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Understanding concepts – Cognitive Normal (CN)
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Introduction Methods Results Discussion

Sample brain MRI of CN patient [1]

Introduction

A chef cooking. Image source: Copilot



Understanding concepts – Mild Cognitive Impairment 
(MCI)
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Introduction Methods Results Discussion

Sample brain MRI of MCI patient [1]

Chef cooking with an upside-down spatula. Image source: Copilot



Understanding concepts – Alzheimer’s Disease (AD)
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Sample brain MRI of AD patient [1]

A chef with memory loss. Image source: Copilot



Understanding Alzheimer’s Disease

• Rationale:
• In 2024, nearly two-thirds of 

Americans with Alzheimer’s are 
women

• The lifetime risk at age 45:
• 1 in 5 for women 
• 1 in 10 for men (2024)

• About 110 in 100,000 Americans aged 
30-64 get Alzheimer’s before 65
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Image source: NIH National Institute on Aging



Understanding Alzheimer’s Disease

• Neuroanatomical markers
• Brain changes indicating 

Alzheimer’s, like shrinking 
areas

• Helps with early detection 
and treatment tracking
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Image source: iStock



Literature review
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LDA Algorithm in [2]



Literature review
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Two representative MRI images from the NC and AD groups indicating their top features. [3]



Literature review
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Model workflow in [4]



ADNI (Alzheimer’s Disease Neuroimaging 
Initiative) dataset

10

Introduction Methods Results Discussion

ADNI demographic characteristics table

Methods
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Dataset for 
subgroup 
analyses

The nine subgroups 
are:
1. Both sexes, 69-84
2. Males, 69-84
3. Females, 69-84

4. Both sexes, 69-76
5. Males, 69-76
6. Females, 69-76

7. Both sexes, 77-84
8. Males, 77-84
9. Females, 77-84

ADNI 
demographic 
characteristics 
table



Neuroimaging Pipeline – FastSurfer

• Performs segmentation 
• Calculates brain region 

volumes
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Brain parcellation

Measure: 
volume

Brain region 
#1

Brain region 
#2

Brain region 
#…

Brain region 
#95

subject_1 20442.213 3406.848 ## 1471.716

subject_2 20664.388 3490.035 ## 1426.638

subject_.. ## ## ## ##

subject_815 19909.568 3246.525 ## 1321.207

Overview of the volumetric dataset



Preparing Dataset for Machine Learning
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Normalization (N)

• Context:
• Ensures equal contribution of 

each volume to the analysis
• Advised by Dr. Marcelo Febo to 

use entire brain volume as a 
covariate

𝑁 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎 𝐵𝑟𝑎𝑖𝑛 𝑅𝑒𝑔𝑖𝑜𝑛

𝑆𝑢𝑚 𝑜𝑓 𝐸𝑣𝑒𝑟𝑦 𝐵𝑟𝑎𝑖𝑛 𝑅𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑇ℎ𝑎𝑡 𝑆𝑢𝑏𝑗𝑒𝑐𝑡

Equal contribution. Image source: iStock

Image source: Simplilearn



Preparing Dataset for Machine Learning
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SMOTE

Synthetic Minority Over-
sampling Technique
• Purpose: 

• Balance dataset with equal 
number of AD, MCI, and CN 
subjects

• Method: 
• Generates synthetic samples 

from the minority class using 
interpolation

Class imbalance in dataset



• Z-tests and Benjamini-
Hochberg (BH) Correction

• Purpose: 
• Check if brain regions 

are statistically different

• Outcome: 
• Most brain regions were 

statistically different 
with 𝑝<0.01

• Dataset is now prepared for 
Machine Learning

Preparing Dataset for Machine Learning
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Statistical Testing

P-values of a few brain regions after Benjamini-Hochberg correction



Random Forest - ML Algorithm

• Why Random Forest?
• “Group of experts” analogy
• Flowchart to classify AD, 

MCI, or CN
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Results



Random Forest - ML Algorithm

• Why Random Forest?
• “Group of experts” analogy
• Flowchart to classify AD, 

MCI, or CN

17

Introduction Methods Results Discussion

An example flowchart of Random Forest classifier



Random Forest - ML Algorithm

• Why Random Forest?
• “Group of experts” analogy
• Flowchart to classify AD, 

MCI, or CN
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An example flowchart of Random Forest classifier



Random Forest - ML Algorithm

• Why Random Forest?
• “Group of experts” analogy
• Flowchart to classify AD, 

MCI, or CN
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An example flowchart of Random Forest classifier



Random Forest - ML Algorithm

• Why Random Forest?
• “Group of experts” analogy
• Flowchart to classify AD, 

MCI, or CN
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An example flowchart of Random Forest classifier



Performance Metrics

• Accuracy: The ratio of correct predictions out of the total 
predictions made
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Performance using Stratified K-fold Cross-Validation Performance using Leave-One-Out Cross-ValidationPerformance using K-fold Cross-Validation



Performance Metrics
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Performance using Leave-One-Out Cross-ValidationPerformance using K-fold Cross-Validation

Performance using Stratified K-fold Cross-Validation



Random Forest – Feature Importance

• Achieved 92.87% accuracy in predicting AD, MCI, and CN
• Next step: Use Feature Importance to find key brain regions
• Feature Importance: Measures how each brain region affects 

prediction accuracy
• Focused on the top six ranked brain regions in subgroup analyses

23

Introduction Methods Results Discussion



Comparison of Top Contributing Features
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Using K-fold Cross-Validation



Comparison of Top Contributing Features
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Using K-fold Cross-Validation

Using Stratified K-fold Cross-Validation



Comparison of Top Contributing Features
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Using Leave-One-Out Cross-ValidationUsing K-fold Cross-Validation

Using Stratified K-fold Cross-Validation

• Next step: Evaluate 
consistency of top 
features by checking 
overlap across three 
tables (54 features 
each)



Consistent Top Contributing Features

• 39 overlapping features

• Consistency score = 
39/55 =72.22%
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Consistent Top Contributing Features using K-fold, Stratified K-fold, and Leave-One-Out 
Cross-Validation



Neuroanatomical trends observed in AD
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Consistent Top Contributing Features using K-fold, Stratified K-fold, and Leave-One-Out 
Cross-Validation

• Both sex- and age-specific 
predictors:

• Sex-specific predictors:

• Age-specific predictors:



Neuroanatomical trends observed in AD
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Consistent Top Contributing Features using K-fold, Stratified K-fold, and Leave-One-Out 
Cross-Validation

• Both sex- and age-specific 
predictors:

• The Left Hippocampus and Left Amygdala - 
across both sexes and both age groups

• Sex-specific predictors:

• Age-specific predictors:



Neuroanatomical trends observed in AD
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Consistent Top Contributing Features using K-fold, Stratified K-fold, and Leave-One-Out 
Cross-Validation

• Both sex- and age-specific 
predictors:

• The Left Hippocampus and Left Amygdala - 
across both sexes and both age groups

• Right Amygdala – across younger males and 
older females

• Sex-specific predictors:

• Age-specific predictors:



Neuroanatomical trends observed in AD

31

Introduction Methods Results Discussion

Consistent Top Contributing Features using K-fold, Stratified K-fold, and Leave-One-Out 
Cross-Validation

• Both sex- and age-specific 
predictors:

• The Left Hippocampus and Left Amygdala - 
across both sexes and both age groups

• Right Amygdala – across younger males and 
older females

• ctx-lh-inferiortemporal and Left-Inf-Lat-
Vent is male-specific in the older age group

• Sex-specific predictors:

• Age-specific predictors:



Neuroanatomical trends observed in AD
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Consistent Top Contributing Features using K-fold, Stratified K-fold, and Leave-One-Out 
Cross-Validation

• Both sex- and age-specific 
predictors:

• The Left Hippocampus and Left Amygdala - 
across both sexes and both age groups

• Right Amygdala – across younger males and 
older females

• ctx-lh-inferiortemporal and Left-Inf-Lat-
Vent is male-specific in the older age group

• Sex-specific predictors:
• ctx-lh-middletemporal is female-specific

• Age-specific predictors:



Neuroanatomical trends observed in AD
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Consistent Top Contributing Features using K-fold, Stratified K-fold, and Leave-One-Out 
Cross-Validation

• Both sex- and age-specific 
predictors:

• The Left Hippocampus and Left Amygdala - 
across both sexes and both age groups

• Right Amygdala – across younger males and 
older females

• ctx-lh-inferiortemporal and Left-Inf-Lat-
Vent is male-specific in the older age group

• Sex-specific predictors:
• ctx-lh-middletemporal is female-specific
• ctx-rh-entorhinal is male-specific

• Age-specific predictors:



Neuroanatomical trends observed in AD
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Consistent Top Contributing Features using K-fold, Stratified K-fold, and Leave-One-Out 
Cross-Validation

• Both sex- and age-specific 
predictors:

• The Left Hippocampus and Left Amygdala - 
across both sexes and both age groups

• Right Amygdala – across younger males and 
older females

• ctx-lh-inferiortemporal and Left-Inf-Lat-
Vent is male-specific in the older age group

• Sex-specific predictors:
• ctx-lh-middletemporal is female-specific
• ctx-rh-entorhinal is male-specific
• ctx-lh-inferiorparietal is male-specific

• Age-specific predictors:



Neuroanatomical trends observed in AD

35

Introduction Methods Results Discussion

Consistent Top Contributing Features using K-fold, Stratified K-fold, and Leave-One-Out 
Cross-Validation

• Both sex- and age-specific 
predictors:

• The Left Hippocampus and Left Amygdala - 
across both sexes and both age groups

• Right Amygdala – across younger males and 
older females

• ctx-lh-inferiortemporal and Left-Inf-Lat-
Vent is male-specific in the older age group

• Sex-specific predictors:
• ctx-lh-middletemporal is female-specific
• ctx-rh-entorhinal is male-specific
• ctx-lh-inferiorparietal is male-specific

• Age-specific predictors:
• ctx-lh-entorhinal – across older males



Ventricular Enlargement and Cortical 
Atrophy 
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Average volumes of Left Inferior Lateral 
Ventricle, left inferior parietal
cortex, left inferior temporal cortex, and left 
middle temporal cortex in CN, MCI,
and AD subjects. Statistical significance is 
marked with * (p < 0.01).

• Both sex- and age-
specific predictors:

• ctx-lh-inferiortemporal 
and Left-Inf-Lat-Vent is 
male-specific in the 
older age group

• Sex-specific 
predictors:

• ctx-lh-middletemporal 
is female-specific

• ctx-lh-inferiorparietal is 
male-specific



Identifying AD’s Highest-Ranking Brain 
Regions

• Left Amygdala occurs 26 times 
across the three validation 
techniques
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Using Leave-One-Out Cross-ValidationUsing K-fold Cross-Validation

Using Stratified K-fold Cross-Validation



Identifying AD’s Highest-Ranking Brain 
Regions
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All occurrences of brain regions that drive AD across nine subgroups 
using a combination of three validation techniques



Identifying AD’s Highest-Ranking Brain 
Regions
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All occurrences of brain regions that drive AD across nine subgroups 
using a combination of three validation techniques

Visualization of unique brain regions that undergo substantial structural 
changes in Alzheimer’s Disease across subgroups and validation 

techniques using FreeSurfer’s Freeview



Identifying AD’s Highest-Ranking Brain 
Regions
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All occurrences of brain regions that drive AD across nine subgroups 
using a combination of three validation techniques

Visualization of unique brain regions that undergo substantial structural 
changes in Alzheimer’s Disease across subgroups and validation 

techniques using FreeSurfer’s Freeview



Identifying AD’s Highest-Ranking Brain 
Regions
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Top 6 occurrences of brain regions

Visualization of top 6 brain regions - the hippocampus, amygdala, and
entorhinal cortex on Freeview



Identifying AD’s Highest-Ranking Brain 
Regions
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Average volumes of left and right hippocampus, amygdala, and entorhinal cortex in CN, MCI, and AD subjects. Statistical 
significance is marked with * (p < 0.01)

• Both sex- and age-
specific predictors:

• The Left Hippocampus 
and Left Amygdala - 
across both sexes and 
both age groups

• Right Amygdala – across 
younger males and older 
females

• Sex-specific predictors:
• ctx-rh-entorhinal is 

male-specific

• Age-specific predictors:
• ctx-lh-entorhinal – 

across older males



Roles of AD’s Highest-Ranking Brain Regions
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Hippocampus

• Key for learning & memory [5, 6]

• In AD:
• Early tissue loss, 

disconnection from other 
brain regions [7]

• Leads to memory loss, 
cognitive decline

Hippocampus, Amygdala, and Entorhinal Cortex [8]

Discussion



Roles of AD’s Highest-Ranking Brain Regions
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Amygdala

• Processes emotions

• In AD:
• Early changes cause 

personality changes, 
anxiety, irritability [9]

• 80% experience 
hallucinations, delusions 
[10,11]

Hippocampus, Amygdala, and Entorhinal Cortex [8]



Roles of AD’s Highest-Ranking Brain Regions
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Entorhinal Cortex

• Hub for sensory info, 
memory consolidation [12] 

• In AD:
• Initial point for abnormal 

protein deposits [13]
• Leads to memory decline, 

spatial navigation issues

Hippocampus, Amygdala, and Entorhinal Cortex [8]



• Symptomatic Medications
• Cholinesterase inhibitors

• Donepzil
• Galantamine
• Side effects:  nausea, diarrhea, 

muscle cramps, weight loss

• Glutamate regulator: Memantine, 
protects nerve cells from excessive 
activity

• Side effects: dizziness, agitation

Medications for AD

• Two categories of drugs:
• Disease-modifying drugs

• Lecanemab
• Kisunla 
• Side effects: Brain swelling, nausea, 

difficulty walking
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How do our results align with these medications?



• Robots in Neuroscience
• Transcranial Magnetic Stimulation 

(TMS), 
• Transcranial Direct Current 

Stimulation (tDCS)
• Both stimulate neural activity to 

improve brain function in AD patients
• Still in research phase

Treatments for AD

47

Introduction Methods Results Discussion

Image source: https://caputron.com/pages/tms-vs-tdcs 

https://caputron.com/pages/tms-vs-tdcs


Risks and Prevention of AD
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Image source: Alzheimer's Association Lifestyle Strategies for Slowing 
Alzheimer’s. Image source: Thrivology



Challenges Faced

• Clinica and Heudiconv tool for automating image preprocessing 
• Limited data
• IndexError during volume extraction
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Comparison of a discarded scan with a high-quality scan. (a) Defaced
scan with missing brain regions. (b) High-quality scan.

(a)              (b)



Future work

• Exploring other subgroups:
• Ethnicity and race
• Socioeconomic status
• Comorbidity profiles

• Exploring link between Anxiety and Alzheimer’s Disease
• Potential issue: limited access to comprehensive comorbid dataset

• Integrating deep learning methods with the Random Forest Classifier
• Potential issue: model complexity and may require more computational resources

• Develop a clinical tool to identify specific regions that drive AD progression in 
an individual’s brain
• Potential issue: navigating clinical validation and regulatory approval processes
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Summary
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ADNI preprocessed scans 

Brain 
parcellation

Meas
ure: 
volum
e

Brain 
region 
#1

Brain 
region 
#2

Brain 
region 
#…

Brain 
region 
#95

subject_
1

20442.21
3 3406.848 ## 1471.716

subject_
2

20664.38
8 3490.035 ## 1426.638

subject_.
. ## ## ## ##
subject_
815

19909.56
8 3246.525 ## 1321.207

Volume extraction

Prepared 
dataset for 

ML

Normalization
SMOTE

Statistical testing

RF based AD 
prediction

Accuracy = 92.87%Model 
performance

Neuroanatomical 
trends in AD

Top ranked 
Brain regions

Roles of top 
regions

Treatments for 
AD



Conclusions

• High-performance Random Forest model

• Top 3 brain regions affected in AD: hippocampus, amygdala, entorhinal cortex

• Potential female-specific influence: left middle temporal cortex

• Potential male-specific impact: right entorhinal cortex

• Age and sex differences could guide future research and treatments
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