
i

Autonomous Man Overboard Rescue

Equipment

A Major Qualifying Project Report:

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Frederick Hunter (RBE)

Thomas Hunter (ME and ECE)

Date:_______

Approved:

David Cyganski, Major Advisor

Ken Stafford, Co-Advisor

i

Acknowledgements
We would like to thank professors Cyganski and Stafford for advising the project. Special thanks to

professor Stafford for donating MINI, his inflatable Sea Rogue tender used as the rescue craft in this

project. Professor Gennert, for allowing us to borrow the trolling motors from a previous autonomous

kayak MQP as well as Alex Kindle and Justin Stoker for their help the documentation they have provided

us from a previous version of this project. We would also like to thank our parents for putting up with

the circuits and construction taking place on our kitchen table.

ii

Abstract
This project addressed the problem of rescuing people who have fallen overboard at sea. Large vessels

with slow response times and limited turning capabilities are poorly equipped to handle man overboard

cases. To solve this problem, a robotic rescue boat was developed with support from systems for the

vessel and victim that autonomously help pilot the rescue boat via GPS, a magnetic compass, and a

project-specific terminal location system. The same system also supports the return of the victim to the

vessel.

iii

Executive Summary
Ever since man has attempted to travel across the ocean there has been a risk of persons falling

overboard. With today’s new technology, the risk has slowly been diminishing but is still presents a

problem for larger ships. With increasing vessel size, if someone were to fall overboard, it would be

nearly impossible to keep track of them and turn the boat around for rescue. Some of the larger vessels

such as oil tankers may take upwards of ten to twenty minutes to stop and have a turning radius of

nearly two kilometers. There are various forms of safety equipment available today such as a beacon

one can wear to notify the crew of their position once fallen overboard. Most ships also have a rescue

team on standby for such cases, but it takes some time to mobilize any crew and dispatch a rescue

mission. In the minutes that pass, the victim may be out of sight. Especially in cold waters every minute

counts as survival time is low.

The purpose of this project was to create a robotic rescue system that could autonomously locate and

return the victim to the vessel they had fallen from. To achieve this, the equipment was designed in

three modules.

The first module is the personal locator device that the victim would be wearing to provide the other

modules with his or her location. It features a GPS for general localization, an AM transmitter for homing

purposes when the rescue unit approaches the victim, and an XBee transceiver for relaying information

to the other modules. The software running on the victim unit executes on an ATMEGA 328P.

The second module is the rescue unit. This is located on a 10 foot rescue craft that is capable of locating

and returning the victim autonomously. It also has a GPS for localization, three AM receivers for homing

in on the victim, and an XBee for transmitting coordinates and messages to the other modules. The

rescue unit also has power electronics for controlling the motors as well as an ATMEGA 328P that runs

the software.

The third module is the mothership unit. This is used to relay information about the current status of the

rescue to the end-user on the mothership. It features a monitor for displaying the current location of all

the modules as well as a GPS for location and an XBee for transmitting information. The software is

executed on the Raspberry Pi which also has a keyboard allowing for the user to take over control of the

rescue craft should the need arise. These three modules are designed to work together and

autonomously find, rescue, and return the victim to the mothership.

Each of the components was tested on the water in Maynard, MA and it was found that it successfully

demonstrated the effectiveness of the autonomous rescue mission. The rescue unit was placed at one

end of the lake while the victim unit was at the other while the mothership module was on a canoe. The

victim unit was then activated and the rescue craft successfully homed in on it to within a meter. The

return to home button was then pressed and the rescue unit returned to the mothership unit. It is

recommended that a more powerful outboard motor be used for future versions of this project as well

as a transmitter with longer range capabilities.

iv

Authorship
Both members of the project worked on mechanical portions, testing of equipment, research, analysis
and writing of the report. Thomas was responsible for mechanical-related tasks as well as electrical
design and analysis. Frederick wrote all the code for the three modules and integrated the hardware
with the software. Each member wrote the respective section pertaining to his aforementioned role in
the project.

v

Table of Contents
Acknowledgements .. i

Abstract ... ii

Executive Summary .. iii

Authorship ... iv

Table of Contents .. v

Table of Figures .. ix

Abbreviations .. xiv

Introduction .. 1

Background ... 2

Problem Statement and Project Goals.. 3

Goals and Objectives ... 3

Tasks .. 3

Project Requirements ... 3

Mothership Module .. 3

Personal Locator Device .. 3

Rescue Boat ... 4

Summary ... 4

Methods .. 4

Review of Current MOB Systems and Methods ... 5

Domestic Rescue Technologies ... 5

Buoys ... 5

Radio Direction Finders ... 5

Life Rings ... 6

Trailing Lines ... 6

GPS Man Overboard Function .. 6

Rescue Cradles .. 6

Foreign Rescue Technologies .. 7

Coast Guard Rescue .. 7

Man Overboard Boat .. 7

Determination of System Requirements .. 7

vi

Module Design from System Requirements ... 8

Summary ... 9

System Design Overview ... 9

Mothership ... 9

GPS .. 9

Raspberry Pi .. 10

Ad-Hoc Network Device (AHND) ... 11

Graphical User Interface ... 11

Enclosure ... 12

Personal Locator Device .. 13

Ad-Hoc Network Device .. 13

GPS .. 14

Man Overboard Detector .. 14

AM Transmitter ... 14

Frequency Selection .. 14

Ferrite Core Loopstick Antenna .. 15

Atmega 328P Microcontroller... 15

Enclosure ... 16

Rescue Boat Module ... 17

Ad-Hoc Network Device .. 18

The Boat .. 18

GPS .. 19

Compass module ... 19

Atmega 328P Microcontroller... 20

Victim Retrieval Detector .. 20

Terminal Locator Device ... 21

MOSFET Motor Driver ... 23

Relays .. 23

Trolling Motors.. 24

Enclosure ... 24

Summary ... 26

vii

Design and Testing .. 27

Software Design .. 27

Mothership Module .. 27

Personal Locator Device Module .. 29

Rescue Module.. 31

Messages Between Modules .. 34

Antenna Design ... 34

Frequency Selection .. 35

Transmitter Circuit .. 35

Receiver Topology ... 39

Deliyannis Bandpass Filter .. 40

Logarithmic Amplifier .. 42

Motor Control ... 46

The Rescue Boat .. 48

Boat Testing .. 50

Test Results ... 51

The Rescue Boat – Draft.. 52

Solidworks ... 53

The Rescue Boat – Power Requirements .. 55

The Rescue Boat – Turning Circle.. 57

Results ... 59

Water Test ... 59

Victim Location ... 60

Return to Mothership ... 65

Terminal Location – Land-based Demonstration .. 68

Conclusions and Further Research.. 71

Conclusions ... 71

Compromises .. 71

Next Steps ... 72

Outlook ... 72

Bibliography .. 73

viii

Appendices .. 77

Appendix A – Boat Water Maneuverability Experimentation .. 77

Goals ... 77

Materials ... 77

Experimental Setup ... 77

Procedure .. 77

Appendix B – Hull Speed Calculations... 83

Appendix C – AM Station Query (FCC) .. 84

Appendix D – Antenna Tuning .. 89

Appendix E – Turning Circle Code ... 90

Appendix F – SolidWorks Flow Simulation 2012 Procedure ... 92

Appendix G – Drawing File for Pi Box.. 102

Appendix H – MQP Poster .. 104

Appendix I – AMORE MQP Presentation .. 104

Appendix J – Dimensions for Circuit Tower .. 117

Appendix K – TLD Radio Fine-Tuning .. 119

Appendix L – IP Code Chart ... 121

Appendix M – Code ... 121

Rescue Module Code .. 121

Victim Unit Code ... 136

Mothership Unit Code .. 142

Calc.py Module Code .. 148

GPS.py Module Code .. 151

XBeeMy.py Module Code ... 153

PlotBG.py Script Code ... 154

PlotBG.py .. 155

Appendix N - Coordinates.log ... 160

ix

Table of Figures

Figure 1 – Man Overboard Rescue Boat (Nautic Expo, 12) ... 2

Figure 2 – The rescue cradle in action (Rescue1Tech, 2012) .. 7

Figure 3 – Main System Modules .. 8

Figure 4 – The Mothership Module System Diagram ... 9

Figure 5 – EM406a GPS Receiver Device (ladyada, 2012) ... 10

Figure 6 – Mothership Module Raspberry Pi and Pyle Monitor ... 10

Figure 7 – XBee Ad-Hoc Network Device (Mouser, 2013) .. 11

Figure 8 – Screenshot of a typical view from the GUI .. 12

Figure 9 – Raspberry Pi enclosure ... 12

Figure 10 – Personal Locator Device ... 13

Figure 11 – Personal Locator Device Module System Overview .. 13

Figure 12 – Personal Locator Device Switch for sending Distress Signal .. 14

Figure 13 – Inside the PLD ... 15

Figure 14 – Atmega 328P Microcontroller (Mouser, 2013) .. 16

Figure 15 – Otterbox Dry Box used as Personal Locator Device Enclosure (NPD Group, 2013) 16

Figure 16 – The rescue boat with basic component layout .. 17

Figure 17 – Rescue Craft Module System Overview ... 18

Figure 18 – A view of the Rescue Boat from Stern ... 19

Figure 19 – Compass Module used as Navigation Aid (Sparkfun, 2013) .. 20

Figure 20 – Return Home Button on the Rescue Craft (automationdirect, 1999-2013) 21

Figure 21 – TLD Mounting, Ideal Mounting Locations .. 21

Figure 22 – TLD Mounting on the Rescue Craft – View from Stern .. 22

Figure 23 – Radio Receiver used for the Terminal Locator Device (RadioShack Corporation, 2013) 22

x

Figure 24 – Song Chuan SPDT 896h-series Relay (Mouser, 2013) .. 23

Figure 25 – MinnKota Endura C2 Trolling Motor (MinnKota, 2008-2013) ... 24

Figure 26 – Solidworks Model - Stacked Components Holder .. 25

Figure 27 – Tower with all Circuit Elements Attached .. 26

Figure 28 – Marine Battery Box used for Rescue Craft ... 26

Figure 29 - Mothership code state machines ... 27

Figure 30 – Mothership Unit State Diagram ... 28

Figure 31 – Example of Coordinate Log File .. 29

Figure 32 - Mothership GUI .. 29

Figure 33 - Personal locator Module state diagram ... 30

Figure 34 - Rescue unit state diagram .. 32

Figure 35 - Terminal locator device peak envelope signal example ... 33

Figure 36: Transmitter Circuit Design ... 35

Figure 37 – H-Bridge Driver output Pin 3 .. 36

Figure 38 – Tuned LC Antenna Circuit Output Waveform .. 36

Figure 39 – Divided Clock Signal from Atmega328P ... 37

Figure 40 – Clock Signal Output from Pin 14 of Atmega328P... 37

Figure 41 – 1 kHz modulating signal from Atmega328P Pin 13 .. 38

Figure 42 – Atmega Pinout for Personal Locator Device .. 38

Figure 43 – Post AM Receiver stage .. 39

Figure 44 – Rescue Boat Microcontroller Pinout .. 40

Figure 45 – Deliyannis-Type Band pass filter .. 41

Figure 46 – Band pass filter frequency sweep with 1mV input signal .. 42

Figure 47 – Logarithmic Amplifier ... 43

Figure 48 – Logarithmic Amplifier Simulation Results .. 44

file:///C:/Users/tonnerre7231/Documents/MQP/Report%20Things/FinalVersions/MQP_Hunter_T_F_AMORE_Final_Report_For_ReviewFINALEDIT.docx%23_Toc354662783
file:///C:/Users/tonnerre7231/Documents/MQP/Report%20Things/FinalVersions/MQP_Hunter_T_F_AMORE_Final_Report_For_ReviewFINALEDIT.docx%23_Toc354662788
file:///C:/Users/tonnerre7231/Documents/MQP/Report%20Things/FinalVersions/MQP_Hunter_T_F_AMORE_Final_Report_For_ReviewFINALEDIT.docx%23_Toc354662789

xi

Figure 49 – Transfer Function of Logarithmic Amplifier, Experimentally Obtained 45

Figure 50 – Comparison of Experimentally Obtained Transfer Function to Simulation 46

Figure 51 – Motor Controller Circuitry ... 47

Figure 52 – Waterline length of a boat (glen-l, 2008) ... 49

Figure 53 – Graph of Hull Speed vs. Waterline Length ... 49

Figure 54 – The Rescue Boat ... 50

Figure 55 – Speed and Current vs. Torque Graph (Simple Machines, 2010-2011) 52

Figure 56 – Solidworks Simulation for Relative Pressure on the Rescue Craft | Drag Force Simulation ... 54

Figure 57 – Resulting Drag Force on the Boat Model ... 55

Figure 58 – Luggage Scale used to determine Drag Force on Rescue Craft (Bed Bath & Beyond, 2013) ... 55

Figure 59 – Deep Cycle Battery Used to provide Power for the Rescue Boat .. 56

Figure 60 – Setup to measure current draw from single Motor ... 57

Figure 61 – Model of the Rescue craft for analysis ... 58

Figure 62 – Personal Locator Device Fastened to the Life Vest .. 60

Figure 63 – Mothership GUI: Victim overboard condition detected .. 61

Figure 64 – Mothership GUI: Rescue unit initialized and heading off .. 61

Figure 65 – Rescue Craft and Personal Locator Device... 62

Figure 66 – Mothership GUI: Terminal locator device activated .. 63

Figure 67 – Terminal Location on the Victim .. 63

Figure 68 – Mothership GUI: Waiting for the victim to board .. 64

Figure 69 – Mothership GUI: Victim is on the rescue craft ... 65

Figure 70 – Return Home Button .. 65

Figure 71 – Rescue Boat Return Home Trip .. 66

Figure 72 – Mothership GUI: The rescue craft is returning home .. 67

Figure 73 – Mothership GUI: The rescue craft is back at the mothership .. 68

xii

Figure 74 – Experimental Setup for Terminal Locator Test .. 69

Figure 75 – Terminal Locator Demonstration – Port Turn .. 69

Figure 76 – Terminal Locator Demonstration – Starboard Turn ... 70

Figure 77 – Terminal Locator Demonstration – Coasting ... 70

Figure 78 – Motors mounted towards each other ... 78

Figure 79 – Motors angled away from each other ... 79

Figure 80 – Motors angled in and no one on the boat ... 80

Figure 81 – Motors angled in and 150lb person on boat ... 80

Figure 82 – Motors straight and no one in the boat ... 81

Figure 83 – Motors angled away with no one on the boat ... 81

Figure 84 – Motors angled away and a 150lb person on the boat ... 82

Figure 85 – Antenna Tuning .. 90

Figure 86 – Selecting Flow Simulation Add-In for SolidWorks 2012 ... 93

Figure 87 – Flow Simulation 2012 ... 93

Figure 88 – Flow Simulator 2012 | New Project Wizard ... 94

Figure 89 – Flow Simulator 2012 | Project Configurations ... 94

Figure 90 – Flow Simulator 2012 | Unit System ... 95

Figure 91 - Flow Simulator 2012 | Analysis Type .. 95

Figure 92 - Flow Simulator 2012 | Default Fluid Selection ... 96

Figure 93 - Flow Simulator 2012 | Wall Conditions .. 96

Figure 94 - Flow Simulator 2012 |Initial and Ambient Conditions ... 97

Figure 95 - Flow Simulator 2012 | Simulation Resolution .. 97

Figure 96 - Flow Simulator 2012 | Computational Domain .. 98

Figure 97 - Flow Simulator 2012 | Final Computational Domain ... 98

Figure 98 - Flow Simulator 2012 | Water Level Check ... 99

xiii

Figure 99 - Flow Simulator 2012 | Insert Global Goals ... 99

Figure 100 - Flow Simulator 2012 | Selecting Global Goals .. 100

Figure 101 - Flow Simulator 2012 | Run Simulation ... 100

Figure 102 - Flow Simulator 2012 | Run Dialog Box ... 101

Figure 103 - Flow Simulator 2012 | Calculations Dialog Box .. 101

Figure 104 - Flow Simulator 2012 | Inserting Goal Plots .. 102

Figure 105 – PiBox Lasercut Template from Adafruit ... 103

Figure 106 – MQP Presentation day Poster .. 104

Figure 107 – Level 1 Dimensions ... 117

Figure 108 – Level 2Dimensions ... 118

Figure 109 – Level 3 Dimensions ... 118

Figure 110 – Level 4 Dimensions ... 119

Figure 111 – Grundig Radio Receiver used for Terminal Location.. 120

Figure 112 – Terminal Locator Device Radio Tuning Setup .. 120

xiv

Abbreviations

Abbreviation Meaning

ADC Analog to Digital Converter

AHND Ad-Hoc Network Device

AM Amplitude Modulation

BJT Bipolar Junction Transistor

DPDT Dual Pole Dual Throw

DWT Dead Weight Tons

FCC Federal Communications Commission

GPS Global Positioning System

IP Ingress Protection Rating (Maxim Incorperated, 2007)

MCC Master Control Computer

MOB Man Overboard

MOBI Man Overboard Indicator

MOD Man Overboard Detect

Op-Amp Operational Amplifier

PLD Personal Locator Device

SPDT Single Pole Dual Throw

TLD Terminal Locator Device

USCG United States Coast Guard

VLF Very Low Frequency

VRD Victim Retrieval Detect

1

Introduction
For centuries, one of the greatest fears of all seafaring people has been the prospect of falling overboard

at sea. Thankfully, today there are various technologies that address this issue. Different forms of rescue

devices include trailing lines, man overboard detection transmitters, chase boats, rescue buoys and life

rings. One of the problems with these devices is that they only work for specific situations and certain

sized vessels.

Due to the limitations of the aforementioned man overboard rescue devices, there is a need for a new

device or product that is capable of saving the lives of persons operating in this poorly protected niche.

Due to the dynamics of larger vessels and their respective handling capabilities, it becomes increasingly

difficult to both monitor and protect the crew on board. Because of the vast size of larger vessels, there

is a greatly increased chance that a person gone overboard will go unnoticed for several minutes. This is

particularly the case for cruise ships and naval vessels.

This project addressed the problem of rescuing people who have fallen overboard at sea. The large

amount of time it takes for a vessel to turn around puts a man overboard in great risk. To solve this

problem, a robotic rescue boat was developed with support from systems for the vessel and victim that

autonomously help pilot the rescue boat via GPS, a magnetic compass, and a project specific terminal

location system. The same system also supports the return of the victim to the vessel.

2

Background
In the year 2001, the United States Coast Guard initiated in 39,486 search and rescue operations (United

States Coast Guard, 2012). The 39,486 search and rescue cases are comparable to the four years prior to

2001 where the cases were fluctuating between 36,000 and 42,000 operations. Often, a man overboard

situation can be handled easily when a person falls from a smaller vessel. As the size of the ship is

increased, the difficulty in retrieving a man overboard is much greater. This poses a large problem,

especially for cruise ships, military vessels and tankers or other crafts of this order of magnitude.

A supertanker has a stopping distance of 3 nautical miles when decelerating from a cruising speed of 16

knots using full reverse. For tankers at 17000 dead weight tons (DWT), the stopping distance is 1

nautical mile (Environmental Law Institute, 1991). Additionally, such a vessel has a turning radius of two

kilometers. From this information, one can speculate that it becomes wildly impractical to turn the ship

around to search for the victim. For this reason, many larger crafts make use of a man overboard boat

that is readied by the crew to carry out a search and rescue while the vessel continues along its course

or comes to a stop while the search is carried out. One of the problems with this type of setup is that it

may take some time for someone to realize that a person has gone overboard. Additionally, it takes a

crew several minutes to deploy the craft during which critical time is lost.

Figure 1 – Man Overboard Rescue Boat (Nautic Expo, 12)

The scope of this project was to develop a vessel that automatically and autonomously carries out the

search as soon as it detects that a person is overboard. Once the rescue boat has located the victim and

he or she secured him or herself, it returns to the mothership.

3

Problem Statement and Project Goals
This section defines the goals and requirements of the project. The final product should be a vessel that

autonomously carries out a search for a man overboard as soon as a distress signal is detected from a

personal locator device. When the rescue boat has collected the overboard person, it should return to

the mothership, regardless if it has changed its location since the deployment of the rescue boat.

Goals and Objectives
The goal of this project was to design and create a fully functional system that can be integrated in a

boat to locate and retrieve a person who has fallen in the water. At this stage of the design, the person

will still need to enter the craft under his or her own power.

Tasks
To complete the project in the required timeframe, specific tasks were assigned to the project partner

that they were most suited for. The major coding and programming as well as navigation aspects of the

project have been researched and implemented by Frederick. Most electrical and mechanical portions

of the project have been researched and implemented by Thomas. Both members were familiar with

both portions, but the primary effort by each pertained to their major.

Project Requirements
In order for the project to be successful and realizable, certain requirements had to be met. These

related to the operating environment of the craft as well as implicit and explicit expectations. For ease

of presentation, the requirements are split up into the three main components below. Please note that

these requirements were for the final experimental project and do not reflect those of a real full-scale

device.

Mothership Module
The Mothership Module was designed to be located on the primary vessel where it is continuously

running and checking for any distress signals. It is responsible for displaying what the system is currently

doing and updating the rescue boat with its current location. This module is equipped with an XBee ad-

Hoc network device capable of transmitting and receiving data to the rescue boat. It is also equipped

with a GPS device to determine its current location for transmitting to the rescue boat. It updates its

current position every three seconds. The electronics were to be contained in an IP67 container no

larger than 0.5m2 to prevent the electronics from getting wet. For IP codes, see Appendix L – IP Code

Chart.

Personal Locator Device
The personal Locator device was used for determining the location of the victim. It was required to have

an IP68 rating and be activated upon a button press to be augmented with a conventional salt water

immersion switch in the production version. It had to be capable of sending distress signals and a GPS

location using the Ad-Hoc network with a range of up to one kilometer. In later versions, the Ad-Hoc

system could be upgraded to cover greater distances. The GPS data was to be acquired from the internal

4

GPS device. Once the personal locator device was within thirty meters of the rescue boat, it had to

activate the Terminal Locator Device to transmit a signal for the rescue boat to follow. The personal

locator device had to be small enough to be affixed to a standard life vest without hindering the user. It

was to be contained in a 6.8" x 4.5" x 1.8" case.

Rescue Boat
The rescue boat had to be capable of rescuing a victim from a one kilometer distance. The electronic

components on the ship had to be contained in a housing rated for IP68. The boat was designed to be

fully autonomous, to operate without interaction from humans for location and navigation. The boat

was also to be battery powered and driven by two trolling motors, each with a nominal thrust of thirty

pounds. It was decided that differential thrust would be used for heading control. The boat had to be

capable of travelling one kilometer for testing purposes. In future iterations, a larger motor and boat

could be used for traversing larger distances at greater speeds. Once the rescue boat was within thirty

meters of the target, it had to activate the terminal locator device circuitry for a more accurate reading

on the victim’s location due to GPS error. The boat had to be capable of carrying three hundred pounds.

This was to accommodate a passenger and the hardware on the boat. The boat also had to be capable of

reaching a speed of approximately five knots to overcome expected wind drift conditions during the

prototype testing.

Summary
The specifications set make the system durable for use in moderate conditions relating to a level two on

the Beaufort scale. These conditions consist of waves up to half a meter in height and winds of up to five

and a half kilometers per hour (National Meteorological Library and Archive , 2010). With a larger rescue

boat, the system should later be capable of handling more extreme conditions. The above goals and

specifications have been set to determine the functionality of such a system. All components of the

system such as the personal locator device, the mothership module, and the rescue boat module can be

upgraded and installed in a larger boat for increasing the range and performance of the rescue system.

Methods
This chapter provides a background for the robotic autonomous rescue boat. Data from this section was

used to perform design and analysis for the respective modules. It begins with an overview of current

products on the market that are used to retrieve or collect persons overboard. From the

abovementioned project requirements, more solidified specifications were derived for the respective

modules. A black box representation of the modules was also determined from the system

requirements.

5

Review of Current MOB Systems and Methods
Current methods of man overboard retrieval may be divided into the two basic categories listed below.

 Rescue from the vessel the person has fallen from, herein referenced as domestic rescue

 Another boat or other craft, herein referred to as foreign rescue

The following sections examine the techniques that fall in the above mentioned categories.

Domestic Rescue Technologies
Current technologies that fall in the category of domestic rescue include but are not limited to the

following devices.

 Buoys such as dan buoys or

horseshoe buoys

 radio direction finders

 life rings

 trailing lines

 Man overboard setting of a GPS

 Rescue cradles

This section examines the viability and limits of the listed devices as they pertain to the project.

Buoys

Buoys are excellent devices for use in man overboard situations in smaller vessels. When a person is

detected as having gone overboard, another crew member deploys the buoy in the direction of where

the man overboard is seen in the water. This then provides a visual object for the helmsman to guide

the boat toward and to carry out a search.

In the case of this project, such a device would be of limited benefit as the large vessel will continue

along the direction of travel for some time until it can effectively loop back to where the man overboard

is. Maneuverability of the ship is not effective enough so as to make a sharp turn to loop back towards

the lost crew member and the path of travel may be too great where the helmsman will surely lose sight

of the marker.

Radio Direction Finders

Radio direction finders are useful in a variety of vessels, though they require all crew members to wear a

transmitter. When a person goes overboard, the transmitter, also known as a beacon, sends a distress

signal that is picked up by the ship which automatically sounds an alarm. An onboard display system

indicates the direction that the person is relative to the boat (Marine Rescue, 2012).

If used in conjunction with larger vessels, radio direction finders would not be effective. Until the boat

has turned around and headed toward the person, there will be many precious minutes lost and there is

a risk of running the person over with the ship. In most cases, this device would be used in conjunction

with a separate man overboard boat to be described in the next section.

6

Life Rings

Life rings are the most common and well known man overboard rescue devices. When a person falls

from the ship, a life ring is thrown toward them in the hope that they may be able to grab onto it to aid

in staying afloat while the craft is turned around.

One of the downfalls of this device is that it requires another crew member at the scene who has a fast

reaction time. If there is nobody there, then the man overboard will go unnoticed for some time.

Additionally, in larger vessels this becomes a problem as there is a greater distance that the device must

be thrown (United States Coast Guard, 2012).

Trailing Lines

Trailing lines are nylon ropes that are tied to the stern of the boat and as their name implies, trail the

boat. When a person falls overboard, if they react in time, they can swim toward the line and grab hold

of it while another crew member stops the vessel or turns around.

This is also a very effective method for saving a person’s life, but again, only for smaller vessels. This

becomes impractical for larger ships which would require much longer lines. Additionally, assuming the

person had caught the trailing line, they would require much endurance and strength to maintain their

hold on the line while the ship comes to a stop or someone retrieves them. This is also a very

unconventional method for larger vessels (Tor Pinney, 2012).

GPS Man Overboard Function

More applicable to a wide range of boats is the GPS man-overboard function. Some boating GPS-

enabled devices contain a button that, when pressed, will mark a location where the man overboard

was called.

The GPS device may be used on larger vessels but will not be effective for a timely rescue if that ship will

be used to retrieve the person. For this reason, it should be used in conjunction with a smaller rescue

craft on the larger vessel (Garmin, 2011).

Rescue Cradles

The rescue cradle is optimal for smaller vessels and is attached to the side of the boat. When the rescue

craft is next to the person overboard, the person is rolled into the boat. The downfall of this rescue

cradle is that it requires a low hull and persons to operate it. For larger vessels, use of technology like

this would be out of the question.

7

Figure 2 – The rescue cradle in action (Rescue1Tech, 2012)

Foreign Rescue Technologies
Some technologies that require the help of an outside influence or vessel are listed below.

Coast Guard Rescue

Used only in the most extreme cases, a coast guard rescue involves a rescue craft deployed and

operated by the USCG. Sometimes this may involve a helicopter as well. Use of this technique becomes

limited due to the time it takes for a rescue aircraft to reach the victim in the open ocean. There are long

range surveillance aircrafts in use by the coast guard such as the HC-130H/J, but they cannot help get

the victim out of the water, only to pinpoint their location (United States Coast Guard, 2012).

Man Overboard Boat

Most common on larger scale vessels is the inclusion of a man overboard boat. When the call is sounded

for a man overboard, a team assembles and deploys the man overboard boat to commence a search and

rescue. Upon retrieval of the person, the boat returns to the mothership.

One of the issues with this setup is that it takes time for a team to assemble and lower the boat into the

water to locate the person. Aside from this, the method for rescue is an effective one that can and has

saved the lives of many seafaring people. Because of this, the current project is using this method as a

basis, but focuses on improving the response time by removing the time needed for a crew to prepare

for launching in the rescue boat.

Determination of System Requirements
Based on the capabilities and limitations of current technologies on the market today, the requirements

for the project were determined. These took the components of technology that works well and

addressed areas that need improvement for large vessel man overboard missions to create a superior

method for rescuing sailors.

8

Module Design from System Requirements
The system requirements provide a concise direction for the project to take. The final project plan was

based on these guidelines. As seen in the system requirements, the project was broken down into three

main systems termed modules. These may be seen in the Figure 3 below. The modules in question are

the Mothership module on the primary vessel, the Personal Locator Device on the victim, and the

Rescue Boat Module on the rescue boat.

The Mothership module consists of a GPS device, the Raspberry Pi computer, and an Ad-Hoc network

device. The Personal locator device similarly consists of an Ad-Hoc network device, a GPS device, and a

man overboard detect button. Finally the Rescue Boat module consists of an Ad-Hoc network device, a

GPS, an ATMEGA 328P control module, a victim retrieval detector, 10 foot Sea Rogue inflatable boat and

a terminal locator device.

Figure 3 – Main System Modules

All three modules communicate with one another by means of the XBee Ad-Hoc network. The

Mothership Module transmits and receives information from the rescue boat and simply receives data

from the personal locator device. The rescue boat receives information from the personal locator device

as well. Data is indicated by the dashed lines in the figure.

9

Summary
This section developed an overview of the autonomous robotic rescue boat showing how the three main

systems interact with each other. It also shows what each module consists of and what their functions

are. For a more detailed explanation of each module see their respective sections in the System Design

section of the document.

System Design Overview
Upon developing a basic structure and modules for the overall system, the modules needed to be

broken down into subsystems. Each subsystem is made up of various devices that perform the required

tasks to make the system work as a whole. For each of the modules of the previous section, a more

detailed description was developed.

Mothership
The Mothership module consists of four components: the GPS device, the Raspberry Pi, and the XBee

Ad-Hoc Network Device (AHND). These systems will all interact with each other to successfully meet the

system requirements as described in the Mothership Module section in the Project Requirements.

Figure 4 – The Mothership Module System Diagram

GPS

The first component is a GPS device for acquiring the current position to be transmitted to the rescue

boat. The device being used is an EM406a GPS receiver which was readily available from a previous

version of this project. It operates at five volts with TTL serial output and costs $60 from the Adafruit

website.

10

Figure 5 – EM406a GPS Receiver Device (ladyada, 2012)

Raspberry Pi

The Mothership Module also has a master control computer which runs the software displaying the

current status of the system for a user on a Pyle PLHR77 12V monitor with composite video input. The

Master control computer is a Raspberry Pi and is in charge of relaying the mothership’s current position

from the GPS with the Ad-Hoc network device. The software displaying the status of the system for a

user is capable of displaying current locations of the man overboard and rescue craft with respect to the

mothership. The software is written in Python allowing it to be executed on a wide range of devices.

Figure 6 – Mothership Module Raspberry Pi and Pyle Monitor

The Raspberry Pi was chosen for the mothership computer because of its small credit-card size,

processing power, and ability to integrate with the GPS, XBee, and monitors. The Raspberry Pi is a small

computer running Linux with sixteen general purpose I/O pins as well as serial pins for interfacing with

the GPS. It also has two USB ports used for a keyboard connection and FTDI cable hookup to interface

with the XBee module. The Raspberry Pi runs off of five volts and can consume up to 700mA. It runs on a

700MHz processor and has 512Mb of ram (Premier Farnell plc., 2009).

In order to not clutter the SD memory card that stores all the programs and operating system, Arch

Linux was chosen to be installed. Arch Linux is a bare bones operating system and any programs that

were needed were downloaded from the packet manager pacman. Some of the required programs were

11

XTerm and Enlightenment for a graphical user interface. This was chosen as it provided the user with a

simple, low resource, but aesthetically pleasing GUI. Python 2.7 was used for programming the software

on the mothership unit and pyqtgraph was also installed to create a GUI for displaying all the units on a

graph. The system was set up to boot and automatically log in as the root user. The boot time takes

approximately thirty seconds, but loading the mothership program and GUI adds another twenty

seconds to the start.

To interface with the XBee module, the XBee was connected to the Raspberry Pi with an FTDI cable on

the USB port. In the python code, the XBee was accessed with the pyserial module. To interface with the

GPS, the GPS was connected to the Raspberry Pi’s GPIO UART pins. Again the pyserial module was used

to connect to this and a library was written to collect the desired information from the GPS.

Ad-Hoc Network Device (AHND)

The Ad-Hoc network device is responsible for transmitting the GPS data to the rescue boat and receiving

the locations of the rescue boat and victim. The transmission is accomplished through the use of an

XBee PRO. It is capable of achieving a line of sight range of 3200 meters, has a data transfer rate of 250

Kbps and runs in the 2.4GHz frequency range. The logic levels on the chip are 3.3 volts and it also runs at

this voltage. By utilizing a breakout board, it is able to be powered from a 5V source.

Figure 7 – XBee Ad-Hoc Network Device (Mouser, 2013)

Graphical User Interface

The graphical user interface is written in Python using the pyqtgraph module that allows for easy

plotting to display the status of the rescue operation with each of the modules on the same screen. It

displays messages indicating the current status of the rescue mission as well as the path traveled by

each module. An arrow is displayed to indicate the course of each module. A legend on the bottom right

of the screen indicates what color corresponds to each module. The graph can also be overlaid on an

image of the current location such as a map downloaded from GoogleMaps. The coordinate locations

are determined by indicating the GPS coordinates of the bottom left and top right of the map image

12

used as the background. This may be used to determine where each respective module is and aid in the

rescue effort if a manned team would be deployed.

Figure 8 – Screenshot of a typical view from the GUI

Enclosure

To protect the Raspberry Pi from foreign objects and to allow for a more aesthetically pleasing look, a

case was made for it. The case design was found online from the Adafruit website. A Solidworks .dwg file

was downloaded and the case was lasercut in the Washburn shops, see Appendix G – Drawing File for Pi

Box. The case still allowed for the monitor, power cable, GPS, and XBee to be connected to the

Raspberry Pi without blocking any ports.

Figure 9 – Raspberry Pi enclosure

13

Personal Locator Device
The Personal Locator Device consists of an Ad-Hoc Network Device, a GPS, a Man Overboard Detector,

an AM Transmitter, a Ferrite Core Loopstick Antenna and an Atmega 328P. These subsystems are

designed to achieve the goals as stated in the Personal Locator Device section of the Project

Requirements portion of this document.

Figure 10 – Personal Locator Device

Figure 11 – Personal Locator Device Module System Overview

Ad-Hoc Network Device

The Ad-Hoc network device for the Personal Locator Device is used for transmitting the location data of

the victim. For more information about the XBee Pro chip being used, see Ad-Hoc Network Device

(AHND) in the Mothership system design section.

14

GPS

The GPS device used in the Personal Locator device is used to obtain the victim’s current location. With

intrinsic 10m accuracy, this system requires augmentation for terminal location. For more information

about the chip being used see the GPS section in the System Design Mothership section of the report.

Man Overboard Detector

The man overboard detector is capable of meeting the system requirements as expressed in the

Personal Locator Device section of the Project Requirements. A MOB victim simply presses a button to

initiate the rescue sequence.

The switch used on the personal locator device is an illuminated, IP67 rated switch from E-Switch. It

costs $3.32 from Mouser.com and provides a momentary OFF - (ON) signal to the microcontroller

(Mouser, 2013). Current rating is up to 125 mA which will not be exceeded and has a blue LED which

may be illuminated to indicate the functionality or state of the personal locator device.

Figure 12 – Personal Locator Device Switch for sending Distress Signal

AM Transmitter

The AM transmitter is used to send a radio frequency signal which may be picked up by the rescue boat

when it is within a 30 meter range of the personal locator device. This is turned on by the

microcontroller by means of Bipolar Junction Transistors which only allow the H-Bridge device which is

the main transmitter driver to have power when a 5V logic signal is applied to the controlling BJT. This

allows for power to be conserved and the capability of controlling when the signal is transmitted. See

Transmitter Circuit for schematic and operation explanation.

Frequency Selection

One important aspect of the antenna design is the tuned frequency. This had to match the frequency

that the transmitter and receiver circuit was running at to provide the most effective signal transmission

and reception. Because this experiment is carried out in the Massachusetts area and using the AM low

frequency band, a quick search of the FCC website was conducted. See for result of the AM band radio

station search (FCC, 2011). Competing the search for the stations, it was found that the largest gap with

no broadcasting stations occurred just above the 900 kHz band, see Appendix C – AM Station Query

(FCC). By searching for oscillators around and in multiples of this frequency, an acceptable operating

frequency was found at 921.6 kHz with no stations +18.4 kHz and -31.6 kHz. This was determined to be

our best choice operating frequency as there is a larger gap between these frequencies so that a simple

band pass filter should be capable of filtering out the desired signal from nearby interfering signals.

Additionally, the oscillator being used, when divided by 8 with a modulo counter, is within the required

15

frequency (Digi-Key, 12). This oscillator has a frequency of 7.3728 MHz that resulted in a transmitted

frequency of 921.6 KHz.

Ferrite Core Loopstick Antenna

The Ferrite Core Loopstick antenna is used to transmit the signal generated by the transmitter circuitry.

This antenna has been tuned to the radio frequency of the transmitter for maximum transmission range.

It is inductively coupled through primary and secondary windings on the same ferrite core for

impedance matching which allows for increased signal amplitude on the antenna. See Appendix D –

Antenna Tuning for a detailed explanation on antenna tuning.

Atmega 328P Microcontroller

The microcontroller used in the Personal Locator Device is an Atmega 328P which uses a 7.3728MHz

crystal. Additionally, the output of the clock signal on a pin of the microcontroller is used to drive the

transmitter circuitry which is activated by the Atmega applying a logic HIGH to the controlling BJTs. The

microcontroller samples for the button press to activate the distress signal and sends information over

the XBee network. It also takes the coordinates from the GPS device and relays them to the rescue boat

and mothership units, respectively.

Figure 13 – Inside the PLD

The ATMEGA 328P was chosen for the victim module because of the low profile size and easy

integration with the XBEE, compass, and GPS modules. The ATMEGA 328P has 32Kbytes of flash

memory, and 28 pins. The ATMEGA 328P is just 3.4cm by 0.8cm in size making it possible to mount it

virtually anywhere. The microcontroller also has UART pins for communication with the XBee module.

Using the Arduino NewSoftwareSerial library, it is possible to emulate another serial port for

communication with the GPS on pins four and five of the ATMEGA 328P. From Mouser.com, the 8-Bit

microcontroller costs $2.24 and runs off of a 1.8-5.5V supply (Mouser, 2013).

16

Figure 14 – Atmega 328P Microcontroller (Mouser, 2013)

On the victim module the same pins were used to interface with the GPS and XBee modules to keep

consistency. Pin 12 was used for the distress signal button and pin 13 was used for activating the

terminal locator device transmitter.

Enclosure

In an effort to protect the enclosed circuitry for the victim module from water, an Otterbox was used.

Because its size was large enough to enclose the circuit, but small enough to be worn on a lifejacket, it

was a perfect fit. The Otterbox is 6.85" x 4.57" x 1.82" in size and is able to contain the batteries, GPS,

XBee, and other components of the victim unit. The box is rated with an ingress protection of 68,

meaning is can be submersed up 100 meters (NPD Group, 2013). The button was also purchased with an

IP-68 rating and mounted to the front of the Otterbox through a drilled hole. The unit was tested for

water tightness by submersing it three feet in a pool of water with a paper towel on the inside of the

case. The button

was also pressed while underwater. After drying the outside of the box, it was opened and the paper

towel was dry, indicating it was capable of protecting the circuitry from submersion underwater.

Figure 15 – Otterbox Dry Box used as Personal Locator Device Enclosure (NPD Group, 2013)

17

Rescue Boat Module
Many of the components used in the PLD and the Mothership Modules as well as others are seen below.

Figure 16 – The rescue boat with basic component layout

The Control Module houses the core microprocessor (Atmega 328P), the motor driver circuitry and

terminal locator circuitry. Alongside these components are the Ad-Hoc Network Device (XBee) and

victim retrieval button. Strategically placed about the rescue boat are the terminal locator device

receivers (Grundig portable radios). The motors are attached as far apart from one another a possible at

the stern of the boat.

18

Figure 17 – Rescue Craft Module System Overview

Ad-Hoc Network Device

The Ad-Hoc network device is used for receiving data from the Personal Locator Device as well as the

Mothership Module. For more information about the device used see the Ad-Hoc Network Device

(AHND) section in the System Design Mothership section.

The Boat

The craft being used as the rescue boat is an inflatable displacement-hull boat. It houses all the

electronics and power equipment listed in this section. Its task is to carry the person to safety after he or

she has climbed into the boat. The craft used for this project is a 10 foot Sea Rogue. An image of the

boat may be seen in Figure 18.

19

Figure 18 – A view of the Rescue Boat from Stern

GPS

The GPS for the rescue module is used to determine the location of the boat. For more information

about the device being used see the GPS section in the System Design Mothership section of the report.

Compass module
A compass was used to provide the rescue craft with the most accurate heading information to increase
the effectiveness of navigation. The compass module used was an HMC6352 from Sparkfun Electronics.
The module was chosen because it could easily be integrated with the I2C interface on the
ATMEGA328P. It also runs on the five volt logic levels available on the rescue unit. The resolution is up
to 0.5 degrees and can be read at a rate of up to 20Hz. The low current draw of 1mA was also attractive.
The small size of 1.5x1.5cm made it possible to mount it virtually anywhere without being intrusive to
other systems. The low price of $35 made the compass a great option for the features it exhibits.

20

Figure 19 – Compass Module used as Navigation Aid (Sparkfun, 2013)

The compass provided the rescue craft with important heading information that would be used to more
accurately determine the current heading than the GPS. Due to the electromagnetic interference
exhibited by the relays and high current carrying wires, the compass could not be placed near these
devices. Using a mechanical compass and running the motors to simulate operation, the compass was
moved to various positions on the craft to determine where there was no electromagnetic interference.
It was determined that the best location for the compass would be on the left side of the cross-board
seat. To protect the compass from splashing water, it was mounted in a project box purchased from
RadioShack. A telephone cable was used to connect the compass to the five volt power supply and the
I2C port of the ATMEGA328P.

Atmega 328P Microcontroller

The Atmega 328P controls the trolling motors by means of a motor driver circuit, activates the terminal

locator device, and determines if the victim is in the boat. From the Ad-Hoc Network Device, it collects

GPS data from the rescue boat, mothership and personal locator device. It then uses this data to analyze

which path it must take to travel both to the mothership and victim. Depending on the distance

between the personal locator device and the rescue boat, it also uses the terminal locator device.

The Atmega 328P was chosen for the rescue unit because of the low profile size and easy integration

with the XBEE, compass, and GPS modules. The Atmega 328P has 32Kbytes of flash memory, 28 pins,

and runs on an internal 8 MHz crystal with the Arduino bootloader. The Atmega 328P is 3.4cm x 0.8cm

in size. The microcontroller also has UART pins for communication with the XBee module. Using the

Arduino NewSoftwareSerial library, it is possible to emulate another serial port for communication with

the GPS on pins four and five. To interface with the compass on the rescue module, the I2C pins on the

microcontroller were used.

On the rescue module, pins 14 - 17 control the MOSFETS that switch the relays for the motor control.

Pin 13 was also used for reading the return to home button. Pins 23-25 are three of the six 10-bit analog

to digital pins on the microcontroller and were used for reading the values from the receiver circuit for

use in the terminal location algorithm.

Victim Retrieval Detector

The victim retrieval detector signals when the victim is on the rescue craft. It consists of a switch which

the victim must activate. Once the switch is pressed, the rescue craft navigates to the current primary

vessel location as reported by the Mothership Module’s GPS. The switch is placed in a visible location

and protected from accidental triggering. Possibilities for making it more visible include using an

illuminated switch or including an audible device indicator near the switch.

21

For the victim retrieval detector, the GCX3226-24 mushroom style illuminated pushbutton emergency

stop switch was used. The switch was ordered from AutomationDirect.com for $12.50 and with its

40mm head, is easily visible and depressible.

Figure 20 – Return Home Button on the Rescue Craft (automationdirect, 1999-2013)

Terminal Locator Device

The terminal locator device is used to obtain a better fix on the location of the victim due to the GPS

error. It consists of three receiver circuits connected to the output of three commercial radios. The

circuit can be seen in the Receiver subsection of the Design and Testing section of the report. The

positions of the three radios form a triangular shape as denoted in Figure 16. This allows for determining

the angle as well as the direction to where the victim is located. This arrangement can be used to align

the rescue boat’s bow directly to the victim’s PLD. When the bow is pointing toward the victim, the front

receiver antenna will have the largest peak envelope signal and the aft antennas will have a lower

voltage, but equal to one another.

TLD Mounting

To obtain the best signal for homing of the receivers, the proper mounting location was to be found.
Ideally the front receiver would be placed in the bow of the boat and the other two receivers would be
mounted in the stern as far apart from each other as possible, but the same distance apart from the
center of the boat.

Figure 21 – TLD Mounting, Ideal Mounting Locations

Due to the electromagnetic interference from the motors in the stern of the boat, the receivers were
moved up to the center of the boat as seen in Figure 22. This location saw the least interference from
the motors. Additionally, on the rescue craft, there were oarlocks present which provided an easy
mounting option as indicated in the figure below by the orange outline.

22

Figure 22 – TLD Mounting on the Rescue Craft – View from Stern

To better protect the receivers from the water, they were placed in a project box purchased from
RadioShack. A 3.5mm male to male headphone jack cable was used to connect the receivers to the
bandpass filter on the rescue unit.

Grundig Handheld Radio

The handheld radio receiver is a small commercial radio with good sensitivity and selectivity that

receives the signal from the PLD transmitter. This signal is fed to the following circuitry which filters it to

remove noise from other stations and only read information that is relevant to terminal location.

The radio used for the receiver device of the terminal location module was an Eton Grundig Mini 400

AM/FM Shortwave Radio. This was purchased at Radio Shack for $34.99 and had an accessible

headphone jack which was used to connect to the terminal locator circuitry. The digital display provided

an easy and accurate means to tune to the desired station. A lock button was also an added feature of

the radio which prevents the user from accidentally turning it off.

Figure 23 – Radio Receiver used for the Terminal Locator Device (RadioShack Corporation, 2013)

23

Envelope Detector and Bandpass Filter

The output of the radio receiver is sent to an envelope detector and bandpass filter. The modulation

signal which carries information for the rescue boat is a 1 kHz tone which is extracted from potential

background noise by means of a bandpass filter. See Deliyannis Bandpass Filter for further explanation

and design.

Logarithmic Amplifier

The logarithmic amplifier allows for operation over a greater range than would be achieved if the

received signal envelope was simply captured by the linear ADC. It amplifies small signals with a much

higher gain than larger signals. It also ensures that the output of the bandpass filter does not exceed 5V

which is the maximum allowable input magnitude to the analog to digital converter of the

microcontroller. See Logarithmic Amplifier for circuit design.

MOSFET Motor Driver

The MOSFET motor driver takes the logic level from the Microcontroller and provides the high current

drive required for the relays which are used to drive the 14 A trolling motors. These relays operate from

a 12V signal which is provided by the battery on board the rescue craft. The MOSFETs used in the circuit

are four T1N60 N-Channel MOSFETs with a maximum continuous drain current of 1.3A. The TO-220

package was purchased from DigiKey for $0.72 (Digi-Key, 1995-2013). For more information on the

implementation and placement in the circuit for the T1N60 MOSFETS, see the section Motor Control.

Relays

The relays drive the trolling motors with bi-directional capability. Because the motors do not require a

rapid response time on the order of milliseconds, relays were deemed a plausible component to use for

driving the trolling motors. Additionally, there is less power loss from heat in comparison to the use of

MOSFETs with a heat sink for driving the motors. This alone makes the method for propulsion more

economical and efficient. The single pole, double throw relays used for the rescue craft were Song

Chuan 896H-1CH-D1SW-R1-12VDC relays as seen in the image below. These were purchased from

Mouser.com for $4.31 per relay. They each can handle up to 50A and have a coil current of 133mA.

Their small size of 1.1” x 1.25” x 2.7” is desirable as there is the necessity of four relays for bi-directional

drive functionality. See MOSFET Motor Driver for the use of the relays in the final motor driver circuit.

Figure 24 – Song Chuan SPDT 896h-series Relay (Mouser, 2013)

http://www.mouser.com/ProductDetail/Song-Chuan/896H-1CH-D1SW-R1-12VDC/?qs=sGAEpiMZZMt98bArVJter4JSFvwfmI4SJSjElpVYzv0%3d

24

Trolling Motors

The motors being used for propelling the rescue craft are two 12V trolling motors, each with a rated

thrust of 30 pounds from MinnKota. The motors were chosen based on their operating voltage of 12V

and simplicity of applying to the current design due to the clamp mounting apparatus which allows

simplicity in fastening the motors to the backstay of the rescue boat. Additionally, there are several

options for adjusting the depth that the motor sits in the water as well as the angle at which it propels

the boat. A quick release mechanism allows the motor to be propped up out of the water during

transport and when not in use. A single motor costs $109.99 new from the MinnKota website.

Figure 25 – MinnKota Endura C2 Trolling Motor (MinnKota, 2008-2013)

Enclosure

For the final rescue craft system, the circuitry described above was fit into a tower configuration which

was placed into a marine enclosure box alongside the battery. This provides adequate protection for

testing and keeps all the main components together in a single location making it easier to transport and

remove it from the rescue craft. An isometric view of the Solidworks model for the component holder is

seen in the Figure 26 below. This was used to lasercut acrylic while standoffs and screws were used to

put the final pieces together.

25

Figure 26 – Solidworks Model - Stacked Components Holder

The lower compartment 1 contains the wire bus which connects the battery power and ground

terminals to the rest of the circuits, including the relays. The second level contains the relays with a

support layer indicated by the square cut-outs on layer 3. Next, the motor controller circuitry with the

GPS, Atmega and MOSFETs are fastened to the acrylic layer 4. Finally, the terminal locator circuitry is

mounted to the layer 5. Dimensions for the CAD model may be found in the Appendix J – Dimensions for

Circuit Tower.

1

2

3

4

5

26

Figure 27 – Tower with all Circuit Elements Attached

The tower with the attached circuitry was placed into a Snap-Top Everstart Marine Battery Box

purchased at Wal-Mart (Wal-Mart Stores, Inc., 2013). The 17.6” x 10” x 10.5” box was adequately large

to fit both the battery and the circuitry tower inside. There also was an adjustable separator provided

with the box which allowed the circuitry to be separated from the battery. The original and final

enclosures are pictured in the Figure 28 below.

Figure 28 – Marine Battery Box used for Rescue Craft

Summary
The above sections describe the system design of all the modules contained in the project. The entire

system consists of three main modules, the Mothership Module, the Personal Locator Device Module,

and the Module. Each of these modules consists of multiple components or smaller modules responsible

for subtasks to accomplish the goal of creating an autonomous robotic rescue boat.

27

Design and Testing
This section covers the process and methodology behind the design and testing of various main

components of the rescue equipment.

Software Design
Careful planning was required to effectively execute the task of locating and retrieving a man overboard.

Because there were three main locations of interest, it was decided there should be three units: the

Mothership Module, the Victim Module, and the Rescue Module. Having three units communicating

with each other at the same time was another challenge to be addressed, but one that could be handled

by the XBee modules and simple coding practices. For example, limiting the amount of information that

was being transmitted over the air was necessary to minimize packet loss. One such case was when the

rescue craft was heading to the victim and did not need to know the location of the Mothership. Here

the Mothership did not broadcast its location until the Rescue unit requested it. Each of the three

modules acted as a type of state machine, waiting on information from the other to change states. For

more detail, see each Module’s respective section.

Mothership Module

The Mothership module uses a state machine to determine what it should do at any given time. While in

state 1, the Mothership is continuously waiting for a distress signal from the PLD module and once that

is received, it initializes the Rescue Module. Once the Mothership receives a confirmation that the

Victim and Rescue Modules initialized properly, it initializes the Graphical User Interface (GUI) thread to

begin plotting the coordinate locations of all the units in respect to one other. The plotting thread runs

in the background until the victim is returned to the mothership, continuously updating the locations as

new ones are received. At the same time the thread is started, the Mothership is set to state two. The

process in full is seen in Figure 30.

In state two a thread is started to read and store the Mothership Module’s current GPS coordinates to a

file for plotting. It runs in the background and, without interruption stores a new coordinate location

every 2.5 seconds. In these 2.5 seconds, it collects ten GPS coordinates, takes the average of them, and

stores this location in an attempt to remove some GPS jitter. In state two, the Mothership also reads the

XBee for any new coordinates from the victim module as well as any messages it may send to be stored

and filed for plotting. Should the Rescue unit be close to the victim, it will be printed to screen on the

GUI as seen in Figure 32. The Mothership unit will also poll the XBee for any message indicating the

victim is on the rescue craft and has pressed the return to home button. Upon receiving this message,

the Mothership unit ends the GPS thread that reads and stores the Mothership unit coordinates to file

and sets its state to state three.

Once in state three, the thread to store the current GPS coordinates is initialized again, but also set to

broadcast the coordinate locations to the rescue craft. After this is initialized, the Rescue unit reads the

XBee and continuously checks for a message saying that the rescue unit is home. Once this condition is

met, state one is initialized again.

28

Figure 30 – Mothership Unit State Diagram

Another background process running on the Raspberry Pi is the user input process. The keyboard that is

plugged into the Raspberry Pi is polled for key strokes. If the user presses the spacebar at any time, the

rescue craft will be stopped and put into a remote control override mode. The arrow keys can be used

to steer the craft. The right shift key can also be used to kill the motors. The "r" key restarts the program

on the rescue module.

Graphical user interface

The graphical user interface (GUI) is used to relay information from the programs on all three units to

the users. In order to accomplish this, the Raspberry Pi was used along with pyqtgraph running in a

background process. Pyqtgraph made it possible to easily plot the locations of all the modules, place an

arrow in the direction each module was heading, and overlay a map of the current area to the

background as seen in Figure 32. The Mothership module stores all the GPS coordinate locations as they

are received and stored to a comma separated values (CSV) file in the root directory of the program

along with the distance from the first received coordinate in meters. An example of a line in this file can

be seen in Figure 31.

29

Figure 31 – Example of Coordinate Log File

The first value in each line is the sending modules identifier, the second value is the latitude coordinate

(in degrees), the third the longitude coordinate, the fourth value is a validity bit, and finally the x and y

coordinate location in meters of the current module in respect to the first received coordinate. Any

messages received from the units were also stored to a file, for example: if the victim is close to the

rescue unit.

These files were then periodically read by the background process of the GUI which would re-plot all the

coordinates and write the most recent message to the screen. The GUI also plots the general location

the modules head in by calculating the angle between the last two received coordinate locations of each

module. Should a module not be online yet and there are no coordinates stored in the log file, the unit

will not be displayed on the screen.

Figure 32 - Mothership GUI

Personal Locator Device Module

The PLD Module, much like the Mothership module, runs on a state machine type program structure.

The entire flowchart can be seen in Figure 33. While in state zero the unit continuously polls the

overboard button for a key press. Once the button is pressed, the victim unit checks for a GPS lock and

sends a message to the mothership indicating it has completed the initialization process. It then moves

on to state one.

30

While in state one, the Victim unit first reads the GPS for a lock. If a lock is present, it will store the

current position in an array of ten coordinate locations that will be used to determine the average

position in an attempt to remove some GPS jitter. Next, the average of the last ten positions is sent to

the rescue unit and mothership for calculating the path to plotting in the GUI. The XBee is then polled

for any new messages from the Mothership or Rescue modules. Should the message indicate that the

rescue unit is close, the PLD module enters state two upon it activation of the terminal locator device. If

the message is not received, the process is repeated.

While in state two, the XBee is read for any messages. If a message is received stating that the terminal

locator device is out of range, the Victim module reverts back to state one. The PLD module also checks

if the rescue module sends a message indicating it is close to it. If this is the case, the victim unit changes

to state three, otherwise it repeats the process.

In state three, the PLD sends a message to the mothership module stating it is on the rescue module.

Figure 33 - Personal locator Module state diagram

31

Rescue Module

The rescue module is perhaps the most complicated of all three units as it is tasked with many processes

in a short time. In order to organize the code in a more structured manner, it is also put in a state

machine as seen in Figure 34. In state zero, the rescue module waits until it receives a boot message

from the mothership. Once this is received, it reads the XBee and determines if the remote kill switch

message has been sent. If it has been sent, it goes into the remote control mode state. If not, the rescue

module sends a message to the mothership that the initialization has been completed and enters state

one.

In state one, the rescue module checks if it is in range of the terminal locator device (TLD) in which case

it goes to state two. If this is not the case, the rescue unit reads its local GPS coordinate location and

sends it to the mothership as an average of the last ten coordinates. Next, the rescue module reads the

XBee for a new message or coordinate data. If a message is received indicating that it should go to the

remote control state, the rescue module will enter the remote control state. Otherwise, if coordinates

from the PLD were received, it stores these, calculates the path to the victim, and corrects the course by

means of control signals to the motors. This process is then repeated.

In state two, the rescue unit is close to the victim (within range of the TLD) and attempts to home in on

the victim. It first notifies the victim and the mothership that it is close to the victim. In this state, the

rescue unit continuously checks if the return to home button has been pressed and if it is out of signal

range of the victim TLD. If the return home button has been pressed, state three is activated. If the TLD

is out of range, the code reverts back to state one. Furthermore, in state two, the rescue unit checks if it

should be put into the remote control state. It will correct the motors based on the peak envelope signal

read from the receiver circuit. For example, if the right motor has a larger peak envelope signal, then the

left motor is turned on and the right turned off to correct the direction of travel.

While in state three, the rescue unit attempts to go back to the mothership. It first sends the

mothership a message indicating that it is heading home with the victim. Next it checks if it is close to

the mothership, in which case it will notify the mothership that the rescue unit is home and enters state

zero. If this is not the case, the rescue unit will find and store its local GPS coordinates to send to the

mothership. Next the rescue unit reads the XBee for any messages or coordinates. If a message has been

received that it should go into remote control mode, the remote control state is activated. Otherwise if

the received packet has coordinates of the mothership, it will store them and use them to calculate the

new path to the mothership, correct the direction, and set the motors.

32

Navigation

The navigation algorithms used by the rescue unit involve two main methods of path planning. The first

method is cross track error using the GPS coordinates of all three modules. It bases the direct course as

being between the last position of the mothership module prior to rescue initialization and the current

position of the PLD Module. The Rescue boat module’s position is then adjusted to continually minimize

the cross track from this track while proceeding to the PLD. The cross track error algorithm is used in

order to reduce the effects of the wind on rescue craft as well as the spiraling effect when homing in on

the victim using a simple straight path algorithm. The terminal locator function simply checks the peak

envelope signals of the three receivers to determine which way to correct the motors for homing in on

the victim.

Cross-track error algorithm

The cross track error algorithm simply determines how far from the straight line path to the victim the

rescue unit is. If it is more than five meters from the path, it corrects the rescue craft to stay in a straight

line path. The equation used to accomplish this can be seen in the equation below.

 (

)

Where R is the earths radius, d13 is the distance from the starting location of the rescue craft, θ13 is the

angle from the starting location of the rescue craft to the current location of the rescue craft, θ12 is the

angle from the starting location of the rescue craft to the current location of the victim module, and D is

the cross-track distance error.

Figure 34 - Rescue unit state diagram

33

Using this in the code, every time new Rescue Boat or PLD GPS coordinates are received, the cross-track

is recalculated. If the value is negative, the rescue craft knows it is to the left of the desired path and

should it be greater than negative five meters, it corrects right. The same principle is true should the

value be positive and greater than five. In that case, the rescue unit would be to the right of the desired

path and have to correct left.

The cross-track error algorithm helps prevent the rescue craft from traveling too far from the shortest

path to the victim. It also allows the craft to quickly correct its course in response to wind or currents

that may move it off course.

Terminal location algorithm

The terminal location algorithm allows for the rescue craft to home in on the victim using the three AM

receivers located on the boat. If the receiver on the bow of the boat has a weaker peak envelope signal

than the receivers on the center of the boat, the rescue unit knows that the bow is pointing away from

the victim and has to turn around. Should the bow have a larger peak envelope signal strength than the

receivers on the center of the boat, then the boat knows it is pointing towards the victim and if the right

receiver has a larger peak envelope signal strength than the left, then the boat is pointing to the left of

the victim and will have to correct right as seen in Figure 35. The ideal condition would be when both

the center receivers have the same peak envelope signal strength and the bow has the greatest peak

envelope signal. Once both the left and right center receivers have a peak envelope signal strength that

is greater than a set threshold, the boat knows that it is within one meter of the victim and kills the

motors.

Figure 35 - Terminal locator device peak envelope signal example

34

Messages Between Modules

In the table shown below are all the messages that are sent between the three units.

Table 1 – Relayed Messages Between Modules

Message Sender Meaning

OVERBOARD Victim Victim is overboard

INITDN Victim Initialization complete

ONRESCUE Victim Victim is on rescue craft

INIT Rescue Initializing

SEARCHV Rescue Rescue is searching for victim

CLOSEV Rescue Rescue is close to victim

RETURN Rescue Rescue is returning to mothership

FORWARD Rescue (Debug) Both motors on

LEFT Rescue (Debug) Right motor on (turning left)

RIGHT Rescue (Debug) Left motor on (turning right)

WAITING FOR VICTIM TO BOARD Rescue Next to victim and waiting for home

button press

MCOORD Rescue Tell the motherhship to send GPS

coordinates

HOME Rescue Rescue craft returned to mothership

BOOT Mothership Notify rescue unit to initialize

FF Mothership Set both motors on

SS Mothership Stop the boat

LO Mothership Turn the boat right (left motor on)

RO Mothership Turn the boat left (right motor on)

RESTART Mothership Restart the rescue craft in state 0

Antenna Design
A ferrite core antenna was chosen for the signal transmission based on its size and signal reception

capabilities. The ferrite core antenna being used is 4 inches long, allowing for inconspicuous mounting

on the rescue craft within a watertight enclosure. Its small profile also reduces the size of the victim’s

locator device allowing for a non-intrusive safety system that will not hinder the wearer’s actions. The

antennas were tuned to a low frequency in the AM radio band of 921 kHz allowing the signal to

penetrate waves, should the victim be on the other side of a large wave. For the method of tuning the

antenna, see Appendix D – Antenna Tuning. Other antenna systems would be impractical of achieving

these goals provided the expected operating conditions.

35

Frequency Selection

One important aspect of the antenna design is the tuned frequency. This had to match the frequency

that the transmitter and receiver circuit was running at to provide the most effective signal transmission

and reception. Because this experiment is carried out in the Massachusetts area and using the AM low

frequency band, a quick search of the FCC website was conducted. See for result of the AM band radio

station search (FCC, 2011). Competing the search for the stations, it was found that the largest gap with

no broadcasting stations occurred just above the 900 kHz band, see Appendix C – AM Station Query

(FCC). By searching for oscillators around and in multiples of this frequency, an acceptable operating

frequency was found at 921.6 kHz with no stations +18.4 kHz and -31.6 kHz. This was determined to be

our best choice operating frequency as there is a larger gap between these frequencies so that a simple

band pass filter should be capable of filtering out the desired signal from nearby interfering signals.

Additionally, the oscillator being used, when divided by 8 with a modulo counter, is within the required

frequency (Digi-Key, 12). This oscillator has a frequency of 7.3728 MHz that resulted in a transmitted

frequency of 921.6 KHz.

Transmitter Circuit

Figure 36: Transmitter Circuit Design

The AM transmitter is made up of 5 integrated circuits (IC). The main part of the transmitter is made up

of the SN75441 IC which is a quadruple Half-H Driver. Two of the half bridges are used to drive a square

wave into the primary coil of an LC antenna. The Atmega328P microcontroller IC is driven by a

7.3728MHz crystal and runs off of a 5 volt supply. It generates the clock output on Pin 14 and a 1 kHz

square wave at pin 13. The clock output is fed into two SN7474N Dual D-Type Flip Flops which divide the

frequency down from 7.3728 MHz to 921.6 kHz. To transmit a signal, an antenna had to be tuned for the

desired frequency of 921 kHz. See Antenna Design. This square wave is sent to pin 7 of the H-Bridge

36

driver and an inverter, HD74LS04P. This inverted waveform is applied to the Pin 2 of the H-Bridge driver.

For higher transmitting strength, a boost converter is used to boost the 5V supply to 12V for the H-

Bridge IC. This is achieved by the LM2577 (Texas Instruments, 2013).

The square wave radio frequency signal applied to the Pins 7 and 2 of the H-Bridge are applied to the

Pins 6 and 3 of the same IC when the signal on Pin 1 is high. When this is low, the output to Pins 6 and 3

are low. By applying the 1 kHz signal to the controlling Pin 1 of the H-Bridge driver, the radio frequency

signal may be modulated in an ON-OFF Keying fashion.

Figure 37 – H-Bridge Driver output Pin 3

Figure 37 shows the output from the H-Bridge circuit at the primary winding coil. As can be seen, the

frequency of the waveform is at the radio frequency which the signal is applied to the inputs of the H-

Bridge.

Figure 38 – Tuned LC Antenna Circuit Output Waveform

37

Figure 38 shows the waveform at the tuned LC circuit antenna which radiates the signal. This also is at

the radio frequency as expected.

Figure 39 – Divided Clock Signal from Atmega328P

The divided clock signal from the Atmega IC is seen in the Figure 39. This is at the radio frequency that

the circuit is operating and is the signal that is applied to Pins 3 and 4, one of which is inverted.

Figure 40 – Clock Signal Output from Pin 14 of Atmega328P

The Figure 40 shows the clock signal output of the Atmega328P which is used to derive most of the

other signals being used in the transmitter.

38

Figure 41 – 1 kHz modulating signal from Atmega328P Pin 13

Finally, Figure 41 shows the modulating signal that is used to ON-OFF key the radio frequency signal.

Additionally, the XBee and GPS devices are connected to the on the Atmega microcontroller which

carries out the transmitter processes. These are connected to the physical pins as seen in the Figure 42

below.

Figure 42 – Atmega Pinout for Personal Locator Device

39

Receiver Topology
For the terminal location to function properly there had to be three identical receivers that are

positioned on the rescue craft. Due to time constraints, the basic receiver is made up of a commercial

handheld Grundig M400 Radio which has been tuned to the transmitting frequency, a band pass filter

and a final logarithmic amplifier stage. The schematic of Figure 43 shows the post AM receiver stage

with the output of the final Operational Amplifier, U3B going to the Atmega328P analog to digital

converter.

Figure 43 – Post AM Receiver stage

The LM358N Op-Amp denoted by U1B serves as a non-inverting level shifter which offsets the DC bias

seen from the output of the receiver. The LM358N Op-Amp denoted by U2A is an active narrow band

pass filter of the Deliyannis type with a center frequency at 1 kHz which is the signal being sent by the

transmitter denoted by the AC signal source V2 (Carter, 2001). The output of this signal is sent into a

logarithmic amplifier and finally to the Atmega328P analog to digital converter.

The respective pinouts of the Atmega Microcontroller of the rescue craft are seen in the Figure 44. As

may be seen, the outputs of the logarithmic amplifier circuits are denoted by the text “From_Receiver”.

40

Figure 44 – Rescue Boat Microcontroller Pinout

Deliyannis Bandpass Filter

To decide on the component values for the filter, a quick analysis of the governing equations for the

filter are investigated. For this particular configuration, the center frequency is equal to the following:

In this equation, the following relations hold true for the circuit seen in Figure 45.

Gain and the Q factor are determined with the following equation. For higher values of Q and therefore

also gain, the greater the selectivity of the filter will be.

For this equation, note should be taken that R4 and R5 are related by the following relation:

The method applied for solving for component values was an iterative approach which made use of an

excel spreadsheet. Here, the values for the capacitors were chosen first and using the selected center

frequency, the value of was solved for. This is equal to R3 and R5 from the relation above. From here,

a value for was chosen and in conjunction with the formula for gain and Q, the respective resistances

R6 and R5 could be solved for.

41

In the case of the 1 kHz band pass filter needed for the receiver, a capacitor value of 0.01 µF was chosen

for C2 and C3. After some iteration, a value of 44 was chosen for which resulted in real resistance

values. Solving the equations with these inputs, the following values were determined for the band pass

filter.

R3 = R5 = 15,915Ω
R6 = 700,282Ω
R4 = 361Ω

For the simulation and in the actual circuit, the values used were rounded to the following:

R3 = R5 = 16 kΩ
R6 = 680 kΩ
R4 = 360 Ω

Through simulation it was found that the resistance that affects the center resistance the most was R4.
Any small variation in this value could shift the center frequency drastically which meant that any
resistors that were purchased for the filter should have a low error tolerance, especially those used for
R4.

Figure 45 – Deliyannis-Type Band pass filter

Simulation of the filter in Figure 45 may be seen in the Figure 46. Parameters used for the simulation are

an input signal of 100mV peak swept from a frequency of 1 Hz to 2 kHz. The peak gain seen by the circuit

42

is experienced at 1 kHz which is the signal that is being sent by the transmitter. This effectively

attenuates all signals above and below this 1 kHz frequency.

Figure 46 – Band pass filter frequency sweep with 1mV input signal

The topology of radio receiver to band pass filter to logarithmic amplifier is adopted for each of the

three receivers whose signals are compared and processed by the Atmega. Using this method, the

digitized input can be read and compared in the software to apply signals to the motors for homing in on

the victim.

Logarithmic Amplifier

The transdiode-type logarithmic amplifier was necessary to reduce the non-linear characteristic of the

received signal from the transmitter versus distance of the receiver to the transmitter. This amplifies low

amplitude signals much more than higher amplitude signals resulting in a logarithmic characteristic. By

using this amplifier, the small signals received due to greater distances of separation between

transmitter and receiver are amplified with high gain factors. As the separation distance is decreased,

the gain is reduced as may be seen in the Figure 48. An additional feature of the logarithmic amplifier is

that its maximum output signal amplitude is 5V which is the maximum allowed input to the ADC of the

Atmega.

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800 2000

G
ai

n
 [

V
/V

]

Frequency [Hz]

AC Sweep Analysis of Bandpass Filter

43

Figure 47 – Logarithmic Amplifier

The Logarithmic Amplifier is used to convert the output of the Bandpass Filter to a 0-5V level with

variable gain. Due to the addition of a second BJT transistor, there is the added benefit of Temperature

Compensation in the Transdiode Logarithmic Amplifier which compensates for offset voltage (Webster,

1999).

The design of the amplifier was based upon the Figure 16 configuration from the datasheet for the

MC1556 operational amplifier (Motorola Semiconductor, 2003-2013). For temperature compensation,

the circuit from Figure 6.16 was used from the text Analog Signal Processing by Pallas-Areny and

Webster on page 299 (Webster, 1999).

To test the Logarithmic amplifier, the setup as seen in Figure 47 was utilized. The voltage source V3 was

swept from 0-12V and the output voltage measured where probe 1 is seen in the Figure. The plot of the

characteristic is seen in the Figure 48 below.

44

Figure 48 – Logarithmic Amplifier Simulation Results

 To compare the actual circuit to the simulated one, the voltage source V3 was adjusted at small

increments from 0-10V on a power supply and the output voltage measured where probe 1 is seen in

the Figure. The results of this may be seen in the Figure 49 below.

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14

V
o

lt
ag

e
 O

u
tp

u
t

[V
]

Input [V]

Transfer Function, Log Amplifier Simulation
Results

45

Figure 49 – Transfer Function of Logarithmic Amplifier, Experimentally Obtained

As can be seen, the two plots are nearly identical, demonstrating the circuit’s functionality. Any small

signal is amplified much more than the larger signals i.e. for every change in input voltage, there is a

decreasing change in output voltage. It is the output of this logarithmic amplifier that is read by the ADC

of the Atmega.

0

1

2

3

4

5

6

0 2 4 6 8 10 12

O
u

tp
u

t
[V

]

Input [V]

DC Sweep Experimentally Obtained Transfer
Function for Logarithmic Amplifier

46

Figure 50 – Comparison of Experimentally Obtained Transfer Function to Simulation

This circuit is utilized for each of the three receiver devices, the outputs of which are compared

internally by the Atmega microcontroller. The digitized values of the output signal are used for

determining which motor to drive in the final terminal location stage.

Motor Control
Relays were used to drive the trolling motors of the rescue craft. This has been deemed the most

efficient and fitting solution as reaction time is not critical and heat dissipation need not be considered

due to the nature of relays. In the circuit below four, single pole, dual throw (SPDT) relays are

implemented. The open connections to the MOSFETs come from the controlling pins of the Atmega

microcontroller which provides logic signals to drive the Relays.

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14

O
u

tp
u

t
[V

]

Input [V]

Logarithmic Amplifier Tranfer Function
Comparison to Simulation

Simuated DC Sweep

Experimentally Obtained DC
Sweep

47

Figure 51 – Motor Controller Circuitry

Depending on the state of the input pins, the trolling motors represented by M1 and M2 in the figure

above may be driven forwards or in reverse. The table below summarizes what direction the motor will

turn, depending on the inputs. MOSFETs Q1 and Q2 together control the state of the motor M1 and Q3

and Q4 the state of motor M2, respectively. For this example, the motor M1 represents the motor on

the port side of the boat and M2 the starboard side. In the table, 1 represents a logic HIGH at the

MOSFET, or 5V applied to the gate. 0 represents a logic low with 0V applied.

48

Table 2 – Boat Reaction per MOSFET Gate Input

State of Q1 State of Q2 State of Q3 State of Q4 Motor M1 Motor M2 Boat Reaction

0 0 0 0 OFF OFF Coast

0 0 0 1 OFF FWD Left Turn

0 0 1 0 OFF REV Right Turn

0 0 1 1 OFF OFF Coast

0 1 0 0 FWD OFF Right Turn

0 1 0 1 FWD FWD Forward

0 1 1 0 FWD REV Hard Right

0 1 1 1 FWD OFF Right Turn

1 0 0 0 REV OFF Left Turn

1 0 0 1 REV FWD Hard Left

1 0 1 0 REV REV Reverse

1 0 1 1 REV OFF Left Turn

1 1 0 0 OFF OFF Coast

1 1 0 1 OFF FWD Left Turn

1 1 1 0 OFF REV Right Turn

1 1 1 1 OFF OFF Coast

The Rescue Boat
To obtain a basic idea of what speeds and power requirements the rescue boat will need, some basic

analysis was done on the craft. For any displacement hull boat, there is a characteristic measure called

hull speed which is dependent on the waterline length of the boat which is the dimension B in the figure

below.

49

Figure 52 – Waterline length of a boat (glen-l, 2008)

Hull speed is defined as the speed of a displacement hull boat when the wave-making drag becomes

dominate over the surface friction drag. The thrust required to exceed hull speed increases dramatically

after this point. These may be found in Appendix B – Hull Speed Calculations. The formula for the hull

speed may be found below (Savitsky, 2003).

 √

The craft being used to carry out the rescue in this scenario is 10 feet long. While cruising, the craft has

an angle of attack that changes with speed. Due to this, the waterline length will decrease. Because of

this phenomenon, the hull speed will change. After some calculation over the various waterline lengths

up to 10 feet, the resulting hull speeds were graphed in the Figure 53 – Graph of Hull Speed vs.

Waterline Length below.

Figure 53 – Graph of Hull Speed vs. Waterline Length

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12

H
u

ll
Sp

e
e

d
 [

kn
o

ts
]

Waterline Length [feet]

Hull Speed vs. Waterline Length

50

Based on this calculation, our craft will be capable of efficiently running up to 4 knots, provided the

waterline length does not drop below 9 feet. Additionally, CT is a parameter required to find

characteristic specifications of the boat’s performance. The formula is stated below (Anthony F.

Molland, 2011).

In the equation above, CT is the coefficient of hull resistance in calm water; RT is the total hull resistance

in [lbs] and is the fluid density in [slugs/ft3]. Finally, S is the wetted surface area of the submerged hull

in [ft2] and Vs is the speed of the ship in [ft/s]. For the rescue boat traveling at 1.9 ft/s with 3.9 lbs. of

drag, a coefficient of hull resistance was calculated to be 0.036.

Boat Testing

To test the rescue boat, a series of experiments were formulated to determine the handling of the craft

itself. These results were crucial in creating a control scheme for the boat such as turning, stopping, and

backing up.

Figure 54 – The Rescue Boat

The tests that were performed were to determine the top speed and stopping distance. These were

useful in calculating the time of rescue and when the rescue craft will need to stop so as to not hit the

victim. The drag force was also measured to determine how the craft can be run to achieve the most

efficient traveling velocity. The current draw at maximum velocity was measured to approximate a

running time on the boat based on battery characteristics. The turning circle of the boat was measured

51

to better model the handling. Finally the static thrust was determined. The experimental procedure for

the testing may be found in the Appendix A – Boat Water Maneuverability Experimentation.

Test Results

The results of the test are summarized in the table below.

Table 3 – Water Test Results for the Rescue Craft

Parameter Result Units

Maximum Speed (With Person in Boat) 2.4 [knots]

Maximum Speed (Without Person in Boat) 3 [knots]

Stopping Distance (From Full Speed Coasting) 9.5 [ft]

Current Draw (Max Speed) 14 [A]

Drag Force (1.6 knot tow speed) 3.9 [lbs]

Static Thrust (Both Motors) With Person 28 [lbs]

Static Thrust (Both Motors) Without Person 25.7 [lbs]

Turning Circle, Radius (with slight Wind) 11.5 [ft]

One major noticeable difference between the motor specifications and the test results is the static

thrust of the rescue craft and measured current draw. The trolling motors used for the rescue boat were

designed to move heavy craft at slow speeds and therefore have propellers with a small pitch (Burns,

1999-2013). A decrease in pitch on the propeller results in higher motor RPM. This means that the

motor reaches its top speed very rapidly and experiences less resistance from the water as the mass of

the boat is much less than designed for. As seen from the graph of a typical DC motor speed and current

versus torque graph in Figure 55, for higher motor speeds, there is a lower current draw and torque.

52

Figure 55 – Speed and Current vs. Torque Graph (Simple Machines, 2010-2011)

To increase the speed and static thrust of the boat, the current propeller should be replaced with one

that has a higher pitch.

The Rescue Boat – Draft
To find the draft, or distance from the water level to the bottom of the hull of the boat, it is necessary to

calculate several parameters in conjunction with the Archimedes principle (Cimbala, 2010). These are of

benefit for the simulation of the rescue craft in the Flow Simulation software of Solidworks. This

information is used to determine how deep the craft sits in the water.

To determine the draft of the sea rogue, the total mass of the boat, motors, battery and all other

equipment is to be determined. Using this, the following formulas are used to determine how deep the

boat sits in the water (arizona.edu, 2010).

Where is the mass of the boat and all equipment on it, is the volume that is submerged and

the density of water. Solving this equation for the submerged volume and using the following relation

allows one to solve for the water level.

Where is the volume of water that is displaced by the laden boat. To determine the water level,

the following equation is used.

For the boat being used in this project, the following properties were used for the calculations.

53

Table 4 – Calculation Parameters

Parameter Value Unit

Dry mass of boat 50 kg

Mass of Battery 16 kg

Mass of Motors 14 kg

Mass of other equipment 5 kg

Density of sea water 1027 Kg/m^3

Utilizing these parameters, the submerged volume of the boat was calculated to be 0.083 m3. This

resulted in a draft of 2.17 cm. Using these values as a basis, a simulation was conducted in the Flow

Simulator add on of Solidworks. Drag force was found by solving for a global goal of force in the axis

parallel to the direction of travel for the boat.

Solidworks

To provide a base for calculations to determine proper motors for use with the craft and a comparison

for expected drag forces from the vessel, a Solidworks model was drafted. This was modeled using the

actual rescue boat in shape and size. Using the Flow Simulation 2012 wizard and solving for the reaction

force in the Z-Direction as indicated in the model under global goals, the drag force was able to be

calculated. To run this model there were some assumptions and conditions that were applied. For a

complete procedure of the simulation, see Appendix F – SolidWorks Flow Simulation 2012 Procedure.

54

Figure 56 – Solidworks Simulation for Relative Pressure on the Rescue Craft | Drag Force Simulation

Water was used as the fluid and simulated to run at 3kmh toward the boat model. The water level was

set as calculated in the draft section above by adjusting the computational domain (Cudacountry.net

Tech Ed, 2010). Cavities without flow conditions and internal spaces were excluded from the

calculations as well as any components that were not necessary for determining the drag force. Due to

the limited availability of another craft to carry out testing, the trolling motors were excluded from the

model. This was decided because they were fastened to a canoe which was used to tow the rescue craft

for determining the drag force experienced.

When applying the initial conditions, it is important to take care in setting the correct value for flow

direction. In this case, making note of the global coordinate system is useful as well as plotting flow

trajectories and running an animation to ensure that the fluid is flowing in the correct direction.

After the calculations have been carried out for the global goal(s) as set in the goal table, the resulting

drag force is displayed by choosing Insert, Goal Table. As may be seen in the Figure 57, the resulting drag

force experienced by the rescue boat moving at 3kmh in water was determined to be 2.8 lbs. This was

comparable to the experimentally obtained drag force of 3.9 lbs. The percent error of 40% from this

experiment showed that the simulation was fairly accurate for a flow simulation. There are other factors

that contribute to the drag including wind conditions, turbulence from the towing craft and others that

contribute as sources of error.

55

Figure 57 – Resulting Drag Force on the Boat Model

To determine the drag force experimentally, a digital luggage scale was used in conjunction with a tow

line and canoe upon which the trolling motors were attached. The scale used may be seen in the Figure

58 seen below.

Figure 58 – Luggage Scale used to determine Drag Force on Rescue Craft (Bed Bath & Beyond, 2013)

Other methods for determining drag such as towing the boat from land were considered but

determined to be less feasible due to the nature of the lake that testing was completed on.

The Rescue Boat – Power Requirements
To determine the power requirements and therefore specifications for a battery, each of the respective

electronic components were necessary to take into account. The following table summarizes the data

that was used for the calculations as taken from the provided MinnKota website (Ltd, 2011) and online

source (Smith, 2011).

Table 5 – Power Requirement Calculation Parameters

Parameter Value Units

Motor Voltage 12 [V]

Max Current Draw 30 [A]

Max Force per Motor 30 [Lbf]

Runtime at Max Power 30 [min]

56

The necessary battery ampere-hours required may be found using the following equation:

Where is the necessary Ampere-hour capacity needed from the battery, is the total current

draw from the battery and is the time that the system is operational and requires power from the

battery. Additionally, due to the nature of lead acid batteries which should not be discharged more than

50% their capacity, the required capacity will need to be doubled. Solving the equation above and

accounting for the allowable discharge, the final capacity required for the motors is 60 Ah for total

runtime of 30 minutes at full power.

Based on these calculations, the battery used for the rescue craft was a Die Hard Deep Cycle battery

with an 80Ah capacity. This would provide more than the necessary energy required to run the rescue

craft as specified.

Figure 59 – Deep Cycle Battery Used to provide Power for the Rescue Boat

After conducting the tests on the water and using a shunt resistor to measure the current draw from a

single motor, it was found that less current was drawn than expected. To measure the current draw

from one of the trolling motors, a shunt resistor was placed in series with the motor and battery. The

battery is represented in the Figure 60 as V1 and the motor represented as a current sink with the

resistor R1 representing the shunt resistor, respectively.

57

Figure 60 – Setup to measure current draw from single Motor

In measuring the voltage drop across the resistor R1 and knowing the resistance of the shunt resistor,

the current draw from the motor may be calculated. This is accomplished by means of ohm’s law.

For this setup, a shunt resistor with a resistance of 0.2 Ω was used and a voltage drop of 2.79V was

measured. This resulted in a current draw from the motors of 14A. This is more than half the expected

draw as stated by the datasheet from MinnKota. This was determined to be due to the fact that the

motors are designed to move heavy craft. By being used to propel our light rescue craft, the motor

speed is higher, resulting in a lower torque and therefore a lower current draw.

The Rescue Boat – Turning Circle
To calculate the turning circle of the rescue unit, a few preliminary tests were conducted on the water to

obtain values for the angular velocity as well as the static forward thrust. To test the angular velocity,

the rescue unit was remotely driven in a circle for a full rotation and timed. This time was then

converted to a value of radians per second which was determined to be 0.2244 radians per second. For

the turning radius calculation, the motors documented thrust of 30lbs was used. Measurements of the

exact position of each motor were also made in order to obtain the most accurate experimental turning

radius calculation as possible. Assumptions used in the calculation were that the motion is planar and a

constant velocity is maintained throughout the turn.

The equations used to determine the radius can be seen below (Fossen, 1994) (Furfaro, 2012):

58

 ̇

 ̇

√ ̇ ̇

 ̇

The figure below shows the respective variables and components of the equations as they relate to the

rescue craft.

Figure 61 – Model of the Rescue craft for analysis

Additionally, the meaning of each of the symbols may be seen in the table below. The equations used

the thrust of each motor as well as the angle that the respective motor was turned at to determine the

force in the x and y direction of travel. These values were then converted using a ratio experimentally

obtained between the force and the velocity of the boat to determine the speed the boat would be

moving in the x and y direction while turning. Finally the velocity vector was divided by the angular

velocity to determine the experimentally calculated expected turning radius. This was found to be

approximately four meters.

59

Table 6 – Variable and their descriptions for turning circle calculation

Symbol Description
Xcontrol Surge force control

Y control Sway force control

Zcontrol Yaw control

T x .Motor Torque from motor x

θx.Motor Angle of applied torque from x-
axis

Dx❑ Displacement of motor from the
center of gravity for the craft in
the x-axis

Dy❑ Displacement of motor from the
center of gravity for the craft in
the y-axis

́x Linear velocity along the x-axis –
surge velocity

́y Linear velocity along the y-axis –
sway velocity

ratio Experimentally obtained relation
between expected thrust to
experimentally obtained velocity

Rturning Calculated Turning radius

φ́ Yaw velocity

Results
With a completed system created, several experiments were conducted to demonstrate the

functionality of the MOB equipment. These involved a water test which simulated the rescue of a MOB

on the Assabet River in Maynard, MA as well as a land demonstration of the personal locator devices’

terminal location. The tests were headquartered at the Ice House Landing near the Maynard

Department of Public Works.

Water Test
The main test for functionality involved a simulated autonomous rescue effort by the rescue craft. Due

to the cold water, the test was broken into two segments as a victim was not readily willing to swim in

the lake to be rescued. The segments included victim location and return to mothership. This was

segmented so as the “victim” could be placed in the rescue craft to press the return home button. The

following series of figures show the path traveled by the three modules as seen on the mothership GUI

as well as from an observer’s perspective on the lake. A log file of the GPS coordinates can be found in

Appendix N - Coordinates.log.

60

Victim Location

Victim location was achieved by starting the rescue craft 226m downstream from the personal locator

device as measured from GPS log data. The personal locator device was then activated by pressing the

distress button on the unit which was attached to a life vest as seen in the Figure 62.

Figure 62 – Personal Locator Device Fastened to the Life Vest

From the GUIs perspective, the following information is displayed in Figure 63. When the victim module

sends a distress signal, the GUI displays a message indicating that the victim overboard condition has

been detected. It also displays the position of any of the modules that have sent their respective GPS

coordinates to the mothership. The test showed that by pressing the button on the victim module, the

mothership successfully initialized the rescue unit. The rescue unit then began to navigate towards the

victim using the cross-track error algorithm.

61

Figure 63 – Mothership GUI: Victim overboard condition detected

The next message the mothership GUI displays is that the rescue unit is initialized and navigating to the

victim. This can be seen in Figure 64. In this stage the rescue craft successfully used the cross-track error

algorithm to head in the direction of the victim using the GPS coordinates it received from the victim

unit.

Figure 64 – Mothership GUI: Rescue unit initialized and heading off

62

In Figure 65 below, the rescue craft - denoted by the red outline, and victim - denoted by the blue

outline may be seen. Here, the rescue craft is headed in the direction of the personal locator device.

Figure 65 – Rescue Craft and Personal Locator Device

Additionally, as the rescue craft was within 30 meters of the PLD, the radio transmitter was activated

and terminal location was standing by for a signal. Figure 66 shows the GUI telling the user that the

victim unit has activated the terminal locator device and the rescue craft is searching for a signal from it.

In this state, the rescue unit is still using the cross-track error algorithm to navigate to the victim, but is

about to transition to the terminal location algorithm using the three AM receivers to home in on the

victim.

63

Figure 66 – Mothership GUI: Terminal locator device activated

In this particular test scenario, the rescue craft passed the personal locator device and homed in on the

simulated victim. This homing action may be seen in the Figure 67 below.

Figure 67 – Terminal Location on the Victim

64

In the figure below, the GUI is notifying the user that the rescue unit has successfully reached the victim

within one meter. Here the rescue craft is in a state of idleness, waiting for the victim to board the boat.

Should the victim drift away, the rescue unit will again home in on the man overboard.

Figure 68 – Mothership GUI: Waiting for the victim to board

In the next state, the rescue craft waits for the victim to press the return to home button located near

the bow of the boat. Once this button is pressed, the GUI on the mothership displays a message

indicating that the victim is on the rescue unit as demonstrated in Figure 69.

65

Figure 69 – Mothership GUI: Victim is on the rescue craft

Return to Mothership

For this stage of the test, a canoe was paddled to the rescue craft and a person entered the boat to

press the return home button as indicated in Figure 70.

Figure 70 – Return Home Button

66

Once the return home button was pressed, the recue craft headed toward the GPS coordinates of the

simulated mothership 133m away. For this test, the mothership was a canoe denoted by the green

outline in the Figure 71.

Figure 71 – Rescue Boat Return Home Trip

The output on the GUI is seen in Figure 72 for the condition after the return home button has been

pressed.

67

Figure 72 – Mothership GUI: The rescue craft is returning home

Once the victim and rescue unit are within thirty meters of the mothership, the GUI displays a message

indicating the victim has returned home as seen in Figure 73. The test demonstrated that the rescue unit

was capable of using the GPS coordinates to return to the mothership and realize when to stop once it

was within thirty meters of it. With the mothership successfully reunited with the rescue craft and

victim, the test was completed demonstrated that all three modules worked together properly to

autonomously return the victim to the mothership.

68

Figure 73 – Mothership GUI: The rescue craft is back at the mothership

Terminal Location – Land-based Demonstration
Before the Terminal Locator device could be tested, the receivers must be fine-tuned and volume levels

from each of the devices adjusted such that proper functionality is achieved. See Appendix K – TLD

Radio Fine-Tuning for TLD tuning.

In order to test the operation of the receivers, the victim module was held in front of the rescue craft on

land and moved from side to side. This test was conducted to determine the distance of operation for

the terminal locator device as well as its functionality. First the rescue unit was put in the GPS navigation

mode and the victim module was slowly moved towards the boat beginning at a distance of fifty feet

measured from the bow of the boat. Once the victim unit was within eighteen feet of the bow of the

boat, the terminal location took over as seen in Figure 74. When the victim unit with the AM transmitter

was moved back to twenty three feet from the bow of the boat, the rescue unit automatically reverted

back to using the GPS navigation. This was repeated four times and accurately resulted in similar results.

Once within the terminal location mode, the victim unit was moved to the left and to the right of the

rescue boat. The motors changed direction with an error of just three feet either to the left or right of

the boat. This demonstrated functionality of the terminal location in being able to home in on the victim

using the AM transmitter and receivers. Finally, to determine if the rescue unit would stop before hitting

the victim, the PLD was moved closer to the rescue boat. Once it was within five feet of the bow of the

boat, the rescue unit motors turned off and the rescue unit indicated that it was waiting for the victim to

board.

69

Figure 74 – Experimental Setup for Terminal Locator Test

A frame from the video recorded of the demonstration seen in Figure 75 shows that, when the personal

locator device is positioned to the port of the rescue boat, the right motor is running and the vessel

would be making a port turn.

Figure 75 – Terminal Locator Demonstration – Port Turn

As the personal locator device is moved to the starboard side, the left motor is turned on and the right

motor turned off. This makes for a starboard turn to head toward the victim as seen in the Figure 76.

70

Figure 76 – Terminal Locator Demonstration – Starboard Turn

When the personal locator device is within 5 feet of the personal locator device, the motors are turned

off to coast toward the victim. This is seen in the frame in Figure 77 below.

Figure 77 – Terminal Locator Demonstration – Coasting

The results of this test demonstrated that the terminal location by means of AM radio transmission and

the tri-antenna setup is a feasible method for homing on the victim.

71

Conclusions and Further Research
The following sections describe the conclusions reached for the autonomous man overboard rescue

equipment as well as suggested future research.

Conclusions
It was determined that the autonomous man overboard rescue equipment was successful in

demonstrating an autonomous search and rescue mission for a man overboard case. The test was

conducted on the Assabet River in Maynard, Mass where the rescue craft was located on one end of the

river and the victim on the other, separated by a distance of 226 meters. The mothership was also

located a little farther away from the two modules. When the victim unit was activated, the rescue unit

successfully used GPS and the magnetic compass readings to head directly to the victim and then stop

upon reaching it. Once the victim was on the rescue craft, the craft was able to head back to the

mothership unit using the GPS coordinates received from the mothership unit. All functional

requirements of the initial design were met.

The system was also able to operate well over the thirty minute time requirement. Additionally, it

operated over a 500 meter range using the XBee modules although the full range of the XBees listed in

the specifications was not achieved due to the enclosed location of the XBee transceiver on the rescue

craft. The victim module was watertight and could be submerged without harm to the internal

electronics. The mothership GUI also performed well, displaying the locations of all three modules

relative to each other as well as notifying the user of the current state of the rescue. Overall the system

performed as expected and demonstrated that the scaled up model could be used to autonomously

find, rescue, and return a man overboard to the mothership.

Compromises

One of the compromises that was made to successfully complete the project was the use of a

commercial AM receiver was used to replace a tuned radio receiver. In the original project design

specifications, the receivers were to be designed and implemented specifically for the 921 kHz operating

frequency by the project team. An initial receiver circuit was designed and underwent some revisions,

but did not meet the sensitivity and selectivity requirements necessary for the performance at the

distances required for the project. Due to time constraints caused by the design and troubleshooting of

the transmitter and other circuits related to the receiver module (such as the band pass filter and the

logarithmic amplifier), it was decided that the receiver circuit should be replaced with an off-the-shelf

alternative. This allowed for more time to be allocated to other portions of the project.

A second compromise that was made for the project was the use of AAA batteries in the victim module.

This was due to the limited available space in the enclosure for the victim module. Because of this, the

battery life of the victim module was reduced with the AM transmitter active. Better batteries with a

higher amp-hour rating would allow the victim module to operate longer.

A final compromise was that a PCB was not printed for the modules. With a PCB, the modules would be

more compact, fit in a smaller space, and reduce the number of external wires used. Furthermore, the

modules would have a more professional look and would not be prone to short circuits.

72

Next Steps
Further development for this project should be focused on obtaining a more powerful motor for the

rescue unit. With a more powerful motor like an 8hp outboard motor, the rescue time for the victim

could be significantly reduced. For example, the current trolling motors on the rescue craft require

approximately half an hour to go 2.5km. If the motors were to be replaced with an 8 hp motor, then the

rescue time would be reduced down to approximately ten minutes. Furthermore, a more powerful

transmitter should be designed to increase the range for a better homing capability. More powerful

transceivers to replace the XBees would also allow for a longer range of communication between the

modules. A more modular design for the personal locator device would also allow for a smaller sized box

for the victim to have to carry around. A deployment system for the rescue unit could also be helpful in

making the entire process autonomous as the current design requires the boat to be placed in the water

by someone.

The code could also be optimized for more advanced tracking allowing for less delay. Also the receivers

could be tuned better for noise reduction capabilities and hopefully increase the range for the homing

on the victim. With all these modifications added to the system, the autonomous man overboard rescue

equipment would be much more effective and a reliable solution for the field.

Outlook
Based on the functionality of the MOB rescue equipment described in this report, a potential solution to

the MOB problem that would surpass exiting systems has been demonstrated to be feasible. The

successful PLD developed in this project may be used to create a more modular and higher performance

device to be commercialized and mass produced and carried by the crew of a large vessel. Similarly, the

rescue module may be made more robust and incorporate an outboard motor to overcome strong

winds and currents experienced in the open ocean. The GUI may be designed to be incorporated on the

control deck of a vessel and provide both audible and visual indicators of MOB cases as well as mission

status updates. Finally, to make the system more autonomous, the distress button on the PLD should be

supplemented by a salt water detector. The combination of these systems would result in a viable,

commercial system that could save many lives.

73

Bibliography
What is the "MOB" function of my marine GPS device? (2011, March 28). Retrieved 12 10, 12, from

Garmin: https://support.garmin.com/support/searchSupport/case.faces?caseId={71655ee0-

104c-11dc-4b06-000000000000}

Anthony F. Molland, S. R. (2011). Ship Resistance and Propulsion, Practical Estimation of Ship Propulsive

Power. New York, NY: Cambridge University Press.

arizona.edu. (2010, 6 7). Archimedes. Retrieved 2 2013, from physics.arizona.edu:

http://www.physics.arizona.edu/physics/gdresources/documents/13_Archimedes.pdf

automationdirect. (1999-2013). GCX3226-24. Retrieved March 2013, from automationdirect.com:

http://www.automationdirect.com/adc/Shopping/Catalog/Pushbuttons_-z-_Switches_-z-

_Indicators/22mm_Plastic/Emergency_Stop_Pushbuttons_Illuminated_-a-_Non-

Illuminated/GCX3226-24

Bed Bath & Beyond. (2013). Digital Luggage Scale . Retrieved March 2013, from bedbathandbeyond:

http://www.bedbathandbeyond.com/product.asp?SKU=14704795

Burns, T. (1999-2013). The Effect of Propeller Pitch on Outboard Motors. Retrieved April 20, 2013, from

ehow.com: http://www.ehow.com/info_8584258_effect-propeller-pitch-outboard-motors.html

Carter, B. (2001, December). More Filter Design. Retrieved February 2013, from Texas Instruments:

http://www.ti.com/lit/an/sloa096/sloa096.pdf

Cimbala, Y. A. (2010). Fluid Mechanics, Fundamentals and Applications. New York, NY: McGraw-Hill.

Connolly, J. P. (2004, January 28). Man Overboard Retrieval Device. Retrieved 11 15, 12, from Google

Patents :

http://www.google.com/patents?id=QQMUAAAAEBAJ&printsec=abstract&zoom=4#v=onepage

&q&f=false

Cudacountry.net Tech Ed. (2010, October 7). Boat Flow Sim. Retrieved February 2013, from

Cudacountry.net: http://www.cudacountry.net/assets/applets/sw10_FlowSim_boat.pdf

Digi-Key. (12, 12 10). ATS073B CTS-Frequency Controls. Retrieved 12 10, 12, from Digi-Key:

http://www.digikey.com/product-search/en?x=0&y=0&lang=en&site=us&KeyWords=CTX1040

Digi-Key. (1995-2013). AOT1N60. Retrieved April 23, 2013, from digikey.com:

http://www.digikey.com/product-detail/en/AOT1N60/785-1184-5-ND/2353849

Environmental Law Institute. (1991). Oil Pollution Deskbook, The Environmental Law Reporter.

Washington, DC: Environmental Law Institute.

FCC. (2011, November 3). AM Query Broadcast Station Search. Retrieved December 12, 12, from FCC:

http://www.fcc.gov/encyclopedia/am-query-broadcast-station-search

74

Fossen, T. I. (1994). Guidance and Control of Ocean Vehicles. West Sussex, England: John Wiley & Sons

Ltd.

Furfaro, T. C. (2012). A Modular Guidance, Navigation and Control System. Boca Raton: Florida Atlantic

University.

glen-l. (2008, May 29). Boat Design Characteristics. Retrieved December 14, 2012, from glen-l.com:

http://www.glen-l.com/desn-char.html

Google. (2011). My Tracks. Retrieved February 2013, from google.com:

http://www.google.com/mobile/mytracks/

ladyada. (2012, August 14). GPS datalogging shield for Arduino. Retrieved February 2012, from

ladyada.net: http://ladyada.net/make/gpsshield/modules.html

Ltd, B. L. (2011). MinnKota Endura Manual. Retrieved March 2013, from MinnKota:

http://www.minnkota.com.au/community/user-manuals/motor-manuals/endura.html

Makerbot Industries, LLC. (2013). Adafruit Pi Box: Enclosure for Raspberry Pi. Retrieved April 2013, from

thingiverse.com: http://www.thingiverse.com/thing:24461

Marine Rescue. (2012, December 1). Rhotheta High-Precision Man Overboard Direction Finder Systems.

Retrieved 12 2, 12, from Marine Rescue: http://www.manoverboardsystems.com/Rhotheta-

SAR-receivers.html

Maxim Incorperated. (2007, October 31). What are IP Ratings? Retrieved 12 05, 12, from Maxim

Integrated: http://www.maximintegrated.com/app-notes/index.mvp/id/4126

MinnKota. (2008-2013). Endura C2. Retrieved April 2013, from minnkotamotors.com:

http://www.minnkotamotors.com/products/trolling_motors/freshwater_transom_mount/endu

raC2.aspx

Motorola Semiconductor. (2003-2013). MC1556 pdf. Retrieved March 2013, from alldatasheet.com:

http://pdf1.alldatasheet.com/datasheet-pdf/view/128952/MOTOROLA/MC1556.html

Mouser. (2013). 893-896H1CHD1SW12VDC. Retrieved April 2013, from Mouser.com:

http://www.mouser.com/ProductDetail/Song-Chuan/896H-1CH-D1SW-R1-

12VDC/?qs=sGAEpiMZZMt98bArVJter4JSFvwfmI4SJSjElpVYzv0%3d

Mouser. (2013). ATMEGA328P-PU. Retrieved January 2013, from mouser.com:

http://www.mouser.com/ProductDetail/Atmel/ATMEGA328P-

PU/?qs=sGAEpiMZZMtVoztFdqDXO6rEZqxeooRg

Mouser. (2013). Digi International XBee. Retrieved March 2013, from mouser.com:

http://www.mouser.com/new/digi/digiXBeeZB/

75

Mouser. (2013). RP8100B2M1CEBLKBLUBLU. Retrieved March 2013, from mouser.com:

http://www.mouser.com/ProductDetail/E-

Switch/RP8100B2M1CEBLKBLUBLU/?qs=sGAEpiMZZMvxtGF7dlGNpqqmTFthXBmfiFV%252bWV9

Ee7w%3d

National Meteorological Library and Archive . (2010). Beaufort. Retrieved December 14, 2012, from

metoffice: http://www.metoffice.gov.uk/media/pdf/4/4/Fact_Sheet_No._6_-

_Beaufort_Scale.pdf

Nautic Expo. (12, December 5). MOB davit for ships. Retrieved 12 06, 12, from Nautic Expo:

http://www.nauticexpo.com/prod/vestdavit/mob-boat-davits-for-ship-31773-195721.html

NPD Group. (2013, February). Otterbox 2000 Waterproof iPhone Case. Retrieved March 2013, from

otterbox.xom: http://www.otterbox.com/OtterBox-Drybox-2000/OTR3-

2000S,default,pd.html?dwvar_OTR3-2000S_color=05&start=2&cgid=otterbox-2000-cases

Premier Farnell plc. (2009). Group: Raspberry Pi. Retrieved January 2013, from element14.com:

http://www.element14.com/community/groups/raspberry-pi

RadioShack Corporation. (2013). Eton Grundig Mini 400. Retrieved April 2013, from radioshack.com:

http://www.radioshack.com/product/index.jsp?productId=4394908

Rescue1Tech. (2012, November 28). Fibre-Lite Rescue Cradle. Retrieved 11 30, 12, from Rescue1Tech:

http://www.rescuetech1.com/fibre-literescuecradle.aspx

Savitsky, D. (2003, October 2). On the Subject of High-Speed Monohulls. Retrieved 11 20, 12, from

Legacy: http://legacy.sname.org/newsletter/Savitskyreport.pdf

Simple Machines. (2010-2011). Speed and Current vs. Torque. Retrieved April 23, 2013, from

societyofrobots.com: http://www.societyofrobots.com/robotforum/index.php?topic=4324.0

Smith, J. P. (2011, August). Trolling Motor Performance. Retrieved March 2013, from tufox.com:

http://tufox.com/hobie/TrollingPerformance.html

Sparkfun. (2013). Compass Module - HMC6352. Retrieved February 2013, from sparkfun.com:

https://www.sparkfun.com/products/7915

Texas Instruments. (2013, April). LM1577 / LM2577. Retrieved April 2013, from ti.com:

http://www.ti.com/lit/ds/symlink/lm2577.pdf

Tor Pinney. (2012, December 1). Attention Cruising Sailors: This Could Save Your Life! Retrieved 12 12,

12, from Tor Pinney's Homeport: http://www.tor.cc/articles/last.htm

United States Coast Guard. (2012, December 6). HC-130H/J Long Range Surveillance Aircraft. Retrieved

12 11, 12, from United States Coast Guard: http://www.uscg.mil/acquisition/lrs/

76

United States Coast Guard. (2012, December 6). Ring Life Buoys & Buoyant Cushions. Retrieved 11 12,

12, from United States Coast Guard: http://www.uscg.mil/hq/cg5/cg5214/ringlb.asp

United States Coast Guard. (2012, February 6). U.S. Coast Guard SAR Statistics. Retrieved December 12,

12, from United States Coast Guard:

http://www.uscg.mil/hq/cg5/cg534/sarfactsinfo/USCG_SAR_Stats.asp

Wal-Mart Stores, Inc. (2013). Snap Top Everstart Marnine Battery Box. Retrieved April 2013, from

walmart.com: http://www.walmart.com/ip/Snap-Top-Everstart-Marine-Battery-Box/16781380

Webster, R. P.-A. (1999). Analog Signal Processing. New York: John Wiley & Sons, Inc.

Williams, M. C. (2007, November 9). Man Overboard Device Saves Sailors Lives. Retrieved 12 01, 12,

from Americas Navy: http://www.navy.mil/submit/display.asp?story_id=33180

wiseGeek. (12, 12 06). How Long Does it Take a Supertanker to Stop? Retrieved 12 10, 12, from

wiseGeek: http://www.wisegeek.com/how-long-does-it-take-a-supertanker-to-stop.htm

77

Appendices
This section contains applicable material referenced in the report above.

Appendix A – Boat Water Maneuverability Experimentation

Goals

 Determine the turning characteristics

o One driving motor

 Drag force

o With/without victim

 Craft top speed

o With / Without person

 Static thrust

Materials

 The Rescue Craft

 12 Volt Batteries

 Two trolling motors

 High Current Switches

 Multimeter

 GPS

 Luggage Scale

 Rope

 Camera

 Timer

 Canoe Paddles

 Buoy (With Anchoring)

Experimental Setup

The rescue craft was set up with a battery and control box near the bow of the boat with software

running allowing for remote control access to the motors. The motors were attached at the stern of the

boat at various angles to test for the best maneuverability.

Procedure

Each of the following tests was conducted three times to ensure comparable results. If there was any

deviation in the results of the three runs, additional tests were conducted in an attempt obtain more

consistent data.

Water Test

The water test was conducted to roughly determine the maneuverability of the boat. The test was used
to determine the best means of propelling the boat in anticipation of turning and maximumspeed
capabilities.

The distance between the two mounted motors was 23.5 inches. While the motors were angled towards
each other as seen in Figure 78, the best maneuverability was observed. The mass of the boat with all
the electronics in it was measured to be 161 lbs.

78

Figure 78 – Motors mounted towards each other

79

Figure 79 – Motors angled away from each other

Pulling Force

To determine the pulling force of the rescue craft, the boar was placed perpendicular to the shore and a
rope was attached to the stern of the boat. Next, a luggage scale was attached to the rope and both
motors were engaged. With the person weighing 150lbs in the boat, the Sea Rogue had a pulling force of
approximately 28lbs.The pulling force of the boat without a person in it was 25.7 lbs.

Turning Maneuverability

To test the turning radius of the boat, the motors were set in three positions. In one position they were
angled towards each other, in another they were pointed away from each other, and in the third they
were parallel with one another. Each test was conducted both with and without a person in the boat.

Motors angled in

The below image shows a rough plot of the path traveled by the boat using an android app
MyTracks (Google, 2011) with the motors angled in and no one in the boat. As can be seen, the boat has
the best turning ability with the smallest turning circle diameter.

80

Figure 80 – Motors angled in and no one on the boat

Figure 81 shows the rough path traveled by the boat with one 150lb person in the boat and the motors
angled towards each other. Again this exhibits the best tuning radius and forward travel speed.

Figure 81 – Motors angled in and 150lb person on boat

Motors straight

Figure 5 shows the approximate path traveled by the boat while the motors were fixed straight without
a person in the boat. Due to the wind, turning in the wind was deemed not practical with the motors in
this configuration.

81

Figure 82 – Motors straight and no one in the boat

Motors angled out

The below figure shows the path the boat traveled with the the motors angled out and no one in the
boat.

Figure 83 – Motors angled away with no one on the boat

As can be seen in Figure 7, the turning radius of the boat is not as good as the one seen in Figure 4,
where the motors were angled in.

82

Figure 84 – Motors angled away and a 150lb person on the boat

Max speed

The maximum speed was also roughly calculated using the MyTracks app on the android. The boat was
driven in a straight line at full throttle for approximately 30 seconds and the gps logger was later
reviewed for the speed. Additionally, to verify the results of the maximum speed test, a distance of 62
feet was marked off on shore based off of landmarks. The time for the boat to travel this distance was
recorded and by dividing the distance by travel time, the velocity was determined.

Motors angled in

While the motors were angled towards each other, the maximum achieved speed was 4.44 km/hr (2.39
knots) with a 150lb person in the boat. With no one in the boat, the speed was 5.21 km/hr (2.81 knots).
The test was conducted both with and against the wind. Due to the wind and inaccuracy of the GPS long
with the slow refresh rate of the android app, the calculated speed may be inaccurate and was validated
by the method described above.

Motors straight

With the motors straight and no one in the boat, the android app clocked in a maximum speed of
approximately 5.67 km/hr (3.06 knots). Again the validity of the results were verified as the GPS is not
100% accurate.

Motors angled out

While the motors were angled out, the maximum approximate speed was 5.23 km/hr (2.82 knots)
without anyone in the boat. With someone in the boat, the maximum speed measured was 4.87 km/hr
(2.63 knots).

Drag force

In order to determine the drag force exhibited by the rescue boat, a simple test was conducted. The

rescue craft was towed by another boat without the motors attached. The towing boat was then run at

a constant velocity of 1.6 knots and the drag force was measured on a digital luggage scale that was held

from the stern of the towing boat and attached to the rescue boat by a rope. This measured force was

3.9lbs without the motors attached to the rescue boat.

83

Appendix B – Hull Speed Calculations

 √

L.wl - Length of waterline [ft] V.h - Hull Speed [Knots] V.h [km/h]

constant
 1 1.34 2.48

1.34

Displacement hull speed, simply put, is dictated by
the waterline length. The longer it is the faster

she'll go. When the vessel reaches 'hull speed' it
will not go any faster unless horsepower is applied

'exponentially' to climb the bow wave.

1.2 1.47 2.72
 1.4 1.59 2.94

1.6 1.69 3.14
 1.8 1.80 3.33
 2 1.90 3.51
 2.2 1.99 3.68
 2.4 2.08 3.84
 2.6 2.16 4.00
 2.8 2.24 4.15
 3 2.32 4.30
 3.2 2.40 4.44
 3.4 2.47 4.58
 3.6 2.54 4.71
 3.8 2.61 4.84
 4 2.68 4.96
 4.2 2.75 5.09
 4.4 2.81 5.21
 4.6 2.87 5.32
 4.8 2.94 5.44
 5 3.00 5.55
 5.2 3.06 5.66
 5.4 3.11 5.77
 5.6 3.17 5.87
 5.8 3.23 5.98
 6 3.28 6.08
 6.2 3.34 6.18
 6.4 3.39 6.28
 6.6 3.44 6.38
 6.8 3.49 6.47
 7 3.55 6.57
 7.2 3.60 6.66
 7.4 3.65 6.75
 7.6 3.69 6.84
 7.8 3.74 6.93
 8 3.79 7.02
 8.2 3.84 7.11
 8.4 3.88 7.19
 8.6 3.93 7.28
 8.8 3.98 7.36
 9 4.02 7.45

84

9.2 4.06 7.53
 9.4 4.11 7.61
 9.6 4.15 7.69
 9.8 4.19 7.77
 10 4.24 7.85

Appendix C – AM Station Query (FCC)

Search Parameters

State: MA

Lower Frequency 530

Upper Frequency 1700

WHYN AM 560 kHz DA2 Daytime B B LIC SPRINGFIELD

MA

WHYN AM 560 kHz DA2 Nighttime B B LIC SPRINGFIELD

MA

WTAG AM 580 kHz DA2 Daytime B B LIC WORCESTER

MA US

WTAG AM 580 kHz DA2 Nighttime B B LIC WORCESTER

MA US

WEZE AM 590 kHz DA1 Unlimited B B LIC BOSTON

MA

WNNZ AM 640 kHz DA2 Daytime B B LIC WESTFIELD

MA

WNNZ AM 640 kHz DA2 Nighttime B B LIC WESTFIELD

MA

WSRO AM 650 kHz DA2 Daytime D B LIC ASHLAND

MA

WSRO AM 650 kHz DA2 Nighttime D B LIC ASHLAND

MA

WSRO AM 650 kHz DA2 Daytime D B APP ASHLAND

MA US

WSRO AM 650 kHz DA2 Nighttime D B APP ASHLAND

MA US

WRKO AM 680 kHz DA2 Daytime B B LIC BOSTON

MA

WRKO AM 680 kHz DA2 Nighttime B B LIC BOSTON

MA US

WTUB AM 700 kHz NDD Daytime D B LIC ORANGE-ATHOL

http://transition.fcc.gov/fcc-bin/amq?list=0&facid=55757
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=55757
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=35230
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=35230
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=3594
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9736
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9736
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=52398
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=52398
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=52398
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=52398
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=1902
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=1902
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=51118

85

MA US

NEW AM 720 kHz DA2 Daytime B B - BILLERICA

MA US ---

NEW AM 720 kHz DA2 Nighttime B B - BILLERICA

MA US

WACE AM 730 kHz ND1 Daytime D B LIC CHICOPEE

MA

WACE AM 730 kHz ND1 Nighttime D B LIC CHICOPEE

MA

WJIB AM 740 kHz ND1 Daytime D B LIC CAMBRIDGE

MA US

WJIB AM 740 kHz ND1 Nighttime D B LIC CAMBRIDGE

MA

WVNE AM 760 kHz NDD Daytime D B LIC LEICESTER

MA

WVNE AM 760 kHz NDD Critical Hours D B LIC LEICESTER

MA

WNNW AM 800 kHz ND2 Daytime B B LIC LAWRENCE

MA

WNNW AM 800 kHz ND2 Nighttime B B LIC LAWRENCE

MA US

WCRN AM 830 kHz DA2 Daytime B B LIC WORCESTER

MA US

WCRN AM 830 kHz DA2 Nighttime B B LIC WORCESTER

MA US

WEEI AM 850 kHz DA2 Daytime B B LIC BOSTON

MA US

WEEI AM 850 kHz DA2 Nighttime B B LIC BOSTON

MA US

WSBS AM 860 kHz ND2 Daytime D B LIC GREAT BARRINGTON

MA

WSBS AM 860 kHz ND2 Nighttime D B LIC GREAT BARRINGTON

MA

WSBS AM 860 kHz ND2 Critical Hours D B LIC GREAT BARRINGTON

MA US

WAMG AM 890 kHz DA2 Daytime B B LIC DEDHAM

MA US

WAMG AM 890 kHz DA2 Nighttime B B LIC DEDHAM > Lower Freq
MA

WGFP AM 940 kHz ND2 Daytime D B LIC WEBSTER > Upper Freq
MA

WGFP AM 940 kHz ND2 Nighttime D B LIC WEBSTER

MA

WROL AM 950 kHz NDD Daytime D B LIC BOSTON

MA

WROL AM 950 kHz ND1 Nighttime D B LIC BOSTON

MA

WROL AM 950 kHz ND2 Daytime D B APP BOSTON

MA

WROL AM 950 kHz ND2 Nighttime D B APP BOSTON

MA

WFGL AM 960 kHz DA2 Daytime B B LIC FITCHBURG

MA

WFGL AM 960 kHz DA2 Nighttime B B LIC FITCHBURG

MA

http://transition.fcc.gov/fcc-bin/amq?list=0&facid=98819
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=98819
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9194
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9194
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6146
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6146
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=5890
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=5890
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=14752
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=14752
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9201
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9201
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=1912
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=1912
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=4820
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=4820
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=4820
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6475
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6475
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=50232
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=50232
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9139
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9139
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9139
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9139
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=8418
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=8418

86

WESO AM 970 kHz ND1 Daytime D B LIC SOUTHBRIDGE

MA

WESO AM 970 kHz ND1 Nighttime D B LIC SOUTHBRIDGE

MA

WCAP AM 980 kHz DA2 Daytime B B LIC LOWELL

MA

WCAP AM 980 kHz DA2 Nighttime B B LIC LOWELL

MA

WCMX AM 1000 kHz NDD Daytime D B LIC LEOMINSTER

MA

WBZ AM 1030 kHz DA1 Unlimited A A LIC BOSTON

MA

WQOM AM 1060 kHz DA2 Daytime B B LIC NATICK

MA

WQOM AM 1060 kHz DA2 Nighttime B B LIC NATICK

MA US

WILD AM 1090 kHz NDD Daytime D B LIC BOSTON

MA

WILD AM 1090 kHz NDD Critical Hours D B LIC BOSTON

MA

WUPE AM 1110 kHz DAD Daytime D B LIC PITTSFIELD

MA US

WBNW AM 1120 kHz DA2 Daytime B B LIC CONCORD

MA US

WBNW AM 1120 kHz DA2 Nighttime B B LIC CONCORD

MA

WWDJ AM 1150 kHz DA2 Daytime B B LIC BOSTON

MA US .

WWDJ AM 1150 kHz DA2 Nighttime B B LIC BOSTON

MA

WDIS AM 1170 kHz DAD Daytime D B LIC NORFOLK

MA US

WFPB AM 1170 kHz DAD Daytime D B LIC ORLEANS

MA

WXKS AM 1200 kHz DA2 Daytime B B LIC NEWTON

MA US

WXKS AM 1200 kHz DA2 Nighttime B B LIC NEWTON

MA

WNAW AM 1230 kHz ND1 Unlimited C C LIC NORTH ADAMS

MA US

WNEB AM 1230 kHz ND1 Unlimited C C LIC WORCESTER

MA

WESX AM 1230 kHz ND2 Daytime C C LIC NAHANT

MA US

WESX AM 1230 kHz ND2 Nighttime C C LIC NAHANT

MA

WBUR AM 1240 kHz ND1 Unlimited C C LIC WEST YARMOUTH

MA US

WHMQ AM 1240 kHz ND2 Daytime C C LIC GREENFIELD

MA US

WHMQ AM 1240 kHz ND2 Nighttime C C LIC GREENFIELD

MA US

WARE AM 1250 kHz DA2 Daytime B B LIC WARE

MA US

WARE AM 1250 kHz DA2 Nighttime B B LIC WARE

http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18309
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18309
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=49416
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=49416
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=54850
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25444
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=21109
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=21109
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=47413
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=47413
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=71436
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=3013
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=3013
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25051
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25051
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=16977
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=8591
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=20441
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=20441
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=4823
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=249
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=49301
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=49301
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6251
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25834
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25834
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=70877
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=70877

87

MA US

WMKI AM 1260 kHz DAN Daytime B B LIC BOSTON

MA US

WMKI AM 1260 kHz DAN Nighttime B B LIC BOSTON

MA

WSPR AM 1270 kHz DA2 Daytime B B LIC SPRINGFIELD

MA

WSPR AM 1270 kHz DA2 Nighttime B B LIC SPRINGFIELD

MA US

WSPR AM 1270 kHz ND2 Daytime B B CP SPRINGFIELD

MA US

WSPR AM 1270 kHz ND2 Nighttime B B CP SPRINGFIELD

MA US

WSPR AM 1270 kHz ND2 Daytime B B LIC SPRINGFIELD

MA US

WSPR AM 1270 kHz ND2 Nighttime B B LIC SPRINGFIELD

MA US

WPKZ AM 1280 kHz DA2 Daytime B B LIC FITCHBURG

MA US

WPKZ AM 1280 kHz DA2 Nighttime B B LIC FITCHBURG

MA

WJDA AM 1300 kHz ND1 Daytime D B LIC QUINCY

MA

WJDA AM 1300 kHz ND1 Nighttime D B LIC QUINCY

MA US

WORC AM 1310 kHz DA2 Daytime B B LIC WORCESTER

MA US

WORC AM 1310 kHz DA2 Nighttime B B LIC WORCESTER

MA

WARL AM 1320 kHz DA2 Nighttime B B LIC ATTLEBORO

MA US

WARL AM 1320 kHz DA2 Daytime B B LIC ATTLEBORO

MA

WRCA AM 1330 kHz DA2 Daytime B B LIC WATERTOWN

MA

WRCA AM 1330 kHz DA2 Nighttime B B LIC WATERTOWN

MA US

WGAW AM 1340 kHz ND1 Unlimited C C LIC GARDNER

MA US

WBRK AM 1340 kHz ND1 Unlimited C C LIC PITTSFIELD

MA US

WNBH AM 1340 kHz ND1 Unlimited C C LIC NEW BEDFORD

MA US

WLYN AM 1360 kHz ND2 Daytime D B LIC LYNN

MA US

WLYN AM 1360 kHz ND2 Nighttime D B LIC LYNN

MA

WPLM AM 1390 kHz DA2 Daytime B B LIC PLYMOUTH

MA

WPLM AM 1390 kHz DA2 Nighttime B B LIC PLYMOUTH

MA US

WHTB AM 1400 kHz ND1 Unlimited C C LIC FALL RIVER

MA

WHMP AM 1400 kHz ND1 Unlimited C C LIC NORTHAMPTON

MA

http://transition.fcc.gov/fcc-bin/amq?list=0&facid=48403
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=48403
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18717
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18717
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18717
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18717
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18717
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18717
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=71434
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=71434
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=61159
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=61159
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=15858
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=15858
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=65197
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=65197
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=60695
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=60695
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=72088
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=71232
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25866
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=53948
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=53948
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=52837
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=52837
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=60701
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=46962

88

WLLH AM 1400 kHz ND1 Unlimited C C LIC LAWRENCE

MA US

WLLH AM 1400 kHz ND1 Unlimited C C LIC LOWELL

MA

WMSX AM 1410 kHz DA2 Daytime D B LIC BROCKTON

MA

WMSX AM 1410 kHz DA2 Nighttime D B LIC BROCKTON

MA US

WBSM AM 1420 kHz DA2 Daytime B B LIC NEW BEDFORD

MA

WBSM AM 1420 kHz DA2 Nighttime B B LIC NEW BEDFORD

MA US

WBEC AM 1420 kHz DAN Daytime B B LIC PITTSFIELD

MA US

WBEC AM 1420 kHz DAN Nighttime B B LIC PITTSFIELD

MA US

WPNI AM 1430 kHz DA2 Daytime D B LIC AMHERST

MA US

WKOX AM 1430 kHz DAN Daytime B B LIC EVERETT

MA

WKOX AM 1430 kHz DAN Nighttime B B LIC EVERETT

MA US

WPNI AM 1430 kHz DA2 Nighttime D B LIC AMHERST

MA

WPNI AM 1430 kHz ND2 Daytime D B APP AMHERST

MA

WPNI AM 1430 kHz ND2 Nighttime D B APP AMHERST

MA US

WVEI AM 1440 kHz DAN Daytime B B LIC WORCESTER

MA US

WVEI AM 1440 kHz DAN Nighttime B B LIC WORCESTER

MA

WNBP AM 1450 kHz ND1 Unlimited C C LIC NEWBURYPORT

MA

WHLL AM 1450 kHz ND1 Unlimited C C LIC SPRINGFIELD

MA US

WXBR AM 1460 kHz DAN Daytime B B LIC BROCKTON

MA

WXBR AM 1460 kHz DAN Nighttime B B LIC BROCKTON

MA US

WAZN AM 1470 kHz DA2 Daytime B B LIC WATERTOWN

MA

WAZN AM 1470 kHz DA2 Nighttime B B LIC WATERTOWN

MA

WSAR AM 1480 kHz DA1 Unlimited B B LIC FALL RIVER

MA

WSAR AM 1480 kHz DA2 Daytime B B CP FALL RIVER

MA US

WSAR AM 1480 kHz DA2 Nighttime B B CP FALL RIVER

MA US

WCEC AM 1490 kHz ND1 Unlimited C C LIC HAVERHILL

MA US

WMRC AM 1490 kHz ND1 Unlimited C C LIC MILFORD

MA US

WACM AM 1490 kHz ND1 Unlimited C C LIC WEST SPRINGFIELD

http://transition.fcc.gov/fcc-bin/amq?list=0&facid=24971
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=24971
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=41348
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=41348
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=10452
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=10452
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=2714
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=2714
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25907
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=53964
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=53964
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25907
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25907
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25907
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=74466
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=74466
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=15338
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=36545
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=19631
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=19631
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=70523
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=70523
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6879
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6879
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6879
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=49382
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=21584
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=60390

89

MA

WACM AM 1490 kHz ND2 Daytime C C LIC WEST SPRINGFIELD

MA US

WACM AM 1490 kHz ND2 Nighttime C C LIC WEST SPRINGFIELD

MA

WUFC AM 1510 kHz DA3 Daytime B B LIC BOSTON

MA

WUFC AM 1510 kHz DA3 Nighttime B B LIC BOSTON

MA US

WUFC AM 1510 kHz DA3 Critical Hours B B LIC BOSTON

MA US

WIZZ AM 1520 kHz DAD Daytime D B LIC GREENFIELD

MA

WVBF AM 1530 kHz ND3 Daytime D B LIC MIDDLEBOROUGH CENTER

MA

WVBF AM 1530 kHz ND3 Nighttime D B LIC MIDDLEBOROUGH CENTER

MA

WVBF AM 1530 kHz ND3 Critical Hours D B LIC MIDDLEBOROUGH CENTER

MA US

WNTN AM 1550 kHz ND2 Daytime D B LIC NEWTON

MA US WNTN AM 1550 kHz ND2 Nighttime D B LIC NEWTON

MA US

WMVX AM 1570 kHz ND1 Daytime D B LIC BEVERLY

MA US

WMVX AM 1570 kHz ND1 Nighttime D B LIC BEVERLY

MA

WMVX AM 1570 kHz ND2 Daytime D B APP BEVERLY

MA

WMVX AM 1570 kHz ND2 Nighttime D B APP BEVERLY

MA

WHNP AM 1600 kHz NDD Daytime D B LIC EAST LONGMEADOW

MA US

WUNR AM 1600 kHz DA1 Daytime B B LIC BROOKLINE

MA

WUNR AM 1600 kHz DA1 Nighttime B B LIC BROOKLINE

MA

*** 142 Records Retrieved ***

Appendix D – Antenna Tuning
Tuning the antenna to the desired frequency was accomplished by hooking up the ferrite core

antenna to an oscilloscope and function generator as depicted in Figure 85 – Antenna Tuning. To

find the natural frequency of the antenna, the frequency from the signal generator was swept to

find the maximum amplitude on the oscilloscope. Once this frequency was found, the inductance of

the antenna could be found due to the known capacitance and frequency using the formula below.

 (

)

In the above formula, is the inductance of the antenna, is the natural frequency and is the

http://transition.fcc.gov/fcc-bin/amq?list=0&facid=60390
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=60390
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=12789
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=12789
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=12789
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=54779
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=63403
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=63403
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=63403
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=48781
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=48781
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=22798
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=22798
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=22798
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=22798
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=58546
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=10118
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=10118

90

capacitance of the capacitor.

This in turn allowed for calculation to find the correct capacitance to match the desired frequency

the antenna should be tuned to. The formula is rearranged below.

 (

)

Figure 85 – Antenna Tuning

Appendix E – Turning Circle Code
#Octave script used for calculating the turning radius of the Zodiac

boat

#Written by Frederick Hunter on 25 March, 2013 based on Equations

from: What is the "MOB" function of my marine GPS device? (2011, March 28). Retrieved

12 10, 12, from Garmin:

https://support.garmin.com/support/searchSupport/case.faces?caseId={71655ee0-104c-11dc-

4b06-000000000000}

pgs 206-209

leftMotorAngle = -20*(pi/180); # the angle of the left motor from the

perpendicular line of the stern of the boat

rightMotorAngle = 20*(pi/180); # the angle of the right motor from the

perpendicular line of the stern of the boat

#distance from motors to the center of the boat in y direction

DxLeft = -0.9144; # the distance in meters

DxRight = -0.9144;

91

#distance from motors to the center of the boat in x direction

DyLeft = 0.299; #distance in meters

DyRight = 0.299;

#mass of the boat in kgs

Mass = 73.03; #in kg

leftMotorThrust =133.4;

rightMotorThrust = 0;#133.4; # the thrust in Newtons (30lbs)

#print the information of the experiment

printf("The left motor thrust is %.2f N (%.2f lbs)\n",leftMotorThrust,

leftMotorThrust/4.448)

printf("The right motor thrust is %.2f N (%.2f

lbs)\n",rightMotorThrust, rightMotorThrust/4.448)

#Assuming linear speed and full thrust = 250.71 N = 1.543 m/s use the

following ratio

ratio = 0.0061545212;

#find the thrust in the x (bow of the boat/surge) direction

Xcontrol =

leftMotorThrust*cos(leftMotorAngle)+rightMotorThrust*cos(rightMotorAng

le);

#find the thrust in the y (leftor right/sway) direction

Ycontrol =

leftMotorThrust*sin(leftMotorAngle)+rightMotorThrust*sin(rightMotorAng

le);

#find the thrust in the z (yaw)

Ncontrol =

leftMotorThrust*DxLeft*sin(leftMotorAngle)+rightMotorThrust*DxRight*si

n(rightMotorAngle)+leftMotorThrust*DyLeft*cos(leftMotorAngle)-

rightMotorThrust*DyRight*cos(rightMotorAngle);

print results to screen

printf("Calculated X thrust: %.2f N (%.2f lbs)\n", Xcontrol,

Xcontrol/4.448)

printf("Calculated Y thrust: %.2f N (%.2f

lbs)\n",Ycontrol,Ycontrol/4.448)

printf("Calculated rotational thrust about the turning center is: %.2f

N-m\n",Ncontrol)

#calculate the approximate speed using ratio

xVelocity = Xcontrol*ratio;

yVelocity = Ycontrol*ratio;

#nVelocity = Ncontrol*ratio;

nVelocity = 0.2244; #value calculated from water test (rad/sec)

printf("Approximate X velocity: %.2f m/s\n",xVelocity)

printf("Approximate Y velocity: %.2f m/s\n",yVelocity)

printf("Approximate Yaw velocity: %.2f rad/s\n",nVelocity)

92

#calculate the radius

radius = sqrt(xVelocity*xVelocity+yVelocity*yVelocity) / nVelocity;

printf("The turning radius of the boat is: %.2f m (%.2f ft)\n",radius,

radius*3.281)

printf("..and the diameter is %.2f m (%.2f

ft)\n",radius*2,radius*2*3.281)

#calculate the acceleration of the boat F = Ma

accelX = Xcontrol / Mass;

accelY = Ycontrol / Mass;

#printf("Calculated X acceleration: %.2f m/s^2\n", accelX)

#printf("Calculated acceleration: %.2f m/s^2\n", accelY)

#plot the graph

x = 0;

y = 0;

#get a time vector

theta =[0:0.1:2*pi];

x = radius*cos(theta);

y = radius*sin(theta);

plot(x,y);

title("Turning Radius of Zodiac calculation");

xlabel("X-axis (meters)");

ylabel("Y-axis (meters)");

axis ([-5, 5, -5, 5], "square"); #force square axis ratio

Appendix F – SolidWorks Flow Simulation 2012 Procedure
To set up a new flow simulation to determine the drag on the rescue craft, the following procedure was

implemented. First, the add-on for SolidWorks Flow Simulation 2012 was selected from the Tools ->

Add-Ins menu in Solidworks.

93

Figure 86 – Selecting Flow Simulation Add-In for SolidWorks 2012

Figure 87 – Flow Simulation 2012

From here, the Flow Simulation menu was clicked and a new project was created by selecting Project - >

Wizard.

94

Figure 88 – Flow Simulator 2012 | New Project Wizard

The wizard opens a new dialog window and the project name is entered under configuration name.

Figure 89 – Flow Simulator 2012 | Project Configurations

Next, the unit system is chosen, for this configuration the FPS system was used with the velocity

measured in kmh.

95

Figure 90 – Flow Simulator 2012 | Unit System

Clicking next brings the user to the analysis type selection window. Here an external flow analysis is

selected with the exclude internal space and exclude cavities without flow conditions check boxes

selected. Please note that for this model, the reference axis is the Z-axis which is the direction that the

fluid will travel in.

Figure 91 - Flow Simulator 2012 | Analysis Type

The default fluid is selected next. Because the rescue boat will be traveling through water, this

simulation uses water as the fluid type.

96

Figure 92 - Flow Simulator 2012 | Default Fluid Selection

The next window accepts the default values and the next button is pressed.

Figure 93 - Flow Simulator 2012 | Wall Conditions

In the initial and ambient conditions dialog box, the velocity of the traveling fluid is set to 3 kmh. This is

the speed at which the rescue boat traveled during the water tow test and will provide a reasonable

comparison to experimentally obtained values for drag.

97

Figure 94 - Flow Simulator 2012 |Initial and Ambient Conditions

Defaults are accepted in the results and geometry resolution dialog box. Adjusting the result resolution

scale will change the calculation time and accuracy of a solution.

Figure 95 - Flow Simulator 2012 | Simulation Resolution

Next, the computational domain is set by right clicking on computational domain and choosing edit

definition under the flow simulation tab.

98

Figure 96 - Flow Simulator 2012 | Computational Domain

The computational domain determines where the flowing water is and therefore must include the draft

of the boat. From prior analysis, the boat was calculated to have 0.85 inches of the hull exposed to the

water. The coordinates of the computational domain are based off of the local coordinate system on the

boat and therefore the values are different from the calculated one stated above. To ensure that the

correct distance is set, a reference geometry plane was created and the offset distance set equal to that

from the local coordinate system.

Figure 97 - Flow Simulator 2012 | Final Computational Domain

As verification for the offset distance, the measure tool was used to measure how low the boat is sitting

in the water.

99

Figure 98 - Flow Simulator 2012 | Water Level Check

Next, global goals had to be defined such that the computer knows what to solve for. This was

accomplished by right clicking goals and selecting insert global goals.

Figure 99 - Flow Simulator 2012 | Insert Global Goals

This opens the global goals that may be solved for in the simulation. To select a global goal, simply check

the box next to the parameter of interest. For the drag, the user is interested in the maximum force in

the Z-direction. For this reason, the Force (Z) parameter is checked off.

100

Figure 100 - Flow Simulator 2012 | Selecting Global Goals

Upon accepting the global goal, the simulation is run by right clicking the simulation file name, in this

case 3kmphSim and selecting Run.

Figure 101 - Flow Simulator 2012 | Run Simulation

The run dialog box opens and the user may accept default values and click Run.

101

Figure 102 - Flow Simulator 2012 | Run Dialog Box

This opens the calculation window which displays the related information and updates for the

calculations. The calculation will run until convergence is reached.

Figure 103 - Flow Simulator 2012 | Calculations Dialog Box

When the calculation has completed, the dialog box may be closed and the user can return to the

Solidworks file. Here, a new goal plot may be generated by right clicking on Goal Plots and selecting

Insert. This will open an excel document that shows what the solutions to the goals are. In this case, the

calculated drag was determined to be 2.8 lbs.

102

Figure 104 - Flow Simulator 2012 | Inserting Goal Plots

Other options are also available to visually display forces on the surface of the boat. By right clicking on

the parameters and selecting insert, one has the option to display the calculated results visually. Some

popular visual graphs include the contour plot and the flow lines.

Appendix G – Drawing File for Pi Box
The screenshot from Solidworks is a .dwg file that was downloaded from thingiverse.com (Makerbot

Industries, LLC, 2013). The file was used to lasercut 1/8th inch thick acrylic to make the enclosure for the

Raspberry Pi.

103

Figure 105 – PiBox Lasercut Template from Adafruit

104

Appendix H – MQP Poster

Figure 106 – MQP Presentation day Poster

Appendix I – AMORE MQP Presentation

105

106

107

108

109

110

111

112

113

114

115

116

117

Appendix J – Dimensions for Circuit Tower

Figure 107 – Level 1 Dimensions

118

Figure 108 – Level 2Dimensions

Figure 109 – Level 3 Dimensions

119

Figure 110 – Level 4 Dimensions

Appendix K – TLD Radio Fine-Tuning
For a successful rescue mission, proper fine-tuning of the receivers is critical. Due to post receiver

amplification, any small difference in signal strength can result in major errors in homing in on the

victim. For this reason, care should be taken to tune each of the receivers to the proper frequency

before carrying out the rescue mission. For the case of this project the receivers were tuned to 922 kHz

on the AM band.

120

Figure 111 – Grundig Radio Receiver used for Terminal Location

Next, with the transmitter broadcasting the 1 kHz tone, the PLD is placed 15 feet from the bow of the

boat. A second person adjusts the volume levels of the receivers until the motors react properly as the

PLD is moved 2 ft in the left and right direction.

Figure 112 – Terminal Locator Device Radio Tuning Setup

15 ft

121

Appendix L – IP Code Chart

Appendix M – Code

Rescue Module Code
//The following code is for the Rescue module

//Code written by Frederick Hunter for the Autonomous Man Overboard Rescue Equipment MQP

#include <XBee.h> //library for sending in API mode with XBees

#include <string.h>

#include <ctype.h> //library for testing characters

#include <SoftwareSerial.h> //library for simulating a serial port

#include <TinyGPS.h> //include for GPS library

#include <Wire.h>

int HMC6352Address = 0x42; // the address of the comapss

int slaveAddress; //the address of the compass slave

byte headingData[2]; //array used to store the incoming data for the compass

float latitudeRescue;

float longitudeRescue;

float lastLat=0.0;

float lastLon;

#define AVG 10 //number of positions to take average from

122

float lstCpleLatPos[AVG+2]; //stores the last lat positions for calculating the averagwe

float lstCpleLonPos[AVG+2];

int avgArrayPos = 0; //the position of the lstCpleXXXPos array for updating

int rescueNew = 0; //variable to determine if new coordinates for the rescue module have been

received

int newMes=0; //variable to store whether or not a new message has been recived

String message; //variable to store the message received

float victimLat = 0.0;//lat and lon of the victim

float victimLon;

int victimNew = 0; //bolean to determine if victim coordinates were received

float motherLat=0.0;//lat and lon of the mothership

float motherLon;

int motherNew=0; //boolean to determine if mothership coordinates were received

unsigned long age;

int state = 0; //The current state of the state machine////////////////////change in state 4 also

or remote control restart state

int heading; //The current heading of the rescue module

int accError = 15; //acceptable error in heading to the victim

int desHeading; //the desired heading to go to

float rescueStartLat = 0; //the starting location of the rescue boat

float rescueStartLon = 0;

//To drive the motors forward, A has to be high and B has to be Low

//vice versa for reverse

#define LEFTMOTORF 8 //the left motor relay 1

#define LEFTMOTORR 9 //the left motor relay 2

#define RIGHTMOTORF 10 //the right motor relay 1

#define RIGHTMOTORR 11 //the right motor relay 2

#define GPSPOW 4 //the pin for powering the GPS

#define XBEEPOW 5 //the pin for powering the XBEE

#define BUTTON 6 //the pin for the return home button

#define TLDPOW 7 //the power for the terminal locator device

#define FRONTRECEIVER A2

#define RIGHTRECEIVER A1

#define LEFTRECEIVER A0

#define RADIUS 6372795 //radius of the earth

//XBee address to send to (SH + SL) as defined in X-CTU software

//XBeeAddress64 motherAddr = XBeeAddress64(0x13a200,0x405c2ca0);

//XBeeAddress64 victimAddr = XBeeAddress64(0x13a200,0x4099233c);

XBeeAddress64 victimAddr = XBeeAddress64(0x13a200,0x409f3a9d);

XBeeAddress64 motherAddr = XBeeAddress64(0x13a200,0x406cb54d);

SoftwareSerial GPS(2,3); //RX, TX

XBee XBee = XBee(); //create XBee object

XBeeResponse response = XBeeResponse();

ZBRxResponse rx = ZBRxResponse();

TinyGPS gps;

void setup(){

 //Serial.begin(9600);

 GPS.begin(4800); //set up the serial port for GPS reading (pins 2,3)

 XBee.begin(9600); //print to XBEE (Uses serial ports 1)

 //Serial.begin(9600);

 pinMode(GPSPOW, OUTPUT);

 pinMode(XBEEPOW, OUTPUT);

 pinMode(TLDPOW, OUTPUT); //the power for the terminal locator devices

 pinMode(BUTTON, INPUT);

 pinMode(FRONTRECEIVER,INPUT);

 pinMode(LEFTRECEIVER,INPUT);

 pinMode(RIGHTRECEIVER,INPUT);

 digitalWrite(GPSPOW, LOW);

 digitalWrite(XBEEPOW, LOW);

 digitalWrite(TLDPOW, LOW);

 slaveAddress = HMC6352Address >> 1; //set the slave address for the compass

 Wire.begin(); //set up the i2c communication for the compass

123

 pinMode(LEFTMOTORF, OUTPUT); //set up the motor ports and let them to low to avoid injury

 pinMode(LEFTMOTORR, OUTPUT);

 pinMode(RIGHTMOTORF, OUTPUT);

 pinMode(RIGHTMOTORR, OUTPUT);

 digitalWrite(LEFTMOTORF, LOW);

 digitalWrite(LEFTMOTORR, LOW);

 digitalWrite(RIGHTMOTORF, LOW);

 digitalWrite(RIGHTMOTORR, LOW);

}

///////////////////////setMotors(int desCourse, int currCourse)//////////////////

//Corrects the motors to correct the course

//desCourse -> The desired course to head to in degrees ex 90 for East

//currCourse -> The current course being traveled

//nextToTarg -> boolean if we are next to the target

void setMotors(int desCourse, int currCourse, boolean nextToTarg){

 //determine error

 int error = desCourse - currCourse;

 /*

 Serial.print("Des Course: ");

 Serial.println(desCourse);

 Serial.print("Curr Course: ");

 Serial.println(currCourse);

 */

 //fix wrap around error

 if(error < -180)

 error = error + 360;

 if(error > 180)

 error = error - 360;

 /*

 Serial.print("Error: ");

 Serial.println(error);

 */

 //correct the course if off

 if(accError < abs(error)){

 if(nextToTarg){

 //if next to victim, we just stop

 sendMess("O,STOP",motherAddr);

 digitalWrite(LEFTMOTORF, LOW);

 digitalWrite(LEFTMOTORR, LOW);

 digitalWrite(RIGHTMOTORF, LOW);

 digitalWrite(RIGHTMOTORR, LOW);

 return;

 }

 if(error > 0){

 /*//if we need to make a hard right turn, make\

 one motor go backwards

 if(error > 90){

 sendMess("O,HARDRIGHT",motherAddr);

 digitalWrite(LEFTMOTORF, HIGH);

 digitalWrite(LEFTMOTORR, LOW);

 digitalWrite(RIGHTMOTORF, LOW);

 digitalWrite(RIGHTMOTORR, HIGH);

 return;

 }*/

 //if the boat should turn right

 sendMess("O,RIGHT",motherAddr);

 digitalWrite(LEFTMOTORF, HIGH);

 digitalWrite(LEFTMOTORR, LOW);

 digitalWrite(RIGHTMOTORF, LOW);

 digitalWrite(RIGHTMOTORR, LOW);

 return;

 }

 else if(error < 0){

 /*//if we need to make a hard left turn, make\

124

 one motor go backwards

 if(error < -90){

 sendMess("O,HARDLEFT",motherAddr);

 digitalWrite(LEFTMOTORF, LOW);

 digitalWrite(LEFTMOTORR, HIGH);

 digitalWrite(RIGHTMOTORF, HIGH);

 digitalWrite(RIGHTMOTORR, LOW);

 return;

 }*/

 //else the boat should correct left

 sendMess("O,LEFT",motherAddr);

 digitalWrite(LEFTMOTORF, LOW);

 digitalWrite(LEFTMOTORR, LOW);

 digitalWrite(RIGHTMOTORF, HIGH);

 digitalWrite(RIGHTMOTORR, LOW);

 return;

 }

 }

 //if the course is ok, full throttle if we are not close to the victim

 if(nextToTarg){

 //if next to victim, we just stop

 sendMess("O,STOP",motherAddr);

 digitalWrite(LEFTMOTORF, LOW);

 digitalWrite(LEFTMOTORR, LOW);

 digitalWrite(RIGHTMOTORF, LOW);

 digitalWrite(RIGHTMOTORR, LOW);

 }

 else{

 //otherwise go straight

 sendMess("O,FORWARD",motherAddr);

 digitalWrite(LEFTMOTORF, HIGH);

 digitalWrite(LEFTMOTORR, LOW);

 digitalWrite(RIGHTMOTORF, HIGH);

 digitalWrite(RIGHTMOTORR, LOW);

 }

}

///////////////////////readCompass//////////////////

//retrieves the heading from the compass (0-360 degrees, where 0 = North)

int readCompass(){

 Wire.beginTransmission(slaveAddress);

 Wire.write("A"); // The "Get Data" command

 Wire.endTransmission();

 delay(10); // The HMC6352 needs at least a 70us (microsecond) delay

 // after this command. Using 10ms just makes it safe

 // Read the 2 heading bytes, MSB first

 // The resulting 16bit word is the compass heading in 10th's of a degree

 // For example: a heading of 1345 would be 134.5 degrees

 Wire.requestFrom(slaveAddress, 2); // Request the 2 byte heading (MSB comes first)

 int i = 0;

 while(Wire.available() && i < 2)

 {

 headingData[i] = Wire.read();

 i++;

 }

 int headingValue = headingData[0]*256 + headingData[1]; // Put the MSB and LSB together

 return headingValue/10; //return the compass heading Output: 0 - 360 where 0 & 360 = North

}

//////////////////////////crosstrackerror////////////////////////////////

/*Calculates the distance from the perpendicular to a straight line path to a target

 * Distance: dist from current location to goal location

 * theta13: angle from start to current point

 * theta12: angle from start to goal location

 * If return is +, we are on righ on line, if -, we are on left of line

 */

float crossTrackError(float distance, float theta13, float theta12){

 float angleError = radians(theta13-theta12);

125

 float distRad = distance/RADIUS;

 float sAngleError = sin(angleError);

 float sDistRad = sin(distRad);

 float aSin = asin(sDistRad*sAngleError);

 return aSin*RADIUS;

}

///////////////////////feedgps//////////////////////

//determines if there is data available

static bool feedgps(){

 while (GPS.available()){

 if (gps.encode(GPS.read()))

 return true;

 }

 return false;

}

//retrieves the GPS data into the buffer array

void getGPS(){

 //unsigned long start = millis();

 int i = 0;

 while (i<4/*millis() - start < 1500 && victimNew == 0*/){

 if (feedgps()){

 rescueNew = 1;

 //Serial.println("New Data!");

 gps.f_get_position(&latitudeRescue, &longitudeRescue, &age);

 i++;

 }

 }

 if(rescueNew){

 lstCpleLatPos[avgArrayPos] = latitudeRescue;

 lstCpleLonPos[avgArrayPos] = longitudeRescue;

 //Serial.println(latitudeRescue,6);

 //Serial.println(longitudeRescue,6);

 if(avgArrayPos >= AVG)

 avgArrayPos = 0;

 else

 avgArrayPos++;

 }

}

///////////////////////////////sendGPS//////////////////////

//Send the GPS coordinates via XBee to other modules

void sendGPS(XBeeAddress64 module, float latitude, float longitude){

 //if the start position has not been set for the rescue craft, do so now

 if(rescueStartLat == 0 && state != 3){

 //not while state = 3 because there we are also sending the victim coordinates

 rescueStartLat = latitude;

 rescueStartLon = longitude;

 }

 uint8_t payload[30];

 //store as string

 char latc[16];

 char lonc[16];

 dtostrf(latitude,10,5,latc);

 dtostrf(longitude,10,5,lonc);

 String packet = "B,"+(String)latc+","+(String)lonc+",";

 //convert to uint8_t for transmission

 //Serial.println(packet);

 int i;

 for(i = 0; i<packet.length();i++){

 payload[i] = (uint8_t)packet[i];

 }

 //attempt to send the packet

 ZBTxRequest zbTx = ZBTxRequest(module, payload,i);

 XBee.send(zbTx);

 delay(50);

 if(state == 3){

 //if we are heading back, simuklate victim on mothership too

126

 packet = "C,"+(String)latc+","+(String)lonc+",";

 //convert to uint8_t for transmission

 //Serial.println(packet);

 for(i = 0; i<packet.length();i++){

 payload[i] = (uint8_t)packet[i];

 }

 //attempt to send the packet

 ZBTxRequest zbTx = ZBTxRequest(module, payload,i);

 XBee.send(zbTx);

 }

}

////////////////////////////////readXBee//////////////////

//retrieves the data from another module and returns the string if

//successfull, if not, returns NULL

String readXBee(){

 int i = 0; //check four times in case a message was missed

 for(i=0;i<2;i++){

 newMes = 0;

 XBee.readPacket();

 if(XBee.getResponse().isAvailable()){

 //got some message

 if(XBee.getResponse().getApiId() == ZB_RX_RESPONSE){

 //got a zb rx packet

 //fill the zb rx class

 XBee.getResponse().getZBRxResponse(rx);

 int len = rx.getDataLength(); //number of char received

 char buff [len+2];

 int i = 0;

 for(i = 0; i<len;i++){

 buff[i] = (char)rx.getData(i);

 }

 buff[i+1] = '\0';

 //determine if the received data is a message, or coordinate

 if(buff[0] == 'M' || buff[0] == 'N' || buff[0] == 'O'){

 //sent data is a message

 newMes = 1;

 }

 return buff;

 }

 }

 }

 //else //if no packet received

 return NULL;

}

//////////////////////parseXBeeMess///////////////////

//parse the message returned from readXBee

//if a message is received, store the message and sender, else return NULL

//if a coordinate was received, store the coordinates

//also update the variable if a new message has been recived or coordinate

//return the message string, null if error, and "coord" if coordinates received

String parseXBeeMess(String mes, char *sender){

 //reset the newMes variable

 *sender = 'Z'; //reset the sender variable

 newMes = 0;

 //determine if a message is being sent

 if(mes.startsWith("M",0) || mes.startsWith("N",0) || mes.startsWith("O",0)){

 //store the message

 newMes = 1;

 //get rid of the start delimiter

 char buf[mes.length()]; //temporary buffer to store the string

 mes.toCharArray(buf,mes.length());

 String ret; //return string

 int i = 2;//get rid of the X, where X, is the sending module

 for(i=2;i<mes.length()-1;i++){

127

 //Serial.println(buf[i]);

 ret = ret + buf[i];

 }

 *sender = buf[0]; //return who the sender was

 //Serial.print("In Parse Mess, received: ");

 //Serial.println(ret);

 return ret; //return the message

 //Serial.println(mes[]);

 }

 else{

 //otherwise we will return null after storing the lat/lon positions

 int i = 0;

 int index[4]; //index to store where data begins

 index[0] = '\0'; //empty the array

 index[1] = '\0';

 index[2] = '\0';

 index[3] = '\0';

 index[4] = '\0';

 char c; //stores each character in the string array

 int j =0; //keeps the place in the index array

 char buf[mes.length()+2]; //buffer for converting the string to a char array

 if(mes.startsWith("A",0)){

 //coordinates received from the mothership unit

 motherNew = 1; //let program know a new coordinate was recived

 //get the coordinates

 for(i=0;i<mes.length();i++){

 //get the character at the ith element

 c = mes.charAt(i);

 if(c == ','){

 //if a comma is found, remember where it is

 index[j] = i;

 j++;

 buf[i] = '\0'; // replace with end of string char

 }

 else{

 buf[i] = c; //store the character into the buffer

 }

 }

 //store the lat pos

 char coordBuf[10]; // buffers for storing the individual lat and lon pos

 char coordBuf2[10];

 for(i=index[0]+1;i<index[1];i++){

 //store the lat position in a char buffer

 coordBuf[i-(index[0]+1)] = buf[i];

 }

 coordBuf[i+1] = '\0'; //null terminator

 motherLat = atof(coordBuf); //convert to long and store to memory

 for(i=index[1]+1;i<index[2];i++){

 //store the lon position to buffer

 coordBuf2[i-(index[1]+1)] = buf[i];

 }

 coordBuf2[i+1] = '\0'; //null terminator

 motherLon = atof(coordBuf2); //convert to long and store

 *sender=buf[0]; //tell who the sender was

 return NULL;

 }

 if(mes.startsWith("C",0)){

 //coordinates received from the victim unit

 victimNew = 1; //let program know new coordinates have been received

 for(i=0;i<mes.length();i++){

 //get the character at the ith element

 c = mes.charAt(i);

 if(c == ','){

 //if a comma is found, remember where it is

 index[j] = i;

 j++;

128

 buf[i] = '\0'; // replace with end of string char

 }

 else{

 buf[i] = c; //store the character into the buffer

 }

 }

 //store the lat pos

 char coordBuf[10]; // buffers for storing the individual lat and lon pos

 char coordBuf2[10];

 for(i=index[0]+1;i<index[1];i++){

 //store the lat position in a char buffer

 coordBuf[i-(index[0]+1)] = buf[i];

 }

 coordBuf[i+1] = '\0'; //null terminator

 victimLat = atof(coordBuf); //convert to long and store to memory

 for(i=index[1]+1;i<index[2];i++){

 //store the lon position to buffer

 coordBuf2[i-(index[1]+1)] = buf[i];

 }

 coordBuf2[i+1] = '\0'; //null terminator

 victimLon = atof(coordBuf2); //convert to long and store

 *sender =buf[0]; //tell who the sender was

 return NULL;

 }

 //otherwise if no message has been sent, return null

 *sender =NULL; //if no message or coordinates were received

 return NULL;

 }

}

/*Calculates the average of the last 25 positions

for the given module, unless the module doesn't have

that many past recorded values in the avg array

to calculate latitude, set lat to true

for longitud, set lat to false*/

float calcAverage(boolean lat){

 if(lstCpleLatPos[0] == '\0'){

 return 0; //return 0 if nothing in array

 }

 int i;

 float avg = 0.00000;

 if(lat == true){

 for(i = 0; i<AVG; i++){

 if(lstCpleLatPos[i] == '\0')

 break; //if reached end of array, break

 avg = avg + lstCpleLatPos[i];

 //Serial.println(module.lst_cple_lat_pos[i]);

 }

 }

 else{

 for(i = 0; i<AVG; i++){

 if(lstCpleLonPos[i] == '\0')

 break; //if reached end of array, break

 avg = avg + lstCpleLonPos[i];

 //Serial.println(module.lst_cple_lon_pos[i]);

 }

 }

 if(i ==0)

 return 0;

 else{

 //Serial.println(avg,5);

 //Serial.print("Average: ");

 //Serial.println(avg/(float)i,5);

 return avg / (float)i;

 }

}

///////////////////////////resetAvg/////////////////////////

//resets the avg buffer

129

void resetAvg(){

 int j = 0;

 for(j=0;j<AVG;j++){

 lstCpleLonPos[j] = '\0';

 lstCpleLatPos[j]= '\0';

 }

 avgArrayPos = 0; //update the average array position index

}

///////////////////////////sendMess//////////////////////////

//this function is used to send a message to the mothership that the victim is in danger

void sendMess(String message, XBeeAddress64 module){

 uint8_t payload[30];

 //convert message to uint8_t for transmission

 int i ;

 //Serial.println(message);

 //Serial.println(message.length());

 for(i = 0; i<message.length();i++){

 payload[i] = (uint8_t)message[i];

 }

 //Serial.println(message);

 //attempt to send the packet

 ZBTxRequest zbTx = ZBTxRequest(module, payload, i);

 XBee.send(zbTx); //send the message

}

void resetArray(float array[]){

 int i = 0;

 for(i = 0; i<AVG+2;i++){

 array[i] = '\0';

 }

}

////////////////////////////readReceivers///////////7/

//retunrs a negative if we need to go left and a positive to go right

float readReceivers(){

 int loops = 500; //number of loops to go through

 int i=0;

 float leftAVG = 0;

 float rightAVG = 0;

 float frontAVG = 0;

 for(i = 0;i<loops;i++){

 leftAVG = leftAVG + analogRead(LEFTRECEIVER);

 rightAVG = rightAVG + analogRead(RIGHTRECEIVER);

 //frontAVG = frontAVG + analogRead(FRONTRECEIVER);

 }

 leftAVG = leftAVG/loops;

 rightAVG = rightAVG/loops;

 //frontAVG = frontAVG/50;

 if(rightAVG < 15 || leftAVG < 15){

 //if the signal is too low, go to state 2

 sendMess("O,OUT OF RANGE!!(GO_STATE1)",motherAddr);

 state = 1;

 }

 //TODO://determine if we should go straight

 return rightAVG-leftAVG; //want a negative for a desired left turn

}

/////////////////////////////checkSignalStrength/////////////////

//retunrs the average signal reading of the front receiver

float checkSignalStrength(){

 int i=0;

 float frontAVG=0;

 float leftAVG =0;

 float rightAVG=0;

 for(i=0;i<50;i++){

 //frontAVG=frontAVG+analogRead(FRONTRECEIVER);

 leftAVG = leftAVG + analogRead(LEFTRECEIVER);

 rightAVG = rightAVG + analogRead(RIGHTRECEIVER);

130

 }

 if(leftAVG > rightAVG)

 return rightAVG/50;

 else

 return leftAVG/50;

}

//////////////////////////////////Loop///////////////////////

void loop(){

 boolean leftOn = false;

 boolean rightOn = false;

 //Reset the arrays for calculating the averages

 //resetArray(lstCpleLatPos);

 //resetArray(lstCpleLonPos);

 String rv; //the return value of the XBee

 char sender; //variable to hold the sender

 // 0 = SLEEP (Wait for mothership to wake me up)

 // 1 = HEADING TO VICTIM (send GPS coord to mothership & check if we are within 50m of the

victim)

 // 2 = HEADING TO VICTIM (within 50m of victim, Activate the receiver and follow that, send

GPS and notify we are close)

 // 3 = HEADING TO MOTHERSHIP (Victim retrieved and heading back to the mothership)

 long distToTarget = 0; //the distance to the target

 while(1){

 while(state == 0){

 //initialize things for state 0

 //turn the GPS off and turn the XBEE on

 digitalWrite(GPSPOW, LOW);

 digitalWrite(XBEEPOW, HIGH);

 resetAvg();

 delay(1000);

 while(state == 0){

 //waiting for the mothership to send a wakeup signal

 rv = readXBee();

 if(rv != NULL && newMes == 1){

 //mesage received

 message = parseXBeeMess(rv,&sender);

 //if message from mothrship

 if(message.equals("STOP") && sender == 'M'){

 //if the kill switch has been thrown

 setMotors(0,0,true); //stop the motors

 state = 4;//go to state 4 for remote control

 break; //break out of loop

 }

 if(message.equals("BOOT") && sender == 'M'){

 //signal received

 sendMess("O,INIT",motherAddr);

 digitalWrite(GPSPOW,HIGH);

 //wait for GPS to get a lock

 while(rescueNew == 0){

 rescueNew= 0;

 latitudeRescue = 0;

 longitudeRescue = 0;

 //get the gps data

 getGPS();

 rv = readXBee();

 if(rv != NULL && newMes == 1){

 //mesage received

 message = parseXBeeMess(rv,&sender);

 //if message from mothrship

 //Serial.println(message);

 if(message.equals("STOP") && sender == 'M'){

 //if the kill switch has been thrown

 setMotors(0,0,true); //stop the motors

 state = 4;//go to state 4 for remote control

 sendMess("O,State 4",motherAddr);

 break; //break out of loop

131

 }

 }

 }

 //tell the mothership, the search for the victim has begun

 sendMess("O,SEARCHV",motherAddr);

 state = 1;

 //Turn on the GPS in case it was off

 digitalWrite(GPSPOW,HIGH);

 break;

 }

 }

 }

 }

 while(state == 1){

 //Serial.println("Sate1");

 //heading to the victim following the gps coordinates from the victim

 sendMess("O,Rescue STATE 1",motherAddr);

 delay(50);

 sendMess("O,BOOM!",motherAddr);

 resetAvg();

 resetArray(lstCpleLatPos);

 resetArray(lstCpleLonPos);

 //Activate the transmitter on the victim module

 sendMess("O,CLOSEV",victimAddr);

 while(state == 1){//75 was good

 if(checkSignalStrength()>30){

 //determine if there is a signal present from tld

 setMotors(0,0,true);//////////////////////////

 state = 2;

 }

 //reset variables

 rescueNew= 0;

 latitudeRescue = 0;

 longitudeRescue = 0;

 //get the gps data

 getGPS();

 //send the gps data to the mothership if new data received

 if(rescueNew){

 //send the average (10 pos) of the lat and lon positions respectively

 //Serial.println("New rescue coord!");

 lastLat = calcAverage(true);

 lastLon = calcAverage(false);

 //Serial.println(lastLat);

 //Serial.println(lastLon);

 //sendMess("O,Sending coord",motherAddr);

 //(50);

 sendGPS(motherAddr, lastLat, lastLon);

 rescueNew=0; //reset the variable

 }

 //retrieve the coordinates from the victim

 rv = readXBee();

 if(rv != NULL){

 //Received a Coordinate

 message = parseXBeeMess(rv, &sender); //store the coordinates

 if(message.equals("STOP") && sender == 'M'){

 //if the kill switch has been thrown

 setMotors(0,0,true); //stop the motors

 state = 4;//go to state 4 for remote control

 break; //break out of loop

 }

 if(victimLat > 1){

 //if coordinates from the victim received

 victimNew = 0;

 //calculate the distance to the victim

 distToTarget = gps.distance_between(victimLat, victimLon, lastLat,lastLon);

 if(distToTarget < 30){

 //if we are close to the victim, switch to state 2

 if(checkSignalStrength()>30){ //75 was good

132

 //determine if there is a signal present

 setMotors(0,0,true);//////////////////////////

 state = 2;

 }

 }

 }

 }

 //if some coordinates from the victim and rescue boat were stored, correct direction

 if(victimLat != 0 && lastLat){

 //get desired heading and get the current heading & pass to the set motors function

 int cou = (int)gps.course_to(lastLat,lastLon,victimLat,victimLon);

 //int cou = (int)gps.course_to(victimLat,victimLon,lastLat,lastLon);

 int currcourse = readCompass();

 float CTE =

crossTrackError(distToTarget,gps.course_to(rescueStartLat,rescueStartLon,victimLat,victimLon),gps

.course_to(rescueStartLat,rescueStartLon,lastLat,lastLon)); //find the cross track error

 if(CTE > 5)

 cou = cou +(accError/2); //make boat correct to be within 5m of straight line path to

victim

 if(CTE < -5)

 cou = cou -(accError/2); //need to correct right more

 setMotors(cou,currcourse, false);

 }

 }

 }

 while(state == 2){

 //within 50 meters of the victim and activating the receiver to follow that

 //Activate the transmitter on the victim module

 sendMess("O,CLOSEV",victimAddr);

 setMotors(0,0,true);//////////////////////////

 delay(100); //allow message to send

 sendMess("O,CLOSEV", motherAddr); //tell mothership we are close

 //activate the recievers on this module

 digitalWrite(TLDPOW, HIGH);

 delay(100); //allow the receivers to activate

 //home in on the victim

 while(state == 2){

 //sendMess("O,State2 waiting", motherAddr); //tell mothership we are close

 //once the victim has been retrieved and button pressed, send message to mothership & go

to state 3

 if(digitalRead(BUTTON)==HIGH){

 setMotors(0,0,true); //stop the motors

 delay(50);

 sendMess("O,RETURN",motherAddr); //tell mothership we are heading back

 delay(50);

 sendMess("O,RETURN",victimAddr); //tell mothership we are heading back

 state = 3;

 break;

 }

 rv = readXBee();

 if(rv != NULL){

 //Received a Coordinate

 message = parseXBeeMess(rv, &sender); //store the coordinates

 //see if mothership has sent a message

 if(message.equals("STOP") && sender == 'M'){

 //if the kill switch has been thrown

 setMotors(0,0,true); //stop the motors

 state = 4;//go to state 4 for remote control

 break; //break out of loop

 }

 }

133

 //correct the heading here and set motors

 //ALSO need to tell the motors when we are next to the victim to turn them off!!

 //determine the readings from the receivers

 float go = readReceivers();

 if(go == 0){

 //if we need to go straight

 sendMess("O,FORWARD",motherAddr);

 digitalWrite(LEFTMOTORF, HIGH);

 digitalWrite(LEFTMOTORR, LOW);

 digitalWrite(RIGHTMOTORF, HIGH);

 digitalWrite(RIGHTMOTORR, LOW);

 }

 else if(go<0){

 //if negative, go left

 sendMess("O,LEFT",motherAddr);

 digitalWrite(LEFTMOTORF, LOW);

 digitalWrite(LEFTMOTORR, LOW);

 digitalWrite(RIGHTMOTORF, HIGH);

 digitalWrite(RIGHTMOTORR, LOW);

 }

 else if(go>0){

 //if positive, go right

 sendMess("O,RIGHT",motherAddr);

 digitalWrite(LEFTMOTORF, HIGH);

 digitalWrite(LEFTMOTORR, LOW);

 digitalWrite(RIGHTMOTORF, LOW);

 digitalWrite(RIGHTMOTORR, LOW);

 }

 //need to determine if we are close to the victim and stop

 if(checkSignalStrength()>=550){

 //we are next to the victim, so stop and wait to be picked up

 setMotors(0,0,true); //stop the motors

 sendMess("O,WAITING FOR VICTIM TO BOARD",motherAddr);

 while(1){

 if(digitalRead(BUTTON)==HIGH){

 setMotors(0,0,true); //stop the motors

 delay(50);

 sendMess("O,RETURN",motherAddr); //tell mothership we are heading back

 delay(50);

 sendMess("O,RETURN",victimAddr); //tell mothership we are heading back

 state = 3;

 break;

 }

 }

 }

 delay(500);

 //TODO: we need to determine if e need to turn around

 //TODO: Need to account for error

 }

 }

 while(state == 3){

 //got the victim, return to the mothership

 //tell mothership to send it's gps location

 sendMess("O,MCOORD", motherAddr);

 delay(100);

 sendMess("O,3 BOOM!",motherAddr);

 resetAvg();

 resetArray(lstCpleLatPos);

 resetArray(lstCpleLonPos);

 while(1){

 //send and store this modules coordinates

 //reset variables

 rescueNew= 0;

 latitudeRescue = 0;

134

 longitudeRescue = 0;

 //get the gps data

 getGPS();

 //send the gps data to the mothership if new data received

 if(rescueNew){

 //send the average (10 pos) of the lat and lon positions respectively

 lastLat = calcAverage(true);

 lastLon = calcAverage(false);

 sendGPS(motherAddr, lastLat, lastLon);

 rescueNew=0; //reset the variable

 }

 //retrieve coordinates from the mothership of its location and store them

 rv = readXBee();

 if(rv != NULL){

 //Received a Coordinate

 message = parseXBeeMess(rv, &sender); //store the coordinates

 if(message.equals("STOP") && sender == 'M'){

 //if the kill switch has been thrown

 setMotors(0,0,true); //stop the motors

 state = 4;//go to state 4 for remote control

 break; //break out of loop

 }

 if(motherNew && message == NULL){

 //if coordinates from the victim received

 motherNew = 0;

 //calculate the distance to the victim

 distToTarget = gps.distance_between(motherLat, motherLon, lastLat,lastLon);

 if(distToTarget < 30){

 //if we are close to the mother, switch to state 0 and notify crew

 sendMess("O,HOME",motherAddr);

 delay(10000);

 state = 0;

 break;

 }

 }

 }

 //plan angle to go to mothership

 //correct heading

 //if some coordinates from the victim and rescue boat were stored, correct direction

 if(motherLat != 0 && lastLat){

 //get desired heading and get the current heading & pass to the set motors function

 setMotors((int)gps.course_to(lastLat,lastLon,motherLat,motherLon),readCompass(),

false);

 }

 }

 }

 while(state == 4){

 //state for remote control operation of the boat

 rv = readXBee();

 if(rv != NULL && newMes == 1){

 //check if the message got sent to restart

 message = parseXBeeMess(rv, &sender); //store the coordinates

 if(message.equals("RESTART") && sender == 'M'){

 //if the kill switch has been thrown

 setMotors(0,0,true); //stop the motors

 state = 1;//go to state 0 for restart//

 break; //break out of loop

 }

 //mesage received

 if(message.equals("LO")){

 Serial.println("Turning right");

 leftOn = 1;

 rightOn = 0;

 }

 if(message.equals("SS")){

 Serial.println("Stop");

135

 leftOn = 0;

 rightOn = 0;

 }

 if(message.equals("RO")){

 Serial.println("Turning left");

 rightOn = 1;

 leftOn = 0;

 }

 if(message.equals("FF")){

 Serial.println("Going straight");

 digitalWrite(LEFTMOTORF, HIGH);

 digitalWrite(LEFTMOTORR, LOW);

 digitalWrite(RIGHTMOTORF, HIGH);

 digitalWrite(RIGHTMOTORR, LOW);

 rightOn = 4; //just don't do anything

 leftOn = 4;

 }

 if(message.equals("BB")){

 //go backwards

 digitalWrite(LEFTMOTORF, LOW);

 digitalWrite(LEFTMOTORR, HIGH);

 digitalWrite(RIGHTMOTORF, LOW);

 digitalWrite(RIGHTMOTORR, HIGH);

 rightOn = 3;

 leftOn = 3;

 }

 }

 if(leftOn == 1){

 //turn on left motor

 digitalWrite(LEFTMOTORF, HIGH);

 digitalWrite(LEFTMOTORR, LOW);

 digitalWrite(RIGHTMOTORF, LOW);

 digitalWrite(RIGHTMOTORR, LOW);

 }

 if(rightOn == 1){

 //turn on right motor

 digitalWrite(LEFTMOTORF, LOW);

 digitalWrite(LEFTMOTORR, LOW);

 digitalWrite(RIGHTMOTORF, HIGH);

 digitalWrite(RIGHTMOTORR, LOW);

 }

 if(leftOn == 0){

 //turn off left motor

 digitalWrite(LEFTMOTORF, LOW);

 digitalWrite(LEFTMOTORR, LOW);

 }

 if(rightOn == 0){

 //turn off right motor

 digitalWrite(RIGHTMOTORF, LOW);

 digitalWrite(RIGHTMOTORR, LOW);

 }

 if(rightOn == 3 && leftOn == 3){

 //reverse

 digitalWrite(LEFTMOTORF, LOW);

 digitalWrite(LEFTMOTORR, HIGH);

 digitalWrite(RIGHTMOTORF, LOW);

 digitalWrite(RIGHTMOTORR, HIGH);

 }

 }

 while(state == 5){

 //testing state

 rv = readXBee();

 if(rv != NULL){

 //Received a packet

 //Serial.println("Packet received");

 message = parseXBeeMess(rv, &sender); //store the coordinates

 if(motherNew && message == NULL){

136

 //if coordinates from the victim received

 motherNew = 0;

 Serial.println("Lat and llon pos:");

 Serial.println(motherLat);

 Serial.println(motherLon);

 //calculate the distance to the victim

 //distToTarget = calcDist(motherLat, motherLon, lastLat,lastLon);

 if(distToTarget < 50){

 //if we are close to the mother, switch to state 0 and notify crew

 sendMess("O,HOME",motherAddr);

 state = 0;

 }

 }

 }

 }

 }

}

Victim Unit Code
//The following code is for the Victim module written by Frederick Hunter for the Autonomous Man

Overboard Rescue Equipment MQP

#include <XBee.h>

#include <string.h>

#include <ctype.h> //library for testing characters

#include <SoftwareSerial.h>

#include <TinyGPS.h> //include for GPS libraries

float longitudeVictim;

float latitudeVictim;

unsigned long age;

#define AVG 10 //number of positions to take average from

float lstCpleLatPos[AVG+2]; //stores the last lat positions for calculating the averagwe

float lstCpleLonPos[AVG+2];

int avgArrayPos = 0; //the position of the lstCpleXXXPos array for updating

int victimNew = 0; //variable to determine if new coordinated for the victim module were recieved

int newMes = 0; //variable to determine if a new message has been received

String message; //variable to hold the message received

TinyGPS gps;

#define thisModule 'C' //Module identifier for this module A = Mother B = Rescue C = Victim

#define GPSPOW 4 //the pin for powering the GPS

#define XBEEPOW 5 //the pin for powering the XBEE

#define WATERSENSOR 6 //the sensor for detecting if the person fell in the water

#define TLD 7 //the terminal locator device can be turned on / off with this pin

//XBee address to send to (SH + SL) as defined in X-CTU software

//XBeeAddress64 rescueAddr = XBeeAddress64(0x13a200,0x405c2ca0);

XBeeAddress64 rescueAddr = XBeeAddress64(0x13a200,0x4099233c);

XBeeAddress64 motherAddr = XBeeAddress64(0x13a200,0x406cb54d);

//XBeeAddress64 motherAddr = XBeeAddress64(0x13a200,0x405c2ca0);

SoftwareSerial GPS(2,3); //RX, TX

XBee XBee = XBee(); //create XBee object

XBeeResponse response = XBeeResponse();

ZBRxResponse rx = ZBRxResponse();

//Setup script

void setup(){

 pinMode(GPSPOW, OUTPUT);

 pinMode(XBEEPOW, OUTPUT);

 pinMode(TLD, OUTPUT);

 pinMode(WATERSENSOR, INPUT);

 digitalWrite(GPSPOW, LOW);

137

 digitalWrite(XBEEPOW, LOW);

 //Serial.begin(9600); //print to screen

 GPS.begin(4800); //read GPS

 XBee.begin(9600); //print to XBEE (Uses serial ports 1)

}

///////////////////////////sendMess//////////////////////////

//this function is used to send a message to the mothership that the victim is in danger

void sendMess(String message, XBeeAddress64 module){

 uint8_t payload[30];

 //convert message to uint8_t for transmission

 int i ;

 for(i = 0; i<message.length();i++){

 payload[i] = (uint8_t)message[i];

 }

 //attempt to send the packet

 ZBTxRequest zbTx = ZBTxRequest(module, payload, i);

 XBee.send(zbTx); //send the message

}

////////////////////////////////readXBee//////////////////

//retrieves the data from another module and returns the string if

//successfull, if not, returns NULL

String readXBee(){

 int i = 0;

 for(i=0;i<4;i++){

 newMes = 0;

 XBee.readPacket();

 if(XBee.getResponse().isAvailable()){

 //got some message

 if(XBee.getResponse().getApiId() == ZB_RX_RESPONSE){

 //got a zb rx packet

 //fill the zb rx class

 XBee.getResponse().getZBRxResponse(rx);

 int len = rx.getDataLength(); //number of char received

 char buff [len+2];

 int i = 0;

 for(i = 0; i<len;i++){

 buff[i] = (char)rx.getData(i);

 }

 buff[i+1] = '\0';

 //determine if the received data is a message, or coordinate

 if(buff[0] == 'M' || buff[0] == 'N' || buff[0] == 'O'){

 //sent data is a message

 newMes = 1;

 }

 return buff;

 }

 }

 }

 //else //if no packet received

 return NULL;

}

//////////////////////parseXBeeMess///////////////////

//parse the message returned from readXBee

//if a message is received, store the message and sender, else return NULL

//if a coordinate was received, store the coordinates

//also update the variable if a new message has been recived or coordinate

//return the message string, null if error, and "coord" if coordinates received

String parseXBeeMess(String mes, char *sender){

 //reset the newMes variable

 *sender = 'Z'; //reset the sender variable

 newMes = 0;

 //determine if a message is being sent

 if(mes.startsWith("M",0) || mes.startsWith("N",0) || mes.startsWith("O",0)){

 //store the message

 newMes = 1;

138

 //get rid of the start delimiter

 char buf[mes.length()]; //temporary buffer to store the string

 mes.toCharArray(buf,mes.length());

 String ret; //return string

 int i = 2;//get rid of the X, where X, is the sending module

 for(i=2;i<mes.length()-1;i++){

 //Serial.println(buf[i]);

 ret = ret + buf[i];

 }

 *sender = buf[0]; //return who the sender was

 //Serial.print("In Parse Mess, received: ");

 //Serial.println(ret);

 return ret; //return the message

 //Serial.println(mes[]);

 }

 //else //otherwise if no message has been sent, return null

 return NULL;

}

///////////////////////feedgps//////////////////////

//determines if there is data available

static bool feedgps()

{

 while (GPS.available())

 {

 if (gps.encode(GPS.read()))

 return true;

 }

 return false;

}

//retrieves the GPS data into the buffer array

void getGPS(){

 //unsigned long start = millis();

 int i = 0;

 while (i<4/*millis() - start < 1500 && victimNew == 0*/){

 if (feedgps()){

 victimNew = 1;

 //Serial.println("New Data!");

 gps.f_get_position(&latitudeVictim, &longitudeVictim, &age);

 i++;

 }

 }

 if(victimNew){

 lstCpleLatPos[avgArrayPos] = latitudeVictim;

 lstCpleLonPos[avgArrayPos] = longitudeVictim;

 //Serial.println(latitudeVictim,6);

 //Serial.println(longitudeVictim,6);

 if(avgArrayPos >= AVG)

 avgArrayPos = 0;

 else

 avgArrayPos++;

 }

}

///////////////////////////////sendGPS////////////////////

//Send the GPS coordinates via XBee to other modules

void sendGPS(){

 uint8_t payload[30];

 //determine if more data sent

 if(victimNew){ //make sure new data has been recieved before printing

 //getAverage pos

 float avgLat = calcAverage(true);

 float avgLon = calcAverage(false);

 //Serial.println(avgLat,5);

 //Serial.println(avgLon,5);

 //Store as string

 char latc[16];

 dtostrf(avgLat,10,5,latc);

139

 char lonc[16];

 dtostrf(avgLon,10,5,lonc);

 //Serial.println(lonc);

 //Serial.println(latc);

 //String lat = String(latc);

 //String lon = String(lonc);

 String packet = "C,"+String(latc)+","+String(lonc)+",";//ltoa(latitudeVictim, buf, 10) +

ltoa(longitudeVictim, buf, 10);

 //convert to uint8_t for transmission

 //Serial.println(packet);

 int i;

 for(i = 0; i<packet.length();i++){

 payload[i] = (uint8_t)packet[i];

 }

 //attempt to send the packet to rescue

 ZBTxRequest zbTx = ZBTxRequest(rescueAddr, payload,i);

 XBee.send(zbTx);

 delay(50);

 //XBee.flush();

 //attempt to send packet to mothership

 ZBTxRequest zbTx2 = ZBTxRequest(motherAddr, payload,i);

 XBee.send(zbTx2);

 //delay(50);

 //XBee.flush();

 }

}

/*Calculates the average of the last 25 positions

for the given module, unless the module doesn't have

that many past recorded values in the avg array

to calculate latitude, set lat to true

for longitud, set lat to false*/

float calcAverage(boolean lat){

 if(lstCpleLatPos[0] == '\0'){

 return 0; //return 0 if nothing in array

 }

 int i;

 float avg = 0.00000;

 if(lat == true){

 for(i = 0; i<AVG; i++){

 if(lstCpleLatPos[i] == '\0')

 break; //if reached end of array, break

 avg = avg + lstCpleLatPos[i];

 //Serial.println(module.lst_cple_lat_pos[i]);

 }

 }

 else{

 for(i = 0; i<AVG; i++){

 if(lstCpleLonPos[i] == '\0')

 break; //if reached end of array, break

 avg = avg + lstCpleLonPos[i];

 //Serial.println(module.lst_cple_lon_pos[i]);

 }

 }

 if(i ==0)

 return 0;

 else{

 //Serial.println(avg,5);

 //Serial.print("Average: ");

 //Serial.println(avg/(float)i,5);

 return avg / (float)i;

 }

}

///////////////////////////resetAvg/////////////////////////

//resets the avg buffer

void resetAvg(){

 int j = 0;

 for(j=0;j<AVG;j++){

140

 lstCpleLonPos[j] = '\0';

 lstCpleLatPos[j]= '\0';

 }

 avgArrayPos = 0; //update the average array position index

}

void resetArray(float array[]){

 int i = 0;

 for(i = 0; i<AVG+2;i++){

 array[i] = '\0';

 }

}

void loop(){

 int state = 0; //states for the victim module

 //0 = victim is not in danger, still on mothership

 //1 = victim is in distess, fell off the mothership

 //2 = victim is close to the rescue craft

 //3 = victim is on the rescue craft

 //reset the arrays for calculating the averages

 String rv; //string received

 char sender; //variable to store who the sender is

 resetArray(lstCpleLatPos);

 resetArray(lstCpleLonPos);

 while(1){

 while(state == 0){

 resetAvg();

 //Serial.println("State 0");

 while(state == 0){

 //keep polling the WATERSENSOR to check if the victim is in danger

 if(digitalRead(WATERSENSOR)){

 //if in danger, send distress signal to the mothership, activate GPS and XBEE

 digitalWrite(GPSPOW, HIGH); //turn on the GPS

 digitalWrite(XBEEPOW,HIGH); //turn on the XBEE

 delay(1000); //allow XBEE to Power on

 //send distress signal to Mothership

 sendMess("N,OVERBOARD", motherAddr);

 //wait for GPS to get a lock

 delay(50);

 while(victimNew == 0){

 victimNew = 0;

 latitudeVictim =0;

 longitudeVictim=0;

 getGPS(); //get GPS data

 //sendGPS();

 //victimNew = 1;/////////////////////////////////////

 }

 sendMess("N,INITDN",motherAddr);

 //delay(50);

 //rv = readXBee();

 //resetAvg();

 state = 1; //now in danger state

 }

 }

 }

 while(state == 1){

 resetAvg();

 resetArray(lstCpleLatPos);

 resetArray(lstCpleLonPos);

 //Serial.println("State = 1");

 sendMess("N,STATE1",motherAddr);

 delay(50);

 sendMess("N,AHHHH! HELP ME!",motherAddr);

 while(state == 1){

 //victim is in danger, send GPS coordinates

 //reset variable

 victimNew = 0;

 latitudeVictim =0;

141

 longitudeVictim=0;

 getGPS(); //get GPS data

 sendGPS(); //send the GPS data via GPS

 //check if the rescue craft is close, then activate the TLD

 //sendMess("N,STATE1",motherAddr);//////////////////////////

 //delay(20);

 rv = readXBee();

 if(rv != NULL && newMes == 1){

 //message received

 //delay(50);

 //sendMess("N,MESSEGE?!",motherAddr);/////////////

 //delay(50);

 message = parseXBeeMess(rv,&sender);

 if(message.equals("CLOSEV") && sender == 'O'){

 //sendMess("N,CLOSERECEIVED!",motherAddr);/////////////

 //if rescue craft is close to the victim and message sent from rescue craft

 digitalWrite(TLD,HIGH); //turn on the TLD

 state = 2; // now close to the rescue craft

 resetAvg();

 delay(1000);

 }

 }

 }

 }

 while(state == 2){

 //Serial.println("State = 2");

 sendMess("N,STATE2",motherAddr);

 delay(50);

 sendMess("N,STATE2!",motherAddr);

 while(state == 2){

 //victim is close to the rescue craft

 //Send the mothership a message that the victim is close to the rescue craft

 //keep transmitting the TLD

 //check if rescue craft requires GPS coordinates again, if so, go to state 1

 rv = readXBee();

 if(rv != NULL && newMes == 1){

 //message received

 message = parseXBeeMess(rv,&sender);

 if(message.equals("VCOORD") && sender == 'O'){

 //if rescue craft sent message and requires gps coord again

 digitalWrite(GPSPOW,HIGH);

 state = 1;

 delay(1000);

 }

 //if the sender is the rescue craft and the home button has been activated, go to state 3

 if(message.equals("RETURN") && sender == 'O'){

 digitalWrite(TLD,LOW);

 state = 3;

 resetAvg();

 delay(1000);

 }

 }

 }

 }

 while(state == 3){

 //Serial.println("state = 3");

 sendMess("N,STATE3",motherAddr);

 //send the mothership a message saying that victim is on rescue craft

 sendMess("N,ONRESCUE",motherAddr);

 while(1 && state == 3){

 //victim is on the rescue craft

 //turn off the GPS

 digitalWrite(GPSPOW,LOW);

 //keep transmitting the TLD, to make sure victim does not fall off again

 }

 }

 while(state== 10){

 //Serial.println("State 10");

 //reset variable

142

 victimNew = 0;

 latitudeVictim =0;

 longitudeVictim=0;

 //Serial.println("Start Loop");

 getGPS(); //get GPS data

 //printGPS(); //print the received data

 //if(i > 3){ //5 = defaultonly send sometimes so as to not overflow the traffic (2 works)

 /*victimNew=1;

 latitudeVictim = 4251545;

 longitudeVictim = -71515454;*/

 sendGPS(); //send the GPS data via GPS

 //i = 0;

 //sendMess("TEST",rescueAddr);

 //}

 //i++;

 //readGPS(); //read GPS for incoming coordinates

 }

 }

}

Mothership Unit Code
#!/usr/bin/python

#module for reading the data coming from the victim and rescue craft modules over XBEES

#Code written by Frederick Hunter for the Autonomous Man Overboard Rescue Equipment MQP

import serial

import time;

import math

import csv;

import XBeeMy #import module for XBee communication

import gps #import for gps manipulation

import gui #import for graphing and gui stuff

import calc #module for doing math

import threading #used for multithreading with the gps

import subprocess #module for starting another process in the background

import sys #import for starting a process in background

#degree_sign= u'\N{DEGREE SIGN}' #so a degree sign can be used

debug = 0; #if debug statements should be printed, set to one.

HEADER_LINES = 11 #number of header lines (KEEP CONSISTANT WITH GUI TOO)

RADIUS = 6371000 #the radius of the earth in meters

"""

start_pos

Class for storing the start GPS positions of the different modules

"""

class start_pos:

 def __init__(self):

 self._lat = 0

 self._lon = 0

#class for storing needed GPS values

class gps_data:

 _XBee = '' #XBee identifier ex A, B, C.. etc A = Mothership, B = Victim, C = rescue

 _latitude = ''#latitude value ddmm.mmmm

 _longitude = '' #longitude value dddmm.mmmm

 _xpos = 0 #x-axis position in meters

 _ypos = 0 #y-axis position in meters

143

"""

isNum(num)

Checks if num is a number, if it isn't return false, if it is

return true

@param num: a string to check if it is a number

"""

def isNum(num):

 try:

 float(num)

 return True

 except ValueError:

 return False

"""

parse_coord()

returns the DMS coordinates in a graphable form

@param coord: in xxxdegyy'zz" form

"""

def parse_coord(coord):

 return coord.replace('deg','').replace("'",'').replace('"','')

'''

printMesToFile

prints the passed message to the messages file

these messages are received from the victim or rescue module

@param message: the message to be stored

'''

def printMesToFile(message):

 try:

 log = open('messages.log','a') #open the messages log file

 except Exception as e:

 print 'Could not open the messages.log file'

 print e

 exit() #kill the program

 log.write(str(message)); #write the message to file

 log.close #close the log file

"""

print_to_file

prints the given _gps coordinates to a file for later use

@param gpsXBee: the class with the data from the gps

"""

def print_to_file(gpsXBee):

 try:

 log = open('coordinates.log', 'a'); #open log file

 except Exception as e:

 print 'Could not open coordinates.log! Is the file in the current directory?'

 print e

 exit(); #kill the program

 #check if data is new before printing

 #print new data to log file

 if(int(float(gpsXBee._latitude)) != 0):

 #try:

 #check if the string for longitude and latitude is a number

 if(isNum(gpsXBee._latitude) and isNum(gpsXBee._longitude)):

 writeLog = gpsXBee._XBee + ',' + gpsXBee._latitude + ',' + gpsXBee._longitude + ',' + 'E'+

',' + str(gpsXBee._xpos) + ',' + str(gpsXBee._ypos) + '\n';

 log.write(writeLog);

 """except Exception as e:

 print 'Could not print data to file'

 print e"""

 log.close

144

"""

print_gps(_gps)

prints the GPS data to screen

@param _gps the _gps data returned by read_serial()

"""

def print_gps(_gps):

 print 'XBEE = \t\t' + gpsXBee._XBee;

 print 'Latitude = \t' + gpsXBee._latitude;

 print 'Longitude = \t' + gpsXBee._longitude;

 print 'xpos = \t' + str(gpsXBee._xpos);

 print 'ypos = \t' + str(gpsXBee._ypos);

 print '' #print newline

"""

getStartPos()

returns 0 if none could be found, otherwise returns 1 and sets the startPosition in the start_pos

class.

"""

def getStartPos():

 try:

 log = open('coordinates.log', 'r');

 except Exception as e:

 print 'Could not open coordinates.log as read only. Is it in the current directory?'

 print e

 exit(); #kill the program

 #skip the header

 try:

 for i in range(0,HEADER_LINES):

 log.next();

 except Exception as e:

 print 'Error skipping the header file 0:' + HEADER_LINES + 'in getStartPos'

 print e

 exit(); #kill the program

 #try:

 reader = csv.reader(log) #open with csv reader

 for row in reader:#go through each row and look for the first module instance

 try:

 i = row[0] #if no module found at end, return 0

 except Exception as e:

 print e

 return 0

 #if the first input was found, save the lat & long values

 startPos._lat = (row[1])

 startPos._lon = (row[2])

 log.close()

 return 1

 #except:

 # print 'Error in reading the log file in getStartPos'

"""

read_serial(_gps)

returns the data from the _gps needed for calculations in the parameter passed to it

returns two empty strings if no message has been received and if one has been received,

it returns the message, sender

"""

def read_serial(gpsXBee):

 #set gpsXBee._latitude to zero to notify the print_to_file function that no new data has been

received

 gpsXBee._latitude = 0;

 temp = XBeeMy.receive(xser);

 if(temp[0] == 'N'):

 #if message from victim received, print to screen

 print "Message from Victim: " + temp[2:]

 return temp[2:], 'N' #return the received message and the sender

 if(temp[0] == 'O'):

145

 #message from rescue received

 print "Message from Rescue: " + temp[2:]

 return temp[2:], 'O' #return the received message and the sender

 if debug:

 print 'Raw XBEE data received: ' + temp

 temp = temp.split(','); #store values in list

 #print temp

 if(len(temp) < 3): #make sure all the data has been received

 #print "data corrupted"

 return '', '' #return empty strings indicating that no message has been received

 while (temp[0].find('C') == -1) and (temp[0].find('B') == -1) and (temp[0].find('A') == -1):

#do nothing until desired data is found & not corrupt

 temp = XBeeMy.receive(xser);

 if(temp[0] == 'N'):

 #if message from victim received, print to screen

 print "Message from Victim: " + temp[2:]

 return temp[2:], 'N' #return the received message and the sender

 if(temp[0] == 'O'):

 #message from rescue received

 print "Message from Rescue: " + temp[2:]

 return temp[2:], 'O' #return the received message and the sender

 temp = temp.split(','); #store values in list

 if((len(temp) < 3) or (len(temp[2]) < 8) or (len(temp[1]) < 7)): #make sure all the data has

been received

 print "corrupt data"

 return '', '' #return empty strings indicating that no message has been received

 pass;

 if debug:

 print temp[0]

 print temp[1];

 print temp[2];

 #store values into _gpsXBee class

 if(temp[0].find('C') >= 0):

 if debug:

 print 'C RECEIVED'

 gpsXBee._XBee = 'C'; #if c found, then data is from module c

 if(temp[0].find('B') >= 0):

 if debug:

 print 'B RECEIVED'

 gpsXBee._XBee = 'B';

 if(temp[0].find('A') >= 0):

 if debug:

 print 'A RECEIVED'

 gpsXBee._XBee = 'A';

 #check if there is a start position for the Rescue craft yet

 if(startPos._lon == 0):

 #if it is 0, then check if there is already data logged,

 #otherwise, update it with the current data

 if(getStartPos() == 0): #if 0, then the start position should be updated with current

position

 startPos._lat = temp[1]#store lat position

 startPos._lon = temp[2].replace('\n', '').replace(' ', '') #store longitude position (get

rid of newline and any stray spaces)

 gpsXBee._latitude = temp[1]

 gpsXBee._longitude = temp[2].replace('\n', '').replace(' ','')

 #find the respective location in meters

 gpsXBee._xpos = calc.getxPos(gpsXBee._latitude, gpsXBee._longitude, startPos)

 gpsXBee._ypos = calc.getyPos(gpsXBee._latitude, gpsXBee._longitude, startPos)

 #plot_dms_gps(); #plot the datapoints to the _gps graph

 #gui.plotGps(False, True); #plot raw _gps values (1st boolean is for multiple plots, second is

for meters)

 if debug:

 print_gps(gpsXBee);

 return '','' #return empty strings indicating that no message has been received

146

"""

gpsThread(store, send, xser)

this function retrieves the gps coordinates in a background thread

it will store the values to the file if store == 1 it will send the

gps coordinates to the rescue module if send == 1

the thread exits if the globa variable done == 1

xser is the XBee serial object

"""

def gpsThread(store, send,xser):

 while done == 0:

 #get mothership coordinates a few times and grab the average position

 avgLat = 0

 avgLon = 0

 avgCount = 0

 for i in range(0,5):

 pos = gps.readGPS(gpsSerial)

 if(pos != -1):

 #split the return into lat and lon positions

 pos = pos.split(',')

 avgLat = avgLat + float(pos[0])

 avgLon = avgLon + float(pos[1])

 avgCount = avgCount + 1

 #get the positions

 latGps = str(avgLat/avgCount)

 lonGps = str(avgLon/avgCount)

 #if the start position is zero, update it with the current position

 if(getStartPos() == 0):

 startPos._lat = latGps;

 startPos._lon = lonGps;

 #calc the x and y pos in meters for storing

 latMeters = str(calc.getxPos(latGps,lonGps, startPos))

 lonMeters = str(calc.getyPos(latGps,lonGps, startPos))

 #if desired, store the the coordinates to file

 if(store):

 gps.saveToFile(latGps, lonGps, latMeters, lonMeters); #store the gps coordinates to file

 print 'Storing gps'

 #send the gps coordinates to the rescue unit if desired

 if(send):

 XBeeMy.sendToRescue(xser,"A,"+latGps+","+lonGps+",");

 print "Sending gps"

 print 'Terminating gps thread!'

 return #end the thread

#############################GLOBAL VARIABLES######################

lastTime = 0; #global variable for checking if time is same before printing to file to avaoid

repeats

done = 0; #variable to tell gps receive thread to stop

###################################MAIN#############################

#have the user specify which serial port to use

#serialPort = raw_input('Enter the serial port the XBEE is connected to. Ex: ttyUSB0\n');

#serialPort = "/dev/" + serialPort;

try:

 ser, xser = XBeeMy.initXBee("ttyUSB0", 9600) #init the XBee

 print 'GPS is starting up, please wait...';

 time.sleep(1); #pause for 2 seconds

 print 'Systems online';

 gpsXBee = gps_data(); #instantiate the class for storing _gps data

 startPos = start_pos(); #instantiate the startpos class to store the start positions of the

modules

 gpsSerial = gps.initGPS("ttyAMA0",4800) #initiate the GPS class

147

 #create a file for messages (if it exists already, it will clear the contents)

 l = open('messages.log','w+')

 l.close #close the file again

 '''

 Simulate the Victim Module here

 '''

 XBeeMy.sendToRescue(xser,"N,OVERBOARD");

 XBeeMy.sendToRescue(xser,"C,42.42504,-71.471025,") #simulated victim coordinates

 while 1:

 localtime = time.asctime(time.localtime(time.time())) #get current time

 printMesToFile("\n\nNew Test conducted on localtime!\n\n") #tell new test conducted

 state = 1

 print 'The mothership module is all set up and waiting for a distress signal!'

 while state == 1:

 XBeeMy.sendToRescue(xser,"C,42.42504,-71.471025,") #simulated victim coordinates

 #in this state, no one has fallen overboard, keep checking for an overboard condition

 message , unit = read_serial(gpsXBee); #read the XBee for gps coordinates or messages

 if(unit == ''): #determine if gps data received

 print_to_file(gpsXBee); #store the gps location to file

 if(unit == 'N' and message == 'OVERBOARD'):

 #if overboard condition

 printMesToFile('VICTIM OVERBOARD\n'); #store to file that the victim is overboard

 print "VICTIM OVERBOARD!"

 time.sleep(0.2) #allow packet to get sent

 #start the rescue boat unit

 XBeeMy.sendToRescue(xser,"M,BOOT");

 #start the plotting GUI

 process = subprocess.Popen([sys.executable, 'plotBG.py'], stdout=subprocess.PIPE,

stderr=subprocess.STDOUT)

 message , unit = read_serial(gpsXBee); #read the XBee for gps coordinates or messages

 if(unit == 'N' and message == 'INITDN'):

 #victim unit initialized

 printMesToFile("Victim unit is online and Transmitting\n") #store to file

 print "Victim unit GPS is online and Transmitting!"

 #wait for the rescue unit to init

 while(unit != 'O' and message != 'INIT'):

 #waiting for the rescue craft to init

 message , unit = read_serial(gpsXBee); #read the XBee for gps coordinates or messages

 if(unit == 'N' and message == 'INITDN'):

 #victim unit initialized

 printMesToFile("Victim unit is online and Transmitting\n") #store to file

 print "Victim unit GPS is online and Transmitting!"

 #set state to 2

 printMesToFile("Rescue Craft initialized and heading off\n")

 print "Rescue Craft initialized and heading off"

 state = 2;

 while state == 2:

 #initialize things for state 2 here

 #start thread to store the mothership gps data

 done = 0; #make sure thread is continuing to run

 t1=threading.Thread(group=None,target=gpsThread,name="Thread-1",args=(1,0,xser))

 t1.daemon = True #allow program to terminate with ctrl^c

 t1.start()

 print "Started thread in state 2"

 while state == 2:

 XBeeMy.sendToRescue(xser,"C,42.42504,-71.471025,") #simulated victim coordinates

 #Here we are just collecting the gps coordinates and storing them to file for plotting

 message , unit = read_serial(gpsXBee); #read the XBee for gps coordinates or messages

148

 if(unit == ''): #check if gps data received, or message

 print_to_file(gpsXBee); #store the gps location to file

 #check if the rescue craft is returning home or close to victim

 if(unit == 'O' and message == 'CLOSEV'):

 #if rescue craft is close to victim (within 50m), notify the crew

 printMesToFile("The rescue craft is close to the victim (within 50m)\n")

 print 'The rescue craft is close to the victim (within 50m)'

 if(unit == 'N' and message == 'INITDN'):

 #victim unit initialized

 printMesToFile('Victim unit is online and Transmitting\n')

 print "Victim unit GPS is online and Transmitting!"

 if(unit == 'N' and message == 'STATE2'):

 #victim turned on TLD

 printMesToFile("Victim activated Terminal Locator Device\n")

 print "Victim activated Terminal Locator Device"

 if(unit == 'O' and message == 'RETURN'):

 printMesToFile("The rescue craft is returning to the mothership\n")

 print "The rescue craft is returning to the mothership"

 #if rescue craft is returning home, send the GPS coordinates to the rescue craft

 #stop the thread for storing mothership GPS

 done = 1;

 #wait for thread to exit

 print "Waiting for thread to exit"

 t1.join()

 #set to state 3

 state = 3

 while state == 3:

 #initialize stuff here for state 3

 #start a thread to retrieve GPS coorinates of mothership and send them to the rescue craft

 done =0; #set done to 0 so thread continues

 t2=threading.Thread(group=None,target=gpsThread,name="Thread-2",args=(1,1,xser))

 t2.daemon = True #allow program to terminate with ctrl^c

 t2.start()

 print "Started thread 2 in state 3"

 while state == 3:

 #Here the rescue craft is returning home, so send it the mothership GPS coordinates

 #read the XBee for incoming data

 message, unit = read_serial(gpsXBee);

 if(unit == ''): #check if gps data received, or message

 print_to_file(gpsXBee); #store the gps location to file

 if(unit == 'N' and message == 'ONRESCUE'):

 #message from victim

 printMesToFile("The Victim is on the rescue craft!\n")

 print "The Victim is on the rescue craft!"

 if(unit == 'O' and message == 'HOME'):

 printMesToFile("The rescue unit is back home!\n")

 print "The rescue unit is back home!"

 #Check if the rescue module is back home and notify the crew

 #set to state 1

 #stop the gps thread

 done = 1;

 t2.join() #wait for the thread to exit

 state = 1

 #stop the plot gui

 try:

 process.kill()

 except:

 pass

except KeyboardInterrupt: #kill the process in the background if it is running when ctl^c called

 try:

 process.kill()

 except:

 pass

Calc.py Module Code
#! /bin/python

#module calculations Filename: calculations.py

#Code written by Frederick Hunter for the Autonomous Man Overboard Rescue Equipment MQP

149

"""

This module contains all the major methods for

calculating distances, angles, averages, etc..

"""

import math

RADIUS = 6372795

debug = 0

"""

calc_dist(module_a, module_b)

calculates the straight line distance to the coordinate

@param module_a: the current module where the distance is calculated from

@param module_b: the module the distance is supposed to be calculated to

Found the calculation on http://www.movable-type.co.uk/scripts/latlong.html

under Equirectangular approximation

"""

def calc_dist(module_a, module_b):

 #check if there is even an up to date current position for both modules

 if(module_a._current_lat_pos == '' or module_b._current_lat_pos == ''):

 #print 'No up to date position for module'

 return 0;

 '''

 a = math.radians(module_a._current_lon_pos - module_b._current_lon_pos) *

math.cos((math.radians(module_a._current_lat_pos + module_b._current_lat_pos))/2);

 b = math.radians(module_a._current_lat_pos - module_b._current_lat_pos);

 #print math.sqrt(math.pow(a,2) + math.pow(b,2)) * 1369.42

 return math.sqrt(math.pow(a,2) + math.pow(b,2)) * RADIUS

 '''

"""

calc_angle_to_target(module_a, module_b)

claculates the angle from the current module to the other module where 0deg is

@param module_a: the current module where the distance is calculated from

@param module_b: the module the distance is supposed to be calculated to

"""

def calc_angle_to_target(module_a, module_b):

 if(module_a._current_lat_pos == '' or module_b._current_lat_pos == ''):

 #print 'No up to date position for module'

 return 0;

 a = module_a._current_lon_pos - module_b._current_lon_pos;

 b = module_a._current_lat_pos - module_b._current_lat_pos;

 #print math.atan2(b,a)

 return math.atan2(b,a);

"""

get_average(num, lst)

calculates the average of the last num values in the list

@param num: the number of values to in list to go back and calculate with

@param lst: a list of numbers to calculate average from

"""

def get_average(num, lst):

 """Determine if the list even has the amount of numbers to get average of"""

 if(len(lst) > num + 1):

 #take average of the last num values

 avg = 0

 for i in range(len(lst)-(num+1),len(lst)-1):

 #print 'lst[i]: ' + str(lst[i])

 avg = (lst[i]-lst[i-1]) + avg

 avg = avg / num

 #print 'avg: ' +str(avg)

 return avg;

 #if list is basically empty, use the last value

150

 elif(len(lst) < 3):

 #check if list is empty

 if(len(lst) == 0):

 return 0;

 return lst[len(lst)-1];

 #otherwise if lst is not populated with enough numbers, use the max possible

 else:

 avg = 0

 for i in range(0,len(lst)-1):

 if(i == 0):

 pass #skip the first value

 else:

 #print 'lst[i]: ' + str(lst[i]) + ' ' + str(lst[i-1]) + 'Sub: ' + str(lst[i] -lst[i-1])

 avg = (lst[i]-lst[i-1]) + avg

 avg = avg / i

 #print 'avg: ' +str(avg)

 return avg

"""

getxPos(latitude, longitude, startPos)

@param latitude: The current gps latitude

@param longitude: the current gps longitude position

@param startPos: The class storing the start position of the modules

calculates the x position of the gpsData, if no new data passed, return 0

"""

def getxPos(latitude, longitude, startPos):

 #determine if the lat & lon is not zero

 if debug:

 print 'Acquiring the x pos in meters'

 print 'lat:'

 print latitude

 print 'lon:'

 print longitude

 if(latitude == '0'):

 return 0

 else:

 try:

 x = (math.radians(float(longitude) - float(startPos._lon)) *

math.cos(((math.radians(float(startPos._lat) + float(latitude)))/2))) * RADIUS;

 if debug:

 print 'x = ' + str(x)

 return x

 except Exception as e:

 print 'ERROR calculating the x pos in getxPos'

 print e

 return 0

"""

getyPos(latitude, longitude, startPos)

@param latitude: The current gps latitude

@param longitude: the current gps longitude positions

@param startPos: The class containing the start long and lat positions

calculates the y position in meters using the passed data

"""

def getyPos(latitude, longitude, startPos):

 #determine if the lat & lon is not zero

 if debug:

 print 'Acquiring the y pos in meters'

 print 'lat:'+ latitude

 print 'lon:' + longitude

 print 'victim start pos: '+ str(startPos._lat)

 try:

 if(latitude == '0'):

 return 0

 else:

151

 y = math.radians(float(latitude) - float(startPos._lat)) * RADIUS

 if debug:

 print 'y = ' + str(y)

 return y

 except Exception as e:

 print 'ERROR calculating the y pos in meters in getyPos'

 print e

'''

function to calculate the angle (in degrees) the arrow should be pointing in

@param xA: The x position of the last datapoint in the set

@param xB: The x position of the previous datapoint in the set

@param yA: The y position of the last datapoint in the set

@param yB: The y position of the previous datapoint in the set

'''

def calcArrowAngle(xA, yA, xB, yB):

 #determine the distances from the two points

 #where xA is the most recent point and xB is the last point

 x = xA - xB;

 y = yA - yB;

 #determine what quandrant we are in

 if((x > 0 and y > 0) or (x < 0 and y > 0)):

 #if in quadrants one or two, the same calculation can be used

 angleDeg = 180 - math.degrees(math.atan2(y,x))

 if debug:

 print "Q1 or Q2: " + str(angleDeg)

 return angleDeg

 else:

 #otherwise if in quadrant 3 or 4

 angleDeg = math.degrees(math.fabs(math.atan2(y,x)))+180

 if debug:

 print "Q3 or Q4: " + str(angleDeg)

 return angleDeg

GPS.py Module Code
#! /bin/python

#module gps Filename: gps.py

#Code written by Frederick Hunter for the Autonomous Man Overboard Rescue Equipment MQP

import serial

debug = 1

"""

Attempt to initialize the serial port for the GPS on the RPI

@param port: the port where the GPS is connected to on the RPI (usually ttyAMA0)

@param baud: the baud rate

"""

def initGPS(port, baud):

 try:

 gSer = serial.Serial("/dev/"+port, baud,bytesize=8,stopbits=1)

 return gSer

 except Exception as e:

 print "ERROR: in initGPS (Is the GPS connected to the RPI?)"

 print e

 exit()

"""

attempts to read the GPS data from the GPS and returns the lat & lon pos ("42.254455,-71.278220")

@param gSer: the serial port object initialized by the initGPS function

"""

def readGPS(gSer):

 try:

 #read a line from the GPS

 inLine = gSer.readline();

 #while the desired data is not found, continue reading lines

152

 while(inLine.find("GPRMC")==-1):

 inLine = gSer.readline();

 #extract the data

 pos = extractPos(inLine);

 if(pos == -1):

 if(debug):

 print 'No GPS Lock!'

 return -1

 print 'Received GPS' + pos

 return pos; #return the pos if it was recived

 except Exception as e:

 print "ERROR reading the gps"

 print e

"""

Extracts the gps position from the line read from the GPS

@param line: the line read in from the gps

ex (with a lock): line = $GPRMC,170006.000,A,4225.4455,N,07127.8220,W,1.61,153.14,170213,,*19

"""

def extractPos(line):

 #Check if there is even a lock and data

 line = line.split(',')

 #determine if the extracted line is the the correct line

 if(line[2] == 'V' or line[3] == ''):

 #if there is no lock, return -1

 return -1

 else:

 #if there is a lock, extract the data and send it for storage

 lat = line[3]

 lon = line[5]

 #convert to decimal degrees

 deglat = int(lat[0:2]); #get the degree

 lat = lat[2:] #get the rest of the lat value

 latf = float(lat) #convert to float for math

 lat = deglat+(latf/60) #convert to decimal degrees

 lat = str(lat) #convert to string for return and trim the answer

 lat = lat[0:8]

 #convert lon to decimal degrees

 deglon = int(lon[0:3])

 lon = lon[3:] #get the rest of the longitude

 lonf = float(lon) #convert to float for calculation

 lon = deglon+(lonf/60) #convert to decimal degrees

 lon = str(lon) #convert to string for returning

 lon = '-'+lon[0:8] #trim the value and make negative

 return lat+','+lon;

 '''

 #move the decimal point to the correct location

 lat = lat.replace('.','')

 lat = lat[0:2]+'.'+lat[2:]

 lon = lon.replace('.','')

 lon = '-'+lon[1:3]+'.'+lon[3:]

 #return the lat and lon positions

 return lat+','+lon;

 '''

"""

Stores the longitude and latitude position into the log file

@param latitude: the string of the lat position from the GPS

@param longitude: the string of the lon position from the GPS

@param xMeters: the x position in meters calculated by getxPos in the calc module

@param yMeters: the y position in meters calculated by getYPos in the calc module

"""

def saveToFile(latitude, longitude, xMeters, yMeters):

 #store the longitude and lat position into the log file

 #try to open the log file for storage

 try:

 log = open('coordinates.log', 'a')

 #print to file

153

 log.write('A,'+str(latitude)+','+str(longitude)+',E,'+str(xMeters)+','+str(yMeters)+'\n');

 print "Stored gps pos:"

 log.close() #close the log file

 except Exception as e:

 print "Could not open the coordinates.log file in gps.py. Is it in the current directory?"

 print e

 exit() #kill the program due to a heavy error

XBeeMy.py Module Code
#! /bin/python

#module XBee Filename: XBee.py

#Code written by Frederick Hunter for the Autonomous Man Overboard Rescue Equipment MQP

import time

import serial;

from XBee import ZigBee

"""

initXBee(port)

This function initializes the XBEE connected

to the passed serial port

It returns the serial object used for printing and

reading with the XBee

"""

def initXBee(port, baud):

 serialPort = '/dev/' + port

 try:

 ser = serial.Serial(serialPort,baud,bytesize=8,stopbits=1)

 XBee = ZigBee(ser, escaped = True) #escped = AP mode = 2 on XBee

 return ser, XBee

 except Exception as e:

 print e

 exit()

"""

sendToRescue(port, sendString)

this function sends the command passed to this function

to the RESCUE XBEE module

"""

def sendToRescue(xser, sendString):

 #send the message

 #TODO: the address here is for the mothership, need to change to

 #rescue address : 405c2ca0

 #dest = "\x00\x13\xa2\x00\x40\x6c\xb5\x4d"; #mothership address

 #dest = "\x00\x13\xa2\x00\x40\x5c\x2c\xa0" #rescue address

 dest = "\x00\x13\xa2\x00\x40\x99\x23\x3c"#victim address

 xser.send("tx",dest_addr="\xff\xff",dest_addr_long=dest,

data=sendString)

"""

sendToVictim(xser, sendString)

This function sends the string passed to this function

to the XBEE module called VICTIM

"""

def sendToVictim(xser, sendString):

 '''

 ser.write('+++'); #enter the command mode

 time.sleep(1); #wait a sec for the cbee to register

 ser.write('ATDN VICTIM\r'); #set XBee to send to the VICTIM

 time.sleep(0.5); #wait for XBee to set

 ser.write(str(sendString)) #send the message

 time.sleep(1) #wait a sec for XBee to exit the command mode

154

 '''

 dest = "\x00\x13\xa2\x00\x40\x9f\x3a\x9d"

 xser.send("tx",dest_addr="\xff\xff",dest_addr_long=dest,data=sendString)

"""

receive(ser)

this function returns the line on the serial buffer associated

with the ser.

ser is the return from the initXBee function

"""

def receive(xser):

 try:

 response = xser.wait_read_frame()

 return response['rf_data'] #return the XBee response

 except Exception as e:

 print e

 return '-1'

PlotBG.py Script Code
#! /bin/python

"""

module to remotely control the boat written by frederick Hunter,

uses the event handler

NOTE: This must be run as root!

"""

from evdev import InputDevice

from select import select

import serial

from XBee import ZigBee

import time

#module we are using, can be either laptop or rpi

module = 'laptop'

#keyboard values from the laptop

LapKey = {'Q': 16, 'RIGHT': 205, 'SPACE': 57, 'UP': 200, 'DOWN': 208, 'R': 19, 'LEFT':

203,'RSHIFT':54}

#keyboard values from the USB Keyboard on RPI

rpiKey = {'Q': 458772, 'RIGHT': 458831, 'SPACE': 458796, 'UP': 458834, 'DOWN': 458833, 'R':

458773, 'LEFT': 458832,'RSHIFT':458981}

#set the dictionary to use

if(module == 'laptop'):

 dic = LapKey;

 dev = InputDevice('/dev/input/event3') #device registered as keyboard

else:

 dic = rpiKey;

 dev = InputDevice('/dev/input/event0') #device registered as keyboard

serialPort = "/dev/ttyUSB0" #serial port for XBee

baud = 9600

ser = serial.Serial(serialPort,baud,bytesize=8,stopbits=1)

XBee = ZigBee(ser, escaped = True) #escped = AP mode = 2 on XBee

def sendToRescue(xser, sendString):

 #send the message

 #TODO: the address here is for the mothership, need to change to

 #rescue address : 405c2ca0

 #dest = "\x00\x13\xa2\x00\x40\x6c\xb5\x4d"; #pro2sB revB

 #dest = "\x00\x13\xa2\x00\x40\x99\x23\x3c" #pro2sB rev A

 dest = "\x00\x13\xa2\x00\x40\x5c\x2c\xa0" #pro2sB

155

 xser.send("tx",dest_addr="\xff\xff",dest_addr_long=dest, data=sendString)

#send to rescue to boot it

sendToRescue(XBee, 'M,BOOT')

key = 0

while key != dic['Q']:

 r,y,x=select([dev],[],[])

 for event in dev.read():

 if(event.type == 4): #make sure it is a keyboard input

 key = event.value

 #print(event.value)

 if key == dic['UP']:

 #caught the up key

 print "GO" #go forwards

 sendToRescue(XBee, 'M,FF')

 elif key == dic['DOWN']:

 #caught the down key

 print "REVERSE" #Stop the boat

 sendToRescue(XBee, 'M,BB')

 elif key == dic['RIGHT']:

 #caught the right key

 print "RIGHT" #turn right

 sendToRescue(XBee, 'M,LO')

 elif key == dic['LEFT']:

 #caught the left key

 print "LEFT" #turn left

 sendToRescue(XBee, 'M,RO')

 elif key == dic['RSHIFT']:

 #caught the right shift key

 print "STOP"

 sendToRescue(XBee, 'M,SS')

 elif key == dic['SPACE']: #space is used to kill the boat

 print "Killing the motors and enetering remote control mode" #message to user

 sendToRescue(XBee, 'M,STOP') #stop the motors and enter control mode on the rescue craft

 elif key == dic['R']:

 #caught the r key

 print 'STOP' #stop the motors and enter control mode on the rescue craft

 sendToRescue(XBee, 'M,STOP')

 time.sleep(0.5)

 print "Restarting in State 0" #message to user

 #restart the rescue boat in state 0

 sendToRescue(XBee, 'M,RESTART')

exit() #end the program on 'q' press

PlotBG.py
#!/usr/bin/python

#module for handling the plotting in the background process, written by Frederick Hunter for

AMORE MQP

import gui

import gps

import pyqtgraph as pg

import time

from pyqtgraph.Qt import QtGui, QtCore

import csv

import calc #import for my calc module

import Image

import numpy

import calc #import for getx and gety

import serial

gpsSerial = gps.initGPS("ttyAMA0",4800) #initiate the GPS class

HEADER_LINES = 11

"""

start_pos

156

Class for storing the start GPS positions of the different modules

"""

class start_pos:

 def __init__(self):

 self._lat = 0

 self._lon = 0

#create a qt application

app = QtGui.QApplication([])

#create the main window

mw = QtGui.QMainWindow()

#resize if needed

mw.resize(400,400)

#create central widget

cw = QtGui.QWidget()

#set the central widget onthe main window

mw.setCentralWidget(cw)

#create andset the widget layout

l = QtGui.QVBoxLayout()

cw.setLayout(l)

#create a plot widget window

pWidget = pg.PlotWidget(name="GPS Plot V:0.5")

#add a legend

pWidget.addLegend(size=None,offset=(0,0))

#add the plot widget to the layout

l.addWidget(pWidget)

#show the main window

mw.show()

#create the arrows for later

#create variable to store info if the messages have been printed

global mState

mState = [0,0,0,0,0,0,0,0];

#the text object to write the messages to the plot

global text

text = pg.TextItem(text="Plot V:0.5!",color='w',html=None)

text.setPos(0.5,0.5) #set the position

pWidget.addItem(text) #add the text to the plot

#axis labels

pWidget.setLabel('left',"Y Axis",units='m')

pWidget.setLabel('bottom',"X Axis",units='m')

#image plotting

#store the lat and lon location of the top right and bottom left of the image

#also store the center

'''

latTopRight = 42.437779

lonTopRight = -71.428312

latCenter = 42.355869

lonCenter = -71.632958

latBottomLeft = 42.277087

lonBottomLeft = -71.856934

'''

latTopRight = 42.427485

lonTopRight = -71.466914

latCenter = 42.426418

lonCenter = -71.469027

latBottomLeft = 42.425686

lonBottomLeft = -71.470748

#instantiate the start pos class

startPos = start_pos()

startPos._lat = 42.42462

startPos._lon = -71.463632

#grab the image file

157

imageFile = "42.426418,-71.469027.png"

src = Image.open(imageFile)

#convert to color

src = src.convert(mode="RGB")

#convert image to array

srcArray=numpy.asarray(src)

#rotate the array to be oriented correctly

rotArray=numpy.rot90(srcArray,3)

#set the image object

IIR = pg.ImageItem(image=rotArray,autoLevels=False)

#determine the location in meters (Bottom left and top right) from center

metersBLx = calc.getxPos(latBottomLeft,lonBottomLeft,startPos)

metersBLy = calc.getyPos(latBottomLeft,lonBottomLeft,startPos)

metersTRx = calc.getxPos(latTopRight,lonTopRight,startPos)

metersTRy = calc.getyPos(latTopRight,lonTopRight,startPos)

#set the size of the image (scale it)

IIR.setRect(QtCore.QRectF(metersBLx,metersBLy,metersTRx+abs(metersBLx),metersTRy+abs(metersBLy)))

#scale the image

pWidget.addItem(IIR) #add the image to the plot

#create an empty plot object for now

p1=pWidget.plot(name="Rescue Unit") #rescue plot

p2=pWidget.plot(name="Victim Unit") #victim plot

p3=pWidget.plot(name="Mothership Unit") #mothership plot

'''

getMesFromFile(messageState)

returns the new message on the logfile and the updated message state list

messageState = a list of states for the messages

ex-> [0(victim overboard?),

0(victim online and transmitting)),

0(Rescue craft intitalized and heading off?),

0(Rescue craft close to victim?),

0(Victim activated terminal locator device?),

0(Rescue Craft returning to mothership?),

0(Victim on the rescuecraft?),

0(Rescue unit home?)]

'''

def getMesFromFile(messageState):

 newMessageState = messageState; #store for returning

 #open the log file

 try:

 mlog =open('messages.log','r').read()

 if(messageState[0] == 0):

 #if the victim overboard condition was not yet read

 #check if it has been received

 if('VICTIM OVERBOARD' in mlog):

 newMessageState[0] = 1 #set to read

 return "Victim Overboard", newMessageState

 if(messageState[1] == 0):

 #if the victim online and transmitting condition not met

 #check if it has now been met

 if('Victim unit is online and Transmitting' in mlog):

 newMessageState[1] = 1

 return 'Victim Online',newMessageState

 if(messageState[2] == 0):

 #if the rescue craft has been init and heading off has not been met

 #check if it has now been met

 if('Rescue Craft initialized and heading off' in mlog):

 newMessageState[2] = 1

 return 'Rescue Searching', newMessageState

 if(messageState[3] == 0):

 #if the rescue craft is close to the victim has been met

 #check if it is now close

 if('The rescue craft is close to the victim (within 50m)' in mlog):

158

 newMessageState[3] = 1

 return "Rescue Close", newMessageState

 if(messageState[4] == 0):

 #if the victim activated the TLD yet

 #check if it is now activated

 if('Victim activated Terminal Locator Device' in mlog):

 newMessageState[4] = 1

 return "TLD Activated", newMessageState

 if(messageState[5] == 0):

 #check if the rescue craft has been returning to the mothership

 #check if needs to be updated

 if('The rescue craft is returning to the mothership' in mlog):

 newMessageState[5] = 1

 return 'The rescue craft is returning to the mothership',newMessageState

 if(messageState[6] == 0):

 #if the victim has not been on the rescue craft

 #check if it now is

 if('The Victim is on the rescue craft!' in mlog):

 newMessageState[6] = 1

 return 'Victim on Craft',newMessageState

 if(messageState[7] == 0):

 #check if the rescue unit has been home yet

 #if not, check again

 if('The rescue unit is back home!' in mlog):

 newMessageState[7] = 1

 return 'Home', newMessageState

 except Exception as e:

 print 'Error opening the messages +.log file in gui.py!'

 print e

 return None,messageState #return nothing

'''

updates the plot data

'''

def updateData():

 #instantiate variables for the modules to be graphed

 mothershipX = []

 mothershipY = []

 rescueX = []

 rescueY = []

 victimX = []

 victimY = []

 try:

 log = open('coordinates.log', 'rt');

 except Exception as e:

 print 'Could not open coordinates.log as read only. Is it in the current directory?'

 print e

 exit(); #kill the program

 #skip the header

 try:

 for i in range(0,HEADER_LINES):

 log.next();

 except Exception as e:

 print 'Error skipping the header file 0:' + HEADER_LINES + 'in plot_gps'

 print e

 exit(); #kill the program

 #try:

 reader = csv.reader(log) #open with csv reader

 for row in reader:#go through each row and add to array

 #check which XBee the data is from & add to corresponding graph

 if(row[0].find('A') >= 0):

 mothershipX.append(float(row[4]))

 mothershipY.append(float(row[5]))

 elif(row[0].find('C') >= 0):

 victimX.append(float(row[4]))

 victimY.append(float(row[5]))

159

 else:

 rescueX.append(float(row[4]))

 rescueY.append(float(row[5]))

 log.close(); #close the file

 #clear the plot

 #pWidget.clear()

 #update the plot datapoints

 p1.setData(x=rescueX ,y=rescueY, pen='r');

 p2.setData(x=victimX ,y=victimY, pen='b');

 p3.setData(x=mothershipX ,y=mothershipY, pen='g');

 #clear the legend to prevent duplicates from showing up

 pWidget.plotItem.legend.items=[]

 #add the plots to the widget

 pWidget.addItem(p1)

 pWidget.addItem(p2)

 pWidget.addItem(p3)

 #update the arrow positions and check if there is even data in the lists

 if(len(rescueX)>0):

 global a1

 #first we try to see if the variable has even been set

 try:

 pWidget.removeItem(a1) #get rid of old arrow

 except:

 pass #do nothing if this arrow has not yet been created to be removed

 a1=pg.ArrowItem(angle=calc.calcArrowAngle(rescueX[len(rescueX)-1],rescueY[len(rescueY)-1],

rescueX[len(rescueX)-2], rescueY[len(rescueY)-2]),brush='r', pen='r') #rescue arrow

 #update the arrow location

 a1.setPos(rescueX[len(rescueX)-1],rescueY[len(rescueY)-1])

 #add the arrow

 pWidget.addItem(a1)

 #add some padding to show all the drawn objects

 #pWidget.autoRange(padding=0.1, item=p1)

 if(len(victimX)>0):

 global a2

 #first we try to see if the variable has even been set

 try:

 pWidget.removeItem(a2) #get rid of old arrow

 except:

 pass #do nothing if this arrow has not yet been created to be removed

 a2=pg.ArrowItem(angle=calc.calcArrowAngle(victimX[len(victimX)-1], victimY[len(victimY)-1],

victimX[len(victimX)-2], victimY[len(victimY)-2]),brush='b', pen='b') #victim arrow

 #update the arrow position

 a2.setPos(victimX[len(victimX)-1],victimY[len(victimY)-1])

 #add the arrow

 pWidget.addItem(a2)

 #add some padding to show all the drawn objects

 #pWidget.autoRange(padding=0.1, item=p2)

 if(len(mothershipX)>0):

 global a3

 #first we try to see if the variable has even been set

 try:

 pWidget.removeItem(a3) #get rid of old arrow

 except:

 pass #do nothing if this arrow has not yet been created to be removed

 a3=pg.ArrowItem(angle=calc.calcArrowAngle(mothershipX[len(mothershipX)-1],

mothershipY[len(mothershipY)-1], mothershipX[len(mothershipX)-2], mothershipY[len(mothershipY)-

2]),brush='g', pen='g') #mothership arrow

 #update the arrow position

 a3.setPos(mothershipX[len(mothershipX)-1],mothershipY[len(mothershipY)-1])

 #add the arrow

 pWidget.addItem(a3)

 global text

 pWidget.addItem(text) #add the text again because it was cleared

 #determine if there is a new message received and if so, delete the last text and add the new

one

 #only check if we have coordinates for the rescue craft

 if(len(mothershipX) > 0 or len(victimX) > 0 or len(rescueX) > 0):

 global mState

 #print mState

160

 newMes, mState = getMesFromFile(mState)

 #print newMes

 if(newMes != None):

 #if there is a new message

 #remove the old one

 pWidget.removeItem(text)

 #create the new one

 text = pg.TextItem(text=newMes,color='w',html=None)

 #try to place the text in the last rescue coordinate

 if(len(rescueX) > 0):

 text.setPos(rescueX[len(rescueX)-1],rescueY[len(rescueY)-1]) #set the position of it

 #otherwise try to write to the last position of the mothership

 elif(len(mothershipX) > 0):

 text.setPos(mothershipX[len(mothershipX)-1],mothershipY[len(mothershipY)-1]) #set the

position of it

 elif(len(victimX)>0):

 #otherwise try the victim

 text.setPos(victimX[len(victimX)-1],victimY[len(victimY)-1]) #set the position of it

 else:

 text.setPos(0.5,0.5)#if none there, place in 0.5,0.5

 pWidget.addItem(text) #add the item

 #pWidget.autoRange(padding=0.5, item=a3)

 #add some padding to show all the drawn objects

 pWidget.setAspectLocked(lock=True,ratio=1)

 #pWidget.autoRange(padding=0.05)

 #set the view range (Zoomed in on map)

 xVuRng= mothershipX[len(mothershipX)-1]

 yVuRng = mothershipY[len(mothershipY)-1]

 #zoomed in to 100x100 meters

 pWidget.setRange(xRange=[xVuRng-50,xVuRng+50],yRange=[yVuRng-50,yVuRng+50])

Start a timer to rapidly update the plot in pw

#while 1: #NOTE:Not sure if this will mess up the file

t = QtCore.QTimer()

t.timeout.connect(updateData)

t.start(500)

#updateData()

Start Qt event loop unless running in interactive mode or using pyside.

if __name__ == '__main__':

 import sys

 if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'):

 QtGui.QApplication.instance().exec_()

Appendix N - Coordinates.log
#log file to store GPS data for reading

#data stored as: (Separated by comma)

#XBee.........#XBee identifier ex A=Mother, B=Rescue, C=victim.. etc

#latitude.....#latitude value (degrees)

#longitude....#longitude value

#Validity bit (E is valid)

#xPos.........#x-axis position in meters from the start position

#yPos.........#y-axis position in meters from the start pos

A,42.4250335,-71.4719553,E,0.0,0.0

A,42.4250291,-71.4719626,E,-0.599350793168,-0.489395522737

A,42.4250221,-71.4719593,E,-0.32841141134,-1.26797931027

A,42.4250172,-71.4719485,E,0.558299423196,-1.81298796131

A,42.4250033,-71.4719425,E,1.05091667713,-3.35903290994

161

A,42.4249880,-71.4719418,E,1.10838881822,-5.06079461623

C,42.4250306,-71.4719499,E,0.443355376886,-0.322556140201

C,42.4250370,-71.4719479,E,0.607561040413,0.389291894164

A,42.4249915,-71.4719298,E,2.09362326408,-4.67150272285

C,42.4250375,-71.4719378,E,1.43679975164,0.444905021676

B,42.4259339,-71.4694749,E,203.646435737,100.148120276

B,42.4259349,-71.4694843,E,202.874672912,100.259346532

B,42.4259319,-71.4694930,E,202.160388128,99.9256677661

C,42.4250454,-71.4719351,E,1.65847732397,1.32359243858

A,42.4249924,-71.4719177,E,3.08706800554,-4.5713990927

B,42.4259289,-71.4695010,E,201.503574892,99.5919890003

B,42.4259265,-71.4695111,E,200.674345914,99.3250459876

A,42.4249905,-71.4719097,E,3.74389104287,-4.78272897788

C,42.4250464,-71.4719439,E,0.935972343723,1.4348186936

B,42.4259156,-71.4695265,E,199.409988433,98.1126798048

B,42.4259106,-71.4695366,E,198.580763446,97.5565485281

A,42.4249865,-71.4719137,E,3.41547965655,-5.22763399876

C,42.4250518,-71.4719439,E,0.935972303413,2.03544047215

B,42.4259086,-71.4695426,E,198.088152978,97.3340960173

A,42.4249821,-71.4719204,E,2.86539048553,-5.71702952229

A,42.4249781,-71.4719150,E,3.30874613946,-6.16193454397

C,42.4250528,-71.4719358,E,1.60100524295,2.14666672797

B,42.4259042,-71.4695500,E,197.480603091,96.8447004938

B,42.4259007,-71.4695607,E,196.602114232,96.4554086004

A,42.4249746,-71.4719016,E,4.4089248794,-6.55122643734

B,42.4258968,-71.4695688,E,195.937091877,96.0216262044

A,42.4249672,-71.4719003,E,4.5156588948,-7.37430072673

B,42.4258888,-71.4695983,E,193.515086956,95.1318161626

C,42.4250518,-71.4719251,E,2.47950557436,2.03544047215

B,42.4258874,-71.4696237,E,191.429691042,94.9760994049

A,42.4249608,-71.4719003,E,4.51565912529,-8.08614876031

B,42.4258725,-71.4696452,E,189.664514423,93.3188282005

A,42.4249578,-71.4718942,E,5.01648689433,-8.41982752617

C,42.4250612,-71.4719271,E,2.315299734,3.08096727238

B,42.4258601,-71.4696673,E,187.850072255,91.9396226352

A,42.4249642,-71.4718895,E,5.40237022503,-7.70797949259

B,42.4258537,-71.4696888,E,186.084882211,91.2277746008

B,42.4258468,-71.4697089,E,184.43463596,90.4603134397

A,42.4249687,-71.4718909,E,5.28742598775,-7.2074613434

B,42.4258393,-71.4697330,E,182.45598113,89.6261165247

C,42.4250687,-71.4719284,E,2.20856592673,3.91516418664

A,42.4249746,-71.4718909,E,5.28742573895,-6.55122643734

B,42.4258379,-71.4697585,E,180.362374037,89.470399767

A,42.4249761,-71.4718848,E,5.78825326359,-6.38438705401

C,42.4250637,-71.4719177,E,3.08706625006,3.35903291073

B,42.4258294,-71.4697820,E,178.432981641,88.524976597

A,42.4249672,-71.4718835,E,5.89498742964,-7.37430072673

B,42.4258156,-71.4697961,E,177.275358378,86.990054274

A,42.4249603,-71.4718835,E,5.89498775405,-8.14176188782

B,42.4258096,-71.4698169,E,175.567638244,86.3226967423

C,42.4250612,-71.4719070,E,3.96556656556,3.08096727238

B,42.4258002,-71.4698423,E,173.482251881,85.277169942

B,42.4257844,-71.4698752,E,170.781106299,83.5197951082

A,42.4249533,-71.4718875,E,5.56657649161,-8.92034567535

B,42.4257725,-71.4699134,E,167.644812293,82.1962026704

A,42.4249593,-71.4718775,E,6.38760516597,-8.25298814363

B,42.4257621,-71.4699483,E,164.779453538,81.0394496152

C,42.4250652,-71.4718962,E,4.85227694697,3.52587229326

B,42.4257428,-71.4699892,E,161.421491515,78.892782888

B,42.4257354,-71.4700408,E,157.185017926,78.0697085986

A,42.4249712,-71.4718775,E,6.38760455973,-6.92939570505

A,42.4249811,-71.4718875,E,5.56657525739,-5.82825577811

B,42.4257196,-71.4700683,E,154.927221836,76.3123337648

C,42.4250751,-71.4719009,E,4.4663933184,4.627012221

A,42.4249875,-71.4718989,E,4.63060218985,-5.11640774374

B,42.4257082,-71.4701032,E,152.06186203,75.0443544546

C,42.4250776,-71.4719097,E,3.74388844211,4.90507785935

A,42.4249949,-71.4719009,E,4.46639617527,-4.29333345435

B,42.4256928,-71.4701474,E,148.432954014,73.3314701226

162

A,42.4250038,-71.4719097,E,3.74389064574,-3.30341978243

B,42.4256814,-71.4701776,E,145.953474386,72.0634908123

B,42.4256666,-71.4702145,E,142.92391191,70.4173422336

C,42.4250845,-71.4719184,E,3.02959376933,5.67253902044

B,42.4256488,-71.4702655,E,138.736707624,68.4375148889

B,42.4256468,-71.4702963,E,136.207954562,68.2150623789

A,42.4250122,-71.4719117,E,3.57968467512,-2.36911923801

C,42.4250736,-71.4719184,E,3.0295940327,4.46017283768

B,42.4256235,-71.4703399,E,132.628312652,65.62349063

A,42.4250207,-71.4719123,E,3.53042272066,-1.42369606794

C,42.4250771,-71.4718969,E,4.79480451444,4.84946473184

B,42.4256072,-71.4703848,E,128.941928994,63.8105026687

A,42.4250281,-71.4719130,E,3.47295051783,-0.600621778551

B,42.4255924,-71.4704277,E,125.41974784,62.1643540899

B,42.4255790,-71.4704854,E,120.682447664,60.6739222688

A,42.4250395,-71.4719083,E,3.85883355824,0.667357531723

B,42.4255533,-71.4705551,E,114.959927788,57.8154075073

B,42.4255221,-71.4706142,E,110.10769713,54.3451483423

C,42.4250830,-71.4718949,E,4.9590099159,5.5056996379

B,42.4255047,-71.4706980,E,103.227519807,52.4098114995

A,42.4250513,-71.4719056,E,4.08051084634,1.97982734464

B,42.4254760,-71.4707462,E,99.2702002455,49.2176179729

B,42.4254607,-71.4708173,E,93.4327199278,47.5158562666

A,42.4250538,-71.4719130,E,3.47294980598,2.25789298299

B,42.4253944,-71.4709568,E,81.9794553419,40.1415555399

A,42.4250583,-71.4719184,E,3.02959440239,2.75841113218

B,42.4253756,-71.4710306,E,75.9202941616,38.0505019402

A,42.4250523,-71.4719190,E,2.980332848,2.09105359966

B,42.4253503,-71.4711238,E,68.2683436074,35.2364776805

B,42.4253206,-71.4712176,E,60.5671304972,31.9330578981

C,42.4250890,-71.4719009,E,4.46639282326,6.17305716963

B,42.4252954,-71.4713001,E,53.7936720593,29.1301562649

B,42.4252721,-71.4713578,E,49.0563568798,26.538584516

A,42.4250568,-71.4718976,E,4.73733330942,2.59157174885

B,42.4252236,-71.4714570,E,40.9117859231,21.1441111339

B,42.4251795,-71.4715670,E,31.8804978161,16.2390332746

A,42.4250622,-71.4718983,E,4.67986112656,3.1921935274

B,42.4251122,-71.4717434,E,17.3975820587,8.75350629282

B,42.4251048,-71.4717843,E,14.0395786108,7.93043200343

C,42.4250707,-71.4719063,E,4.02303824004,4.13761669748

A,42.4250617,-71.4719231,E,2.64371103356,3.13658039989

C,42.4250588,-71.4719050,E,4.12977229908,2.81402425969

B,42.4250924,-71.4718265,E,10.5748415427,6.55122643734

A,42.4250608,-71.4719345,E,1.7077388163,3.03647676974

A,42.4250578,-71.4719445,E,0.886710560248,2.70279800388

B,42.4250815,-71.4718332,E,10.0247536072,5.33886025458

B,42.4250751,-71.4718513,E,8.53869310768,4.627012221

C,42.4250573,-71.4719144,E,3.35800574686,2.64718487636

B,42.4250677,-71.4718674,E,7.21683815868,3.80393793161

A,42.4250533,-71.4719519,E,0.27914963181,2.20227985548

B,42.4250622,-71.4718815,E,6.05918861748,3.1921935274

C,42.4250687,-71.4719170,E,3.14453810282,3.91516418664

B,42.4250276,-71.4718983,E,4.67986241798,-0.656234906063

B,42.4250048,-71.4719278,E,2.25782877032,-3.19219352661

A,42.4250464,-71.4719606,E,-0.435145036625,1.4348186936

B,42.4250147,-71.4719680,E,-1.04270629511,-2.09105359966

B,42.4250419,-71.4719928,E,-3.07885650211,0.934300544413

A,42.4250414,-71.4719687,E,-1.10017806144,0.878687416901

B,42.4250726,-71.4719955,E,-3.30053336303,4.34894658265

B,42.4250840,-71.4719640,E,-0.714294468428,5.61692589293

A,42.4250345,-71.4719774,E,-1.81447287241,0.111226255814

B,42.4250890,-71.4719412,E,1.15764961033,6.17305716963

B,42.4250909,-71.4719164,E,3.19379923143,6.38438705481

A,42.4250291,-71.4719881,E,-2.69297342941,-0.489395522737

B,42.4250810,-71.4719036,E,4.24471550831,5.28324712707

A,42.4250197,-71.4720002,E,-3.68641817149,-1.53492232296

A,42.4250103,-71.4720129,E,-4.72912477956,-2.58044912319

A,42.4250028,-71.4720297,E,-6.10845320565,-3.41464603745

A,42.4249994,-71.4720478,E,-7.59451528085,-3.79281530595

163

A,42.4249944,-71.4720659,E,-9.08057755251,-4.34894658186

A,42.4249885,-71.4720820,E,-10.4024342677,-5.00518148872

A,42.4249860,-71.4720941,E,-11.3958792835,-5.28324712707

A,42.4249830,-71.4721075,E,-12.49605813,-5.61692589293

A,42.4249821,-71.4721142,E,-13.0461475094,-5.71702952229

A,42.4249791,-71.4721249,E,-13.9246486508,-6.05070828815

A,42.4249761,-71.4721330,E,-14.5896823377,-6.38438705401

A,42.4249726,-71.4721444,E,-15.5256556396,-6.77367894818

A,42.4249687,-71.4721544,E,-16.3466850017,-7.2074613434

A,42.4249657,-71.4721651,E,-17.2251863159,-7.54114010927

A,42.4249608,-71.4721779,E,-18.2761040224,-8.08614876031

A,42.4249568,-71.4721893,E,-19.2120776169,-8.53105378198

A,42.4249538,-71.4722047,E,-20.4764627029,-8.86473254784

A,42.4249474,-71.4722154,E,-21.3549647982,-9.57658058142

A,42.4249429,-71.4722295,E,-22.5126165239,-10.0770987306

A,42.4249395,-71.4722389,E,-23.2843844611,-10.4552679983

A,42.4249360,-71.4722463,E,-23.8919466409,-10.8445598917

A,42.4249330,-71.4722604,E,-25.0495982632,-11.1782386576

A,42.4249261,-71.4722764,E,-26.3632462963,-11.9456998194

A,42.4249227,-71.4722845,E,-27.0282806483,-12.3238690871

A,42.4249202,-71.4722919,E,-27.6358427936,-12.6019347255

A,42.4249157,-71.4723033,E,-28.5718171036,-13.1024528747

A,42.4249123,-71.4723127,E,-29.3435853737,-13.4806221424

A,42.4249108,-71.4723281,E,-30.6079707835,-13.6474615257

A,42.4249078,-71.4723395,E,-31.5439448942,-13.9811402916

A,42.4249034,-71.4723516,E,-32.5373914628,-14.4705358151

A,42.4248974,-71.4723650,E,-33.6375723448,-15.1378933468

A,42.4248949,-71.4723764,E,-34.5735464902,-15.4159589852

A,42.4248885,-71.4723931,E,-35.9446673619,-16.1278070188

A,42.4248870,-71.4724039,E,-36.8313795601,-16.2946464021

A,42.4248816,-71.4724199,E,-38.1450282672,-16.8952681806

A,42.4248751,-71.4724340,E,-39.3026818299,-17.6182388399

A,42.4248712,-71.4724468,E,-40.3536008356,-18.0520212359

A,42.4248657,-71.4724629,E,-41.6754601882,-18.6637656401

A,42.4248623,-71.4724763,E,-42.7756409513,-19.0419349078

A,42.4248578,-71.4724897,E,-43.8758221589,-19.542453057

A,42.4248529,-71.4725024,E,-44.9185315142,-20.087461708

A,42.4248504,-71.4725178,E,-46.1829180789,-20.3655273464

A,42.4248464,-71.4725286,E,-47.0696316075,-20.8104323673

A,42.4248415,-71.4725440,E,-48.3340192046,-21.3554410183

A,42.4248355,-71.4725588,E,-49.5491455512,-22.02279855

A,42.4248291,-71.4725715,E,-50.5918559189,-22.7346465844

A,42.4248256,-71.4725795,E,-51.2486811843,-23.1239384778

A,42.4248187,-71.4725923,E,-52.299602229,-23.8913996389

A,42.4248093,-71.4726043,E,-53.2848420583,-24.9369264391

A,42.4248044,-71.4726204,E,-54.6067023695,-25.4819350901

A,42.4247969,-71.4726332,E,-55.6576240429,-26.3161320052

A,42.4247925,-71.4726459,E,-56.700334139,-26.8055275279

A,42.4247870,-71.4726593,E,-57.8005169199,-27.4172719321

A,42.4247831,-71.4726721,E,-58.8514372393,-27.8510543281

A,42.4247747,-71.4726929,E,-60.559183895,-28.7853548726

A,42.4247697,-71.4727063,E,-61.6593667554,-29.3414861493

A,42.4247633,-71.4727217,E,-62.9237564489,-30.0533341828

A,42.4247568,-71.4727338,E,-63.9172063353,-30.7763048429

A,42.4247519,-71.4727525,E,-65.4525354935,-31.3213134939

A,42.4247479,-71.4727639,E,-66.3885121535,-31.7662185148

A,42.4247425,-71.4727794,E,-67.6611120718,-32.3668402933

A,42.4247370,-71.4727921,E,-68.7038236455,-32.9785846975

A,42.4247336,-71.4728089,E,-70.0831566131,-33.3567539653

A,42.4247296,-71.4728196,E,-70.961661425,-33.8016589869

A,42.4247232,-71.4728343,E,-72.1685798647,-34.5135070205

A,42.4247167,-71.4728538,E,-73.7695931393,-35.2364776805

A,42.4247118,-71.4728679,E,-74.9272491152,-35.7814863316

A,42.4247073,-71.4728813,E,-76.0274327973,-36.28200448

A,42.4247024,-71.4728947,E,-77.1276168044,-36.827013131

A,42.4246994,-71.4729148,E,-78.7778902433,-37.1606918969

A,42.4246935,-71.4729276,E,-79.8288132239,-37.8169268037

A,42.4246890,-71.4729430,E,-81.0932033844,-38.3174449521

A,42.4246841,-71.4729537,E,-81.9717094496,-38.8624536032

164

A,42.4246801,-71.4729725,E,-83.5152499114,-39.307358624

A,42.4246762,-71.4729846,E,-84.5086997721,-39.7411410201

A,42.4246707,-71.4729980,E,-85.6088847932,-40.3528854243

A,42.4246623,-71.4730201,E,-87.4233687871,-41.2871859687

A,42.4246603,-71.4730375,E,-88.8519639471,-41.5096384795

A,42.4246564,-71.4730550,E,-90.2887708296,-41.9434208747

A,42.4246484,-71.4730731,E,-91.7748426588,-42.8332309173

A,42.4246460,-71.4730865,E,-92.8750259463,-43.10017393

A,42.4246425,-71.4730979,E,-93.8110038976,-43.4894658242

A,42.4246405,-71.4731173,E,-95.4038055906,-43.7119183342

A,42.4246331,-71.4731327,E,-96.6681990803,-44.5349926236

A,42.4246217,-71.4731468,E,-97.8258617943,-45.8029719339

A,42.4246163,-71.4731569,E,-98.6551075078,-46.4035937132

A,42.4246074,-71.4731663,E,-99.4268838814,-47.3935073851

A,42.4246024,-71.4731777,E,-100.362863503,-47.9496386618

A,42.4245955,-71.4731864,E,-101.077166279,-48.7170998229

A,42.4245910,-71.4732018,E,-102.34155819,-49.2176179721

A,42.4245866,-71.4732132,E,-103.277537558,-49.7070134956

A,42.4245866,-71.4732360,E,-105.149489108,-49.7070134956

A,42.4245757,-71.4732387,E,-105.371176741,-50.9193796784

A,42.4245712,-71.4732514,E,-106.413890507,-51.4198978268

A,42.4245653,-71.4732615,E,-107.243137352,-52.0761327337

A,42.4245618,-71.4732749,E,-108.343322615,-52.465424627

A,42.4245569,-71.4732897,E,-109.558453581,-53.0104332781

A,42.4245485,-71.4733171,E,-111.808087592,-53.9447338225

A,42.4245430,-71.4733339,E,-113.187425698,-54.5564782267

A,42.4245405,-71.4733446,E,-114.065931857,-54.834543865

A,42.4245361,-71.4733594,E,-115.281062795,-55.3239393886

A,42.4245311,-71.4733755,E,-116.602928502,-55.8800706645

B,42.4250454,-71.4719076,E,3.9163053632,1.32359243858

C,42.4250454,-71.4719076,E,3.9163053632,1.32359243858

A,42.4245296,-71.4733929,E,-118.031525151,-56.0469100478

B,42.4249989,-71.4719988,E,-3.57147476733,-3.84842843347

C,42.4249989,-71.4719988,E,-3.57147476733,-3.84842843347

A,42.4245277,-71.4734030,E,-118.860769026,-56.258239933

B,42.4249632,-71.4720981,E,-11.7242929213,-7.81920574762

C,42.4249632,-71.4720981,E,-11.7242929213,-7.81920574762

A,42.4245252,-71.4734204,E,-120.289366699,-56.5363055713

B,42.4249246,-71.4722013,E,-20.1973175532,-12.1125392028

C,42.4249246,-71.4722013,E,-20.1973175532,-12.1125392028

A,42.4245331,-71.4734298,E,-121.06112895,-55.6576181544

B,42.4248910,-71.4723167,E,-29.6720021132,-15.8497413804

C,42.4248910,-71.4723167,E,-29.6720021132,-15.8497413804

A,42.4245410,-71.4734305,E,-121.11859354,-54.7789307375

B,42.4248583,-71.4724307,E,-39.0317473268,-19.4868399295

C,42.4248583,-71.4724307,E,-39.0317473268,-19.4868399295

A,42.4245425,-71.4734177,E,-120.067671551,-54.6120913542

B,42.4248365,-71.4725272,E,-46.9546911594,-21.911572295

C,42.4248365,-71.4725272,E,-46.9546911594,-21.911572295

A,42.4245485,-71.4734224,E,-120.453550673,-53.9447338225

B,42.4248108,-71.4726171,E,-54.3357597103,-24.7700870558

C,42.4248108,-71.4726171,E,-54.3357597103,-24.7700870558

B,42.4248207,-71.4726453,E,-56.6510595951,-23.6689471288

C,42.4248207,-71.4726453,E,-56.6510595951,-23.6689471288

A,42.4245574,-71.4734298,E,-121.061105488,-52.9548201506

B,42.4247989,-71.4727485,E,-65.1240989617,-26.0936794943

C,42.4247989,-71.4727485,E,-65.1240989617,-26.0936794943

A,42.4245692,-71.4734231,E,-120.511002992,-51.6423503376

B,42.4247791,-71.4728397,E,-72.6119039548,-28.295959349

C,42.4247791,-71.4728397,E,-72.6119039548,-28.295959349

A,42.4245791,-71.4734150,E,-119.845958017,-50.5412104099

B,42.4247425,-71.4729215,E,-79.327953506,-32.3668402933

C,42.4247425,-71.4729215,E,-79.327953506,-32.3668402933

A,42.4245871,-71.4734104,E,-119.468275937,-49.6514003681

A,42.4245796,-71.4734077,E,-119.246604597,-50.4855972824

B,42.4246979,-71.4730637,E,-91.0030376136,-37.3275312802

C,42.4246979,-71.4730637,E,-91.0030376136,-37.3275312802

A,42.4245737,-71.4734077,E,-119.246610208,-51.1418321885

B,42.4246712,-71.4731388,E,-97.168998512,-40.2972722968

165

C,42.4246712,-71.4731388,E,-97.168998512,-40.2972722968

A,42.4245692,-71.4734137,E,-119.739233385,-51.6423503376

B,42.4246445,-71.4732246,E,-104.213465209,-43.2670133133

C,42.4246445,-71.4732246,E,-104.213465209,-43.2670133133

A,42.4245623,-71.4734137,E,-119.739239974,-52.4098114995

B,42.4246237,-71.4732796,E,-108.729153763,-45.5805194238

C,42.4246237,-71.4732796,E,-108.729153763,-45.5805194238

A,42.4245534,-71.4734030,E,-118.860744663,-53.3997251714

B,42.4246049,-71.4733306,E,-112.916429503,-47.6715730235

C,42.4246049,-71.4733306,E,-112.916429503,-47.6715730235

A,42.4245608,-71.4734003,E,-118.639059128,-52.5766508821

A,42.4245663,-71.4733996,E,-118.581581718,-51.9649064778

C,42.4246108,-71.4733520,E,-114.673431009,-47.0153381166

B,42.4246019,-71.4733815,E,-117.09548143,-48.0052517894

C,42.4246019,-71.4733815,E,-117.09548143,-48.0052517894

A,42.4245727,-71.4733996,E,-118.581575665,-51.2530584443

B,42.4245900,-71.4733815,E,-117.095492543,-49.3288442271

C,42.4245900,-71.4733815,E,-117.095492543,-49.3288442271

B,42.4245801,-71.4733990,E,-118.532306782,-50.4299841549

C,42.4245801,-71.4733990,E,-118.532306782,-50.4299841549

A,42.4245821,-71.4734003,E,-118.639038974,-50.207531644

