we make several contributions to the current understanding of the problem at hand.
As we look into the raw data of the Amazon communities product data [2], there are many ways
to measure the strength of communities connection, and our contribution revolves around
analyzing various ways to measure the communities strength, and we use SVD to measure the
better way of representing the strength of the communities connection for eRPCA algorithm. We
leveraged three definitions from the literature [12] and derived one novel definition of our own.

The current theory of the eRPCA algorithm is not designed to deal with a second order matrix 𝑀
which is sparse (many of the observed entries are zero) [1]. Accordingly, we develop a method
for analyzing a matrix 𝑀, which is incomplete, sparse and low rank (which the Amazon data forces
on us), and this method is a novel contribution of this thesis.

We have experimented on balancing the entries of a second order matrix filling between the low
rank and the sparse components. A study has also been made to understand the behavior of the
low rank and the sparse matrix by changing the controlling parameter 𝜆, where higher 𝜆 values
will make putting non-zero entries into the sparse matrix more difficult. In other words, a low 𝜆
value will make 𝐿 lower rank by putting more entries in 𝑆. We have also found an empirical
relationship between the number of non-zeroes in the sparse matrix and the controlling
parameter 𝜆, which would give us the ability to predict the non-zeroes in the sparse matrix for a
given value of 𝜆. When dealing with such a second order data matrix, which is sparse, it becomes
difficult to understand how to measure the errors in the various entries with usual way of
measuring errors. Therefore, we layout a different way of looking into such problems, we have
used the percentile values to measure the errors between the entries. Such an analysis gives a
clear understanding of the errors of the entries than usual methods.

1.5 Structure of thesis

In this work, we attempt to provide the reader with background information on the problem that
is being solved. Chapter 2 describes the theory and mathematical analysis on the problem.
Chapter 3 describes the Amazon communities dataset. Chapter 4 focus on the experiments and
analysis done in this thesis. Chapter 5 concludes this work and mentions further enhancements.

7

Chapter 2

Theoretical & Mathematical Derivation

This Section includes the background theory and mathematical analysis of the thesis work and

describes the prediction of Amazon community structure using the eRPCA algorithm. We present

the basic concepts of dimensionality reduction and principal component analysis, and then

extend these concepts by way of the SVD. We explain about singular values that are essential

components of our analysis. They are the key parameters for our prediction of the strength of

connection between the communities. We then explain the limitation of using PCA on the

Amazon data and then derive extensions to PCA, such as Robust PCA and eRPCA, which are the

focus of our thesis work.

2.1 Principal Component Analysis

PCA is a statistical method that is used to convert high dimensional data into low dimensional

data that does not involve any response (or dependent) variable [16]. It is also defined as a

method that uses an orthogonal transformation to convert a set of observations of possibly

correlated variables into a set of linearly uncorrelated variables called principal components,

where the number of principal components is less than or equal to the number of original

variables. This transformation is defined in such a way that the first principal component has the

largest possible variance (that is, accounts for as much of the variability in the data as possible),

and each succeeding component in turn has the highest variance possible under the constraint

that it is orthogonal to the preceding components.

PCA can be performed on the covariance matrix or the correlation matrix (in which each variable

is scaled to have its sample variance equal to one). For the covariance or correlation matrix, the

eigenvectors correspond to principal components (PC) and the eigenvalues to the variance

explained by the principal components. Principal component analysis of the correlation matrix

provides an orthonormal eigen-basis for the space of the observed data. In this basis, the largest

eigenvalues correspond to the principal components that are associated with most of the

covariability among the observed data.

Let 𝑀 be the second order matrix of size 𝑚 × 𝑚, an eigenvector or characteristic vector of a

square matrix 𝑀 is a vector that does not change its direction under the associated linear

transformation.

8

In other words, if 𝑣 is a vector that is not zero, then it is an eigenvector of a square matrix 𝑀 if

𝑀𝑣 is a scalar multiple of 𝑣. This condition can be written as 𝑀. 𝑣 = 𝜆 . 𝑣 ,

where,

𝑀: 𝑚 𝑥 𝑚 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑟𝑑𝑒𝑟 𝑚𝑎𝑡𝑟𝑖𝑥,

𝑣: 𝑚 𝑥 1 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑟 𝑒𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟, and

𝜆: 𝑠𝑐𝑎𝑙𝑎𝑟.

The resulting vectors are an uncorrelated orthogonal basis set. The principal components are

orthogonal because they are the eigenvectors of the covariance matrix, which is real and

symmetric. The value of 𝜆 for which this equation has a solution is called the eigenvalue of 𝑀 and

the vector 𝑣, which corresponds to this value, is called the eigenvector of 𝑀.

How is PCA related to our thesis? When we convert high dimensional data to low dimensional

data using PCA, the low dimensional PCs are a faithful representation of the high dimensional

data. Accordingly, we can use PCs to do prediction of variables or features. In addition, we can

use a small number of PCs or a large number of PCs based on the required percentage of variance

to be captured in our dataset (and there for the accuracy of our predictions).

Figure 2: In this figure, the blue dots represent the sample data points, for these data points we draw two
principal components that can explain the maximum variance of the data. The principal components we
get from PCA are PCA 1st dimension (the direction of largest variance) and PCA 2nd dimension (the second
largest direction of variance). As you can see, these two direction are, by definition, orthogonal.

PCA is often used as a tool in exploratory data analysis and for making predictive models. PCA is

the simplest of the eigenvector-based methods for multivariate analysis. PCA can be done by

eigenvalue decomposition of a data covariance (or correlation) matrix or singular value

9

decomposition of a data matrix, usually after mean centering and normalizing the data matrix for

each attribute. Often, its operation can be thought of as revealing the internal linear structure

of the data in a way that best explains the variance in the data. If a multivariate dataset is

represented as a set of coordinates in a high-dimensional data space (1 axis per variable), PCA

can supply the user with a lower-dimensional visualization, i.e. a projection or "shadow" of this

object when viewed from its most informative viewpoint. This is done by using only the first few

principal components so that the dimensionality of the transformed data is reduced. PCA is

sensitive to the relative scaling of the original variables. In the Figure 2, the data points (blue

dots) are represented in the original coordinates, and we draw two PCs (PCA 1st and 2nd

Dimension) to explain the variance of the data points, where the PCA 1st Dimension captures

more variance compared to PCA 2nd Dimension.

2.2 Singular Value Decomposition

The PCA algorithm is usually implemented by computing the eigenvalues and eigenvectors of the
covariance matrix 𝑀, which is the product 𝑋𝑋𝑇, where 𝑋 is a normalized data matrix of size 𝑚 ×
𝑛. Since the covariance matrix is symmetric, the matrix is diagonalizable, and the eigenvectors
can be normalized such that they are orthonormal. The columns of 𝑊 are the eigen-vectors
of 𝑋𝑋𝑇, and 𝐷 is a diagonal matrix containing the eigen-values of 𝑋𝑋𝑇. So,

 𝑀 = 𝑋𝑋𝑇 = 𝑊𝐷𝑊𝑇.

3)

Analogously, applying the SVD to the data matrix 𝑋𝑋𝑇 produces the following decomposition:

 𝑋 = 𝑈𝛴𝑉𝑇 , 4)

where,

𝑈 is an 𝑚 × 𝑚 orthogonal matrix of the left singular-vectors of 𝑀,
𝑉 is an 𝑛 × 𝑛 orthogonal matrix of the right singular-vectors of 𝑀, and
𝛴 is an 𝑚 × 𝑛 matrix with non-zero diagonal entries, the diagonal values inside of which
are referred to as the "singular-values" of 𝑀.

Attempting to construct the covariance matrix from this decomposition gives

 𝑋𝑋𝑇 = (𝑈𝛴𝑉𝑇)(𝑈𝛴𝑉𝑇)𝑇
𝑋𝑋𝑇 = (𝑈𝛴𝑉𝑇)(𝑉𝛴𝑈𝑇)

5)

 and since 𝑉 is an orthogonal matrix we have that 𝑉𝑇𝑉 = 𝐼. Therefore the equation 5) becomes

 𝑀 = 𝑋𝑋𝑇 = 𝑈𝛴2𝑈𝑇 6)

10

and the correspondence between the two approaches is easily seen (the square roots of the
eigenvalues of 𝑋𝑋𝑇 are the singular values of X, etc.).

The singular values computed by the SVD allow one to determine what combination of variables
is most informative (high variance), and which ones are not useful (low variance), and thereby
perform PCA. The way it works is simple. You perform SVD over your training data (call it matrix
𝑋), to obtain 𝑈, 𝑆 or Σ and 𝑉𝑇. Then, set to zero all values of 𝑆 less than a certain arbitrary
threshold (e.g. 0.1), call this new matrix 𝑆′. Then obtain 𝑋′ = 𝑈𝑆′𝑉𝑇 and use 𝑋′ as low rank
matrix as your PCA projection. Some of your features are now set to zero and can be removed,
sometimes without a negligible performance penalty (depending on your data and the threshold
chosen). The SVD allows you to predict when information and features are redundant and when
some features are linear combination of others, and therefore predictable.

2.3 Low Rank Matrices

A low rank matrix can be thought of in multiple ways. It is a matrix, which has small number of

non-zero singular values in its SVD [16]. It is also a matrix with small number of linearly

independent rows (or columns), which means it needs a small number of rows (or columns) to

predict the remaining rows (or columns) as linear combination of those independent rows (or

column). In a low rank matrix, column rank is always equal to row rank [13].

In addition, low-rank approximation can be thought of as a minimization problem, in which

the cost function measures the fit between a given matrix (the data) and an approximating matrix

(the optimization variable), subject to a constraint that the approximating matrix has

reduced rank. The rank constraint is related to the complexity of a model that fits the data. Let

𝑋 be a data matrix of size 𝑚 × 𝑛, and 𝑘 be a positive integer, we would like to find an 𝑚 × 𝑛

matrix 𝑋𝑘 of rank at most 𝑘, so as to minimize the 𝐹𝑟𝑜𝑏𝑒𝑛𝑖𝑢𝑠 𝑛𝑜𝑟𝑚 of the matrix difference

𝐶 = 𝑋 − 𝑋𝑘, defined to be

‖𝐶‖𝐹 = √∑ ∑ 𝐶𝑖𝑗

2𝑛
𝑗=1

𝑚
𝑖=1 . 7)

Therefore, the Frobenius norm of 𝐶 measures the discrepancy between 𝑋 and 𝑋𝑘. Our goal is to

find a matrix 𝑋𝑘 that minimizes this discrepancy, while constraining 𝑋𝑘 to have rank at most 𝑘. If

𝑟 is the rank of 𝑋 then 𝑋 = 𝑋𝑟 and the Frobenius norm of the discrepancy is zero in this case.

When 𝑘 is smaller than 𝑟, we refer 𝑋𝑘 as low rank approximation of 𝑋.

11

The problem with fit measured by the Frobenius norm is

 min
𝑋𝑘

‖𝑋 − 𝑋𝑘‖𝐹
2
,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑟𝑎𝑛𝑘(𝑋𝑘) ≤ 𝑟.
8)

Perhaps surprisingly, this optimization has and analytic solution in terms of the singular value

decomposition of the data matrix. The result is referred to as the matrix approximation theorem

or the Eckart–Young–Mirsky theorem [17].

In brief, the Eckart–Young–Mirsky theorem teaches us that the minimization of this optimization

can be computed using the following deterministic procedure. Let 𝑋 be a second order matrix

then

𝑋 = 𝑈𝛴𝑉𝑇 ∈ 𝑅𝑚𝑥𝑛, 𝑚 ≤ 𝑛

is the singular value decomposition of 𝑋 and partition 𝑈, 𝑉 and Σ =: 𝑑𝑖𝑎𝑔(𝜎1, … . , 𝜎𝑚)

as follows

𝑈 =: [𝑈1 𝑈2] , [
Σ1 0
0 Σ2

] 𝑎𝑛𝑑 𝑉 =: [𝑉1 𝑉2] ,

where Σ𝑘 is 𝑟 𝑋 𝑟, U𝑘 is 𝑚 𝑋 𝑟, and V𝑘 is 𝑛 𝑋 𝑟. Then the rank-𝑟 matrix, obtained from the

truncated singular value decomposition is

𝑋𝑘 = 𝑈𝑘Σ𝑘𝑉𝑘
𝑇 ,

and we have that

‖𝑋 − 𝑋𝑘‖𝐹 = min

𝑟𝑎𝑛𝑘(𝑋𝑘)≤𝑟
‖𝑋 − 𝑋𝑘 ‖𝐹 = √𝜎𝑟+1

2 + ⋯ 𝜎𝑚
2 .

9)

The minimizer 𝑋𝑘 is unique if and only if 𝜎𝑟+1 ≠ 𝜎𝑟 []. This low rank approximation appears in

most of the practical situations as explained in Chapter 1 and we use this idea as a key component

of our prediction methodology.

12

2.4 Robust PCA

Traditional PCA recovers a low rank matrix from a high dimensional matrix 𝑀 in the presence of

small perturbation as represented in the below equation,

 𝑀 = 𝐿0 + 𝑁0 , 10)

Where

𝑀 – high dimensional matrix,

𝐿0 – Low rank matrix (unobserved) and

𝑁0 – Small perturbations.

From equation (10), we can optimize the rank of 𝑀 using the solution given by the SVD, but as

mentioned before PCA is highly sensitive to outliers or corrupted data. Small errors in 𝑀 will

make small changes to the singular values of 𝑀, and as the result of which the actual singular

values with small noise and without small noise will have a similar values which could be

neglected in our case as that wouldn’t affect the approximate rank of the matrix [5]. However,

large errors may make large changes to the singular values, and drastically alter the non-zero

singular values. This makes the optimization of the rank of 𝑀 harder and may give rise to

inaccurate results. This disadvantage of PCA is ameliorated by RPCA in order to solve the

optimization of the rank of 𝑀, when the data is highly corrupted.

Robust Principal Component Analysis (RPCA) is a modification of the widely used statistical

procedure PCA that works well with respect to grossly corrupted observations. A number of

different approaches exist for Robust PCA, including an idealized version of Robust PCA, which

aims to recover an approximate low-rank matrix 𝐿 from highly corrupted measurements 𝑀 =

 𝐿0 + 𝑆0, unlike the small noise term 𝑁0 in classical PCA, the entries in 𝑆0 can have arbitrarily

large magnitude, and their support is assumed to be sparse but unknown [5]. The unknown

support of the errors makes the problem more difficult than the matrix completion problem that

has been recently well studied [18]. This decomposition into low-rank and sparse matrices can

be achieved by techniques such as Principal Component Pursuit method (PCP), Stable PCP

[19], Quantized PCP [1], Block based PCP [1], and Local PCP [19] under some basic assumptions

about the rank and sparsity of 𝐿0 and 𝑆0 [20] and, in reality, these assumptions are often satisfied

by real world data.

The RPCA decomposition [21], with unobserved entries [18] is constructed by the following

optimization. We are given a matrix 𝑀 𝜖 𝑅𝑚𝑥𝑛, 𝑚 ≤ 𝑛 that is formed by If 𝑀 = 𝐿0 + 𝑆0 and we

are given only 𝑃Ω(𝑀) (defined below), and if certain identifiability, rank, and sparsity conditions

13

on 𝐿0, 𝑆0 and Ω (defined below), and are met; then, with high probability, the decomposition can

be recovered by the following Principal Component Pursuit (PCP) convex optimization problem

 min
𝐿,𝑆

‖𝐿‖∗ + 𝜆 ‖𝑆‖1

Subject to 𝑃Ω(𝑀) = 𝑃Ω(𝑀 + 𝑆),
11)

with 𝜆 = √
𝑚

|Ω|⁄ , or for the fully observed case which we have 𝜆 = √1
max (𝑚, 𝑛)⁄ , exactly

recovering the low rank matrix 𝐿0 as well as the entries of the sparse matrix 𝑆0 = 𝑃Ω(𝑆0). ‖𝐿‖∗

is defined as the nuclear norm of a matrix or sum of the singular values, ‖𝐿‖∗ = ∑ 𝜎𝑘(𝐿)𝑛
𝑘=1 ,

and the one-norm is represented as ‖𝑀‖1 = ∑ |𝑀𝑘|𝑛
𝑘=1 and is defined as the sum of the

magnitudes. We denote by Ω the locations of the observed entries i.e. (𝑖, 𝑗)𝜖 Ω , if 𝑀𝑖𝑗 is

observed as

 Ω (𝑖, 𝑗) = {
1
0

 𝑖,𝑗 𝜖 Ω
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 12)

We denote by 𝑃Ω(𝑀) the projection of the matrix 𝑀 onto the set of entries indexed by the

indices 𝑖, 𝑗 in the Ω as

 [𝑃Ω(𝑀)]𝑖,𝑗 ∶= {
𝑀𝑖,𝑗

0
 𝑖,𝑗 𝜖 Ω

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 13)

We must tease out the underlying low rank matrix 𝐿0, and identify the sparse anomalies

introduced by 𝑆0, without knowing a priori the true rank of 𝐿0, and without knowing the number

or locations of the nonzero entries in 𝑆0. Furthermore, the magnitude of the few nonzero entries

in may be of arbitrarily large size. These challenges may be further compounded by failure to

observe a subset of entries in 𝑀, and by noise, that adds small errors to each of the observed

entries. Technically speaking, the second order matrices 𝑀 in this thesis are all fully observed.

However the use of 𝑣𝐸𝐻 plays the role of designating the “unobserved” entries in this thesis [1].

2.5 eRPCA

Building upon the RPCA derivation in the previous section, here we present some high level ideas

regarding a new formulation of Robust Principal Component Analysis, called eRCPA that

combines robustness to noise with partial observations [1]. This method uses point wise error

constraints that allow entries of the matrix to have different noise properties, as opposed to the

14

standard Frobenius norm approach that applies a single global noise constraint. This derivation

closely follows that in [1].

In [1], we find theorems and algorithms for addressing noisy problems with partial observations,

based upon an equivalent problem formulation, which allows solution of the optimization using

a standard Alternating Direction Method of Multipliers [1]. Herein, we apply that method to

second-order matrices to detect sparsely correlated phenomena in measured data from the

SKAION network and make predictions in the Amazon Network Communities dataset.

The RPCA algorithm for performing matrix decomposition into low rank and sparse components

has been extended further with addition of small but dense noise. To that end, we are interested

in recovering 𝑀 from 𝑀 = 𝐿0 + 𝑆0 + 𝑍0, where 𝑍0 is a dense matrix of small noise terms. In this

case, the convex program of interest is Principal Component Pursuit with Frobenius Constraints

given by

 min
𝐿,𝑆

||𝐿||∗ + 𝜆||𝑆||1 ,

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑀 − 𝐿 − 𝑆‖𝐹 ≼ 𝛿 ,

14)

Where 𝜆 is the tradeoff parameter between the rank of 𝐿 and sparsity of 𝑆 and 𝛿 ≔ ||𝑍0||𝐹 .

Algorithms for solving the matrix decomposition problem have been presented in [22] and [20]

and the Principal Component Pursuit with Entry-Wise Constraints [1] is given by equation

 min
𝐿,𝑆

||𝐿||∗ + 𝜆||𝑆||1 ,

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |𝑃Ω(𝑀) − 𝑃Ω(𝐿 + 𝑆)| ≼ 𝜖,
15)

where 𝜖 represents a matrix of entry-wise error bounds. We define 𝜖 as

𝜖 = {
 𝜖𝑖𝑗, 𝑖, 𝑗 ∈ Ω

∞ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑠𝑒

16)

However, in practical application, we make 𝜖𝑖𝑗 = 𝑣𝐸𝐻 in order for the eRPCA algorithm to predict

the corresponding entry (𝑖, 𝑗) of 𝑀. We refer to our algorithm for solving PCP in noisy

environments using inequality constraints as eRPCA. In this acronym, the RPCA stands for

“Robust Principal Component Analysis”, while the ‘e’ in eRPCA is a reminder that inequality

constraints are enforced point-wise with matrix epsilon.

There are many attributes of the eRPCA algorithm and we use only a few of them in our thesis.

The maximum rank of 𝑀 to consider for completion, is denoted by 𝚸𝐦𝐚𝐱. The value of the coupling

constant between 𝐿 and 𝑆 is denoted by 𝛌. This constant is used to balance the density between

15

the low rank and sparse matrix. The number of entries observed in eRPCA is denoted by K. The

number of entries in 𝑀 to be predicted is denoted by 𝑴𝒑.

The point wise error bounds for each of the entries in 𝑀, that is used by eRPCA to make

predictions is denoted by 𝒗𝑬, the values of 𝑣𝐸 used in our thesis is either High (1e+5 and denoted

by 𝒗𝑬𝑯) or low (1e-5 and denoted by 𝒗𝑬𝑳). In particular, we use 𝑣𝐸𝐻, in order to designate those

entries we wish to use the eRPCA algorithm for making predictions. The indices that are observed

on the matrix 𝑀 are denoted by 𝑢, 𝑣. The decomposed low rank and sparse matrix constructed

by eRPCA, where some of the entries are used for prediction by using 𝑣𝐸𝐻, are denoted

by 𝑳𝒑 and 𝑺𝒑. In the analysis of our matrices, if we consider all the entries of 𝐿 or 𝑀 is called

Complete Entries. The entries of 𝐿 𝑜𝑟 𝑀 whose corresponding entries of sparse matrix are zero

are called GPE - Good Predictable Entries (as these entries are always predicted well (with small

error).

2.6 What Makes our Second Order Matrix Novel?

Let 𝑋 be a data matrix of size 𝑛 𝑥 𝑝, where 𝑛 is the sample size and 𝑝 is the number of variables

(we refer to 𝑋 as a first order matrix). Let us assume that variables are centered i.e., the column

means have been subtracted are now equal to zero. Then the covariance matrix 𝑀 is formed by

taking the dot product of first order matrix and its inverse, it is defined mathematically as 𝑀 =

𝑋𝑇𝑋/(𝑛 − 1) which is of size 𝑝 𝑥 𝑝. The three important properties of 𝑀 that are important for

our work are 1) The values of the covariance matrix lies in the range of −∞ < 𝑀 < ∞ 2) In most

practical applications, there are a few zeros and many non-zero values (𝑀𝑧 ≪ 𝑀𝑛𝑧) 3) 𝑀 is a

symmetric matrix. This is a typical kind of second order matrix 𝑀 that has been dealt with by

eRPCA in the literature [1].

On the other hand, the formation of the second order matrix of Amazon communities data is

different. The second order matrix of Amazon communities data has been formed by taking the

edges and nodes between the communities to represent the strength of connection between the

communities, where each communities represent the group of nodes (Amazon products) and the

details of this formulation is explained in Chapter 3. In short, the typical 𝑀 represents the

correlation, or linear similarity, between the random variables, whereas the 𝑀 being dealt with

here represents a derived definition of similarity well suited for the Amazon communities data.

The three important properties of 𝑀 that are important for our work on Amazon communities

data are 1) The values of the second order matrix lies in the range of 0 ≤ 𝑀 < ∞ 2) There are

many zeros and a few non-zero values (𝑀𝑧 ≫ 𝑀𝑛𝑧) 3) 𝑀 is a symmetric matrix. This is the kind

of second order matrix 𝑀 that has never been dealt by eRPCA so far. In particular, property 2)

16

above is quite challenging for standard techniques and the ability to treat these type of problems

is a key novelty of this thesis.

We will illustrate with a diagrammatic representation the two kinds of 𝑀 discussed in the above

paragraphs. In the figure 2.1, the typical second order matrix 𝑀 does not have many zeroes. In

the figure 2.3 and 2.4, the second order matrix 𝑀 that we are mainly dealing with in our thesis

work has many zeroes and classic eRPCA is not designed for such matrices.

Figure 2.1: In this Figure, it shows a typical second order matrix that is not much spare, and most these matrices are
being solved using dimensionality reduction techniques like RPCA or eRPCA, the color with different intensity
represents the values inside the matrix.

The decomposition of the second order matrix gives us a low rank matrix 𝐿 and sparse matrix 𝑆.

We can compute 𝐿 and 𝑆 from 𝑀 as discussed in Sections 2.4 and 2.5. With a decomposition of

a typical 𝑀 using eRPCA, the low rank matrix 𝐿 in Figure 2.1 has less than 6 linearly independent

columns (or rows) (i.e., at least one part of one column can be predicted from the rest). And, the

sparse matrix has many values that are zero and a few anomalies which represent a classic

example of the decomposition of typical second order matrix into 𝐿 and 𝑆. The above

decomposition using eRPCA is performed with 𝜆0, where 𝜆0 = 1 max (𝑚, 𝑛)⁄ , in other

words 𝜆 = 𝑙 × 𝜆0,where 𝑙 𝜖 ℝ. In this case 𝑙 = 1, however a judicious choice of 𝑙 is a

fundamental aspect of treating problems where is 𝑀 is low rank and sparse simultaneously.

This problem would have been much more straightforward if the above decomposition had

occurred in a similar fashion for our Amazon communities second order matrix but unfortunately,

this did not happen. In the first place, the Amazon communities second order matrix is the kind

of 𝑀 where most of the values are zero and a few of the values are non-zero (𝑀𝑧 ≫ 𝑀𝑛𝑧). An

example of such a matrix is shown in Figure 2.2 and 2.3, and such matrices are much harder for

eRPCA to decompose.

When we use techniques like eRPCA on the Amazon communities data 𝑀, we find that all the

singular values of 𝐿 for such a matrix are zero when we use 𝜆0 𝑜𝑟 𝜆 = 1 × 𝜆0, and this means

that no entries in 𝐿 can be effectively predicted (i.e., every entry in 𝑀 is viewed as an

unpredictable anomaly). This makes our second order matrix special, which is already a low rank

17

with a few outliers as shown in Figure 2.2. In addition, to our surprise, the sparse matrix 𝑆 is

actually not sparse anymore. This means that the sparse matrix 𝑆 has many non-zero values as

compared to the low rank matrix 𝐿 (i.e.,𝐿𝑛𝑧 ≪ 𝑆𝑛𝑧) as seen in the Figure 2.2. In other words, the

low rank matrix is acting as the sparse matrix, and the sparse matrix is acting as the low rank

matrix in terms of the number of zeroes it contains.

The above observation creates for us new opportunities to explore the controlling parameter 𝜆,

to make the sparse matrix much sparser and to optimize the rank of low rank matrix for making

better predictions of the second order matrix, which is the scope of our thesis. As we understand

the limitation of using eRPCA with default value 𝜆0 on such sparse second order matrices, we

explore the possibilities of using eRPCA on such sparse second order matrix by varying the

controlling parameter 𝜆 = 𝑙 × 𝜆0.

In the Figure 2.2 and 2.3, we illustrate that by using the eRPCA algorithm with increasing value

of 𝜆 that the low rank matrix becomes denser and sparse matrix becomes sparser for every

increased value of 𝜆. We see that for a high value of 𝜆, as depicted in Figure 2.3, the number of

zeroes in this sparse matrix has decreased relative to the low rank matrix. In other words, the

number of non-zeroes in 𝐿 has increased relative to 𝑆 (𝑖. 𝑒. , 𝐿𝑛𝑧 ≫ 𝑆𝑛𝑧). Also by increasing the

value of 𝜆0 𝑡𝑜 𝜆, the rank of the low rank matrix increases from 0 to 𝑟𝑎𝑛𝑘(𝐿) ≤ 6 and,

surprisingly, this higher rank (but not too high) helps us to predict entries in 𝑀.

Figure 2.2: In this figure, we show a second order matrix 𝑀 that is too sparse for the standard eRPCA theory to apply.
The 𝐿 and the 𝑆 matrices show a typical decomposition that a classic eRPCA problem would give for the low rank
and sparse matrices. In this case, the “sparse’ matrix 𝑆 is relatively not sparse as compared to the low rank matrix
𝐿 or the original matrix 𝑀. In fact, and low rank matrix 𝐿 is highly sparse as see from this figure, which is not desirable
from the prediction point of view. The color with different intensity represents the values inside the matrix.

18

Figure 2.3: In this figure, we show a second order matrix 𝑀 that is too sparse for the standard eRPCA theory to apply,
so we use eRPCA with high value of 𝜆 on 𝑀. The 𝐿 and the 𝑆 matrices show a decomposition that a classic eRPCA
problem would give for the low rank and sparse matrices for high value of 𝜆. In this case, the “sparse’ matrix 𝑆 is
relatively more sparse as compared to the low rank matrix 𝐿 or the original matrix 𝑀. In fact, and low rank matrix 𝐿
is dense as compared to 𝐿 in Figure 2.2. The color with different intensity represents the values inside the matrix.

2.7 Various scenarios that exists in eRPCA

For real world data, when converted in to second order form, there could be many unknown

entries in the matrix 𝑀, and one would like to predict the values of those unknown entries.

Therefore, in such cases we observe all the entries of 𝑀 (in the technical RPCA sense of every

entry of Ω being 1).

However, in the eRPCA sense, we make 𝜖𝑖𝑗 = 𝑣𝐸𝐿 for those entries we feel confident that we know

and make 𝜖𝑖𝑗 = 𝑣𝐸𝐻 for those entries we do not know and wish to predict. So, harkening back to

the definition of Ω in Section 2.5, we write

 𝑢, 𝑣 ∈ 𝑃Ω,
𝑢𝑝, 𝑣𝑝 ∈ 𝑣𝐸𝐻,

17)

to denote the entries we wish to predict.

19

Figure 2.4: This shows the decomposition of Second order matrix to low rank matrix (𝐿) and sparse matrix(𝑆), the
yellow color in ′𝑀′ indicates the entries which we need to predict. The red color entries in 𝐿 means we may not make
good prediction relative to other and the entries in 𝐿 whose corresponding entries are green color in 𝑆 means we
can make better prediction relative to the red color entries.

In the case of a second order matrix 𝑀 with many unknown entries, we understand from the

principles of eRPCA that not all the entries could be predicted well. The errors of each of the

entries in the matrix could vary, and so there are entries which could have relatively high errors,

and we call them 𝑇𝑦𝑝𝑒 − 𝐻𝐸 errors, and those entries with low errors, which we call 𝑇𝑦𝑝𝑒 − 𝐿𝐸

errors. As per the principles of eRPCA, 𝑇𝑦𝑝𝑒 − 𝐻𝐸 errors are generated by those entries whose

corresponding entries in sparse matrix 𝑆 are non-zeroes and have anomalies. 𝑇𝑦𝑝𝑒 − 𝐿𝐸 errors

are generated by those entries whose corresponding sparse entries are zeroes and have no

anomalies.

Accordingly after the eRPCA algorithm is complete we know which are the entries have 𝑇𝑦𝑝𝑒 −

𝐻𝐸 errors and 𝑇𝑦𝑝𝑒 − 𝐿𝐸 errors merely by examining 𝑆. Accordingly, we can write that

 𝑖, 𝑗 𝜖 𝑆𝑖𝑗 = 0 ∶ 𝑇𝑦𝑝𝑒 − 𝐿𝐸

𝑖, 𝑗 𝜖 𝑆𝑖𝑗 ≠ 0 ∶ 𝑇𝑦𝑝𝑒 − 𝐻𝐸
18)

In the Figure 2.4, the red color in the low rank matrix is classifies as those entries which could

cause 𝑇𝑦𝑝𝑒 − 𝐻𝐸 errors, and the white color in the low rank matrix is classifies as those entries

which could cause 𝑇𝑦𝑝𝑒 − 𝐿𝐸 errors.

From the above ideas, we know how to make use of eRPCA for prediction, and we know the

possibilities of different error points. Moreover, having understood the above two ideas, we

focus on some of the practical aspects of using eRPCA from a business or an applied point of view.

In a real situation, we may need to predict some specific entries, as predicting those entries may

20

involve generating money to the business directly or indirectly, or could have much value from

any problem perceptive. In the Figure 2.4, we see that yellow color entries (there are seven

entries) represent those entries, which we want to predict for the business needs. Among those

seven entries, we can say with a tolerance limit that five entries could fall in 𝑇𝑦𝑝𝑒 − 𝐿𝐸 and two

entries would fall under 𝑇𝑦𝑝𝑒 − 𝐻𝐸 error.

In any given situation, from a business prediction perspective, if the business wants a few of the

entries that come with 𝑇𝑦𝑝𝑒 − 𝐿𝐸 errors to be predicted more precisely, then we may compute

those entries with more accuracy but at the cost of more data (i.e., higher rank of low rank matrix

by increasing the value of 𝜆). In addition, we can say that out of 𝑀𝑝 entries, how many of the

entries may fall under 𝑇𝑦𝑝𝑒 − 𝐻𝐸 or 𝑇𝑦𝑝𝑒 − 𝐿𝐸 errors.

21

Chapter 3

Description of Datasets

3.1 Overview

In this chapter, we explain the structure and preprocessing of the Amazon product community

data set [2] and the SKAION [23] network dataset.

In the SKAION data set, the raw data represents the data packets exchanged between sensor

nodes (source and destination IP address and ports). In other words, the raw data has rows

labeled by IP addresses and ports, and the columns represent data packets received or sent by

the respective sensor node. We have analyzed various ways of converting the first order matrix

of raw packet data to a second order matrix for better representation of the similarities between

the sensor nodes.

In the Amazon product community data set, the original raw dataset has two representations,

one with the connections between individual products and the other listing the communities of

Amazon products. We call this raw dataset our first order matrix. We analyze various ways to

form the second order matrix of Amazon communities, where the values represent the strength

of connection between the communities. We have discussed the formation of second order

“similarity” matrices in four different ways by using different definitions of strength of connection

between the communities, and have chosen the best among them based upon their effectiveness

for prediction.

3.2 SKAION Network data

The raw data or first order matrix (𝐹𝑂𝑀) of the SKAION Network data consists of rows of Source

and Destination IP address and their ports, and the column represents Internet packets (P1, P2

and so on until P10000 for this particular dataset). Each of the rows represents all of the Internet

packet data for the given sensor node. We convert the first order matrix into a second order

matrix by taking the dot product of the normalized first order matrix and its transpose, which

gives the covariance matrix between the sensor nodes.

22

 𝑀 = 𝐹𝑂𝑀 × 𝐹𝑂𝑀𝑇, 19)

where,

 𝐹𝑂𝑀 is of the order of 759 × 10000,

 𝐹𝑂𝑀𝑇 is of the order of 10,000 × 759.

Sensor Nodes P1 P2 P3 P4 P5 … P10000

12.100.178.10 1 0 1 0 1 0 ….10000

12.100.178.11 0 1 0 1 0 0 ….10000

…. 0 1 1 0 0 1 ….10000

100 1 0 0 0 1 0 ….10000

200 0 0 0 0 1 1 ….10000

…..

Table 3.1: The table shows a small sample of first order matrix of SKAION data, with rows representing the senor
nodes of source and destination IP address and ports, and columns represent 10000 internet packets of the sensor
nodes.

The raw data from SKAION Network that comprises the first order matrix has binary values of 0’s

and 1’s, with 10,000 packets of data, a sample of which is shown in the Table 3.1. In effect, each

IP Address and each port is thought of as a sensor. Therefore, for example a one in the row

labelled 12.100.178.10 means the packet originated at this IP Address. Similarly, a one in the row

labelled 100 means the packet originated from port 100. First 225 rows of sensor nodes represent

Source IP address, from 226 row to 425 row of sensor nodes represent destination IP address,

from 426 row to 610 row of sensor nodes represent source ports and the remaining from 611

row to 759 row represent destination ports.

The first order matrix is converted to a second order matrix by taking the dot product of the 𝐹𝑂𝑀

and the transpose of the 𝐹𝑂𝑀. Then, the size of second order matrix becomes 759 × 759 and

that is what is used for analysis. In the SKAION data, as the first order matrix is mainly categorical

(binary) in nature, we normalize the first order matrix by rows (i.e., on each sensor node). We

then take the dot product on the normalized data of 𝐹𝑂𝑀 and its transpose to get the second

order matrix (i.e., the data is normalized so the diagonal of the second order matrix is one). In

Figure 3.1, the first order matrix of normalized SKAION data is shown, the x-axis represents the

sensor nodes and y-axis represents the internet packets. The colors in the plot represent the

normalized values inside the first order matrix, the red color indicates the lowest value −1 and

black color indicates the highest value+1, and the contrast from red to black is the values in the

range from −1 to +1. In the plot, we see four patterned roughly slanted black lines, the first

pattered black line from left represent the source IP address (first 225 sensor nodes) which is

transmitting the data and the second black line from left represent the destination IP address

(226 to 425 sensor nodes) which is receiving the data. Similarly, the third black line (426 to 610

23

sensor nodes) and fourth black line (611 to 759 sensor nodes) represent the source and

destination ports, the former one is transmitting and later one is receiving the data.

Figure 3.1: In the above graph, x-axis represents sensor nodes and y-axis represents internet packets (which is
normalized across each sensor nodes), there are 10,000 packets and 759 sensor nodes, the values in the color bar
shows, with red representing the lowest value of -1 and black representing the highest value of +1.

3.2.1 First Order Matrix from SKAION data

Based upon our preliminary analysis we felt that modifying the raw data of SKAION network data

based on the needs of different problems would improve our analysis and therefore we augment

the first order matrix using three different structures. The three structure differ by modifying the

IP address of both source and destination, Table 3.2 shows the original form of IP address and

three representations of those IP Addresses.

24

IP Address IP Address Distinct IP Address SUBNET1 IP Address SUBNET2

192.168.5.130 192.168.5.130 192.168.5.x 192.168.x.x

192.168.5.130 192.168.5.131 192.168.6.x

192.168.5.131 192.168.5.132

192.168.5.132 192.168.6.134

192.168.5.132

192.168.6.134

Table 3.2: This table shows the example of converting the IP Address of sensor nodes to unique value of IP Address
to SUBNET-1 and SUBNET-2.

In building the first order matrix, we take unique values of all the IP address to get the column IP

Address Distinct. In building the second and third structure of IP Addresses, we start with the

column IP Address Distinct, and take SUBNET-1 and SUBNET-2 of IP Address Distinct to create two

additional columns IP Address SUBNET1 and IP Address SUBNET2. For instance in the table 3.2, If

we take unique values of the above IP address, we get 192.168.5.130, 192.168.5.131,

192.168.5.132, 192.168.5.132, 192.168.6.134 which is represented in column IP Address Distinct.

Similarly, we take the unique values of SUBNET-1 (192.168.5.x, 192.168.6.x, 192.168.5.x,

192.168.6.x) to get rows 192.168.5.X, 192.168.6.X, and we take the unique value of SUBNET-2

(192.168.x.x, 192.168.x.x) to get row 192.168.X.X.

We construct three forms of the second order matrix of SKAION data from three different

structures of the first order matrix. These different forms of second order matrix can be used for

various purpose based on the area of interest in cyber network problems. If the distributed attack

is made by varying only SUBNET values then using distinct IP Address will unnecessarily increase

the computation time, so choosing SUBNET-1 and SUBNET-2 may give better results and

therefore, we experiment with the three different structure of formation of the second order

matrix.

We analyze the singular values of the three different structures of the second order matrix of

SKAION using the SVD. In order to do this experiment, we have taken 1000 rows (sensor nodes)

for IP Address Distinct from which we get 900 rows for IP Address SUBNET1 and 850 rows for IP

Address SUBNET2. Figure 3.2 and 3.3 shows the singular value plot of SUBNET-1 and SUBNET-2,

the singular values decreases exponentially and has approximately 318 non-zero singular values,

which implies that we can predict (759-318 = 441) sensor nodes from 318 sensor nodes. The

singular values in the Figure 3.2 and 3.3 are very similar to Figure 4.1, where 320 sensor nodes

have non-zero singular values, which shows that although we are taking the IP Address structures

SUBNET1 and SUBNET2 that reduces the number of rows in the matrix and therefore the amount

computation. However, we get almost same number of nonzero singular values around 320. We

see from the graph of the SVD that it does not make much of a difference by taking unique values

of SUBNET and we are not concluding that taking SUBNET values is helpful in this case. However,

it may be that for different problems taking SUBNETs would be helpful. In this situation, we are

25

taking the IP Address Distinct because we do not want to lose information as the number of rows

decreases by taking the SUBNETs.

Figure 3.2: In the above graph, the y-axis represents the size of singular values, the x-axis represents the index of the
singular values ordered from largest to smallest, and this is from the second order matrix of SKAION data using
SUBNET-1

Figure 3.3: In the above graph, the y-axis represents the size of singular values, the x-axis represents the index of the
singular values ordered from largest to smallest, and this is from the second order matrix of SKAION data using
SUBNET-1

Singular Values of SUBNET -1

Singular Values of SUBNET -2

26

3.3 Amazon Communities Network Data

The second type of network we consider is the Amazon product co-purchasing network. The

Amazon Communities Network data set is downloaded from Stanford Large Network Dataset

Collection [11]. It is based on the Customers Who Bought This Item Also Bought feature of the

Amazon website. The nodes of the network represent products and edges link commonly co-

purchased products. If a product i is frequently co-purchased with product j, the graph contains

an undirected edge from i to j. In addition, Amazon defines product categories and calls these

categories “ground-truth” communities [12]. Each product (i.e., node) belongs to one or more

hierarchically organized product categories and products from the same category define a group

that Amazon, and we, view as a ground-truth community [12]. In this case, nodes that belong to

a common ground-truth community share a common function or purpose.

The Amazon product co-purchasing network has FromNodeId to ToNodeId connection data, this

is an undirected graph where FromNodeId represents the origin node (which represents one

Amazon products) and ToNodeId represents the destination node (which represents another

Amazon product). A small sample of this data is shown in table 3.3. For instance, in the first row,

we can say that product 1 is frequently co-purchased with product 88160.

FromNodeId ToNodeId

1 88160

1 118052

1 447165

1 500600

2 27133

2 62291

4 16050

Table 3.3: In this table, the two columns represent the nodes that are Amazon products, and the table as a whole
represents the relationship between two nodes, which is the Amazon product co-purchasing network

In the Amazon ground truth communities data, a sample of which is shown in the Table 3.4, each

row in the community has a different number of nodes depending on the size of the ground truth

community. In the table below C1, C2….etc. represent the communities and the values inside

represents the NodeId which are the products in that communities. For instance, the community

C1 may be bread and the three nodes in C1 may represent three kinds of bread (maybe white,

multigrain and wheat). Unfortunately, we do not know exactly the name of the communities nor

the name of its products.

27

C1 164985 225214 232761

C2 167906 288975 421279 442612 451312

C3 69880 231953 518997 523128

C4 135499 160294 304770

C5 112813 112814 112821 112823

C6 112813 112814 112821 112823

C7 199372 399560 447268 471226 522928 439998 280502

C8 179001 391697 412528

C9 21166 207188 405926 531532 540207

C10 118948 191846 209822 455700 482725

C11 55727 78359

C12 246337 301834 389644

C13 99505 126694 133115 264885

C14 75000 156489 207684 278335 533982

C15 112813 112814 112821 112823 213617

Table 3.4: In this table of the Amazon ground truth communities data, the first column or the row names represent
the communities and the columns after first column represent the nodes for each of the communities in their
respective row (or communities) inside each of the communities.

In our analysis, we combined these two datasets to form a second order matrix that gives us the

strength between the communities, the rows and columns represents the communities, and the

values in the second order matrix gives the strength of connection between the communities.

The strength of connection between the communities can be expressed in many ways and we

present four different ways and chose the best metric among the four that would be most

suitable for our analysis. For instance in the Table 3.5, the strength of connection between

communities C1 and C2 is 0 which means that none of the products in C1 are co-purchased with

C2. The strength of communication between C1 and C100 is 1 which means that “some” of the

products in C1 are co-purchased with the products in C100 (the precise definition of what “some”

means will be the focus of the rest of this Section). Our methodology of second order matrix

formation enforces that the matrix be symmetric. However, a different sort of data, one could

definitely imagine a non-symmetric second order matrix (say, if you knew which product was

purchased first). Note, this is contrast to the covariance based SKAION data second order matrix

by definition is symmetric.

28

Communities C1 C2 C3 … C100

C1 2.2 0 0 0 1

C2 0 4.5 0 5.5 0

C3 0 0 6.5 0 0

.. 0 5.5 0 7.8 0

C100 1 0 0 8 7.6

Table 3.5: In this table, it shows the sample of second order matrix of Amazon data, formed from Amazon
communities’ and product data, the values inside the above matrix represents the strength of connection between
two communities.

Dataset statistics

Nodes 334863

Edges 925872

Nodes in largest WCC 334863 (1.000)

Edges in largest WCC 925872 (1.000)

Nodes in largest SCC 334863 (1.000)

Edges in largest SCC 925872 (1.000)

Average clustering coefficient 0.3967

Number of triangles 667129

Fraction of closed triangles 0.07925

Diameter (longest shortest path) 44

90-percentile effective diameter 15

Table 3.6: In this table, we show all of the statistics mentioned in the original data description of the Amazon

dataset, which is extracted from Stanford Large Network Dataset

We regard each connected nodes in a product category as a separate ground-truth community.

We remove the ground-truth communities, which have less than three nodes. We also provide

the top 5,000 communities with highest quality, which are described in [2]. As for the network,

we analyze the largest connected component. The metrics in Table 3.6 represents various metrics

of nodes and edges of the original data from Stanford Large Network Dataset [11]

3.3.1 Metrics of Communities strength

In order to define precisely, the strength of connection between the communities, we introduce

four different methods of representing the community strength of Amazon data and we call them

as Community Density-1 (CD-1), Community Density-2 (CD-2), Community Density-3 (CD-3) and

29

Community Density-4 (CD-4). We referred to the literature in [12] for CD-1, CD-2, CD-3, and we

came up with CD-4 from the inspiration of previous three metrics.

Beginning with CD-1, if a community C1 is connected to C2 then the value in the second order

matrix between row C1 and column C2 would be defined as the number of edges between these

two communities. In Figure 3.6 and equation (20), there are two communities represented by

the left and right circles, with dots represents the number of nodes in each of the communities.

The edges represent the nodes from each of the communities are connected in the co-purchasing

network.

 𝐶𝐷1 = 𝑁𝑜 𝑜𝑓 𝐸𝑑𝑔𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠 (𝑁𝐸𝐵𝑁) 20)

Figure 3.6: In the Figure there are two communities C1 and C2, the nodes are represented by N1, N2….N8. The lines
represent the edges connecting between two nodes. C1 has five nodes and C2 has three nodes. In this example CD1
is 3.

The definition of community strength CD1 (for instance in the Figure 3.6 CD1 is 3) does not take

into account the number of nodes in each of the communities. This definition is adequate for all

communities that have same number of nodes but in our dataset the communities have different

number of nodes. For instance, consider two pairs of communities. In the first pair, each

community has 4 nodes and there are three edges between the communities. In the second pair

each communities has 100 nodes and again there are three edges between them. Clearly, the

first pair of communities have a stronger connection then the second pair but CD1 does not

recognizes this fact.

So, as it is clear that the number of nodes in the communities should influence the strength of

connection between communities, [12] formulates a new metric that would take the number of

nodes in each community along with the number of edges. Hence, we call this metric Community

30

Density – II (CD2) and define it as the number of edges between the communities divided by the

product of the number of nodes in the two communities.

𝐶𝐷2 =

𝑁𝐸𝐵𝑁

𝑁𝐶1 ∗ 𝑁𝐶2

21)

Thirdly, as we observe from the literature [12], the strength of connection between communities

C1 and C2 should be influenced by the strength of connection C1 with other communities apart

from C2, so equation (22) includes the relative strength with other communities in the metric.

For instance, in the Figure 3.5, we see that C1 and C2 are connected with 3 edges, C1 and C3 are

connected with 2 edges, so in total the edges connected from C1 to other communities is (3+2=5).

Accordingly, it is desirable to consider these other edges in the definition of the community

strength between C1 and C2 or C1 and C3. Therefore, Community Density –III is defined as the

edges connecting between C1 and C2 (NEBN) divided by the edges outgoing from C1 (NOEC1).

𝐶𝐷3 =

𝑁𝐸𝐵𝑁

𝑁𝑂𝐸𝐶1

22)

Figure 3.7: in the Figure there are three communities C1, C2 and C3, the nodes are represented by N1, N2….N11.
The lines represent the edges connecting between two nodes, essentially when viewed from the communities. C1
has five nodes, C2 and C3 has three nodes.

31

Finally, inspired by the three different metrics from the literature [12], we wanted to alter the

second and third metric to form a new metric that would consider giving importance to the

number of nodes in these two communities, and the relative strength between communities C1

with C2 relative to the strength of connection between C1 and other communities. Therefore,

the new metric we define as Community Density - IV, which counts the edges connecting C1 and

C2 divided by the product of edges outgoing from C1, and the number of nodes in the two

communities.

𝐶𝐷4 =

𝑁𝐸𝐵𝑁

𝑁𝑂𝐸𝐶1 ∗ 𝑁𝐶1 ∗ 𝑁𝐶2

23)

In the next Section, we provide results that compare and contrast these various definitions.

32

Chapter 4

Experiments & Results

4.1 Overview of Experiments

In this Chapter, we present the experiments conducted on the SKAION network data and the

Amazon communities network data. In Section 4.2 and 4.3, we take the SKAION network data as

a reference for analyzing the typical kind of second order matrix that appears in most of the real

world problems. In the SKAION network data, we analyze the singular values obtained from the

SVD, RPCA and eRPCA techniques. In addition, we understand the behavior of the low rank matrix

and the sparse matrix arising from SKIAON’s second order matrix. The other analysis involves

evaluating various ways of using the first order form of the SKAION network data and finding the

anomalies in the low rank and the sparse matrix.

In Section 4.4 and 4.5, we evaluate the four methods of forming a second order matrix from the

Amazon communities data. The three main parameters of eRPCA that we observe are Prediction

Error, 𝝀 and number of non-zeroes. We have mainly divided the prediction experiments into

Section 4.7 and 4.8 based on the target matrix used for prediction. In Section 4.7, we do the

prediction of one low rank matrix from another low rank matrix by varying 𝜆 (i.e.

between 𝐿0 and 𝐿𝑝). In Section 4.8, we use the low rank matrix to predict the second order

matrix by varying 𝜆 (i. e. between 𝑀 − 𝐿0 and 𝑀 − 𝐿𝑝). In Section 4.9, we find the empirical

relation between 𝜆 and the non-zero entry values in a sparse matrix. In Section 4.10, we find the

distribution of error entries in prediction of 𝑀 − 𝐿𝑝, and find the best technique to capture the

errors.

4.2 Singular values of SKAION data

The second order matrix of SKAION data has the size of 759 × 759 and is analyzed using the SVD

technique. In Figure 4.1, the y-axis represents the size of the singular values and x-axis represents

the index of the singular value order from largest to smallest. We observe that the singular values

decreases exponentially and it takes approximately 0 at the sensor node of 318, which implies

that we can predict the entries of 441 (759-318 = 441) sensor nodes using the entries of only 318

sensor nodes. This happens because of the low rank property which implies that we may not

need the entries of all of the 759 (high dimensional) sensor nodes, we may just need the entries

of 318 (low dimensional) sensor nodes to predict the entries of remaining 441 sensor nodes. The

question here is, can we predict more nodes using a lesser number of nodes? Yes, using

techniques like RPCA and eRPCA we can improve our ability to predict many sensor nodes from

just a few sensor nodes that we need to measure.

33

Figure 4.1: In this graph, the y-axis represents the size of singular values, the x-axis represents the index of the

singular value order from largest to smallest, the singular values decrease and becomes almost zero and constant

after 318 sensor nodes. This implies that given 318 sensor nodes we can predict rest of the other sensor nodes.

Figure 4.2: In this graph, the y-axis represents the size of singular values, and the x-axis represents the index of the

singular value order from smallest to largest. It shows that the singular values of three techniques: SVD, RPCA and

eRPCA. We see that SVD produces larger number of non-zero singular values than RPCA and eRPCA. These singular

values of RPCA and eRPCA are similar and that is why the lines are coincided.

We use three dimensionality reduction techniques, SVD, RPCA and our own eRPCA, to compare

the singular values of the second order matrix of SKAION network data. In Figure 4.2, the y-axis

represents the size of the singular values and x-axis represents the index of the singular value

order from largest to smallest. We observe that the singular values decrease for all the three

34

techniques. We find that SVD produces larger number of non-zero singular values compared to

Robust and point wise error techniques like RPCA and eRPCA. This implies that SVD requires many

sensor nodes to predict all of the rest of the entries in other sensor nodes. The small number of

non-zero singular values for RPCA and eRPCA imply that these algorithms can predict almost all

of the sensor nodes from a tiny fraction of other sensor nodes. The essential idea is that a few

sensor nodes are hard to predict and account for the majority of non-zero singular values.

However, most of the sensor nodes can be predicted using just a few non-zero singular values.

Partitioning the sensor nodes into those that are easy to predict and those that are hard to

predict is the essence of RPCA and eRPCA. Therefore, we use RPCA techniques for further analysis

in our thesis.

4.3 Understanding of Low Rank and Sparse Matrix of eRPCA

We use eRPCA on SKAION’s second order matrix to understand the decomposition of 𝑀 into a

low rank and a sparse matrix, and take this decomposition as typical for eRPCA. As we understand

the behavior of the low rank and the sparse matrix using SKAION data, we will be able to

foreshadow using eRPCA on Amazon communities data.

The principles of eRPCA algorithm give us the freedom to observe all the entries of the data (or

part of it) based on our problem requirements [1]. We observe all the entries except the diagonal

entries, following [1], as the diagonal entries represent the auto-correlation of the variables, and

our main objective is to find the relationship between different variables. In the eRPCA algorithm,

one sets 𝜖𝑖𝑗 = 𝑣𝐸𝐿 for all the entries we know and sets 𝜖𝑖𝑗 = 𝑣𝐸𝐻 for all entries we wish to

predict. In effect, setting 𝜖𝑖𝑗 = 𝑣𝐸𝐿 gives the algorithm no freedom in optimizing that entry, since

the user measured that entry. On the other hand, setting 𝜖𝑖𝑗 = 𝑣𝐸𝐻 gives the algorithm the

freedom to optimize that entry, and the optimal entry is the predicted value.

There are many input parameters to consider in the eRPCA algorithm, and the following are the

parameters that are important for our analysis. The parameters 𝑢, 𝑣 represent the indices that

are observed from the matrix 𝑀 (In this thesis, we actually observe all of the entries in 𝑀 and we

use 𝜖𝑖𝑗 = 𝑣𝐸𝐿to label entries we wish to predict). 𝑣𝐸 is point wise error bounds which takes on

values 𝑣𝐸𝐿 or 𝑣𝐸𝐻 . 𝜌𝑚𝑎𝑥 denotes maximum rank of 𝑀 to consider for completion. 𝜆 is the value

of the coupling constant between 𝐿 and 𝑆 (and 𝜆 is a key focus of our work) . The output

parameters from the decomposition using eRPCA algorithm are 𝑈, 𝐸, 𝑉𝑇 and 𝑆. The 𝑈, 𝐸 and 𝑉𝑇

components represent the SVD components of the matrix 𝐿. The 𝑈 denotes the left singular

vectors of the matrix 𝐿. The 𝐸 denotes the diagonal matrix of singular values of 𝐿. The 𝑉𝑇 denotes

the right singular vectors of the matrix 𝐿. The 𝑆 denotes the sparse matrix. The output

components are used to construct the low rank matrix by multiplying as 𝐿 = 𝑈 ∗

 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 (𝐸) ∗ 𝑉𝑇. The low rank matrix 𝐿 and the sparse matrix 𝑆 have the same dimensions.

35

The key observation of this thesis is that the values of 𝑀 whose corresponding values of 𝑆 are

zero can be predicted from the low rank matrix 𝐿 with small error. These are precisely the entries

we called 𝑇𝑦𝑝𝑒 − 𝐿𝐸 in Chapter 2! Similarly, the values of 𝑀 whose corresponding values of 𝑆

are non-zero can be predicted from the low rank matrix 𝐿 with large error. These are precisely

the entries we called 𝑇𝑦𝑝𝑒 − 𝐻𝐸 in Chapter 2. Using PCA, differentiating 𝑇𝑦𝑝𝑒 − 𝐻𝐸 and

𝑇𝑦𝑝𝑒 − 𝐿𝐸 is extremely difficult. However, using our techniques such differentiation is quite

easy.

In the Figure 4.3, the plot on the left side is the low rank matrix and the plot on the right side is

the sparse matrix. As we can see from the graph, the low rank matrix 𝐿 represents the classical 𝐿

which is much lower rank than 𝑀, where the striped lines in 𝐿 are normal for a very low rank

matrix. We also observe from the graph that most of the values in low rank matrix are not zero

i.e., only a few values are zero.

The right graph in the Figure 4.3 represents a sparse matrix, where there are many zero entries

and there are a few non-zero entries. The non-zeros entries are called anomalies as per the

principles of eRPCA [1], and the corresponding entries in the low rank matrix with these

anomalies comes are of 𝑇𝑦𝑝𝑒 − 𝐻𝐸. We can predict with high accuracy (low error) of all the

entries of the low rank matrix whose corresponding sparse matrix entries are zero (i.e., green in

color), and these entries are of 𝑇𝑦𝑝𝑒 − 𝐿𝐸.

Figure 4.3: Low Rank Matrix and Sparse Matrix of SKAION Dataset has 759 sensor nodes, the color code bar

represents the values in the matrix. The entries of 𝐿 whose corresponding entries of 𝑆 are zero come with 𝑇𝑦𝑝𝑒 −

𝐿𝐸 errors in prediction, the entries of 𝐿 whose corresponding entries of 𝑆 are non-zero come with 𝑇𝑦𝑝𝑒 − 𝐻𝐸 errors

in prediction. This is a real example of the behavior we described in Figure 2.4.

36

In the typical settings of analyzing the second order matrix (𝑀) using eRPCA, the number of

zeroes and non-zeroes in the low rank matrix and the sparse matrix are given by the equations

below. The number of zeroes in the sparse matrix is classically more than the number of zeroes

than the low rank matrix.

 𝑆𝑧 ≫ 𝐿𝑧 and 𝑆𝑛𝑧 ≪ 𝐿𝑛𝑧, 24)

Where,

 𝑆𝑧: The number of zeroes in Sparse matrix

 𝐿𝑧: The number of zeroes in Low Rank matrix

 𝑆𝑛𝑧: The number of non-zeroes in sparse matrix

 𝐿𝑛𝑧: The number of non-zeroes in Low Rank matrix

The Figure 4.4 represents the singular values of the 𝐿 produced by eRPCA, the y-axis represents

the size of singular values, and the x-axis represents the index of the singular value order from

largest to smallest. The singular values decreases and becomes almost zero and constant after 1

sensor nodes. The singular values imply the number of variables that is required to predict other

variables. Having only, a single non-zero singular value implies we require just one variable to

predict rest of the other 758 variables in the matrix of 759*759.

Figure 4.4: In this Figure the y-axis represents the size of singular values, the x-axis represents the index of the

singular value order from largest to smallest, the singular values decreases and becomes almost zero and constant

after 1 sensor node. A single non-zero singular value implies we require just one variable to predict rest of the other

758 variables.

37

The minimum, maximum, mean(𝜇) and standard deviation(𝜎) of the entries in the sparse matrix

are -1987.34, 579.47, 0.16, and 0.37 respectively. Similarly, the minimum, maximum, mean and

standard deviation of the entries in the low rank matrix are 0.98, 3186.08, 22.62, and 29.95

respectively. The above graph of low rank and sparse matrix is extracted from the range of (𝜇 +

 2 𝜎 , 𝜇 − 2 𝜎) the values beyond this range can be considered as outliers and anomalies. These

anomalies just act as an alert, and there could be multiple reasons for this anomalous behavior.

This information helps us to mitigate the risk of being attacked. The anomalies act as an alarm to

the user to go back and validate the reason on sensor nodes transmission of such data.

4.4 Amazon Communities dataset

In this Section, we present the experiments conducted on singular values of second order

matrices using the community definitions (CD) for the Amazon communities data mentioned in

Chapter 3. In Section 4.4.1 and 4.4.2., we analyze the singular values using the SVD on the four

different community definitions and choose the best CD. We compare the singular values using

the best CD between SVD, RPCA and eRPCA techniques.

4.4.1 Singular values of Communities Strength

In Section 3.3.1, we have defined four metrics to construct the second order matrix from first

order matrix of Amazon communities product dataset. However, theoretically we believe that

CD-II was better metric to consider than other metrics, as CD-II includes not only the edges but

also the number of nodes in each of the communities. However, we wanted to understand the

practical significance of each of the three metrics, and we use the SVD technique to practically

understand the difference among the metrics.

We analyze the second order matrix of Amazon communities data of size 𝐶𝑆 = 1000. Figure 4.5

represents the singular values of the second order matrix using CD-I metric of size 𝐶𝑆 = 1000. The

x-axis represents the index of the singular values ordered from largest to smallest, and y-axis

represents the size of the singular values of the matrix. We observe the exponential decrease of

singular values, which is a good indication of a decreasing smooth trend, which captures each of

the singular values correctly. The first non-zero singular value is 500, which implies that we

require only 500 variables to predict rest of the other variables in the second order matrix of CD-

I, but as the CD-I doesn’t consider using nodes in the communities, so we would be skeptical of

using the CD-I metric.

38

Figure 4.5: In this Figure, the y-axis represents the size of singular values of the matrix 𝐿, which is constructed by the

CD-I, and the x-axis represents the index of the singular values ordered from largest to smallest. The singular values

decrease and becomes almost zero and constant after 500 sensor nodes, but as the CD-I doesn’t consider using

nodes in the communities, so we would be skeptical of using the CD-I metric.

Figure 4.6 represents the singular values of the second order matrix using CD-II metric of size 𝐶𝑆

= 1000. The x-axis represents the index of the singular values ordered from largest to smallest,

and y-axis represents the size of the singular values of the matrix. We observe the exponential

decrease of singular values, which is a good indication of a decreasing smooth trend, which

captures each of the singular values correctly. The first non-zero singular value is 500, which

implies that we require only 500 variables to predict rest of the other variables in the second

order matrix of CD-II.

Figure 4.7 shows the singular values of the second order matrix that is formed by CD-III. The x-

axis represents the index of the singular values ordered from largest to smallest, and y-axis

represents the size of singular values of the matrix. We see that there is no consistent exponential

decrease of singular values, and most importantly, the singular values remain constant until 500

and suddenly drops almost to zero after 500. This is anomalies graph for a graph of SVD, which is

highly insensitive until singular value 500. In conclusion, among all these three metric, the CD-II

has an exponential decrease in singular values and cuts off to almost zero at 500, which shows

that we can perform dimensionality reduction techniques like SVD, RPCA and eRPCA better using

CD-II.

39

Figure 4.6: In this Figure, the y-axis represents the size of singular values of the matrix 𝐿 whose corresponding 𝑀 is

constructed by the CD-II, and the x-axis represents the index of the singular values ordered from largest to smallest.

The singular values decrease and becomes almost zero and constant after 500 sensor nodes, and we observe the

exponential decrease of singular values, which is a good indication of a decreasing smooth trend, which captures

each of the singular values correctly.

Figure 4.7: In this Figure, the y-axis represents the size of singular values of the matrix 𝐿 whose corresponding 𝑀 is

constructed by the CD-III, and the x-axis represents the index of the singular values ordered from largest to smallest.

The singular values decreases and becomes almost zero and constant after 500 sensor nodes, but there is no

consistent exponential decrease of singular values, and most importantly, the singular values remain constant until

500 and suddenly drops almost to zero after 500. This is anomalies graph for a graph of SVD, which is highly

insensitive until singular value 500.

40

Figure 4.71 In this Figure, the y-axis represents the size of singular values of the matrix 𝐿, which is constructed by

the CD-IV, and the x-axis represents the index of the singular values ordered from largest to smallest. The singular

values decrease and becomes almost zero and constant after 500 sensor nodes, but the decrease of singular values

is a discretely continuous trend, which shows the instability of decomposition of such a matrix, so we would be

skeptical of using the CD-IV metric.

Figure 4.71 shows the singular values of the second order matrix that is formed by CD-IV. The x-

axis represents the index of the singular value ordered from largest to smallest, and the y-axis

represents the size of singular values of the matrix. We observe that the singular values decrease

in discretely continuous trend, which shows the instability of decomposition of such a matrix, so

we would be skeptical of using the CD-IV metric.

Figure 4.72 shows the second order matrix of Amazon communities data constructed from metric

CD-2, x-axis and y-axis represents the communities, the values inside represent the strength of

community connection of CD-2. As we can see from the graph, most of the values are zero and

only a few of them are nonzero values.

41

Figure 4.72: In this second order matrix, which is constructed by CD2 metric. The x-axis and y-axis represents the

individual communities, the values inside that represent the strength of connection between two communities

measured using CD2.

4.4.2 Singular Values Comparison of SVD, RPCA and eRPCA

In the Figure 4.8, we have used dimensionality reduction techniques like SVD, RPCA and our own

eRPCA to compare the singular values of the second order matrix of the Amazon communities

data [2], which is constructed using the CD-II metric. We observe that the SVD produces larger

number of non-zero singular values compared to Robust and point wise error techniques like

RPCA and eRPCA. The first non-zero singular value for the eRPCA is the eighth singular value and

for the SVD is much larger. This implies that using the eRPCA techniques require a very few

variables for prediction or dimensionality reduction as compared to the SVD. In practical settings

of the Amazon communities data, the large number of non-zero singular values for the SVD

implies that we require a large number of communities for the SVD to predict the strength of

connection between the other communities. In contrast RPCA and eRPCA requires fewer

communities to predict rest of the entries for other communities. Therefore, we use eRPCA

technique for further analysis in our thesis with the CD-II metric definition of the second order

matrix of the Amazon communities data.

Amazon Communities Second Order Matrix

42

Figure 4.8: In this Figure, the y-axis represents the size of singular values, and the x-axis represents the index of the

singular value order from smallest to largest. It shows that the singular values of three techniques: SVD, RPCA and

eRPCA. We see that SVD produces larger number of non-zero singular values than RPCA and eRPCA. These singular

values of RPCA and eRPCA are similar and that is why the lines are coincided.

In using the eRPCA algorithm for the second order matrix of the Amazon communities data with

community definition metric of the CD-II, we mainly experimented on three scenarios. In the

following sections, we detail those experiments on some of the eRPCA parameters and observe

the corresponding matrices generated from eRPCA. In particular, first, we change 𝜆 values.

Second, we change the error values to understand the relationship between the low rank and

the sparse matrix. Third, we measure the prediction error for low rank matrix.

4.5 Effect of 𝝀 values on Low Rank and Sparse Matrices

The idea of experimenting with 𝜆 is based on the observation that the second order matrix of the

Amazon communities data was highly low rank and sparse using the default value 𝜆0 [1]. From

the principles of the eRPCA algorithm, a dense low rank matrix is easily predictable, however a

sparse matrix is not easily predictable since all of the entries can be viewed as anomalies[].

Technically speaking, those entries of 𝐿 whose corresponding sparse entries are zero (𝑆𝑖𝑗 = 0)

are of 𝑇𝑦𝑝𝑒 − 𝐿𝐸. However, if the entries of 𝐿 whose corresponding sparse entries are not zero

 (𝑆𝑖𝑗 ≠ 0) are of 𝑇𝑦𝑝𝑒 − 𝐻𝐸. The purpose of using 𝜆 in the second order matrix of Amazon

communities data is to adjust the density of non-zero values between the low rank and the sparse

Singular Values of SVD, RPCA and eRPCA

43

matrix. In other words, the control parameter 𝜆 helps us to control the rank of the low rank matrix

and the prediction usability of 𝐿, and to control the sparsity in the sparse matrix.

In the case of applying the eRPCA algorithm to the Amazon communities data, the default value

of 𝜆 = 1 ∗ 𝜆0 does not yield any non-zero values in 𝐿 . All of the non-zero entries of 𝑀 appear in

in 𝑆 and all of the singular value of 𝐿 is zero. A low rank matrix 𝐿 with no non-zero singuar values

or, in other words, no non-zero entries provides no information for prediction. Therefore, the

experiment of increasing the 𝜆 value is intended to get more non-zero values in 𝐿, and hence

increase the singular value of 𝐿, which would help us to predict the strength of connection

between the communities. When eRPCA is run with 𝜆 = 0.1 × 𝜆0 to decompose 𝑀 into 𝐿 and 𝑆,

as shown in Figure 4.9, there are no non-zero entries in the low rank matrix and the largest

singular value is zero. In addition, in the sparse matrix, all of the non-zero entries appear. This

observation is quite opposite to what happens in the classical decomposition of typical second

order matrix (where 𝑆𝑧 ≫ 𝐿𝑧 and 𝑆𝑛𝑧 ≪ 𝐿𝑛𝑧).

Figure 4.9: In this Figure, the left plot is the visualization of the low rank matrix and the right graph is the visualization

of the sparse matrix. These plots are obtained from the decomposition of 𝑀 using eRPCA with 𝝀 = 𝟎. 𝟏 × 𝝀𝟎. We

can see from the above Figure, there are no non-zero values in the low rank matrix, and all of the non-zero values

appear in sparse matrix.

The Figure 4.9 shows the visualization of the entry values in the low rank and the sparse matrix

obtained by the decomposition of 𝑀 using the eRPCA algorithm for 𝜆 = 1 ∗ 𝜆0 shown on the left

and right side of the graph respectively. We observe that the low rank matrix has no non-zero

entries, whereas all of the non-zero values appear in sparse matrix. This can be observed from

the color dots, where the sparse matrix has more dots than the low rank matrix. Comparing

44

Figure 4.3, which is a classic example of an 𝐿 and 𝑆 from the eRPCA algorithm, to Figure 4.9, one

can easily that the 𝐿 matrices are substantially different.

Figure 4.10 shows the visualization of the entries in the low rank and the sparse matrix, shown

on the left and right side of the graph respectively, obtained by the decomposition of 𝑀 using

the eRPCA algorithm for 𝜆 = 8 ∗ 𝜆0. We observe that the low rank matrix has a large number of

non-zero entries, whereas the sparse matrix has a smaller number of non-zero entries as

compared to 𝐿. This can be observed from the color dots, where the sparse matrix has lesser dots

than the low rank matrix.

The sparse matrix is denser than the low rank matrix in the Figure 4.9 compared to the Figure

4.10. With the increased value of 𝜆, 𝑆 becomes more sparse (i.e., less dense, as observed from

the color dots). This accounts for more entries in the low rank matrix (i.e., more dense), which is

helpful for prediction but at the cost of a greater number of known community strengths. The

various values of 𝜆 in the experiment are shown in the Table 4.1.

Figure 4.10: In this Figure, the left plot is the visualization of the low rank matrix and the right graph is the

visualization of the sparse matrix. These plots are obtained from the decomposition of 𝑀 using eRPCA with 𝝀 =

𝟖 × 𝝀𝟎. We can see from the above Figure, there is large number of non-zero entries in the low rank matrix, and

there is lesser number of non-zero entries in the sparse matrix.

In the Figure 4.11, the x-axis represents the 𝜆 values and the y-axis represents the number of

non-zero entries in the sparse matrix 𝑆. We observe that the number of non-zero entries in

𝑆 for 𝜆 = 0.1 ∗ 𝜆0 is high, and as we increase the value of 𝜆 the number of non-zero entries in 𝑆

decreases. We observe that the number of non-zero entries in 𝑆 is 4300 for 𝜆 = 0.1 ∗ 𝜆0, and the

number of non-zero entries in 𝑆 is 800 for 𝜆 = 8 ∗ 𝜆0.

45

Figure 4.11: In this Figure, x-axis represents the 𝜆 values and y-axis represents the number of non-zero entries in
sparse matrix. This plot shows the decrease in non-zero entries in sparse matrix with increasing 𝜆.

In the Figure 4.12, the x-axis represents the 𝜆 values and y-axis represents the number of non-

zero singular values. We observe that the all the singular values are zero for 𝜆 = 0.1 ∗ 𝜆0, which

means we cannot predict any of the entries in 𝑀. As we increase the value of 𝜆, the number of

non-zero singular values increases in the low rank matrix, which means we need to observe more

of the strengths between the communities but we are actually able to predict something. We

observe that the number of non-zero singular values is around 20 for 𝜆 = 8 ∗ 𝜆0 which means we

require 20 dimensions to predict rest of the 980 dimensions.

Figure 4.12: In this Figure, x-axis represents the 𝜆 values and y-axis represents the number of non-zero singular
values of the low rank matrix. This plot shows the increase in the number of non-zero singular value of the low rank
matrix with increasing 𝜆.

46

𝝀 = 𝒍 ∗ 𝝀𝟎
 𝒍=

Singular values Sparse Matrix
Non-Zeros

Sparse Matrix
Zeros

0.1 0 4324 995676
0.2 0 4324 995676
0.5 0 4324 995676
1.2 0 4324 995676
1.5 2 4126 995874
2.0 5 2763 997237
2.2 7 2742 997258
2.5 7 2188 997812
2.7 8 2183 997817
3.0 11 1786 998214

3.2 12 1696 998304
3.5 15 1676 998324
4.0 18 1164 998836
5.0 20 973 999027
6.0 21 920 999080

7.0 23 871 999129
8.0 31 722 999278

Table 4.1: This table shows the details of the 𝜆 values used in our experiment and it shows the corresponding

singular values and number of non-zero and zero entries of the sparse matrix.

As seen can be seen from Figures 4.11 and 4.12 there is a balance between the large and small

values of 𝜆. In particular, small values of 𝜆 force all entries into 𝑆 and accordingly 𝐿 does not

allow you to predict anything. Similarily, large values of 𝜆 cause too many non-zero singular

values in 𝐿 requiring many observations in 𝑀 to make accurate predictions. So our goal is to

choose a value of 𝜆 that balances these two competing interests.

4.6 Changing 𝒗𝑬 values on 𝑴𝒑to understand the Error in prediction

This Section explains the analysis we conducted on various forms of error due to prediction of

entries. These errors arise by changing the number of entries to be predicted (𝑀𝑝), and by

keeping the controlling parameter 𝜆 constant. We use 𝑣𝐸𝐻 in the eRPCA algorithm to designate

the entries that needs to be predicted. Further, we have analyzed a few different ways to

measure errors in this scenario.

When the eRPCA algorithm decomposes 𝑀 by using 𝑣𝐸𝐿 on the off-diagonal entries and 𝑣𝐸𝐻 on

the diagonal entries, we get 𝐿 and 𝑆. We analyze both 𝐿 and 𝑆 by looking for entries where 𝑆𝑖𝑗 ≠

0. Since these entries are not predictable we set 𝑣𝐸𝐻 on those entries and recompute the

decomposition to get 𝐿𝑝 and 𝑆𝑝. We test whether 𝐿𝑝 is a good approximation of 𝐿 and we repeat

47

the process of using the eRPCA algorithm by changing the number of entries to be predicted (𝑀𝑝)

in incremental value and measure the error for each of the 𝑀𝑝 = {2,5,10,..100 ,..5000 ,…996000).

We measure various forms of error, to understand the effect of 𝑀𝑝. As we change 𝑀𝑝, the error

of each of the entries changes as well, and we want to account for the error for each of the 𝑀𝑝

values used in the error metric, so we normalize the error based upon the value of 𝑀𝑝. We define

the first error metric, to account for 𝑀𝑝 and call it the 𝑙𝑖𝑧𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑁𝐸) , it is the error between

the low rank matrices divided by the number of entries taken for prediction. It is represented

mathematically as

 𝑁𝐸 =
∑ |𝐿𝑝−𝐿|𝑖,𝑗

2 × 𝑀𝑝
. 25)

Where 𝑀𝑝, represents number of communities that needs to be predicted, and we multiply by 2

in the denominator because the second order matrix is symmetric across the diagonals, 𝐿 is the

low rank matrix arising from 𝑀 with 𝑣𝐸𝐿 on all off-diagonal entries and 𝐿𝑝 is the low rank matrix

arising from 𝑀 with 𝑣𝐸𝐻 on 𝑀𝑝 entries.

In the above equation, our hypothesis is that as we increase the number of entries 𝑀𝑝 to be

predicted, the error should converge to some mean error. Surprisingly it seems not to happen as

we hypothesize. In the Figure 4.13, which represents the error metric 𝑁𝐸, x-axis represents the

increasing number of 𝑀𝑝 (from 2 to 99600, and refer to the appendix for detailed values of x-

axis), and y-axis represents the error metric 𝑁𝐸. As we observe, the errors (𝑁𝐸) do not appear

to be converging to any mean (at least for the range of value of 𝑀𝑝 we have studied). Figure 4.13

seems to raise many questions on the nature of fluctuating pattern of errors 𝑁𝐸.

Accordingly, we delve into the error metric (𝑁𝐸) in order to understand the reasons for the

fluctuations of 𝑁𝐸. Mathematically, the 𝑁𝐸 trend line for specific 𝑀𝑝 decreases because the

value in denominator 𝑀𝑝 has changed relatively more than the numerator in the equation

(𝑖. 𝑒. , ∑ |𝐿𝑝 − 𝐿| < 2 × 𝑀𝑝)𝑛=𝑛
𝑛=1 , which means the errors of individual entries accounted by

those additional entries are relatively small as compared to the previous entries. In addition, the

𝑁𝐸 trend line for specific 𝑀𝑝 increases because of the denominator 𝑀𝑝 has changed relatively

more than the numerator in the equation (𝑖. 𝑒. , ∑ |𝐿𝑝 − 𝐿| > 2 × 𝑀𝑝)𝑛=𝑛
𝑛=1 which means the

error accounted by those additional entries are relatively small as compared to the previous

entries.

Figure 4.13 demonstrates that the distributions of errors in approximating 𝐿 by 𝐿𝑝 are almost

certainly not stationary as a function of 𝑀𝑝. Accordingly, we need to be very careful in analyzing

the prediction errors.

48

Figure 4.13: In this Figure, it represents the error metric 𝑁𝐸, the x-axis represents the number of entries to be
predicted (𝑀𝑝), and the y-axis represents the absolute un-normalized error or in short, we call Normalized

error(𝑁𝐸). The 𝑁𝐸 is not showing any trend and is fluctuating even for large values 𝑀𝑝.

In the previous error metric 𝑁𝐸, we observe the errors are not stationary as a function of 𝑀𝑝 , so

we examine 𝑁𝐸 carefully to see if there is a better way to measure the errors in the entries. In

order to do this, we define a new error metric called as absolute value of un-normalized error

denoted by 𝐴_𝑈𝑁𝐸. 𝐴_𝑈𝑁𝐸 is defined as the absolute difference between the default low rank

matrix (𝐿), and the predicted low rank matrix (𝐿𝑝), mathematically it is represented in the

equation below. As we observe in the error metric it does not include 𝑀𝑝, which would give us a

better picture of the error variation of the entries between the low rank matrices. Therefore, we

define

 𝐴_𝑈𝑁𝐸 = ∑ |𝐿𝑝 − 𝐿|𝑖,𝑗 . 26)

In Figure 4.14, represents the error metric 𝐴_𝑈𝑁𝐸. The x-axis represents the increasing number

of 𝑀𝑝 and the y-axis represents the error metric 𝐴_𝑈𝑁𝐸. We observe from the graph that the

error increases as a non-linear exponential function.

49

Figure 4.14: In this Figure, it represents the error metric 𝐴_𝑈𝑁𝐸, the x-axis represents the number of entries used
to predict (𝑀𝑝), and the y-axis represents the absolute un-normalized error(𝐴_𝑈𝑁𝐸). It shows the trend that with

the increase in number of entries to be predicted the error keeps increasing.

We observe the graph in the Figure 4.14, with the increase in number of entries to be predicted,

the algorithm tries to find the predicted value of those entries, which would be slightly different

from the actual values, and the error keeps increasing with increasing number of entries to be

predicted. However, the rate of increase keeps changing. Therefore, this means the normalized

error keeps fluctuating because of the large values of 𝑀𝑝 with small change in numerator or

relatively large change in numerator and small change in 𝑀𝑝.

4.7 Prediction of 𝑴 using Low Rank matrix by changing 𝝀 and 𝐏𝐦𝐚𝐱

Attributes of Error Metrics: When we do prediction of entries of 𝑀, such predictions always

comes with a cost of error. In order to know the effect of these errors on the problems of

interest, we need to quantify the error metrics based on the specific problem situation. We

present primarily four metrics to measure the error of prediction. First, we use SSE (Sum of

Squared Errors) which is defined as the sum of the squares of the difference between predicted

matrix (𝐿 or 𝐿𝑝) and the second order matrix 𝑀. Second, we use Absolute Error which is

defined as the sum of the absolute values of the differences between the entries of predicted

matrix (𝐿 or 𝐿𝑝) and 𝑀.

In practice, we evaluate the prediction accuracy by comparing the second order matrix 𝑀 (which

represents the real world data) and various low rank matrices obtained by changing the

parameters of the eRPCA algorithm. In this Section, we understand the nature of the prediction

error of 𝑀 using 𝐿 by varying the values of 𝜆 and Pmax. We take three different values of Pmax,

one is the optimal singular value using SVD (i.e., Pmax = 300) . This Pmax value was derived using

50

an analysis similar to that in Chapter 3 using a 500 × 500 second order matrix. To study how the

algorithm performs away from the optimal value of Pmax = 300 we also use the values of Pmax

= 100 and 400.

In this Section of the experiment, we consider 𝐶𝑆 = 500 which implies that 𝑁 = 250,000 and

we do not use 𝑀𝑝 (in other words we compare 𝐿 to 𝑀 instead of comparing 𝐿 to 𝐿𝑝). We measure

the error for a given 𝜆 in three different settings (Pmax =100, 300 and 400). We start by taking

the default value of 𝜆 = 𝜆0 and increment the value of 𝜆 in a range from 1 to 40, and measure

the error between 𝑀 and 𝐿 using an error metric, similar to 𝐴_𝑈𝑁𝐸, for each of the 𝜆 values

defined as

 𝐴_𝑈𝑁𝐸 = ∑|𝑀 − 𝐿|

𝑖,𝑗

. 27)

In the Figure 4.16, the x-axis represents the λ values, and the y-axis represents the 𝐴_𝑈𝑁𝐸 error.

There are two lines, which are captured with Pmax values of 300 and 400. Herein, we observe

that after Pmax is changed from the optimal value of Pmax = 300 to 400, there is negligible

difference in the measure of error with changing values of 𝜆 for both of the values of Pmax, hence

we observe from Figure 4.16 that the gray line coincides with orange line. In addition, we observe

that after 𝜆 = 25, the error becomes completely zero which shows that all the entries of 𝐿 are

perfectly predictable after 𝜆 = 25 (but we do require many singular values to make these

predictions). In particular, we need to note that as we increase the value of 𝜆, we are making the

low rank matrix denser (i.e., we are moving all the values from sparse matrix to low rank matrix).

This increase comes at the cost of the rank of the low rank matrix. By increasing the value of 𝜆,

though we are making the low rank matrix denser but the rank of low rank matrix may be much

higher as compared to the default value of 𝜆 = 𝜆0.

In Figure 4.17, the x-axis represents the λ values, and the y-axis represents the A_UNE error.

There are two lines, which are captured with the Pmax values of 100 and 300. Herein, we observe

that after the Pmax is changed from the optimal value of Pmax = 300 to 100, there is slight

difference in the measure of error with changing values of 𝜆 when compared to Figure 4.16.

There is a gap in the error metric at 𝜆 = 25 when measured for Pmax= 100 and 300. The error is

zero for Pmax = 300 at 𝜆 = 25 whereas the error is not zero for Pmax= 100. This observation allows

us to draw an inference that by using Pmax less than optimal value of singular value (< 300), the

error may converge to nearly zero after some higher values of 𝜆 (> 25) than using the optimal

value(Pmax ≥ 300). In other words, the error converging to almost zero is slightly faster for

 Pmax ≥ 300 than for Pmax < 300. Though the trend of the error line is very similar to both

 Pmax = 300 and 100. In addition, the error at different values of 𝜆 could have slightly more error

for Pmax < 300 compared to Pmax ≥ 300.

51

Figure 4.16: In this Figure, x-axis represents the 𝜆 values, and the y-axis represent the 𝐴_𝑈𝑁𝐸 error. This graph shows
the variation of error with variation of 𝜆 values, with two different values of 𝑃𝑚𝑎𝑥 = 300 and 400. The orange line
represent the 𝑃𝑚𝑎𝑥 of 300 and the gray line represents the 𝑃𝑚𝑎𝑥 of 400, both the lines coincides as seen in the
graph.

Figure 4.17: In this Figure, x-axis represents the 𝜆 values, and the y-axis represent the 𝐴_𝑈𝑁𝐸 error. This graph shows
the variation of error with variation of 𝜆 values, with two different values of 𝑃𝑚𝑎𝑥 = 100 and 300. The orange line
represent the 𝑃𝑚𝑎𝑥 of 300 and the blue line represents the 𝑃𝑚𝑎𝑥 of 100, both the lines coincides as seen in the
graph.

-50

0

50

100

150

200

250

300

350

400

450

500

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

Error vs λ | maxRank

maxRank_300 maxRank_400

-50

0

50

100

150

200

250

300

350

400

450

500

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

Error vs λ | maxRank

maxRank_100 maxRank_300

52

 4.8 Prediction of 𝑴 using the low Rank matrix (𝑳) by changing 𝝀 and 𝒗𝑬 on 𝑴𝒑

In Section 4.7, we demonstrated that we should keep Pmax ≥ 300 to optimize errors, so we

proceed with that value in this Section. In addition, we measured errors with only one metric.

However, in this Section, we will be measuring different kinds of error metrics in prediction

between 𝑀 and 𝐿. We sub-divide this section into 4.8.1 and 4.8.2, where the former one deals

with 𝑀 − 𝐿0 and the latter one deals with 𝑀 − 𝐿𝑝. In this Section, we vary two parameters of

eRPCA i.e. 𝜆 and 𝑣𝐸, and we keep 𝑀𝑝 constant at 100,000 entries. We measure two metrics of

errors i.e. SSE (Sum of Squared Errors) and Absolute errors.

When we run the eRPCA algorithm on the second order matrix, it is decomposed into a low rank

and a sparse matrix. With different value of 𝜆 the low rank and sparse matrix are different. As we

observed previously, as we increase the value of 𝜆, the matrix becomes much denser. With this

understanding of the principles of the eRPCA algorithm, we study the effect of 𝜆 on various kinds

of errors. In addition, when we measure the error, we have four different views of observing the

entries. 1) Complete Entries without Diagonal entries, herein, we consider only off diagonal

entries to calculate the error. 2) Complete Entries, herein, we consider all the entries to calculate

the error. 3) GPE Entries: In here, we consider only the GPE-Good predictable Entries (𝑆𝑖𝑗 ≔

0 𝑜𝑟 𝑇𝑦𝑝𝑒 − 𝐿𝐸) to calculate the errors. 4) GPE Entries without Diagonal entries: In here, we

consider all the Good Predictable Entries (𝑆𝑖𝑗 ≔ 0 𝑜𝑟 𝑇𝑦𝑝𝑒 − 𝐿𝐸) without diagonal entries to

calculate the errors.

We will first analyze the second order matrix using eRPCA using the default value of 𝑣𝐸, i.e., using

𝑣𝐸𝐻 on the diagonals and 𝑣𝐸𝐿 on all off diagonal elements. We run the eRPCA algorithm to get a

low rank and a sparse matrix, and we analyze each of the differences between the entries from

the low rank matrix (𝐿) with the second order matrix(𝑀).

We use sum of squared errors to magnify the tiny errors of each entries, which is helpful for

better analysis. In addition, we used absolute difference of the entries to understand the actual

error difference of each entries. SSE is given by the below equation and here 𝐿 = 𝐿0 in 4.8.1 and

𝐿 = 𝐿𝑝 in section 4.8.2

 𝑆𝑆𝐸 = |𝑀 − 𝐿|2, 28)

Absolute valued error is given by the below equation and here 𝐿 = 𝐿0

 𝐴𝑏𝑠 = |𝑀 − 𝐿|, 29)

Where,

 𝑀 Represents the second order matrix

 𝐿 Represents the low rank matrix (𝐿0 or 𝐿𝑝)

53

4.8.1 Prediction by default 𝒗𝑬 [𝑴 − 𝑳𝟎]

Figure 4.18 shows the SSE error distribution of 𝑀 − 𝐿0, the x-axis represents the λ value and the

y-axis represents the SSE. The four different lines represent four different views of measuring

error. The L0 represent the low rank matrix produced by the eRPCA algorithm using default value

of 𝑣𝐸, i.e., using 𝑣𝐸𝐻 on diagonals and 𝑣𝐸𝐿 on off diagonals.

In the Figure 4.18 and 4.19, in the yellow line “GPE- diagonal”, we subtract the entries of second

order matrix and low rank matrix of those off diagonal GPE entries. We observe that most of the

errors of GPE are focused on diagonals (by comparing GPE and GPE-diagonal), so there are hardly

any errors on off diagonal entries, which imply that we make very best prediction on GPE for off

diagonal entries. In addition, the trend line for the error is flat which also shows that, its

dependency on 𝜆 is almost negligible.

Figure 4.18: This Figure represents the SSE error distribution of 𝑀 − 𝐿0, the x-axis represents the 𝜆 value and the y-
axis represents the SSE. The four different lines represent four different views of measuring error.The 𝐿0 represents
the low rank matrix by processing eRPCA with 𝑣𝐸𝐿 on non diagonal entries and 𝑣𝐸𝐻 on diagonal entries.

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45

SS
E

Er
ro

r

λ

SSE of (𝑀− 𝐿o)

Whole - Diagonal

Whole

GPE

GPE - Diagonal

54

Figure 4.19: This Figure represents the Absolute error distribution of 𝑀 − 𝐿0, the x-axis represents the 𝜆 value and

the y-axis represents the Absolute error. The four different lines represent four different views of measuring
error.The 𝐿0 represents the low rank matrix by processing eRPCA with 𝑣𝐸𝐿 on non diagonal entries and 𝑣𝐸𝐻 on
diagonal entries.

For the gray line in Figure 4.18 and 4.19, we subtract the entries of second order matrix and low

rank matrix of all the Good Predictable Entries. We observe that the error becomes completely

constant after 𝜆 = 11, this shows that in order to predict GPE very well. We may need to use 𝜆 =

11 or more to find the best prediction, increasing the value of 𝜆 after 11 would cost more

computation, but gives the same error results, so we suggest to use 𝜆 = 11 for this case. In

addition, when we compare the yellow and gray line, we see that most of the errors are

concentrated at the diagonal entries.

In the Figure 4.18 and Figure 4.19, we see from the blue line “Whole - Diagonal” that the error

are high relative compared to other lines in the Figure, which is obvious because we are

considering all the entries for error calculation. We can also make an inference that the errors

becomes constant between 𝜆 = 11 and 𝜆 = 22, and after 𝜆 = 25. From 𝜆 = 1 to 4, we observe that

the errors has a greater negative slope, which means the errors drastically change in this range

of 𝜆, and the error change after 𝜆=4 is not so drastic. In the gray and orange line, we observe

that from 𝜆 = 4 to 25 they become similar in their error profile and after 𝜆 = 25 we observe that

they completely converge in error value, becoming constant after that. In addition, there is a

similar trend between the blue and yellow lines after 𝜆 =25, the errors converge to zero and

become constant. Now carefully observing these all four lines, we can infer that there are some

super anomalies, whose error cannot be decrease further with increasing 𝜆, and interestingly this

fall under diagonal entries. Such, super anomalies are not predicted by the standard eRPCA

theory [].

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45

A
b

so
lu

te
 v

al
u

e
 o

f
Er

ro
r

λ

Abs of (𝑀− 𝐿o)
Whole - Diagonal

Whole

GPE - Diagonal

GPE

55

4.8.2 Prediction by varying 𝒗𝑬 [𝑴 − 𝑳𝒑] (high 𝒗𝑬 for 𝑺𝒊𝒋 = 𝟎 entries)

Figure 4.18 shows the SSE error distribution of 𝑀 − 𝐿𝑝, the x-axis represents the λ value and the

y-axis represents the SSE. The four different lines represent four different views of measuring

error. The Lp represent the low rank matrix produced by the eRPCA algorithm using 𝑣𝐸𝐻 on

diagonals and on 𝑀𝑝 = 100000 off diagonal entries.

In all the four lines except blue line “Whole-Diagonal”, there is a drastic increase in error from 𝜆

= 1 to 4, from 4 to 10, there is drastic decrease in the error, and later it becomes much constant.

As we increase 𝜆 from 4 to 10, the low rank matrix becomes more dense and correspondingly

increases the sparsity of sparse matrix, so the error decreases drastically. After 𝜆 =10, there are

entries which are super anomalies which could not be predicted and hence the error remains

almost constant after 𝜆=10. There is negligible increase in error from 𝜆=20 to 22 and then there

is negligible decrease from 22 to 25 in all the 4 lines.

Figure 4.21: This Figure represents the SSE error distribution, the x-axis represents the increasing 𝜆 value
and the y-axis represents the SSE, and all the four different lines represent various ways to observe the
entries. 𝐿𝑝 is the low rank matrix , which is decomposed by eRPCA using 𝑣𝐸𝐻 for 𝑀𝑝 .

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45

SS
E

Er
ro

rs

λ

SSE of (𝑴−𝑳𝒑) Whole - Diagonal

Whole

GPE

GPE - Diagonal

56

Figure 4.22: This Figure represents the Absolute error distribution, the x-axis represents the increasing
𝜆 value and the y-axis represents the SSE, and all the four different lines represent various ways to observe
the entries. 𝐿𝑝 is the low rank matrix , which is decomposed by eRPCA using 𝑣𝐸𝐻 for 𝑀𝑝 .

For the yellow line “GPE- diagonal” in Figure 4.22, we subtract the entries of the second order

matrix and the low rank matrix of those off diagonal GPEs. In here, we find that most of the errors

of GPEs are focused on the diagonals, so there are small errors on off- diagonal entries. This

observation implies that we make good predictions for GPEs for off diagonal entries. In addition,

the trend line for the error is flat after 𝜆 =10, which show that, its dependency on, 𝜆 is almost

negligible after certain value of 𝜆.

For the gray line “GPE” in Figure 4.22, we subtract the entries of the second order matrix and low

rank matrix of all the GPEs. In here, we find that the error becomes completely constant after 𝜆

= 10, this shows that in order to predict GPEs very well we may need to use 𝜆 = 11 or more to

find the best prediction. Increasing the value of 𝜆 after 10 would cost more computation but

with the same results, so we suggest to use 𝜆 = 10 for this case. In addition, when we compare

case-3 and case-4, we see that most of the errors are concentrated at diagonal entries in GPE.

For the orange line “Whole” in Figure 4.22, we subtract all the entries of second order matrix and

low rank matrix. We find that the error is high relative to other lines in the Figure, which is obvious

because we are considering all the entries for error calculation. We can also make an inference

that the errors becomes constant between 𝜆 = 11 and 𝜆 = 12, and after 𝜆 = 25 we see that errors

becomes negligible. From 𝜆 = 1 to 4, we observe that the errors has greater negative slope, which

means the errors drastically change in this range of 𝜆, and the error change after 𝜆 = 4 is not that

drastic.

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45

A
b

so
lu

te
 E

rr
o

r

λ

Abs of (𝑴−𝑳𝒑) Whole - Diagonal

Whole

GPE - Diagonal

GPE

57

From the blue and yellow line in Figure 4.22, we see that from 𝜆 = 4 to 25, they are similar in

error profile and after 𝜆 = 25, we see that they completely converge in the error values and

become constant. In addition, there is a similar trend between orange and gray line, after 𝜆 =25,

these lines error converge to zero and become constant. Now carefully observing these two

scenarios, we can infer there are some super anomalies whose error cannot be decreased further

by changing 𝜆, and interestingly these are diagonal entries.

4.9 Empirical relation between 𝝀 and number of non-zeroes in 𝑺

In this Section, we analyze the relationship between the number of non-zeroes entries in the

sparse matrix (𝑆0 𝑎𝑛𝑑 𝑆𝑝) with changing 𝜆. We conducted the experiment in five different

settings of 𝑀𝑝 and observe the relationship between 𝜆 and 𝑆𝑛𝑧: 1) Running eRPCA and getting

low rank matrix 𝐿 and sparse matrix 𝑆 2) Running eRPCA with 𝑀𝑝 as 20,000 entries 3) Running

eRPCA with 𝑀𝑝 as 50,000 entries 4) Running eRPCA with 𝑀𝑝 as 100,000 entries 5) Running

eRPCA with 𝑀𝑝 as 200,000 entries. We vary 𝑀𝑝 values on those entries, which gives 𝑇𝑦𝑝𝑒 − 𝐿𝐸

errors. In each of the above settings, we vary the 𝜆 value and measure the number of non-zeroes

in the sparse matrix for every change in 𝜆 value and Table 4.2 shows the results of the analysis.

Figure 4.23 (a): The Figure shows the variation of 𝑆𝑛𝑧 and 𝜆, x-axis represents the 𝜆 values and the y-axis represents

𝑆𝑛𝑧 . The different colored lines represent non-zero entries in 𝑆0, 𝑆𝑝 from 𝑀𝑝 entries of 20k, 50k, 100k, 200k.

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 40 45

o

f
n

o
n

 z
er

o
es

𝜆

Lambda vs Non Zeroes

So NZ_20k NZ_50k NZ_100k NZ_200k

58

In the Figure 4.23(a), the x-axis represents the 𝜆 values and the y-axis represents 𝑆𝑛𝑧. The

different colored lines represent 𝑆0, Sp from Mp entries of 20k, 50k, 100k, 200k. The graph

shows that there is an exponential decay of number of non-zeroes in sparse matrix with

increasing value of 𝜆. Interestingly, complete entries in sparse matrix become zero after 𝜆 = 25

and this does not depend on the 𝑀𝑝 entries. We observe that if the entries of 𝑀𝑝 is higher, than

the number of non-zeroes in sparse matrix is high compared to the lower entries of 𝑀𝑝 for given

value of 𝜆.

We construct the relationship between the number of non-zero entries in sparse matrix and the

𝜆 values using the exponential curves from the Figure 4.23(a) and from the Table 4.2.In the

various settings of 𝑀𝑝, we observe the relationship between 𝑆𝑛𝑧 and 𝜆 which appears to be

exponential. Therefore, we fit the above values with the nonlinear equation using R’s nls function

and we get the below generalized equation from each of the different settings of 𝑀𝑝.

 𝐿𝑜𝑔(𝑆𝑁𝑍) = 7.2788 – 0.19704 ∗ (𝜆) 30)

Where,

𝑆𝑁𝑍 represents the number of non-zeroes in sparse matrix

 𝜆 is the controlling parameter to control the sparsity of 𝑆𝑁𝑍

Therefore, the equation is with intercept value of 7.2788, and the coefficient value for 𝜆

is -0.1970.

59

Figure 4.23: The Figure shows the variation of 𝑆𝑛𝑧 and 𝜆, x-axis represents the 𝜆 values and the y-axis represents 𝑆𝑛𝑧 .

The different colored lines represent non-zero entries in 𝑆0, 𝑆𝑝 from 𝑀𝑝 entries of 20k, 50k, 100k, 200k, and the

predicted value.

 𝝀 𝑺𝒏𝒛 NZ_20k NZ_50k NZ_100k NZ_200k Predicted

1 1413 1413 1410 1408 1402 1190

2 961 1261 1190 1108 969 977

2.5 733 923 1123 944 748 886

3 577 843 938 846 600 802

3.5 465 611 800 743 456 727

4 333 518 695 708 370 659

4.5 268 363 561 656 306 597

5 243 374 520 580 280 541

5.5 243 320 520 556 280 490

6 203 263 334 503 234 444

8 179 193 262 383 218 300

10 183 209 232 310 228 202

12 113 126 158 201 158 136

15 105 119 133 161 139 75

18 105 106 112 142 127 42

20 104 108 115 137 121 28

22 103 108 117 129 138 19

25 0 0 0 0 0 11

30 0 0 0 0 0 4

35 0 0 0 0 0 1

40 0 0 0 0 0 1

Table 4.2: This table shows the experimental results between 𝜆 values and the number of non-zeroes corresponding

to the 𝜆 value. The predicted value corresponds to the values we have predicted based on the experiments on other

columns.

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 40 45

o

f
n

o
n

 z
er

o
es

λ

λ vs Non Zeroes in Sparse Matrix

So NZ_20k NZ_50k

NZ_100k NZ_200k Predicted

60

Table 4.2 has the 𝜆 values used in our experiment, 𝑆𝑛𝑧 is the number of non-zero values with

no 𝑀𝑝, NZ_20k represents the number of non-zero values in sparse matrix obtained by using

𝑀𝑝 = 20000 entries. NZ_50k represents the number of non-zero values in sparse matrix

obtained by using 𝑀𝑝 = 50000 entries. NZ_100k represents the number of non-zero values in

sparse matrix obtained by using 𝑀𝑝 = 100000 entries. NZ_200k represents the number of non-

zero values in sparse matrix obtained by using 𝑀𝑝 = 200000 entries. Predicted is the number of

non-zeroes predicted from all the five settings.

In the Figure 4.23, the x-axis represents the 𝜆 values and the y-axis represents 𝑆𝑛𝑧. The different

colored lines represent 𝑆0, Sp from Mp entries of 20k, 50k, 100k, 200k, and the predicted line.

The graph shows that there is an exponential decay of number of non-zeroes in sparse matrix

with increasing value of 𝜆. Interestingly, complete entries in sparse matrix become zero after 𝜆 =

25 and this does not depend on the 𝑀𝑝 entries. We observe that if the entries of 𝑀𝑝 is higher,

than the number of non-zeroes in sparse matrix is high compared to the lower entries of 𝑀𝑝 for

given value of 𝜆. The predicted dot line shows the fit line from the above equation, which fits the

exponential curves.

4.9.1 Making a few Non Zero Entries as High

Figure 4.24: The Figure shows the variation of Snz and λ, x-axis represents the λ values and the y-axis represents Snz.

The different colored lines represent non-zero entries in S0, Sp from Mp entries of 20k, 50k, 100k, 200k. In those Mp

entries that needs to be predicted, 100 entries of those Mp entries are used for prediction whose corresponding

sparse entries are not zero.

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 40 45

o

f
n

o
n

 z
e

ro
s

𝜆

For 100 non-zero entries of S

Lo NZ_20k

NZ_50k NZ_100k

NZ_200k

61

In the previous experiments, we predict only those entries of 𝑀 𝑜𝑟 𝐿 whose corresponding

sparse entries are zero. In this experiment, we use 𝑣𝐸𝐻 for 100 of those entries, whose

corresponding sparse matrix are non-zero. There are 1000 non-zero entries in the sparse matrix

and we use 𝑣𝐸𝐻 for 100 of those entries and run the eRPCA as mentioned in the Section 4.9. In

the Figure 4.24, shows the variation of 𝑆𝑛𝑧 and 𝜆, x-axis represents the 𝜆 values and the y-axis

represents 𝑆𝑛𝑧 . The different colored lines represent non-zero entries in 𝑆0, 𝑆𝑝 from 𝑀𝑝 entries

of 20k, 50k, 100k, 200k. In those 𝑀𝑝 entries that needs to be predicted, 100 entries of those 𝑀𝑝

entries are used for prediction whose corresponding sparse entries are not zero. We observe that

Figure 4.24 and 4.23(a) are very similar in the exponential curve pattern, which makes us to draw

inference that, the relationship between 𝜆 and the number of non-zero entries in sparse

matrix 𝑆𝑛𝑧, doesn’t depend on the entries which are either of 𝑇𝑦𝑝𝑒 − 𝐿𝐸 or 𝑇𝑦𝑝𝑒 − 𝐻𝐸.

4.10 Distribution of Error entries in prediction of 𝑴 − 𝑳𝒑

The decomposition of 𝐿 and 𝑆 helps us to predict the entries of 𝑀 using 𝐿. The interesting

observation is that each of the entries has different errors, and most of the entries have very

small errors and only a few of the entries have large errors. These large errors tend to dominate

the overall error metric of the matrix prediction, so in this Section we analyze the distribution of

the errors of each of the entries.

To explain the distribution of errors, we take the results obtained by the eRPCA algorithm using

the parameters 𝜆 = 10 × 𝜆0, 𝑀𝑝 = 100000 and Pmax = 300 (based upon the analysis in

previous Sections). The sparse matrix obtained from the decomposition of 𝑀 using the eRPCA for

these parameters, is highly sparse as compared to the low rank matrix 𝐿. Therefore, we expect

the errors of most of the entries to be very low as we are only attempting to predicts GPEs.

Histogram of errors of all entries: In Figure 7.1, the y-axis represents the number of entries and

the x-axis represents the absolute error of each of the entries, the histogram shows the error

distribution of all the entries of the predicted matrix (𝑀 − 𝐿𝑝). We observe from the graph that

the maximum error of all the entries is less than 0.45 and minimum error of all the entries is zero.

The mean of errors is 0.05, the standard deviation is 0.0005, and the median of the distribution

is 0.04. 95% of the entries are below 0.0504 which demonstrates that the distribution is highly

skewed towards lower values of errors. In addition, there are a very few entries, in fact less than

0.01 % of all entries, whose errors are in the range of 0.075 to 0.155 and 0.25 to 0.42.

62

Figure 7.1: This Figure shows the plot of histogram of errors of all the entries. The x-axis represents the absolute
error and the y-axis represents the number of entries.

Histogram of outlier entries (Only top ~ 2000 entries): In the Figure 7.2, the y-axis represents

the number of entries and the x-axis represents the absolute error of each of the entries. It shows

the error distribution of only the outlier entries (magnified view of histogram of error greater

than 0.28) from Figure 7.1. As we see from the graph that all of the entries have relatively high

absolute error in the range of 0.28 to 0.45. The minimum value is 0.285 and maximum value is

0.418. As we can see from the distribution shown in Figure 7.2, there are 350 highly concentrated

entries in the error range from 0.365 to 0.38, and around 220 entries in the error range from

0.402 to 0.418. There are also other cohorts of 150 and 80 entries, which have different error

range. We observe from Figure 7.1 and 7.2 the distribution of error entries is completely non-

normal.

Figure 7.2: It shows the plot of histogram of top 2000 large error entries. The x-axis represents the absolute error
and the y-axis represents the number of entries. These entries are difficult to predict and dominate the errors

shown in many of the plots in this Section.

63

Histogram of non-outlier entries (excluding top ~ 2000 entries): In Figure 7.3, the y-axis

represents the number of entries and the x-axis represents the absolute error of each of the

entries. It shows the error distribution of non-outlier entries, we can see from the graph the

errors of the entries are in the range from zero that is the minimum value and to 0.025 that is

the maximum value. More than 99% entries (total ~ 250,000 entries) lie in the small error range

(< 0.025).

Figure 7.3: It shows the plot of histogram of error entries excluding top 2000 large error entries. The x-axis
represents the absolute error and y-axis represents the number of entries.

The scenario distribution pattern of error entries that is explained above will be mostly same for

any value of 𝜆, 𝑀𝑝 and Pmax. In addition, we found that the high outlier errors are due to 𝑇𝑦𝑝𝑒 −

𝐻𝐸, and most interestingly, the entries of 𝑇𝑦𝑝𝑒 − 𝐻𝐸 error are mostly focused on the diagonals.

In addition, there are large number of entries with small errors that is because of the 𝑇𝑦𝑝𝑒 − 𝐿𝐸.

As we increase the value of 𝜆, we observe that the entries move from 𝑇𝑦𝑝𝑒 − 𝐻𝐸 to 𝑇𝑦𝑝𝑒 − 𝐿𝐸

which is explained in detail in Section 4.10.1.

4.10.1 Percentile to measure the entries of errors

In the previous Section, we observed that the distribution of errors is quite non-normal and has

interesting structure. After analyzing the distribution of errors of all the entries, we find that

each of the cohorts of entries is going to have different errors with changing 𝜆, and we need to

quantify error metric for each of such cohort of entries. In this scenario, the better way to

quantify such errors is to look at the percentiles of the errors.

In this problem, we observe that below 99.25 percentile of the entries, most of their errors are

zero and therefore the errors would start much above 99 percentile. Hence, we chose to start by

looking at the 99.25 percentile of error entries and increasing the percentile gradually from there.

64

We look at 7 different percentile ranges, 99.25, 99.40, 99.50, 99.60, 99.75, 99.85 and 99.99 and

compare the error percentiles across increasing 𝜆 values as shown in Figure 7.4 (keeping with our

previous analysis we take 𝑀𝑝 = 100000 and Pmax = 300 as parameters used in eRPCA).

In Figure 7.4, the x-axis represents 𝜆 of ranging from 1 to 40 (× 𝜆0) and the y-axis represents

absolute error, and each of the lines represents the corresponding percentile values. The orange

and gray line, which is percentile value of 99.40 and 99.5, shows that the error remains constant

until for 𝜆 = 2 and suddenly we see a drastic decrease in error from 𝜆 = 2 to 2.5.

In the Figure 7.4, the blue line represents 99.25 percentile, we see that the error is very low and

the error becomes completely zero after 𝜆 > 2.5. The orange represents 99.40 percentile, the

error becomes zero after 𝜆 =3.5. The gray line represents 99.50 percentile, from 𝜆 = 2.5 to 5,

there is a gradual decrease in error and then the error drops to zero for 𝜆 ≥ 5. It tells us a story

that some of these entries would move from 𝑇𝑦𝑝𝑒 − 𝐻𝐸 to 𝑇𝑦𝑝𝑒 − 𝐿𝐸 and be better predicted

after 𝜆=2.5 for 99.25 percentile , after 𝜆=3.5 for 99.40 percentile, after 𝜆=5 for 99.50 percentile.

Figure 7.4: The percentile values of various error entries for 𝜆 as the x-axis (1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 8,
10, 12, 15, 18, 20, 22, 25, 30, 35, 40) and absolute errors as the y-axis. Each of the line represents the percentile
value of the error entries starting from 99.25 percentile to 99.99 percentile.

The error entries for percentile 99.85 could be changed to an extent but after the value of 𝜆 > 25,

the errors for these entries would remain completely constant. We observe that for the range of

𝜆 values from 18 to 25, the errors increases, remain constant and decrease, which is a peculiar

behavior as seen in the plot.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30 35 40 45

Er
ro

rs

λ

Error Entries for Percentiles

P_99.25 P_99.40 P_99.50 P_99.60 P_99.75 P_99.85 P_99.99

65

The dark blue color represents 99.99 percentile, the errors would mostly remain constant

irrespective of large change in 𝜆 value. This is because of super anomalies behavior of sparse

values, which cannot be changed with any increasing in value of 𝜆. All the percentile values

except 99.99 and 99.85, the errors would come down to zero after 𝜆 = 11. Therefore, for the

entries of this kind, the errors could not be changed with change in 𝜆 values.

This idea of super anomalies is not part of the current eRPCA or RPCA literature. A full explanation

of Figure 7.4 and super anomalies would be an excellent avenue for future work. In particular,

understanding such super anomalies requires a delicate analysis of the interplay of 𝜆 and 𝑣𝐸𝐻.

In effect, a large value of 𝜆 not only reduces the number of entries in S, but can also serve to

move them into different positions. Understanding the precise mechanism of how such

anomalies move is beyond the scope of the current work.

66

Chapter 5

Conclusion

5.1 Summary

The Amazon communities data in its raw form provides challenges to analyze the strength of
communities connection. Firstly, we have analyzed several methods for measuring the strength
of communities connection, including three definitions from the literature [12] and derived one
novel definition of our own. We have used SVD to asses the better way of representing the
strength of the communities connection for the eRPCA algorithm.

The second order matrix 𝑀 is sparse (many of the observed entries are zero) and highly low rank
which makes the current theory of the eRPCA algorithm ill suited for such data. Accordingly, we
develop a method for analyzing a matrix 𝑀, which is incomplete, sparse and low rank (which the
Amazon data forces on us), and this method is a novel contribution of this thesis.

We conducted experiments on balancing the entries of a second order matrix filling between the
low rank and the sparse components. We understand the behavior of the low rank and the sparse
matrix by changing the controlling parameter 𝜆, where higher 𝜆 values will make putting non-
zero entries into the sparse matrix more difficult. In other words, a low 𝜆 value will make 𝐿 lower
rank by putting more entries in 𝑆.

We have also found an empirical relationship between the number of non-zeroes in the sparse
matrix and the controlling parameter 𝜆, which would give us the ability to predict the non-zeroes
in the sparse matrix for a given value of 𝜆.

When dealing with such a second order data matrix, which is sparse, it becomes difficult to
understand how to measure the errors in the various entries with usual way of measuring errors.
Therefore, we layout a different way of looking into such problems, we have used the percentile
values to measure the errors between the entries. Such an analysis gives a clear understanding
of the errors of the entries than usual methods.

5.2 Future work

The Amazon communities data which has been analyzed using the eRPCA algorithm, has given us

the direction of using various parameters from the eRPCA. However, there are still many more

parameters of the eRPCA algorithm, which could be analyzed on this data. In practical settings of

using Amazon communities data, we are still not aware of what those products or communities

actual mean, that is we are currently dealing with real data of Amazon communities data but

those products and communities are anonymous to us. The interesting problem to work is to

67

measure the practical implication of these predictions by knowing the business context (real

products and communities) and tweaking the algorithm based on the understanding of the

business implications of these products and communities.

We also want to analyze the various parameters of the eRPCA algorithm on the second order

matrix, which is not much sparse, as we have currently dealt with Amazon data, which is sparse

and low rank. We also want to understand the super anomalies behavior in detail by varying the

parameters 𝜆 and 𝑣𝐸𝐻. As we have explored on the prediction of entries in this thesis, we want

to build this algorithm in real time predictions of various other data sources and make it more

robust.

68

Appendix

Changing 𝒗𝑬 values for 𝑀𝑝to understand the Error in prediction:

Observations Error
Un-normalized
Error

2 0.00E+00 0.00E+00
5 1.50E-04 1.50E-03
10 1.18E-04 2.35E-03
20 9.15E-05 3.66E-03
50 4.49E-05 4.49E-03
60 3.74E-05 4.48E-03
100 3.02E-05 6.04E-03
200 2.54E-05 1.02E-02
500 1.44E-05 1.44E-02
1000 5.23E-05 1.05E-01
1500 4.81E-05 1.44E-01
2000 4.41E-05 1.76E-01
5000 1.04E-03 1.04E+01
20000 4.76E-04 1.90E+01
50000 4.84E-04 4.84E+01
60000 4.22E-04 5.07E+01
70000 3.62E-04 5.07E+01
100000 2.61E-04 5.22E+01
300000 3.94E-04 2.36E+02
400000 5.83E-04 4.66E+02
500000 6.52E-04 6.52E+02
600000 7.22E-04 8.66E+02
800000 5.54E-04 8.87E+02
996000 4.45E-04 8.87E+02

Figure A.1: This figure mainly represents the x-axis values of the Figure 4.13 and the Figure 4.14, the observations
in this table represents the x-axis values ordered in the same order as it appears of both the figures. The y-axis in
the Figures 4.13 and Figure 4.14 represents the second and third column of this table.

69

Bibliography

[1] R. Paffenroth, P. d. Toit, R. Nong, L. Scharf and A. Jayasumana, "Space-time signal processing for

distributed pattern detection in sensor networks," IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL

PROCESSING, vol. 7, no. 1, FEBRUARY 2013.

[2] J. Leskovec and A. Krevl, Amazon product co-purchasing network and ground-truth communities,

2014.

[3] F. Li, SVD and PCA, 2008.

[4] S. Arora, "Singular Value Decomposition," in Singular Value Decomposition and its properties.

[5] E. J. Cand`es, X. Li, Y. Ma and J. Wright, "Robust Principal Component Analysis ?," 18 December

2009.

[6] "Internet World Stats," Miniwatts Marketing Group , January 2016. [Online]. Available:

http://www.internetworldstats.com/stats.htm. [Accessed 20 January 2016].

[7] L. Danon, J. Duch, A. Diaz-Guilera and A. Arenas, "Comparing community structure and definition,"

J. of Stat. Mech, 2005.

[8] M. S and P. F, "A brief survey of machine learning methods for classification in networked data and

an application to suspicion scoring," in Statistical Network Analysis: Models, Issues, and New

Directions, vol. 4503.

[9] M. Walker, "Structured vs. Unstructured Data: The Rise of Data Anarchy," 19 December 2012.

[Online]. Available: http://www.datasciencecentral.com/profiles/blogs/structured-vs-

unstructured-data-the-rise-of-data-anarchy. [Accessed 20 January 2016].

[10] J. Yang, J. McAuley and J. Leskovec, "Community Detection in Networks with Node Attributes," in

IEEE International Conference On Data Mining (ICDM), 2013.

[11] J. Leskovec and A. Krevl, Stanford Large Network Dataset Collection, 2014.

[12] J. Yang and J. Leskovec, "Defining and Evaluating Network Communities based on Ground-truth," 6

November 2012. [Online]. Available: http://arxiv.org/pdf/1205.6233v3.pdf.

[13] L. E. Ghaoui, Low-rank approximation of a matrix.

[14] Y. Ma, Low Rank Matrix Recovery and Completion via Convex Optimization (Introduction),

Perception and Decision Laboratory, 2012.

[15] Y. Ma, Low Rank Matrix Recovery and Completion via Convex Optimization (Applications),

Perception and Decision Laboratory, 2012.

70

[16] C. Bishop, Pattern Recognition And Machine Learning, ser. Information Science and Statistics,

Springer, 2006.

[17] C. Eckart and G. Young, "The approximation of one matrix by another of lower rank,"

Psychometrika, 3 September 1936.

[18] E. J. Cand`es and B. Recht, "Exact Matrix completion via convex optimization," Foundations of

computational Mathematics, vol. 9, no. 6, pp. 717-712, December 2009.

[19] Z. Zhou, X. Li, J. Wright, E. Cand`es and Y. Ma, "Stable Principal Component Pursuit," in Proceedings

of IEEE International Symposium on Information Technology, 2010.

[20] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo and A. S. Willsky, "Sparse and Low-Rank Matrix

Decompositions," in IFAC Symposium on System Identification (SYSID), Saint-Malo, France, 2009.

[21] J. Wright, Y. Peng, Y. Ma, A. Ganesh and S. Rao, "Robust Principal Component Analysis: Exact

Recovery of Corrupted Low-Rank Matrices by Convex Optimization," in NIPS Proceedings.

[22] E. J. Candes and Y. Plan, "Matrix completion with noise," Proceedings of the IEEE, vol. 98, no. 6, pp.

925-936, 2010.

[23] "Protected Repository for the Defense of Infrastructure Against Cyber Threats," [Online]. Available:

https://predict.org. [Accessed December 2014].

[24] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen and Y. Ma, "Fast convex optimization algorithms for

exact recovery of a corrupted low-rank matrix," University of Illinois Urbana-Champaign, Tech.

Rep. UILU ENG-09-2214, August 2009.

[25] Y. Ren, R. Kraut and S. Kiesler, "Applying common identity and bond theory to design of online

communities," in Organization Studies, 2007, pp. 377-408.

