Autonomous Man Overboard Rescue

Equipment

A Major Qualifying Project Report:
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science
By

Frederick Hunter (RBE)

Thomas Hunter (ME and ECE)
Date:

Approved:

David Cyganski, Major Advisor

Ken Stafford, Co-Advisor

Acknowledgements

We would like to thank professors Cyganski and Stafford for advising the project. Special thanks to
professor Stafford for donating MINI, his inflatable Sea Rogue tender used as the rescue craft in this
project. Professor Gennert, for allowing us to borrow the trolling motors from a previous autonomous
kayak MQP as well as Alex Kindle and Justin Stoker for their help the documentation they have provided

us from a previous version of this project. We would also like to thank our parents for putting up with
the circuits and construction taking place on our kitchen table.

Abstract

This project addressed the problem of rescuing people who have fallen overboard at sea. Large vessels
with slow response times and limited turning capabilities are poorly equipped to handle man overboard
cases. To solve this problem, a robotic rescue boat was developed with support from systems for the
vessel and victim that autonomously help pilot the rescue boat via GPS, a magnetic compass, and a

project-specific terminal location system. The same system also supports the return of the victim to the
vessel.

Executive Summary

Ever since man has attempted to travel across the ocean there has been a risk of persons falling
overboard. With today’s new technology, the risk has slowly been diminishing but is still presents a
problem for larger ships. With increasing vessel size, if someone were to fall overboard, it would be
nearly impossible to keep track of them and turn the boat around for rescue. Some of the larger vessels
such as oil tankers may take upwards of ten to twenty minutes to stop and have a turning radius of
nearly two kilometers. There are various forms of safety equipment available today such as a beacon
one can wear to notify the crew of their position once fallen overboard. Most ships also have a rescue
team on standby for such cases, but it takes some time to mobilize any crew and dispatch a rescue
mission. In the minutes that pass, the victim may be out of sight. Especially in cold waters every minute
counts as survival time is low.

The purpose of this project was to create a robotic rescue system that could autonomously locate and
return the victim to the vessel they had fallen from. To achieve this, the equipment was designed in
three modules.

The first module is the personal locator device that the victim would be wearing to provide the other
modules with his or her location. It features a GPS for general localization, an AM transmitter for homing
purposes when the rescue unit approaches the victim, and an XBee transceiver for relaying information
to the other modules. The software running on the victim unit executes on an ATMEGA 328P.

The second module is the rescue unit. This is located on a 10 foot rescue craft that is capable of locating
and returning the victim autonomously. It also has a GPS for localization, three AM receivers for homing
in on the victim, and an XBee for transmitting coordinates and messages to the other modules. The
rescue unit also has power electronics for controlling the motors as well as an ATMEGA 328P that runs
the software.

The third module is the mothership unit. This is used to relay information about the current status of the
rescue to the end-user on the mothership. It features a monitor for displaying the current location of all
the modules as well as a GPS for location and an XBee for transmitting information. The software is
executed on the Raspberry Pi which also has a keyboard allowing for the user to take over control of the
rescue craft should the need arise. These three modules are designed to work together and
autonomously find, rescue, and return the victim to the mothership.

Each of the components was tested on the water in Maynard, MA and it was found that it successfully
demonstrated the effectiveness of the autonomous rescue mission. The rescue unit was placed at one
end of the lake while the victim unit was at the other while the mothership module was on a canoe. The
victim unit was then activated and the rescue craft successfully homed in on it to within a meter. The
return to home button was then pressed and the rescue unit returned to the mothership unit. It is
recommended that a more powerful outboard motor be used for future versions of this project as well
as a transmitter with longer range capabilities.

Authorship

Both members of the project worked on mechanical portions, testing of equipment, research, analysis
and writing of the report. Thomas was responsible for mechanical-related tasks as well as electrical
design and analysis. Frederick wrote all the code for the three modules and integrated the hardware
with the software. Each member wrote the respective section pertaining to his aforementioned role in
the project.

Table of Contents

Yol 4o LT Y] 1=To Fd<T o Y=Y o (PP URP i
Y o1 - [ot PSPPSR P RO VOTRTOPPRTI ii
EXECUTIVE SUMIMIAIY ittt e ettt et e e e s st bt e e e e e e s e aabebaeeeeeseasanbeaaeeeesssannnnnaeaeeeeenns iii
F YT d o VoY o 11 TP UPPPRPPRPRN iv
TADIE OF CONETENTSeenteeeteeie ettt ettt e bt e s bt e sat e st e et e e b e e bt e sbeesaeeeate et e ebeesneesanenas v
I o1 1oy T TP ix
ADDIEVIATIONS ...ttt sttt et h e s bt e sat e st e bt e b e be e sae e et e earean Xiv
Ta1ageTe [V AT] o HUUT O PP P PO USTOPPTOTOTPRI 1
2ol 4= {4 o TU 1o o U SPSP 2
Problem Statement and Project GOAIS........c.uviiieiiiiiiiiiie ettt et ssaa e e e sabae e e s sareeeean 3
(oY = e M0 o JT<Tor 1Y/ T TR 3
TASKS ettt ettt ettt b e b bt sh et e aE e ekt e bt e eh e e eateea bt e bt et e e beeaheeeheeeabeebeenbeenreenanena 3

o o) [=Tot 3 {=To [T 1= 0 0 =] o £ PPN 3
MOTNEISHIP IMOQUIEeiiii e e e st e e e st e e e e sbeee e s sabeeeeesabaeessnnreeeeennrenas 3
PErsONal LOCATOr DEVICE.coiuiiiiiiieetie ettt ettt ettt ettt ettt sat e s bt e e st e s bt e e sabeesabeeesabeesbbeesabeesbeeesareens 3
RESCUE BO@T....cii ittt e s 4
SUIMIMIAIY e sesaeeeeaaeaaaeaaeeaaaaasasaaasasaaaasasaaeaeeaseeasaeaeeeaeesesesenesesesenanananes 4
IMLEENOAS ...ttt b e b e s bt s ae e st e et e e bt e e bt e sae e sab e et e e bt e be e beeeheesaeeeabe e beenbeesheenaneeas 4
Review of Current MOB Systems and Methodscc.ueiiiiiiiiiciii e e 5
Domestic RESCUE TECHNOIOZIES......ciiiciiiie ittt e e e rba e e e e be e e e e e beeeeesareeas 5
2T 03N 5
RAMIO DIr€CtION FINOEIS.cc..eiiiiiieeiie ettt st ettt s e e sree e sar e e s beesmenesareeeane 5

() <3 TV =L RSP RT 6
TrAIIINE LINES weeeeeiiiee ettt ettt e e ettt e e e ettt e e e et e e e e e asaee e e ataeeeessaeeesssaeeeassaseeenssansesnnsaseesansseeenan 6

GPS Man OVerboard FUNCLIONcoiiiiieiece ettt s st es 6
RESCUE Cral@S ...ttt sttt ettt e bt e s b e e saeesare s bt e b e e beesneesmeeenneen 6
Foreign ReSCUE TECNNOIOZIESuviii ittt ebee e e e s ta e e e e aba e e e e abeee e esasteeeennseeas 7
0o [Al U [e [U= ol U= OO TP PRTOUS 7
Man OVErbOard BO@tc.c.uiiiiieiiiieiiie ettt ettt st e s e et e s b e e sar e e e re e e nenesreeeane 7
Determination of SyStem REQUIFEMENTSccoiiuiiiiieiiiie ettt e et e e et e e e s eabr e e e esaaaeeeeensseeeeeansaeanan 7

Module Design from System REQUIFEMENTSceiieeii ittt e e e e e nbrrr e e e e e e e e nanraeeee s 8

SUIMIMIAIY e e e e e e e e e e e e e e s e e e e e e e s e e e e e s e e e s e e s e e aeasaeasasaaaaasaaasasasasasasssasasasasaaasesasaseseaesesesesesanenenns 9
SYSTEM DESISN OVEIVIEW . uiiiiieeeieeceeeeeeeeeee s e e e e e e e e e e e e s e eeeeaseeeeasaseesssessesssssssessseesnsesasseennnns 9
Y T 1 01T 5] o 11 TSRS 9
G S ettt ettt b e b e e b et sh et e et et e e bt e e bt e ehe e e et eab e bt e b e e beeeheeeae e et e enneen 9

2 1Y o] o= o oV o PR 10
Ad-HOC NetWOrk DEVICE (AHND)c.eieiiieeciieeiee ettt e ette e st e e e tte e ste e e sateesteessaeesnteessneessseesnseeesnsenan 11
GraphiCal User INTEITACE ...uuiiiiiiee et et e st ae e e s s bee e e s sateeessaneaeessanes 11
ENCIOSUIE ...ttt ettt e b e bt sat e st e bt e et e s bt e she e e st e et e et e e nbeeeneesaeesabe e be e beenes 12
PErsONal LOCAtOr DEVICE.ceiiiiiietieiieit ettt ettt ettt sttt ettt et esbeesat e st e st e et e e sbeesbeesmeeeneeeneeentean 13
Ad-HOC NETWOIK DEVICE ...ttt ettt sttt et e b e st st st st e b e e s beesmeesaeeeneeeneean 13
G e aaaaaaaaaaaaeaeaaaaaaaaaaanns 14
Man OVErbOArd DELECION....cccuiiiiiii ettt ettt ettt sab e st e bt e e s b e e sabeesabeessateesabeeenanes 14
AM TEaNSIMITEOI 1.ttt et e s e e e s snr e e e s s b e e e s s nree s 14

[U<To [V T=T o [otV AT =T ot o] o VOSSR 14
Ferrite Core LOOPSEICK ANTENNGoiii et bee e e e e e e e eabe e e e e earee e e eeareeas 15
AtmMega 328P MICTOCONTIOIEI viiie et e s e e e s e e e e s abeeeeeareeas 15
ENCIOSUIE ...ttt ettt et s e st ettt e b e s bt e s ae e s et et e e bt e bt e sneesanesane e ne e reenee 16
RESCUE BOAT MOTUIE ...t sttt e r e re e s saee e 17
Ad-HOC NEEWOIK DEVICE ... ettt ettt ettt ettt ettt e bt e s b e s bt e saeesate et e e nbeesbeesaeesanenas 18
THE BOT -ttt et b e bt h e a bt et e et e e bt e eh e e eate et e e bt e be e beenbeeeaeeeateetean 18
G S ettt bttt b e bt eh et eh et ea et et e e bt e eh e e eht e eab e e bt e be e bt e ebeeeheeeat e e bt enbeenheesaeena 19
(0o 0] o= 13 4T U] 1 PPN 19
AtmMEga 328P MICIOCONTIOIEIiiiiieiiee et e e e e st e e e s b e e e e e sbeeeeenareeas 20
Victim RetrieVal DETECTONcoviiiieieeiieeeeee ettt sttt eee s 20
Terminal LOCAtOr DEVICE ...cceiueeiiiiieiiee ettt sttt e s e s b e s e e e sbe e e sareesaneeesmneesarenesaneenn 21
V1O] o = 1Y o o Tl B 4 Y= ST PURTOT 23
2= = V£ URRTN 23
Lo L1107 =40\ o) o USSR 24
ENCIOSUIE....eiieeee ettt ettt et sae e st sttt e b e s bt e s bt e st e et e et e e ebe e eneesanesane e ne e reenes 24
SUIMIMIAIY e e e ee e e e e e e e e e e s e e e e e e e e s e s e e s sesesasasasasssssssssssssssssssssasssssssssssssssssssssssssssssensssssnsssesesnsannsenns 26

DI P g T T o I T o [oY SRR 27

Yo AN T =l D LT F=d o PRSP 27

Y T d a1 o o 1T o I/ e Yo [V 11 RS 27
Personal Locator DeVICe IMOTUIEcoouuiiiiiiieiieeece ettt st 29
RESCUE MOTUIE. ...ttt st sttt e bt e s bt e s bt e saee st e sabeebeens 31
Messages BEtWEEN MOGUIESccuuiiiiiiiie ettt s e s e sbee e e st e e e e sabee e s e beeeesnareeas 34
LN d=T 1o b= T D LT F={ o F PP PPPPPOROPPRPP 34
LYo (U LT o TolV AT =] LT ot T o H SRR 35
TranSMITEEr CIFCUIT ...oouviiiiiiiii e st sra e e e s sra e e e s eanee 35

S OTol A =T oY oTo] [o =4V 2SSOt 39
Deliyannis Bandpass FIlLEIiiiiuiiii ettt et e e et e e e e ae e e et e e e e eenbae e e eeabeeeeeenrenas 40

(e T a1 Yo o (ol AN g Y o] L1 =T PP 42
IMEOEOT CONEIOL ..ttt ettt ettt e st e e bt e e sa bt e sabe e e sabeesabeeeateesabeeesabeesabeesabeeesabeeenanes 46
THE RESCUE BO@T.....eeeuteetieitieiiie ettt ettt ettt b e s bttt st et e e bt e s bt e sheesatesabeeabeenbe e beenbeesmeesaeeeneean 48
2o T o =] =N 50
TEST RESUILS .ttt ettt b e be e s a et e st e et e et e s bt e sheesaeesat e et e ebe e bt e nbeesneesnbeeneean 51

The ReSCUE BOAT — DFafl....cccciiiiiiieieeeee ettt sttt et ettt e e s e e st e e sbeeesabeesabeeesanes 52
SOTIAWOIKS ...ttt ettt st st st e b et e b e s be e smeesae e et e e re e reesreesane e 53

The Rescue Boat — POWEr REQUITEMENTS.......iiiiiciiiie ittt ettt e e et e e e sre e e s s bee e e e sreaeeeeanes 55
The Rescue Boat — TUINING CIFClE........uiiiieiiee ettt ettt et e e e et e e e e bte e e e ebteeeeebteeeeenraeaeeanes 57
RESUIES ..ttt ettt b e s bt s ae e et e e ke e e bt e ehe e s ae e e a bt e bt e bt e eh et eae e ea b e et e e ke e eheesabesabe e beenbeenaes 59
R AT =T =T O OO PSP PPPPOPON 59

AV T o1 4 I e Tor=1 o (o T o PP PP OPRTIN 60
N0 g IR o TN 1Y, [] d 01T 5] o 11 TSRS 65
Terminal Location — Land-based DemMONSEIratioN........c.ceveereereerieeiieeneeneesee e 68
Conclusions and FUMher RESEAICN........coiii e 71
CONCIUSIONS ...ttt ettt s e e bt e e s bt e e be e e s a s e e s beeesareesabee e beeesabeeeanseesnreesanenesareesnns 71
(0] 39T o] o]0 4] =13 71
L (=] o PP PP PPPPPPPPRPPPPPRE 72
(00} [0 T TSP PR PRR PR PPROPROPRO 72
23] o] oY= =T o] o1 USSP 73

Appendix A — Boat Water Maneuverability Experimentationcccccevvvieiiiciiee e, 77
GOQIS ettt h e h ettt et e e bt e b e s bt sat e e bt e bt e be e beeeheeeae e e beenbeenheesanena 77
IVLGERIIAIS ettt ettt et et s e st ea bttt e b e s bt e she e e ae e et e et e e nh e e eheesaeenate e be e reenes 77
oIl R aa =T a1 =Y BT AU T o F RS 77
o o Tol=To [0 o < T TSRS PUPTO PP 77

Appendix B — Hull Speed CalCulations.........uuiiiiiiii ettt e e s sabee e e 83

Appendix C— AM Station QUETY (FCC)cciuiiiiiieiieeeeiee ettt e st e srtee e stteesteeestaeesteesbaeesnseessaeesnseesnseeennseean 84

AppPendiX D — ANTENNEA TUNINE c..vviiiieiieee ettt e ree e e e rtre e e e ebe e e e e s bae e e eanbaeeeesnsaeeeesabaeesennseeesennsenas 89

AppendiX E—TUrNiNg CIrCle COUE ... vttt e e e tee e e e tee e e e etbae e e e eabe e e e eeabaeesenbeeeeennnenas 90

Appendix F — SolidWorks Flow Simulation 2012 ProCedUre........cccoccuieieeeiieeeeciiee ettt 92

Appendix G — Drawing File fOr Pi BOX......iucuiii et eeciiee e sreee sttt e et e e s svte e e s sbae e e s svaeeeesseneeesanes 102

APPENTIX H = IMQP POSTEI ..eiiiiiiiii ettt ettt e ettt e e st e e s sbte e e s sbteeeesabteeeesbeaaeesstaeessnsseeessnes 104

Appendix | — AMORE MQP Presentationcccuiieieciiieieciieeeeciieeeeecitee e e ettee e e evteeeeereeeesebaeeessseneaeennes 104

Appendix J — DiImensions fOr CIrCUIT TOWENueiiicciiieeecciteee et eectte e et e e e ette e e e errae e e erteeeesntaeaesanes 117

Appendix K—TLD Radio FINE-TUNINGccocctiieeeeciiieeccciteee ettt e e et e e eette e e e etteeesebteeeessteeeeesaneessseneesannes 119

FAY oY o1 oo [Pt Il | S o o [@ o - o U PPPUPPPN: 121

APPENTIX IM = COUR....utiiiiiiiiecciiee ettt et e e et e e e s et e e e e sbteeeeabteeesebeaeeesnsteeeesstaaesssaeeessnssneessses 121
RESCUE MOAUIE COE ...ttt s e e r e sre e saeesane e 121
VICHIM UNIT COUR ..ttt st s e s me e e sab e e smn e e saneesnenesaneeeneas 136
1Y T d a1 & o 1T o I UL o T A o Yo [T PPt 142
(071 [l VALY, Lo Yo (V11 @ Yo =TSP 148
(€] eI o1V A\, o T [T] LT 0o Yo L USRI 151
b TTS Y AV)V 1V, Fo o [F=IN o o [P 153
PIOtBG.PY SCHIPt COUE ...uviiiiiiiiiie ittt ettt e e et e e e st e e e e st e e e e sbteeeesbteeessabeaeessntaeessasseeessnes 154
[To T d 2T G o 1Y SRR 155

AppPendix N - CoOrdiNateSs.JOguuriiiieie it e e e e e e et e e e e e e e e nnbee e e e e e e e seennraeneeeas 160

viii

Table of Figures

Figure 1 — Man Overboard Rescue Boat (NaUtiC EXPO, 12)...c..ceccuieiiiieiiieeiieecieecieeeireeetee e seee e neeeseeee s 2
Figure 2 — The rescue cradle in action (RescuelTech, 2012)......c.ccocvieiieeeiieeciee e e 7
Figure 3 — Main SYSTEM IMOTUIES.....ccccuiiieieiiee ettt et e e s tae e e ssaba e e e ssabeeeeesaseeeesnnnsaeesan 8
Figure 4 — The Mothership Module System Diagramccceviiciieieriiiiee et e e ssere e e sseee e e e sereeessereeeeas 9
Figure 5 — EM406a GPS Receiver Device (ladyada, 2012)........ccccueriiieeiieeeieecieeciee e e svee e eseeeeesvae e 10
Figure 6 — Mothership Module Raspberry Pi and Pyle MONItOrcoocoviiiiiiiiiiiiiee e 10
Figure 7 — XBee Ad-Hoc Network Device (Mouser, 2013)cuieccieeecieeiieeeieeesreeeieeerreesreessseeessaeessvneeennas 11
Figure 8 — Screenshot of a typical view from the GUIc..uoiiiiiiiiiiiiieccee e 12
=V el S T o] o T=Y g VA =T o Tl Lo L U o TP 12
Figure 10 — Personal LOCAtor DEVICE.......uiiiciiiiiiciiie ettt erree e estee e s ree e e s e e e st e e s s abe e e e s abeeeessbeeesennsenas 13
Figure 11 — Personal Locator Device Module System OVEIrVIEWccccueerrieeerieeniieeeniieenieessieeeniieesiee e 13
Figure 12 — Personal Locator Device Switch for sending Distress Signal........ccccoccveeeeriiieiiiiciee e, 14
FIgUre 13 — INSIAE the PLD.....oiiiiieiiee ettt e e e e et e e e s e e e st e e e e s asbe e e e s nsbaeeesaseeeeensenessnnsenas 15
Figure 14 — Atmega 328P Microcontroller (Mouser, 2013)ccccuiieeiiiiee e e eecieee e e e rree e e ere e e e e eaneeas 16
Figure 15 — Otterbox Dry Box used as Personal Locator Device Enclosure (NPD Group, 2013)................. 16
Figure 16 — The rescue boat with basic component [ayouUt.........cceeeeeciiiiiiiiiie e 17
Figure 17 — Rescue Craft Module SyStemM OVEIVIEWccccuiieeeiiiiiieeciiee et eeiree e ee e e e e e sare e e e ebaee e eeareeas 18
Figure 18 — A view of the Rescue Boat from STEINevi i et 19
Figure 19 — Compass Module used as Navigation Aid (Sparkfun, 2013)cccceeeiiiieeeiiiee e e, 20
Figure 20 — Return Home Button on the Rescue Craft (automationdirect, 1999-2013)cccceecvveeeenneee. 21
Figure 21 — TLD Mounting, Ideal Mounting LOCAtiONS.........ccieiiiiiecciiiiiieee et e e e e e e e e e reeeee s 21
Figure 22 — TLD Mounting on the Rescue Craft — View from Stern........cccccoeeeeeiiieccciiee e 22
Figure 23 — Radio Receiver used for the Terminal Locator Device (RadioShack Corporation, 2013)......... 22

Figure 24 — Song Chuan SPDT 896h-series Relay (Mouser, 2013)ccccveeeiiieeeeiiieeeeeciee e eereeeesveee e eeveeas 23

Figure 25 — MinnKota Endura C2 Trolling Motor (MinnKota, 2008-2013)cccccviiieeeiiieeeeiieeeeeeieee e 24
Figure 26 — Solidworks Model - Stacked Components Holder.........cccccueeeeeiiieiicciiee e 25
Figure 27 — Tower with all Circuit Elements Attached.........ceoeoiiie e 26
Figure 28 — Marine Battery Box used for ReSCUE Craft........c.eviiiciiiiiiiiiie et 26
Figure 29 - Mothership code state MaChIiNESciieiiiiiiece e e e e e e aree s 27
Figure 30 — Mothership Unit State Diagramccueiieciiiiieiiiee et ecree et e e st e e e are e s s e sare e e e e nbaee e enreeas 28
Figure 31 — Example of Coordinate LOZ Fil@.........uuiiieiiie et e e e e e 29
=V Ne W A Y To] 1 o 1Y] o 11 o I 1 TP 29
Figure 33 - Personal locator Module state diagramccccuueeeeiiiiii e e 30
Figure 34 - Rescue Unit State diagramcccuiei ittt e e e et e e e e rte e e s e abe e e e enbeeeeennnenas 32
Figure 35 - Terminal locator device peak envelope signal example.......cccocveeieiiie e, 33
Figure 36: Transmitter CirCUIT DESIZN ...cuuviiiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeereeeereeeeeeeeeesaereseeesseeserereeeneeens 35
Figure 37 — H-Bridge Driver OUTPUL Pin 3. .. ettt et e e e tre e e e are e e s e e e e enbe e e e enneeas 36
Figure 38 — Tuned LC Antenna Circuit Output Waveform ...t e e 36
Figure 39 — Divided Clock Signal from AtMEEA328Pcccccuiiieecieie ettt e e e e e e e e eareeas 37
Figure 40 — Clock Signal Output from Pin 14 of AtMEga328P.........cccociiieeciiieeeeeee et 37
Figure 41 — 1 kHz modulating signal from Atmega328P Pin 13ccccoiiiiiiiiee ettt e 38
Figure 42 — Atmega Pinout for Personal Locator DEVICEcecccuiiieeciiiee ettt ettt 38
FIgUre 43 — POSt AIM RECEIVEI STAZE...ciiiiiiiiiiiiiiieiieeieeeeeeeeeeeeeee e e e eeeeeeeeeeeeeeeeteeeeeeeeereeeeeerereraererreeereeeereerenaneees 39
Figure 44 — Rescue Boat Microcontroller PINOUL........coeuviiiiiee ittt e 40
Figure 45 — Deliyannis-Type Band pass fillterooieiiie ettt 41
Figure 46 — Band pass filter frequency sweep with ImV input signalccccceeeeiiieicciei e, 42
Figure 47 — Logarithmic AmMPIifir.....c.uiie ettt e e et e e et e e e e are e e e e ataee e eeareeas 43
Figure 48 — Logarithmic Amplifier SImulation RESUILScuuiiieiiiiieeciececee e e e 44

X

file:///C:/Users/tonnerre7231/Documents/MQP/Report%20Things/FinalVersions/MQP_Hunter_T_F_AMORE_Final_Report_For_ReviewFINALEDIT.docx%23_Toc354662783
file:///C:/Users/tonnerre7231/Documents/MQP/Report%20Things/FinalVersions/MQP_Hunter_T_F_AMORE_Final_Report_For_ReviewFINALEDIT.docx%23_Toc354662788
file:///C:/Users/tonnerre7231/Documents/MQP/Report%20Things/FinalVersions/MQP_Hunter_T_F_AMORE_Final_Report_For_ReviewFINALEDIT.docx%23_Toc354662789

Figure 49 — Transfer Function of Logarithmic Amplifier, Experimentally Obtained..........ccccceeeeciieeennnnenn. 45

Figure 50 — Comparison of Experimentally Obtained Transfer Function to Simulation...........cccccceeeenneee. 46
Figure 51 — Motor CONtroller CIFCUILIY ..ueiiiiiieei ettt ettt et e e s re e e e e are e e e e abe e e s e abee e e ennaaeeeenareeas 47
Figure 52 — Waterline length of a boat (glen-1, 2008)........cccuuiiieiiiieeceee e e 49
Figure 53 — Graph of Hull Speed vs. Waterline LENGThuvviieiiiieceeeeee e 49
=V Y e N o [l A (=T ol TN = o T- | RSP 50
Figure 55 — Speed and Current vs. Torque Graph (Simple Machines, 2010-2011)......cccccceeevvveeeecveeeeennnen. 52

Figure 56 — Solidworks Simulation for Relative Pressure on the Rescue Craft | Drag Force Simulation ...54
Figure 57 — Resulting Drag Force on the Boat MOdelueiieiiiiiciiee e 55

Figure 58 — Luggage Scale used to determine Drag Force on Rescue Craft (Bed Bath & Beyond, 2013)...55

Figure 59 — Deep Cycle Battery Used to provide Power for the Rescue Boatccccccveeeeeciieeeecvieeeeennen. 56
Figure 60 — Setup to measure current draw from single MoOtOr........cccuiiieiiiiii e e e 57
Figure 61 — Model of the Rescue craft for analysis.........cooocuiiieeciiii e e e 58
Figure 62 — Personal Locator Device Fastened to the Life VeSt......ccccccueeieeciiii e 60
Figure 63 — Mothership GUI: Victim overboard condition detected..........cccceeeeciiiececiiiee e, 61
Figure 64 — Mothership GUI: Rescue unit initialized and heading offcccccoeeciii e, 61
Figure 65 — Rescue Craft and Personal LOCator DEVICE.......ccuuvieecuiieeeciee ettt ee ettt e e e e e 62
Figure 66 — Mothership GUI: Terminal locator device activated.........cccceeeeciieieciiiie e, 63
Figure 67 — Terminal Location 0N the VICTiMc.uiiieiie ettt et e e 63
Figure 68 — Mothership GUI: Waiting for the victim to board..........ccccoveiiiiiii e, 64
Figure 69 — Mothership GUI: Victim is on the rescue Craft........ccoeeeeeiieeecciiie e e e 65
Figure 70 — RetUIrN HOME BULLONcciiiiiiieeeeeeeceeeeeeeee e e e ee e e e e e e e e e e e eeeese s e eeaeeeeeeeesesesesseseseeseesneneeeeennnanns 65
Figure 71 — Rescue Boat RETUIN HOME TripP cieiiiiiiiiiiiieieieeeeeeeeeeeeeeeee e eeeeee e e e e se e e eeeeeseeeeeeesesesssseseeeseeesesesssenneees 66
Figure 72 — Mothership GUI: The rescue craftis returning homecocoeciieiieiiiie e, 67
Figure 73 — Mothership GUI: The rescue craft is back at the mothership.........ccccocoeieiiiiiiiiiicce, 68

Xi

Figure 74 — Experimental Setup for Terminal LoCator TEStccccuiieeiiiiie ettt 69

Figure 75 — Terminal Locator Demonstration — POrt TUMN.......cccciiieiiiiiec et 69
Figure 76 — Terminal Locator Demonstration — Starboard TUIMN.........ccceeeeeiiiie et 70
Figure 77 — Terminal Locator Demonstration — Coastingcccccuiieiiiiieeeiiiiee e et e e 70
Figure 78 — Motors mounted towards €aCh Otheroooiiiii i e 78
Figure 79 — Motors angled away from €ach Other ..o e 79
Figure 80 — Motors angled in and no one on the boat........c..eeeviiiicciii e 80
Figure 81 — Motors angled in and 1501b person on boatcccccuvieiiiiiii e e 80
Figure 82 — Motors straight and N0 one in the boat.........ccccuiie i e e 81
Figure 83 — Motors angled away with no one on the boat.........ccuevieiiiii i 81
Figure 84 — Motors angled away and a 150lb person on the boat.........ccccccvvviiiiiiie e, 82
(O R R AN o (=T ol o ¥ I U 1] o= P PPPRE 90
Figure 86 — Selecting Flow Simulation Add-In for SolidWorks 2012..........ccccoeereiiiieeciiiee e e 93
Figure 87 — FIOW SImMUIGLIoON 200 2....ccueiiieeciiie ettt e et e e e s tte e e e e ate e e s e ate e e s ennbaeesenraeesenseneeennsenas 93
Figure 88 — Flow Simulator 2012 | New Project Wizard...........ccccueeeeeiiieeeciieeeeecieee et e e vee e e eveee e 94
Figure 89 — Flow Simulator 2012 | Project Configurations..........cceeeiiiiieeeciiiee et et 94
Figure 90 — Flow Simulator 2012 | UNit SYSTEMeeiiiiiiee ettt ettt e e e saree e e et e e e e eareeas 95
Figure 91 - Flow Simulator 2012 | ANalYSis TYPE...uee ittt ettt e ettt e e e et e e e e e e e e sabae e s eenbaee e e eareeas 95
Figure 92 - Flow Simulator 2012 | Default Fluid SEIECTIONccocuviieeieee e e 96
Figure 93 - Flow Simulator 2012 | Wall CoNditioNsSueiieiiiiieeiiiee ettt e e e e e e e e 96
Figure 94 - Flow Simulator 2012 |Initial and Ambient Conditionsccccviiiieiiiieeeciiee e, 97
Figure 95 - Flow Simulator 2012 | Simulation ReSOIUIONcccuuiiiiiiiiie et 97
Figure 96 - Flow Simulator 2012 | Computational DOMaiN........cccueeeeeiiiieeciiiee et e e e 98
Figure 97 - Flow Simulator 2012 | Final Computational DOmainccccceecieeeeeiiiiececieee e e 98
Figure 98 - Flow Simulator 2012 | Water Level Check ... et 99

xii

Figure 99 - Flow Simulator 2012 | Insert Global GOals.........cceecveieiiiiiiiecceeeceecee et 99

Figure 100 - Flow Simulator 2012 | Selecting Global GOoals.........c..ccccueeeiriiiiiieciee e 100
Figure 101 - Flow Simulator 2012 | RUN SIMUIAtIoNcoccuiiiiiiiiieecee ettt e 100
Figure 102 - Flow Simulator 2012 | RUN Dialog BOXccccueiiiieeiiieeieeeeieeeeteeecteeeteeesreeeeteeesveeevaeeevee s 101
Figure 103 - Flow Simulator 2012 | Calculations Dialog BOXc.ccccueeeeerereeieeeiieeecieeeereeeeree e eveeeeaee 101
Figure 104 - Flow Simulator 2012 | Inserting Goal PIOTScc.cocuiieciieeeirie ettt et 102
Figure 105 — PiBox Lasercut Template from Adafruit.......ccccceeeriiiiiiiiiiii e 103
Figure 106 — MQP Presentation day POSTEIcc.uiiiiciiee ettt ettt eetee e e e erae e e e arae e e nreeas 104
FIgure 107 — LEVEI 1 DIMENSIONS. ...ciiiciiieeeeiiee e eeiieeeeettee e eettee e eetee e e eeabeeeeesabeeeeesabaeeeesnbaeeeensseseseanseneeennsenns 117
Figure 108 — LeVEl 2DIMENSIONSeciiciiiieeieiiee e eeiiee e eette e e eetee e e eete e e e eeteee e esabaeeeesabaeeeesnsaeeeeanbaseeesnseneeennsenas 118
FIgure 109 — LEVEI 3 DIMENSIONS. ...ciciciiieeeeiiee e eeitee e eette e e eette e e eeteeeeeebaeeeeeabeeeeesasaeeeesssaeeeessseseeesseneesnnsenas 118
FIgUre 110 — LEVE! 4 DiMENSIONS. ...cciiiiiieeeeiiee e eeiieeeeettee s eeteee e eeteee e eenbaeeeesabeeeeesabaeeeessbaeeeessseseseaseneeennsenas 119
Figure 111 — Grundig Radio Receiver used for Terminal Location..........ccccccveeeeeiiiiccciiee et 120
Figure 112 — Terminal Locator Device Radio TUNING SETUP ...cceecvieeeieiiie et 120

Xiii

Abbreviations

Abbreviation

Meaning

ADC Analog to Digital Converter

AHND Ad-Hoc Network Device

AM Amplitude Modulation

BIJT Bipolar Junction Transistor

DPDT Dual Pole Dual Throw

DWT Dead Weight Tons

FCC Federal Communications Commission
GPS Global Positioning System

IP Ingress Protection Rating (Maxim Incorperated, 2007)
MCC Master Control Computer

MOB Man Overboard

MOBI Man Overboard Indicator

MOD Man Overboard Detect

Op-Amp Operational Amplifier

PLD Personal Locator Device

SPDT Single Pole Dual Throw

TLD Terminal Locator Device

USCG United States Coast Guard

VLF Very Low Frequency

VRD Victim Retrieval Detect

Xiv

Introduction

For centuries, one of the greatest fears of all seafaring people has been the prospect of falling overboard
at sea. Thankfully, today there are various technologies that address this issue. Different forms of rescue
devices include trailing lines, man overboard detection transmitters, chase boats, rescue buoys and life
rings. One of the problems with these devices is that they only work for specific situations and certain
sized vessels.

Due to the limitations of the aforementioned man overboard rescue devices, there is a need for a new
device or product that is capable of saving the lives of persons operating in this poorly protected niche.
Due to the dynamics of larger vessels and their respective handling capabilities, it becomes increasingly
difficult to both monitor and protect the crew on board. Because of the vast size of larger vessels, there
is a greatly increased chance that a person gone overboard will go unnoticed for several minutes. This is
particularly the case for cruise ships and naval vessels.

This project addressed the problem of rescuing people who have fallen overboard at sea. The large
amount of time it takes for a vessel to turn around puts a man overboard in great risk. To solve this
problem, a robotic rescue boat was developed with support from systems for the vessel and victim that
autonomously help pilot the rescue boat via GPS, a magnetic compass, and a project specific terminal
location system. The same system also supports the return of the victim to the vessel.

Background

In the year 2001, the United States Coast Guard initiated in 39,486 search and rescue operations (United
States Coast Guard, 2012). The 39,486 search and rescue cases are comparable to the four years prior to
2001 where the cases were fluctuating between 36,000 and 42,000 operations. Often, a man overboard
situation can be handled easily when a person falls from a smaller vessel. As the size of the ship is
increased, the difficulty in retrieving a man overboard is much greater. This poses a large problem,
especially for cruise ships, military vessels and tankers or other crafts of this order of magnitude.

A supertanker has a stopping distance of 3 nautical miles when decelerating from a cruising speed of 16
knots using full reverse. For tankers at 17000 dead weight tons (DWT), the stopping distance is 1
nautical mile (Environmental Law Institute, 1991). Additionally, such a vessel has a turning radius of two
kilometers. From this information, one can speculate that it becomes wildly impractical to turn the ship
around to search for the victim. For this reason, many larger crafts make use of a man overboard boat
that is readied by the crew to carry out a search and rescue while the vessel continues along its course
or comes to a stop while the search is carried out. One of the problems with this type of setup is that it
may take some time for someone to realize that a person has gone overboard. Additionally, it takes a
crew several minutes to deploy the craft during which critical time is lost.

Figure 1 — Man Overboard Rescue Boat (Nautic Expo, 12)

The scope of this project was to develop a vessel that automatically and autonomously carries out the
search as soon as it detects that a person is overboard. Once the rescue boat has located the victim and
he or she secured him or herself, it returns to the mothership.

Problem Statement and Project Goals

This section defines the goals and requirements of the project. The final product should be a vessel that
autonomously carries out a search for a man overboard as soon as a distress signal is detected from a
personal locator device. When the rescue boat has collected the overboard person, it should return to
the mothership, regardless if it has changed its location since the deployment of the rescue boat.

Goals and Objectives

The goal of this project was to design and create a fully functional system that can be integrated in a
boat to locate and retrieve a person who has fallen in the water. At this stage of the design, the person
will still need to enter the craft under his or her own power.

Tasks

To complete the project in the required timeframe, specific tasks were assigned to the project partner
that they were most suited for. The major coding and programming as well as navigation aspects of the
project have been researched and implemented by Frederick. Most electrical and mechanical portions
of the project have been researched and implemented by Thomas. Both members were familiar with
both portions, but the primary effort by each pertained to their major.

Project Requirements

In order for the project to be successful and realizable, certain requirements had to be met. These
related to the operating environment of the craft as well as implicit and explicit expectations. For ease
of presentation, the requirements are split up into the three main components below. Please note that
these requirements were for the final experimental project and do not reflect those of a real full-scale
device.

Mothership Module

The Mothership Module was designed to be located on the primary vessel where it is continuously
running and checking for any distress signals. It is responsible for displaying what the system is currently
doing and updating the rescue boat with its current location. This module is equipped with an XBee ad-
Hoc network device capable of transmitting and receiving data to the rescue boat. It is also equipped
with a GPS device to determine its current location for transmitting to the rescue boat. It updates its
current position every three seconds. The electronics were to be contained in an IP67 container no
larger than 0.5m? to prevent the electronics from getting wet. For IP codes, see Appendix L — IP Code
Chart.

Personal Locator Device

The personal Locator device was used for determining the location of the victim. It was required to have
an IP68 rating and be activated upon a button press to be augmented with a conventional salt water
immersion switch in the production version. It had to be capable of sending distress signals and a GPS
location using the Ad-Hoc network with a range of up to one kilometer. In later versions, the Ad-Hoc

system could be upgraded to cover greater distances. The GPS data was to be acquired from the internal
3

GPS device. Once the personal locator device was within thirty meters of the rescue boat, it had to
activate the Terminal Locator Device to transmit a signal for the rescue boat to follow. The personal
locator device had to be small enough to be affixed to a standard life vest without hindering the user. It
was to be contained in 2 6.8" x 4.5" x 1.8" case.

Rescue Boat

The rescue boat had to be capable of rescuing a victim from a one kilometer distance. The electronic
components on the ship had to be contained in a housing rated for IP68. The boat was designed to be
fully autonomous, to operate without interaction from humans for location and navigation. The boat
was also to be battery powered and driven by two trolling motors, each with a nominal thrust of thirty
pounds. It was decided that differential thrust would be used for heading control. The boat had to be
capable of travelling one kilometer for testing purposes. In future iterations, a larger motor and boat
could be used for traversing larger distances at greater speeds. Once the rescue boat was within thirty
meters of the target, it had to activate the terminal locator device circuitry for a more accurate reading
on the victim’s location due to GPS error. The boat had to be capable of carrying three hundred pounds.
This was to accommodate a passenger and the hardware on the boat. The boat also had to be capable of
reaching a speed of approximately five knots to overcome expected wind drift conditions during the
prototype testing.

Summary

The specifications set make the system durable for use in moderate conditions relating to a level two on
the Beaufort scale. These conditions consist of waves up to half a meter in height and winds of up to five
and a half kilometers per hour (National Meteorological Library and Archive , 2010). With a larger rescue
boat, the system should later be capable of handling more extreme conditions. The above goals and
specifications have been set to determine the functionality of such a system. All components of the
system such as the personal locator device, the mothership module, and the rescue boat module can be
upgraded and installed in a larger boat for increasing the range and performance of the rescue system.

Methods

This chapter provides a background for the robotic autonomous rescue boat. Data from this section was
used to perform design and analysis for the respective modules. It begins with an overview of current
products on the market that are used to retrieve or collect persons overboard. From the
abovementioned project requirements, more solidified specifications were derived for the respective
modules. A black box representation of the modules was also determined from the system
requirements.

Review of Current MOB Systems and Methods
Current methods of man overboard retrieval may be divided into the two basic categories listed below.

e Rescue from the vessel the person has fallen from, herein referenced as domestic rescue
e Another boat or other craft, herein referred to as foreign rescue

The following sections examine the techniques that fall in the above mentioned categories.

Domestic Rescue Technologies
Current technologies that fall in the category of domestic rescue include but are not limited to the
following devices.

e Buoys such as dan buoys or e trailing lines

horseshoe buoys e Man overboard setting of a GPS

e radio direction finders e Rescue cradles

o liferings

This section examines the viability and limits of the listed devices as they pertain to the project.

Buoys

Buoys are excellent devices for use in man overboard situations in smaller vessels. When a person is
detected as having gone overboard, another crew member deploys the buoy in the direction of where
the man overboard is seen in the water. This then provides a visual object for the helmsman to guide
the boat toward and to carry out a search.

In the case of this project, such a device would be of limited benefit as the large vessel will continue
along the direction of travel for some time until it can effectively loop back to where the man overboard
is. Maneuverability of the ship is not effective enough so as to make a sharp turn to loop back towards
the lost crew member and the path of travel may be too great where the helmsman will surely lose sight
of the marker.

Radio Direction Finders

Radio direction finders are useful in a variety of vessels, though they require all crew members to wear a
transmitter. When a person goes overboard, the transmitter, also known as a beacon, sends a distress
signal that is picked up by the ship which automatically sounds an alarm. An onboard display system
indicates the direction that the person is relative to the boat (Marine Rescue, 2012).

If used in conjunction with larger vessels, radio direction finders would not be effective. Until the boat
has turned around and headed toward the person, there will be many precious minutes lost and there is
a risk of running the person over with the ship. In most cases, this device would be used in conjunction
with a separate man overboard boat to be described in the next section.

Life Rings

Life rings are the most common and well known man overboard rescue devices. When a person falls
from the ship, a life ring is thrown toward them in the hope that they may be able to grab onto it to aid
in staying afloat while the craft is turned around.

One of the downfalls of this device is that it requires another crew member at the scene who has a fast
reaction time. If there is nobody there, then the man overboard will go unnoticed for some time.
Additionally, in larger vessels this becomes a problem as there is a greater distance that the device must
be thrown (United States Coast Guard, 2012).

Trailing Lines

Trailing lines are nylon ropes that are tied to the stern of the boat and as their name implies, trail the
boat. When a person falls overboard, if they react in time, they can swim toward the line and grab hold
of it while another crew member stops the vessel or turns around.

This is also a very effective method for saving a person’s life, but again, only for smaller vessels. This
becomes impractical for larger ships which would require much longer lines. Additionally, assuming the
person had caught the trailing line, they would require much endurance and strength to maintain their
hold on the line while the ship comes to a stop or someone retrieves them. This is also a very
unconventional method for larger vessels (Tor Pinney, 2012).

GPS Man Overboard Function

More applicable to a wide range of boats is the GPS man-overboard function. Some boating GPS-
enabled devices contain a button that, when pressed, will mark a location where the man overboard
was called.

The GPS device may be used on larger vessels but will not be effective for a timely rescue if that ship will
be used to retrieve the person. For this reason, it should be used in conjunction with a smaller rescue
craft on the larger vessel (Garmin, 2011).

Rescue Cradles

The rescue cradle is optimal for smaller vessels and is attached to the side of the boat. When the rescue
craft is next to the person overboard, the person is rolled into the boat. The downfall of this rescue
cradle is that it requires a low hull and persons to operate it. For larger vessels, use of technology like
this would be out of the question.

Figure 2 — The rescue cradle in action (RescuelTech, 2012)

Foreign Rescue Technologies
Some technologies that require the help of an outside influence or vessel are listed below.

Coast Guard Rescue

Used only in the most extreme cases, a coast guard rescue involves a rescue craft deployed and
operated by the USCG. Sometimes this may involve a helicopter as well. Use of this technique becomes
limited due to the time it takes for a rescue aircraft to reach the victim in the open ocean. There are long
range surveillance aircrafts in use by the coast guard such as the HC-130H/J, but they cannot help get
the victim out of the water, only to pinpoint their location (United States Coast Guard, 2012).

Man Overboard Boat

Most common on larger scale vessels is the inclusion of a man overboard boat. When the call is sounded
for a man overboard, a team assembles and deploys the man overboard boat to commence a search and
rescue. Upon retrieval of the person, the boat returns to the mothership.

One of the issues with this setup is that it takes time for a team to assemble and lower the boat into the
water to locate the person. Aside from this, the method for rescue is an effective one that can and has
saved the lives of many seafaring people. Because of this, the current project is using this method as a
basis, but focuses on improving the response time by removing the time needed for a crew to prepare
for launching in the rescue boat.

Determination of System Requirements

Based on the capabilities and limitations of current technologies on the market today, the requirements
for the project were determined. These took the components of technology that works well and
addressed areas that need improvement for large vessel man overboard missions to create a superior
method for rescuing sailors.

Module Design from System Requirements

The system requirements provide a concise direction for the project to take. The final project plan was
based on these guidelines. As seen in the system requirements, the project was broken down into three
main systems termed modules. These may be seen in the Figure 3 below. The modules in question are
the Mothership module on the primary vessel, the Personal Locator Device on the victim, and the
Rescue Boat Module on the rescue boat.

The Mothership module consists of a GPS device, the Raspberry Pi computer, and an Ad-Hoc network
device. The Personal locator device similarly consists of an Ad-Hoc network device, a GPS device, and a
man overboard detect button. Finally the Rescue Boat module consists of an Ad-Hoc network device, a
GPS, an ATMEGA 328P control module, a victim retrieval detector, 10 foot Sea Rogue inflatable boat and
a terminal locator device.

Figure 3 — Main System Modules

All three modules communicate with one another by means of the XBee Ad-Hoc network. The
Mothership Module transmits and receives information from the rescue boat and simply receives data
from the personal locator device. The rescue boat receives information from the personal locator device
as well. Data is indicated by the dashed lines in the figure.

Summary

This section developed an overview of the autonomous robotic rescue boat showing how the three main
systems interact with each other. It also shows what each module consists of and what their functions
are. For a more detailed explanation of each module see their respective sections in the System Design
section of the document.

System Design Overview

Upon developing a basic structure and modules for the overall system, the modules needed to be
broken down into subsystems. Each subsystem is made up of various devices that perform the required
tasks to make the system work as a whole. For each of the modules of the previous section, a more
detailed description was developed.

Mothership

The Mothership module consists of four components: the GPS device, the Raspberry Pi, and the XBee
Ad-Hoc Network Device (AHND). These systems will all interact with each other to successfully meet the
system requirements as described in the Mothership Module section in the Project Requirements.

Raspbamy Fi

Figure 4 — The Mothership Module System Diagram

GPS

The first component is a GPS device for acquiring the current position to be transmitted to the rescue
boat. The device being used is an EM406a GPS receiver which was readily available from a previous
version of this project. It operates at five volts with TTL serial output and costs $60 from the Adafruit
website.

Figure 5 — EM406a GPS Receiver Device (ladyada, 2012)

Raspberry Pi

The Mothership Module also has a master control computer which runs the software displaying the
current status of the system for a user on a Pyle PLHR77 12V monitor with composite video input. The
Master control computer is a Raspberry Pi and is in charge of relaying the mothership’s current position
from the GPS with the Ad-Hoc network device. The software displaying the status of the system for a
user is capable of displaying current locations of the man overboard and rescue craft with respect to the
mothership. The software is written in Python allowing it to be executed on a wide range of devices.

Figure 6 — Mothership Module Raspberry Pi and Pyle Monitor

The Raspberry Pi was chosen for the mothership computer because of its small credit-card size,
processing power, and ability to integrate with the GPS, XBee, and monitors. The Raspberry Pi is a small
computer running Linux with sixteen general purpose I/O pins as well as serial pins for interfacing with
the GPS. It also has two USB ports used for a keyboard connection and FTDI cable hookup to interface
with the XBee module. The Raspberry Pi runs off of five volts and can consume up to 700mA. It runs on a
700MHz processor and has 512Mb of ram (Premier Farnell plc., 2009).

In order to not clutter the SD memory card that stores all the programs and operating system, Arch
Linux was chosen to be installed. Arch Linux is a bare bones operating system and any programs that
were needed were downloaded from the packet manager pacman. Some of the required programs were

10

XTerm and Enlightenment for a graphical user interface. This was chosen as it provided the user with a
simple, low resource, but aesthetically pleasing GUI. Python 2.7 was used for programming the software
on the mothership unit and pyqgtgraph was also installed to create a GUI for displaying all the units on a
graph. The system was set up to boot and automatically log in as the root user. The boot time takes
approximately thirty seconds, but loading the mothership program and GUI adds another twenty
seconds to the start.

To interface with the XBee module, the XBee was connected to the Raspberry Pi with an FTDI cable on
the USB port. In the python code, the XBee was accessed with the pyserial module. To interface with the
GPS, the GPS was connected to the Raspberry Pi’s GPIO UART pins. Again the pyserial module was used
to connect to this and a library was written to collect the desired information from the GPS.

Ad-Hoc Network Device (AHND)

The Ad-Hoc network device is responsible for transmitting the GPS data to the rescue boat and receiving
the locations of the rescue boat and victim. The transmission is accomplished through the use of an
XBee PRO. It is capable of achieving a line of sight range of 3200 meters, has a data transfer rate of 250
Kbps and runs in the 2.4GHz frequency range. The logic levels on the chip are 3.3 volts and it also runs at
this voltage. By utilizing a breakout board, it is able to be powered from a 5V source.

Figure 7 — XBee Ad-Hoc Network Device (Mouser, 2013)

Graphical User Interface

The graphical user interface is written in Python using the pyqtgraph module that allows for easy
plotting to display the status of the rescue operation with each of the modules on the same screen. It
displays messages indicating the current status of the rescue mission as well as the path traveled by
each module. An arrow is displayed to indicate the course of each module. A legend on the bottom right
of the screen indicates what color corresponds to each module. The graph can also be overlaid on an
image of the current location such as a map downloaded from GoogleMaps. The coordinate locations
are determined by indicating the GPS coordinates of the bottom left and top right of the map image

11

used as the background. This may be used to determine where each respective module is and aid in the
rescue effort if a manned team would be deployed.

Rescue Unit
Victim Unit

~Mothership Unit

Figure 8 — Screenshot of a typical view from the GUI

Enclosure

To protect the Raspberry Pi from foreign objects and to allow for a more aesthetically pleasing look, a
case was made for it. The case design was found online from the Adafruit website. A Solidworks .dwg file
was downloaded and the case was lasercut in the Washburn shops, see Appendix G — Drawing File for Pi
Box. The case still allowed for the monitor, power cable, GPS, and XBee to be connected to the
Raspberry Pi without blocking any ports.

Figure 9 — Raspberry Pi enclosure

12

Personal Locator Device

The Personal Locator Device consists of an Ad-Hoc Network Device, a GPS, a Man Overboard Detector,
an AM Transmitter, a Ferrite Core Loopstick Antenna and an Atmega 328P. These subsystems are
designed to achieve the goals as stated in the Personal Locator Device section of the Project
Requirements portion of this document.

T

Figure 10 — Personal Locator Device
Yictim Personal
Locator Device

Owerboard Detector

AM Transmitter
ler

Ferrite Core
Loopstick Antenna

Figure 11 — Personal Locator Device Module System Overview

Ad-Hoc Network Device

The Ad-Hoc network device for the Personal Locator Device is used for transmitting the location data of
the victim. For more information about the XBee Pro chip being used, see Ad-Hoc Network Device
(AHND) in the Mothership system design section.

13

GPS

The GPS device used in the Personal Locator device is used to obtain the victim’s current location. With
intrinsic 10m accuracy, this system requires augmentation for terminal location. For more information
about the chip being used see the GPS section in the System Design Mothership section of the report.

Man Overboard Detector

The man overboard detector is capable of meeting the system requirements as expressed in the
Personal Locator Device section of the Project Requirements. A MOB victim simply presses a button to
initiate the rescue sequence.

The switch used on the personal locator device is an illuminated, IP67 rated switch from E-Switch. It
costs $3.32 from Mouser.com and provides a momentary OFF - (ON) signal to the microcontroller
(Mouser, 2013). Current rating is up to 125 mA which will not be exceeded and has a blue LED which
may be illuminated to indicate the functionality or state of the personal locator device.

Figure 12 — Personal Locator Device Switch for sending Distress Signal

AM Transmitter

The AM transmitter is used to send a radio frequency signal which may be picked up by the rescue boat
when it is within a 30 meter range of the personal locator device. This is turned on by the
microcontroller by means of Bipolar Junction Transistors which only allow the H-Bridge device which is
the main transmitter driver to have power when a 5V logic signal is applied to the controlling BJT. This
allows for power to be conserved and the capability of controlling when the signal is transmitted. See
Transmitter Circuit for schematic and operation explanation.

Frequency Selection

One important aspect of the antenna design is the tuned frequency. This had to match the frequency
that the transmitter and receiver circuit was running at to provide the most effective signal transmission
and reception. Because this experiment is carried out in the Massachusetts area and using the AM low
frequency band, a quick search of the FCC website was conducted. See for result of the AM band radio
station search (FCC, 2011). Competing the search for the stations, it was found that the largest gap with
no broadcasting stations occurred just above the 900 kHz band, see Appendix C — AM Station Query
(FCC). By searching for oscillators around and in multiples of this frequency, an acceptable operating
frequency was found at 921.6 kHz with no stations +18.4 kHz and -31.6 kHz. This was determined to be
our best choice operating frequency as there is a larger gap between these frequencies so that a simple
band pass filter should be capable of filtering out the desired signal from nearby interfering signals.
Additionally, the oscillator being used, when divided by 8 with a modulo counter, is within the required

14

frequency (Digi-Key, 12). This oscillator has a frequency of 7.3728 MHz that resulted in a transmitted
frequency of 921.6 KHz.

Ferrite Core Loopstick Antenna

The Ferrite Core Loopstick antenna is used to transmit the signal generated by the transmitter circuitry.
This antenna has been tuned to the radio frequency of the transmitter for maximum transmission range.
It is inductively coupled through primary and secondary windings on the same ferrite core for
impedance matching which allows for increased signal amplitude on the antenna. See Appendix D —
Antenna Tuning for a detailed explanation on antenna tuning.

Atmega 328P Microcontroller

The microcontroller used in the Personal Locator Device is an Atmega 328P which uses a 7.3728MHz
crystal. Additionally, the output of the clock signal on a pin of the microcontroller is used to drive the
transmitter circuitry which is activated by the Atmega applying a logic HIGH to the controlling BJTs. The
microcontroller samples for the button press to activate the distress signal and sends information over
the XBee network. It also takes the coordinates from the GPS device and relays them to the rescue boat
and mothership units, respectively.

Figure 13 — Inside the PLD

The ATMEGA 328P was chosen for the victim module because of the low profile size and easy
integration with the XBEE, compass, and GPS modules. The ATMEGA 328P has 32Kbytes of flash
memory, and 28 pins. The ATMEGA 328P is just 3.4cm by 0.8cm in size making it possible to mount it
virtually anywhere. The microcontroller also has UART pins for communication with the XBee module.
Using the Arduino NewSoftwareSerial library, it is possible to emulate another serial port for
communication with the GPS on pins four and five of the ATMEGA 328P. From Mouser.com, the 8-Bit
microcontroller costs $2.24 and runs off of a 1.8-5.5V supply (Mouser, 2013).

15

Figure 14 — Atmega 328P Microcontroller (Mouser, 2013)

On the victim module the same pins were used to interface with the GPS and XBee modules to keep
consistency. Pin 12 was used for the distress signal button and pin 13 was used for activating the
terminal locator device transmitter.

Enclosure

In an effort to protect the enclosed circuitry for the victim module from water, an Otterbox was used.
Because its size was large enough to enclose the circuit, but small enough to be worn on a lifejacket, it
was a perfect fit. The Otterbox is 6.85" x 4.57" x 1.82" in size and is able to contain the batteries, GPS,
XBee, and other components of the victim unit. The box is rated with an ingress protection of 68,
meaning is can be submersed up 100 meters (NPD Group, 2013). The button was also purchased with an
IP-68 rating and mounted to the front of the Otterbox through a drilled hole. The unit was tested for
water tightness by submersing it three feet in a pool of water with a paper towel on the inside of the
case. The button

was also pressed while underwater. After drying the outside of the box, it was opened and the paper
towel was dry, indicating it was capable of protecting the circuitry from submersion underwater.

/e -
'_"}KTEJ .

Figure 15 — Otterbox Dry Box used as Personal Locator Device Enclosure (NPD Group, 2013)

16

Rescue Boat Module
Many of the components used in the PLD and the Mothership Modules as well as others are seen below.

Figure 16 — The rescue boat with basic component layout

The Control Module houses the core microprocessor (Atmega 328P), the motor driver circuitry and
terminal locator circuitry. Alongside these components are the Ad-Hoc Network Device (XBee) and
victim retrieval button. Strategically placed about the rescue boat are the terminal locator device
receivers (Grundig portable radios). The motors are attached as far apart from one another a possible at
the stern of the boat.

17

Rescue Craft

Grundig Handheld
Radio

Envelope Detector
and Amplifier

Logarithmic
Amplifier

Atmega3 Z2P

i XBee TrRmceiver
Migoamntroller

MOSFET Motor

- Trolling Motors
Driver =

Figure 17 — Rescue Craft Module System Overview

Ad-Hoc Network Device

The Ad-Hoc network device is used for receiving data from the Personal Locator Device as well as the
Mothership Module. For more information about the device used see the Ad-Hoc Network Device
(AHND) section in the System Design Mothership section.

The Boat

The craft being used as the rescue boat is an inflatable displacement-hull boat. It houses all the
electronics and power equipment listed in this section. Its task is to carry the person to safety after he or
she has climbed into the boat. The craft used for this project is a 10 foot Sea Rogue. An image of the
boat may be seen in Figure 18.

18

Figure 18 — A view of the Rescue Boat from Stern

GPS
The GPS for the rescue module is used to determine the location of the boat. For more information

about the device being used see the GPS section in the System Design Mothership section of the report.

Compass module
A compass was used to provide the rescue craft with the most accurate heading information to increase

the effectiveness of navigation. The compass module used was an HMC6352 from Sparkfun Electronics.
The module was chosen because it could easily be integrated with the 12C interface on the
ATMEGA328P. It also runs on the five volt logic levels available on the rescue unit. The resolution is up
to 0.5 degrees and can be read at a rate of up to 20Hz. The low current draw of 1mA was also attractive.
The small size of 1.5x1.5cm made it possible to mount it virtually anywhere without being intrusive to
other systems. The low price of $35 made the compass a great option for the features it exhibits.

19

Figure 19 — Compass Module used as Navigation Aid (Sparkfun, 2013)

The compass provided the rescue craft with important heading information that would be used to more
accurately determine the current heading than the GPS. Due to the electromagnetic interference
exhibited by the relays and high current carrying wires, the compass could not be placed near these
devices. Using a mechanical compass and running the motors to simulate operation, the compass was
moved to various positions on the craft to determine where there was no electromagnetic interference.
It was determined that the best location for the compass would be on the left side of the cross-board
seat. To protect the compass from splashing water, it was mounted in a project box purchased from
RadioShack. A telephone cable was used to connect the compass to the five volt power supply and the
I12C port of the ATMEGA328P.

Atmega 328P Microcontroller

The Atmega 328P controls the trolling motors by means of a motor driver circuit, activates the terminal
locator device, and determines if the victim is in the boat. From the Ad-Hoc Network Device, it collects
GPS data from the rescue boat, mothership and personal locator device. It then uses this data to analyze
which path it must take to travel both to the mothership and victim. Depending on the distance
between the personal locator device and the rescue boat, it also uses the terminal locator device.

The Atmega 328P was chosen for the rescue unit because of the low profile size and easy integration
with the XBEE, compass, and GPS modules. The Atmega 328P has 32Kbytes of flash memory, 28 pins,
and runs on an internal 8 MHz crystal with the Arduino bootloader. The Atmega 328P is 3.4cm x 0.8cm
in size. The microcontroller also has UART pins for communication with the XBee module. Using the
Arduino NewSoftwareSerial library, it is possible to emulate another serial port for communication with
the GPS on pins four and five. To interface with the compass on the rescue module, the 12C pins on the
microcontroller were used.

On the rescue module, pins 14 - 17 control the MOSFETS that switch the relays for the motor control.
Pin 13 was also used for reading the return to home button. Pins 23-25 are three of the six 10-bit analog
to digital pins on the microcontroller and were used for reading the values from the receiver circuit for
use in the terminal location algorithm.

Victim Retrieval Detector

The victim retrieval detector signals when the victim is on the rescue craft. It consists of a switch which
the victim must activate. Once the switch is pressed, the rescue craft navigates to the current primary
vessel location as reported by the Mothership Module’s GPS. The switch is placed in a visible location
and protected from accidental triggering. Possibilities for making it more visible include using an
illuminated switch or including an audible device indicator near the switch.

20

For the victim retrieval detector, the GCX3226-24 mushroom style illuminated pushbutton emergency
stop switch was used. The switch was ordered from AutomationDirect.com for $12.50 and with its
40mm head, is easily visible and depressible.

Figure 20 — Return Home Button on the Rescue Craft (automationdirect, 1999-2013)

Terminal Locator Device

The terminal locator device is used to obtain a better fix on the location of the victim due to the GPS
error. It consists of three receiver circuits connected to the output of three commercial radios. The
circuit can be seen in the Receiver subsection of the Design and Testing section of the report. The
positions of the three radios form a triangular shape as denoted in Figure 16. This allows for determining
the angle as well as the direction to where the victim is located. This arrangement can be used to align
the rescue boat’s bow directly to the victim’s PLD. When the bow is pointing toward the victim, the front
receiver antenna will have the largest peak envelope signal and the aft antennas will have a lower
voltage, but equal to one another.

TLD Mounting

To obtain the best signal for homing of the receivers, the proper mounting location was to be found.
Ideally the front receiver would be placed in the bow of the boat and the other two receivers would be
mounted in the stern as far apart from each other as possible, but the same distance apart from the
center of the boat.

Figure 21 — TLD Mounting, Ideal Mounting Locations

Due to the electromagnetic interference from the motors in the stern of the boat, the receivers were
moved up to the center of the boat as seen in Figure 22. This location saw the least interference from
the motors. Additionally, on the rescue craft, there were oarlocks present which provided an easy
mounting option as indicated in the figure below by the orange outline.

21

Figure 22 — TLD Mounting on the Rescue Craft — View from Stern

To better protect the receivers from the water, they were placed in a project box purchased from
RadioShack. A 3.5mm male to male headphone jack cable was used to connect the receivers to the
bandpass filter on the rescue unit.

Grundig Handheld Radio

The handheld radio receiver is a small commercial radio with good sensitivity and selectivity that
receives the signal from the PLD transmitter. This signal is fed to the following circuitry which filters it to
remove noise from other stations and only read information that is relevant to terminal location.

The radio used for the receiver device of the terminal location module was an Eton Grundig Mini 400
AM/FM Shortwave Radio. This was purchased at Radio Shack for $34.99 and had an accessible
headphone jack which was used to connect to the terminal locator circuitry. The digital display provided
an easy and accurate means to tune to the desired station. A lock button was also an added feature of
the radio which prevents the user from accidentally turning it off.

i
|

Figure 23 — Radio Receiver used for the Terminal Locator Device (RadioShack Corporation, 2013)

22

Envelope Detector and Bandpass Filter

The output of the radio receiver is sent to an envelope detector and bandpass filter. The modulation
signal which carries information for the rescue boat is a 1 kHz tone which is extracted from potential
background noise by means of a bandpass filter. See Deliyannis Bandpass Filter for further explanation
and design.

Logarithmic Amplifier

The logarithmic amplifier allows for operation over a greater range than would be achieved if the
received signal envelope was simply captured by the linear ADC. It amplifies small signals with a much
higher gain than larger signals. It also ensures that the output of the bandpass filter does not exceed 5V
which is the maximum allowable input magnitude to the analog to digital converter of the
microcontroller. See Logarithmic Amplifier for circuit design.

MOSFET Motor Driver

The MOSFET motor driver takes the logic level from the Microcontroller and provides the high current
drive required for the relays which are used to drive the 14 A trolling motors. These relays operate from
a 12V signal which is provided by the battery on board the rescue craft. The MOSFETs used in the circuit
are four TLN60 N-Channel MOSFETs with a maximum continuous drain current of 1.3A. The TO-220
package was purchased from DigiKey for $0.72 (Digi-Key, 1995-2013). For more information on the
implementation and placement in the circuit for the TIN60 MOSFETS, see the section Motor Control.

Relays

The relays drive the trolling motors with bi-directional capability. Because the motors do not require a
rapid response time on the order of milliseconds, relays were deemed a plausible component to use for
driving the trolling motors. Additionally, there is less power loss from heat in comparison to the use of
MOSFETs with a heat sink for driving the motors. This alone makes the method for propulsion more
economical and efficient. The single pole, double throw relays used for the rescue craft were Song
Chuan 896H-1CH-D1SW-R1-12VDC relays as seen in the image below. These were purchased from
Mouser.com for $4.31 per relay. They each can handle up to 50A and have a coil current of 133mA.
Their small size of 1.1” x 1.25” x 2.7” is desirable as there is the necessity of four relays for bi-directional
drive functionality. See MOSFET Motor Driver for the use of the relays in the final motor driver circuit.

Figure 24 — Song Chuan SPDT 896h-series Relay (Mouser, 2013)

23

http://www.mouser.com/ProductDetail/Song-Chuan/896H-1CH-D1SW-R1-12VDC/?qs=sGAEpiMZZMt98bArVJter4JSFvwfmI4SJSjElpVYzv0%3d

Trolling Motors

The motors being used for propelling the rescue craft are two 12V trolling motors, each with a rated
thrust of 30 pounds from MinnKota. The motors were chosen based on their operating voltage of 12V
and simplicity of applying to the current design due to the clamp mounting apparatus which allows
simplicity in fastening the motors to the backstay of the rescue boat. Additionally, there are several
options for adjusting the depth that the motor sits in the water as well as the angle at which it propels
the boat. A quick release mechanism allows the motor to be propped up out of the water during
transport and when not in use. A single motor costs $109.99 new from the MinnKota website.

Figure 25 — MinnKota Endura C2 Trolling Motor (MinnKota, 2008-2013)

Enclosure
For the final rescue craft system, the circuitry described above was fit into a tower configuration which

was placed into a marine enclosure box alongside the battery. This provides adequate protection for
testing and keeps all the main components together in a single location making it easier to transport and
remove it from the rescue craft. An isometric view of the Solidworks model for the component holder is
seen in the Figure 26 below. This was used to lasercut acrylic while standoffs and screws were used to
put the final pieces together.

24

7N

YA K

vﬂl

Figure 26 — Solidworks Model - Stacked Components Holder

The lower compartment 1 contains the wire bus which connects the battery power and ground
terminals to the rest of the circuits, including the relays. The second level contains the relays with a
support layer indicated by the square cut-outs on layer 3. Next, the motor controller circuitry with the
GPS, Atmega and MOSFETSs are fastened to the acrylic layer 4. Finally, the terminal locator circuitry is
mounted to the layer 5. Dimensions for the CAD model may be found in the Appendix J — Dimensions for
Circuit Tower.

25

Figure 27 — Tower with all Circuit Elements Attached

The tower with the attached circuitry was placed into a Snap-Top Everstart Marine Battery Box
purchased at Wal-Mart (Wal-Mart Stores, Inc., 2013). The 17.6” x 10” x 10.5” box was adequately large
to fit both the battery and the circuitry tower inside. There also was an adjustable separator provided
with the box which allowed the circuitry to be separated from the battery. The original and final
enclosures are pictured in the Figure 28 below.

Figure 28 — Marine Battery Box used for Rescue Craft

Summary

The above sections describe the system design of all the modules contained in the project. The entire
system consists of three main modules, the Mothership Module, the Personal Locator Device Module,
and the Module. Each of these modules consists of multiple components or smaller modules responsible
for subtasks to accomplish the goal of creating an autonomous robotic rescue boat.

26

Design and Testing
This section covers the process and methodology behind the design and testing of various main
components of the rescue equipment.

Software Design

Careful planning was required to effectively execute the task of locating and retrieving a man overboard.
Because there were three main locations of interest, it was decided there should be three units: the
Mothership Module, the Victim Module, and the Rescue Module. Having three units communicating
with each other at the same time was another challenge to be addressed, but one that could be handled
by the XBee modules and simple coding practices. For example, limiting the amount of information that
was being transmitted over the air was necessary to minimize packet loss. One such case was when the
rescue craft was heading to the victim and did not need to know the location of the Mothership. Here
the Mothership did not broadcast its location until the Rescue unit requested it. Each of the three
modules acted as a type of state machine, waiting on information from the other to change states. For
more detail, see each Module’s respective section.

Mothership Module

The Mothership module uses a state machine to determine what it should do at any given time. While in
state 1, the Mothership is continuously waiting for a distress signal from the PLD module and once that
is received, it initializes the Rescue Module. Once the Mothership receives a confirmation that the
Victim and Rescue Modules initialized properly, it initializes the Graphical User Interface (GUI) thread to
begin plotting the coordinate locations of all the units in respect to one other. The plotting thread runs
in the background until the victim is returned to the mothership, continuously updating the locations as
new ones are received. At the same time the thread is started, the Mothership is set to state two. The
process in full is seen in Figure 30.

In state two a thread is started to read and store the Mothership Module’s current GPS coordinates to a
file for plotting. It runs in the background and, without interruption stores a new coordinate location
every 2.5 seconds. In these 2.5 seconds, it collects ten GPS coordinates, takes the average of them, and
stores this location in an attempt to remove some GPS jitter. In state two, the Mothership also reads the
XBee for any new coordinates from the victim module as well as any messages it may send to be stored
and filed for plotting. Should the Rescue unit be close to the victim, it will be printed to screen on the
GUI as seen in Figure 32. The Mothership unit will also poll the XBee for any message indicating the
victim is on the rescue craft and has pressed the return to home button. Upon receiving this message,
the Mothership unit ends the GPS thread that reads and stores the Mothership unit coordinates to file
and sets its state to state three.

Once in state three, the thread to store the current GPS coordinates is initialized again, but also set to
broadcast the coordinate locations to the rescue craft. After this is initialized, the Rescue unit reads the
XBee and continuously checks for a message saying that the rescue unit is home. Once this condition is
met, state one is initialized again.

27

Mo
Yes
Yes

es

m B
-

Yes
ND‘YE

Another background process running on the Raspberry Piis the user input process. The keyboard that is
plugged into the Raspberry Pi is polled for key strokes. If the user presses the spacebar at any time, the
rescue craft will be stopped and put into a remote control override mode. The arrow keys can be used

e

Figure 30 — Mothership Unit State Diagram

to steer the craft. The right shift key can also be used to kill the motors. The "r" key restarts the program
on the rescue module.

Graphical user interface

The graphical user interface (GUI) is used to relay information from the programs on all three units to
the users. In order to accomplish this, the Raspberry Pi was used along with pyqtgraph runningin a
background process. Pygtgraph made it possible to easily plot the locations of all the modules, place an
arrow in the direction each module was heading, and overlay a map of the current area to the
background as seen in Figure 32. The Mothership module stores all the GPS coordinate locations as they
are received and stored to a comma separated values (CSV) file in the root directory of the program
along with the distance from the first received coordinate in meters. An example of a line in this file can
be seen in Figure 31.

28

B,42.254962, -71 .255098,E,2000.26164234,32.0715245628
C,42.254934,-71 .2549589 ,E,2008.87041304,28.7821374281
C,42.254826,-71.254719,E,2033.21893642,16.0945013377

Figure 31 — Example of Coordinate Log File

The first value in each line is the sending modules identifier, the second value is the latitude coordinate
(in degrees), the third the longitude coordinate, the fourth value is a validity bit, and finally the x and y
coordinate location in meters of the current module in respect to the first received coordinate. Any
messages received from the units were also stored to a file, for example: if the victim is close to the
rescue unit.

These files were then periodically read by the background process of the GUI which would re-plot all the
coordinates and write the most recent message to the screen. The GUI also plots the general location
the modules head in by calculating the angle between the last two received coordinate locations of each
module. Should a module not be online yet and there are no coordinates stored in the log file, the unit
will not be displayed on the screen.

Figure 32 - Mothership GUI

Personal Locator Device Module

The PLD Module, much like the Mothership module, runs on a state machine type program structure.
The entire flowchart can be seen in Figure 33. While in state zero the unit continuously polls the
overboard button for a key press. Once the button is pressed, the victim unit checks for a GPS lock and
sends a message to the mothership indicating it has completed the initialization process. It then moves
on to state one.

29

While in state one, the Victim unit first reads the GPS for a lock. If a lock is present, it will store the
current position in an array of ten coordinate locations that will be used to determine the average
position in an attempt to remove some GPS jitter. Next, the average of the last ten positions is sent to
the rescue unit and mothership for calculating the path to plotting in the GUI. The XBee is then polled
for any new messages from the Mothership or Rescue modules. Should the message indicate that the
rescue unit is close, the PLD module enters state two upon it activation of the terminal locator device. If
the message is not received, the process is repeated.

While in state two, the XBee is read for any messages. If a message is received stating that the terminal
locator device is out of range, the Victim module reverts back to state one. The PLD module also checks
if the rescue module sends a message indicating it is close to it. If this is the case, the victim unit changes
to state three, otherwise it repeats the process.

In state three, the PLD sends a message to the mothership module stating it is on the rescue module.

§

Figure 33 - Personal locator Module state diagram

fes

trl

fes

30

Rescue Module

The rescue module is perhaps the most complicated of all three units as it is tasked with many processes
in a short time. In order to organize the code in a more structured manner, it is also put in a state
machine as seen in Figure 34. In state zero, the rescue module waits until it receives a boot message
from the mothership. Once this is received, it reads the XBee and determines if the remote kill switch
message has been sent. If it has been sent, it goes into the remote control mode state. If not, the rescue
module sends a message to the mothership that the initialization has been completed and enters state
one.

In state one, the rescue module checks if it is in range of the terminal locator device (TLD) in which case
it goes to state two. If this is not the case, the rescue unit reads its local GPS coordinate location and
sends it to the mothership as an average of the last ten coordinates. Next, the rescue module reads the
XBee for a new message or coordinate data. If a message is received indicating that it should go to the
remote control state, the rescue module will enter the remote control state. Otherwise, if coordinates
from the PLD were received, it stores these, calculates the path to the victim, and corrects the course by
means of control signals to the motors. This process is then repeated.

In state two, the rescue unit is close to the victim (within range of the TLD) and attempts to home in on
the victim. It first notifies the victim and the mothership that it is close to the victim. In this state, the
rescue unit continuously checks if the return to home button has been pressed and if it is out of signal
range of the victim TLD. If the return home button has been pressed, state three is activated. If the TLD
is out of range, the code reverts back to state one. Furthermore, in state two, the rescue unit checks if it
should be put into the remote control state. It will correct the motors based on the peak envelope signal
read from the receiver circuit. For example, if the right motor has a larger peak envelope signal, then the
left motor is turned on and the right turned off to correct the direction of travel.

While in state three, the rescue unit attempts to go back to the mothership. It first sends the
mothership a message indicating that it is heading home with the victim. Next it checks if it is close to
the mothership, in which case it will notify the mothership that the rescue unit is home and enters state
zero. If this is not the case, the rescue unit will find and store its local GPS coordinates to send to the
mothership. Next the rescue unit reads the XBee for any messages or coordinates. If a message has been
received that it should go into remote control mode, the remote control state is activated. Otherwise if
the received packet has coordinates of the mothership, it will store them and use them to calculate the
new path to the mothership, correct the direction, and set the motors.

31

] S84 R4
11
(100

Figure 34 - Rescue unit state diagram

Navigation

The navigation algorithms used by the rescue unit involve two main methods of path planning. The first
method is cross track error using the GPS coordinates of all three modules. It bases the direct course as
being between the last position of the mothership module prior to rescue initialization and the current
position of the PLD Module. The Rescue boat module’s position is then adjusted to continually minimize
the cross track from this track while proceeding to the PLD. The cross track error algorithm is used in
order to reduce the effects of the wind on rescue craft as well as the spiraling effect when homing in on
the victim using a simple straight path algorithm. The terminal locator function simply checks the peak
envelope signals of the three receivers to determine which way to correct the motors for homing in on
the victim.

Cross-track error algorithm

The cross track error algorithm simply determines how far from the straight line path to the victim the
rescue unit is. If it is more than five meters from the path, it corrects the rescue craft to stay in a straight
line path. The equation used to accomplish this can be seen in the equation below.

d
D = (asin (sin %) *sin(f13 — 013)) * R
Where R is the earths radius, d; is the distance from the starting location of the rescue craft, 6,3 is the
angle from the starting location of the rescue craft to the current location of the rescue craft, 6, is the

angle from the starting location of the rescue craft to the current location of the victim module, and D is
the cross-track distance error.

32

Using this in the code, every time new Rescue Boat or PLD GPS coordinates are received, the cross-track
is recalculated. If the value is negative, the rescue craft knows it is to the left of the desired path and
should it be greater than negative five meters, it corrects right. The same principle is true should the
value be positive and greater than five. In that case, the rescue unit would be to the right of the desired
path and have to correct left.

The cross-track error algorithm helps prevent the rescue craft from traveling too far from the shortest
path to the victim. It also allows the craft to quickly correct its course in response to wind or currents
that may move it off course.

Terminal location algorithm

The terminal location algorithm allows for the rescue craft to home in on the victim using the three AM
receivers located on the boat. If the receiver on the bow of the boat has a weaker peak envelope signal
than the receivers on the center of the boat, the rescue unit knows that the bow is pointing away from
the victim and has to turn around. Should the bow have a larger peak envelope signal strength than the
receivers on the center of the boat, then the boat knows it is pointing towards the victim and if the right
receiver has a larger peak envelope signal strength than the left, then the boat is pointing to the left of
the victim and will have to correct right as seen in Figure 35. The ideal condition would be when both
the center receivers have the same peak envelope signal strength and the bow has the greatest peak
envelope signal. Once both the left and right center receivers have a peak envelope signal strength that
is greater than a set threshold, the boat knows that it is within one meter of the victim and kills the
motors.

Ferrite Core
L i
Antenna receiver

module

Figure 35 - Terminal locator device peak envelope signal example

33

Messages Between Modules

In the table shown below are all the messages that are sent between the three units.

Table 1 — Relayed Messages Between Modules

Message Sender Meaning
OVERBOARD Victim Victim is overboard
INITDN Victim Initialization complete
ONRESCUE Victim Victim is on rescue craft
INIT Rescue Initializing
SEARCHV Rescue Rescue is searching for victim
CLOSEV Rescue Rescue is close to victim
RETURN Rescue Rescue is returning to mothership
FORWARD Rescue (Debug) Both motors on
LEFT Rescue (Debug) Right motor on (turning left)
RIGHT Rescue (Debug) Left motor on (turning right)
WAITING FOR VICTIM TO BOARD Rescue Next to victim and waiting for home
button press
MCOORD Rescue Tell the motherhship to send GPS
coordinates
HOME Rescue Rescue craft returned to mothership
BOOT Mothership Notify rescue unit to initialize
FF Mothership Set both motors on
SS Mothership Stop the boat
LO Mothership Turn the boat right (left motor on)
RO Mothership Turn the boat left (right motor on)
RESTART Mothership Restart the rescue craft in state 0

Antenna Design

A ferrite core antenna was chosen for the signal transmission based on its size and signal reception

capabilities. The ferrite core antenna being used is 4 inches long, allowing for inconspicuous mounting
on the rescue craft within a watertight enclosure. Its small profile also reduces the size of the victim’s
locator device allowing for a non-intrusive safety system that will not hinder the wearer’s actions. The
antennas were tuned to a low frequency in the AM radio band of 921 kHz allowing the signal to
penetrate waves, should the victim be on the other side of a large wave. For the method of tuning the
antenna, see Appendix D — Antenna Tuning. Other antenna systems would be impractical of achieving
these goals provided the expected operating conditions.

34

Frequency Selection

One important aspect of the antenna design is the tuned frequency. This had to match the frequency
that the transmitter and receiver circuit was running at to provide the most effective signal transmission
and reception. Because this experiment is carried out in the Massachusetts area and using the AM low
frequency band, a quick search of the FCC website was conducted. See for result of the AM band radio
station search (FCC, 2011). Competing the search for the stations, it was found that the largest gap with
no broadcasting stations occurred just above the 900 kHz band, see Appendix C — AM Station Query
(FCC). By searching for oscillators around and in multiples of this frequency, an acceptable operating
frequency was found at 921.6 kHz with no stations +18.4 kHz and -31.6 kHz. This was determined to be
our best choice operating frequency as there is a larger gap between these frequencies so that a simple
band pass filter should be capable of filtering out the desired signal from nearby interfering signals.
Additionally, the oscillator being used, when divided by 8 with a modulo counter, is within the required
frequency (Digi-Key, 12). This oscillator has a frequency of 7.3728 MHz that resulted in a transmitted
frequency of 921.6 KHz.

Transmitter Circuit

I8 a7 |_
TEST_PT1 <TEST_PT1 HORTX2
WaterDetect WaterDetect

. N
_ | o 2.2k0
_ T oal BBOPF
] [R A - 1 B
0 e LT |
a - o_ﬁ %lﬂﬂp" 1N4ODHG
- o HORTXS
|_|_ = 3 LM2577-12 at
ol = _E]_EEJ
o JPY P
uirm o= e R7
—1 T i T 100k R2
CRYSTAL_MIRTUAL - = -1 = R3 I
: L+ o - [1k
l ’7 o i T 1% 1k
c3 S = -
SNTATAN
22pF [
T <
¥4 R4 =

SNT54410NE

J5

1 \—__I_ 1k |—|

J_cs J_ce J_cg cio TEST_PTH
o= 43 J4 S=6B0pF ==330pF == 150pF —=220pF ANT_Sec
J DIF14 TEST_PT1 TEST_PT1

T o o o o
T 5 o oo
LT 1T

HD74LS04P ANT_Prim ANT_Prim 16
TEST_PT1
ANT_Sec

Figure 36: Transmitter Circuit Design

The AM transmitter is made up of 5 integrated circuits (IC). The main part of the transmitter is made up
of the SN75441 IC which is a quadruple Half-H Driver. Two of the half bridges are used to drive a square
wave into the primary coil of an LC antenna. The Atmega328P microcontroller IC is driven by a
7.3728MHz crystal and runs off of a 5 volt supply. It generates the clock output on Pin 14 and a 1 kHz
square wave at pin 13. The clock output is fed into two SN7474N Dual D-Type Flip Flops which divide the
frequency down from 7.3728 MHz to 921.6 kHz. To transmit a signal, an antenna had to be tuned for the
desired frequency of 921 kHz. See Antenna Design. This square wave is sent to pin 7 of the H-Bridge

35

driver and an inverter, HD74LS04P. This inverted waveform is applied to the Pin 2 of the H-Bridge driver.
For higher transmitting strength, a boost converter is used to boost the 5V supply to 12V for the H-
Bridge IC. This is achieved by the LM2577 (Texas Instruments, 2013).

The square wave radio frequency signal applied to the Pins 7 and 2 of the H-Bridge are applied to the
Pins 6 and 3 of the same IC when the signal on Pin 1 is high. When this is low, the output to Pins 6 and 3
are low. By applying the 1 kHz signal to the controlling Pin 1 of the H-Bridge driver, the radio frequency
signal may be modulated in an ON-OFF Keying fashion.

Tek M Tria'd P Pos: 5350 us CURZOR
+

Tyvpe

Source
CH1

M 250ns

Figure 37 — H-Bridge Driver output Pin 3

Figure 37 shows the output from the H-Bridge circuit at the primary winding coil. As can be seen, the
frequency of the waveform is at the radio frequency which the signal is applied to the inputs of the H-
Bridge.

Tek i Trig'd b Pos: 3640 s CURZOR
+

Type

Source
CH1

M 250ns
12-tar—13 1356

Figure 38 — Tuned LC Antenna Circuit Output Waveform

36

Figure 38 shows the waveform at the tuned LC circuit antenna which radiates the signal. This also is at
the radio frequency as expected.
Tel T Trig'd P Pos: 5,350 us CURS0R
+

Type

Source
CHA

M 250ns
1-Mar-13 1728

Figure 39 — Divided Clock Signal from Atmega328P

The divided clock signal from the Atmega IC is seen in the Figure 39. This is at the radio frequency that
the circuit is operating and is the signal that is applied to Pins 3 and 4, one of which is inverted.
Tek .IL. Tria'd M Pos: 8,350 s CURSOR
+

Type

Source
CH1

p S0.0ns
1-Mar=-13 1731

Figure 40 — Clock Signal Output from Pin 14 of Atmega328P

The Figure 40 shows the clock signal output of the Atmega328P which is used to derive most of the
other signals being used in the transmitter.

37

Tek i Tria'd b Pos: &350 s CURZOR
b

Type

Source
CH1

M 25005
1-Mar-13 17132

Figure 41 — 1 kHz modulating signal from Atmega328P Pin 13

Finally, Figure 41 shows the modulating signal that is used to ON-OFF key the radio frequency signal.

Additionally, the XBee and GPS devices are connected to the on the Atmega microcontroller which
carries out the transmitter processes. These are connected to the physical pins as seen in the Figure 42
below.

X1

XBee Tx]

XBee Rx <<
L

<
GP5_Tx

0D D i o
OOO?OQ

Voo]

=+

OverboardDetect]
=

LeftMotorRelay1 .
=

o D 0 D o

I-::uo-::-clzwooo

DiP28
Atmega 328P

Figure 42 — Atmega Pinout for Personal Locator Device

38

Receiver Topology

For the terminal location to function properly there had to be three identical receivers that are
positioned on the rescue craft. Due to time constraints, the basic receiver is made up of a commercial
handheld Grundig M400 Radio which has been tuned to the transmitting frequency, a band pass filter
and a final logarithmic amplifier stage. The schematic of Figure 43 shows the post AM receiver stage
with the output of the final Operational Amplifier, U3B going to the Atmega328P analog to digital
converter.

Tve
=
R10 R9
A A—] 4
= 10k BMO

c

uoa o.n“.F ——l—_(i-.l
|—
i

"
RS RE }—
- 2N2222A

6BOKD 16kD LM358N I
= c3 [++] v
—=0.01pF —=0.01pF =
IV“ D2 il
—av e | WiN4148 Ll
From_Receiver T R3 R4 = g 1N-|rDF‘IG
- R2 16kt 36000 I -
‘|: U3B
10k = @ A
uie 222228 R11 _
= ’STL_I Py LM358N
1 - LM358N R12
00k r 100k
cs vE

L ¥% I T

Figure 43 — Post AM Receiver stage

The LM358N Op-Amp denoted by U1B serves as a non-inverting level shifter which offsets the DC bias
seen from the output of the receiver. The LM358N Op-Amp denoted by U2A is an active narrow band
pass filter of the Deliyannis type with a center frequency at 1 kHz which is the signal being sent by the
transmitter denoted by the AC signal source V2 (Carter, 2001). The output of this signal is sent into a
logarithmic amplifier and finally to the Atmega328P analog to digital converter.

The respective pinouts of the Atmega Microcontroller of the rescue craft are seen in the Figure 44. As
may be seen, the outputs of the logarithmic amplifier circuits are denoted by the text “From_Receiver”.

39

X1

- _ CompassSCL
XBee Tx L = CompassSDA
XBee Rx < >
< o FromFrontReceiver
= = L L . .
GPS Tx N Froleght;R)ecewer
Vece —° =
< FromLeftReceiver
<
i T -
- — o
Lo ol L
ReturnHomeButton ¢ o RightMotorRelay2
= - - = RightMotorRelay1
LeftMotorRelay1 =1 >
< T
“DIP28 LeftMotorRelay2
Atmega 328P

Figure 44 — Rescue Boat Microcontroller Pinout

Deliyannis Bandpass Filter
To decide on the component values for the filter, a quick analysis of the governing equations for the
filter are investigated. For this particular configuration, the center frequency is equal to the following:

1
fo= 2Ry C,
In this equation, the following relations hold true for the circuit seen in Figure 45.
R3 =R5 =R,
C3=C2=C(,

Gain and the Q factor are determined with the following equation. For higher values of Q and therefore
also gain, the greater the selectivity of the filter will be.

_ Vour _R5+R6
Vi 2XR3

For this equation, note should be taken that R4 and R5 are related by the following relation:

R4
n

The method applied for solving for component values was an iterative approach which made use of an
excel spreadsheet. Here, the values for the capacitors were chosen first and using the selected center
frequency, the value of R, was solved for. This is equal to R3 and R5 from the relation above. From here,
a value for n was chosen and in conjunction with the formula for gain and Q, the respective resistances
R6 and R5 could be solved for.

40

In the case of the 1 kHz band pass filter needed for the receiver, a capacitor value of 0.01 uF was chosen
for C2 and C3. After some iteration, a value of 44 was chosen for n which resulted in real resistance
values. Solving the equations with these inputs, the following values were determined for the band pass
filter.

R3 =R5=15,9150

R6 =700,2820
R4 =361Q

For the simulation and in the actual circuit, the values used were rounded to the following:

R3 =R5=16 kQ
R6 = 680 kQ
R4 =360Q

Through simulation it was found that the resistance that affects the center resistance the most was R4.
Any small variation in this value could shift the center frequency drastically which meant that any
resistors that were purchased for the filter should have a low error tolerance, especially those used for
R4.

I\n

—12V
R2 R1
I__ﬂ L W Y W— c4
= 10kQ 6MO I I
0.01pF J:—
U2A
* 1 ¥orobet
RS R6 s
1] Y(p-pl:
16".0 ﬁﬁﬂkﬂ 4 LM358N 'u'(rms):
c3 c2 If'.(dﬂ:
——0.01pF —0.01pF Iip-p):
=] I(rms):
—_— = I{dch:
R3 R4 <T“ Freq.:
§1 6k0 3600
vz =
7, 100mVpk e
6)1 kHz =
- e

Figure 45 — Deliyannis-Type Band pass filter

Simulation of the filter in Figure 45 may be seen in the Figure 46. Parameters used for the simulation are
an input signal of 100mV peak swept from a frequency of 1 Hz to 2 kHz. The peak gain seen by the circuit

41

is experienced at 1 kHz which is the signal that is being sent by the transmitter. This effectively
attenuates all signals above and below this 1 kHz frequency.

AC Sweep Analysis of Bandpass Filter

25

20

[N
(2]

Gain [V/V]

10

0 T T T T T T 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency [Hz]

Figure 46 — Band pass filter frequency sweep with 1mV input signal

The topology of radio receiver to band pass filter to logarithmic amplifier is adopted for each of the
three receivers whose signals are compared and processed by the Atmega. Using this method, the
digitized input can be read and compared in the software to apply signals to the motors for homing in on
the victim.

Logarithmic Amplifier

The transdiode-type logarithmic amplifier was necessary to reduce the non-linear characteristic of the
received signal from the transmitter versus distance of the receiver to the transmitter. This amplifies low
amplitude signals much more than higher amplitude signals resulting in a logarithmic characteristic. By
using this amplifier, the small signals received due to greater distances of separation between
transmitter and receiver are amplified with high gain factors. As the separation distance is decreased,
the gain is reduced as may be seen in the Figure 48. An additional feature of the logarithmic amplifier is
that its maximum output signal amplitude is 5V which is the maximum allowed input to the ADC of the
Atmega.

42

€1
Il

I !
= W,
2N2222A =
17
= — gV
1N40016G
T u3B
U1A [
. Q2
L + : 2N2222A m Ll
L1
— =" LM358N S‘L ZkQ , LM3SEN
R13 4 R12
5.1kQ
§ 100kQ
Bandpass_Output 1 v8
e —_— 9V

Figure 47 — Logarithmic Amplifier

The Logarithmic Amplifier is used to convert the output of the Bandpass Filter to a 0-5V level with
variable gain. Due to the addition of a second BIJT transistor, there is the added benefit of Temperature
Compensation in the Transdiode Logarithmic Amplifier which compensates for offset voltage (Webster,

1999).

The design of the amplifier was based upon the Figure 16 configuration from the datasheet for the
MC1556 operational amplifier (Motorola Semiconductor, 2003-2013). For temperature compensation,
the circuit from Figure 6.16 was used from the text Analog Signal Processing by Pallas-Areny and

Webster on page 299 (Webster, 1999).

To test the Logarithmic amplifier, the setup as seen in Figure 47 was utilized. The voltage source V3 was
swept from 0-12V and the output voltage measured where probe 1 is seen in the Figure. The plot of the

characteristic is seen in the Figure 48 below.

43

Transfer Function, Log Amplifier Simulation
Results

(2}

v

D

N
|

Voltage Output [V]
w

[Eny

o

Input [V]

Figure 48 — Logarithmic Amplifier Simulation Results

To compare the actual circuit to the simulated one, the voltage source V3 was adjusted at small
increments from 0-10V on a power supply and the output voltage measured where probe 1 is seen in
the Figure. The results of this may be seen in the Figure 49 below.

44

DC Sweep Experimentally Obtained Transfer
Function for Logarithmic Amplifier

Sy

Output [V]
w

24—
1
0
0 2 4 6 8 10 12
Input [V]

Figure 49 — Transfer Function of Logarithmic Amplifier, Experimentally Obtained

As can be seen, the two plots are nearly identical, demonstrating the circuit’s functionality. Any small
signal is amplified much more than the larger signals i.e. for every change in input voltage, there is a

decreasing change in output voltage. It is the output of this logarithmic amplifier that is read by the ADC
of the Atmega.

45

Logarithmic Amplifier Tranfer Function
Comparison to Simulation

B Simuated DC Sweep

Output [V]
w

=&—Experimentally Obtained DC

2 Sweep N
1
0

0 2 4 6 8 10 12 14

Input [V]

Figure 50 — Comparison of Experimentally Obtained Transfer Function to Simulation

This circuit is utilized for each of the three receiver devices, the outputs of which are compared
internally by the Atmega microcontroller. The digitized values of the output signal are used for
determining which motor to drive in the final terminal location stage.

Motor Control

Relays were used to drive the trolling motors of the rescue craft. This has been deemed the most
efficient and fitting solution as reaction time is not critical and heat dissipation need not be considered
due to the nature of relays. In the circuit below four, single pole, dual throw (SPDT) relays are
implemented. The open connections to the MOSFETs come from the controlling pins of the Atmega
microcontroller which provides logic signals to drive the Relays.

46

1mH 90 O

at L
3?1 NE0

R1
1kQ

a2
H—BT‘I NE0

K3

K4

T

1mH 90 0

L

1mH 80 0

ﬁ?} gwan

R4
1k =

Ard_Pin_8 \L\rd Pin_9 l)‘-\rd Pin_10 Jd Ard_Pin_11
- TN I -7 W -7

Figure 51 — Motor Controller Circuitry

Depending on the state of the input pins, the trolling motors represented by M1 and M2 in the figure
above may be driven forwards or in reverse. The table below summarizes what direction the motor will
turn, depending on the inputs. MOSFETs Q1 and Q2 together control the state of the motor M1 and Q3
and Q4 the state of motor M2, respectively. For this example, the motor M1 represents the motor on
the port side of the boat and M2 the starboard side. In the table, 1 represents a logic HIGH at the
MOSFET, or 5V applied to the gate. 0 represents a logic low with 0V applied.

47

Table 2 — Boat Reaction per MOSFET Gate Input

Stateof Q1 | Stateof Q2 | Stateof Q3 | State of Q4 | Motor M1 | Motor M2 | Boat Reaction
0 0 0 0 OFF OFF Coast

0 0 0 1 OFF FWD Left Turn
0 0 1 0 OFF REV Right Turn
0 0 1 1 OFF OFF Coast

0 1 0 0 FWD OFF Right Turn
0 1 0 1 FWD FWD Forward

0 1 1 0 FWD REV Hard Right
0 1 1 1 FWD OFF Right Turn
1 0 0 0 REV OFF Left Turn

1 0 0 1 REV FWD Hard Left
1 0 1 0 REV REV Reverse

1 0 1 1 REV OFF Left Turn

1 1 0 0 OFF OFF Coast

1 1 0 1 OFF FWD Left Turn

1 1 1 0 OFF REV Right Turn
1 1 1 1 OFF OFF Coast

The Rescue Boat
To obtain a basic idea of what speeds and power requirements the rescue boat will need, some basic

analysis was done on the craft. For any displacement hull boat, there is a characteristic measure called

hull speed which is dependent on the waterline length of the boat which is the dimension B in the figure

below.

48

Figure 52 — Waterline length of a boat (glen-1, 2008)

Hull speed is defined as the speed of a displacement hull boat when the wave-making drag becomes
dominate over the surface friction drag. The thrust required to exceed hull speed increases dramatically
after this point. These may be found in Appendix B — Hull Speed Calculations. The formula for the hull
speed may be found below (Savitsky, 2003).

Vpuny = k X v Lwatertine where k = 1.34

The craft being used to carry out the rescue in this scenario is 10 feet long. While cruising, the craft has
an angle of attack that changes with speed. Due to this, the waterline length will decrease. Because of
this phenomenon, the hull speed will change. After some calculation over the various waterline lengths
up to 10 feet, the resulting hull speeds were graphed in the Figure 53 — Graph of Hull Speed vs.
Waterline Length below.

Hull Speed vs. Waterline Length

»
(&)

Hull Speed [knots]
= N w
L U0 NN U1 W D

o
n

o

0 2 4 6 8 10 12
Waterline Length [feet]

Figure 53 — Graph of Hull Speed vs. Waterline Length

49

Based on this calculation, our craft will be capable of efficiently running up to 4 knots, provided the
waterline length does not drop below 9 feet. Additionally, C; is a parameter required to find
characteristic specifications of the boat’s performance. The formula is stated below (Anthony F.
Molland, 2011).

In the equation above, C;is the coefficient of hull resistance in calm water; Rris the total hull resistance
in [Ibs] and p is the fluid density in [slugs/ft’]. Finally, S is the wetted surface area of the submerged hull
in [ft?] and V. is the speed of the ship in [ft/s]. For the rescue boat traveling at 1.9 ft/s with 3.9 Ibs. of
drag, a coefficient of hull resistance was calculated to be 0.036.

Boat Testing

To test the rescue boat, a series of experiments were formulated to determine the handling of the craft
itself. These results were crucial in creating a control scheme for the boat such as turning, stopping, and
backing up.

Figure 54 — The Rescue Boat

The tests that were performed were to determine the top speed and stopping distance. These were
useful in calculating the time of rescue and when the rescue craft will need to stop so as to not hit the
victim. The drag force was also measured to determine how the craft can be run to achieve the most
efficient traveling velocity. The current draw at maximum velocity was measured to approximate a
running time on the boat based on battery characteristics. The turning circle of the boat was measured

50

to better model the handling. Finally the static thrust was determined. The experimental procedure for
the testing may be found in the Appendix A — Boat Water Maneuverability Experimentation.

Test Results
The results of the test are summarized in the table below.

Table 3 — Water Test Results for the Rescue Craft

Parameter Result Units
Maximum Speed (With Person in Boat) 2.4 [knots]
Maximum Speed (Without Person in Boat) 3 [knots]
Stopping Distance (From Full Speed Coasting) | 9.5 [ft]
Current Draw (Max Speed) 14 [A]
Drag Force (1.6 knot tow speed) 3.9 [lbs]
Static Thrust (Both Motors) With Person 28 [Ibs]
Static Thrust (Both Motors) Without Person 25.7 [Ibs]
Turning Circle, Radius (with slight Wind) 11.5 [ft]

One major noticeable difference between the motor specifications and the test results is the static
thrust of the rescue craft and measured current draw. The trolling motors used for the rescue boat were
designed to move heavy craft at slow speeds and therefore have propellers with a small pitch (Burns,
1999-2013). A decrease in pitch on the propeller results in higher motor RPM. This means that the
motor reaches its top speed very rapidly and experiences less resistance from the water as the mass of
the boat is much less than designed for. As seen from the graph of a typical DC motor speed and current
versus torque graph in Figure 55, for higher motor speeds, there is a lower current draw and torque.

51

Speed & Current vs. Torque — ==——Specd
Current

1.500 42

2,000 1 ,l’/ 30
N P

2.500 30

- _—

E / i

£ 2000 E 24 B

i 1,500 \(135
(=1 QL

& e 5

1,000 P N 12 °

500 ;"/f 1\\]
| -p

[y %0 100 150 200 250 300 35D 400 450

Torgue [oz-in)

u

Figure 55 — Speed and Current vs. Torque Graph (Simple Machines, 2010-2011)

To increase the speed and static thrust of the boat, the current propeller should be replaced with one
that has a higher pitch.

The Rescue Boat - Draft

To find the draft, or distance from the water level to the bottom of the hull of the boat, it is necessary to
calculate several parameters in conjunction with the Archimedes principle (Cimbala, 2010). These are of
benefit for the simulation of the rescue craft in the Flow Simulation software of Solidworks. This
information is used to determine how deep the craft sits in the water.

To determine the draft of the sea rogue, the total mass of the boat, motors, battery and all other
equipment is to be determined. Using this, the following formulas are used to determine how deep the
boat sits in the water (arizona.edu, 2010).

m = Vgyp X Py

Where m is the mass of the boat and all equipment on it, vg,}, is the volume that is submerged and p,,
the density of water. Solving this equation for the submerged volume and using the following relation
allows one to solve for the water level.

Usub = Vdisp

Where vy, is the volume of water that is displaced by the laden boat. To determine the water level,

the following equation is used.

Vais
L —_ p

Ahull

For the boat being used in this project, the following properties were used for the calculations.

52

Table 4 - Calculation Parameters

Parameter Value Unit
Dry mass of boat 50 kg
Mass of Battery 16 kg
Mass of Motors 14 kg
Mass of other equipment 5 kg
Density of sea water 1027 Kg/mA3

Utilizing these parameters, the submerged volume of the boat was calculated to be 0.083 m*. This
resulted in a draft of 2.17 cm. Using these values as a basis, a simulation was conducted in the Flow
Simulator add on of Solidworks. Drag force was found by solving for a global goal of force in the axis
parallel to the direction of travel for the boat.

Solidworks

To provide a base for calculations to determine proper motors for use with the craft and a comparison
for expected drag forces from the vessel, a Solidworks model was drafted. This was modeled using the
actual rescue boat in shape and size. Using the Flow Simulation 2012 wizard and solving for the reaction
force in the Z-Direction as indicated in the model under global goals, the drag force was able to be
calculated. To run this model there were some assumptions and conditions that were applied. For a
complete procedure of the simulation, see Appendix F — SolidWorks Flow Simulation 2012 Procedure.

53

7.588
5870
4152
2434
0716
-1.002
2721
-4439
-6.157
-1875
Relative Pressure [Ibt1"2)

Surface Plot 1: contours:

Figure 56 — Solidworks Simulation for Relative Pressure on the Rescue Craft | Drag Force Simulation

Water was used as the fluid and simulated to run at 3kmh toward the boat model. The water level was
set as calculated in the draft section above by adjusting the computational domain (Cudacountry.net
Tech Ed, 2010). Cavities without flow conditions and internal spaces were excluded from the
calculations as well as any components that were not necessary for determining the drag force. Due to
the limited availability of another craft to carry out testing, the trolling motors were excluded from the
model. This was decided because they were fastened to a canoe which was used to tow the rescue craft
for determining the drag force experienced.

When applying the initial conditions, it is important to take care in setting the correct value for flow
direction. In this case, making note of the global coordinate system is useful as well as plotting flow
trajectories and running an animation to ensure that the fluid is flowing in the correct direction.

After the calculations have been carried out for the global goal(s) as set in the goal table, the resulting
drag force is displayed by choosing Insert, Goal Table. As may be seen in the Figure 57, the resulting drag
force experienced by the rescue boat moving at 3kmh in water was determined to be 2.8 Ibs. This was
comparable to the experimentally obtained drag force of 3.9 Ibs. The percent error of 40% from this
experiment showed that the simulation was fairly accurate for a flow simulation. There are other factors
that contribute to the drag including wind conditions, turbulence from the towing craft and others that
contribute as sources of error.

54

Goal Name Unit Value
GG Force (Z) 1 [bf] 28

Figure 57 — Resulting Drag Force on the Boat Model

To determine the drag force experimentally, a digital luggage scale was used in conjunction with a tow
line and canoe upon which the trolling motors were attached. The scale used may be seen in the Figure
58 seen below.

Figure 58 — Luggage Scale used to determine Drag Force on Rescue Craft (Bed Bath & Beyond, 2013)

Other methods for determining drag such as towing the boat from land were considered but
determined to be less feasible due to the nature of the lake that testing was completed on.

The Rescue Boat - Power Requirements

To determine the power requirements and therefore specifications for a battery, each of the respective
electronic components were necessary to take into account. The following table summarizes the data
that was used for the calculations as taken from the provided MinnKota website (Ltd, 2011) and online
source (Smith, 2011).

Table 5 — Power Requirement Calculation Parameters

Parameter Value Units
Motor Voltage 12 V]
Max Current Draw 30 [A]
Max Force per Motor 30 [Lbf]
Runtime at Max Power 30 [min]

55

The necessary battery ampere-hours required may be found using the following equation:

C = lgraw X trun

Where C is the necessary Ampere-hour capacity needed from the battery, I ;4. is the total current
draw from the battery and t,,,, is the time that the system is operational and requires power from the
battery. Additionally, due to the nature of lead acid batteries which should not be discharged more than
50% their capacity, the required capacity will need to be doubled. Solving the equation above and
accounting for the allowable discharge, the final capacity required for the motors is 60 Ah for total
runtime of 30 minutes at full power.

Based on these calculations, the battery used for the rescue craft was a Die Hard Deep Cycle battery
with an 80Ah capacity. This would provide more than the necessary energy required to run the rescue
craft as specified.

Figure 59 — Deep Cycle Battery Used to provide Power for the Rescue Boat

After conducting the tests on the water and using a shunt resistor to measure the current draw from a
single motor, it was found that less current was drawn than expected. To measure the current draw
from one of the trolling motors, a shunt resistor was placed in series with the motor and battery. The
battery is represented in the Figure 60 as V1 and the motor represented as a current sink with the
resistor R1 representing the shunt resistor, respectively.

56

Figure 60 — Setup to measure current draw from single Motor

In measuring the voltage drop across the resistor R1 and knowing the resistance of the shunt resistor,
the current draw from the motor may be calculated. This is accomplished by means of ohm’s law.

For this setup, a shunt resistor with a resistance of 0.2 Q was used and a voltage drop of 2.79V was
measured. This resulted in a current draw from the motors of 14A. This is more than half the expected
draw as stated by the datasheet from MinnKota. This was determined to be due to the fact that the
motors are designed to move heavy craft. By being used to propel our light rescue craft, the motor
speed is higher, resulting in a lower torque and therefore a lower current draw.

The Rescue Boat - Turning Circle

To calculate the turning circle of the rescue unit, a few preliminary tests were conducted on the water to
obtain values for the angular velocity as well as the static forward thrust. To test the angular velocity,
the rescue unit was remotely driven in a circle for a full rotation and timed. This time was then
converted to a value of radians per second which was determined to be 0.2244 radians per second. For
the turning radius calculation, the motors documented thrust of 30lbs was used. Measurements of the
exact position of each motor were also made in order to obtain the most accurate experimental turning
radius calculation as possible. Assumptions used in the calculation were that the motion is planar and a
constant velocity is maintained throughout the turn.

The equations used to determine the radius can be seen below (Fossen, 1994) (Furfaro, 2012):
Xcontrol = Tleft.Motor X cos Qleft.Motor + Tright.Motor X cos eright.Motor
Ycontrol = Tleft.Motor X sin Qleft.Motor + Tright.Motor X sin eright.Motor

Zcontrol = [Tleft.Motor X Dxleft X sin eleft.Motor + Tright.Motor X Dxright X sin Hright.Motor]
+ [Tleft.Motor X DYIeft X cos Qleft.Motor — Iright.Motor X DYTight X cos eright.Motor]

57

X = Xcontroi X Tatio

Y = Ycontror X ratio

[%% + y2]
@

R turning =

The figure below shows the respective variables and components of the equations as they relate to the
rescue craft.

Figure 61 — Model of the Rescue craft for analysis

Additionally, the meaning of each of the symbols may be seen in the table below. The equations used
the thrust of each motor as well as the angle that the respective motor was turned at to determine the
force in the x and y direction of travel. These values were then converted using a ratio experimentally
obtained between the force and the velocity of the boat to determine the speed the boat would be
moving in the x and y direction while turning. Finally the velocity vector was divided by the angular
velocity to determine the experimentally calculated expected turning radius. This was found to be
approximately four meters.

58

Table 6 — Variable and their descriptions for turning circle calculation

Symbol Description

X control Surge force control

Y onirol Sway force control

Z ool Yaw control

T, vioror Torque from motor x

O voror Angle of applied torque from x-
axis

Dx Displacement of motor from the
center of gravity for the craft in
the x-axis

Dy, Displacement of motor from the
center of gravity for the craft in
the y-axis

x Linear velocity along the x-axis —
surge velocity

y Linear velocity along the y-axis —
sway velocity

ratio Experimentally obtained relation
between expected thrust to
experimentally obtained velocity

rurning Calculated Turning radius
4 Yaw velocity

Results

With a completed system created, several experiments were conducted to demonstrate the
functionality of the MOB equipment. These involved a water test which simulated the rescue of a MOB
on the Assabet River in Maynard, MA as well as a land demonstration of the personal locator devices’
terminal location. The tests were headquartered at the Ice House Landing near the Maynard
Department of Public Works.

Water Test

The main test for functionality involved a simulated autonomous rescue effort by the rescue craft. Due
to the cold water, the test was broken into two segments as a victim was not readily willing to swim in
the lake to be rescued. The segments included victim location and return to mothership. This was
segmented so as the “victim” could be placed in the rescue craft to press the return home button. The
following series of figures show the path traveled by the three modules as seen on the mothership GUI
as well as from an observer’s perspective on the lake. A log file of the GPS coordinates can be found in
Appendix N - Coordinates.log.

59

Victim Location
Victim location was achieved by starting the rescue craft 226m downstream from the personal locator

device as measured from GPS log data. The personal locator device was then activated by pressing the
distress button on the unit which was attached to a life vest as seen in the Figure 62.

Figure 62 — Personal Locator Device Fastened to the Life Vest

From the GUIs perspective, the following information is displayed in Figure 63. When the victim module
sends a distress signal, the GUI displays a message indicating that the victim overboard condition has
been detected. It also displays the position of any of the modules that have sent their respective GPS
coordinates to the mothership. The test showed that by pressing the button on the victim module, the
mothership successfully initialized the rescue unit. The rescue unit then began to navigate towards the
victim using the cross-track error algorithm.

60

Overboard!

scue Unit
tim Unit

fAothership Unit

Figure 63 — Mothership GUI: Victim overboard condition detected

The next message the mothership GUI displays is that the rescue unit is initialized and navigating to the
victim. This can be seen in Figure 64. In this stage the rescue craft successfully used the cross-track error
algorithm to head in the direction of the victim using the GPS coordinates it received from the victim

unit.

Rescue init and search

ue Unit

Victim Unit

Aother ship Unit

Figure 64 — Mothership GUI: Rescue unit initialized and heading off

61

In Figure 65 below, the rescue craft - denoted by the red outline, and victim - denoted by the blue
outline may be seen. Here, the rescue craft is headed in the direction of the personal locator device.

Figure 65 — Rescue Craft and Personal Locator Device

Additionally, as the rescue craft was within 30 meters of the PLD, the radio transmitter was activated
and terminal location was standing by for a signal. Figure 66 shows the GUI telling the user that the
victim unit has activated the terminal locator device and the rescue craft is searching for a signal from it.
In this state, the rescue unit is still using the cross-track error algorithm to navigate to the victim, but is
about to transition to the terminal location algorithm using the three AM receivers to home in on the
victim.

62

GPS Plot V:0.5

TLD Activated

Figure 66 — Mothership GUI: Terminal locator device activated

In this particular test scenario, the rescue craft passed the personal locator device and homed in on the
simulated victim. This homing action may be seen in the Figure 67 below.

Figure 67 — Terminal Location on the Victim

63

In the figure below, the GUI is notifying the user that the rescue unit has successfully reached the victim
within one meter. Here the rescue craft is in a state of idleness, waiting for the victim to board the boat.
Should the victim drift away, the rescue unit will again home in on the man overboard.

Waiting for victim to board

Figure 68 — Mothership GUI: Waiting for the victim to board

In the next state, the rescue craft waits for the victim to press the return to home button located near
the bow of the boat. Once this button is pressed, the GUI on the mothership displays a message
indicating that the victim is on the rescue unit as demonstrated in Figure 69.

64

GPS Plot V:0.5

Victim on rescue

Figure 69 — Mothership GUI: Victim is on the rescue craft

Return to Mothership

For this stage of the test, a canoe was paddled to the rescue craft and a person entered the boat to
press the return home button as indicated in Figure 70.

Figure 70 — Return Home Button

65

Once the return home button was pressed, the recue craft headed toward the GPS coordinates of the
simulated mothership 133m away. For this test, the mothership was a canoe denoted by the green
outline in the Figure 71.

Figure 71 — Rescue Boat Return Home Trip

The output on the GUI is seen in Figure 72 for the condition after the return home button has been
pressed.

66

-Return

Rescue Unit
Victim Unit

p Unit

Figure 72 — Mothership GUI: The rescue craft is returning home

Once the victim and rescue unit are within thirty meters of the mothership, the GUI displays a message
indicating the victim has returned home as seen in Figure 73. The test demonstrated that the rescue unit
was capable of using the GPS coordinates to return to the mothership and realize when to stop once it
was within thirty meters of it. With the mothership successfully reunited with the rescue craft and
victim, the test was completed demonstrated that all three modules worked together properly to
autonomously return the victim to the mothership.

67

'GPS Plot V:0.5 ’

Rescue Unit

Victim Unit

Aother ship Unit

Figure 73 — Mothership GUI: The rescue craft is back at the mothership

Terminal Location - Land-based Demonstration

Before the Terminal Locator device could be tested, the receivers must be fine-tuned and volume levels
from each of the devices adjusted such that proper functionality is achieved. See Appendix K — TLD
Radio Fine-Tuning for TLD tuning.

In order to test the operation of the receivers, the victim module was held in front of the rescue craft on
land and moved from side to side. This test was conducted to determine the distance of operation for
the terminal locator device as well as its functionality. First the rescue unit was put in the GPS navigation
mode and the victim module was slowly moved towards the boat beginning at a distance of fifty feet
measured from the bow of the boat. Once the victim unit was within eighteen feet of the bow of the
boat, the terminal location took over as seen in Figure 74. When the victim unit with the AM transmitter
was moved back to twenty three feet from the bow of the boat, the rescue unit automatically reverted
back to using the GPS navigation. This was repeated four times and accurately resulted in similar results.

Once within the terminal location mode, the victim unit was moved to the left and to the right of the
rescue boat. The motors changed direction with an error of just three feet either to the left or right of
the boat. This demonstrated functionality of the terminal location in being able to home in on the victim
using the AM transmitter and receivers. Finally, to determine if the rescue unit would stop before hitting
the victim, the PLD was moved closer to the rescue boat. Once it was within five feet of the bow of the
boat, the rescue unit motors turned off and the rescue unit indicated that it was waiting for the victim to
board.

68

Personal Locator
Device

Figure 74 — Experimental Setup for Terminal Locator Test

A frame from the video recorded of the demonstration seen in Figure 75 shows that, when the personal
locator device is positioned to the port of the rescue boat, the right motor is running and the vessel
would be making a port turn.

Figure 75 — Terminal Locator Demonstration — Port Turn

As the personal locator device is moved to the starboard side, the left motor is turned on and the right
motor turned off. This makes for a starboard turn to head toward the victim as seen in the Figure 76.

69

Figure 76 — Terminal Locator Demonstration — Starboard Turn

When the personal locator device is within 5 feet of the personal locator device, the motors are turned
off to coast toward the victim. This is seen in the frame in Figure 77 below.

Figure 77 — Terminal Locator Demonstration — Coasting

The results of this test demonstrated that the terminal location by means of AM radio transmission and
the tri-antenna setup is a feasible method for homing on the victim.

70

Conclusions and Further Research
The following sections describe the conclusions reached for the autonomous man overboard rescue
equipment as well as suggested future research.

Conclusions

It was determined that the autonomous man overboard rescue equipment was successful in
demonstrating an autonomous search and rescue mission for a man overboard case. The test was
conducted on the Assabet River in Maynard, Mass where the rescue craft was located on one end of the
river and the victim on the other, separated by a distance of 226 meters. The mothership was also
located a little farther away from the two modules. When the victim unit was activated, the rescue unit
successfully used GPS and the magnetic compass readings to head directly to the victim and then stop
upon reaching it. Once the victim was on the rescue craft, the craft was able to head back to the
mothership unit using the GPS coordinates received from the mothership unit. All functional
requirements of the initial design were met.

The system was also able to operate well over the thirty minute time requirement. Additionally, it
operated over a 500 meter range using the XBee modules although the full range of the XBees listed in
the specifications was not achieved due to the enclosed location of the XBee transceiver on the rescue
craft. The victim module was watertight and could be submerged without harm to the internal
electronics. The mothership GUI also performed well, displaying the locations of all three modules
relative to each other as well as notifying the user of the current state of the rescue. Overall the system
performed as expected and demonstrated that the scaled up model could be used to autonomously
find, rescue, and return a man overboard to the mothership.

Compromises

One of the compromises that was made to successfully complete the project was the use of a
commercial AM receiver was used to replace a tuned radio receiver. In the original project design
specifications, the receivers were to be designed and implemented specifically for the 921 kHz operating
frequency by the project team. An initial receiver circuit was designed and underwent some revisions,
but did not meet the sensitivity and selectivity requirements necessary for the performance at the
distances required for the project. Due to time constraints caused by the design and troubleshooting of
the transmitter and other circuits related to the receiver module (such as the band pass filter and the
logarithmic amplifier), it was decided that the receiver circuit should be replaced with an off-the-shelf
alternative. This allowed for more time to be allocated to other portions of the project.

A second compromise that was made for the project was the use of AAA batteries in the victim module.
This was due to the limited available space in the enclosure for the victim module. Because of this, the
battery life of the victim module was reduced with the AM transmitter active. Better batteries with a
higher amp-hour rating would allow the victim module to operate longer.

A final compromise was that a PCB was not printed for the modules. With a PCB, the modules would be
more compact, fit in a smaller space, and reduce the number of external wires used. Furthermore, the
modules would have a more professional look and would not be prone to short circuits.

71

Next Steps

Further development for this project should be focused on obtaining a more powerful motor for the
rescue unit. With a more powerful motor like an 8hp outboard motor, the rescue time for the victim
could be significantly reduced. For example, the current trolling motors on the rescue craft require
approximately half an hour to go 2.5km. If the motors were to be replaced with an 8 hp motor, then the
rescue time would be reduced down to approximately ten minutes. Furthermore, a more powerful
transmitter should be designed to increase the range for a better homing capability. More powerful
transceivers to replace the XBees would also allow for a longer range of communication between the
modules. A more modular design for the personal locator device would also allow for a smaller sized box
for the victim to have to carry around. A deployment system for the rescue unit could also be helpful in
making the entire process autonomous as the current design requires the boat to be placed in the water
by someone.

The code could also be optimized for more advanced tracking allowing for less delay. Also the receivers
could be tuned better for noise reduction capabilities and hopefully increase the range for the homing
on the victim. With all these modifications added to the system, the autonomous man overboard rescue
equipment would be much more effective and a reliable solution for the field.

Outlook

Based on the functionality of the MOB rescue equipment described in this report, a potential solution to
the MOB problem that would surpass exiting systems has been demonstrated to be feasible. The
successful PLD developed in this project may be used to create a more modular and higher performance
device to be commercialized and mass produced and carried by the crew of a large vessel. Similarly, the
rescue module may be made more robust and incorporate an outboard motor to overcome strong
winds and currents experienced in the open ocean. The GUI may be designed to be incorporated on the
control deck of a vessel and provide both audible and visual indicators of MOB cases as well as mission
status updates. Finally, to make the system more autonomous, the distress button on the PLD should be
supplemented by a salt water detector. The combination of these systems would result in a viable,
commercial system that could save many lives.

72

Bibliography

What is the "MOB" function of my marine GPS device? (2011, March 28). Retrieved 12 10, 12, from
Garmin: https://support.garmin.com/support/searchSupport/case.faces?caseld={71655ee0-
104c-11dc-4b06-000000000000}

Anthony F. Molland, S. R. (2011). Ship Resistance and Propulsion, Practical Estimation of Ship Propulsive
Power. New York, NY: Cambridge University Press.

arizona.edu. (2010, 6 7). Archimedes. Retrieved 2 2013, from physics.arizona.edu:
http://www.physics.arizona.edu/physics/gdresources/documents/13_Archimedes.pdf

automationdirect. (1999-2013). GCX3226-24. Retrieved March 2013, from automationdirect.com:
http://www.automationdirect.com/adc/Shopping/Catalog/Pushbuttons_-z- Switches_-z-
_Indicators/22mm_Plastic/Emergency_Stop_Pushbuttons_Illuminated -a-_Non-
lluminated/GCX3226-24

Bed Bath & Beyond. (2013). Digital Luggage Scale . Retrieved March 2013, from bedbathandbeyond:
http://www.bedbathandbeyond.com/product.asp?SKU=14704795

Burns, T. (1999-2013). The Effect of Propeller Pitch on Outboard Motors. Retrieved April 20, 2013, from
ehow.com: http://www.ehow.com/info_8584258 effect-propeller-pitch-outboard-motors.html

Carter, B. (2001, December). More Filter Design. Retrieved February 2013, from Texas Instruments:
http://www.ti.com/lit/an/sloa096/sloa096.pdf

Cimbala, Y. A. (2010). Fluid Mechanics, Fundamentals and Applications. New York, NY: McGraw-Hill.

Connolly, J. P. (2004, January 28). Man Overboard Retrieval Device. Retrieved 11 15, 12, from Google
Patents :
http://www.google.com/patents?id=QQMUAAAAEBAJ&printsec=abstract&zoom=4#v=onepage
&q&f=false

Cudacountry.net Tech Ed. (2010, October 7). Boat Flow Sim. Retrieved February 2013, from
Cudacountry.net: http://www.cudacountry.net/assets/applets/sw10_FlowSim_boat.pdf

Digi-Key. (12, 12 10). ATS073B CTS-Frequency Controls. Retrieved 12 10, 12, from Digi-Key:
http://www.digikey.com/product-search/en?x=0&y=0&lang=en&site=us&KeyWords=CTX1040

Digi-Key. (1995-2013). AOTING6O. Retrieved April 23, 2013, from digikey.com:
http://www.digikey.com/product-detail/en/AOT1N60/785-1184-5-ND/2353849

Environmental Law Institute. (1991). Oil Pollution Deskbook, The Environmental Law Reporter.
Washington, DC: Environmental Law Institute.

FCC. (2011, November 3). AM Query Broadcast Station Search. Retrieved December 12, 12, from FCC:
http://www.fcc.gov/encyclopedia/am-query-broadcast-station-search

73

Fossen, T. |. (1994). Guidance and Control of Ocean Vehicles. West Sussex, England: John Wiley & Sons
Ltd.

Furfaro, T. C. (2012). A Modular Guidance, Navigation and Control System. Boca Raton: Florida Atlantic
University.

glen-l. (2008, May 29). Boat Design Characteristics. Retrieved December 14, 2012, from glen-l.com:
http://www.glen-l.com/desn-char.html

Google. (2011). My Tracks. Retrieved February 2013, from google.com:
http://www.google.com/mobile/mytracks/

ladyada. (2012, August 14). GPS datalogging shield for Arduino. Retrieved February 2012, from
ladyada.net: http://ladyada.net/make/gpsshield/modules.html

Ltd, B. L. (2011). MinnKota Endura Manual. Retrieved March 2013, from MinnKota:
http://www.minnkota.com.au/community/user-manuals/motor-manuals/endura.html

Makerbot Industries, LLC. (2013). Adafruit Pi Box: Enclosure for Raspberry Pi. Retrieved April 2013, from
thingiverse.com: http://www.thingiverse.com/thing:24461

Marine Rescue. (2012, December 1). Rhotheta High-Precision Man Overboard Direction Finder Systems.
Retrieved 12 2, 12, from Marine Rescue: http://www.manoverboardsystems.com/Rhotheta-
SAR-receivers.html

Maxim Incorperated. (2007, October 31). What are IP Ratings? Retrieved 12 05, 12, from Maxim
Integrated: http://www.maximintegrated.com/app-notes/index.mvp/id/4126

MinnKota. (2008-2013). Endura C2. Retrieved April 2013, from minnkotamotors.com:
http://www.minnkotamotors.com/products/trolling_motors/freshwater_transom_mount/endu
raC2.aspx

Motorola Semiconductor. (2003-2013). MC1556 pdf. Retrieved March 2013, from alldatasheet.com:
http://pdfi.alldatasheet.com/datasheet-pdf/view/128952/MOTOROLA/MC1556.html

Mouser. (2013). 893-896H1CHD1SW12VDC. Retrieved April 2013, from Mouser.com:
http://www.mouser.com/ProductDetail/Song-Chuan/896H-1CH-D1SW-R1-
12VDC/?qs=sGAEpiMZZMt98bArVIterd)SFvwfmI4SJSjElpVYzv0%3d

Mouser. (2013). ATMEGA328P-PU. Retrieved January 2013, from mouser.com:
http://www.mouser.com/ProductDetail/Atmel/ATMEGA328P-
PU/?gs=sGAEpiMZZMtVoztFdgDXO6rEZgxeooRg

Mouser. (2013). Digi International XBee. Retrieved March 2013, from mouser.com:
http://www.mouser.com/new/digi/digiXBeeZB/

74

Mouser. (2013). RP8100B2M1CEBLKBLUBLU. Retrieved March 2013, from mouser.com:
http://www.mouser.com/ProductDetail/E-
Switch/RP8100B2M1CEBLKBLUBLU/?qs=sGAEpiMZZMvxtGF7dIGNpggmTFthXBmfiFV%252bWV9
Ee7w%3d

National Meteorological Library and Archive . (2010). Beaufort. Retrieved December 14, 2012, from
metoffice: http://www.metoffice.gov.uk/media/pdf/4/4/Fact_Sheet_No. 6_-
_Beaufort_Scale.pdf

Nautic Expo. (12, December 5). MOB davit for ships. Retrieved 12 06, 12, from Nautic Expo:
http://www.nauticexpo.com/prod/vestdavit/mob-boat-davits-for-ship-31773-195721.html

NPD Group. (2013, February). Otterbox 2000 Waterproof iPhone Case. Retrieved March 2013, from
otterbox.xom: http://www.otterbox.com/OtterBox-Drybox-2000/OTR3-
2000S,default,pd.html?dwvar_OTR3-2000S_color=05&start=2&cgid=otterbox-2000-cases

Premier Farnell plc. (2009). Group: Raspberry Pi. Retrieved January 2013, from element14.com:
http://www.elementl4.com/community/groups/raspberry-pi

RadioShack Corporation. (2013). Eton Grundig Mini 400. Retrieved April 2013, from radioshack.com:
http://www.radioshack.com/product/index.jsp?productld=4394908

RescuelTech. (2012, November 28). Fibre-Lite Rescue Cradle. Retrieved 11 30, 12, from RescuelTech:
http://www.rescuetechl.com/fibre-literescuecradle.aspx

Savitsky, D. (2003, October 2). On the Subject of High-Speed Monohulls. Retrieved 11 20, 12, from
Legacy: http://legacy.sname.org/newsletter/Savitskyreport.pdf

Simple Machines. (2010-2011). Speed and Current vs. Torque. Retrieved April 23,2013, from
societyofrobots.com: http://www.societyofrobots.com/robotforum/index.php?topic=4324.0

Smith, J. P. (2011, August). Trolling Motor Performance. Retrieved March 2013, from tufox.com:
http://tufox.com/hobie/TrollingPerformance.html

Sparkfun. (2013). Compass Module - HM(C6352. Retrieved February 2013, from sparkfun.com:
https://www.sparkfun.com/products/7915

Texas Instruments. (2013, April). LM1577 / LM2577. Retrieved April 2013, from ti.com:
http://www.ti.com/lit/ds/symlink/Im2577.pdf

Tor Pinney. (2012, December 1). Attention Cruising Sailors: This Could Save Your Life! Retrieved 12 12,
12, from Tor Pinney's Homeport: http://www.tor.cc/articles/last.htm

United States Coast Guard. (2012, December 6). HC-130H/J Long Range Surveillance Aircraft. Retrieved
12 11, 12, from United States Coast Guard: http://www.uscg.mil/acquisition/Irs/

75

United States Coast Guard. (2012, December 6). Ring Life Buoys & Buoyant Cushions. Retrieved 11 12,
12, from United States Coast Guard: http://www.uscg.mil/hq/cg5/cg5214/ringlb.asp

United States Coast Guard. (2012, February 6). U.S. Coast Guard SAR Statistics. Retrieved December 12,
12, from United States Coast Guard:
http://www.uscg.mil/hq/cg5/cg534/sarfactsinfo/USCG_SAR_Stats.asp

Wal-Mart Stores, Inc. (2013). Snap Top Everstart Marnine Battery Box. Retrieved April 2013, from
walmart.com: http://www.walmart.com/ip/Snap-Top-Everstart-Marine-Battery-Box/16781380

Webster, R. P.-A. (1999). Analog Signal Processing. New York: John Wiley & Sons, Inc.

Williams, M. C. (2007, November 9). Man Overboard Device Saves Sailors Lives. Retrieved 12 01, 12,
from Americas Navy: http://www.navy.mil/submit/display.asp?story_id=33180

wiseGeek. (12, 12 06). How Long Does it Take a Supertanker to Stop? Retrieved 12 10, 12, from
wiseGeek: http://www.wisegeek.com/how-long-does-it-take-a-supertanker-to-stop.htm

76

Appendices

This section contains applicable material referenced in the report above.

Appendix A - Boat Water Maneuverability Experimentation

Goals

e Determine the turning characteristics
o One driving motor

e Drag force
o With/without victim

e Craft top speed
o With / Without person

e Static thrust

Materials
e The Rescue Craft

e 12 Volt Batteries e Rope

e Two trolling motors e Camera

e High Current Switches e Timer

e Multimeter e Canoe Paddles

e GPS e Buoy (With Anchoring)

e lLuggage Scale
Experimental Setup
The rescue craft was set up with a battery and control box near the bow of the boat with software
running allowing for remote control access to the motors. The motors were attached at the stern of the
boat at various angles to test for the best maneuverability.

Procedure

Each of the following tests was conducted three times to ensure comparable results. If there was any
deviation in the results of the three runs, additional tests were conducted in an attempt obtain more
consistent data.

Water Test

The water test was conducted to roughly determine the maneuverability of the boat. The test was used
to determine the best means of propelling the boat in anticipation of turning and maximumspeed
capabilities.

The distance between the two mounted motors was 23.5 inches. While the motors were angled towards

each other as seen in Figure 78, the best maneuverability was observed. The mass of the boat with all
the electronics in it was measured to be 161 Ibs.

77

Figure 78 — Motors mounted towards each other

78

Figure 79 — Motors angled away from each other

Pulling Force

To determine the pulling force of the rescue craft, the boar was placed perpendicular to the shore and a
rope was attached to the stern of the boat. Next, a luggage scale was attached to the rope and both
motors were engaged. With the person weighing 150Ibs in the boat, the Sea Rogue had a pulling force of
approximately 28lbs.The pulling force of the boat without a person in it was 25.7 lbs.

Turning Maneuverability

To test the turning radius of the boat, the motors were set in three positions. In one position they were
angled towards each other, in another they were pointed away from each other, and in the third they
were parallel with one another. Each test was conducted both with and without a person in the boat.

Motors angled in

The below image shows a rough plot of the path traveled by the boat using an android app
MyTracks (Google, 2011) with the motors angled in and no one in the boat. As can be seen, the boat has
the best turning ability with the smallest turning circle diameter.

79

Figure 80 — Motors angled in and no one on the boat

Figure 81 shows the rough path traveled by the boat with one 150lb person in the boat and the motors
angled towards each other. Again this exhibits the best tuning radius and forward travel speed.

Figure 81 — Motors angled in and 150lb person on boat

Motors straight

Figure 5 shows the approximate path traveled by the boat while the motors were fixed straight without
a person in the boat. Due to the wind, turning in the wind was deemed not practical with the motors in
this configuration.

80

Figure 82 — Motors straight and no one in the boat

Motors angled out
The below figure shows the path the boat traveled with the the motors angled out and no one in the

boat.

@

)

Figure 83 — Motors angled away with no one on the boat

As can be seen in Figure 7, the turning radius of the boat is not as good as the one seen in Figure 4,
where the motors were angled in.

81

B0 ft |
20m
Figure 84 — Motors angled away and a 150lb person on the boat

Max speed

The maximum speed was also roughly calculated using the MyTracks app on the android. The boat was
driven in a straight line at full throttle for approximately 30 seconds and the gps logger was later
reviewed for the speed. Additionally, to verify the results of the maximum speed test, a distance of 62
feet was marked off on shore based off of landmarks. The time for the boat to travel this distance was
recorded and by dividing the distance by travel time, the velocity was determined.

Motors angled in

While the motors were angled towards each other, the maximum achieved speed was 4.44 km/hr (2.39
knots) with a 150lb person in the boat. With no one in the boat, the speed was 5.21 km/hr (2.81 knots).
The test was conducted both with and against the wind. Due to the wind and inaccuracy of the GPS long
with the slow refresh rate of the android app, the calculated speed may be inaccurate and was validated
by the method described above.

Motors straight

With the motors straight and no one in the boat, the android app clocked in a maximum speed of
approximately 5.67 km/hr (3.06 knots). Again the validity of the results were verified as the GPS is not
100% accurate.

Motors angled out

While the motors were angled out, the maximum approximate speed was 5.23 km/hr (2.82 knots)
without anyone in the boat. With someone in the boat, the maximum speed measured was 4.87 km/hr
(2.63 knots).

Drag force

In order to determine the drag force exhibited by the rescue boat, a simple test was conducted. The
rescue craft was towed by another boat without the motors attached. The towing boat was then run at
a constant velocity of 1.6 knots and the drag force was measured on a digital luggage scale that was held
from the stern of the towing boat and attached to the rescue boat by a rope. This measured force was
3.9lbs without the motors attached to the rescue boat.

82

Appendix B - Hull Speed Calculations

Vhutt = kK X /Lwatertine where k = 1.34
L.wl - Length of waterline [ft] V.h - Hull Speed [Knots] V.h [km/h] constant
1 1.34 2.48 1.34
1.2 1.47 2.72
14 1.59 2.94
1.6 1.69 3.14
1.8 1.80 3.33
2 1.90 3.51
2.2 1.99 3.68
24 2.08 3.84
2.6 2.16 4.00
2.8 2.24 4.15
3 2.32 4.30
3.2 2.40 4.44
34 2.47 4.58
3.6 2.54 471
3.8 2.61 4.84
4 2.68 4.96
4.2 2.75 5.09
4.4 2.81 5.21
4.6 2.87 5.32
4.8 2.94 5.44
5 3.00 5.55
5.2 3.06 5.66
54 3.11 5.77
5.6 3.17 5.87
5.8 3.23 5.98
6 3.28 6.08
6.2 3.34 6.18
6.4 3.39 6.28
6.6 3.44 6.38
6.8 3.49 6.47
7 3.55 6.57
7.2 3.60 6.66
7.4 3.65 6.75
7.6 3.69 6.84
7.8 3.74 6.93
8 3.79 7.02
8.2 3.84 7.11
8.4 3.88 7.19
8.6 3.93 7.28
8.8 3.98 7.36
9 4.02 7.45

83

9.2 4.06 7.53
9.4 4.11 7.61
9.6 4.15 7.69
9.8 4.19 7.77
10 4.24 7.85

Appendix C - AM Station Query (FCC)

Search Parameters

State: MA

Lower Frequency|[530

Upper Frequency|[1700

WHYN AM 560 kHz DA2 Daytime B B LIC SPRINGFIELD
MA

WHYN AM 560 kHz DA2 Nighttime B B LIC SPRINGFIELD
MA

WTAG AM 580 kHz DA2 Daytime B B LIC WORCESTER
MA US

WTAG AM 580 kHz DA2 Nighttime B B LIC WORCESTER
MA US

WEZE AM 590 kHz DAl Unlimited B B LIC BOSTON

MA

WNNZ AM 640 kHz DA2 Daytime B B LIC WESTFIELD
MA

WNNZ AM 640 kHz DA2 Nighttime B B LIC WESTFIELD
MA

WSRO AM 650 kHz DA2 Daytime D B LIC ASHLAND

MA

WSRO AM 650 kHz DAZ Nighttime D B LIC ASHLAND

MA

WSRO AM 650 kHz DA2 Daytime D B APP ASHLAND

MA US

WSRO AM 650 kHz DAZ Nighttime D B APP ASHLAND

MA US

WRKO AM 680 kHz DA2 Daytime B B LIC BOSTON

MA

WRKO AM 680 kHz DAZ Nighttime B B LIC BOSTON

MA US

WTUB AM 700 kHz NDD Daytime D B LIC ORANGE-ATHOL

84

http://transition.fcc.gov/fcc-bin/amq?list=0&facid=55757
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=55757
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=35230
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=35230
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=3594
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9736
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9736
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=52398
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=52398
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=52398
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=52398
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=1902
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=1902
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=51118

MA US
NEW
MA US
NEW
MA US
WACE
MA
WACE
MA
WJIB
MA US
WJIB
MA
WVNE
MA
WVNE
MA
WNNW
MA
WNNW

MA US

WCRN
MA US
WCRN

MA US

WEET
MA US
WEEI

MA US

WSBS
MA

WSBS
MA

WSBS
MA US
WAMG
MA US

MA

WGE'P
MA
WGE'P
MA
WROL
MA
WROL
MA
WROL
MA
WROL
MA
WEGL
MA
WEGL
MA

AM

720

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

720

730

730

740

740

760

760

800

800

830

830

850

850

860

860

860

890

940

940

950

950

950

950

960

960

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

DA2

DA2

ND1

ND1

ND1

ND1

NDD

NDD

ND2

ND2

DA2

DA2

DA2

DA2

ND2

ND2

ND2

DA2

ND2

ND2

NDD

ND1

ND2

ND2

DA2

DA2

Daytime
Nighttime
Daytime
Nighttime
Daytime
Nighttime
Daytime
Critical Hours
Daytime
Nighttime
Daytime
Nighttime
Daytime
Nighttime
Daytime
Nighttime
Critical Hours

Daytime

Daytime
Nighttime
Daytime
Nighttime
Daytime
Nighttime
Daytime

Nighttime

85

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

D B LIC

D

D

B

B

LIC

LIC

LIC

APP

APP

LIC

LIC

BILLERICA
BILLERICA
CHICOPEE
CHICOPEE
CAMBRIDGE
CAMBRIDGE
LEICESTER
LEICESTER
LAWRENCE
LAWRENCE
WORCESTER
WORCESTER

BOSTON

BOSTON

GREAT BARRINGTON
GREAT BARRINGTON
GREAT BARRINGTON

DEDHAM
> Lower Freq

WEBSTER > Upper Freq
WEBSTER
BOSTON
BOSTON
BOSTON
BOSTON

FITCHBURG

FITCHBURG

http://transition.fcc.gov/fcc-bin/amq?list=0&facid=98819
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=98819
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9194
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9194
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6146
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6146
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=5890
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=5890
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=14752
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=14752
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9201
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9201
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=1912
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=1912
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=4820
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=4820
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=4820
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6475
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6475
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=50232
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=50232
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9139
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9139
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9139
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=9139
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=8418
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=8418

WESO AM 970 kHz ND1 Daytime D B LIC SOUTHBRIDGE
MA

WESO AM 970 kHz ND1 Nighttime D B LIC SOUTHBRIDGE
MA

WCAP AM 980 kHz DA2 Daytime B B LIC LOWELL

MA

WCAP AM 980 kHz DA2 Nighttime B B LIC LOWELL

MA

WCMX AM 1000 kHz NDD Daytime D B LIC LEOMINSTER
MA

WBZ AM 1030 kHz DAl Unlimited A A LIC BOSTON

MA

WQOM AM 1060 kHz DA2 Daytime B B LIC NATICK

MA

WQOM AM 1060 kHz DA2 Nighttime B B LIC NATICK

MA US

WILD AM 1090 kHz NDD Daytime D B LIC BOSTON

MA

WILD AM 1090 kHz NDD Critical Hours D B LIC BOSTON

MA

WUPE AM 1110 kHz DAD Daytime D B LIC PITTSFIELD
MA US

WBNW AM 1120 kHz DA2 Daytime B B LIC CONCORD

MA US

WBNW AM 1120 kHz DA2 Nighttime B B LIC CONCORD

MA

WWDJ AM 1150 kHz DA2 Daytime B B LIC BOSTON

MA US .

WWDJ AM 1150 kHz DA2 Nighttime B B LIC BOSTON

MA

WDIS AM 1170 kHz DAD Daytime D B LIC NORFOLK

MA US

WE'PB AM 1170 kHz DAD Daytime D B LIC ORLEANS

MA

WXKS AM 1200 kHz DA2 Daytime B B LIC NEWTON

MA US

WXKS AM 1200 kHz DA2 Nighttime B B LIC NEWTON

MA

WNAW AM 1230 kHz ND1 Unlimited C C LIC NORTH ADAMS
MA US

WNEB AM 1230 kHz ND1 Unlimited C C LIC WORCESTER
MA

WESX AM 1230 kHz ND2 Daytime C C LIC NAHANT

MA US

WESX AM 1230 kHz ND2 Nighttime C C LIC NAHANT

MA

WBUR AM 1240 kHz ND1 Unlimited C C LIC WEST YARMOUTH
MA US

WHMO AM 1240 kHz ND2 Daytime C C LIC GREENFIELD
MA US

WHMOQ AM 1240 kHz ND2 Nighttime C C LIC GREENFIELD
MA US

WARE AM 1250 kHz DA2 Daytime B B LIC WARE

MA US

WARE AM 1250 kHz DAZ Nighttime B B LIC WARE

86

http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18309
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18309
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=49416
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=49416
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=54850
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25444
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=21109
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=21109
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=47413
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=47413
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=71436
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=3013
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=3013
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25051
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25051
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=16977
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=8591
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=20441
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=20441
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=4823
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=249
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=49301
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=49301
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6251
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25834
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25834
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=70877
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=70877

MA US
WMKI
MA US
WMKI
MA
WSPR
MA
WSPR

MA US

WSPR
MA US
WSPR

MA US

WSPR
MA US
WSPR

MA US

WPKZ
MA US
WPKZ
MA

WJDA
MA

WJDA

MA US

WORC
MA US
WORC
MA

WARL
MA US
WARL
MA

WRCA
MA

WRCA
MA US
WGAW
MA US
WBRK
MA US
WNBH
MA US
WLYN
MA US
WLYN
MA

WPLM
MA

WPLM

MA US

WHTB
MA
WHMP
MA

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

1260

1260

1270

1270

1270

1270

1270

1270

1280

1280

1300

1300

1310

1310

1320

1320

1330

1330

1340

1340

1340

1360

1360

1390

1390

1400

1400

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

DAN

DAN

DA2

DA2

ND2

ND2

ND2

ND2

DA2

DA2

ND1

ND1

DA2

DA2

DA2

DA2

DA2

DA2

ND1

ND1

ND1

ND2

ND2

DA2

DA2

ND1

ND1

Daytime
Nighttime
Daytime
Nighttime
Daytime
Nighttime
Daytime
Nighttime
Daytime
Nighttime
Daytime
Nighttime
Daytime
Nighttime
Nighttime
Daytime
Daytime
Nighttime
Unlimited
Unlimited
Unlimited
Daytime
Nighttime
Daytime
Nighttime
Unlimited

Unlimited

87

LIC

LIC

LIC

LIC

CP

CP

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

BOSTON

BOSTON

SPRINGFIELD

SPRINGFIELD

SPRINGFIELD

SPRINGFIELD

SPRINGFIELD

SPRINGFIELD

FITCHBURG

FITCHBURG

QUINCY

QUINCY

WORCESTER

WORCESTER

ATTLEBORO

ATTLEBORO

WATERTOWN

WATERTOWN

GARDNER

PITTSFIELD

NEW BEDFORD

LYNN

LYNN

PLYMOUTH

PLYMOUTH

FALL RIVER

NORTHAMPTON

http://transition.fcc.gov/fcc-bin/amq?list=0&facid=48403
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=48403
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18717
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18717
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18717
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18717
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18717
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=18717
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=71434
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=71434
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=61159
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=61159
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=15858
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=15858
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=65197
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=65197
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=60695
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=60695
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=72088
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=71232
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25866
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=53948
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=53948
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=52837
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=52837
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=60701
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=46962

WLLH

MA US

WLLH
MA

WMSX
MA

WMSX
MA US
WBSM
MA

WBSM
MA US
WBEC

MA US

WBEC
MA US
WPNI
MA US
WKOX
MA
WKOX
MA US
WPNI
MA
WPNI
MA
WPNI

MA US

WVEI
MA US
WVEI
MA

WNBP
MA

WHLL

MA US

WXBR
MA
WXBR

MA US

WAZN
MA

WAZN
MA

WSAR
MA

WSAR
MA US
WSAR
MA US
WCEC
MA US
WMRC
MA US
WACM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

AM

1400

1400

1410

1410

1420

1420

1420

1420

1430

1430

1430

1430

1430

1430

1440

1440

1450

1450

1460

1460

1470

1470

1480

1480

1480

1490

1490

1490

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

kHz

ND1

ND1

DA2

DA2

DA2

DA2

DAN

DAN

DA2

DAN

DAN

DA2

ND2

ND2

DAN

DAN

ND1

ND1

DAN

DAN

DA2

DA2

DAl

DA2

DA2

ND1

ND1

ND1

Unlimited
Unlimited
Daytime
Nighttime
Daytime
Nighttime
Daytime
Nighttime
Daytime
Daytime
Nighttime
Nighttime
Daytime
Nighttime
Daytime
Nighttime
Unlimited
Unlimited
Daytime
Nighttime
Daytime
Nighttime
Unlimited
Daytime
Nighttime
Unlimited
Unlimited

Unlimited

88

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

APP

APP

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

LIC

CP

CP

LIC

LIC

LIC

LAWRENCE

LOWELL

BROCKTON

BROCKTON

NEW BEDFORD

NEW BEDFORD

PITTSFIELD

PITTSFIELD

AMHERST

EVERETT

EVERETT

AMHERST

AMHERST

AMHERST

WORCESTER

WORCESTER

NEWBURYPORT

SPRINGFIELD

BROCKTON

BROCKTON

WATERTOWN

WATERTOWN

FALL RIVER

FALL RIVER

FALL RIVER

HAVERHILL

MILFORD

WEST SPRINGFIELD

http://transition.fcc.gov/fcc-bin/amq?list=0&facid=24971
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=24971
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=41348
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=41348
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=10452
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=10452
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=2714
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=2714
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25907
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=53964
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=53964
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25907
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25907
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=25907
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=74466
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=74466
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=15338
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=36545
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=19631
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=19631
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=70523
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=70523
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6879
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6879
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=6879
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=49382
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=21584
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=60390

MA

WACM AM 1490 kHz ND2 Daytime C C LIC WEST SPRINGFIELD
MA US

WACM AM 1490 kHz ND2 Nighttime C C LIC WEST SPRINGFIELD
MA

WUEC AM 1510 kHz DA3 Daytime B B LIC BOSTON

MA

WUEC AM 1510 kHz DA3 Nighttime B B LIC BOSTON

MA US

WUEC AM 1510 kHz DA3 Critical Hours B B LIC BOSTON

MA US

WIZZ AM 1520 kHz DAD Daytime D B LIC GREENFIELD

MA

WVBF AM 1530 kHz ND3 Daytime D B LIC MIDDLEBOROUGH CENTER
MA

WVBF AM 1530 kHz ND3 Nighttime D B LIC MIDDLEBOROUGH CENTER
MA

WVBF AM 1530 kHz ND3 Critical Hours D B LIC MIDDLEBOROUGH CENTER
MA US

WNTN AM 1550 kHz ND2 Daytime D B LIC NEWTON

MA US WNTN AM 1550 kHz ND2 Nighttime D B LIC NEWTON
MA US

WMVX AM 1570 kHz ND1 Daytime D B LIC BEVERLY

MA US

WMVX AM 1570 kHz ND1 Nighttime D B LIC BEVERLY

MA

WMVX AM 1570 kHz ND2 Daytime D B APP BEVERLY

MA

WMVX AM 1570 kHz ND2 Nighttime D B APP BEVERLY

MA

WHNP AM 1600 kHz NDD Daytime D B LIC EAST LONGMEADOW
MA US

WUNR AM 1600 kHz DAl Daytime B B LIC BROOKLINE

MA

WUNR AM 1600 kHz DAl Nighttime B B LIC BROOKLINE

MA

*¥** 142 Records Retrieved ***

Appendix D - Antenna Tuning

Tuning the antenna to the desired frequency was accomplished by hooking up the ferrite core
antenna to an oscilloscope and function generator as depicted in Figure 85 — Antenna Tuning. To
find the natural frequency of the antenna, the frequency from the signal generator was swept to
find the maximum amplitude on the oscilloscope. Once this frequency was found, the inductance of
the antenna could be found due to the known capacitance and frequency using the formula below.

toe= (7))
ant — 2'7T'f0 C

In the above formula, L, is the inductance of the antenna, f; is the natural frequency and C is the

89

http://transition.fcc.gov/fcc-bin/amq?list=0&facid=60390
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=60390
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=12789
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=12789
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=12789
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=54779
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=63403
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=63403
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=63403
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=48781
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=48781
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=22798
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=22798
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=22798
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=22798
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=58546
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=10118
http://transition.fcc.gov/fcc-bin/amq?list=0&facid=10118

capacitance of the capacitor.

This in turn allowed for calculation to find the correct capacitance to match the desired frequency
the antenna should be tuned to. The formula is rearranged below.

e~ (r) o
2'”'f0 Lant

JXEGL e Xsc1l. . -

Tl

iés et
0.62nF §39.6pH

Hhus

Figure 85 — Antenna Tuning

Appendix E - Turning Circle Code

#0Octave script used for calculating the turning radius of the Zodiac
boat

#Written by Frederick Hunter on 25 March, 2013 based on Equations
from: What is the "MOB" function of my marine GPS device? (2011, March 28). Retrieved
12 10, 12, from Garmin:

https://support.garmin.com/support/searchSupport/case.faces?caseld={71655ee0-104c-11dc-
4b06-000000000000}

pgs 206-209

leftMotorAngle = -20* (pi/180); # the angle of the left motor from the
perpendicular line of the stern of the boat
rightMotorAngle = 20*(pi/180); # the angle of the right motor from the
perpendicular line of the stern of the boat

#distance from motors to the center of the boat in y direction
DxLeft = -0.9144; # the distance in meters
DxRight = -0.9144;

90

#distance from motors to the center of the boat in x direction
DyLeft = 0.299; #distance in meters

DyRight = 0.299;

#mass of the boat in kgs

Mass = 73.03; #in kg

leftMotorThrust =133.4;

rightMotorThrust = 0;#133.4; # the thrust in Newtons (301lbs)

#print the information of the experiment

printf ("The left motor thrust is %.2f N (%.2f 1lbs)\n",leftMotorThrust,
leftMotorThrust/4.448)

printf ("The right motor thrust is $.2f N (%.2f

1bs)\n", rightMotorThrust, rightMotorThrust/4.448)

#Assuming linear speed and full thrust = 250.71 N = 1.543 m/s use the
following ratio
ratio = 0.0061545212;

#find the thrust in the x (bow of the boat/surge) direction

Xcontrol =
leftMotorThrust*cos (leftMotorAngle) +rightMotorThrust*cos (rightMotorAng
le);

#find the thrust in the y (leftor right/sway) direction

Ycontrol =
leftMotorThrust*sin (leftMotorAngle) trightMotorThrust*sin (rightMotorAng
le);

#find the thrust in the z (yaw)

Ncontrol =
leftMotorThrust*DxLeft*sin(leftMotorAngle)+rightMotorThrust*DxRight*si
n(rightMotorAngle) +leftMotorThrust*DyLeft*cos (leftMotorAngle) -
rightMotorThrust*DyRight*cos (rightMotorAngle) ;

print results to screen

printf ("Calculated X thrust: %.2f N (%.2f 1lbs)\n", Xcontrol,
Xcontrol/4.448)

printf ("Calculated Y thrust: %.2f N (%.2f

1bs)\n", Ycontrol,Ycontrol/4.448)

printf ("Calculated rotational thrust about the turning center is: %.2f
N-m\n", Ncontrol)

#calculate the approximate speed using ratio

xVelocity = Xcontrol*ratio;

yVelocity Ycontrol*ratio;

#nVelocity = Ncontrol*ratio;

nVelocity = 0.2244; #value calculated from water test (rad/sec)
printf ("Approximate X velocity: %.2f m/s\n",xVelocity)

printf ("Approximate Y velocity: %.2f m/s\n",yVelocity)

printf ("Approximate Yaw velocity: %.2f rad/s\n",nVelocity)

91

#calculate the radius

radius = sqgrt(xVelocity*xVelocity+yVelocity*yVelocity) / nVelocity;
printf ("The turning radius of the boat is: %$.2f m (%.2f ft)\n",radius,
radius*3.281)

printf ("..and the diameter is %.2f m (%.2f

ft)\n", radius*2, radius*2*3.281)

#calculate the acceleration of the boat F = Ma

accelX = Xcontrol / Mass;

accelY = Ycontrol / Mass;

#printf ("Calculated X acceleration: %.2f m/s”2\n", accelX)
#printf ("Calculated acceleration: %.2f m/s”2\n", accelY)

#plot the graph

x = 0;

y = 0;

#get a time vector
theta =[0:0.1:2*pi];

x = radius*cos (theta);
y = radius*sin(theta);
plot(x,vVy):;

title ("Turning Radius of Zodiac calculation");

xlabel ("X-axis (meters)");

ylabel ("Y-axis (meters)");

axis ([-5, 5, -5, 51, "square"); #force square axis ratio

Appendix F - SolidWorks Flow Simulation 2012 Procedure

To set up a new flow simulation to determine the drag on the rescue craft, the following procedure was
implemented. First, the add-on for SolidWorks Flow Simulation 2012 was selected from the Tools ->
Add-Ins menu in Solidworks.

92

B 50UIOWORKS | e v ot (Tucs | o sosion vy 43

P semchSoldWods b) | . 0 BB 3B

L e ™

) =
Desgn | s
oy | Intferece Cemence hok

Detecton Verification. Adgrment

W 3kmphSim
5 Input Dsta
{0 Computational Bomain
[Fluid Subdomains
[f Boundary Conditions
SR Goas
66 Force @1
ults

Bt CutPlots
O SuseePlots
& bosurtaces
<5 Flow Tajectories
¥, Particle Studies
Point Parsmeters
& Surface Porameters
[Volume Parametess
Ely XY Plots
#, Goal Plots

B Goal Plotd

e e W OriveWorksXpress..

Evawate [Omee
5 | SustainabilityXpress...

B seer
% |invert sel

SolidWorks Explorer...

ly Assempiyipert | Curvstire Syrmetry | Compere bk
B | SimulationXpress. Creck | Doaments

L
Sruatordgress FloXoress Dewey
Analyse Wirard Analyss

€2 | FloXpress.

@ Oetesure..

Compare
Find/Modify
Design Checker
Format Painter...

L3

Component Selection
Component

Sketch Entites
‘Sketch Tools
Sketch Settings
Blocks
Spline Tooks
Oimensions
Relations
Dimipert
(B measure...
T Mass Propeties...
%] Section Properties...
[Check..
8| Assembly Visusization
BB AssembiyXpert...
datexpen
(4§ Intesference Detection.
Clearance Verification...
Hole Alignment.
Reorgenize Components...
Equations.

L

Symmetry Check.

Large Assembly Mode

P9 eEM B

Make Smort Companent..

Macro v
Addins.
Customize...

izl | Options.

e

Customize Menu

here to measure

[T

From here, the Flow Simulation menu was clicked and a new project was created by selecting Project - >

Wizard.

Figure 86 — Selecting Flow Simulation Add-In for SolidWorks 2012

SolidWorks Flow Simulation 2012
Fluid Flow Analysis_Simulation
program by SolidWorks

C#\Program Files\SolidWarks Corp
\SolidWarks Flow
Simulation\binCFWAFWO3.dll

-
Add-Ins

Active Add-ns

= SolidWorks Premium Add-ins

[] R CircuitWarks

[&5 Featurewiorks

(7] Photoview 360

[F]§# SeanTo3D

[SolidWorks Design Checker
[] & solidworks Mation

[T Solidworks Routing

][SolidWorks Simulation

[F] Soldorks Tookax

Figure 87 — Flow Simulation 2012

[]% SolidWorks Toobox Browser
] 347 Solidworks Utilities

[T Tolanalyst

& SolidWorks Add-ins

Autotrace

SolidWorks Flow Simulation 2012
Solidworks Forum 2012
Solidorks Part Reviewer
Solidorks XPS Driver

= Other Add-ins

OooMO

[SolcWorks Social

B

[startup [~

]

o

]

a

&

]

o

]

B |=

&

]

o

]

[F

&

]

o

D -

93

M.m Edt Vew It Toos | Fow Smston | Window Hep |

AsserbiyWithAnglOfAttadk SDASH P semcrsoavetaren D 7| B.c o il 3
i ¥
& §
rsert inezr W
Coanent Components ™= compon.., _SHErt comg e
Assemndy [Layout | Skeich | Evaiuate [Omics Produ AANNEB-F-or-@R-H- 1 B =&
eEHR®
& A
@ AssemblyWihAngleOfAttack (kmph<Display Sate-1 =
(@l sensors il
(&) Annotations =]
%), Front Plane E)
X Top Plane Resuts v
%, Right Plane Tooks v E
=
REr oo s =
% PLANEL

= W, MiniAssebly<1> (DragLianslysis <Display Sste-15)
] Mates in AssemblyWithAngleOfAttack
{2 Sensors
(] Annotations
% Front Plane
2 Top Plane
% Right Plene
1 Ongin
i, PLaNE2
<@ B () Mini<1> (Defautt<Displey State-1)

% W BackStayStemangied <4 (Default< <Diefoult»_Display 5

+ % W BaseBoardhasembly<2> (Default<Display State-12)
estcl> (Defaul

efout <Display Sate-13)

P (v
0 Mates
4 PLANEL

) Filetz

Pont2
L5, PLANES

-) Mates

2 () Sketchl

9 9 MinnkotaTrollingMtor <1 Default <Disphay State-15)
-

[What would you ke to do?

P insert more companents
[) Creste additional parts.

TTTTT0] Mode! [Tiohon Shiy T

Create s new Flew Simuletion prejeet using the Wizard

Figure 88 — Flow Simulator 2012 | New Project Wizard

Fully Defined _ Editing Assembly Mk - [

The wizard opens a new dialog window and the project name is entered under configuration name.

’
Wizard - Project Configuration

- mputD
: [} Computational Damain
18 Component Control
Fluid Subdomains

Efi Boundary Conditions
[12 Fans

B4 Heat sources

G Porous Media

@ 1nitial Conditions

B Goals

B Local Iniial Meshes
2B Resuls

HEE Mesh

X Cut Plats

> Surface Flots

& Isosurfaces

=& Flow Trajectories

Configuration

@ Create new

(1 Use cument

Configuration name: m——
Current configurtion: B
Commerts:
< Back Mest >

Figure 89 — Flow Simulator 2012 | Project Configurations

Next, the unit system is chosen, for this configuration the FPS system was used with the velocity

measured in kmh.

94

- N
Wizard - Unit System [

| Unit spstem: ®

System Path Comment

| | cBS (emas) Pre-Defined CGS (erngs]
FPS [ftlb-s] Pre-Defined FPS [ft-Ib-s]
1PS (i) Fre-Deiined IPS (irel-s)

[| MMM [mmeg-s) Pre-Defined MMM [mm-g-s]

| | sl mkgs) Fie-Delined 51 [mkges)
s Pre-Defined I3

Create new Hame: FPS [ftlb-5] [modified]

Decimals in resuts | 1 Slunit

Parameter ‘ Unit

display equalsto ||
-] Main
Pressure & siress bift'2 123 002033543 |z
. Velocity fkminiw] 123 36
Mass b 123
Length it 123
< Temperature F 12
Physical time s 123 1
HUAC
¥ Geometrical Characteristic - ®

<Back | [Mets | [Cancel | [hHep |

Figure 90 — Flow Simulator 2012 | Unit System

Clicking next brings the user to the analysis type selection window. Here an external flow analysis is
selected with the exclude internal space and exclude cavities without flow conditions check boxes
selected. Please note that for this model, the reference axis is the Z-axis which is the direction that the
fluid will travel in.

r 1
Wizard - Analysis Type [

Analysis type Consider closed cavities @
) Intemal Exclude cavities without flow conditions
@ Extemal Exclude intemal space

Physical Features [value

Heat conduction in solids O

Radiation

Time-dependent

Gravity

Rotation

Reference axis]
[<Back | [Mew> || Cancal | [Hek |

Figure 91 - Flow Simulator 2012 | Analysis Type

The default fluid is selected next. Because the rescue boat will be traveling through water, this
simulation uses water as the fluid type.

95

-
Wizard - Defaut Fluid (5 [t |

Flow Characterstic Value
Flow type Laminar and Turbulent
Cavitation i

[<ok | [Mew> | [Comel J[Heb |

Figure 92 - Flow Simulator 2012 | Default Fluid Selection

The next window accepts the default values and the next button is pressed.

Wizard - Wall Conditions ==}

o

Default wall thermal condition Adiabatic wall
Roughness 0 microinch

Dependency (]

[<Back | [MNew> | [cancel | [Hep |

Figure 93 - Flow Simulator 2012 | Wall Conditions

In the initial and ambient conditions dialog box, the velocity of the traveling fluid is set to 3 kmh. This is
the speed at which the rescue boat traveled during the water tow test and will provide a reasonable
comparison to experimentally obtained values for drag.

96

-
Wizard - Initial and Ambient Conditions:

Parameter Value 2
Parameter Definition User Defined
= Thermodynamic Parameters
Pressure 2116.21658 b2
Temperature 62.09°F
= Velocity Parameters.
Velocity in X direction 0 kmn
Velocity in Y direction 0 kmh
Velocty in Z direction 3
& Turbulence Parameters.

(D) ®

[cBack | [Mew> | [Corcel] [

Heb |

Figure 94 - Flow Simulator 2012 | Initial and Ambient Conditions

Defaults are accepted in the results and geometry resolution dialog box. Adjusting the result resolution

scale will change the calculation time and accuracy of a solution.

g ! T T S WL S T AesembiyiithAngeOfAttack SLDASM = P serch shawois iy D <) R B3
y B 5 i o ¢ =
? % » A 2
raent unaae vove Asembiy Reference : %
B camrents M oo oot | o | Msembly Refwecs | o, | paot | Exploded Expbde | instntD

Fasteners Hiden Moten | Materidls | view
Sty

Assembly [Layout | Sketch [Evaluate [Ofice Products [Flow Simulation |

"
‘.’_ﬁi Sensors
(Al Annetations
2 Front Plane
2 Top Plane

QASAE B & @8-

22X Right Plane
L. Orgin

Wizard - Results and Geometry Resolution

O, Al
2 PLANEL
= @ W Minissebly<1> (DraglAnalysis<Display Stxte-15)
5 3] Mates in AssemblyWithAngleOfAttack
Sensees

= 9 BackStayStemangled <4 (Default < <Defauit> Display &
- @ BaseBoardhssembly <25 (DefaultcDisplay Stae-15)
L% () Seat<l> (Default)

+ P MinnKotaTrellingMater <L> (Default <Display State-1)
= # MinnKotaTrollingMator<2> (Default<Display State-15)
% BackstayClampForMotors <1 (Defaull)

L9 () VIMals venecia s Completa<2s (Defeult)

= Mstes

]
&

() Sketehl

Minian gep sz

2 Manual speciicalion cf the mirimum gap sze.
Minirum g3p 226 fefers to the featuae dimarsion

Mininim gp sze:

Minimun wal hckness
- Marusl speciicatin of the miriman vl thickness

Mirkruam el ks refrs bo e feahe dimerision

Miinan wal ihickness.

T T =

»

.
BRI

T thodel (11

P hk e coucis

Figure 95 - Flow Simulator 2012 | Simulatio

n Resolution

Next, the computational domain is set by right clicking on computational domain and choosing edit

definition under the flow simulation tab.

97

B@sounworks jf O -Z-k-8-9 - [&-

[BBk
L:Q EE ﬁ D)
Edit Insert Linear Move

Mate Smart.
Components Compon... Easteners Component

- - i Ce
|A!;!;embfy| Layout | Sketch | Evaluate | Office Products | Flow

Component

[Be<=
% 3kmphSim

& [Input Data

M. | Computational Domain
- Fluid Subdormains Edit Definition...
-~ Boundary Conditior Hide

Goals

% Results

Figure 96 - Flow Simulator 2012 | Computational Domain

The computational domain determines where the flowing water is and therefore must include the draft
of the boat. From prior analysis, the boat was calculated to have 0.85 inches of the hull exposed to the
water. The coordinates of the computational domain are based off of the local coordinate system on the
boat and therefore the values are different from the calculated one stated above. To ensure that the
correct distance is set, a reference geometry plane was created and the offset distance set equal to that
from the local coordinate system.

S R AssembiyithangeQfatiack SLOASH =

P
assomony [Taou | Sraian | Evauats | e Proguss | Fiow Simutaton |

B @@ L]

EEEe =9 asremblyithanglsOtat :

B Computational Domain - A
) il
(=3 0 =]
5 =0 smuaton E
(1) 20 smioin &
‘Stze and Conditions a] -
8= @-

@, ©n @ -

@ oz =@ -

&, sn = -

@, on - -

o | ki
&, 150 8 -
——]
Appearance. ¥
— . —_—
-
Lett

HI]

SelidWorks Education Edition - Instructionsl Use Only Fully Defined_ Eclting Assembly @

Figure 97 - Flow Simulator 2012 | Final Computational Domain

As verification for the offset distance, the measure tool was used to measure how low the boat is sitting
in the water.

98

=

Figure 98 - Flow Simulator 2012 | Water Level Check

Next, global goals had to be defined such that the computer knows what to solve for. This was
accomplished by right clicking goals and selecting insert global goals.

@ souaworks B [- ¥ -l - % -9 -G
oM = wm a8 @m

DeoOl | Inferference Clearonce Hole Measure Mass e

Detection Venfication Alignment Properties Prop

Assembly | Layout | Sketch | Evaluate | Office Products | Flov

BElRlels
B 3kmphSim
=3 Input Data
Computational Domain
g Fluid Subdomains
L JEfj Boundary Conditions
LR Goals
D Results

Insert Global Goals...
Insert Point Goals...
Insert Surface Goals...

Insert Volume Goals...

Figure 99 - Flow Simulator 2012 | Insert Global Goals

This opens the global goals that may be solved for in the simulation. To select a global goal, simply check
the box next to the parameter of interest. For the drag, the user is interested in the maximum force in
the Z-direction. For this reason, the Force (Z) parameter is checked off.

99

Figure 100 - Flow Simulator 2012 | Selecting Global Goals

Dsoowors]l L) k-89 k-

d = i A
terference Clewance Hoe Measwe Mass Sel
Detection Verificaion Alignment Froperties Prog

Design | |
Study |

Assembly | Layout | Skeich | Evaluate | Office Produds | Flov

SEges

i¥_Global Goals z
¥ X

Parameter S

Parameter

Mach Number
Turbulent Viscosity
Turbulent Time:
Turbulent Length
Turbulent Intensity
Turbulent Energy
Turbulent Dissipation
Heat Flux

Heat Transfer Rate
Normal Force
Nermal Force (X)
Normal Force ()
Normal Force (Z)
Force

Faree ()

Force ()

Force (2)

Friction Force:
Friction Force (¥)
Fricton Force ()
Friction Force (2)
Torque ()

Torgue (¥)

Torgue (2)

i [o i

H

oooEooog

=
z

for Conv.| ~

EEEEEEE0E

(0 s i e o L T s

m

I SIS SRS SIS

H

orce (7)

)

il

10 o s)

REERE

L5 Global Coordnate System

Name Template @
GG <Parameter <Number>

[ewo]fce2]

Upon accepting the global goal, the simulation is run by right clicking the simulation file name, in this

case 3kmphSim and selecting Run.

AssemblyiNithAngleCfAttack SLDASH *

@ Search SoldWorks heb) +| B - o B3R

Automatic Rebuild
Rebuild
Hide Global Coordinate System
Clane Project...

Create Template...

Clear Configuration

Open Project Directory

Show Basic Mesh
Basic Mesh Color...

Customize Tree...

. ¥ & e &
@ n | osdiriond B | o7 B)
- W&

QAT NE D oo @R W

Lot

BEs&E

b

L0 I =5

The run dialog box opens and the user may accept default values and click Run.

Figure 101 - Flow Simulator 2012 | Run Simulation

100

Run m
Startup
Mesh Take previous results
sk
@ New calslalon

Contirue calculation

CPU and memory usage

Run at: [Thls compuiter [CAD session) -
Use CPU(s]

Riesults processing after finishing the calculation
Load results

Batch Results...

Figure 102 - Flow Simulator 2012 | Run Dialog Box

This opens the calculation window which displays the related information and updates for the
calculations. The calculation will run until convergence is reached.

Solver, JkmphSim(AszemblyWithAngleOfAttack SLDASM)

ey
File Colculstion View Insert Window Help
[TR 2 OB e ®
[I o[@) 2| Bieg cl@|=
Parameter [value] | [Event [Reration | Time |
Status Calculation Mesh generaticn started 122947, Ape BB
Fluid cells 108202 Mesh generation normally finished 123043, Ape 33
Partial cells un Prepaning data for calculation 123048, Ape 3
Rerations 4 Calculation started 0 12300, Ape 23
Last iteration finished 123057
CPU time per last iteration 00:0005 l
Travels 00417684
Tesations per 1 travel s _
Cpu time B List of Goals fo e s
Calculation time left
Hame. Current Value | Progress Crterion | Comment
[G6 Force @11 423988 et e—— T] No converg

Warming Comment
No warmnings

| B Leg | @ inie |[B Listof Goais

Ready 1 _ Tterations : 4

Figure 103 - Flow Simulator 2012 | Calculations Dialog Box

When the calculation has completed, the dialog box may be closed and the user can return to the
Solidworks file. Here, a new goal plot may be generated by right clicking on Goal Plots and selecting

Insert. This will open an excel document that shows what the solutions to the goals are. In this case, the
calculated drag was determined to be 2.8 Ibs.

101

AasenbiyihAngEOfAack SLDASH * o o - B

‘Assembly | Lavout | sketon | Evaiate [Office Products | Flow simulation |

B @ = Cock here o messure al|
G, JumphSim i
= =

S Input Deta by b @l B2

[Computational Domain
(8] Fluid Subdomains
I Boundary Conditions
® Goals
B GGForce @)1
05 Resubs
= Mesh
B CutPlots
<» Surface Plots
. ——

[Colm O]

% Padicle Studies
A Point Parameters
& Suface Parameters
[Volume Parameters
e XY Plots
o e

e Animations

T Moded [Tiglion Study T
SoldWorks Education Edition - Instructianal Use Only Fully Defined _ Editing Assembly. Mes - €]

Figure 104 - Flow Simulator 2012 | Inserting Goal Plots

Other options are also available to visually display forces on the surface of the boat. By right clicking on
the parameters and selecting insert, one has the option to display the calculated results visually. Some
popular visual graphs include the contour plot and the flow lines.

Appendix G - Drawing File for Pi Box

The screenshot from Solidworks is a .dwg file that was downloaded from thingiverse.com (Makerbot
Industries, LLC, 2013). The file was used to lasercut 1/8" inch thick acrylic to make the enclosure for the
Raspberry Pi.

102

I

=_ 20 ,

— —
' | '
Creative Commons 2.5, Attribution, Share-alike Creative Commons 2.5, Attribution, Share-alike
Designed by Adafruit Industries, LLC. Designed by Adafruit Industries, LLC,
All reproductions must include this text, Alll reproductions must include this text.

| T —

I I_::‘r_' 0 = =
DQ PED5 /J O Omow

Figure 105 — PiBox Lasercut Template from Adafruit

103

Appendix H - MQP Poster

Autonomous Man Overboard Rescue Equipment

Frederick Hunter (REE), Thomas Hunter (ME/ECE)
Advisors: Professor David Cyganski (ECE/REBE) and Professor Ken Stafford (RBE/ME)

Abstract Process
The soope of this project atmed to address the partioular micke of
larger wessels at risk of man overboard sitnations. The project
focused oa creating equipment for the large vessel, the astsomenus
resose craft and the personal locator devioe that results in
astrmomous rescising of persons gone overboard, The final system
tnoarporates GPS for general kocalization and am AM trapsmitter and
receivers for close-range localization oFthe victim.

Background

Large ship sizes pase increasing diffioslty in manewverability and

retrieval of persons overboard. Supertaskers and cther vessels of Screenshot of the Graphical User Terminal Locator Device principle

of aperation

this magnitde can have stopping distances of up to 2 sautical miles Interface dameastrating cross
dscelersting from 3 16 kmot cruizing speed and turnisg radii of tws
kilameters. If 3 person were ta go overbaand, until the crew was
alerted of such an event, asy chancs of rescus would be minimal. The
mplementation of AMORE would greatly increase chances of rescue

i such simaticas. Results and Recommendations

track error

ol lizzal amd 0 & PESST
Project Goals/Objectives e e secaraey and suscessfe resurn ravel 123

Autsnemoushy locate victim to one meter «Mediation of GPS jitter by mears of AM radio termizal location allewing
Retriewe and Retars victim to mothership for homing capabdlity of the rescue boat o the persoa overboard

Mo bumas interaction except by victim . rds of ome howr depend 4

Operate within 1Km range =Line of sight aperation ta 1km

Up to 30 minutes of operation

sAddition of a water detector to the victim module for increased
sutonemy
. " slncrease range of transmitter for greater terminal location coverage
Analysis +Heceiver dasign for the resau vessel
«Maore robust vessel and propulsion souroe fior resose boat
o] mplementation of freguency hopping to awsid busy statioss

Acknowledgments
= 1 Comtinuation of 2 previous MOF by Alex Kindle and Justin Stoker
- Special thanks to professar Stafford for lending the MO his 10 faot
) - Sza Kogue tender [MIND)
Specal Thanks to the former kayak MOP group for lending the: two
Persenal Locator Device trelling motors used for the project
Simnulated turming radiss
of the rescue craft for fied

20° mator angle and S References

constant velocity of 3 * Esstrnmments Law Instiute (199
kmots E i

Mothership Unit Bescue Craft
Btz Fowrscisse gl cqu s

Figure 106 — MQP Presentation day Poster

Appendix I - AMORE MQP Presentation

Thomas and Frederick Hunber

Advisors:

Professor D). Cyganski
Professor K. Staiford

Autonomous Man Overboard Rescue Equipment

104

Problem Statement

Man overboard (MOB) fatalities make up
24% boating deaths (Boatus.com)

Of these, 57% of MOB cases (from
2000-2010) were not withessed

The # MORE Solution

Fully Autonomous System that
Tracks and locates person

Retumns them to the mothership upon button
press

105

#t MORE Solution

£ MORESolution
- Man Overboard

106

MORESolution
— Deploy Rescue Craft

oL

o

Lo

T

Max cross track error 5 meters)

107

MORE Solution

— MNavigate to Victim | View from Mothership
Graphical User Interface

£ MORESolution
— Terminal Location

108

f MORESolution
— Terminal Location Description

f MORESolution
— Terminal Location Description

109

£ MORE Solution
— Victim Retrieval

MORE Solution
— Return to Mothership

A

‘Iﬂ‘\ e e

110

£t MORE System Overview

ioth ership

111

MORE System Overview

f MORE System Overview

VWiclim Personal
Lot towr Mg e

Oyertoand Decesior

AEmepEAEF |

RIAT 5| L] A
A Tremmitier Pfcromrmrralis Be Tramothier

112

The Rescue Equipment

Rescue Linit

113

Tarning Fechna of Zoda; calaubrlnn

g [reberal

T.20Fd0. E.EE'IS

Conclusions

Constructed a system that utilizes GP'S,
localzed radio-location and magnetfic compass
Linked three independent microcontroller
based units via radio to support a coordinated
rescue effort

Used computer analysis for fluid models to
anticipate expected boat performance and
optimize mechanical aspects

Integrated a GUI to display real time
information on rescue status

Successfully demonstrated a coordinated
operation of the system on the water

114

Demonstration

Video Demonstration of the system
Video of the terminal locator device test

Future Work

Rescue time may be reduced by a factor of
8 utilizing a higher thrust, 8hp motor and
more seaworthy craft

Extended range of transmitter for increased
homing capability

Modular design of personal locator device
Rescue boat deployment system design
Code optimization for more advanced
tracking and less delay

More sensitive receivers with noise
reduction capabilities

115

Acknowledgements and
Questions

References

116

Appendix] - Dimensions for Circuit Tower

.19—4
ﬁ

4 %7
% ®
4 ¥ @20 ﬁ\é 3.50

. - - 9

50 i |—:$] i &
A0 + -

!
875

Figure 107 — Level 1 Dimensions

117

15 i

1.74

g%

&

BEL
ot

20 ¥ @20

e
“* L,«mh

Kb

O—-—6—-—

Yoy

Figure 108 — Level 2Dimensions

o

875

.197

1.50

— —-—.25

a7 —

—= 1.10 =

50

—=1.50

Figure 109 - Level 3 Dimensions

118

§.75 i

.197

4x 312 3 .80 1.48*‘
4NPIT —
[\5 i i 4
- 2.10
J___¢_ -+ - - ¥ _$_
A0 | _r
} — 70
—150

Figure 110 — Level 4 Dimensions

Appendix K - TLD Radio Fine-Tuning

For a successful rescue mission, proper fine-tuning of the receivers is critical. Due to post receiver
amplification, any small difference in signal strength can result in major errors in homing in on the
victim. For this reason, care should be taken to tune each of the receivers to the proper frequency
before carrying out the rescue mission. For the case of this project the receivers were tuned to 922 kHz
on the AM band.

119

Figure 111 — Grundig Radio Receiver used for Terminal Location

Next, with the transmitter broadcasting the 1 kHz tone, the PLD is placed 15 feet from the bow of the
boat. A second person adjusts the volume levels of the receivers until the motors react properly as the
PLD is moved 2 ft in the left and right direction.

Personal Locator
D]

Figure 112 — Terminal Locator Device Radio Tuning Setup

120

Appendix L - IP Code Chart

Ll et oF
5 e i st | Duit
-
i
L]
i
B P argreas of st gt

This Cirart s Irpmead 50 e nasd I conjuncTion
WIS ASEOSS. Dagress of protecsion provided by
mnciosures for slecTical aquipmen (IF Code).
The symisais Shown on TS char ane for sxplanenory
purpomas cily, Thay ane mot par of S 0P Code amd
st o e s instesd of e Code

Appendix M - Code

Rescue Module Code

//The following code is for the Rescue module
//Code written by Frederick Hunter for the Autonomous Man Overboard Rescue Equipment MQP

#include <XBee.h> //library for sending in API mode with XBees
#include <string.h>

#include <ctype.h> //library for testing characters

#include <SoftwareSerial.h> //library for simulating a serial port
#include <TinyGPS.h> //include for GPS library

#include <Wire.h>

int HMC6352Address = 0x42; // the address of the comapss

int slaveAddress; //the address of the compass slave

byte headingData[2]; //array used to store the incoming data for the compass
float latitudeRescue;

float longitudeRescue;

float lastLat=0.0;

float lastLon;

#define AVG 10 //number of positions to take average from

121

float 1lstCpleLatPos[AVG+2]; //stores the last lat positions for calculating the averagwe
float lstCpleLonPos[AVG+2];

int avgArrayPos = 0; //the position of the lstCpleXXXPos array for updating

int rescueNew = 0; //variable to determine if new coordinates for the rescue module have been
received

int newMes=0; //variable to store whether or not a new message has been recived

String message; //variable to store the message received

float victimLat = 0.0;//lat and lon of the victim

float victimLon;

int victimNew = 0; //bolean to determine if victim coordinates were received

float motherLat=0.0;//lat and lon of the mothership

float motherLon;

int motherNew=0; //boolean to determine if mothership coordinates were received

unsigned long age;

int state = 0; //The current state of the state machine////////////////////change in state 4 also
or remote control restart state

int heading; //The current heading of the rescue module

int accError = 15; //acceptable error in heading to the victim

int desHeading; //the desired heading to go to

float rescueStartLat = 0; //the starting location of the rescue boat
float rescueStartLon = 0;

//To drive the motors forward, A has to be high and B has to be Low
//vice versa for reverse

#define LEFTMOTORF 8 //the left motor relay 1

#define LEFTMOTORR 9 //the left motor relay 2

#define RIGHTMOTORF 10 //the right motor relay 1

#define RIGHTMOTORR 11 //the right motor relay 2

#define GPSPOW 4 //the pin for powering the GPS

#define XBEEPOW 5 //the pin for powering the XBEE

#define BUTTON 6 //the pin for the return home button
#define TLDPOW 7 //the power for the terminal locator device
#define FRONTRECEIVER A2

#define RIGHTRECEIVER Al

#define LEFTRECEIVER A0

#define RADIUS 6372795 //radius of the earth

//XBee address to send to (SH + SL) as defined in X-CTU software
//XBeeAddress64 motherAddr = XBeeAddress64 (0x13a200,0x405c2cal) ;
//¥XBeeAddress64 victimAddr = XBeeAddress64 (0x13a200,0x4099233c) ;
XBeeAddress64 victimAddr = XBeeAddress64 (0x13a200,0x409f3a9d) ;
XBeeAddress64 motherAddr = XBeeAddresso64 (0x13a200,0x406cb54d) ;

SoftwareSerial GPS(2,3); //RX, TX

XBee XBee = XBee(); //create XBee object
XBeeResponse response = XBeeResponse () ;
ZBRxResponse rx = ZBRxResponse();
TinyGPS gps;

void setup () {
//Serial.begin (9600) ;
GPS.begin (4800); //set up the serial port for GPS reading (pins 2,3)
XBee.begin (9600); //print to XBEE (Uses serial ports 1)
//Serial.begin (9600) ;
pinMode (GPSPOW, OUTPUT) ;
pinMode (XBEEPOW, OUTPUT) ;
pinMode (TLDPOW, OUTPUT); //the power for the terminal locator devices
pinMode (BUTTON, INPUT) ;
pinMode (FRONTRECEIVER, INPUT) ;
pinMode (LEFTRECEIVER, INPUT) ;
pinMode (RIGHTRECEIVER, INPUT) ;
digitalWrite (GPSPOW, LOW) ;
digitalWrite (XBEEPOW, LOW) ;
digitalWrite (TLDPOW, LOW) ;
slaveAddress = HMC6352Address >> 1; //set the slave address for the compass
Wire.begin(); //set up the i2c communication for the compass

122

pinMode (LEFTMOTORF, OUTPUT); //set up the motor ports and let them to low to avoid injury
pinMode (LEFTMOTORR, OUTPUT) ;
pinMode (RIGHTMOTORF, OUTPUT) ;
pinMode (RIGHTMOTORR, OUTPUT) ;
digitalWrite (LEFTMOTORF, LOW) ;
digitalWrite (LEFTMOTORR, LOW) ;
digitalWrite (RIGHTMOTORF, LOW) ;
digitalWrite (RIGHTMOTORR, LOW) ;
}

/1117117717 ////////////setMotors (int desCourse, int currCourse)//////////////////
//Corrects the motors to correct the course
//desCourse -> The desired course to head to in degrees ex 90 for East
//currCourse -> The current course being traveled
//nextToTarg -> boolean if we are next to the target
void setMotors (int desCourse, int currCourse, boolean nextToTarg) {

//determine error

int error = desCourse - currCourse;
/*

Serial.print ("Des Course: ");
Serial.println (desCourse) ;

Serial.print ("Curr Course: ");
Serial.println(currCourse) ;
*/

//fix wrap around error
if (error < -180)
error = error + 360;
if (error > 180)
error = error - 360;
/%
Serial.print ("Error: ");
Serial.println(error);
*/
//correct the course if off
if (accError < abs(error)) {
if (nextToTarg) {
//if next to victim, we just stop
sendMess ("0, STOP", motherAddr)
digitalWrite (LEFTMOTORF, LOW)
digitalWrite (LEFTMOTORR, LOW)
digitalWrite (RIGHTMOTORF, LOW
digitalWrite (RIGHTMOTORR, LOW
return;
}
if (exrror > 0){
/*//if we need to make a hard right turn, make\
one motor go backwards
if (error > 90) {
sendMess ("O, HARDRIGHT" , motherAddr) ;
digitalWrite (LEFTMOTORF, HIGH) ;
digitalWrite (LEFTMOTORR, LOW) ;
digitalWrite (RIGHTMOTORF, LOW) ;
digitalWrite (RIGHTMOTORR, HIGH) ;
return;
}*/
//if the boat should turn right
sendMess ("O, RIGHT", motherAddr) ;
digitalWrite (LEFTMOTORF, HIGH) ;
digitalWrite (LEFTMOTORR, LOW) ;
digitalWrite (RIGHTMOTORF, LOW) ;
digitalWrite (RIGHTMOTORR, LOW) ;
return;
}
else if (error < 0){
/*//if we need to make a hard left turn, make\

’

’

’

)i
)

123

one motor go backwards
if (error < -90){
sendMess ("O, HARDLEFT", motherAddr) ;
digitalWrite (LEFTMOTORF, LOW) ;
digitalWrite (LEFTMOTORR, HIGH) ;
digitalWrite (RIGHTMOTORF, HIGH) ;
digitalWrite (RIGHTMOTORR, LOW) ;
return;
}*/
//else the boat should correct left
sendMess ("O, LEFT", motherAddr) ;
digitalWrite (LEFTMOTORF, LOW) ;
digitalWrite (LEFTMOTORR, LOW) ;
digitalWrite (RIGHTMOTORF, HIGH) ;
digitalWrite (RIGHTMOTORR, LOW) ;
return;
}
}
//1if the course is ok, full throttle if we are not close to the victim
if (nextToTargqg) {
//1f next to victim, we Jjust stop
sendMess ("0, STOP", motherAddr) ;
digitalWrite (LEFTMOTORF, LOW) ;
digitalWrite (LEFTMOTORR, LOW) ;
digitalWrite (RIGHTMOTORF, LOW) ;
digitalWrite (RIGHTMOTORR, LOW) ;
}
else(
//otherwise go straight
sendMess ("0, FORWARD", motherAddr) ;
digitalWrite (LEFTMOTORF, HIGH) ;
digitalWrite (LEFTMOTORR, LOW) ;
digitalWrite (RIGHTMOTORF, HIGH) ;
digitalWrite (RIGHTMOTORR, LOW) ;

}
/1177777777 7777777/1///ceadCompass//////////////////

//retrieves the heading from the compass (0-360 degrees, where 0 = North)
int readCompass () {
Wire.beginTransmission (slaveAddress) ;

Wire.write ("A"); // The "Get Data" command
Wire.endTransmission();
delay (10); // The HMC6352 needs at least a 70us (microsecond) delay

// after this command. Using 10ms just makes it safe

// Read the 2 heading bytes, MSB first

// The resulting 1l6bit word is the compass heading in 10th's of a degree
// For example: a heading of 1345 would be 134.5 degrees

Wire.requestFrom(slaveAddress, 2); // Request the 2 byte heading (MSB comes first)
int i = 0;
while (Wire.available () && i < 2)
{
headingbData[i] = Wire.read();
i++;
}
int headingValue = headingData[0]*256 + headingData([l]; // Put the MSB and LSB together

return headingValue/10; //return the compass heading Output: 0 - 360 where 0 & 360 = North
}

/1171777777777 777//77/77////crosstrackexrxrox////////////////////////////////
/*Calculates the distance from the perpendicular to a straight line path to a target
* Distance: dist from current location to goal location
* thetal3: angle from start to current point
* thetal2: angle from start to goal location
* If return is +, we are on righ on line, if -, we are on left of line
*/
float crossTrackError (float distance, float thetal3, float thetal2) {
float angleError = radians (thetal3-thetal2);

124

float distRad = distance/RADIUS;
float sAngleError = sin(angleError);
float sDistRad = sin(distRad);
float aSin = asin(sDistRad*sAngleError) ;
return aSin*RADIUS;

}

/1111771777777777777/7//Eeedgps////////1/1///1///////
//determines if there is data available
static bool feedgps () {

while (GPS.available()) {

if (gps.encode (GPS.read()))
return true;
}
return false;

}

//retrieves the GPS data into the buffer array
void getGPS () {
//unsigned long start = millis();

int 1 = 0;
while (i<4/*millis() - start < 1500 && victimNew == 0*/) {
if (feedgps()) {
rescueNew = 1;

//Serial.println("New Data!");
gps.f get position(&latitudeRescue, &longitudeRescue, &age);
i++;
}
}
if (rescueNew) {
lstCpleLatPos[avgArrayPos] = latitudeRescue;
lstCpleLonPos[avgArrayPos] = longitudeRescue;
//Serial.println(latitudeRescue, 6) ;
//Serial.println (longitudeRescue, 6) ;
if (avgArrayPos >= AVG)
avgArrayPos = 0;
else
avgArrayPos++;

}
[11777777777777777777777777777/sendGPS/////////11/1/111/7///

//Send the GPS coordinates via XBee to other modules
void sendGPS (XBeeAddress64 module, float latitude, float longitude) {
//1if the start position has not been set for the rescue craft, do so now

if (rescueStartlLat == 0 && state != 3){
//not while state = 3 because there we are also sending the victim coordinates
rescueStartLat = latitude;
rescueStartLon = longitude;

}

uint8 t payload[30];

//store as string

char latc[l6];

char lonc[1l6];

dtostrf (latitude, 10,5, latc) ;

dtostrf (longitude, 10,5, lonc) ;

String packet = "B,"+(String)latc+","+(String)lonc+",";
//convert to uint8 t for transmission

//Serial.println (packet) ;

int i;
for (i = 0; i<packet.length();i++) {
payload[i] = (uint8 t)packet[i];

}
//attempt to send the packet
ZBTxRequest zbTx = ZBTxRequest (module, payload,i);
XBee.send (zbTx) ;
delay (50);
if (state == 3){
//1f we are heading back, simuklate victim on mothership too

125

packet = "C,"+(String) latc+","+(String) lonc+",";
//convert to uint8 t for transmission
//Serial.println (packet);
for(i = 0; i<packet.length();i++) {

payload[i] = (uint8 t)packet[i];
}
//attempt to send the packet
ZBTxRequest zbTx = ZBTxRequest (module, payload,i);
XBee.send (zbTx) ;

}
L1777 77777777777777777777777777/ceadxBee//////////////////

//retrieves the data from another module and returns the string if
//successfull, if not, returns NULL
String readXBee () {
int 1 = 0; //check four times in case a message was missed
for (i=0;1i<2;i++) {
newMes = 0;
XBee.readPacket () ;

if (XBee.getResponse () .isAvailable()) {
//got some message
if (XBee.getResponse () .getApiId() == ZB_RX RESPONSE) {

//got a zb rx packet
//£f1i11l the zb rx class
XBee.getResponse () .getZBRxResponse (rx) ;

int len = rx.getDataLength(); //number of char received
char buff [len+2];

int 1 = 0;
for(i = 0; i<len;i++){
buff[i] = (char)rx.getData(i);
}
buff[i+l] = '"\0"';
//determine if the received data is a message, or coordinate
if(buff[0] == '™M' || buff[0] == 'N' || buff[0] == '0"){
//sent data is a message
newMes = 1;

}

return buff;

}
}
//else //if no packet received
return NULL;
}

/1177177 7777777/77/////parsexBeeMess///////////////////
//parse the message returned from readXBee
//if a message is received, store the message and sender, else return NULL
//if a coordinate was received, store the coordinates
//also update the variable if a new message has been recived or coordinate
//return the message string, null if error, and "coord" if coordinates received
String parseXBeeMess (String mes, char *sender) {
//reset the newMes variable
*sender = 'Z'; //reset the sender variable
newMes = 0;
//determine if a message is being sent
if (mes.startsWith("M",0) || mes.startsWith ("N",0) || mes.startsWith("0",0)) {
//store the message
newMes = 1;
//get rid of the start delimiter
char buf[mes.length()]; //temporary buffer to store the string
mes.toCharArray (buf,mes.length());
String ret; //return string
int 1 = 2;//get rid of the X, where X, is the sending module
for (i=2;i<mes.length()-1;i++) {

126

//Serial.println (buf[i]);

ret = ret + buf[i];
}
*sender = buf[0]; //return who the sender was
//Serial.print ("In Parse Mess, received: ");
//Serial.println(ret);
return ret; //return the message
//Serial.println(mes[]);

}

else{
//otherwise we will return null after storing the lat/lon positions
int i = 0;
int index[4]; //index to store where data begins
index[0] = '\0'; //empty the array
index[1] = '\0"';
index[2] = '\0"';
index[3] = "\0';
index[4] = '\0"';

char c; //stores each character in the string array
int j =0; //keeps the place in the index array
char buf[mes.length()+2]; //buffer for converting the string to a char array

if (mes.startswith ("A",0)) {
//coordinates received from the mothership unit
motherNew = 1; //let program know a new coordinate was recived
//get the coordinates
for (1i=0;i<mes.length () ;i++) {
//get the character at the ith element
c = mes.charAt (i);

if(c == ","){
//if a comma is found, remember where it is
index[j] = i;
J++;
buf[i] = '\0'; // replace with end of string char
}
else(
buf[i] = c¢; //store the character into the buffer

}
}
//store the lat pos
char coordBuf[10]; // buffers for storing the individual lat and lon pos
char coordBuf2[10];
for (i=index[0]+1;i<index[1];i++) {
//store the lat position in a char buffer

coordBuf [i-(index[0]+1)] = buf[i];
}
coordBuf [i+1] = '\0'; //null terminator
motherLat = atof (coordBuf); //convert to long and store to memory

for(i=index[1]+1;i<index[2];i++) {
//store the lon position to buffer

coordBuf2[i-(index[1]+1)] = buf[i];
}
coordBuf2[i+1] = '\0'; //null terminator
motherLon = atof (coordBuf2); //convert to long and store

*sender=buf[0]; //tell who the sender was
return NULL;
}
if (mes.startsWith("C",0)) {
//coordinates received from the victim unit
victimNew = 1; //let program know new coordinates have been received
for (i=0;i<mes.length () ;i++) {
//get the character at the ith element
c = mes.charAt (i) ;

if(c == ", "){
//1if a comma is found, remember where it is
index[J] = i;
J++;

127

buf[i] = '"\0'; // replace with end of string char
}

else(
buf[i] = c; //store the character into the buffer
}
}
//store the lat pos
char coordBuf[10]; // buffers for storing the individual lat and lon pos
char coordBuf2[10];
for (i=index[0]+1;i<index[1];i++) {
//store the lat position in a char buffer
coordBuf [i- (index[0]+1)] = buf[i];
}
coordBuf[i+1] = '\0'; //null terminator
victimLat = atof (coordBuf); //convert to long and store to memory

for(i=index[1]+1;i<index[2];i++) {
//store the lon position to buffer

coordBuf2[i- (index[1]+1)] = buf[i];
}
coordBuf2[i+1] = '\0'; //null terminator
victimLon = atof (coordBuf2); //convert to long and store

*sender =buf[0]; //tell who the sender was
return NULL;
}
//otherwise if no message has been sent, return null
*sender =NULL; //if no message or coordinates were received
return NULL;
}
}

/*Calculates the average of the last 25 positions
for the given module, unless the module doesn't have
that many past recorded values in the avg array
to calculate latitude, set lat to true
for longitud, set lat to false*/
float calcAverage (boolean lat) {

if (1stCpleLatPos[0] == '\0"){

return 0; //return 0 if nothing in array

}

int i;
float avg = 0.00000;
if (lat == true) {
for(i = 0; 1i<AVG; i++){
if (1stCpleLatPos[i] == '\0")

break; //if reached end of array, break
avg = avg + lstCplelLatPos([i];
//Serial.println(module.lst cple lat pos[il);
}
}

else{
for(i = 0; i<AVG; i++){
if (lstCpleLonPos[i] == '\0'")

break; //if reached end of array, break
avg = avg + lstCpleLonPos[i];
//Serial.println(module.lst cple lon pos[il);
}
}
if (1 ==0)
return 0;
else(
//Serial.println(avg,5);
//Serial.print ("Average: ");
//Serial.println(avg/ (float)i,5);
return avg / (float)i;

}

/1717771777777 7777777/7717/cesecthvg////////1///1///7//71//7////
//resets the avg buffer

128

void resetAvg () {

int 3 = 0;

for (7=0; J<AVG; j++) {
lstCpleLonPos[j] = '\0';
lstCpleLatPos[j]= '"\O';

}

avgArrayPos = 0; //update the average array position index
}

/1171777777777 77777777777//sendMess/////////////////////7/////
//this function is used to send a message to the mothership that the victim is in danger
void sendMess (String message, XBeeAddress64 module) {

uint8 t payload[30];

//convert message to uint8_ t for transmission

int i ;

//Serial.println (message) ;

//Serial.println (message.length());

for(i = 0; i<message.length();i++) {

payload([i] = (uint8 t)message[i];

}

//Serial.println (message) ;

//attempt to send the packet

ZBTxRequest zbTx = ZBTxRequest (module, payload, 1i);

XBee.send (zbTx); //send the message
}
void resetArray(float array([]) {

int 1 = 0;

for(i = 0; 1i<AVG+2;i++) {

array[i] = '"\0';

}

}

/17707777 777777777777/7777///ceadReceivers///////////7/
//retunrs a negative if we need to go left and a positive to go right
float readReceivers () {
int loops = 500; //number of loops to go through
int i=0;
float leftAvVG = 0;
float rightAVG = 0;
float frontAVG = 0;
for (i = 0;i<loops;i++) {
leftAVG = leftAVG + analogRead (LEFTRECEIVER) ;
rightAVG = rightAVG + analogRead (RIGHTRECEIVER) ;
//frontAVG = frontAVG + analogRead (FRONTRECEIVER) ;
}
leftAVG = leftAVG/loops;
rightAVG = rightAVG/loops;

//frontAVG = frontAVG/50;

if (rightAVG < 15 || leftAVG < 15){
//if the signal is too low, go to state 2
sendMess ("O,OUT OF RANGE!! (GO STATE1l)",motherAddr) ;
state = 1;

}

//TODO://determine if we should go straight

return rightAVG-leftAVG; //want a negative for a desired left turn
}
/1770777777777 7/77777//7/////checkSignalStrength////////////1/////
//retunrs the average signal reading of the front receiver
float checkSignalStrength () {
int i=0;
float frontAvVG=0;
float leftAvVG =0;
float rightAvVG=0;
for (1i=0;1<50;i++) {
//frontAVG=frontAVG+analogRead (FRONTRECEIVER) ;
leftAVG = leftAVG + analogRead (LEFTRECEIVER) ;
rightAVG = rightAVG + analogRead (RIGHTRECEIVER) ;

129

}
if (1leftAVG > rightAVG)
return rightAvVG/50;
else
return leftAvVG/50;

/17707777 777777777777777777777777/Toop////////1//777/77/7/7/7/77/
void loop () {

boolean leftOn = false;

boolean rightOn = false;

//Reset the arrays for calculating the averages

//resetArray (lstCplelatPos) ;

//resetArray (lstCpleLonPos) ;

String rv; //the return value of the XBee

char sender; //variable to hold the sender

// 0 SLEEP (Wait for mothership to wake me up)
// 1 = HEADING TO VICTIM (send GPS coord to mothership & check if we are within 50m of the
victim)
// 2 = HEADING TO VICTIM (within 50m of victim, Activate the receiver and follow that, send
GPS and notify we are close)
// 3 = HEADING TO MOTHERSHIP (Victim retrieved and heading back to the mothership)
long distToTarget = 0; //the distance to the target
while (1) {
while (state == 0){
//initialize things for state 0
//turn the GPS off and turn the XBEE on
digitalWrite (GPSPOW, LOW) ;
digitalWrite (XBEEPOW, HIGH) ;
resetAvg () ;
delay (1000);
while (state == 0){
//waiting for the mothership to send a wakeup signal
rv = readXBee();
if(rv != NULL && newMes == 1) {
//mesage received
message = parseXBeeMess (rv, &sender) ;
//1f message from mothrship

if (message.equals ("STOP") && sender == 'M') {
//if the kill switch has been thrown
setMotors (0,0, true); //stop the motors
state = 4;//go to state 4 for remote control

break; //break out of loop
}
if (message.equals ("BOOT") && sender == 'M') {
//signal received
sendMess ("O, INIT", motherAddr) ;
digitalWrite (GPSPOW,HIGH) ;
//wait for GPS to get a lock
while (rescueNew == 0) {
rescueNew= 0;
latitudeRescue = 0;
longitudeRescue = 0;
//get the gps data
getGPS () ;
rv = readXBee();
if(rv != NULL && newMes == 1) {
//mesage received
message = parseXBeeMess (rv, &sender) ;
//1f message from mothrship
//Serial.println (message) ;
if (message.equals ("STOP") && sender == 'M') {
//if the kill switch has been thrown
setMotors (0,0, true); //stop the motors
state = 4;//go to state 4 for remote control
sendMess ("0, State 4",motherAddr) ;
break; //break out of loop

130

}
}

}
//tell the mothership, the search for the victim has begun

sendMess ("0, SEARCHV", motherAddr) ;
state = 1;

//Turn on the GPS in case it was off
digitalWrite (GPSPOW, HIGH) ;

break;

}

while (state == 1) {
//Serial.println("Satel");
//heading to the victim following the gps coordinates from the victim
sendMess ("O,Rescue STATE 1", motherAddr);
delay (50) ;
sendMess ("0, BOOM! ", motherAddr) ;
resetAvg () ;
resetArray (lstCpleLatPos);
resetArray (lstCpleLonPos) ;
//Activate the transmitter on the victim module
sendMess ("0, CLOSEV", victimAddr) ;
while (state == 1){//75 was good
if (checkSignalStrength () >30) {
//determine if there is a signal present from tld
setMotors (0,0, true);////////////1//////1///////
state = 2;
}
//reset variables
rescueNew= 0;

latitudeRescue = 0;
longitudeRescue = 0;
//get the gps data
getGPS () ;

//send the gps data to the mothership if new data received
if (rescueNew) {
//send the average (10 pos) of the lat and lon positions respectively
//Serial.println ("New rescue coord!");
lastLat = calcAverage (true);
lastLon = calcAverage (false);
//Serial.println(lastlat);
//Serial.println(lastLon) ;
//sendMess ("0, Sending coord",motherAddr) ;
//(50);
sendGPS (motherAddr, lastLat, lastLon);
rescueNew=0; //reset the variable
}
//retrieve the coordinates from the victim
rv = readXBee();
if (rv != NULL) {
//Received a Coordinate
message = parseXBeeMess (rv, &sender); //store the coordinates
if (message.equals ("STOP") && sender == 'M') {
//1if the kill switch has been thrown
setMotors (0,0, true); //stop the motors
state = 4;//go to state 4 for remote control
break; //break out of loop
}
if (victimLat > 1) {
//1if coordinates from the victim received

victimNew = 0;
//calculate the distance to the victim
distToTarget = gps.distance between(victimLat, victimLon, lastLat,lastLon);

if (distToTarget < 30) {
//1if we are close to the victim, switch to state 2
if (checkSignalStrength()>30){ //75 was good

131

//determine if there is a signal present
setMotors (0,0, txrue);//////////////////////////
state = 2;

}
}

//1if some coordinates from the victim and rescue boat were stored, correct direction

if (victimLat != 0 && lastLat) {
//get desired heading and get the current heading & pass to the set motors function
int cou = (int)gps.course to(lastLat,lastLon,victimlLat,victimLon);
//int cou = (int)gps.course to(victimLat,victimLon,lastLat,lastLon);
int currcourse = readCompass();
float CTE =
crossTrackError (distToTarget, gps.course to(rescueStartlLat,rescueStartLon,victimLat,victimLon),gps
.course_to(rescueStartlat,rescueStartLon,lastlLat,lastLon)); //find the cross track error
if (CTE > 5)
cou = cou +(accError/2); //make boat correct to be within 5m of straight line path to
victim
if (CTE < -5)
cou = cou - (accError/2); //need to correct right more
setMotors (cou, currcourse, false);
}
}
}
while (state == 2){

//within 50 meters of the victim and activating the receiver to follow that
//Activate the transmitter on the victim module
sendMess ("0, CLOSEV", victimAddr) ;

setMotors (0,0, true);////////////1/1////1/7//]/

delay (100); //allow message to send
sendMess ("O,CLOSEV", motherAddr); //tell mothership we are close
//activate the recievers on this module
digitalWrite (TLDPOW, HIGH) ;
delay (100); //allow the receivers to activate
//home in on the victim
while (state == 2) {
//sendMess ("O,State2 waiting", motherAddr); //tell mothership we are close
//once the victim has been retrieved and button pressed, send message to mothership & go
to state 3
if (digitalRead (BUTTON)==HIGH) {
setMotors (0,0, true); //stop the motors
delay (50) ;
sendMess ("O,RETURN", motherAddr); //tell mothership we are heading back
delay (50);
sendMess ("O,RETURN", victimAddr); //tell mothership we are heading back
state = 3;
break;
}

rv = readXBee();

if(rv != NULL) {
//Received a Coordinate
message = parseXBeeMess (rv, &sender); //store the coordinates
//see if mothership has sent a message
if (message.equals ("STOP") && sender == 'M') {

//if the kill switch has been thrown
setMotors (0,0, true); //stop the motors

state = 4;//go to state 4 for remote control
break; //break out of loop

132

//correct the heading here and set motors
//ALSO need to tell the motors when we are next to the victim to turn them off!!
//determine the readings from the receivers
float go = readReceivers();
if(go == 0){

//if we need to go straight

sendMess ("0, FORWARD", motherAddr) ;

digitalWrite (LEFTMOTORF, HIGH) ;

digitalWrite (LEFTMOTORR, LOW) ;

digitalWrite (RIGHTMOTORF, HIGH) ;

digitalWrite (RIGHTMOTORR, LOW) ;

else if (go<0) {
//if negative, go left
sendMess ("O, LEFT", motherAddr) ;
digitalWrite (LEFTMOTORF, LOW) ;
digitalWrite (LEFTMOTORR, LOW) ;
digitalWrite (RIGHTMOTORF, HIGH);
digitalWrite (RIGHTMOTORR, LOW) ;
}
else 1if(go>0) {
//1if positive, go right
sendMess ("O,RIGHT", motherAddr) ;
digitalWrite (LEFTMOTORF, HIGH) ;
digitalWrite (LEFTMOTORR, LOW) ;
digitalWrite (RIGHTMOTORF, LOW) ;
digitalWrite (RIGHTMOTORR, LOW) ;
}
//need to determine if we are close to the victim and stop
if (checkSignalStrength () >=550) {
//we are next to the victim, so stop and wait to be picked up
setMotors (0,0, true); //stop the motors
sendMess ("O,WAITING FOR VICTIM TO BOARD",motherAddr) ;
while (1) {
if (digitalRead (BUTTON)==HIGH) {
setMotors (0,0, true); //stop the motors
delay (50);
sendMess ("O,RETURN",motherAddr); //tell mothership we are heading back
delay (50);
sendMess ("O,RETURN",victimAddr); //tell mothership we are heading back
state = 3;
break;

}
}
delay (500);
//TODO: we need to determine if e need to turn around
//TODO: Need to account for error

}

while (state == 3){
//got the victim, return to the mothership
//tell mothership to send it's gps location
sendMess ("0, MCOORD", motherAddr) ;
delay (100) ;
sendMess ("0, 3 BOOM!",motherAddr) ;
resetAvg () ;
resetArray (lstCpleLatPos);
resetArray (lstCpleLonPos) ;
while (1) {
//send and store this modules coordinates
//reset variables
rescueNew= 0;
latitudeRescue = 0;

133

longitudeRescue = 0;
//get the gps data
getGPS () ;
//send the gps data to the mothership if new data received
if (rescueNew) {
//send the average (10 pos) of the lat and lon positions respectively
lastLat = calcAverage (true);
lastLon = calcAverage (false);
sendGPS (motherAddr, lastLat, lastLon);
rescueNew=0; //reset the variable

}

//retrieve coordinates from the mothership of its location and store them
rv = readXBee();

if(rv != NULL) {
//Received a Coordinate
message = parseXBeeMess (rv, &sender); //store the coordinates
if (message.equals ("STOP") && sender == 'M') {

//1if the kill switch has been thrown
setMotors (0,0, true); //stop the motors
state = 4;//go to state 4 for remote control
break; //break out of loop

}

if (motherNew && message == NULL) {
//1if coordinates from the victim received
motherNew = 0;

//calculate the distance to the victim
distToTarget = gps.distance between (motherLat, motherLon, lastLat,lastLon);
if (distToTarget < 30) {
//1f we are close to the mother, switch to state 0 and notify crew
sendMess ("O, HOME" , motherAddr) ;
delay (10000) ;
state = 0;
break;

}
}

//plan angle to go to mothership
//correct heading
//if some coordinates from the victim and rescue boat were stored, correct direction
if (motherLat != 0 && lastlLat) {
//get desired heading and get the current heading & pass to the set motors function
setMotors ((int)gps.course_ to(lastlLat,lastLon,motherlLat,motherLon), readCompass (),
false);
}
}
}

while (state == 4){
//state for remote control operation of the boat
rv = readXBee();
if(rv != NULL && newMes == 1) {
//check if the message got sent to restart
message = parseXBeeMess (rv, &sender); //store the coordinates
if (message.equals ("RESTART") && sender == 'M') {
//1if the kill switch has been thrown
setMotors (0,0, true); //stop the motors
state = 1;//go to state 0 for restart//
break; //break out of loop
}
//mesage received
if (message.equals ("LO")) {
Serial.println ("Turning right");
leftOn = 1;
rightOn = 0;
}
if (message.equals ("SS")) {
Serial.println("Stop");

134

leftOn = 0;
rightOn = 0;
}
if (message.equals ("RO")) {
Serial.println("Turning left");
rightOn = 1;
leftOn = 0O;
}
if (message.equals ("FF")) {
Serial.println("Going straight");
digitalWrite (LEFTMOTORF, HIGH) ;
digitalWrite (LEFTMOTORR, LOW) ;
digitalWrite (RIGHTMOTORF, HIGH) ;
digitalWrite (RIGHTMOTORR, LOW) ;
rightOn = 4; //just don't do anything
leftOn = 4;
}
if (message.equals ("BB")) {
//go backwards
digitalWrite (LEFTMOTORF, LOW) ;
digitalWrite (LEFTMOTORR, HIGH) ;
digitalWrite (RIGHTMOTORF, LOW) ;
digitalWrite (RIGHTMOTORR, HIGH) ;
rightOn = 3;
leftOn = 3;
}
}
if (leftOn == 1) {
//turn on left motor
digitalWrite (LEFTMOTORF, HIGH) ;
digitalWrite (LEFTMOTORR, LOW) ;
digitalWrite (RIGHTMOTORF, LOW) ;
digitalWrite (RIGHTMOTORR, LOW) ;
}
if(rightOn == 1) {
//turn on right motor
digitalWrite (LEFTMOTORF, LOW) ;
digitalWrite (LEFTMOTORR, LOW) ;
digitalWrite (RIGHTMOTORF, HIGH) ;
digitalWrite (RIGHTMOTORR, LOW) ;
}
if (leftOn == 0) {
//turn off left motor
digitalWrite (LEFTMOTORF, LOW) ;
digitalWrite (LEFTMOTORR, LOW) ;
}
if (rightOn == 0) {
//turn off right motor
digitalWrite (RIGHTMOTORF, LOW) ;
digitalWrite (RIGHTMOTORR, LOW) ;
}
if (rightOn == 3 && leftOn == 3){
//reverse
digitalWrite (LEFTMOTORF, LOW) ;
digitalWrite (LEFTMOTORR, HIGH) ;
digitalWrite (RIGHTMOTORF, LOW) ;
digitalWrite (RIGHTMOTORR, HIGH) ;
}

}

while (state == 5) {
//testing state
rv = readXBee();
if (rv != NULL) {
//Received a packet
//Serial.println ("Packet received");
message = parseXBeeMess (rv, &sender); //store the coordinates
if (motherNew && message == NULL) {

135

//if coordinates from the victim received
motherNew = 0;
Serial.println("Lat and llon pos:");
Serial.println(motherLat);
Serial.println(motherLon) ;
//calculate the distance to the victim
//distToTarget = calcDist (motherLat, motherLon, lastLat,lastLon);
if (distToTarget < 50) {
//if we are close to the mother, switch to state 0 and notify crew
sendMess ("O, HOME" , motherAddr) ;
state = 0;

Victim Unit Code

//The following code is for the Victim module written by Frederick Hunter for the Autonomous Man
Overboard Rescue Equipment MQP

#include <XBee.h>

#include <string.h>

#include <ctype.h> //library for testing characters
#include <SoftwareSerial.h>

#include <TinyGPS.h> //include for GPS libraries

float longitudeVictim;

float latitudeVictim;

unsigned long age;

#define AVG 10 //number of positions to take average from

float lstCpleLatPos[AVG+2]; //stores the last lat positions for calculating the averagwe
float lstCpleLonPos[AVG+2];

int avgArrayPos = 0; //the position of the lstCpleXXXPos array for updating

int victimNew = 0; //variable to determine if new coordinated for the victim module were recieved
int newMes = 0; //variable to determine if a new message has been received

String message; //variable to hold the message received

TinyGPS gps;

#define thisModule 'C' //Module identifier for this module A = Mother B = Rescue C = Victim
#define GPSPOW 4 //the pin for powering the GPS

#define XBEEPOW 5 //the pin for powering the XBEE

#define WATERSENSOR 6 //the sensor for detecting if the person fell in the water

#define TLD 7 //the terminal locator device can be turned on / off with this pin

//XBee address to send to (SH + SL) as defined in X-CTU software
//XBeeAddress64 rescueAddr = XBeeAddress64 (0x13a200,0x405c2cal) ;
XBeeAddress64 rescueAddr = XBeeAddress64 (0x13a200,0x4099233c) ;
XBeeAddress64 motherAddr = XBeeAddress64 (0x13a200,0x406cb54d) ;
//XBeeAddress64 motherAddr = XBeeAddress64 (0x13a200,0x405c2cal) ;

SoftwareSerial GPS(2,3); //RX, TX

XBee XBee = XBee(); //create XBee object
XBeeResponse response = XBeeResponse () ;
ZBRxResponse rx = ZBRxResponse();

//Setup script

void setup () {
pinMode (GPSPOW, OUTPUT) ;
pinMode (XBEEPOW, OUTPUT) ;
pinMode (TLD, OUTPUT) ;
pinMode (WATERSENSOR, INPUT) ;
digitalWrite (GPSPOW, LOW) ;

136

digitalWrite (XBEEPOW, LOW) ;
//Serial.begin(9600); //print to screen
GPS.begin (4800); //read GPS
XBee.begin (9600); //print to XBEE (Uses serial ports 1)
}

/11117777777777777777//7////sendMess////////////1/////////////
//this function is used to send a message to the mothership that the victim is in danger
void sendMess (String message, XBeeAddress64 module) {

uint8 t payload[30];

//convert message to uint8 t for transmission

int i ;
for(i = 0; i<message.length();i++) {
payload[i] = (uint8 t)message([i];

}
//attempt to send the packet
ZBTxRequest zbTx = ZBTxRequest (module, payload, 1i);
XBee.send (zbTx); //send the message
}
[11777777777777777777777777777//ceadxBee//////////////////
//retrieves the data from another module and returns the string if
//successfull, if not, returns NULL
String readXBee () {
int i = 0;
for (i=0;i<4;i++) {
newMes = 0;
XBee.readPacket () ;
if (XBee.getResponse () .isAvailable()) {
//got some message
if (XBee.getResponse () .getApiId() == ZB_RX RESPONSE) {
//got a zb rx packet
//£f1i11l the zb rx class
XBee.getResponse () .getZBRxResponse (rx) ;

int len = rx.getDataLength(); //number of char received
char buff [len+2];
int i = 0;
for(i = 0; i<len;i++){
buff[i] = (char)rx.getData(i);
}
buff[i+1l] = '"\O0';
//determine if the received data is a message, or coordinate
if(buff[0] == 'M' || buff[0] == 'N' || buff[0] == '0"){
//sent data is a message
newMes = 1;

}

return buff;

}
}
//else //if no packet received
return NULL;

/11177111717 717/1//////parseXBeeMess///////////////////
//parse the message returned from readXBee
//if a message is received, store the message and sender, else return NULL
//1if a coordinate was received, store the coordinates
//also update the variable if a new message has been recived or coordinate
//return the message string, null if error, and "coord" if coordinates received
String parseXBeeMess (String mes, char *sender) {
//reset the newMes variable

*sender = 'Z'; //reset the sender variable

newMes = 0;

//determine if a message is being sent

if (mes.startsWith("M",0) || mes.startsWith ("N",0) || mes.startsWith("0",0)) {
//store the message
newMes = 1;

137

//get rid of the start delimiter
char buf[mes.length()]; //temporary buffer to store the string
mes.toCharArray (buf,mes.length());
String ret; //return string
int 1 = 2;//get rid of the X, where X, is the sending module
for (i=2;i<mes.length()-1;i++) {
//Serial.println (buf[i]);
ret = ret + buf[i];
}
*sender = buf[0]; //return who the sender was
//Serial.print ("In Parse Mess, received: ");
//Serial.println (ret);
return ret; //return the message
//Serial.println(mes[]);
}
//else //otherwise if no message has been sent, return null
return NULL;

}
/1117777777777 77777/7///feedgps//////////////////////
//determines if there is data available
static bool feedgps ()
{

while (GPS.available())

{

if (gps.encode (GPS.read()))
return true;
}
return false;

}

//retrieves the GPS data into the buffer array
void getGPS () {
//unsigned long start = millis();

int 1 = 0;
while (i<4/*millis() - start < 1500 && victimNew == 0*/) {
if (feedgps()) {
victimNew = 1;

//Serial.println ("New Data!");
gps.f get position(&latitudeVictim, &longitudeVictim, &age);
itv;
}
}
if (victimNew) {
lstCpleLatPos[avgArrayPos] = latitudeVictim;
lstCpleLonPos[avgArrayPos] = longitudeVictim;
//Serial.println(latitudeVictim, 6) ;
//Serial.println (longitudeVictim, 6) ;
if (avgArrayPos >= AVG)
avgArrayPos = 0;
else
avgArrayPos++;

}
[11777777777777777777777777777/sendGes///////////117//117]/

//Send the GPS coordinates via XBee to other modules
void sendGPS () {
uint8 t payload[30];
//determine if more data sent
if (victimNew) { //make sure new data has been recieved before printing
//getAverage pos
float avglat = calcAverage (true);
float avglLon = calcAverage (false);
//Serial.println (avglLat, 5);
//Serial.println (avgLon,5) ;
//Store as string

char latc[l6];
dtostrf (avglLat, 10,5, latc);

138

char lonc[1l6];

dtostrf (avgLon, 10,5, lonc) ;

//Serial.println (lonc) ;

//Serial.println(latc);

//String lat = String(latc);

//String lon = String(lonc);

String packet = "C,"+String(latc)+","+String(lonc)+",";//1ltoa(latitudeVictim, buf,
ltoa(longitudeVictim, buf, 10);

//convert to uint8 t for transmission

//Serial.println (packet) ;

int i;
for(i = 0; i<packet.length();i++) {
payload[i] = (uint8 t)packet[i];

}
//attempt to send the packet to rescue
ZBTxRequest zbTx = ZBTxRequest (rescueAddr, payload,i);
XBee.send (zbTx) ;
delay (50) ;
//XBee.flush () ;
//attempt to send packet to mothership
ZBTxRequest zbTx2 = ZBTxRequest (motherAddr, payload,i);
XBee.send (zbTx2) ;
//delay (50) ;
//XBee.flush () ;

}

/*Calculates the average of the last 25 positions
for the given module, unless the module doesn't have
that many past recorded values in the avg array
to calculate latitude, set lat to true
for longitud, set lat to false*/
float calcAverage (boolean lat) {

if (1stCpleLatPos[0] == '\0"){

return 0; //return 0 if nothing in array

}

int i;
float avg = 0.00000;
if (lat == true) {
for(i = 0; i<AVG; 1i++){
if (lstCpleLatPos[i] == '\0")

break; //if reached end of array, break
avg = avg + lstCplelLatPos([i];
//Serial.println(module.lst cple lat pos[i]);
}
}

else{
for(i = 0; i<AVG; 1i++){
if (1stCpleLonPos[i] == '\0")

break; //if reached end of array, break
avg = avg + lstCpleLonPos([i];
//Serial.println(module.lst cple lon pos[i]);
}
}

if (i ==0)
return 0;

else{
//Serial.println(avg,5);
//Serial.print ("Average: ");

//Serial.println(avg/ (float)i,5);
return avg / (float)i;

}

/1177777777777 777777777/77/cesetnvg////////////7/7/7/7/7/7/7////
//resets the avg buffer
void resetAvg () {

int § = 0;

for (3=0; J<AVG; j++) {

139

10)

+

lstCpleLonPos[j] = "\0';
lstCpleLatPos[j]= '"\O';
}
avgArrayPos = 0; //update the average array position index

}

void resetArray(float arrayl[]) {

int i = 0;
for(i = 0; 1i<AVG+2;i++) {
array[i] = '\0';

}

void loop () {
int state = 0; //states for the victim module
//0 = victim is not in danger, still on mothership
//1 = victim is in distess, fell off the mothership
//2 = victim is close to the rescue craft
//3 = victim is on the rescue craft
//reset the arrays for calculating the averages
String rv; //string received
char sender; //variable to store who the sender is
resetArray (lstCpleLatPos);
resetArray (lstCpleLonPos) ;
while (1) {
while (state == 0){
resetAvg () ;
//Serial.println("State 0");
while (state == 0){
//keep polling the WATERSENSOR to check if the victim is in danger
if (digitalRead (WATERSENSOR)) {
//if in danger, send distress signal to the mothership, activate GPS and XBEE
digitalWrite (GPSPOW, HIGH); //turn on the GPS
digitalWrite (XBEEPOW,HIGH); //turn on the XBEE
delay (1000); //allow XBEE to Power on
//send distress signal to Mothership
sendMess ("N, OVERBOARD", motherAddr) ;
//wait for GPS to get a lock

delay (50);
while (victimNew == 0) {
victimNew = 0;

latitudeVictim =0;

longitudeVictim=0;

getGPS(); //get GPS data

//sendGPS () ;

//victimNew = 1;//////////////7/77/7/77777/77777/7//77/
}
sendMess ("N, INITDN", motherAddr) ;

//delay (50) ;
//rv = readXBee () ;
//resetAvg () ;
state = 1; //now in danger state
}
}
}
while (state == 1) {
resetAvg () ;

resetArray (lstCpleLatPos) ;
resetArray (lstCpleLonPos) ;
//Serial.println("State = 1");
sendMess ("N, STATE1", motherAddr) ;
delay (50);
sendMess ("N, AHHHH! HELP ME!",motherAddr) ;
while (state == 1) {
//victim is in danger, send GPS coordinates
//reset variable
victimNew = 0;
latitudeVictim =0;

140

longitudeVictim=0;
getGPS(); //get GPS data
sendGPS () ; //send the GPS data via GPS
//check if the rescue craft is close, then activate the TLD
//sendMess ("N, STATEL1",motherAddr);//////////////////////////
//delay (20) ;
rv = readXBee();
if(rv != NULL && newMes == 1) {
//message received
//delay (50) ;
//sendMess ("N,MESSEGE? ! ", motherAddr);/////////////
//delay (50) ;
message = parseXBeeMess (rv, &sender) ;
if (message.equals ("CLOSEV") && sender == '0O'){
//sendMess ("N, CLOSERECEIVED!",motherAddr);/////////////
//if rescue craft is close to the victim and message sent from rescue craft
digitalWrite (TLD,HIGH); //turn on the TLD
state = 2; // now close to the rescue craft
resetAvg () ;
delay (1000) ;

}
}
}
while (state == 2){
//Serial.println("State = 2");
sendMess ("N, STATE2", motherAddr) ;

delay (50);
sendMess ("N, STATE2 ! ", motherAddr) ;
while (state == 2){

//victim is close to the rescue craft
//Send the mothership a message that the victim is close to the rescue craft
//keep transmitting the TLD
//check 1f rescue craft requires GPS coordinates again, if so, go to state 1
rv = readXBee();
if(rv != NULL && newMes == 1) {
//message received
message = parseXBeeMess (rv, &sender) ;
if (message.equals ("VCOORD") && sender == '0O') {
//if rescue craft sent message and requires gps coord again
digitalWrite (GPSPOW,HIGH) ;
state = 1;
delay (1000) ;
}
//if the sender is the rescue craft and the home button has been activated, go to state 3
if (message.equals ("RETURN") && sender == '0O') {
digitalWrite (TLD, LOW) ;
state = 3;
resetAvg () ;
delay (1000);
}

}
}
while (state == 3){
//Serial.println("state = 3");
sendMess ("N, STATE3", motherAddr) ;
//send the mothership a message saying that victim is on rescue craft
sendMess ("N, ONRESCUE", motherAddr) ;
while(l && state == 3){
//victim is on the rescue craft
//turn off the GPS
digitalWrite (GPSPOW, LOW) ;
//keep transmitting the TLD, to make sure victim does not fall off again
}
}
while (state== 10) {
//Serial.println("State 10");
//reset variable

141

victimNew = 0;

latitudevictim =0;

longitudeVictim=0;

//Serial.println("Start Loop");

getGPS(); //get GPS data

//printGPS(); //print the received data

//if (1 > 3){ //5 = defaultonly send sometimes so as to not overflow the traffic (2 works)
/*victimNew=1;
latitudeVictim = 4251545;
longitudeVictim = -71515454;*/
sendGPS () ; //send the GPS data via GPS
//i = 0;

//sendMess ("TEST", rescuelAddr) ;

//}
//it+;
//readGPS(); //read GPS for incoming coordinates
}
}
}
Mothership Unit Code

#!/usr/bin/python
#module for reading the data coming from the victim and rescue craft modules over XBEES
#Code written by Frederick Hunter for the Autonomous Man Overboard Rescue Equipment MQP

import serial
import time;

import math

import csv;

import XBeeMy #import module for XBee communication

import gps #import for gps manipulation

import gui #import for graphing and gui stuff

import calc #module for doing math

import threading #used for multithreading with the gps

import subprocess #module for starting another process in the background
import sys #import for starting a process in background

#degree sign= u'\N{DEGREE SIGN}' #so a degree sign can be used

debug = 0; #if debug statements should be printed, set to one.
HEADER LINES = 11 #number of header lines (KEEP CONSISTANT WITH GUI TOO)
RADIUS 6371000 #the radius of the earth in meters

wun

start_pos
Class for storing the start GPS positions of the different modules
class start pos:
def init (self):
self. lat =0
self. lon =0

#class for storing needed GPS values
class gps_data:

_XBee = '' #XBee identifier ex A, B, C.. etc A = Mothership, B = Victim, C = rescue
_latitude = ''#latitude value ddmm.mmmm

_longitude = '' #longitude value dddmm.mmmm

_xpos = 0 #x-axis position in meters

_ypos = 0 #y-axis position in meters

142

mwwn

isNum (num)

Checks if num is a number, if it isn't return false, if it is
return true

@param num: a string to check if it is a number
def isNum (num) :
try:
float (num)
return True
except ValueError:
return False

wun

parse coord()
returns the DMS coordinates in a graphable form
@param coord: in xxxdegyy'zz" form
def parse coord(coord) :
return coord.replace('deg','') .replace("'",'") .replace('"',"'")

printMesToFile
prints the passed message to the messages file
these messages are received from the victim or rescue module
@param message: the message to be stored
def printMesToFile (message) :
try:
log = open('messages.log','a') #open the messages log file
except Exception as e:
print 'Could not open the messages.log file'

print e
exit () #kill the program
log.write (str (message)); #write the message to file

log.close #close the log file

print to file
prints the given gps coordinates to a file for later use
@param gpsXBee: the class with the data from the gps
def print to file(gpsXBee):
try:
log = open('coordinates.log', 'a'); #open log file
except Exception as e:
print 'Could not open coordinates.log! Is the file in the current directory?'
print e
exit(); #kill the program
#check if data is new before printing
#print new data to log file
if (int (float (gpsXBee. latitude)) != 0):
#try:
#check if the string for longitude and latitude is a number
if (isNum(gpsXBee. latitude) and isNum(gpsXBee. longitude)):
writeLog = gpsXBee. XBee + ',' + gpsXBee. latitude + ',' + gpsXBee. longitude + ',' + 'E'+
',' + str(gpsXBee. xpos) + ',' + str(gpsXBee. ypos) + '\n';
log.write (writelog);
"""except Exception as e:
print 'Could not print data to file'
print e"""
log.close

143

wun

print_gps (_gps)
prints the GPS data to screen
@param gps the gps data returned by read serial()
def print gps(_gps):
print 'XBEE = \t\t' + gpsXBee. XBee;
print 'Latitude = \t' + gpsXBee. latitude;
print 'Longitude = \t' + gpsXBee. longitude;
print 'xpos = \t' + str(gpsXBee. xpos);
print 'ypos = \t' + str(gpsXBee. ypos);
print '' #print newline

getStartPos ()
returns 0 if none could be found, otherwise returns 1 and sets the startPosition in the start pos
class.
mown
def getStartPos():
try:
log = open('coordinates.log',
except Exception as e:
print 'Could not open coordinates.log as read only. Is it in the current directory?'
print e
exit(); #kill the program
#skip the header
try:
for 1 in range (0, HEADER LINES) :
log.next ();
except Exception as e:
print 'Error skipping the header file 0:' + HEADER LINES + 'in getStartPos'
print e
exit(); #kill the program

')

#try:
reader = csv.reader (log) #open with csv reader
for row in reader:#go through each row and look for the first module instance
try:
i = row[0] #if no module found at end, return 0
except Exception as e:
print e
return 0
#if the first input was found, save the lat & long values
startPos. lat = (row[l])
startPos. lon = (row([2])
log.close()
return 1
#except:

print 'Error in reading the log file in getStartPos'

read serial (_gps)
returns the data from the gps needed for calculations in the parameter passed to it
returns two empty strings if no message has been received and if one has been received,
it returns the message, sender
def read serial (gpsXBee) :
#set gpsXBee. latitude to zero to notify the print to file function that no new data has been
received
gpsXBee. latitude = 0;
temp = XBeeMy.receive (xser);

if (temp[0] == 'N'):

#if message from victim received, print to screen

print "Message from Victim: " + temp[2:]

return temp[2:], 'N' #return the received message and the sender
if (temp[0] == '0O"):

144

#message from rescue received

print "Message from Rescue: " + temp[2:]

return temp[2:], 'O' #return the received message and the sender
if debug:

print 'Raw XBEE data received: ' + temp
temp = temp.split(','); #store values in list

#print temp
if (len(temp) < 3): #make sure all the data has been received
#print "data corrupted"
return '', '' #return empty strings indicating that no message has been received
while (temp[0].find('C') == -1) and (temp[0].find('B') == -1) and (temp[0].find('A') == -1):
#do nothing until desired data is found & not corrupt
temp = XBeeMy.receive (xser);

if(temp[0] == 'N'):
#1f message from victim received, print to screen
print "Message from Victim: " + temp[2:]
return temp[2:], 'N' #return the received message and the sender
if (temp[0] == '0O'"):
#message from rescue received
print "Message from Rescue: " + temp[2:]
return temp[2:], 'O' #return the received message and the sender
temp = temp.split(',"'); #store values in list
if((len(temp) < 3) or (len(temp[2]) < 8) or (len(temp[l]) < 7)): #make sure all the data has

been received
print "corrupt data"
return '', '' #return empty strings indicating that no message has been received
pass;
if debug:
print temp[0]
print temp[l];
print temp[2];

#store values into gpsXBee class
if (temp[0].find('C") >= 0):

if debug:
print 'C RECEIVED'
gpsXBee. XBee = 'C'; #if ¢ found, then data is from module c
if (temp[0].find('B') >= 0):
if debug:
print 'B RECEIVED'
gpsXBee. XBee = 'B';
if (temp[0].find('A") >= 0):
if debug:
print 'A RECEIVED'
gpsXBee. XBee = 'A';

#check if there is a start position for the Rescue craft yet
if (startPos. lon == 0):
#if it is 0, then check if there is already data logged,
#otherwise, update it with the current data

if (getStartPos() == 0): #if 0, then the start position should be updated with current
position
startPos. lat = temp[l]#store lat position
startPos. lon = temp[2].replace('\n', '').replace(' ', '') #store longitude position (get

rid of newline and any stray spaces)
gpsXBee. latitude = temp[1]
gpsXBee. longitude temp[2] .replace('\n', '').replace(' ','")
#find the respective location in meters
gpsXBee. xpos = calc.getxPos(gpsXBee. latitude, gpsXBee. longitude, startPos)
gpsXBee. ypos = calc.getyPos (gpsXBee. latitude, gpsXBee. longitude, startPos)

#plot dms gps(); #plot the datapoints to the gps graph
#gui.plotGps (False, True); #plot raw gps values (lst boolean is for multiple plots, second is
for meters)

if debug:
print gps (gpsXBee) ;
return '','' #return empty strings indicating that no message has been received

145

gpsThread(store, send, xser)
this function retrieves the gps coordinates in a background thread
it will store the values to the file if store == 1 it will send the
gps coordinates to the rescue module if send ==
the thread exits if the globa variable done ==
xser is the XBee serial object
def gpsThread(store, send,xser):

while done ==

#get mothership coordinates a few times and grab the average position

avgLat = 0
avgLon = 0
avgCount = 0

for i in range(0,5):
pos = gps.readGPS (gpsSerial)
if(pos != -1):
#split the return into lat and lon positions
pos = pos.split(',")
avglLat = avglat + float(pos([0])
avgLon = avglon + float(pos[1l])
avgCount = avgCount + 1
#get the positions
latGps = str(avglat/avgCount)
lonGps = str(avgLon/avgCount)
#if the start position is zero, update it with the current position
if (getStartPos () == 0):
startPos. lat = latGps;
startPos. lon = lonGps;
#calc the x and y pos in meters for storing
latMeters = str(calc.getxPos (latGps,lonGps, startPos))
lonMeters = str(calc.getyPos (latGps,lonGps, startPos))
#if desired, store the the coordinates to file
if (store):
gps.saveToFile (latGps, lonGps, latMeters, lonMeters); #store the gps coordinates to file
print 'Storing gps'
#send the gps coordinates to the rescue unit if desired
if (send) :
XBeeMy.sendToRescue (xser, "A, "+latGps+", "+1lonGps+",") ;
print "Sending gps"
print 'Terminating gps thread!'
return #end the thread

FHEF S HGLOBAL VARIABLES##### #################

lastTime = 0; #global variable for checking if time is same before printing to file to avaoid
repeats
done = 0; #variable to tell gps receive thread to stop

FhEFEF AR A MATNE R R

#have the user specify which serial port to use
#serialPort = raw input ('Enter the serial port the XBEE is connected to. Ex: ttyUSBO\n');
#serialPort = "/dev/" + serialPort;

try:
ser, xser = XBeeMy.initXBee ("ttyUSBO", 9600) #init the XBee

print 'GPS is starting up, please wait...';

time.sleep(l); #pause for 2 seconds

print 'Systems online';

gpsXBee = gps_data(); #instantiate the class for storing gps data

startPos = start pos(); #instantiate the startpos class to store the start positions of the
modules

gpsSerial = gps.initGPS ("ttyAMAO",4800) #initiate the GPS class

146

#create a file for messages (if it exists already, it will clear the contents)
1 = open('messages.log', 'wt+")
l.close #close the file again

Simulate the Victim Module here

T

XBeeMy.sendToRescue (xser, "N, OVERBOARD") ;
XBeeMy.sendToRescue (xser, "C,42.42504,-71.471025,") #simulated victim coordinates

while 1:
localtime = time.asctime(time.localtime (time.time())) #get current time
printMesToFile ("\n\nNew Test conducted on localtime!\n\n") #tell new test conducted
state = 1
print 'The mothership module is all set up and waiting for a distress signal!'’
while state == 1:

XBeeMy.sendToRescue (xser,"C,42.42504,-71.471025,") #simulated victim coordinates

#in this state, no one has fallen overboard, keep checking for an overboard condition
message , unit = read serial (gpsXBee); #read the XBee for gps coordinates or messages

if(unit == ''): #determine if gps data received
print to file(gpsXBee); #store the gps location to file
if (unit == 'N' and message == 'OVERBOARD') :

#if overboard condition

printMesToFile ('VICTIM OVERBOARD\n'); #store to file that the victim is overboard

print "VICTIM OVERBOARD!"

time.sleep(0.2) #allow packet to get sent

#start the rescue boat unit

XBeeMy.sendToRescue (xser, "M, BOOT") ;

#start the plotting GUI

process = subprocess.Popen([sys.executable, 'plotBG.py'], stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)

message , unit = read serial (gpsXBee); #read the XBee for gps coordinates or messages
if (unit == 'N' and message == 'INITDN'):

#victim unit initialized

printMesToFile ("Victim unit is online and Transmitting\n") #store to file

print "Victim unit GPS is online and Transmitting!"
#wait for the rescue unit to init

while (unit != 'O' and message != '"INIT'):
#waiting for the rescue craft to init
message , unit = read serial (gpsXBee); #read the XBee for gps coordinates or messages
if (unit == 'N' and message == 'INITDN'):
#victim unit initialized
printMesToFile ("Victim unit is online and Transmitting\n") #store to file

print "Victim unit GPS is online and Transmitting!"
#set state to 2
printMesToFile ("Rescue Craft initialized and heading off\n")
print "Rescue Craft initialized and heading off"
state = 2;
while state ==
#initialize things for state 2 here
#start thread to store the mothership gps data
done = 0; #make sure thread is continuing to run
tl=threading.Thread (group=None, target=gpsThread, name="Thread-1",args=(1,0,xser))
tl.daemon = True #allow program to terminate with ctrl”c
tl.start ()
print "Started thread in state 2"
while state ==

XBeeMy.sendToRescue (xser,"C,42.42504,-71.471025,") #simulated victim coordinates

#Here we are just collecting the gps coordinates and storing them to file for plotting
message , unit = read serial (gpsXBee); #read the XBee for gps coordinates or messages

147

if (unit == '"): #check if gps data received, or message
print to file(gpsXBee); #store the gps location to file
#check if the rescue craft is returning home or close to victim
if (unit == 'O' and message == 'CLOSEV'):
#1f rescue craft is close to victim (within 50m), notify the crew
printMesToFile ("The rescue craft is close to the victim (within 50m)\n")
print 'The rescue craft is close to the victim (within 50m) '
if (unit == 'N' and message == 'INITDN') :
#victim unit initialized
printMesToFile ('Victim unit is online and Transmitting\n')
print "Victim unit GPS is online and Transmitting!"
if (unit == 'N' and message == 'STATE2'):
#victim turned on TLD
printMesToFile ("Victim activated Terminal Locator Device\n")
print "Victim activated Terminal Locator Device"
if (unit == '0O' and message == 'RETURN') :
printMesToFile ("The rescue craft is returning to the mothership\n")
print "The rescue craft is returning to the mothership"
#if rescue craft is returning home, send the GPS coordinates to the rescue craft
#stop the thread for storing mothership GPS
done = 1;
#wait for thread to exit
print "Waiting for thread to exit"
tl.join()
#set to state 3
state = 3
while state ==
#initialize stuff here for state 3
#start a thread to retrieve GPS coorinates of mothership and send them to the rescue craft
done =0; #set done to 0 so thread continues
t2=threading.Thread (group=None, target=gpsThread, name="Thread-2",args=(1,1, xser))
t2.daemon = True #allow program to terminate with ctrl”c
t2.start ()
print "Started thread 2 in state 3"
while state ==
#Here the rescue craft is returning home, so send it the mothership GPS coordinates
#read the XBee for incoming data

message, unit = read serial (gpsXBee);

if (unit == ''): #check if gps data received, or message
print to file(gpsXBee); #store the gps location to file

if (unit == 'N' and message == 'ONRESCUE'):

#message from victim
printMesToFile ("The Victim is on the rescue craft!\n")
print "The Victim is on the rescue craft!"
if (unit == 'O' and message == 'HOME'):
printMesToFile ("The rescue unit is back home!\n")
print "The rescue unit is back home!"
#Check if the rescue module is back home and notify the crew
#set to state 1
#stop the gps thread
done = 1;
t2.join() #wait for the thread to exit
state =1
#stop the plot gui
try:
process.kill ()
except:
pass
except KeyboardInterrupt: #kill the process in the background if it is running when ctl”c called
try:
process.kill ()
except:
pass

Calc.py Module Code

#! /bin/python
#module calculations Filename: calculations.py
#Code written by Frederick Hunter for the Autonomous Man Overboard Rescue Equipment MQP

148

This module contains all the major methods for
calculating distances, angles, averages, etc..

wun

import math

RADIUS = 6372795
debug = 0

wun

calc_dist (module a, module b)
calculates the straight line distance to the coordinate
@param module a: the current module where the distance is calculated from
@param module b: the module the distance is supposed to be calculated to
Found the calculation on http://www.movable-type.co.uk/scripts/latlong.html
under Equirectangular approximation
def calc dist(module a, module b):
#check if there is even an up to date current position for both modules
if (module a. current lat pos == '' or module b. current lat pos == ''):
#print 'No up to date position for module'
return 0;
a = math.radians (module a. current lon pos - module b. current lon pos) *
math.cos ((math.radians (module a. current lat pos + module b. current lat pos))/2);
b = math.radians (module a. current lat pos - module b. current lat pos);
#print math.sqgrt (math.pow(a,2) + math.pow(b,2)) * 1369.42
return math.sgrt (math.pow(a,2) + math.pow(b,2)) * RADIUS

wun

calc _angle to target (module a, module b)
claculates the angle from the current module to the other module where 0Odeg is
@param module_a: the current module where the distance is calculated from
@param module b: the module the distance is supposed to be calculated to
def calc_angle_ to_target (module_ a, module b):
if (module a. current lat pos == '' or module b. current lat pos == '"):
#print 'No up to date position for module'
return 0;
a = module_a. current lon pos - module b. current lon pos;
b = module a. current lat pos - module b. current lat pos;
#print math.atan2 (b, a)
return math.atan2 (b, a);

wun

get_average (num, 1lst)
calculates the average of the last num values in the list
@param num: the number of values to in list to go back and calculate with
@param lst: a list of numbers to calculate average from
def get average (num, 1lst):
"""Determine if the list even has the amount of numbers to get average of"""
if(len(lst) > num + 1):
#take average of the last num values

avg = 0

for i in range(len(lst)-(num+l),len(lst)-1):
#print 'lst[i]: ' + str(lst[i])
avg (lst[i]-1st[i-1]) + avg

avg = avg / num

#print 'avg: ' +str(avg)

return avg;
#if list is basically empty, use the last value

149

elif (len(lst) < 3):
#check 1f list is empty
if (len(lst) == 0):
return 0;
return lst[len(lst)-1];
#otherwise if 1lst is not populated with enough numbers, use the max possible
else:

avg = 0
for i in range(0,len(lst)-1):
if(i == 0):
pass #skip the first value
else:
#print 'lst[i]: ' + str(lst[i]) + ' ' + str(lst[i-1]) + 'Sub: ' + str(lst[i] -1st[i-1])
avg = (lst[i]-1st[i-1]) + avg
avg = avg / 1
#print 'avg: ' +str(avg)

return avg

wun

getxPos (latitude, longitude, startPos)

@param latitude: The current gps latitude

@param longitude: the current gps longitude position

@param startPos: The class storing the start position of the modules
calculates the x position of the gpsData, if no new data passed, return O

wun

def getxPos (latitude, longitude, startPos):

#determine if the lat & lon is not zero

if debug:
print 'Acquiring the x pos in meters'
print 'lat:'

print latitude
print 'lon:'
print longitude

if (latitude == '0"'):
return 0
else:
try:
x = (math.radians(float (longitude) - float(startPos. lon)) *
math.cos (((math.radians (float (startPos. lat) + float (latitude)))/2))) * RADIUS;
if debug:
print 'x = ' + str(x)

return x
except Exception as e:
print 'ERROR calculating the x pos in getxPos'
print e
return 0O

wun

getyPos (latitude, longitude, startPos)
@param latitude: The current gps latitude
@param longitude: the current gps longitude positions
@param startPos: The class containing the start long and lat positions
calculates the y position in meters using the passed data
def getyPos (latitude, longitude, startPos):
#determine if the lat & lon is not zero

if debug:
print 'Acquiring the y pos in meters'
print 'lat:'+ latitude
print 'lon:' + longitude

print 'victim start pos: '+ str(startPos. lat)
try:
if(latitude == '0"):
return 0
else:

150

y = math.radians (float (latitude)
if debug:

print 'y = ' + str(y)
return y

except Exception as e:
print 'ERROR calculating the y pos in meters in getyPos'

print e

function to calculate the angle (in degrees)
x position of the last datapoint in the
x position of the previous datapoint in
y position of the last datapoint in the
y position of the previous datapoint in

@param xA:
@param xB:
@param yA:
@param yB:

The
The
The
The

def calcArrowAngle (xA, yA, xB, yB):
#determine the distances from the two points
#where xA is the most recent point and xB is the last point

X = XA -
y = YA -

xB;
yB;

#determine what quandrant we are in
if((x > 0 and y > 0) or (x < 0 and y > 0)):

#if in quadrants one or two,

- float(startPos. lat))

angleDeg = 180 - math.degrees (math.atan2 (y,x))
if debug:
print "Ql or Q2: " + str (angleDeq)

return angleDeg

else:

#otherwise if in quadrant 3 or 4

angleDeg = math.degrees (math.fabs (math.atan2(y,x)))+180
if debug:
print "Q3 or Q4: " + str(angleDeq)

return angleDeg

GPS.py Module Code

#! /bin/python
#module gps Filename: gps.py
#Code written by Frederick Hunter for the Autonomous Man Overboard Rescue Equipment MQP

import serial

debug =1

wun

the arrow

* RADIUS

should be pointing in

set
the
set
the

set

set

Attempt to initialize the serial port for the GPS on the RPI

@param port:

@param baud: the baud rate

wun

def initGPS (port, baud):

try:
gSer =

exit ()

the port where the GPS is connected to on the RPI

the same calculation can be used

(usually ttyAMAO)

serial.Serial ("/dev/"+port, baud,bytesize=8, stopbits=1)
return gSer

except Exception as e:
print "ERROR: in initGPS (Is the GPS connected to the RPI?)"
print e

attempts to read the GPS data from the GPS and returns the lat & lon pos ("42.254455,-71.278220")

@param gSer:

def readGPS (gSer):

try:

#read a line from the GPS
= gSer.readline();

inLine

#while the desired data is not found,

151

the serial port object initialized by the initGPS function

continue reading lines

while (inLine.find ("GPRMC")==-1):

inLine = gSer.readline();
#extract the data
pos = extractPos (inLine);
if (pos == -1):

if (debug) :

print 'No GPS Lock!'

return -1
print 'Received GPS' + pos
return pos; #return the pos if it was recived

except Exception as e:

print "ERROR reading the gps"
print e

wun

Extracts the gps position from the line read from the GPS
@param line: the line read in from the gps
ex (with a lock): line = $GPRMC,170006.000,A,4225.4455,N,07127.8220,W,1.61,153.14,170213,,*19
def extractPos(line):
#Check if there is even a lock and data

line = line.split(',")
#determine if the extracted line is the the correct line
if(line[2] == 'V' or line[3] == "'"):

#if there is no lock, return -1
return -1
else:
#if there is a lock, extract the data and send it for storage
lat = line[3]
lon = line[5]
#convert to decimal degrees
deglat = int(lat[0:2]); #get the degree
lat = lat[2:] #get the rest of the lat value
latf = float(lat) #convert to float for math
lat = deglat+(latf/60) #convert to decimal degrees
lat str(lat) #convert to string for return and trim the answer
lat = 1lat[0:8]
#convert lon to decimal degrees
deglon = int (lon[0:31])
lon = lon[3:] #get the rest of the longitude

lonf = float(lon) #convert to float for calculation
lon = deglon+ (lonf/60) #convert to decimal degrees
lon = str(lon) #convert to string for returning

lon = '-'+lon[0:8] #trim the value and make negative

return lat+', '+lon;
T

#move the decimal point to the correct location

lat = lat.replace('.','")
lat = lat[0:2]+"'."+1lat[2:]
lon = lon.replace('.','")
lon = '"-'"+lon[1:3]+'."+1lon[3:]

#return the lat and lon positions

return lat+', '+lon;
T

wnn

Stores the longitude and latitude position into the log file
@param latitude: the string of the lat position from the GPS
@param longitude: the string of the lon position from the GPS
@param xMeters: the x position in meters calculated by getxPos in the calc module
@param yMeters: the y position in meters calculated by getYPos in the calc module
def saveToFile(latitude, longitude, xMeters, yMeters):
#store the longitude and lat position into the log file
#try to open the log file for storage
try:
log = open('coordinates.log', 'a')
#print to file

152

log.write('A, '+str(latitude)+', "+str(longitude)+"',E, "+str (xMeters)+"', '+str (yMeters)+'\n");
print "Stored gps pos:"
log.close() #close the log file

except Exception as e:
print "Could not open the coordinates.log file in gps.py. Is it in the current directory?"
print e
exit () #kill the program due to a heavy error

XBeeMy.py Module Code

#! /bin/python
#module XBee Filename: XBee.py
#Code written by Frederick Hunter for the Autonomous Man Overboard Rescue Equipment MQP

import time
import serial;
from XBee import ZigBee

wuon

initXBee (port)

This function initializes the XBEE connected

to the passed serial port

It returns the serial object used for printing and
reading with the XBee

wun

def initXBee (port, baud):

serialPort = '/dev/' + port
try:
ser = serial.Serial (serialPort,baud,bytesize=8, stopbits=1)
XBee = ZigBee (ser, escaped = True) #escped = AP mode = 2 on XBee

return ser, XBee
except Exception as e:

print e

exit ()

wnn

sendToRescue (port, sendString)
this function sends the command passed to this function
to the RESCUE XBEE module

wnn

def sendToRescue (xser, sendString):

#send the message
#TODO: the address here is for the mothership, need to change to

#rescue address : 405c2ca0

#dest = "\x00\x13\xa2\x00\x40\x6c\xb5\x4d"; #mothership address
#dest = "\x00\x13\xa2\x00\x40\x5c\x2c\xa0" #rescue address

dest = "\x00\x13\xa2\x00\x40\x99\x23\x3c"#victim address

xser.send ("tx",dest addr="\xff\xff",dest addr long=dest,
data=sendString)

wnn

sendToVictim(xser, sendString)
This function sends the string passed to this function
to the XBEE module called VICTIM

def sendToVictim(xser, sendString):
T
ser.write('+++'); #enter the command mode
time.sleep(l); #wait a sec for the cbee to register
ser.write ("ATDN VICTIM\r'); #set XBee to send to the VICTIM
time.sleep(0.5); #wait for XBee to set
ser.write(str(sendString)) #send the message
time.sleep(l) #wait a sec for XBee to exit the command mode

153

dest = "\x00\x13\xa2\x00\x40\x9f\x3a\x9d"
xser.send ("tx",dest addr="\xff\xff",dest addr long=dest,data=sendString)

wun

receive (ser)

this function returns the line on the serial buffer associated
with the ser.

ser is the return from the initXBee function

wun

def receive (xser):

try:
response = xXser.wait read frame ()
return response['rf data'] #return the XBee response
except Exception as e:
print e
return '-1"'
PlotBG.py Script Code

#! /bin/python

mon

module to remotely control the boat written by frederick Hunter,
uses the event handler

NOTE: This must be run as root!
mown

from evdev import InputDevice
from select import select
import serial

from XBee import ZigBee
import time

#module we are using, can be either laptop or rpi
module = 'laptop'

#keyboard values from the laptop

LapKey = {'Q': 16, 'RIGHT': 205, 'SPACE': 57, 'UP': 200, 'DOWN': 208, 'R': 19, 'LEFT':
203, "RSHIFT':54}

#keyboard values from the USB Keyboard on RPI

rpiKey = {'Q': 458772, 'RIGHT': 458831, 'SPACE': 458796, 'UP': 458834, 'DOWN': 458833,
458773, 'LEFT': 458832, 'RSHIFT':458981}

#set the dictionary to use

if (module == 'laptop'):

dic = LapKey;

dev = InputDevice ('/dev/input/event3') #device registered as keyboard
else:

dic = rpiKey;

dev = InputDevice ('/dev/input/event0') #device registered as keyboard
serialPort = "/dev/ttyUSBO" #serial port for XBee

baud = 9600

ser = serial.Serial (serialPort,baud,bytesize=8, stopbits=1)
XBee = ZigBee (ser, escaped = True) #escped = AP mode = 2 on XBee

def sendToRescue (xser, sendString):

#send the message
#TODO: the address here is for the mothership, need to change to
#rescue address : 405c2cal

#dest = "\x00\x13\xa2\x00\x40\x6c\xb5\x4d"; #pro2sB revB
#dest = "\x00\x13\xa2\x00\x40\x99\x23\x3c" #pro2sB rev A
dest = "\x00\x13\xa2\x00\x40\x5c\x2c\xa0" #pro2sB

154

xser.send ("tx",dest addr="\xff\xff",dest addr long=dest, data=sendString)

#send to rescue to boot it
sendToRescue (XBee, 'M,BOOT')
key = 0
while key != dic['Q']:
r,y,x=select ([dev], [],[])
for event in dev.read():
if (event.type == 4): #make sure it is a keyboard input
key = event.value
#print (event.value)
if key == dic['UP']:
#caught the up key
print "GO" #go forwards
sendToRescue (XBee, 'M,FF'")
elif key == dic['DOWN']:
#caught the down key
print "REVERSE" #Stop the boat
sendToRescue (XBee, 'M,BB')
elif key == dic['RIGHT']:
#caught the right key
print "RIGHT" #turn right
sendToRescue (XBee, 'M,LO'")
elif key == dic['LEFT']:
#caught the left key
print "LEFT" #turn left
sendToRescue (XBee, 'M,RO'")
elif key == dic['RSHIFT']:
#caught the right shift key
print "STOP"
sendToRescue (XBee, 'M,SS')

elif key == dic['SPACE']: #space is used to kill the boat
print "Killing the motors and enetering remote control mode" #message to user
sendToRescue (XBee, 'M,STOP') #stop the motors and enter control mode on the rescue craft

elif key == dic['R']:
#caught the r key
print 'STOP' #stop the motors and enter control mode on the rescue craft
sendToRescue (XBee, 'M,STOP')
time.sleep (0.5)
print "Restarting in State 0" #message to user
#restart the rescue boat in state 0
sendToRescue (XBee, 'M,RESTART')
exit () #end the program on 'gq' press

PlotBG.py

#!/usr/bin/python
#module for handling the plotting in the background process, written by Frederick Hunter for
AMORE MQP

import gui

import gps

import pygtgraph as pg

import time

from pygtgraph.Qt import QtGui, QtCore
import csv

import calc #import for my calc module
import Image

import numpy

import calc #import for getx and gety
import serial

gpsSerial = gps.initGPS("ttyAMAQO",4800) #initiate the GPS class

HEADER LINES = 11

start_pos

155

Class for storing the start GPS positions of the different modules
mwwn
class start pos:
def init (self):
self. lat =0
self. lon =0

#create a gt application

app = QtGui.QApplication([])
#create the main window

mw = QtGui.QMainWindow ()

#resize i1f needed

mw.resize (400,400)

#create central widget

cw = QtGui.QWidget ()

#set the central widget onthe main window
mw.setCentralWidget (cw)

#create andset the widget layout
1 = QtGui.QVBoxLayout ()
cw.setLayout (1)

#create a plot widget window

pWidget = pg.PlotWidget (name="GPS Plot V:0.5")
#add a legend

pWidget.addLegend (size=None, offset=(0,0))

#add the plot widget to the layout

1.addWidget (pWidget)

#show the main window

mw.show ()

#create the arrows for later

#create variable to store info if the messages have been printed
global mState

mState = [0,0,0,0,0,0,0,0];

#the text object to write the messages to the plot

global text

text = pg.TextItem(text="Plot V:0.5!",color="w',html=None)
text.setPos (0.5,0.5) #set the position

pWidget.addItem(text) #add the text to the plot

#axis labels
pWidget.setLabel ('left',"Y Axis",units='m")
pWidget.setLabel ('bottom', "X Axis",units='m')

#image plotting

#store the lat and lon location of the top right and bottom left of the image
#also store the center

T

latTopRight = 42.437779
lonTopRight = -71.428312
latCenter = 42.355869
lonCenter = -71.632958
latBottomLeft = 42.277087
lonBottomLeft = -71.856934
T

latTopRight = 42.427485
lonTopRight = -71.466914
latCenter = 42.426418
lonCenter = -71.469027
latBottomLeft = 42.425686
lonBottomLeft = -71.470748

#instantiate the start pos class

startPos = start pos()
startPos. lat = 42.42462
startPos. lon = -71.463632

#grab the image file

156

imageFile = "42.426418,-71.469027.png"

src = Image.open (imageFile)

#convert to color

src = src.convert (mode="RGB")

#convert image to array
srcArray=numpy.asarray (src)

#rotate the array to be oriented correctly
rotArray=numpy.rot90 (srcArray, 3)

#set the image object
IIR = pg.Imageltem(image=rotArray,autolevels=False)

#determine the location in meters (Bottom left and top right) from center
metersBLx = calc.getxPos (latBottomLeft,lonBottomLeft,startPos)

metersBLy = calc.getyPos (latBottomLeft, lonBottomLeft, startPos)

metersTRx = calc.getxPos (latTopRight, lonTopRight,startPos)

metersTRy = calc.getyPos (latTopRight, lonTopRight, startPos)

#set the size of the image (scale it)

IIR.setRect (QtCore.QRectF (metersBLx, metersBLy, metersTRx+abs (metersBLx) ,metersTRy+abs (metersBLy)))
#scale the image

pWidget.addItem(IIR) #add the image to the plot

#create an empty plot object for now

pl=pWidget.plot (name="Rescue Unit") #rescue plot
p2=pWidget.plot (name="Victim Unit") #victim plot
p3=pWidget.plot (name="Mothership Unit") #mothership plot
T

getMesFromFile (messageState)

returns the new message on the logfile and the updated message state list
messageState = a list of states for the messages

ex-> [0 (victim overboard?),

0(victim online and transmitting)),

0 (Rescue craft intitalized and heading off?),

0 (Rescue craft close to victim?),

0 (Victim activated terminal locator device?),

0 (Rescue Craft returning to mothership?),

0(Victim on the rescuecraft?),

0 (Rescue unit home?)]

def getMesFromFile (messageState) :

newMessageState messageState; #store for returning
#open the log file
try:

mlog =open ('messages.log','r').read()

if (messageState[0] == 0):
#if the victim overboard condition was not yet read
#check if it has been received
if ('VICTIM OVERBOARD' in mlog) :
newMessageState[0] = 1 #set to read
return "Victim Overboard", newMessageState
if (messageState[l] == 0):
#if the victim online and transmitting condition not met
#check if it has now been met
if('Victim unit is online and Transmitting' in mlog):
newMessageState[l] =1
return 'Victim Online',newMessageState
if (messageState[2] == 0):
#if the rescue craft has been init and heading off has not been met
#check if it has now been met
if ('Rescue Craft initialized and heading off' in mlog):
newMessageState[2] =1
return 'Rescue Searching', newMessageState
if (messageState[3] == 0):
#if the rescue craft is close to the victim has been met
#check if it is now close
if ('The rescue craft is close to the victim (within 50m)' in mlog):

157

newMessageState[3] =1
return "Rescue Close", newMessageState
if (messageState[4] == 0):
#if the victim activated the TLD yet
#check if it is now activated

if('Victim activated Terminal Locator Device' in mlog):

newMessageState[4] = 1
return "TLD Activated", newMessageState
if (messageState[5] == 0):

#check if the rescue craft has been returning to the mothership

#check if needs to be updated

if ('The rescue craft is returning to the mothership' in mlog):

newMessageState[5] =1

return 'The rescue craft is returning to the mothership',newMessageState

if (messageState[6] == 0):
#if the victim has not been on the rescue craft
#check if it now is

if('The Victim is on the rescue craft!' in mlog):

newMessageState[6] = 1
return 'Victim on Craft',6 newMessageState
if (messageState[7] == 0):
#check if the rescue unit has been home yet
#if not, check again
if ('The rescue unit is back home!' in mlog):
newMessageState[7] =1
return 'Home', newMessageState
except Exception as e:

print 'Error opening the messages +.log file in gui.py!'

print e
return None,messageState #return nothing

updates the plot data

T

def updateDatal() :
#instantiate variables for the modules to be graphed
mothershipX = []
mothershipY = []
rescueX = [
rescueY
victimX = [
victimy = [
try:

log = open('coordinates.log', 'rt');

except Exception as e:

print 'Could not open coordinates.log as read only.

print e
exit(); #kill the program
#skip the header
try:
for i in range (0, HEADER LINES) :
log.next ();
except Exception as e:

Is it in the current directory?'

print 'Error skipping the header file 0:' + HEADER LINES + 'in plot gps'

print e
exit(); #kill the program

#try:
reader = csv.reader (log) #open with csv reader

for row in reader:#go through each row and add to array
#check which XBee the data is from & add to corresponding graph

if(row[0].find ('A') >= 0):
mothershipX.append (float (row[4]))
mothershipY.append (float (row[5]))

elif (row[0].find('C") >= 0):
victimX.append (float (row([4]))
victimY.append(float (row[5]))

158

else:

rescueX.append (float (row[4]))
rescueY.append (float (row[5]))

log.close(); #close the file

#clear the plot

#pWidget.clear ()

#update the plot datapoints

pl.setData (x=rescueX ,y=rescueY, pen='r');

p2.setData (x=victimX ,y=victimY, pen='b');

p3.setData (x=mothershipX ,y=mothershipY, pen='g');

#clear the legend to prevent duplicates from showing up

pWidget.plotItem.legend.items=[]

#add the plots to the widget

pWidget.addItem (pl)

pWidget.addItem (p2)

pWidget.addItem (p3)

#update the arrow positions and check if there is even data in the lists

if (len(rescueX)>0) :

global al
#first we try to see if the variable has even been set
try:
pWidget.removeItem(al) #get rid of old arrow
except:

pass #do nothing if this arrow has not yet been created to be removed
al=pg.Arrowltem(angle=calc.calcArrowAngle (rescueX[len (rescueX)-1],rescueY[len(rescueY)-11],
rescueX[len (rescueX)-2], rescueY[len(rescueY)-2]),brush='r', pen='r') #rescue arrow
#update the arrow location
al.setPos (rescueX[len (rescueX)-1],rescueY[len(rescueY)-1])
#add the arrow
pWidget.addItem(al)
#add some padding to show all the drawn objects
#pWidget.autoRange (padding=0.1, item=pl)
if(len(victimX)>0) :

global az
#first we try to see if the variable has even been set
try:
pWidget.removeltem(a2) #get rid of old arrow
except:

pass #do nothing if this arrow has not yet been created to be removed
a2=pg.Arrowltem(angle=calc.calcArrowAngle (victimX[len (victimX)-1], victimY[len(victimY)-17,
victimX[len (victimX)-2], victimY[len(victimY)-2]),brush='b', pen='b') #victim arrow
#update the arrow position
a2.setPos (victimX[len (victimX)-1],victimY[len(victimY)-1])
#add the arrow
pWidget.addItem(a2)
#add some padding to show all the drawn objects
#pWidget.autoRange (padding=0.1, item=p2)
if (len (mothershipX)>0) :

global a3
#first we try to see if the variable has even been set
try:
pWidget.removeItem(a3) #get rid of old arrow
except:

pass #do nothing if this arrow has not yet been created to be removed
a3=pg.Arrowltem(angle=calc.calcArrowAngle (mothershipX[len (mothershipX)-117,
mothershipY[len (mothershipY)-1], mothershipX[len (mothershipX)-2], mothershipY[len (mothershipY) -
21) ,brush="g', pen='g') #mothership arrow
#update the arrow position
a3.setPos (mothershipX[len (mothershipX)-1],mothershipY[len (mothershipY)-11])
#add the arrow
pWidget.addItem(a3)
global text
pWidget.addItem(text) #add the text again because it was cleared
#determine if there is a new message received and if so, delete the last text and add the new
one
#only check if we have coordinates for the rescue craft
if (len(mothershipX) > 0 or len(victimX) > 0 or len(rescueX) > 0):
global mState
#print mState

159

newMes, mState = getMesFromFile (mState)
#print newMes
if (newMes != None) :
#if there is a new message
#remove the old one
pWidget.removeltem (text)
#create the new one
text = pg.TextItem(text=newMes,color="w',html=None)
#try to place the text in the last rescue coordinate
if (len(rescueX) > 0):
text.setPos (rescueX[len (rescueX)-1],rescueY[len(rescueY)-1]) #set the position of it
#otherwise try to write to the last position of the mothership
elif (len (mothershipX) > 0):
text.setPos (mothershipX[len (mothershipX)-1],mothershipY[len (mothershipY)-1]) #set the
position of it
elif (len(victimX)>0) :
#otherwise try the victim
text.setPos (victimX[len (victimX)-1],victimY[len(victimY)-1]) #set the position of it
else:
text.setPos (0.5,0.5) #if none there, place in 0.5,0.5
pWidget.addItem (text) #add the item

#pWidget.autoRange (padding=0.5, item=a3)
#add some padding to show all the drawn objects
pWidget.setAspectLocked (lock=True, ratio=1)
#pWidget.autoRange (padding=0.05)
#set the view range (Zoomed in on map)
xVuRng= mothershipX[len (mothershipX)-1]
yVuRng = mothershipY[len(mothershipY)-1]
#zoomed in to 100x100 meters
pWidget.setRange (xRange=[xVuRng-50, xVuRng+50], yRange=[yVuRng-50, yVuRng+5017)

Start a timer to rapidly update the plot in pw
#while 1: #NOTE:Not sure if this will mess up the file
t = QtCore.QTimer ()

t.timeout.connect (updateData)

t.start (500)

#updateData ()

Start Qt event loop unless running in interactive mode or using pyside.
if name == "'_ main_ ':
import sys
if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT VERSION') :
QtGui.QApplication.instance () .exec_ ()

Appendix N - Coordinates.log

#log file to store GPS data for reading

#data stored as: (Separated by comma)

#XBee......... #XBee identifier ex A=Mother, B=Rescue, C=victim.. etc
#latitude..... #latitude value (degrees)

#longitude....#longitude value

#Validity bit (E is wvalid)

H#XPOS. e v e e #x-axis position in meters from the start position
#YPOS. e e it #y-axis position in meters from the start pos

FHEHHHH AR AR R
A,42.4250335,-71.4719553,E,0.0,0.0
A,42.4250291,-71.4719626,E,-0.599350793168,-0.489395522737
A,42.4250221,-71.4719593,E,-0.32841141134,-1.26797931027
A,42.4250172,-71.4719485,E,0.558299423196,-1.81298796131
A,42.4250033,-71.4719425,E,1.05091667713,-3.35903290994

160

A, 42.
c,42.
c,42.
A, 42.
c,42.
B, 42.
B, 42.
B, 42.
c,42.
A, 42.
B, 42.
B, 42.
A, 42.
c,42.
B, 42.
B, 42.
A, 42.
c,42.
B, 42.
a,42.
A, 42.
c,42.
B, 42.
B, 42.
n,42.
B,42.
A, 42.
B, 42.
c,42.
B,42.
A, 42.
B, 42.
n,42.
C,42.
B, 42.
n,42.
B, 42.
B,42.
A, 42.
B, 42.
c,42.
A, 42.
B,42.
n,42.
C,42.
B,42.
A, 42.
B, 42.
n,42.
B, 42.
C,42.
B,42.
B, 42.
n,42.
B,42.
A, 42.
B, 42.
c,42.
B,42.
B,42.
n,42.
n,42.
B,42.
c,42.
n,42.
B, 42.
c,42.
A, 42.
B, 42.

4249880, -71
4250370,-71
4249915,-71

4259349,-71
4259319,-71

4249924,-71.
.4695010,E,201.503574892, 99
.4695111,E,200.674345914, 99
4719097,E,3.74389104287,-4.
4719439,E,0.935972343723, 1.
.4695265,E,199.409988433, 98.
.4695366,E,198.580763446, 97
4249865,-71.
4250518,-71.
.4695426,E,198.088152978, 97
.4719204,E,2.86539048553, -5.
.4719150,E,3.30874613946,-6.
.4719358,E,1.60100524295,2.14666672797
.4695500,E,197.480603091,96.8447004938
.4695607,E,196.602114232,96.4554086004
.4719016,E,4.4089248794,-6.55122643734
.4695688,E,195.937091877,96.0216262044
.4719003,E,4.5156588948,-7.37430072673
.4695983,E,193.515086956,95.1318161626
.4719251,E,2.47950557436,2.03544047215
.4696237,E,191.429691042,94.9760994049
.4719003,E,4.51565912529,-8.08614876031
.4696452,E,189.664514423,93.3188282005
.4718942,E,5.01648689433,-8.41982752617
.4719271,E,2.315299734,3.08096727238
.4696673,E,187.850072255,91.9396226352
.4718895,E,5.40237022503,-7.70797949259
.4696888,E,186.084882211,91.2277746008
.4697089,E,184.43463596,90.4603134397
.4718909,E,5.28742598775,-7.2074613434
.4697330,E,182.45598113,89.6261165247
.4719284,E,2.20856592673,3.91516418664
.4718909,E,5.28742573895,-6.55122643734
.4697585,E,180.362374037,89.470399767
.4718848,E,5.78825326359,-6.38438705401
.4719177,E,3.08706625006,3.35903291073
.4697820,E,178.432981641,88.524976597
.4718835,E,5.89498742964,-7.37430072673
.4697961,E,177.275358378,86.990054274
.4718835,E,5.89498775405,-8.14176188782
.4698169,E,175.567638244,86.3226967423
.4719070,E,3.96556656556,3.08096727238
.4698423,E,173.482251881, 85
.4698752,E,170.781106299, 83
.4718875,E,5.56657649161,-8.
.4699134,E,167.644812293,82.
.4718775,E,6.38760516597,-8.
.4699483,E,164.779453538,81.
.4718962,E,4.85227694697,3.52587229326
.4699892,E,161.421491515,78.
.4700408,E,157.185017926,78.
.4718775,E,6.38760455973,-6.
.4718875,E,5.56657525739,-5.
.4700683,E,154.927221836,76.
.4719009,E,4.4663933184,4.627012221
.4718989,E,4.63060218985,-5.11640774374
.4701032,E,152.06186203,75.0443544546
.4719097,E,3.74388844211,4.90507785935
.4719009,E,4.46639617527,-4.29333345435
.4701474,E,148.432954014,73.3314701226

4259289,-71
4259265,-71

4249905,-71.
4250464,-71.

4259156,-71
4259106,-71

4259086,-71
4249821,-71
4249781,-71
4250528, -71
4259042,-71
4259007, -71
4249746,-71
4258968, -71
4249672,-71
4258888, -71
4250518, -71
4258874,-71
4249608, -71
4258725,-71
4249578, -71
4250612, -71
4258601, -71
4249642,-71
4258537,-71
4258468,-71
4249687,-71
4258393,-71
4250687,-71
4249746,-71
4258379,-71
4249761,-71
4250637,-71
4258294, -71
4249672,-71
4258156, -71
4249603,-71
4258096, -71
4250612, -71
4258002, -71
4257844,-71
4249533,-71
4257725,-71
4249593, -71
4257621,-71
4250652, -71
4257428,-71
4257354, -71
4249712,-71
4249811,-71
4257196,-71
4250751, -71
4249875,-71
4257082,-71
4250776,-71
4249949,-71
4256928,-71

.4719418,E,1.10838881822,-5.06079461623
4250306,-71.
.4719479,E,0.607561040413,0.389291894164
.4719298,E,2.09362326408,-4.67150272285

4250375,-71.
4259339,-71.
.4694843,E,202.874672912,100.259346532
.4694930,E,202.160388128,99.9256677661
4250454,-71.

4719499,E,0.443355376886,-0.322556140201

4719378,E,1.43679975164,0.444905021676
4694749,E,203.646435737,100.148120276

4719351,E,1.65847732397,1.32359243858

4719177,E,3.08706800554, -4

4719137,E,3.41547965655, -5

4719439,E,0.935972303413, 2.
.3340960173

.5713990927
.5919890003
.3250459876

78272897788
4348186936
1126798048

.5565485281
.22763399876

03544047215

71702952229

16193454397

.277169942
.5197951082

92034567535
1962026704
25298814363
0394496152

892782888
0697085986
92939570505
82825577811
3123337648

161

A, 42.
B, 42.
B, 42.
c,42.
B, 42.
B, 42.
a,42.
c,42.
B,42.
A, 42.
c,42.
B, 42.
A, 42.
B, 42.
B, 42.
a,42.
B, 42.
B, 42.
c,42.
B, 42.
A, 42.
B, 42.
B,42.
n,42.
B,42.
A, 42.
B, 42.
n,42.
B,42.
B,42.
C,42.
B,42.
B,42.
A, 42.
B, 42.
B,42.
n,42.
B,42.
B,42.
c,42.
n,42.
C,42.
B,42.
n,42.
n,42.
B,42.
B,42.
c,42.
B, 42.
n,42.
B,42.
C,42.
B, 42.
B, 42.
A, 42.
B,42.
B, 42.
n,42.
B,42.
B,42.
n,42.
B, 42.
B,42.
A, 42.
B, 42.
n,42.
A, 42.
A, 42.
n,42.

4250038,-71

4256666,-71
4250845, -71

4250122,-71
4250736,-71

4250771,-71
4256072,-71

4255790,-71
4250395,-71

4250830, -71
4255047,-71
4250513, -71
4254760, -71
4254607,-71
4250538, -71
4253944,-71
4250583, -71
4253756,-71
4250523, -71
4253503, -71
4253206,-71
4250890, -71
4252954, -71
4252721,-71
4250568, -71
4252236,-71
4251795,-71
4250622,-71
4251122,-71
4251048, -71
4250707, -71
4250617,-71
4250588, -71
4250924, -71
4250608, -71
4250578, -71
4250815, -71
4250751, -71
4250573,-71
4250677,-71
4250533, -71
4250622, -71
4250687,-71
4250276,-71
4250048, -71
4250464,-71
4250147,-71
4250419,-71
4250414,-71
4250726,-71
4250840, -71
4250345,-71
4250890, -71
4250909, -71
4250291, -71
4250810,-71
4250197,-71
4250103,-71
4250028, -71
4249994, -71

.4719097,E,3.74389064574,-3.30341978243
4256814, -71.
.4702145,E,142.92391191,70.4173422336
.4719184,E,3.02959376933,5.67253902044
4256488, -71.
4256468, -71.
.4719117,E,3.57968467512,-2.36911923801
.4719184,E,3.0295940327,4.46017283768
4256235, -71.
4250207, -71.
.4718969,E,4.79480451444,4.84946473184
.4703848,E,128.941928994,63.8105026687
4250281, -71.
4255924, -71.
.4704854,E,120.682447664,60.6739222688
.4719083,E,3.85883355824,0.667357531723
4255533, -71.
4255221, -71.
.4718949,E,4.9590099159,5.5056996379
.4706980,E,103.227519807,52.4098114995
.4719056,E,4.08051084634,1.97982734464
.4707462,E,99.2702002455,49.2176179729
.4708173,E,93.4327199278,47.5158562666
.4719130,E,3.47294980598,2.25789298299
.4709568,E,81.9794553419,40.1415555399
.4719184,E,3.02959440239,2.75841113218
.4710306,E,75.9202941616,38.0505019402
.4719190,E,2.980332848,2.09105359966
.4711238,E,68.2683436074,35.2364776805
.4712176,E,60.5671304972,31.9330578981
.4719009,E,4.46639282326,6.17305716963
.4713001,E,53.7936720593,29.1301562649
.4713578,E,49.0563568798,26.538584516
.4718976,E,4.73733330942,2.59157174885
.4714570,E,40.9117859231,21.1441111339
.4715670,E,31.8804978161,16.2390332746
.4718983,E,4.67986112656,3.1921935274
.4717434,E,17.3975820587,8.75350629282
.4717843,E,14.0395786108,7.
.4719063,E,4.02303824004,4.13761669748
.4719231,E,2.64371103356,3.13658039989
.4719050,E,4.12977229908,2.81402425969
.4718265,E,10.5748415427,6.55122643734
.4719345,E,1.7077388163,3.03647676974
.4719445,E,0.886710560248,2.70279800388
.4718332,E,10.0247536072,5.33886025458
.4718513,E,8.53869310768,4.627012221
.4719144,E,3.35800574686,2.64718487636
.4718674,E,7.21683815868,3.80393793161
.4719519,E,0.27914963181,2.20227985548
.4718815,E,6.05918861748,3.1921935274
.4719170,E,3.14453810282, 3.
.4718983,E,4.67986241798,-0.656234906063
.4719278,E,2.25782877032,-3.19219352661
.4719606,E,-0.

4701776,E,145.953474386,72.0634908123

4702655,E,138.736707624,68.4375148889
4702963,E,136.207954562,68.2150623789

4703399,E,132.628312652,65.62349063
4719123,E,3.53042272066,-1.42369606794

4719130,E,3.47295051783,-0.600621778551
4704277,E,125.41974784,62.1643540899

4705551,E,114.959927788,57.8154075073
4706142,E,110.10769713,54.3451483423

93043200343

91516418664

435145036625,1.4348186936

.4719680,E,-1.
.4719928,E,-3.
.4719687,E,-1.
.4719955,E, -3
.4719640,E,-0.
.4719774,E,-1.

04270629511,-2.09105359966
07885650211,0.934300544413
10017806144,0.878687416901
.30053336303,4.34894658265

714294468428,5.61692589293
81447287241,0.111226255814

.4719412,E,1.15764961033,6.17305716963
.4719164,E,3.19379923143,6.38438705481
.4719881,E,-2.69297342941,-0.489395522737
.4719036,E,4.24471550831,5.28324712707

.4720002,E,-3
.4720129,E, -4
.4720297,E,-6
.4720478,E,-7

.68641817149,-1.53492232296
.72912477956,-2.58044912319
.10845320565,-3.41464603745
.59451528085,-3.79281530595

162

A, 42.
A, 42.
a,42.
A, 42.
A, 42.
A, 42.
a,42.
a,42.
A, 42.
A, 42.
a,42.
a,42.
A, 42.
A, 42.
a,42.
a,42.
A, 42.
A, 42.
a,42.
a,42.
A, 42.
A, 42.
n,42.
n,42.
n,42.
A, 42.
A, 42.
n,42.
n,42.
A, 42.
A, 42.
n,42.
n,42.
A, 42.
A, 42.
n,42.
n,42.
A, 42.
A, 42.
n,42.
n,42.
A, 42.
A, 42.
n,42.
n,42.
A, 42.
A, 42.
n,42.
n,42.
n,42.
A, 42.
A, 42.
n,42.
n,42.
A, 42.
A, 42.
n,42.
n,42.
A, 42.
A, 42.
n,42.
n,42.
A, 42.
A, 42.
n,42.
n,42.
A, 42.
A, 42.
n,42.

4249944,-71

4249885,-71.

4249860,-71
4249830,-71

4249821,-71.
4249791,-71.

4249761,-71
4249726,-71

4249608,-71
4249568,-71

4249538, -71.
4249474,-71.
.4722295,E,-22
.4722389,E,-23
4249360,-71.
4249330,-71.

4249429,-71
4249395,-71

4249261,-71
4249227,-71
4249202,-71
4249157,-71
4249123,-71
4249108, -71
4249078, -71
4249034,-71
4248974,-71
4248949,-71
4248885, -71
4248870,-71
4248816,-71
4248751, -71
4248712,-71
4248657,-71
4248623,-71
4248578, -71
4248529, -71
4248504,-71
4248464,-71
4248415,-71
4248355, -71
4248291,-71
4248256,-71
4248187,-71
4248093,-71
4248044,-71
4247969,-71
4247925,-71
4247870,-71
4247831,-71
4247747,-71
4247697,-71
4247633,-71
4247568, -71
4247519,-71
4247479,-71
4247425,-71
4247370,-71
4247336,-71
4247296,-71
4247232,-71
4247167,-71
4247118,-71
4247073,-71
4247024,-71
4246994,-71
4246935,-71
4246890, -71
4246841,-71

4721544,E,-16
4721651,E,-17

4722154,E,-21

4722463,E,-23

4722604,E,-25.
.4722764,E,-26
.4722845,E,-27.
.4722919,E,-27.
.4723033,E,-28.
.4723127,E,-29.
.4723281,E,-30.
.4723395,E,-31
.4723516,E,-32.
.4723650,E,-33.
.4723764,E,-34
.4723931,E,-35.
.4724039,E,-36.
.4724199,E,-38.
.4724340,E,-39.
.4724468,E,-40.
.4724629,E,-41.
.4724763,E,-42.
.4724897,E,-43.
.4725024,E,-44.
.4725178,E,-46.
.4725286,E,-47.
.4725440,E,-48.
.4725588,E,-49
.4725715,E,-50.
.4725795,E,-51
.4725923,E,-52
.4726043,E,-53
.4726204,E,-54.
.4726332,E,-55.
.4726459,E,-56.
.4726593,E,-57.
.4726721,E,-58.
.4726929,E,-60.
.4727063,E,-61.
.4727217,E,-62.
.4727338,E,-63.
.4727525,E,-65.
.4727639,E,-66
.4727794,E,-67.
.4727921,E,-68.
.4728089,E,-70.
.4728196,E,-70.
.4728343,E,-72.
.4728538,E,-73.
.4728679,E,-74.
.4728813,E,-76.
.4728947,E,-77.
.4729148,E,-78.
.4729276,E,-79.
.4729430,E,-81.
.4729537,E,-81.

.5896823377,-6
.5256556396,-6.
.3466850017, -7
.2251863159, -7
.2761040224,-8.
.2120776169, -8

4024342677,-5.

.3958792835,-5.

49605813,-5.61
0461475094, -5.
9246486508, -6.

4764627029,-8.

0282806483,-12

6358427936,-12.
5718171036,-13.
3435853737,-13.
6079707835,-13.
.5439448942,-13.
5373914628,-14.
6375723448,-15.
.5735464902,-15.
9446673619,-16.

8313795601, -16

1450282672,-16.
3026818299,-17.
3536008356, -18.
6754601882,-18.
7756409513,-19.

8758221589,-19

9185315142,-20.

1829180789, -20

0696316075,-20.
3340192046, -21.
.5491455512,-22.
5918559189, -22.
.2486811843,-23.
.299602229,-23.
.2848420583,-24

6067023695, -25
6576240429,-26
700334139,-26.
8005169199, -27
8514372393,-27
559183895, -28.
6593667554,-29

9237564489,-30.
9172063353,-30.

4525354935, -31

.3885121535,-31.
6611120718,-32.
7038236455,-32.

0831566131,-33
961661425,-33.
1685798647,-34
7695931393, -35

9272491152,-35.

0274327973,-36

1276168044,-36.
7778902433,-37.
8288132239,-37.
0932033844,-38.
9717094496, -38.

.4720659,E,-9.08057755251,-4.34894658186
4720820,E,-10.
.4720941,E,-11
.4721075,E,-12.
4721142,E,-13.
4721249,E,-13.
.4721330,E,-14
.4721444,E,-15
4249687,-71.
4249657, -71.
.4721779,E,-18
.4721893,E,-19
4722047,E,-20.
.3549647982, -9
.5126165239,-10.
.2843844611,-10.
.8919466409,-10.
0495982632, -11.
.3632462963,-11.

00518148872
28324712707
692589293

71702952229
05070828815

.38438705401

77367894818

.2074613434
.54114010927

08614876031

.53105378198

86473254784

.57658058142

0770987306
4552679983
8445598917
1782386576
9456998194
.3238690871
6019347255
1024528747
4806221424
6474615257
9811402916
4705358151
1378933468
4159589852
1278070188
.2946464021
8952681806
6182388399
0520212359
6637656401
0419349078
.542453057
087461708
.3655273464
8104323673
3554410183
02279855
7346465844
1239384778
8913996389
.9369264391
.4819350901
.3161320052
8055275279
.4172719321
.8510543281
7853548726
.3414861493
0533341828
7763048429
.3213134939
7662185148
3668402933
9785846975
.3567539653
8016589869
.5135070205
.2364776805
7814863316
.28200448
827013131
1606918969
8169268037
3174449521
8624536032

163

A, 42.
A, 42.
a,42.
A, 42.
A, 42.
A, 42.
a,42.
a,42.
A, 42.
A, 42.
a,42.
a,42.
A, 42.
A, 42.
a,42.
a,42.
A, 42.
A, 42.
a,42.
a,42.
A, 42.
A, 42.
n,42.
n,42.
n,42.
A, 42.
A, 42.
n,42.
n,42.
B,42.
C,42.
n,42.
B,42.
C,42.
A, 42.
B,42.
c,42.
A, 42.
B,42.
c,42.
n,42.
B,42.
C,42.
n,42.
B, 42.
C,42.
A, 42.
B, 42.
C,42.
n,42.
B,42.
C,42.
B, 42.
C,42.
A, 42.
B,42.
c,42.
n,42.
B,42.
c,42.
n,42.
B, 42.
c,42.
A, 42.
n,42.
B, 42.
c,42.
A, 42.
B, 42.

4246801,-71
4246707,-71
4246623,-71

4246484,-71
4246460,-71

4246331,-71
4246217,-71

4246024,-71
4245955,-71

4245866,-71.
.4732360,E,-105.
.4732387,E,-105
.4732514,E,-106.
.4732615,E,-107
.4732749,E,-108.
.4732897,E,-109
.4733171,E,-111.
.4733339,E,-113.
.4733446,E,-114.
.4733594,E,-115
.4733755,E,-116.
.4719076,E,3.9163053632,1.32359243858
.4719076,E,3.9163053632,1.32359243858
.4733929,E,-118.031525151,-56.0469100478
.4719988,E,-3.57147476733,-3.84842843347
.4719988,E,-3.57147476733,-3.84842843347
.4734030,E,-118.860769026,-56.258239933
.4720981,E,-11.7242929213,-7.81920574762
.4720981,E,-11.7242929213,-7.81920574762
.4734204,E,-120.289366699,-56.5363055713
.4722013,E,-20.1973175532,-12.1125392028
.4722013,E,-20.1973175532,-12.1125392028
.4734298,E,-121.06112895,-55.6576181544
.4723167,E,-29.6720021132,-15.8497413804
.4723167,E,-29.6720021132,-15.8497413804
.4734305,E,-121.11859354,-54.7789307375
.4724307,E,-39.0317473268,-19.
.4724307,E,-39.0317473268,-19.
.4734177,E,-120.067671551,-54.
.4725272,E,-46.9546911594, -21.
.4725272,E,-46.9546911594, -21.
.4734224,E,-120.453550673,-53.
.4726171,E,-54.3357597103,-24.
.4726171,E,-54.3357597103,-24.
.4726453,E,-56.6510595951,-23.
.4726453,E,-56.6510595951,-23.
.4734298,E,-121.061105488,-52.
.4727485,E,-65.1240989617,-26.
.4727485,E,-65.1240989617,-26.
.4734231,E,-120.511002992, -51.
.4728397,E,-72.6119039548, -28
.4728397,E,-72.6119039548, -28
.4734150,E,-119.845958017,-50
.4729215,E,-79.327953506,-32.3668402933
.4729215,E,-79.327953506,-32.3668402933
.4734104,E,-119.468275937,-49
.4734077,E,-119.246604597,-50
.4730637,E,-91.0030376136,-37
.4730637,E,-91.0030376136,-37
.4734077,E,-119.246610208,-51
.4731388,E,-97.168998512,-40.2972722968

4245866,-71
4245757, -71
4245712,-71
4245653, -71
4245618, -71
4245569, -71
4245485, -71
4245430,-71
4245405,-71
4245361,-71
4245311,-71
4250454, -71
4250454, -71
4245296, -71
4249989, -71
4249989,-71
4245277,-71
4249632,-71
4249632,-71
4245252,-71
4249246,-71
4249246,-71
4245331,-71
4248910,-71
4248910,-71
4245410,-71
4248583, -71
4248583,-71
4245425,-71
4248365,-71
4248365,-71
4245485, -71
4248108,-71
4248108,-71
4248207,-71
4248207,-71
4245574,-71
4247989,-71
4247989,-71
4245692,-71
4247791, -71
4247791, -71
4245791, -71
4247425,-71
4247425,-71
4245871, -71
4245796,-71
4246979,-71
4246979,-71
4245737,-71
4246712,-71

.4729725,E,-83
4246762,-71.
.4729980,E, -85.
.4730201,E,-87.
4246603,-71.
4246564,-71.
.4730731,E,-91.
.4730865,E,-92.
4246425,-71.
4246405,-71.

4729846,E,-84

4730375,E,-88.
4730550,E,-90

4730979,E,-93.
4731173,E,-95

4731569,E,-98.
4731663,E,-99.

4732018,E,-102
4732132,E,-103

.5152499114,-39
.5086997721,-39.

6088847932, -40
4233687871,-41
8519639471, -41

.2887708296,-41.
7748426588, -42.
8750259463, -43.
8110038976,-43.
.4038055906,-43.
.4731327,E,-96.
.4731468,E,-97.
4246163,-71.
4246074,-71.
.4731777,E,-100
.4731864,E,-101.
4245910,-71.

6681990803, -44

8258617943, -45.
6551075078, -46.

4268838814,-47

.362863503,-47.
077166279,-48.

.307358624
7411410201
.3528854243
.2871859687
.5096384795
9434208747
8332309173
10017393
4894658242
7119183342
.5349926236
8029719339
4035937132
.3935073851
9496386618
7170998229

.34155819,-49.2176179721

.277537558,-49.
149489108, -49.
.371176741,-50.
413890507,-51.
.243137352,-52.
343322615,-52.
.558453581, -53.
808087592, -53.
187425698, -54.
065931857,-54.
.281062795,-55.
602928502, -55.

7070134956
7070134956
9193796784
4198978268
0761327337
465424627

0104332781
9447338225
5564782267
834543865

3239393886
8800706645

4868399295
4868399295
6120913542
911572295

911572295

9447338225
7700870558
7700870558
6689471288
6689471288
9548201506
0936794943
0936794943
6423503376
.295959349

.295959349

.5412104099

.6514003681
.4855972824
.3275312802
.3275312802
.1418321885

164

c,42.
A, 42.
B, 42.
c,42.
A, 42.
B, 42.
c,42.
a,42.
B,42.
c,42.
a,42.
a,42.
c,42.
B, 42.
c,42.
a,42.
B, 42.
c,42.
B, 42.
c,42.
A, 42.

4246712,-71

4245692, -71.
.4732246,E,-104
.4732246,E,-104
4245623,-71.
4246237,-71.
.4732796,E,-108.
.4734030,E,-118.
4246049,-71.
4246049,-71.
.4734003,E,-118.
.4733996,E,-118
4246108, -71.
4246019,-71.
.4733815,E,-117.
.4733996,E,-118
4245900, -71.
4245900, -71.
.4733990,E,-118
.4733990,E,-118
.4734003,E,-118.

4246445,-71
4246445,-71

4246237,-71
4245534,-71

4245608,-71
4245663,-71

4246019,-71
4245727,-71

4245801,-71
4245801,-71
4245821,-71

4734137,E,-119.

4734137,E,-119.
4732796,E,-108.

4733306,E,-112.
4733306,E,-112.

4733520,E,-114.
4733815,E,-117.

4733815,E,-117
4733815,E,-117.

.213465209,-43
.213465209,-43

739233385,-51.

739239974,-52.
729153763, -45
729153763, -45
860744663,-53
916429503,-47.
916429503,-47.
639059128, -52

.581581718,-51.

673431009,-47.

.4731388,E,-97.168998512,-40.2972722968

6423503376

.2670133133
.2670133133

4098114995

.5805194238
.5805194238
.3997251714

6715730235
6715730235

.5766508821

9649064778
0153381166

09548143,-48.0052517894
09548143,-48.0052517894

.581575665,-51.
.095492543,-49.

095492543, -49.

.532306782,-50.
.532306782,-50.

639038974, -50.

2530584443
3288442271
3288442271
4299841549
4299841549
207531644

165

