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Abstract 

The main topic of this project is Deep Learning on Education. Deep Learning is a 

method of machine learning, it can be supervised, semi-supervised or unsupervised. The 

problem we are trying to solve is to tweak and improve several neural networks for prediction of 

student correctness on questions. The approach we adopt to solve the problem is to compare 

different features, such as drop rate, number of hidden layers, hidden nodes, with/without 

autoencoder, optimized function, batch size, and if neural network is fully connected so that we 

can improve AUC (Area under Curve) to get the better prediction results. We had experimented 

on testing the performance of single output and multiple output network respectively. Based on 

the data we collected, it turns out that most of the performance of AUC in single output is better 

than the performance in multiple output network. At the same time, RMSE (Root-mean-squared 

error) performance on multiple output network is better than the performance on single output 

network. One obvious aspect of the experiments is that the wheel-spin performance decrease 

from averaged 0.85 to 0.66, which is a noticeable change when applying multiple output 

network. 
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Introduction 

Deep learning is one of the hottest topics in computer science. It is an algorithm 

simulating the biological neural networks structure to discover the relationship between data 

distributions. Neural networks are mathematical models that consist of multiple layers of nodes. 

When data is passed through those nodes, each of them is multiplied by a weight and add a 

bias value. At last, the data is tuned and outputted.  

 

In our experiment, the process of data flowing through the network is represented by 

student’s information going through the network and finally outputting the competence of the 

student or the effects of the student. From the earlier approach, we have several factors that 

show the competence of students: wheel spin, retention, and next problem correctness (NPC). 

Besides, the factors that might influence students’ performance are 4 affective states: confusion, 

boredom, concentration, and frustration.  

 

In this project, one of the accessory library sources we applied is TensorFlow. It is an 

open source math library published by Google, which is named by its working principles. Tensor 

means multidimensional array and flow means tensor is computed from one end of the data flow 

graph to the other one. TensorFlow can be used in aspects like image or sound identification or 

other deep learning fields. This is used in our first project for classifying pictures of the alphabet. 

Our team did not construct the network from the basic level. We used Network Builder which is 



 

   
 

2 
 

a wrapped-up package written by Anthony Botelho and Seth Adjei, so we can build the 

customized network model with only a few lines of codes. 

 

In this project, our goal is to optimize the performance of this network on predicting 

students' future performance so that we can obtain an overall display of their competence as an 

output. To achieve the goal, we need to make comparisons between outcomes with 

modifications on the factors and other values (e.g., the numbers of the hidden layer) to find a 

more optimal solution to have a closer prediction. 

 

 

First experiment: Recognizing alphabet graph 

 To start with, let’s talk about another experiment as a warm-up to deep learning. 

Provided by the online course on Udacity, this experiment asked us to train a network to classify 

pictures of an alphabet. To build the network, we applied logistic regression model from sklearn, 

which is a library implementing several machine learning models including logistic regression 

model for python. We trained the model for several sets. After that, we let this model goes 

through the test dataset to see how accurately it predicts the correct labels. 

Logistic regression 

Logistic regression can be considered as a branch of linear regression. It can be used in 

fields such as machine learning, medical field, and social science for prediction where the 

output can only take two values. With Logistic Regression function, we can take any real 

number and turn it into a number between 0 and 1 indicating the probability. 

 
Figure 1: Logistic Regression Function 
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Figure 2: The logistic regression curve 

 

 Figure 1 is the formula of logistic regression function, where x stands for any real input. 

Figure 2 is a graph of the logistic function on the t-interval (-6, 6). 

 

 

Implementation 

The implementation of the model is from Udacity notMNIST tutorial. We followed the 5 

following steps: 1) Download the data through the internet; 2) extract, process, 3) store it; 4) 

train the network; 5) print the result. This sklearn package has already implemented the model 

of logistic regression, so, we did not need to worry about that. 

 

Conclusion 

The output of this experiment only contains the accuracy of the prediction on the test set 

of alphabet. Our result turned out that the accuracy rate of our neural network is 0.85, which 

indicates that it successfully classifies the test set of alphabet labels. This experiment is a 

perfect warm-up for machine learning beginners. By successfully going through this experiment, 

we understand that machine learning has several basic steps: read inputs, build a model, train 

network and predict outcomes.   
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Second experiment: Predicting and optimizing single output 

network 

In this experiment, instead of sklearn, we used TensorFlow to build models and train the 

network. Since we built the model, we could try different models and test with different 

parameters. Basically, the process of training the network has four parts, processing inputs, 

building models, training the network and output predictions. 

 

 

 

Processing inputs  

The data we used is read from a csv file including results from high school students’ 

survey and test answers. It has more than 500000 rows of data. Each row has student’s id, 

question number, and 92 features. They are independent variables that will be fed into the 

network. Besides that, each row also has features such as problem correctness, wheel 

spinning, first action, retention, and affects. In this experiment, we use one of the five variables 

as output variable at a time. Particularly, we offset problem correctness, so it represents the 

correctness of the next problem (NPC). Affects represent four columns of data. They are 

confusion, concentration, boredom, and frustration. A student can only be one of those four 

affective states. 

 

Before feeding those inputs into the network, we need to feed them into the 

autoencoder. An autoencoder is a neural network, as well as an unsupervised learning 

algorithm. By adding autoencoder, which consists of multiple hidden layers between input and 

output layer, our network is able to reduce noise in raw data. As Figure 3 shows, an 

autoencoder is a symmetric neural network which has the same numbers of inputs and outputs. 

It is used to optimize the model by compressing the input and reducing noise. Through our 

experiment, we found out that the autoencoder can increase the performance of the network by 

5% to 10% and reduce the time to train a network by about 50%. 
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Figure 3: Model of Autoencoder 

 

In this experiment, the autoencoder has one hidden layer with 46 nodes. The 92 features 

of data are fed into the input and output layer of the network. So, when the autoencoder is 

trained, the hidden layer, in theory, contains all information the inputs have with fewer nodes. 

After the autoencoder is trained, we keep A, B, and connections. Drop C and connect the rest 

with B and C. This pre-training process reduces the size of inputs of the main network resulting 

in higher efficiency and better performance. It reduces the amount of calculation the main 

network needs and the noise the original inputs have. 

Building and training models 

The models we built in this part use network builder written by Anthony Botelho and Seth 

Adjei, so we only need a few lines of code to construct a fully customized network model. This 

allows us to focus on improving the performance of the network by matching different models 

with different parameters.  

 

The neural network is an algorithm simulating the biological neural system. It has nodes 

(hidden units) and connections corresponding to neurons and axons as shown in Figure 4 

below. The nodes are places to temporarily store data (number) and connections representing 

weights and biases. When the inputs go through the connections as a flow, they are multiplied 

by the weights and added to the biases, and the sum of those results are added and stored in 

the next node. When these data flows to the output layer, they are compared with the actual 

result. Then, the difference or what we call cost entropy is calculated. Then, the network will try 

to adjust those weights and biases to reduce the cost. When the cost stops improving, the 

network is well trained. 
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Figure 4: Model of Single Output network 

Prediction  

After the network is trained, we can test the network by predicting students’ competence 

given features as the input. 

Improving performance 

To achieve the goal of improving the performance of the network, what we mainly 

concern about are reducing program running time and increasing the accuracy of the prediction. 

 

Firstly, we test the relationship between layer number with the performance. It turns out 

that the running time of the 2-layer network is doubled compared to 1-layer network, but the 

accuracy barely increases 3-layer network took even longer. Thus, we give up finishing running 

the network. 

 

Second, we try to run the network with different hidden units. We find out that more 

hidden units increase running time without increasing performance. We test network with 50, 

100 and 200 hidden units respectively, so we end up with that 50 hidden units is the optimized 

network among the three. 

 

Then we compare network with different cost functions. They are adam and adagrad. 

We did not find any difference in their running time but the performance of adam overwhelm 

adagrad. 

 

We also test 2 different types of networks, LSTM and RNN networks. They have similar 

performance but RNN network cost 50% less time to train the network. 
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At last, the collected data indicates that dropout rate does not affect the performance if 

the dropout rate is within 0.3 to 0.7. Dropout is a technique that randomly drops nodes and their 

connected weights and biases for the neural network to reduce overfitting. An overfitted model 

correspond too closely to the specific data set, so the model is inaccurate when predicting with 

different data set. 

 

In conclusion, the optimized model we found for this project is RNN network, 1 layer, 

with adam cost function. 

 

 

Results 

Figure 5 is the table of our collected data under single output version. Figure 6 is the 

screenshot of the running program outputs. 

 
Figure 5: Result of Single Output Network 

 

Third experiment: Predicting and optimizing multiple output 

network with large data set 

As it shows in Figure 6, a multiple output network outputs multiple labels at once. In this 

case, our goal is to find out if it has higher accuracy when the network outputs multiple labels at 

a time. In addition, we used large datasets to see if we can get a better result. We assume that 
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there are relationships between those outputs. For instance, the correctness of the problem is 

related to if the student is confused or concentrated. 

 
Figure 6: Model of Multiple Output Network 

 

Different from last experiment, the prototype of the code we used was written by a WPI 

graduate student, Liang Zhang, and then modified by Anthony Botelho. We tested it following 

the similar pattern we used in the previous experiment. 

 

First, the test results inform us that the running time of network with different hidden 

units shows that increasing the number of hidden units does not increase as much of running 

time. What’s more, surprisingly, increasing the number of data does increase running time but 

not proportional to it. Figure 7 below is the chart built upon the data we collected. 
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Figure 7: Training time and input data 

 

Then we also implemented the network by modifying Anthony’s code. We output all 8 

labels mentioned in the second experiment at once, including next problem correctness, first 

action, retention, wheel spinning, and affects.The running time with larger data set increased 

and the result is shown in Figure 8 including AUC and RMSE results. 

 

Results: 

 
Figure 8: Result of Multiple Output with large data set 

Conclusion  

By implementing deep learning neural network, we can predict students’ competence in 

an efficient way. Dropout rate seems to not affect the performance of the network. However, 

autoencoder can increase the performance at the same time reduce running time. We can find 

the optimized parameter for the network to build an efficient and time-saving network. Adam 



 

   
 

10 
 

cost function overwhelms adgrad cost function and a 1-layer RNN network is good enough for 

our purpose. 

 

However, we have not finished trying a 3-layer network or more, or even mixed type 

network. It is worth trying to have multiple layer network with different combinations of numbers 

of hidden units and network type. Besides that, we have not done much on implementing and 

optimizing multiple output network which has lots of potentials. In our project, our program 

always stops when reaching a max epoch size. Finding the right cost size to stop can greatly 

reduce the running time. 
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Appendix: 

Working Log: 

Term 1st 

(https://docs.google.com/spreadsheets/d/1ZYUxaOZeW_tAefsUuUAC3FgE3xLSD5y6kN6Kwcrx

eCI/edit?ts=58daf93f#gid=0) Learning Materials schedules  

 

In the first term of the project, we were given materials about deep learning, which provided us 

with background information and knowledge necessary for the upcoming tasks. These include 

online deep learning courses and videos from Youtube. 

 

To make an approach to deep learning, the first thing we need to do is to understand how the 

deep network is built for predicting things we interested about. The network used for deep 

learning is called neural network. As we learned, deep network is based on neural network 

which has multiple numbers of hidden layers. From input to output layer, there are weights 

between each two layers. To get the final output layer, between each layer there are complex 

calculation done. In learning process, there are concept of overfitting, cross validation, linear 

regression, logistic regression, and SoftMax regression. Linear, logistic and SoftMax regression 

are models we may apply when constructing our model for prediction. In the upcoming tasks, 

we are asked to do experiment on student competence with different models to find out the 

relationship between the student’s competence and factors including frustration, confusion, etc 

with different models. 

 

 

First Week: 

● Learned basic knowledge of Neural Network (https://www.youtube.com/watch?v=bxe2T-

V8XRs Start From here) 

● Study deep learning and Neural Network from Udacity 

● Learned Overfitting, cross validation, linear regression, logistic regression, SoftMax 

(https://www.youtube.com/watch?v=VZuKBKd4ck4 Start at Overfitting) 

● Read the paper “Modeling student competence: a deep learning approach” and try to 

have some questions about the theories in the paper： 

 

Second Week: 

● Have Udacity deep learning assignment 1 finished which is the nonMNIST from Udacity. 

● Watch videos on chapter 6: Autoencoder (Hugo (LaRochelle)) 

● Reviewed previous videos in the First Week 

● Further questions about paper “Modeling student competence: a deep learning 

approach”: questions about pictures in the paper.  

  How does LSTM increase the performance? 

● Suggested use TensorFlow to develop the neural network and further experiments and 

we decided to use TensorFlow. 

https://docs.google.com/spreadsheets/d/1ZYUxaOZeW_tAefsUuUAC3FgE3xLSD5y6kN6KwcrxeCI/edit?ts=58daf93f#gid=0
https://docs.google.com/spreadsheets/d/1ZYUxaOZeW_tAefsUuUAC3FgE3xLSD5y6kN6KwcrxeCI/edit?ts=58daf93f#gid=0
https://www.youtube.com/watch?v=bxe2T-V8XRs
https://www.youtube.com/watch?v=bxe2T-V8XRs
https://www.youtube.com/watch?v=VZuKBKd4ck4
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Third Week: 

● Went through videos of lecture 7: Dropout, Motivation 

● Train basic logistic regression model and the link of data is built and listed below in 

seventh week. 

○ Through the data we collected, we found that as the number of sample 

increases, the accuracy rises gradually, when the sample numbers reaches a 

high level, the rate of increase became less obvious. 

● Try use autoencoder to reduce the complexity of data and field because we used too 

much time on setting TensorFlow. 

● Reread the paper and have the questions about Long term short term memory. 

● Redo all the parts above using different sample numbers 

 

Fourth Week: 

● Try training with SoftMax Regression model 

● Test using model above with different sample numbers 

○ From the collected data, the relationship between sample numbers and accuracy 

is proportional 

● Try adding autoencoder to change the complexity of MNIST data 

○ But failed 

● Test to find the result under new condition to see the effect of autoencoder on dataset 

● Reset the number of sample to see the impact on accuracy 

 

Fifth Week: 

● Misunderstood the Neural Network and go through the TensorFlow tutorial 

○ We actually built 2 layers of convolutional neural network 

● Moved the training module from CPU version of TensorFlow to GPU Version 

○ Failed because of out of memory of graphic card 

● Trained the MNIST by convolutional neural network with CPU mode 

○ With testing using 1,2, and 3 hidden layers, we collected the data and found that: 

■ Compared to the result of using 1 hidden layer, the accuracy of using 2 

hidden layers has a significant increase 

■ Compared to the one using 2 hidden layers, using 3 hidden layers caused 

the accuracy to drop a little bit 

○ Sample number is from 0 to 200000, test sample and validation are all 10000 

○ Following the pattern, we found in the previous test, as the sample numbers 

increase, the accuracy increase in a linear regression 

● The goal for next week is to build our own neural network 

● Tried to get Autoencoder from Anthony but they still didn’t have the answer yet 
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Sixth Week: 

● Train MNIST using Neural Network 

○ We built the Neural Network on our own 

● Implement the neural network and test the dropout rate (0.6, 0.5, 0.4) 

○ We can hardly find the difference using different dropout rate 

○ The sample number is from 0 to 200000 

● Need to make some graphs of the accuracy of the module 

● Tried to implement Autoencoder 

● Fit by using different hidden layer numbers for the test on the result to how number of 

hidden layer affects the result 

 

Seventh Week: 

 
Figure 9: Part of the table built using google docs    

 

● Build tables for test results based on MNIST  

○ Logistic Regression 

(https://docs.google.com/spreadsheets/d/1dEDh4RQtxE4urFXJJl9W96Cm7anc7

JiHaChR8PCROg0/edit#gid=0) 

○ SoftMax(0 level) (https://docs.google.com/spreadsheets/d/1Nk2-

aJf1EinWxK2IeLNsuPqYxeGK-eohLysyBUv5wgs/edit#gid=0) 

○ Neural Network with 1 hidden layer 

(https://docs.google.com/spreadsheets/d/1VzkD4vr7wfSdPwGqJDKlafnyzrwg8kP

uWyCbTc9BE0Q/edit#gid=0) 

○ Neural Network with 2 hidden layers 

(https://docs.google.com/spreadsheets/d/1VzkD4vr7wfSdPwGqJDKlafnyzrwg8kP

uWyCbTc9BE0Q/edit#gid=0) 

○ Neural Network with 3 hidden layers 

(https://docs.google.com/spreadsheets/d/1FHAj1Q9ioA1tDiPWIp7-

p5jkOGTlmD4u1F2aeOHuv8s/edit#gid=0) 

● Includes: Using Logistic Regression, applying 0,1,2,3 hidden layers in testing with 

different dropout rate, here is our conclusion: 

○ As sample numbers becomes larger, the accuracy gets higher 

○ When the number of hidden layer is 2, the accuracy of outcomes is the highest 

○ Dropout rate has tiny influence on the accuracy result 

● Finish the progress report for later paper and convenience 

● Finished the Autoencoder and test it 

● Be prepared for the next term’s task 

● Extra stuffs in summer 

 

 

https://docs.google.com/spreadsheets/d/1dEDh4RQtxE4urFXJJl9W96Cm7anc7JiHaChR8PCROg0/edit#gid=0
https://docs.google.com/spreadsheets/d/1dEDh4RQtxE4urFXJJl9W96Cm7anc7JiHaChR8PCROg0/edit#gid=0
https://docs.google.com/spreadsheets/d/1Nk2-aJf1EinWxK2IeLNsuPqYxeGK-eohLysyBUv5wgs/edit#gid=0
https://docs.google.com/spreadsheets/d/1Nk2-aJf1EinWxK2IeLNsuPqYxeGK-eohLysyBUv5wgs/edit#gid=0
https://docs.google.com/spreadsheets/d/1VzkD4vr7wfSdPwGqJDKlafnyzrwg8kPuWyCbTc9BE0Q/edit#gid=0
https://docs.google.com/spreadsheets/d/1VzkD4vr7wfSdPwGqJDKlafnyzrwg8kPuWyCbTc9BE0Q/edit#gid=0
https://docs.google.com/spreadsheets/d/1VzkD4vr7wfSdPwGqJDKlafnyzrwg8kPuWyCbTc9BE0Q/edit#gid=0
https://docs.google.com/spreadsheets/d/1VzkD4vr7wfSdPwGqJDKlafnyzrwg8kPuWyCbTc9BE0Q/edit#gid=0
https://docs.google.com/spreadsheets/d/1FHAj1Q9ioA1tDiPWIp7-p5jkOGTlmD4u1F2aeOHuv8s/edit#gid=0
https://docs.google.com/spreadsheets/d/1FHAj1Q9ioA1tDiPWIp7-p5jkOGTlmD4u1F2aeOHuv8s/edit#gid=0
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Eighth Week: 

try to do this approach by education data 

Before number 

Now text 

 

 

Week 5.20-5.26 

● Test with different factors in input size, numbers of hidden units, CPU version and GPU 

version 

● Build tables of the result including: time elapse of each epoch, total time on finishing the 

process, and average time elapse of every epoch 

  

Term 2nd: 

 

Week 1 8/28/2017-9/1/2017  

●Decide the project direction,  

●Separate the features of student at 12 years old,  train them respectively  

●Need the data to train for competition  

●Download the code,  modify and train  

  

Week 2 9/1/2017-9/8/2017  

●Code work  

●Predict one outcome  

●Build 4 separate models  

  

Week3:  9/8-9/15  

●Let the code run successfully  

●Turn the data given into 3D-array  

●Need to know the specific features results have  

●The data structure  

●array[student] [time step] [feature number] (just for make sure)  
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Week4:  9/15-9/22  

●Built the model for training data  

●Try several epics of running with autoencoder  

●Failed on training 10 percent of data when input number is 10,  1000,  

10000  

  

Week5:  9/22-9/29  

●Meet with Anthony,  solving bugs  

●The code can run at least one batch,  but had some problem with offsets  

●We decided to delete the one have problem in the dataset when building 

the model.   

  

Week7:  10/6-10/13  

●Experiment the data with different factor including:  AUC,  hidden layer,  

output type  

●Collect the data and calculate the time cost and average epoch time 

 

 

Term 3rd: 

Week one 10/27-11/3: 

● More layers perform worse 

Data: ExperimentData.csv 

 

 

Fri 11/10 2017 

● We can apply some change to AUC (e.g. 0.6 vs. 0.7) 

● RNN VS LSTM 

● ADAGRAD VS ADAM 

● Use stepsize as a factor 

● Test with alpha {0.0.1, 10^ (-6)}, and keep rate 

● Turn off the threshold for Anthony’s code 

Data: ExperimentData.csv 

          adam_vs_adagrad.csv  

          Step_Size.csv    
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Fri 11/17 2017 

● Before last week we kept using ADAGRAD 

● Predict each label individually and compare with the Theano Framework (Tensor Flow 

vs. Theano). 

○ 1. Individual models: wheel spin, retention, first action 

■ Harder: affects: boredom, frustration, confusion, concentration. 

○ 1.5. Run npc on Xiaolu dataset. (The difference on different data set for same 

model) 

○ 2. All above at once (8): multiply all the model at once, probably 20 times longer 

● No tune for the parameters and keep going. 

Data: adam_vs_adagrad.csv 

          SingleOutPut 

 

 

Fri 11/24 2017 

● Thanksgiving Break 

 

Fri 12/1 2017 

● Get experiment data for single output(npc,rc,fa,ws) 

 

 

Fri 12/8 2017 

● Working on fixing bugs on multiple output with Anthony and Seth. 

● Working on One-Hot encoding (Boredom, Frustration, Confusion, Concentration) 
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