
Deep Learning
Project Report:

Dasheng Gu
Jingwei Shen
Xinyuan Wang

April 24th 2018

Instructor: Joseph E. Beck

1

Abstract

The main topic of this project is Deep Learning on Education. Deep Learning is a

method of machine learning, it can be supervised, semi-supervised or unsupervised. The

problem we are trying to solve is to tweak and improve several neural networks for prediction of

student correctness on questions. The approach we adopt to solve the problem is to compare

different features, such as drop rate, number of hidden layers, hidden nodes, with/without

autoencoder, optimized function, batch size, and if neural network is fully connected so that we

can improve AUC (Area under Curve) to get the better prediction results. We had experimented

on testing the performance of single output and multiple output network respectively. Based on

the data we collected, it turns out that most of the performance of AUC in single output is better

than the performance in multiple output network. At the same time, RMSE (Root-mean-squared

error) performance on multiple output network is better than the performance on single output

network. One obvious aspect of the experiments is that the wheel-spin performance decrease

from averaged 0.85 to 0.66, which is a noticeable change when applying multiple output

network.

Key words

Deep learning, Neural networks, Autoencoder, Competence, Affects, TensorFlow.

Introduction

Deep learning is one of the hottest topics in computer science. It is an algorithm

simulating the biological neural networks structure to discover the relationship between data

distributions. Neural networks are mathematical models that consist of multiple layers of nodes.

When data is passed through those nodes, each of them is multiplied by a weight and add a

bias value. At last, the data is tuned and outputted.

In our experiment, the process of data flowing through the network is represented by

student’s information going through the network and finally outputting the competence of the

student or the effects of the student. From the earlier approach, we have several factors that

show the competence of students: wheel spin, retention, and next problem correctness (NPC).

Besides, the factors that might influence students’ performance are 4 affective states: confusion,

boredom, concentration, and frustration.

In this project, one of the accessory library sources we applied is TensorFlow. It is an

open source math library published by Google, which is named by its working principles. Tensor

means multidimensional array and flow means tensor is computed from one end of the data flow

graph to the other one. TensorFlow can be used in aspects like image or sound identification or

other deep learning fields. This is used in our first project for classifying pictures of the alphabet.

Our team did not construct the network from the basic level. We used Network Builder which is

2

a wrapped-up package written by Anthony Botelho and Seth Adjei, so we can build the

customized network model with only a few lines of codes.

In this project, our goal is to optimize the performance of this network on predicting

students' future performance so that we can obtain an overall display of their competence as an

output. To achieve the goal, we need to make comparisons between outcomes with

modifications on the factors and other values (e.g., the numbers of the hidden layer) to find a

more optimal solution to have a closer prediction.

First experiment: Recognizing alphabet graph

 To start with, let’s talk about another experiment as a warm-up to deep learning.

Provided by the online course on Udacity, this experiment asked us to train a network to classify

pictures of an alphabet. To build the network, we applied logistic regression model from sklearn,

which is a library implementing several machine learning models including logistic regression

model for python. We trained the model for several sets. After that, we let this model goes

through the test dataset to see how accurately it predicts the correct labels.

Logistic regression

Logistic regression can be considered as a branch of linear regression. It can be used in

fields such as machine learning, medical field, and social science for prediction where the

output can only take two values. With Logistic Regression function, we can take any real

number and turn it into a number between 0 and 1 indicating the probability.

Figure 1: Logistic Regression Function

3

Figure 2: The logistic regression curve

 Figure 1 is the formula of logistic regression function, where x stands for any real input.

Figure 2 is a graph of the logistic function on the t-interval (-6, 6).

Implementation

The implementation of the model is from Udacity notMNIST tutorial. We followed the 5

following steps: 1) Download the data through the internet; 2) extract, process, 3) store it; 4)

train the network; 5) print the result. This sklearn package has already implemented the model

of logistic regression, so, we did not need to worry about that.

Conclusion

The output of this experiment only contains the accuracy of the prediction on the test set

of alphabet. Our result turned out that the accuracy rate of our neural network is 0.85, which

indicates that it successfully classifies the test set of alphabet labels. This experiment is a

perfect warm-up for machine learning beginners. By successfully going through this experiment,

we understand that machine learning has several basic steps: read inputs, build a model, train

network and predict outcomes.

4

Second experiment: Predicting and optimizing single output

network

In this experiment, instead of sklearn, we used TensorFlow to build models and train the

network. Since we built the model, we could try different models and test with different

parameters. Basically, the process of training the network has four parts, processing inputs,

building models, training the network and output predictions.

Processing inputs

The data we used is read from a csv file including results from high school students’

survey and test answers. It has more than 500000 rows of data. Each row has student’s id,

question number, and 92 features. They are independent variables that will be fed into the

network. Besides that, each row also has features such as problem correctness, wheel

spinning, first action, retention, and affects. In this experiment, we use one of the five variables

as output variable at a time. Particularly, we offset problem correctness, so it represents the

correctness of the next problem (NPC). Affects represent four columns of data. They are

confusion, concentration, boredom, and frustration. A student can only be one of those four

affective states.

Before feeding those inputs into the network, we need to feed them into the

autoencoder. An autoencoder is a neural network, as well as an unsupervised learning

algorithm. By adding autoencoder, which consists of multiple hidden layers between input and

output layer, our network is able to reduce noise in raw data. As Figure 3 shows, an

autoencoder is a symmetric neural network which has the same numbers of inputs and outputs.

It is used to optimize the model by compressing the input and reducing noise. Through our

experiment, we found out that the autoencoder can increase the performance of the network by

5% to 10% and reduce the time to train a network by about 50%.

5

Figure 3: Model of Autoencoder

In this experiment, the autoencoder has one hidden layer with 46 nodes. The 92 features

of data are fed into the input and output layer of the network. So, when the autoencoder is

trained, the hidden layer, in theory, contains all information the inputs have with fewer nodes.

After the autoencoder is trained, we keep A, B, and connections. Drop C and connect the rest

with B and C. This pre-training process reduces the size of inputs of the main network resulting

in higher efficiency and better performance. It reduces the amount of calculation the main

network needs and the noise the original inputs have.

Building and training models

The models we built in this part use network builder written by Anthony Botelho and Seth

Adjei, so we only need a few lines of code to construct a fully customized network model. This

allows us to focus on improving the performance of the network by matching different models

with different parameters.

The neural network is an algorithm simulating the biological neural system. It has nodes

(hidden units) and connections corresponding to neurons and axons as shown in Figure 4

below. The nodes are places to temporarily store data (number) and connections representing

weights and biases. When the inputs go through the connections as a flow, they are multiplied

by the weights and added to the biases, and the sum of those results are added and stored in

the next node. When these data flows to the output layer, they are compared with the actual

result. Then, the difference or what we call cost entropy is calculated. Then, the network will try

to adjust those weights and biases to reduce the cost. When the cost stops improving, the

network is well trained.

6

Figure 4: Model of Single Output network

Prediction

After the network is trained, we can test the network by predicting students’ competence

given features as the input.

Improving performance

To achieve the goal of improving the performance of the network, what we mainly

concern about are reducing program running time and increasing the accuracy of the prediction.

Firstly, we test the relationship between layer number with the performance. It turns out

that the running time of the 2-layer network is doubled compared to 1-layer network, but the

accuracy barely increases 3-layer network took even longer. Thus, we give up finishing running

the network.

Second, we try to run the network with different hidden units. We find out that more

hidden units increase running time without increasing performance. We test network with 50,

100 and 200 hidden units respectively, so we end up with that 50 hidden units is the optimized

network among the three.

Then we compare network with different cost functions. They are adam and adagrad.

We did not find any difference in their running time but the performance of adam overwhelm

adagrad.

We also test 2 different types of networks, LSTM and RNN networks. They have similar

performance but RNN network cost 50% less time to train the network.

7

At last, the collected data indicates that dropout rate does not affect the performance if

the dropout rate is within 0.3 to 0.7. Dropout is a technique that randomly drops nodes and their

connected weights and biases for the neural network to reduce overfitting. An overfitted model

correspond too closely to the specific data set, so the model is inaccurate when predicting with

different data set.

In conclusion, the optimized model we found for this project is RNN network, 1 layer,

with adam cost function.

Results

Figure 5 is the table of our collected data under single output version. Figure 6 is the

screenshot of the running program outputs.

Figure 5: Result of Single Output Network

Third experiment: Predicting and optimizing multiple output

network with large data set

As it shows in Figure 6, a multiple output network outputs multiple labels at once. In this

case, our goal is to find out if it has higher accuracy when the network outputs multiple labels at

a time. In addition, we used large datasets to see if we can get a better result. We assume that

8

there are relationships between those outputs. For instance, the correctness of the problem is

related to if the student is confused or concentrated.

Figure 6: Model of Multiple Output Network

Different from last experiment, the prototype of the code we used was written by a WPI

graduate student, Liang Zhang, and then modified by Anthony Botelho. We tested it following

the similar pattern we used in the previous experiment.

First, the test results inform us that the running time of network with different hidden

units shows that increasing the number of hidden units does not increase as much of running

time. What’s more, surprisingly, increasing the number of data does increase running time but

not proportional to it. Figure 7 below is the chart built upon the data we collected.

9

Figure 7: Training time and input data

Then we also implemented the network by modifying Anthony’s code. We output all 8

labels mentioned in the second experiment at once, including next problem correctness, first

action, retention, wheel spinning, and affects.The running time with larger data set increased

and the result is shown in Figure 8 including AUC and RMSE results.

Results:

Figure 8: Result of Multiple Output with large data set

Conclusion

By implementing deep learning neural network, we can predict students’ competence in

an efficient way. Dropout rate seems to not affect the performance of the network. However,

autoencoder can increase the performance at the same time reduce running time. We can find

the optimized parameter for the network to build an efficient and time-saving network. Adam

10

cost function overwhelms adgrad cost function and a 1-layer RNN network is good enough for

our purpose.

However, we have not finished trying a 3-layer network or more, or even mixed type

network. It is worth trying to have multiple layer network with different combinations of numbers

of hidden units and network type. Besides that, we have not done much on implementing and

optimizing multiple output network which has lots of potentials. In our project, our program

always stops when reaching a max epoch size. Finding the right cost size to stop can greatly

reduce the running time.

11

Appendix:

Working Log:

Term 1st

(https://docs.google.com/spreadsheets/d/1ZYUxaOZeW_tAefsUuUAC3FgE3xLSD5y6kN6Kwcrx

eCI/edit?ts=58daf93f#gid=0) Learning Materials schedules

In the first term of the project, we were given materials about deep learning, which provided us

with background information and knowledge necessary for the upcoming tasks. These include

online deep learning courses and videos from Youtube.

To make an approach to deep learning, the first thing we need to do is to understand how the

deep network is built for predicting things we interested about. The network used for deep

learning is called neural network. As we learned, deep network is based on neural network

which has multiple numbers of hidden layers. From input to output layer, there are weights

between each two layers. To get the final output layer, between each layer there are complex

calculation done. In learning process, there are concept of overfitting, cross validation, linear

regression, logistic regression, and SoftMax regression. Linear, logistic and SoftMax regression

are models we may apply when constructing our model for prediction. In the upcoming tasks,

we are asked to do experiment on student competence with different models to find out the

relationship between the student’s competence and factors including frustration, confusion, etc

with different models.

First Week:

● Learned basic knowledge of Neural Network (https://www.youtube.com/watch?v=bxe2T-

V8XRs Start From here)

● Study deep learning and Neural Network from Udacity

● Learned Overfitting, cross validation, linear regression, logistic regression, SoftMax

(https://www.youtube.com/watch?v=VZuKBKd4ck4 Start at Overfitting)

● Read the paper “Modeling student competence: a deep learning approach” and try to

have some questions about the theories in the paper：

Second Week:

● Have Udacity deep learning assignment 1 finished which is the nonMNIST from Udacity.

● Watch videos on chapter 6: Autoencoder (Hugo (LaRochelle))

● Reviewed previous videos in the First Week

● Further questions about paper “Modeling student competence: a deep learning

approach”: questions about pictures in the paper.

 How does LSTM increase the performance?

● Suggested use TensorFlow to develop the neural network and further experiments and

we decided to use TensorFlow.

https://docs.google.com/spreadsheets/d/1ZYUxaOZeW_tAefsUuUAC3FgE3xLSD5y6kN6KwcrxeCI/edit?ts=58daf93f#gid=0
https://docs.google.com/spreadsheets/d/1ZYUxaOZeW_tAefsUuUAC3FgE3xLSD5y6kN6KwcrxeCI/edit?ts=58daf93f#gid=0
https://www.youtube.com/watch?v=bxe2T-V8XRs
https://www.youtube.com/watch?v=bxe2T-V8XRs
https://www.youtube.com/watch?v=VZuKBKd4ck4

12

Third Week:

● Went through videos of lecture 7: Dropout, Motivation

● Train basic logistic regression model and the link of data is built and listed below in

seventh week.

○ Through the data we collected, we found that as the number of sample

increases, the accuracy rises gradually, when the sample numbers reaches a

high level, the rate of increase became less obvious.

● Try use autoencoder to reduce the complexity of data and field because we used too

much time on setting TensorFlow.

● Reread the paper and have the questions about Long term short term memory.

● Redo all the parts above using different sample numbers

Fourth Week:

● Try training with SoftMax Regression model

● Test using model above with different sample numbers

○ From the collected data, the relationship between sample numbers and accuracy

is proportional

● Try adding autoencoder to change the complexity of MNIST data

○ But failed

● Test to find the result under new condition to see the effect of autoencoder on dataset

● Reset the number of sample to see the impact on accuracy

Fifth Week:

● Misunderstood the Neural Network and go through the TensorFlow tutorial

○ We actually built 2 layers of convolutional neural network

● Moved the training module from CPU version of TensorFlow to GPU Version

○ Failed because of out of memory of graphic card

● Trained the MNIST by convolutional neural network with CPU mode

○ With testing using 1,2, and 3 hidden layers, we collected the data and found that:

■ Compared to the result of using 1 hidden layer, the accuracy of using 2

hidden layers has a significant increase

■ Compared to the one using 2 hidden layers, using 3 hidden layers caused

the accuracy to drop a little bit

○ Sample number is from 0 to 200000, test sample and validation are all 10000

○ Following the pattern, we found in the previous test, as the sample numbers

increase, the accuracy increase in a linear regression

● The goal for next week is to build our own neural network

● Tried to get Autoencoder from Anthony but they still didn’t have the answer yet

13

Sixth Week:

● Train MNIST using Neural Network

○ We built the Neural Network on our own

● Implement the neural network and test the dropout rate (0.6, 0.5, 0.4)

○ We can hardly find the difference using different dropout rate

○ The sample number is from 0 to 200000

● Need to make some graphs of the accuracy of the module

● Tried to implement Autoencoder

● Fit by using different hidden layer numbers for the test on the result to how number of

hidden layer affects the result

Seventh Week:

Figure 9: Part of the table built using google docs

● Build tables for test results based on MNIST

○ Logistic Regression

(https://docs.google.com/spreadsheets/d/1dEDh4RQtxE4urFXJJl9W96Cm7anc7

JiHaChR8PCROg0/edit#gid=0)

○ SoftMax(0 level) (https://docs.google.com/spreadsheets/d/1Nk2-

aJf1EinWxK2IeLNsuPqYxeGK-eohLysyBUv5wgs/edit#gid=0)

○ Neural Network with 1 hidden layer

(https://docs.google.com/spreadsheets/d/1VzkD4vr7wfSdPwGqJDKlafnyzrwg8kP

uWyCbTc9BE0Q/edit#gid=0)

○ Neural Network with 2 hidden layers

(https://docs.google.com/spreadsheets/d/1VzkD4vr7wfSdPwGqJDKlafnyzrwg8kP

uWyCbTc9BE0Q/edit#gid=0)

○ Neural Network with 3 hidden layers

(https://docs.google.com/spreadsheets/d/1FHAj1Q9ioA1tDiPWIp7-

p5jkOGTlmD4u1F2aeOHuv8s/edit#gid=0)

● Includes: Using Logistic Regression, applying 0,1,2,3 hidden layers in testing with

different dropout rate, here is our conclusion:

○ As sample numbers becomes larger, the accuracy gets higher

○ When the number of hidden layer is 2, the accuracy of outcomes is the highest

○ Dropout rate has tiny influence on the accuracy result

● Finish the progress report for later paper and convenience

● Finished the Autoencoder and test it

● Be prepared for the next term’s task

● Extra stuffs in summer

https://docs.google.com/spreadsheets/d/1dEDh4RQtxE4urFXJJl9W96Cm7anc7JiHaChR8PCROg0/edit#gid=0
https://docs.google.com/spreadsheets/d/1dEDh4RQtxE4urFXJJl9W96Cm7anc7JiHaChR8PCROg0/edit#gid=0
https://docs.google.com/spreadsheets/d/1Nk2-aJf1EinWxK2IeLNsuPqYxeGK-eohLysyBUv5wgs/edit#gid=0
https://docs.google.com/spreadsheets/d/1Nk2-aJf1EinWxK2IeLNsuPqYxeGK-eohLysyBUv5wgs/edit#gid=0
https://docs.google.com/spreadsheets/d/1VzkD4vr7wfSdPwGqJDKlafnyzrwg8kPuWyCbTc9BE0Q/edit#gid=0
https://docs.google.com/spreadsheets/d/1VzkD4vr7wfSdPwGqJDKlafnyzrwg8kPuWyCbTc9BE0Q/edit#gid=0
https://docs.google.com/spreadsheets/d/1VzkD4vr7wfSdPwGqJDKlafnyzrwg8kPuWyCbTc9BE0Q/edit#gid=0
https://docs.google.com/spreadsheets/d/1VzkD4vr7wfSdPwGqJDKlafnyzrwg8kPuWyCbTc9BE0Q/edit#gid=0
https://docs.google.com/spreadsheets/d/1FHAj1Q9ioA1tDiPWIp7-p5jkOGTlmD4u1F2aeOHuv8s/edit#gid=0
https://docs.google.com/spreadsheets/d/1FHAj1Q9ioA1tDiPWIp7-p5jkOGTlmD4u1F2aeOHuv8s/edit#gid=0

14

Eighth Week:

try to do this approach by education data

Before number

Now text

Week 5.20-5.26

● Test with different factors in input size, numbers of hidden units, CPU version and GPU

version

● Build tables of the result including: time elapse of each epoch, total time on finishing the

process, and average time elapse of every epoch

Term 2nd:

Week 1 8/28/2017-9/1/2017

●Decide the project direction,

●Separate the features of student at 12 years old, train them respectively

●Need the data to train for competition

●Download the code, modify and train

Week 2 9/1/2017-9/8/2017

●Code work

●Predict one outcome

●Build 4 separate models

Week3: 9/8-9/15

●Let the code run successfully

●Turn the data given into 3D-array

●Need to know the specific features results have

●The data structure

●array[student] [time step] [feature number] (just for make sure)

15

Week4: 9/15-9/22

●Built the model for training data

●Try several epics of running with autoencoder

●Failed on training 10 percent of data when input number is 10, 1000,

10000

Week5: 9/22-9/29

●Meet with Anthony, solving bugs

●The code can run at least one batch, but had some problem with offsets

●We decided to delete the one have problem in the dataset when building

the model.

Week7: 10/6-10/13

●Experiment the data with different factor including: AUC, hidden layer,

output type

●Collect the data and calculate the time cost and average epoch time

Term 3rd:

Week one 10/27-11/3:

● More layers perform worse

Data: ExperimentData.csv

Fri 11/10 2017

● We can apply some change to AUC (e.g. 0.6 vs. 0.7)

● RNN VS LSTM

● ADAGRAD VS ADAM

● Use stepsize as a factor

● Test with alpha {0.0.1, 10^ (-6)}, and keep rate

● Turn off the threshold for Anthony’s code

Data: ExperimentData.csv

 adam_vs_adagrad.csv

 Step_Size.csv

16

Fri 11/17 2017

● Before last week we kept using ADAGRAD

● Predict each label individually and compare with the Theano Framework (Tensor Flow

vs. Theano).

○ 1. Individual models: wheel spin, retention, first action

■ Harder: affects: boredom, frustration, confusion, concentration.

○ 1.5. Run npc on Xiaolu dataset. (The difference on different data set for same

model)

○ 2. All above at once (8): multiply all the model at once, probably 20 times longer

● No tune for the parameters and keep going.

Data: adam_vs_adagrad.csv

 SingleOutPut

Fri 11/24 2017

● Thanksgiving Break

Fri 12/1 2017

● Get experiment data for single output(npc,rc,fa,ws)

Fri 12/8 2017

● Working on fixing bugs on multiple output with Anthony and Seth.

● Working on One-Hot encoding (Boredom, Frustration, Confusion, Concentration)

17

References

Bengio, Y.; Courville, A.; Vincent, P. (2013). "Representation Learning: A Review and

New Perspectives". IEEE Transactions on Pattern Analysis and Machine Intelligence.

Schmidhuber, J. (2015). "Deep Learning in Neural Networks: An Overview". Neural

Networks.

Bengio, Yoshua; LeCun, Yann; Hinton, Geoffrey (2015). "Deep Learning". Nature.

David A. Freedman (2009). Statistical Models: Theory and Practice. Cambridge

University Press.

Logistic regression. (2018, April 10). Retrieved from

https://en.wikipedia.org/wiki/Logistic_regression

https://en.wikipedia.org/wiki/David_A._Freedman
https://en.wikipedia.org/wiki/Cambridge_University_Press
https://en.wikipedia.org/wiki/Cambridge_University_Press
https://en.wikipedia.org/wiki/Logistic_regression

