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Abstract 

This work presents an approach which provides the real-time estimation of the gas 

concentration in a plume using an unmanned aerial vehicle (UAV) equipped with 

concentration sensors. The plume is assumed to be generated by a moving aerial or ground 

source with unknown strength and location, and is modeled by the unsteady advection-

diffusion equation with ambient winds and eddy diffusivities. The UAV dynamics is described 

using the point-mass model of a fixed-wing aircraft resulting in a sixth-order nonlinear 

dynamical system. The state (gas concentration) estimator takes the form of a Luenberger 

observer based on the advection-diffusion equation. The UAV in the approach is guided 

towards the region with the larger state-estimation error via an appropriate choice of a 

Lyapunov function thus coupling the UAV guidance with the performance of the gas 

concentration estimator. This coupled controls-CFD guidance scheme provides the desired 

Cartesian velocities for the UAV and based on these velocities a lower-level controller 

processes the control signals that are transmitted to the UAV. The finite-volume discretization 

of the estimator incorporates a second-order total variation diminishing (TVD) scheme for the 

advection term. For computational efficiency needed in real-time applications, a dynamic grid 

adaptation for the estimator with local grid-refinement centered at the UAV location is 

proposed. The approach is tested numerically for several source trajectories using existing 

specifications for the UAV considered. The estimated plumes are compared with simulated 

concentration data. The estimator performance is analyzed by the behavior of the RMS error 

of the concentration and the distance between the sensor and the source. 
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Chapter 1. Introduction 

Estimation of the concentration from a gas release in the atmosphere and the detection of 

the gaseous source location constitute significant research tasks with diverse applications. For 

example, the accidental or deliberate release of gases from a moving surface or aerial vehicle 

results in a plume which can be utilized for a prompt detection of the vehicle’s position. A 

plume detection scheme that can provide information about the vehicle’s proximity allows one 

to develop countermeasures that neutralize the source of adversarial gas release and to reduce 

possible adverse effects. Another important application concerns rescue missions. The release 

of gases and odors from biological systems (e.g. humans) can help in the detection of their 

location. In both examples, it is essential to localize the gas source, i.e. perform input 

identification, and estimate the concentration distribution of the plume, i.e. perform state 

reconstruction.  

This dissertation continues research on this topic at WPI [18], [19], [20], [21], [22], [23], 

[24], [25] and has been presented in [39], [40], [41], [42]. The overview of the problem is 

shown in Figure 1. In this scenario, an intruder is moving along an unknown trajectory, 

releasing hazardous gaseous materials in the atmosphere. The primary goal of this dissertation 

is to further develop a coupled Controls-Computational Fluid Dynamics (CFD) approach that 

provides the real-time estimation of the gaseous plume in the atmosphere presented by [24], 

 
 

Figure 1. Schematic of the considered problem with an aerial source and a group of UAVs. 
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[25] using an unmanned aerial vehicle. The second goal is to apply this approach using a 

current unmanned aerial vehicle (UAV) equipped with a concentration sensor. 

1.1 Literature Review 
Plume estimation has received considerable attention and has been addressed by 

employing stationary, surface sensors in the plume area [1], [2], [3], [4]. In these previous 

works, algorithms were used to assimilate the sensor readings and embed them into gas 

transport models, mostly based on the advection-diffusion equation and its analytical solutions. 

In [1] multiple LIDARs (i.e. Light Detection and Ranging, a remote sensing method that uses 

light in the form of a pulsed laser to measure ranges) located at fixed positions downstream the 

release were used in conjunction with a numerical solution of the 3D advection-diffusion 

equation to estimate wind speeds, diffusivities, source location and source strength to match 

the measurements. In [2] multiple, fixed, ground concentration sensors are employed in order 

to estimate the location, height and amount of a released biological agent to fit a Gaussian 

plume model. In [3] the authors proposed the use of a Bayesian method and multiple 

concentration sensors in various configurations to obtain source localization. The source is 

instantaneous, stationary and is modelled as a Gaussian puff. In [4] an array of multiple fixed 

sensors is used for source localization through a sequential Bayesian estimation algorithm. The 

source is assumed to be stationary, continuous and modeled as a Gaussian plume. 

The advances in autonomous surface and aerial vehicles equipped with sensors initiated 

applications in plume estimation and source localization. In [5] source localization is 

accomplished using a single moving concentration sensor in absence of vehicle dynamics. The 

source is assumed to be continuous and stationary and is modelled as a Gaussian plume. The 

estimation is based on a maximum-likelihood approach and the sensor is moving in a direction 

opposite to the gradient of the Cramér-Rao bound. In [6] a single moving sensor is employed 

for localization of a continuous, stationary area source modeled as a Gaussian plume. The 

estimation is based on the maximum-likelihood approach and the sensor is guided in the 

direction opposite to the gradient of the trace of the modified Fisher Information Matrix. The 

experiments in [7] performed localization of a stationary, instantaneous source of ethanol using 

a surface vehicle carrying a gas sensor and an anemometer. The procedure constructs a map 

with the possible source location using measured concentrations at specified locations and an 
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initial assumption of the source location. In the experiments of [8] the plume from a stationary 

ethanol source is estimated with a ground mobile robot that follows a predefined sweeping 

trajectory covering the area of interest. The estimation is based on a gas distribution modeling 

algorithm without the use of Gaussian models. In [9] the method is extended to compound 

ethanol-acetone-propanol sources. In [10] the algorithm for the UAV path planning for the 

plume localization is proposed. The plume is produced by a simplified Gaussian plume model 

for a point source. The UAV guidance uses a time recursive weighted least squares method. 

The approach is tested numerically in a two-dimensional domain. In [11] the localization of 

instantaneous and continuous point sources is considered using UAVs. Source localization is 

accomplished with a genetic algorithm that provides the source parameters to Gaussian and 

puff models from measurements taken by two UAVs flying along predefined 2D trajectories. 

In [12] another attempt is implemented to track the plume source using a UAV with a gradient 

descent controller that tracks the shortest route from the UAV to the estimated plume source 

provided by the Unscented Kalman Filter technique with Gaussian dispersion model. In [13] 

an autonomous helicopter is proposed for the localization of one or more stationary radioactive 

sources. The helicopter follows a predefined trajectory and measurements are used in a 

recursive Bayesian estimator and a contour-analysis for source localization and plume 

estimation. In [14], [15] the authors proposed the use of a UAV for source localization. The 

UAV is guided either by the plume gradient or a predefined trajectory. The source localization 

is based on a particle-filter algorithm. The method was applied to CO2 and methane plumes 

using a quadrocopter. In [16] a swarm of fixed-wing UAVs was used for the plume detection. 

In this work, the UAVs were modeled as particles with a constant speed. They were initially 

placed randomly upwind from the plume; afterwards they began to maneuver downwind along 

streamlines gathering concentration information. In [17] a method is proposed for 

concentration estimation of a gaseous source with known location using UAVs. The guidance 

of the UAVs is obtained through an optimization method that uses the measurements and a 

Gaussian puff model. 

Research on real-time plume estimation at WPI involved several aspects of the problem 

which are summarized below. In [18] two problems are considered: the first one proposes a 

method for the scheduling of static sensors in a network where it is assumed that an array of 

sensing devices is available to provide measurements on the state of a process governed by a 
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partial differential equation; the second problem considers the guidance of a mobile sensor 

network used in a process governed by a partial differential equation. These problems address 

two tasks: the improved estimation of the process state and the detection of an intruder, which 

is modeled as a moving source. In [19] the dispersion of a plume from a moving source is 

considered and a model-based estimation scheme that provides the proximity of the source 

location by means of a guided mobile agent that carries a sensor is proposed. The method 

couples grid refinement with estimation and includes a kinematic model for the mobile agent. 

Using Lyapunov-based method, a stable guidance scheme is provided for the spatial relocation 

of the moving sensor. In [20]  the real time detection and state estimation of an aerial release 

due to a stationary or moving source in a 2D domain is investigated. A mobile sensing agent 

is used to provide state measurements at desired locations using a Lyapunov based guidance 

scheme. This problem is extended to 3D domain in [21]. In [22] the authors address the 

problem of spatial concentration gradient which must be computed from sensor measurements 

in order to implement the approach that predicts the state of the contaminant using a mobile 

robot. In [23] a model-based estimation scheme is implemented in order to primarily estimate 

the effects of the moving source with a secondary goal of estimating the proximity of the 

moving source using multiple sensing aerial vehicles. The vehicles do not have an ability of 

communication with each other. The proposed guidance scheme provides the spatial relocation 

of the vehicles based solely on the performance of the estimation scheme. 

In [25] the authors introduced a novel approach. Unlike previous related works, this 

approach provides the real-time estimation of the gas concentration in a plume caused by a 

moving surface or aerial source using a UAV equipped with concentration sensors. The plume 

in this approach is assumed to be generated by a moving aerial source with unknown strength 

and location, and is modeled by the unsteady advection-diffusion equation with winds and 

eddy diffusivities. The UAV guidance is coupled with the performance of the estimator 

through Lyapunov redesign methods. The approach is tested numerically in a 2D domain 

where the UAV is gathering measurements of the concentration gradient. The process-state 

estimator is discretized with a finite-volume method and a first-order upwind scheme for the 

advection term. Several adapted computational grids are predefined a priori and switched 

according to the UAV repositioning in order to achieve computational efficiency. This means 
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that the state matrix used in the finite dimensional representation of the state observer needs to 

be evaluated at each of the pre-selected grids resulting in a switched dynamical system.  

The theoretical aspects on the use of mobile actuators for the control of spatially varying 

processes has been examined primarily by A.G. Butkovskii in the 1970’s, [26], [27], [28], [29], 

[30].  The dual problem of using mobile or scanning sensors for state estimation of distributed 

parameter systems has been considered by [31], and [32], [33], [34], [35]. The basic idea for 

scheduling sensors was based on the D-optimum experimental design that improved the lower 

bound of the associated Fisher Information matrix. Using a performance-based guidance, 

wherein the sensor moves to spatial locations that minimize the state estimation error appeared 

in its earlier form in [63] and [36]. This Lyapunov-based guidance assumed an a priori defined 

structure of the observer gain and using an appropriate choice of the Lyapunov function, the 

(Cartesian) velocities of the sensor were extracted as the desired  sensor velocities. On a 

different approach utilizing an optimal filter (Kalman filter) for spatially varying processes, an 

abstract framework was proposed in [37] and subsequently developed in [38]. Both 

approaches, namely Lyapunov-based sensor guidance of Luenberger observer and Kalman 

filter with optimal sensor guidance have certain advantages. The Kalman-based filter and 

sensor guidance provides the optimality of the filter and the sensor motion but it is essentially 

an open-loop technique and requires the solution to a large dimensional differential Riccati 

equation (covariance) forward in time, with the sensor guidance integrated backwards in time. 

The Lyapunov-based sensor guidance of the non-optimal Luenberger observer is essentially 

closed-loop and the sensor guidance is given forward in time. This makes its real-time 

implementation appealing. 

1.2 Objectives and Approach 
The primary goal of this dissertation is to further develop a coupled CFD-control approach 

that provides the real-time estimate of a gaseous plume in the atmosphere presented by [18], 

[19], [20], [21], [22], [23], [24], [25]. The objectives and approaches used to accomplish the 

goal are listed below. 

1. Develop aspects of the mathematical model: 

a. Expand the process model to 3D advection-diffusion equation used to describe 

the plume in 3D. 
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b. Expansion on the Lagrangian representation of the point-sensor measurements. 

c. Expand in 3D the estimator model using the Luenberger observer .  

d.  Develop a 3D dynamical model for the UAV. 

e. Modify and expand in 3D the guidance law for the UAV using Lyapunov 

stability analysis.  

f. Extend the estimator model to include readings from multiple concentration 

sensors. 

2. Develop aspects of the numerical model: 

a. Outline the implementation procedure.  

b. Extend the numerical implementation of the process model into 3D using  finite 

volume method and implement a total variation diminishing (TVD) scheme for 

the advection term. 

c. Develop and implement a continuous grid-adaptation scheme with the areas of 

higher resolution near  the sensor location. 

d. Implement the UAV dynamical model  

e. Implement the revised 3D guidance scheme 

3. Applications 

a. Implement the proposed approach for different source trajectories and 

atmospheric conditions using a single sensor measurement for the estimator. 

b. Apply the proposed approach for the case of the ground intruder. 

c. Implement multiple sensor measurements into the estimator and compare the 

results with the data for the single sensor.    

The results of this dissertation have been presented in [39], [40], [41], [42]. In [40] a 

continuous grid adaptation approach was developed and implemented in a 2D domain. Later 

this approach was extended to a 3D domain and supplemented by a point-mass dynamical 

model for the UAV. The numerical discretization of the estimator model was implemented in 

a 3D domain using a finite volume method with a total variation diminishing (TVD) scheme. 

The UAV motion was constrained to account for the realistic aerodynamic characteristics of 

the existing UAVs. The improved approach was tested for the case of the ground intruder in 

[41], and aerial source [42]. 
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The dissertation is organized as follows: Chapter 2 addresses the mathematical modeling 

aspects of the problem under consideration, namely the physical process, the sensor and the 

estimator modeling, the UAV dynamics and guidance scheme. Chapter 3 describes the 

numerical approach and implementation.  Finally, simulation results are presented in Chapter 

4 for several source trajectories. Conclusions follow in Chapter 5.   
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Chapter 2 Mathematical Model 

 This chapter presents a mathematical model for the process of gas release by a moving 

point source, a mathematical model for the sensor measurement and estimator, and it describes 

the UAV dynamical model and guidance law.  

2.1 Process Model 
The plumes of interest in this dissertation are released in the lower layers of the 

atmosphere, at altitudes below 10 km. Atmospheric turbulence is responsible for the transfer 

of the trace (plume) gases in the lowest layers of the atmosphere [48], [49], [50].  Following 

[24], [25], we will derive below the “process model” which is represented by the 3D advection-

diffusion equation. Consider a source of gas release, which is moving along an unknown 

trajectory inside a spatial domain 

             
30, 0, [0, ]

X Y Z
L L L . The spatial distribution 

of the gas source is given by the 3D Dirac measure concentrated at the point of the source’s 

spatial centroid 

             , , ( ) ( ) ( ) ,
c c c

b X Y Z X X t Y Y t Z Z t   (2.1) 

where 

t  is time, X, Y, and Z are the spatial variables,    ( ), ( ), ( )
c c c

X t Y t Z t . For 

brevity, hereinafter the time varying centroid of the source is denoted by 

    ( ) ( ), ( ), ( ) .
c c c c
t X t Y t Z t  The gas source is characterized by a known release rate ( )u t  

and using Eq. (2.1), it can be represented as 

        , , , .
c

t b X Y Z u t   (2.2) 

Since the flows of interest are turbulent, the fluid velocities U , V , and W  in X , Y , 

and Z  directions accordingly are random functions of space and time. They can be represented 

as the sum of deterministic and stochastic component as follows 

 
 
 
 

U U U

V V V

W W W

  (2.3) 

Consider the conservation of mass of gas within an elementary volume 

     , ,
c

X Y Z  with the center at  , ,X Y Z , such that   ( )
c c
t , shown in Figure 2. 



9 
 

Assume the case of chemically inert species, i.e. the net amount of material convected out of 

the volume element must be balanced only by an equivalent amount of material that is emitted 

by the sources and that enters by molecular diffusion. The conservation of mass d
c

c  or 

concentration c  through this elementary volume is written in integral form as 

  


 


     

    d d ,d
c c

c c
A

c A
t

F n   (2.4) 

where A  is the volume surface area, n  is the normal vector to the surface, and F  is the total 

flux through the surface. Applying the Ostrogradsky-Gauss theorem yields 

    




     d d
c

c
A

AF n F   (2.5) 

The gradient operator in Cartesian reference frame is 
  

    
  

X Y Z
F F F

X Y Z
F . The 

flux through each face 
X

F , 
Y

F , and 
Z

F  of the elementary volume is represented as a sum of 

advective and diffusive fluxes. According to the Fick`s law [49], the diffusive flux is 

proportional to the concentration gradient. Therefore, the total flux through each face is written 

as follows 

 
Figure 2. Schematic of an elementary volume. 
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 
  

 

 
  

 

 
 



                     
                     
   

  

  

      
  

2 2
2 2

2 2
2 2

2 2
2

X X
X XX X

X X

Y Y
Y YY Y

Y Y

Z Z
ZZ Z

Y

Z

X

Z

c c
cU D cU D

X X

c c
cV D c

F

F V D
Y Y

c c
cW D cW DF

Z Z 


       2
Z

Z

  (2.6) 

where D  is molecular diffusivity. In order to express the fluxes through the faces 


2
X

X , 




2
Y

Y , and 


2
Z

Z  in terms of the fluxes through 


2
X

X , 


2
Y

Y , and 


2
Z

Z  

we apply the Taylor series expansion 

 

 
  



 
  



 
  



    

    





  




  




  



              

              



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c c c
D D D X

X X X X

c c c
D D D Y

Y Y Y Y

c
D

Z   

           
2 2

Z ZZ Z

c c
D D Z

Z Z Z

  (2.7) 

Eq. (2.7) implies that the gradient of the total flux is  

 
                                                  

( ) ( ) ( )cU cV cW c c c
D D D

X Y Z X X Y Y Z Z
F   (2.8) 

Substituting this result into Eq. (2.4) supplemented with Eq. (2.5) and Eq. (2.3), integrating 

and dividing by the elementary volume 
c
 yields 
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        

 

       
   

   
                                       

    ,
c

c U U c V V c W Wc
t X Y Z

c c c
D D D t

X X Y Y Z Z

  (2.9) 

Since U , V , and W  are random variables, concentrations obtained from solution of Eq. 

(2.9) are also random variables. Thus, the determination of a concentration c  in the sense of a 

specified function of space and time is not possible. Instead, the mean concentration  c  should 

be specified, such that   c c c , with    0c . Averaging Eq. (2.9) over an infinite 

ensemble of realizations of the turbulence yields 

 
     

 

                     
   

                                          
 ,

c

c
U c U c V c V c W c W c

t X Y Z
c c c

D D D t
X X Y Y Z Z

  (2.10) 

In order to relate the turbulent fluxes   U c ,   V c , and   W c  to  c  we apply the 

mixing-length model [48]. The mixing length is a measure of the maximum distance in the 

fluid over which the velocity fluctuations are correlated (i.e. a measure of the eddy size). 

According to the mixing-length model, 

 

     

     

     


XX

YY

ZZ

c
U c K

X
c

V c K
Y
c

W c K
Z

  (2.11) 

where   ,  , 1, 2, 3
ij

K i j  is the eddy diffusivity tensor. In the case considered here the 

coordinate axes coincide with the principal axes of the tensor, therefore it has only three 

nonzero diagonal elements ,  ,  
XX YY ZZ

K K K . Assume, in addition that molecular diffusion is 

negligible compared with the turbulent diffusion 
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





             
             
             

c
D U c

X X X
c

D V c
Y Y Y

c
D W c

Z Z X

  (2.12) 

Substituting Eq. (2.11) into Eq. (2.10) with assumption (2.12) yields the advection-

diffusion equation written in the so called conservative form, 

 

     

 

         
   

   
                                          

 ,
XX YY ZZ c

U c V c W cc
t X Y Z

c c c
K K K t

X X Y Y Z Z

  (2.13) 

which describes the dispersion of the plume created by the point gas source in the ambient 

atmosphere. 

Equation (2.13) is supplemented with Neumann boundary conditions 


 



( )

0
c t
n

 at 

the boundaries of the domain   and an initial condition 


   ( 0) 0c t .  

In case of constant wind speeds U , V , W  and eddy diffusivities 
XX

K , 
YY

K , 
ZZ

K  the 

advection-diffusion equation (2.13) is written in a strong conservative form as 

 
 

       
   

   
        

   
  


2 2 2

2 2 2
,

XX YY ZZ c

c c c c
U V W

t X Y Z
c c c

K K K t
X Y Z

  (2.14) 

In this work, the atmospheric wind speeds and eddy diffusivities are assumed to be known 

functions of the spatial variables. As was mentioned above, the process of gas release is 

considered in the lowest layer of the atmosphere, called the planetary boundary layer (PBL). 

The thickness of the PBL is a variable in both time and space and varies from 20-500m during 

nighttime hours to 0.2-5 km in the late afternoon. Since the time scale and space scale of the 

process under consideration is small (up to 10-15 min and up to 4 km), the thickness of the 

PBL in this case is considered to be constant and equal to 0.5-1 km. The mean wind speed in 

the PBL generally increases with height. An empirical representation of the mean wind 
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distribution, which is frequently used in air pollution dispersion applications is the power-law 

profile 

 
      

,   1

m

r r

U Z
m

U Z
  (2.15) 

where 
r

U  is the wind speed at the reference height 
r

Z  and m  is an exponent less or equal to 

unity. The parameter m  depends on the surface roughness and stability. Observations have 

shown that surface roughness and stability increase when m  increases. Under near-neutral 

conditions m  ranges from 0.15 for smooth water, snow and ice surfaces to 0.4 for urban areas. 

Eddy diffusivities ,
XX

K  ,
YY

K  and 
ZZ

K  are usually either assumed to be constants or specified 

as functions of height through power-law relations of the type 

 
      

,   1

n

r r

K Z
n

K Z
  (2.16) 

where parameter n  depends on the surface roughness and stability.  

2.2 Sensor Model 
Various sensing techniques exist to measure concentration of trace gases. These principles 

are based on the physical and chemical properties of the gases. Basic sensor characteristics are 

sensitivity, range, precision, accuracy, resolution, response time, offset, and hysteresis. Among 

sensing technologies, the most commonly used are electrochemical, solidelectrolite, catalytic, 

spectroscopic and photoionization sensors [51], [52]. 

In the present work, the detection and quantification of pollutants and natural trace 

environmental chemicals are of interest. This requires sensors with high level of sensitivity. 

Furthermore, the required sensor should have very small response time (within a couple of 

seconds) to provide measurements for the estimation process. This is due to the fact that the 

guidance scheme is coupled to the estimator performance and the resulting control inputs for 

the UAV should be processed in real time. Therefore, spectroscopic sensing technology seems 

to be the most acceptable for this work. 

The principle of operation of a spectroscopic sensor is based on a unique absorption 

spectrum exhibited by each molecule. The spectrum is described in terms of absorption 

strength versus frequency, temperature and pressure in spectroscopic databases. The molecular 
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structure determines at which frequencies the incident light will be absorbed by the molecule. 

Among optical sensing techniques the infrared (IR)-source gas sensors are widely used.  

An IR-source gas sensor contains three major parts, shown in Figure 3: the IR source, 

a volume of the gas sample and the IR detector. When the IR source emits broadband radiation 

including the wavelength absorbed by the target gas, the sample gas in the gas cell will absorb 

the radiation in its particular way. The optical filter is used to screen out all radiation except 

for the wavelength that is absorbed by the target gas. Therefore, the presence of interested gas 

could be detected and measured by an IR detector. This system is also known as Non-

Dispersive Infrared (NDIR) gas sensor [52]. The smallest NDIR sensor modules weight 

approximately 5-10 grams and have size less than 40 mmx40 mmx15 mm. 

The estimation process is based on in situ sensing, i.e. a sensing technique where a 

device is in direct contact with the environmental phenomena (here, concentration). In situ 

sensing in fluid environments is classified into Eulerian and Lagrangian based on the different 

reference frames [53]. In the present work, the Lagrangian technique is used, according to 

which sensors move freely in the fluid itself, and gather measurements as they moves through 

the environment [54], [55]. 

Mathematically, the gas sensor location       ( ), ( ), ( )
s s s s

t X t Y t Z t  is described 

similar to the gas source location (see Eq. (2.1)) with the 3D Dirac delta function. Therefore, 

the sensor readings is provided via 

                    
0 0 0

, , , , ( ) ( ) ( ) d d d
X Y ZL L L

s s s s
y t t c t X Y Z X X t Y Y t Z Z t Z Y X   (2.17) 

 
Figure 3. IR-source gas sensor based on the basic absorption spectrometry [52]. Copyright 2012 by 

the authors; licensee MDPI, Basel, Switzerland 
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2.3 Estimator Model 
The estimator model is based on the advection-diffusion equation (2.13). It takes the form 

of a Luenberger observer supplemented with an output injection term ( , )
s

t  that is 

dependent on the sensor location  
s

t : 

 

              
   

   
                                          



ˆ ˆ ˆˆ

ˆ ˆ ˆ
      ( , )

XX YY ZZ s

c U c V c Wc
t X Y Z

c c c
K K K t

X X Y Y Z Z

  (2.18) 

where  ̂c  is the estimated mean concentration. The boundary conditions for Eq. (2.18) are 



 



ˆ ( )

0
c t
n

 and the initial conditions are 
 

      
0

ˆ ˆ( 0) ( 0)c t c t . The output injection 

term ( , )
s

t  is specified by the difference between a “true” concentration and a state estimate 

at the current UAV location, multiplied by the filter gain. The latter is taken to be a weighted 

multiple of the dual of the observation operator associated with the sensor`s spatial distribution 

given in Eq. (2.17) 

                             ˆ, ( ) ( ) ( ) , ,
s s s s s s

t t X X t Y Y t Z Z t y t c t   (2.19) 

where   0  is a user-defined estimation gain. 

2.4 UAV Dynamics and Guidance 

2.4.1 Review of UAVs 
Unmanned Aircraft Vehicles (UAVs) have evolved rapidly over the past decade driven 

primarily by military uses, and have begun finding application among civilian users for earth 

sensing reconnaissance and scientific data collection purposes [43]. Among advantages of the 

UAVs as compared to manned aircrafts is long flight duration, improved mission safety, flight 

repeatability due to improving autopilots, and reduced operational costs. 

Classification of UAVs for civil scientific uses shown in Figure 4 is based on the 

characteristics such as size, flight endurance, and capabilities. The generally accepted class 

nomenclature is given in Table 1 [43], [44]. 
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The LASE/LALE UAVs are most commonly used for atmospheric observations. They are 

relatively simple to operate, with flight controls similar to RC models and simplified ground-

control stations that allow for small crews. Most of the remote sensing systems are small, 

simplified cameras or streaming video cameras in either daylight (color or B/W) or infrared 

(B/W) video provided of surface objects being imaged, although increased capabilities are 

enabling direct image georeferencing in some of these systems. Figure 5 shows an array of 

LASE/LALE UAVs. 

 
Table 1. Classification of UAVs 

UAV Flight Duration Altitude Capabilities 
MAV or NAV 
(Micro or Nano 
Air Vehicles) 

5-30 min <330 m 

for military use: to be transported 
within individual soldiers’ 
backpacks 

VTOL (Vertical 
Take-Off and 
Landing) 

according to the 
power requirements 
for the hovering 
mode 

depends on 
the mission, 
usually low 
altitudes 

require no takeoff or landing run, 
used in situations with terrain 
limitations 

LASE (Low 
Altitude, Short-
Endurance) 

1-2 hours <1500 m 

light weight component and small 
wing span allow launching from 
miniature catapult systems or by 
hand 

LALE (Low 
Altitude, Long 
Endurance) 

~ 20 hours <1500 m 
may carry payloads of several kg at 
altitudes of a few thousand meters 
for extended periods 

 
 

Figure 4. Image courtesy of US Department of Homeland Security [43]. Copyright 1996-2016 
MDPI AG, Basel, Switzerland. 
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MALE 
(Medium 
Altitude, Long 
Endurance) 

~ 20 hours <9000 m 
collect the data at regional scales 
and at altitudes common to 
manned aircrafts 

HALE (High 
Altitude, Long 
Endurance) 

>30 hours >20000 m 

collect information at regional and 
global scales to allow assessments 
of climate variable impacts across 
broad regions of the globe and to 
support satellite observations at 
spatial and temporal scales, not 
achievable with less capable 
manned or unmanned platforms 

One more category of UAVs that are used for diverse civilian purposes is MUAV or Mini 

UAV [44]. This category relates to UAV of below a certain mass, but not as small as the MAV, 

capable of being hand-launched and operating at ranges of up to about 30 km.  

Among the low-cost and low-risk UAVs for remote sensing expeditions, one should 

mention the Aerosonde® UAV. This UAV can be programmed to make very detailed flight 

patterns that can be flown automatically and in very extreme weather conditions. Specifications 

for the Aerosonde® UAV are provided below, as well as a discussion of its applications and 

advantages [45]. 

 
 

Figure 5. LASE and LALE UAS on display at 2005 Naval Unmanned Aerial Vehicle Air Demo [43]. 
Copyright 1996-2016 MDPI AG, Basel, Switzerland. 
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2.4.2 Coordinate frames 
To derive the dynamic model for the UAV, the inertial and the body coordinate systems 

(or frames) are required [56], [57], [58]. The inertia frame is used in applying Newton’s law 

and is the frame in which GPS provides position and speed. The body-fixed frame is often used 

for describing the aerodynamics forces as well as for on-board sensors, such as accelerometers 

and rate gyros. Therefore it is important to identify these coordinate frames and to describe the 

transformation between them. 

For a short-range UAV (with the flight duration of up to 10 hours and maximum distance 

of several kilometers) the earth is assumed to be flat and non-rotating. The inertial coordinate 

frame is an earth-fixed coordinate system denoted by i  and is depicted in Figure 6. The unit 

vectors ˆ ˆ, ,X Y  and Ẑ  are directed north, east and towards the earth center respectively. The 

body coordinate frame, which is denoted by b , has the origin at the center of mass of the 

vehicle. The axes are directed as follows: x̂  points out the nose of the airframe, ŷ  points out 

the right wing, and ẑ  points out the belly. The body frame  b  is obtained from the inertial 

frame  i  by the four consecutive transformations, depicted in Figure 6. 

• Translation of the origin of the  i  reference frame to the center of mass of the vehicle 

to result in the vehicle frame  v  

• Positive right-handed rotation about the ˆvz  axis by the heading (yaw) angle   to result 

in the vehicle-1 reference frame  1v  

• Positive right-handed rotation about the 1ˆvy  axis by the pitch angle   to result in the 

vehicle-2 reference frame  2v  

• Positive right-handed rotation about the 2ˆvx  axis by the roll (bank) angle  . 
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The transformation of an arbitrary vector p  from the vehicle frame  v  to the body frame 

 b  is given by 

 

       

    

        

     

   
   
   

 
                                            


  

   2 1
2 1

, ,

1 0 0 cos 0 sin cos sin 0

0 cos sin 0 1 0 sin cos 0

0 sin cos sin 0 cos 0 0 1

b b v b v v v
v v v v

v

C C C S S

S S C C S S S S C C

p p p

p

  

           

           

vS C

C S C S S C S S S C C C

p

  (2.20) 

where     , ,b
v

 is the transformation matrix from the vehicle frame to the body frame, 
2

b
v

 

is the transformation matrix from the reference frame  2v  to the body reference frame,  2
1
v
v

 

is the transformation matrix from the reference frame  1v  to the reference frame  2v ,  1v
v

 is 

the transformation matrix from the vehicle reference frame to the reference frame  1v , 

 
Figure 6. Transformation from the inertial frame to the body frame. 

 



20 
 

 cosC  and  sinS . The matrix b
v

 in Eq. (2.20) represents Euler transformation matrix 

with Euler angles  ,  ,  and  . The rotation sequence   - -  is commonly used for 

representing aircraft orientation in three dimensions.  

The wind direction relative to the body reference frame is specified using the angle of 

attack   and the sideslip angle  . The angle of attack   is defined as a left-handed rotation 

about the body ŷ  axis to result in the stability reference frame  s  as shown in Figure 7 (left). 

The sideslip angle   then results from the right-handed rotation of the stability frame  s  

about ˆsz  to yield the wind frame  w  as shown in Figure 7 (right). The unit vector x̂  of the 

wind frame  w  is aligned with the airspeed vector 
a

V  which is the velocity of the airframe 

relative to the surrounding air. Therefore, the transformation of an arbitrary vector p  from the 

body frame  b  to the wind frame  w  is given by 

 

        

   
 

 

 
                        

  ,

cos 0 sin cos sin 0

0 1 0 sin cos 0

sin 0 cos 0 0 1

s w b s w b
b b s

b

p p p

p
  (2.21) 

with 

  
    

      
 

            


cos cos sin cos sin

, sin cos cos sin sin

sin 0 cos

w
b

  (2.22) 

 
Figure 7. Transformation from the body frame to the wind frame. 
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2.4.3 Wind Triangle 
For a small UAV, which speed ranges from 20 to 35 m/s, the wind speed ranges from 20 

to 50 percent of the airspeed, therefore, it is important to account for the effect of wind on the 

UAV dynamics. The inertial forces acting on the UAV are dependent on the velocity relative 

to a fixed inertial reference frame  i  referred to as ground speed 
g

V , whereas the 

aerodynamic forces depend on the airspeed 
a

V . Denoting the wind velocity relative to the 

inertial frame by 
w

V , these velocities are related by the expression 

  
a g w

V V V   (2.23) 

The relationship (2.23) is called the wind triangle. Given the wind speed components 

,  ,U V  and W  with respect to the inertial reference frame, i.e. north, east, and down, and using 

Eq. (2.20), the wind speed can be expressed in the body frame  b  as  

    

                         

 , ,
w

b b
w v w

w

U u

V v

W w

V   (2.24) 

Defining ,  ,u v  and w  as the body frame components of the ground speed 
g

V , and ,  ,
r r

u v  

and 
r

w  as the body frame components of the airspeed 
a

V , Eq. (2.23) is written as 

 

                           

r w
b
a r w

r w

u u u

v v v

w w w

V   (2.25) 

On the other hand, the airspeed vector in the reference frame related to the wind  w  has 

only one nonzero component 

 

         

0

0

a
w
a

V

V   (2.26) 

Therefore, combining Eq. (2.22) and Eq. (2.25) yields 
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 

      
    

    



                         
                                      


1

0

0

cos cos sin cos sin cos cos

sin cos sin sin 0 sin

cos sin 0 cos 0 sin cos

r a
b w
a r b

r

a

a

u V

v

w

V

V

V



  (2.27) 

Inverting Eq. (2.27) gives 

 







  
      
          

2 2 2

1

1

2 2 2

tan

sin

a r r r

r

r

r

r r r

V u v w

w

u

v

u v w

  (2.28) 

The direction of the ground speed vector relative to the inertial frame  i  is specified using 

the course angle   and the flight path angle   (see Figure 8). The course angle   is defined 

as the angle between the horizontal component of the ground speed vector 
g

V  and the vector 

X̂  (true north); the flight path angle   is defined as the angle between the ground speed 
g

V  

 
 

Figure 8. The flight path angle and the course angle. 
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and its horizontal component. The ground speed vector in the inertial frame can be expressed 

in terms of   and   as 

 
 
 



          

cos cos

sin cos

sin

i
g g

VV   (2.29) 

The geometrical representation of the concept of wind triangle is given in Figure 9. Here 


c
 is referred to as crab angle and 

a
 is the air-mass-referenced flight-path angle: 

 




  
  




c

a

  (2.30) 

Assuming sideslip angle   to be negligible so that the airspeed vector 
a

V  is aligned with 

the x̂  axis (Figure 9), the airspeed can be expressed in the inertial frame as 

 
 
 



          

cos cos

sin cos

sin

a
i
a a a

a

VV   (2.31) 

Therefore, the wind triangle (2.23) can be rewritten as 

 
   
   

 

                                                

cos cos cos cos

sin cos sin cos

sin sin

a

g a a

a

U

V V V

W

  (2.32) 

Taking squared norm of both sides of Eq. (2.32) yields 

 
 

Figure 9. The wind triangle projected onto the horizontal plane (left) and vertical plane (right). 
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 
 



                            

2 2 2

cos cos

2 sin cos 0

sin

T

g g w a

U

V V V V V

W

  (2.33) 

The third row of Eq. (2.32) is solved for the air-mass-referenced flight path angle 
a
 

 


 
       

1
sin

sin g
a

a

V W

V
  (2.34) 

Multiplying both sides of Eq. (2.32) by   sin , cos , 0  and solving for the heading 

angle   yields 

 


 




                        

1
sin1

sin
coscos

T

a a

U

VV
  (2.35) 

2.4.4 Dynamic Model 
The UAV equations of motion are derived based on commonly encountered in the 

literature point-mass model of a fixed-wing aircraft [56], [60], [61], [62]. This model is drawn 

from free-body diagrams and includes lift, drag, and thrust forces.  

Figure 10 provides free-body diagrams for a UAV in climbing coordinated turn: to the left 

the UAV is rolling at an angle of   and forces are shown in ˆ ˆx z  plane, and to the right the 

diagram shows the view in the direction of x̂  axis, forces are shown in ˆ ˆ−y z  plane. Thrust 

force is denoted by T , drag and lift forces are denoted by D  and L  respectively; M  is the 

mass of the UAV. Applying Newton`s second law along the x̂ axis (Figure 10, left) and in the 

vertical direction (Figure 10, right) yields 

 
 

Figure 10. Free-body diagram of the forces acting on the UAV in the climbing coordinated turn. 
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     sin
g

MV T D Mg   (2.36) 

   cos cos 0Mg L   (2.37) 

During a coordinated turn, the bank angle   is set so that there is no net side force on the 

UAV. In order to derive relationship for course angle   in terms of lift L , consider the 

coordinated turn maneuver from the top view of horizontal plane, shown in Figure 11. The 

horizontal component of the lift force L  is acting in the radial direction opposite to the 

centrifugal force, therefore the Newton`s second law results in 

          cos sin cos 0
g

M V L   (2.38) 

Solving Eq. (2.38) for   provides 

 
 



  







sin cos

cos
g

L

MV
  (2.39) 

To derive the dynamics for the flight path angle  , consider a pull-up maneuver in which 

the aircraft climbs along an arc as shown in Figure 11, so that the airframe is rolled at an angle 

 . Newton`s second law in the radial direction gives 

     cos cos 0
g

L Mg MV   (2.40) 

Solving Eq. (2.40) for   gives 

    cos cos
g g

L g
MV V

  (2.41) 

Combining Eq. (2.36), Eq. (2.39), and Eq. (2.41) with the kinematic equations (2.29) 

yields the equations of motion that describe the point-mass model of the fixed-wing aircraft: 

     

 













 
 




  

  








  

 




cos cos

sin cos

sin

sin

cos cos

sin cos

cos

g

g

g

g

g g

g

X V

Y V

Z V

T D
V g

M M
L g

MV V

L

MV

           (2.42) 

 with lift and drag being determined as 
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







2

2

1
2
1
2

a L

a D

L V SC

D V SC
  (2.43) 

where 
L

C  and 
D

C  are lift and drag coefficients related as follows 

 


 
2

p

L
D D

C
C C

eAR
  (2.44) 

where 
pD

C  is the parasitic drag due to the shear stress of air moving over the wing; 

2b
AR

S
 

is the wing aspect ratio; b  is the wingspan, and e  is the Oswald efficiency factor [56], [58]. 

The lift coefficient for the point-mass model (2.42) is given by the linear function of the angle 

of attack: 

  


  
0L L L

C C C   (2.45) 

where 
0L

C  is the lift coefficient at zero angle of attack and 

 



L
L

C
C  is the stability 

derivative. The magnitudes for 
0L

C  and 
L

C  are found through wind tunnel tests or a detailed 

computational study and usually can be found in the aircraft specifications. 

 
 

Figure 11 Free-body diagram of the forces acting on the UAV in the climbing coordinated turn: top 
view of the horizontal plane and side view of the vertical plane. 
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The engine thrust T , the bank angle  , and the lift coefficient 
L

C  are the control inputs 

to the dynamic model (2.42). The control inputs are assumed to stay within certain limits 

      
max max max

0                               0  ,         
L L

T T C C   (2.46)

  

where 
max

T , 
max

, and 
maxL

C  are pre-specified constants. 

The model (2.42) is popular for simulation of the UAV motion [60], [61], [62] due to the 

fact that it models the aircraft response to inputs that a pilot commonly controls: engine thrust 

T , lift coefficient 
L

C , and bank angle  . At the same time, it allows to avoid cumbersome 

relations in the 12-state model for the UAV kinematics and dynamics, which is usually used 

to implement autopilot for specific aircraft maneuvers. 

2.4.5 UAV Guidance 
In order to derive the UAV guidance scheme, it is convenient to rewrite the process model 

equation (2.13), and the estimator equation (2.18) in the abstract form as follows 

      ,
t c

tx x   (2.47) 

       *ˆ ˆ ˆ
t

x x x x   (2.48) 

where         , , ,t c tx  is the concentration state,  ˆ tx  is the estimated concentration state, 

  is the advection diffusion operator, which is specified based on Eq. (2.13) 

 

     

     

  


  

  
    

  
                                        



XX YY ZZ

U V W

X Y Z
K K K

X X Y Y Z Z

  (2.49) 

for    
2

L and   is the output operator associated with the sensor`s spatial location 

              
0 0 0

( ) ( ) ( ) d d d
X Y ZL L L

s s s
X X t Y Y t Z Z t Z Y X   (2.50) 

for all the test functions    1H . The UAV guidance scheme is based on the estimator 

performance through the state-estimation error 
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         ̂, , , , , , , , ,e t X Y Z c t X Y Z c t X Y Z . Combining Eq. (2.47) and Eq. (2.48) yields 

the governing equation for the evolution of the state estimation error 

                  * , ,
t c cl c

t te e e   (2.51) 

Equation (2.51) is supplemented with Neumann boundary conditions 






( )

0
t
n

e , and the 

initial conditions are 
 

  
0

( 0) ( 0)t te e .  

The control inputs should be chosen so that the UAV is driven towards the spatial areas 

of higher estimation error. For this purpose, the Lyapunov redesign method is used with the 

following choice of the Lyapunov functional [63] 

  ,
cl

e e   (2.52) 

where  ,  denotes the  
2

L  inner product. The system is stable provided that the derivative 

of the Lyapunov functional in Eq. (2.52) is negative semidefinite, i.e.   0 . Taking time 

derivative of Eq. (2.52) yields 

         


       


   
2 2

2 , 2
cl cl cl X Y Z

X Y Z
t

e e e e   (2.53) 

where 

           
  

               
*

ˆ, ,
, ,   ,    * , , .

* *
s s

s

c t c t
t e t t t X Y Z   (2.54) 

To ensure the derivative of the Lyapunov functional (2.53) is negative semidefinite, the 

UAV must have the following Cartesian velocities 

 



















d
X X

d
Y Y

d
Z Z

X k

Y k

Z k

  (2.55) 

where  0,  >0
X Y

k k , and  0
Z

k  are user-defined constant guidance gains. 

The desired Cartesian components of the velocity vector in Eq. (2.55) yield the desired 

magnitude of the ground speed 
g

V , the course angle  and the flight path angle   are 

calculated using the second and the third equations of the dynamic model (2.42) accordingly 
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  








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  

       
      

2 2 2

arcsin

arctan 2

d d d d
g

d
d

d
g

d
d

d

V X Y Z

Z

V

Y
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  (2.56) 

Given the values of desired ground speed and current ground speed, the desired 

acceleration is defined as a numerical approximation of the time derivative; the flight path rate 

and the course rate are represented by the first-order models [56] 

  
 











  

  





 
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d
g gd

g

d d

d d

V V
V

t
b

b

  (2.57) 

where,   0b  and   0b  are user-defined constants. Substituting Eq. (2.57) into the dynamic 

equations (2.42) supplemented with Eq. (2.43), yields the control inputs to the UAV 
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1
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V S

T MV V S C KC Mg

  (2.58) 

The UAV is subject to realistic constraints and therefore, the control inputs (2.58) should 

stay within certain limits (2.46). The linear aerodynamic model is chosen for the lift and drag, 

therefore, max
L

C  is set to be equal to the lift coefficient at stall i.e., 

 max st
L L

C C   (2.59) 
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The maximum thrust, 
max

T  is provided by the performance characteristics of the particular 

UAV used. In order to obtain the maximum bank angle, 
max

, the load factor defined as the 

ratio of the lift to the weight of the aircraft is used 

 

L
n

Mg
  (2.60) 

For a small UAV in turning level flight, the maximum load factor 
max

n  is usually equal to 

1.5 [59]. Therefore, the condition for 
max

 results from the force balance equation (fifth 

equation in system (7)) with    0  

 


 
max

max

1
cos

L
n

Mg
   (2.61) 

2.4.6 Extension to Multiple Sensors 
The desired Cartesian velocities in Eq. (2.55) are expressed in terms of the estimation error 

   and the error gradients  
*

t  at the current sensor location  
s

t . Therefore, in order to 

implement the proposed guidance scheme, we should have at least seven point sensor 

measurements. These sensors can be either attached to a single UAV or to different UAVs that 

maintain a rigid flying formation. The gradient is then calculated using a central difference 

approximation of the spatial derivative based on the six additional measurements (two in each 

Cartesian direction X , Y , and Z ).  

It seems reasonable to include additional measurements into the estimator (2.18). For this 

purpose, the observation operator   in Eq. (2.48) is given by the 7-dimensional vector  

 

     

     


  



  

                      

  

  



1 1 1

7 7 7

0 0 0

0 0 0

( ) ( ) ( ) d d d

( ) ( ) ( ) d d d

X Y Z

X Y Z

L L L

s s s

L L L

s s s

X X t Y Y t Z Z t Z Y X

X X t Y Y t Z Z t Z Y X

  (2.62) 

for all    1 .H  The filter gain matrix   is a 7 7  positive definite matrix  
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 

            

11

77

0 0

0 0

0 0

  (2.63) 

and which is taken to be diagonal for simplicity. A full matrix would designate an all-to-all 

communication between the 7 UAVs, require 7 interacting estimators. The diagonal structure 

of the filter gain matrix    ensures that there is a single centralized filter with the 6 follower 

UAVs in strict formation about the leader UAV (marked as s4). Therefore, the derivative of 

the Lyapunov functional (2.53) yields 

          

               
2

1 71 7
2

cl X Y Z X Y Zs s
e X Y Z X Y Z   (2.64) 

where the error, the error gradients, and the Cartesian velocities are calculated at each sensor 

location denoted by 1, 7s s .  

Consider a flying formation, where all the vehicles maintain a constant distance from the 

leader UAV (denoted by 4s ), shown in Figure 12. In this case 

 

 

 

 

 


   


,       1, 7,   1, 7,   
si sj

si sj

si sj

X X

Y Y i j i j

Z Z

  (2.65) 

Therefore, denoting the Cartesian velocity components of the “leader” UAV by X , Y , 

and Z , Eq. (2.64) is rewritten as 

 
 
Figure 12. Example of the flying formation of UAVs for the concentration gradient measurements. 
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1 7 1 71 7 1 7

2

         

cl X Xs s

Y Y Z Zs s s s

e X

Y Z
  (2.66) 

and thus the desired Cartesian velocities that the UAVs must have are calculated as follows 

 

 
 
 










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 
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1 71 7
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d
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d
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d
Z Z Zs s

X k

Y k

Z k

  (2.67) 

The error gradient at the leader sensor location can be calculated with a central difference 

approach using the measurements of the followers 

 

   

   

   







       
 

       
 

       
 

5 3 5 3

4

6 2 6 2

4

7 1 7 1

4

ˆ ˆ

2 2
ˆ ˆ

2 2
ˆ ˆ

2 2

s s s s
X s

s s s s
Y s

s s s s
Z s

c c c c
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c c c c

dl dl
c c c c

dl dl

  (2.68) 

where dl  is the distance between the leader UAV and a follower, assumed to be equal in all 

the directions X , Y , and Z . The error gradients at locations 1 3s s  and 5 7s s  are 

approximated either with the forward difference approach or with the backward difference 

approach using the neighbor readings. 
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Chapter 3 Numerical Model 

In this chapter, the numerical implementation of each of the steps in the approach is 

discussed. First, the chapter provides the outline of the whole implementation procedure. 

Second, the numerical solution of the advection-diffusion equation is presented; followed by 

the algorithm for the computational grid adaptation. At the end of the chapter, the details for 

the visualization of the UAV flight are given. 

3.1 Overall Estimation-CFD Implementation Procedure 
The mathematical model described in Chapter 2 has been implemented numerically in the 

3D domain as shown in Figure 13, with winds and eddy diffusivities representative of the 

ambient atmosphere at the region of interest. 

The UAV starts patrolling the domain of interest following a constant-climb orbit path 

with predefined desired ground speed d
g

V , course angle d  and flight path angle d  as inputs 

to the dynamic model (2.42). The concentration sensors onboard the UAV record concentration 

(simulated) data according to its spatial location  
s

t . The state estimator (2.18) is activated 

when concentration measurements above the sensitivity threshold of the sensors are recorded. 

The concentration plume is estimated, and the UAV receives new estimator performance-based 

 
 

Figure 13. Real-time gaseous plume estimation approach and implementation. 
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control signals (2.58) that guide the vehicle towards the areas of larger estimation error. The 

transition from the approach to the mathematical modeling and finally to the implementation 

procedure is shown in Figure 13. 

 

3.2 Numerical Solution of the Advection-Diffusion Equation 
The process model advection-diffusion equation (2.13) is solved numerically in order to 

provide numerical data in the absence of real data using a Finite Volume Method (FVM) [64], 

[66] supplemented with the Total Variation Diminishing (TVD) scheme. The estimator 

equation (2.18) is solved numerically following the identical FVM-TVD procedure. We outline 

below the steps in 3D following previous 2D implementation of [24], [25]. 

The domain under consideration   is discretized with   
X Y Z

N N N N  rectangular 

finite volumes. Integrating Eq. (2.13) over the finite volume 
ijk

 with surface area  ˆAA n  

shown in Figure 14 yields 

 Α


 


   

    d ·d d
ij ijkk A

c
t

F   (3.1) 

The vector of fluxes F  represents the total flux through the surface of the volume and is 

expressed as a sum of advective and diffusive fluxes: 

 
 

Figure 14. A finite volume at grid point (i,j,k). 
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           ˆ ˆ ˆA D A D A D
X X Y Y Z Z
f f f f f fF X Y Z   (3.2) 

Based on Eq. (2.13), the advective and diffusive fluxes in X , Y , and Z  directions are 

calculated as follows 

 
        

     
   

  

,   ,   

,   ,   

A A A
X Y Z

D D D
X XX Y YY Z ZZ

f c U f c V f c W

c c c
f K f K f K

X Y Z

  (3.3) 

Eq. (3.1) is replaced by its discrete form, where the volume integrals are expressed as the 

averaged values over the cell and where the surface integral is replaced by a sum over all the 

bounding faces ,  1,..., 6
l

A l  of the considered volume 
ijk

 

  


 
   

   
6

1

1ijk
ijk l ijk

lijk

c
A

t
F n   (3.4) 

Due to the rectilinear (Cartesian) grid, the calculation of the dot product in (3.4) simplifies 

to 

  
   

 
 
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
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ijk
ijk ijk ijk ijk

ijk

c
F A AF A F F A AF A F

t
  (3.5) 

Using Eq. (3.2), Eq. (3.5) can be rewritten as 
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c
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A
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f

A
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  (3.6) 

The diffusive flux is approximated with a central differencing at the cell interface [66] 
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  (3.7) 

The advective term requires special attention in order to provide monotonicity, a condition 

for a numerical scheme so that no new extrema be created in case of large wind speeds near 
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large gradients. In previous work [23] the upwind scheme was implemented in 2D. In the 3D 

implementation of this dissertation the advective flux is approximated using the total variation 

diminishing (TVD) scheme [66], [67]. The algorithm is provided below for a simple case 

where   0V W  and U not zero. However, the created code assumes the possibility of 

nonzero wind speeds U, V, and W. The wind speeds are implemented either as constants or as 

functions of special variables according to Eq. (2.15). 
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  (3.8) 

The ( )r  is the limiter function of the local ratio of upstream to downstream gradient r ; the 

“+” and “-” superscripts refer to the positive or negative wind direction respectively as :  
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  (3.9) 

The limiter function   r  is used in the TVD scheme in order to prevent discontinuities in the 

obtained solution. When    1r , the scheme for advection term reduces to the average of 

the cell centered fluxes; when    0r , the scheme reduces to the first order upwind “donor 

cell” scheme. For the proposed estimation algorithm, the limiter function is chosen as the Min-

Mod [68] 

    
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min ,1     if 0
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r r
r

r
  (3.10) 

Assuming,  0U , and substituting Eq. (3.7) and Eq. (3.8) into Eq. (3.6) yields 
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  (3.11) 

The limiter function   r  depends on the value of concentration  c  and, therefore, varies 

with time. Consequently, the terms, containing multiplication by   r  can be considered as an 

additional source term, which is referred to as the TVD deferred correction source term and 

denoted by DC . Thus, Eq. (3.11) can be rearranged to yield 
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where the coefficients ,  1, , 6
i

a i  are calculated based on Eq. (3.11) as follows: 
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and the coefficient 
0

a  is defined as 

          
0 1 2 3 4 5 6 , , , , 1, , , ,

E W
i j k i j k i j k i j k

a a a a a a a U A U A   (3.14) 
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The deferred correction term DC
ijk

 results from Eq. (3.11) 
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  (3.15) 

Substituting Eq. (3.7) and Eq. (3.8) into Eq. (3.6) assuming that  0U  yields 
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k
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  (3.16) 

Rearranging Eq. (3.16) to the form of Eq. (3.12) results in the following coefficients 

,  1, , 6
i

a i  and 
0

a : 
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ZZ i j k
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X X X X

K K
a A a A

Y Y Y Y

K
a

Z Z 

 


, ,
, , 6 , ,

, , , , 1

,   

B

ZZ i j kT B
i j k i j k

k i j k i j k

K
A a A

Z Z

  (3.17) 

          
0 1 2 3 4 5 6 1, , , , , , , ,

E W
i j k i j k i j k i j k

a a a a a a a U A U A   (3.18) 

The deferred correction term DC
ijk

 is defined as  
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  (3.19) 

Combining Eq. (3.13) and Eq. (3.17), the coefficients 
1

a  and 
2

a  are written in the general case 

as  
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E

XX i j k E
i j k i j k

i j k i j k

W

XX i j k W
i j k i j k

i j k i j k

K
a U A

X X

K
a U A

X X

  (3.20) 

Combining Eq. (3.14) and (3.18), the coefficient 
0

a  is written as  

           

       
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, , 1, , , , 1, , , , , ,
max , 0 min , 0 max , 0 min , 0E W

i j k i j k i j k i j k i j k i j k

a a a a a a a

U U A U U A
 (3.21) 

Finally, combining Eq. (3.15) and Eq. (3.19) yields the general expression for the deferred 

correction term DC
ijk
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  (3.22) 

where, 

 
 
 

 

 

   
   

1, , 1, ,

1, , 1, ,

1 for 0 and 1 for 0

0 for 0 and 0 for 0
e i j k w i j k

e i j k w i j k

U U

U U
  (3.23) 

The advection-diffusion equation (2.13) (or the process model) is supplemented with Neumann 

boundary conditions, which implies that the flux at each physical boundary is equal to some 

constant value. Consider the East physical boundary 
X

i N  of the domain under 

consideration. The Neumann boundary condition is written in the discretized form as follows  

 



   


 ,

1, , , ,

1, , , ,

X X

j k

X X

N j k N j k

b
N j k N j k

c c
E

X X
  (3.24) 
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where 
,j kb

E  are given values for all  1, ,
Y

j N  and  1, ,
Z

k N . 

Expressing  
1, ,XN j k

c  from Eq. (3.24) and substituting it into Eq. (3.11) results in an 

additional component in the source term 

 


 , , ,,

,
, ,

,X j k X

X

E
b

E

X N j kBC
j k

N

X N

j

j k

k

AK E
  (3.25) 

Substituting  
1, ,XN j k

c  from Eq. (3.24) into Eq. (3.16) results in an additional component 

in the source term 

    

       


, 1, , , , 1, ,

,

,

,

,,
, ,

X

j k X XX
X

X

E

XX N j k N j k N j

E
N j kBC

j k b
N j k

kN j k
K

A
E X X U   (3.26) 

Therefore combining Eq. (3.25) and Eq. (3.26) yields the expression for an additional 

component in the source term taking into account all possible wind directions 

      

     
 


, 1, , , ,

, ,

, 1,
,

,
,

,,
min , 0

X X

X

j k

X

XX

E

XX N j k N j k

E
N j kBC

j k b
N j k

N j kN j k
K X X U

A
E   (3.27) 

The volume   1, ,
X

N j k  lies beyond the scope of the domain under consideration and 

its coordinate 1, ,XN j k
X  can be expressed in terms of 

, ,XN j k
X  as shown in Figure 15. The value 

of wind speed 1, ,XN j k
U  can be found by linear interpolation using the values of the wind speed 

at 
, ,XN j k

X  and 1, ,XN j k
X : 

 
 

Figure 15. Finite volume discretization at the boundary. 
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  

 



  


, , 1, ,

1, , 1, , , , , ,
, , 1, ,

X X

X X X X

X X

N j k N j k

N j k N j k N j k N j k
N j k N j k

U U
U X X U

X X
  (3.28) 

The term 
, ,i j k

 in Eq. (3.12) is represented by a vector of   
X Y Z

N N N N  entries, 

which are all zeros except for the single volume that corresponds to the source location   .
c

t

Therefore based on Eq. (2.2), 

 
   

   
     


0,   

( ),   
c

ijk
ijk c

t ijk

u t t ijk
  (3.29) 

The numerical solution of the estimator equation (2.18) follows the same procedure as the 

advection-diffusion equation with addition of the output injection term (2.19) 

 
   
        

            


0,   

ˆ, , ,   
s

ijk
ijk s s s

t ijk

c t c t t ijk
  (3.30) 

The resulting set of N  semidiscrete equations (3.12) are written in state space form as 

follows 

            
    , , ,

TVD RHS
t P t P t Q X Y Z u t P tx xx   (3.31) 

where the source term is expressed as the product of the vector  , ,Q X Y Z , which represents 

the location information of the source, and the source release rate  u t . The vector 



          1
, ,

T

N
c cx c  is the vector of states that represents the concentration for each finite 

volume in the computational domain  . The mapping for the volumes is expressed as follows 

 
     
  

     
  
  

, , 1 1 ,

1, , ,   1, , ,   1, , ,
X X Y

X Y Z

n ijk

n n i j k i j N k N N

i N j N k N

x c

  (3.32) 

This ordering creates matrices P  and 
TVD

P  from Eq. (3.31) in the form 



42 
 

 

 

     

 

     

 

   
   
   
   
   
   
   
   
   
      

11 1 11 1

1 1

1 1
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N TVD TVD N

n nN TVDn TVDnN

N NN TVDN TVDNN

P P P P

P P P P

P P P P

  (3.33) 

The matrix P  is a 7 diagonals matrix that represents the finite dimensional advection 

diffusion operator with entries of the coefficients a  from Eq. (3.17), Eq. (3.18), Eq. (3.20), 

and Eq. (3.21). The matrix 
TVD

P  is due to the multiplication by the limiter function. 

The system of ODEs from Eq. (3.12) and Eq. (3.31) is integrated using a 4th order Runge-

Kutta method [64] as 
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  (3.34) 

The Von Neumann method [65] is used for stability analysis of the numerical scheme. In 

order to do so, we consider two limiting cases for the limiter function   r :    0r  and 

   1r . At    0r , i.e. in case of the first order upwind scheme for the advective flux, 

assuming 
, ,

0
i j k

, and constant eddy diffusivities and wind (  
, , , ,

E W

XX XXi j k i j k XX
K K K , 

 
, , , ,Y

N S

YY i j k i jY k YY
K K K ,  

, , , ,

T B

ZZ ZZi j k i j k ZZ
K K K , and 

 
, , 1, ,i j k i j k

U U U , 

 
, , 1, ,

0
i j k i j k

V W ), Eq. (3.11) is rewritten as 
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  (3.35) 

 

In the uniform grid, such that 
    

1, , , , , , 1, ,i j k i j k i j k i j k
X X X X X , 
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X Y Z ,   
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A Y Z ,   
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N
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A X Z ,   
, ,
T
i j k

A X Y , Eq. (3.35) is 

written as  
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  (3.36) 

We also represent the time derivative with the first-order differencing  
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By defining as the CFL number  



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 2
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Z
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Z
 , 

and using Eq. (3.37), Eq. (3.36) is rewritten as  
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Substituting into the numerical scheme (3.38) a Fourier mode in the form 
    

, ,
l l Ii Ij Ik
i j k

c V e e e , where   
X

k X ,   
Y

k Y ,   
Z

k Z , with 
X

k , 
Y

k , and 
Z

k  

being the wave numbers defined as 
X X X

k M L , 
Y Y Y

k M L , and 
Z Z Z

k M L , 
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where 
X

M , 
Y

M , and 
Z

M  are numbered grid points in the X , Y , and Z  directions 

accordingly, yields 
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Simplifying all the terms in Eq. (3.39) by the factor   Ii Ij Ike e e  and determining the 

amplification factor as 

1l

l

V
G

V
 yields 
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For        ,  

        41 2
X Y Z

G   (3.41) 

and the stability condition 

  1G   (3.42) 

becomes  

  
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  (3.43) 

For      0 ,  1G , and the stability condition is always satisfied. 

At    1r , i.e. in case of the central difference scheme for the advective flux, assuming 


, ,

0
i j k

, and constant eddy diffusivities and wind (  
, , , ,

E W

XX XXi j k i j k XX
K K K , 
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On the uniform grid it is written as  
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Following now the same steps as before in Eq. (3.37), Eq. (3.38), Eq. (3.39) yields the 

amplification factor  
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For stability,  

  1G   (3.47) 

Following [65] that stability condition becomes 
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which provides the conditions on the timestep,   
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The application of the TVD numerical scheme is verified with a solution for the “pure” 

advection problem Eq.(2.13) with   0V W ,    0
XX YY ZZ

K K K , and with an 

instantaneous line source. The analytical solution for this case is given by the step function and 

the comparison with the numerical TVD solution with the upwind scheme is shown in Figure 

16. 

3.3 Computational Grid Adaptation 
The simulated (concentration) sensor data are generated by solving the advection-

diffusion equation (2.13) on a very fine, uniform grid using as inputs the source parameters 

(release rate and position) and atmospheric parameters. Such a fine uniform grid would not be 

applicable for the desired real-time implementation of the estimator (2.18). In previous work 

[19], [24], [25] the grid was adapted by a priori generating several adapted grids. Each 

predefined grid contained an area of a refined uniform grid that covered 25% of the area of 

interest, whereas the rest of the domain was covered with a coarse uniform grid. In this 

dissertation in order to reduce the computational cost for the estimator simulation, thus 

 
 

Figure 16. Verification of the numerical scheme. 
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obtaining real-time data, the computational grid is adapted dynamically throughout the process 

[69]. The adaptation algorithm uses the current UAV location as a center of a refined grid with 

the grid size dl  in all directions. Away from the sensor, the grid nodes are following a parabolic 

distribution. The resulting three-dimensional grid is shown in Figure 17. As soon as the UAV 

crosses the distance of the minimum grid size dl  a new grid is generated and the numerical 

solution obtained at the previous time step is interpolated to the new grid accordingly using 

trilinear interpolation method [70]. The total number of nodes for the adapted grid remains the 

same during this process. 

For verification of the proposed grid adaptation algorithm, the numerical solution is 

compared with the steady-state analytical solution of the advection-diffusion equation for a 

stationary point source located at  , ,
c c c

X Y Z  with a constant release rate  q  kg/s;  

The steady state solution i.e.  


0
c
t

 results in the well-known Gaussian plume formula 

which for a stationary source is given as [48], [49]  
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  (3.50) 

 
 

Figure 17. Adapted nonuniform computational grid. 
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The steady-state numerical solution is achieved at time 

X
t

U
, provided that the system is 

advection dominated. Numerical and analytical solutions are compared in Figure 18: to the left 

is the concentration profile obtained on the uniform grid and to the right is the concentration 

profile obtained on the nonuniform adapted grid. The domain under consideration   has 

dimensions  4 km 4 km 1 km . The number of control volumes in the uniform grid is 

  160 160 40N . The number of control volumes in the adapted grid is   40 40 10N  

with the smallest grid size 
min

12.5 mh  and the effective grid size (average between the 

maximum and minimum grid sizes)  100 m
eff

h . The results are shown at time  10t  min. 

The accuracy of the numerical method is based on the spatial error norm [71], [72] given 

by  
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The log-log plot in Figure 19 shows the relative error (3.51) as a function of characteristic 

mesh size. Five grid levels are considered for the uniform grid (shown in blue in Figure 19), 

with  200,  100,  50,  25,  and 12.5h m. The effective grid size for nonuniform grid (shown 

in red in Figure 19) ranges from 25 m up to 200 m, with the smallest grid size 
min

12.5 mh

. The analysis shows higher accuracy of the non-uniform adapted grid at larger characteristic 

 
 

Figure 18. Grid adaptation verification: numerical solution vs. analytical formula. 



49 
 

mesh sizes. The larger is the characteristic mesh size, the smaller is the number of control 

volumes N  to be used. Smaller N  results in the faster implementation of the numerical 

scheme. Therefore, the use of the grid adaptation is beneficial and maintains the required 

accuracy of the estimation provided that the number of control volumes is limited due to the 

necessity to implement on-line computations.  

3.4 Numerical Simulation of UAV Dynamics and Guidance 
The UAV state vector follows Eq. Error! Reference source not found. and is 

        
T

g
t X Y Z Vp   (3.52) 

The commanded input vector follows Eq. (2.58) and is 

     
T

L
C Tu   (3.53) 

In order to integrate in time numerically the state vector, given the vector of commands, 

it is necessary to calculate all the values used in the dynamic model (2.42). Given the values 

for the ground speed 
g

V , course angle   and flight path angle   at the current time step, the 

airspeed magnitude 
a

V  can be expressed from Eq. (2.33). The heading angle   is then 

calculated using Eq. (2.34) and Eq. (2.35). Finally, the system of ODEs (2.42), that can be 

written in the vector form as 

 
 

Figure 19. Relative error as a function of characteristic mesh size. 
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    ,f tp   (3.54) 

supplemented with Eq. (2.43) and Eq. (2.44) is integrated using 4th order Runge-Kutta method 

to yield the new state vector: 
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1 1 2 3 4
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6k k
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where 
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  (3.56) 

For the flight visualization, the Euler angles   and   should be calculated in addition to 

bank angle  , which is a given control input. To calculate the heading angle  , the same steps 

are implemented as before, i.e. the airspeed magnitude 
a

V  and the air-mass-referenced flight 

path angle 
a
 are recalculated using Eq. (2.33) and Eq. (2.34) accordingly to be used in Eq. 

(2.35) The pitch angle   results from Eq. (2.30), where the angle of attack   is calculated 

based on the control input 
L

C  and Eq. (2.45).  
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Chapter 4 Results 

4.1 Simulation Parameters 
The approach presented is applied to gas releases in the atmosphere under conditions 

specified in Table 2 for a stationary source and a moving aerial source.  

The UAV is modeled using physical parameters for the Aerosonde® UAV shown in Table 

3 [45] and summarized below. 

 The domain under consideration has dimensions    4km 4km 1km . The 

advection-diffusion equation (2.13) is discretized with   200 200 50N  finite volumes. 

The number of finite volumes for the discretization of the estimator (2.18) is 

  80 80 20N  with the minimum grid size  20 mdl . The sensor is assumed to provide 

noiseless measurements with the time response of 1.5-2 seconds and concentration range 
 

  
1010 ,1  kg/m3. 

Table 2. Atmospheric parameters 

Parameter Value Parameter Value 

Density ρ 1.2922 kg/m3 Eddy diffusivity KXX 20 m2/s 

Wind speed U [7,9] m/s Eddy diffusivity KYY 20 m2/s 

Wind speed V 0 m/s Eddy diffusivity KZZ 10 m2/s 

Wind speed W 0 m/s   

 

Table 3 UAV Specifications. 

Parameter Value Parameter Value 

Mass M 13.5 kg Oswald efficiency factor e 0.9 

Planform area S 0.55 m2 Parasitic drag coefficient 
pDC  0.0437 

Wingspan b 2.8956 m Lift coefficient in stall 
st
LC  1.632 

Cruise speed 25-30 m/s Maximum thrust Tmax 50 N 

Maximum speed 33 m/s Maximum bank max  o30  
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4.2 Aerosonde® UAV 
The Aerosonde UAV shown in Figure 20 has a wingspan of 2.9 m and weight of 13-15 

kg.  It is powered by 24cc fuel injected, premium unleaded gasoline. The cruise speed ranges 

from 20 to 40 m/s. The maximum flight duration is about 30 hours with the distance 

approximately 3,000 km. The maximum altitude ranges from 0.1 to 6 km depending on 

payload. The payload is up to 2 kg. The Aerosonde UAV is navigated by GPS and 

communicates via UHF radio or LEO satellite. One distinguishing feature of the Aerosonde 

UAV is the rear propeller, which allows for atmospheric measurements before air is disturbed 

by propeller. 

The advantages of the Aerosonde UAV for our application are the following: it was 

designed specifically with scientific research applications in mind: data is high in quality as a 

result and all parameters related to the UAV are under control by the user; the relatively slow 

speed of the Aerosonde (20 to 40 m/s) allows instruments onboard to collect data at a great 

sampling rate; it is able to fly very close to the surface thus collecting very high resolution 

data. 

Among the disadvantages the most crucial are the following:  the total payload when fully 

fueled is only 2 kg, limiting the weight of instruments the Aerosonde can carry; the Aerosonde 

does not have the capability to detect other UAVs, aircrafts, or other obstructions in order to 

avoid them. 

 

 
Figure 20. Aerosonde® UAV [45]. Copyright 2002, John Maurer jmaurer@hawaii.edu 

 

mailto:jmaurer@hawaii.edu
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The Aerosonde® UAV finds many applications such as validation of satellite-derived 

products: e.g. passive microwave sea ice concentrations and sea surface temperatures; support 

of in situ data collection efforts; imaging of sea ice in polar regions where conditions are 

hazardous; studying conditions leading to icing of an aircraft body during ~0°C temperatures 

and high humidity; development of technologies to prevent these conditions on aircraft 

carrying and being flown by humans (icing can potentially cause an airplane to stop 

functioning while in flight); atmospheric profiling and flux studies; mapping sea surface 

temperature at high resolutions using an infrared thermometer. In addition, micro-SAR can see 

through clouds and in the dark, thus being a good tool for mapping sea ice in polar regions at 

very a high resolution (~1-2 meters). The laser altimeter is used for producing highly detailed 

digital elevation models, which can be applied, for example, to study the mass balance of 

Greenland. Meteorological data can be collected for weather prediction and weather studies. 

Heavy storms can be flown into for these purposes as well, even into hurricanes. 

4.3 Single Sensor 

4.3.1 Stationary Source 
A stationary gas source is placed inside the domain at a point with coordinates 

       1.2km,2km,0.5 km
c c

t  releasing material continuously with  1 kg/su . The 

 
 

Figure 21. UAV trajectory for stationary source. 
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UAV, having no information about the source location and strength, starts patrolling the 

domain at a point with coordinates     0 2.8km,0.8 km,0.2 km
s

, following a constant-

climb orbit path with  flight path angle   o3  and orbit radius equal to 0.4 km. After 

approximately 280 seconds of simulation, the sensor detects a nonzero concentration, which 

results in the activation of the estimation algorithm and thus switches the control of the UAV. 

Since a nonzero concentration is detected, the UAV receives the control signals resulted from 

the desired ground speed components (Eq. (2.58)), which guide the UAV towards areas of 

larger estimation error. In the case of continuous gas release with constant release rate, this 

area contains the source location. Figure 21 illustrates the resulting UAV path in horizontal 

plane, vertical plane, and in three-dimensional view. Because of the physical constraints 

imposed on the UAV motion and the presence of a strong wind from west to east, the UAV 

may leave the source`s proximity and detect zero concentration. If the sensor reads zero 

measurements after the estimator activation, the UAV is driven towards the point of maximum 

estimated concentration provided by Eq. (2.18). Figure 5 shows the resulting trajectory 

adjustment due to this condition in the source`s proximity. 

The performance of the estimator is examined by calculating the RMS error of the 

estimated concentration vector. Although the source localization is not the primary goal of the 

present work, the fact that the guidance scheme moves the UAV towards the location of the 

 
 
Figure 22. Estimator performance analysis for a stationary source. (Left) the RMS error vs. time; 

(right)  distance between UAV and source. 
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continuously-releasing source proves that the control signals indeed guide the sensor towards 

the area of larger estimation error. Therefore, every time the UAV sensor takes a measurement, 

the estimator provides a more accurate reconstruction of the gaseous plume. The RMS 

concentration error is shown in Figure 22 (left) as a function of time and the evolution of 

distance between the source and the UAV is shown in Figure 22 (right). Oscillations in the 

RMS error are due to the time that the UAV takes to reach the next desired location and the 

sensor time response. Spikes at the end of both plots in Figure 22 are due to the UAV looping 

in the source`s proximity. 

 
 
Figure 23. Comparison between estimated plume concentration (left) and simulated concentration 

(right) for a stationary aerial source at various times. 
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The estimated concentration of the gaseous plume is compared with the simulated data 

and presented in Figure 23 for different time instances. It is seen that by the end of the 

simulation time the shape of the estimated plume becomes closer to the shape of the “real” 

plume. 

 
 

Figure 25. Estimator performance for a moving; (Left) RMS error vs. time; (Right) distance 
between the UAV and the source. 

 

 
Figure 24. UAV trajectory for a source moving along an arc trajectory. 



57 
 

4.3.2 Source Moving along an Arc Trajectory 
In this application, the gas source is moving along an arc trajectory maintaining a constant 

altitude with the rate of release  1 kg/su . The UAV starts patrolling the domain at a point 

with coordinates     0 3.2km,2.0 km,0.2 km
s

following the constant-climb orbit path 

with the flight path angle   o3  and the orbit radius equal to 0.4 km. The activation of the 

 
 
Figure 26. Comparison between estimated plume concentration (left) and simulated concentration 

(right) for a source moving along an arc trajectory. 
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estimator occurs after 190 seconds of simulation, when the sensor detects a nonzero 

concentration. The total simulation time is 420 seconds.  

Figure 24 shows the resulting UAV trajectory. It is seen that the UAV is able to reproduce 

approximately the source`s trajectory. However, it stays at some distance to the east of the 

source, which is explained by the wind direction. The evolution of the RMS concentration error 

and the distance between the UAV and the source are shown in Figure 25. In this case, the 

UAV follows the source and after detecting a concentration with its sensor, the distance 

between the UAV and the source decreases until the end of the simulation process. 

Figure 26 compares the estimated concentration of the gaseous plume to the simulated 

data (plant) at different time instances. Once again, it is observed that by the end of the 

simulation time the shape of the estimated plume becomes closer to the shape of the “real” 

plume.  

4.3.3 Source Moving across the Domain with Altering Altitude 
In this application, the gas source is moving across the domain, with its altitude changing 

as a sine function. The rate of release  1 kg/su . Unlike previously considered examples 

(where the wind speed was taken to be 7 m/s), the wind speed for this case is 9 m/s. The UAV 

starts patrolling the domain at a point with coordinates     0 2.4km,2.8 km,0.2 km
s

 
 

Figure 27. UAV trajectory for a source moving across the domain. 
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following the constant-climb orbit path with the flight path angle   o3  and the orbit radius 

equal to 0.4 km. It takes approximately 140 seconds for the sensor to detect a concentration 

above the threshold. The total simulation time in this case is 480 seconds. 

Figure 27 shows the resulting UAV trajectory. The UAV is able to follow the source. 

However, at the end of the simulation time it tends to move upwind (recall that the wind speed 

is 9 m/s, whereas the Aerosonde® UAV cruise speed is about 30 m/s). The estimator 

performance analysis is presented in Figure 28. As time increases, the RMS error decreases, 

which is indicative of convergence of the proposed approach. For a couple of moments during 

the simulation time, the distance between the sensor and the source comes to zero. This requires 

additional algorithms for collision avoidance. 

Figure 29 presents visualization of the “real” and estimated plumes for several time 

moments.  

 
 
Figure 28. Estimator performance analysis for a source moving across the domain. (Left) the RMS 

error vs. time; (right) distance between UAV and source. 
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4.3.4 Ground-Based Source 
In this application the real-time prediction of gas contaminant concentration from a ground 

intruder using UAV is examined. In this case the computational domain considered  has 

dimensions different from the other tested scenarios and equal to  3000m 3000m 600m . 

The wind speed is calculated according to Eq. (2.15) with  5m
r

Z  and  0.15m ; 

  0V W . The estimator is approximated with   30 30 40N  volumes, so that the 

 
 
Figure 29. Comparison between estimated plume concentration (left) and simulated concentration 

(right) for a source moving across the domain. 
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computational grid is adapted only in the X  and Y  directions and remains uniform in the Z  

direction. The minimum grid size in the adapted grid is  15 mdl . The sensor is assumed to 

provide noiseless measurements with 1 second time response.  

In the examined scenario, the intruder is moving across the domain from the North-West 

to the South-East corner, releasing gas with a rate of 1 kg/s. The UAV starts patrolling the 

domain downwind following a circular path of 400 m radius, at an altitude of 120 m. It takes 

approximately 190 seconds for the plume to reach the sensor. After that, the UAV receives the 

control signals to follow the desired Cartesian velocities (2.55). The UAV can fly as low as 10 

m. If at any moment after the activation of the estimator, the sensor has a zero reading, it means 

that the UAV moved upwind and lost the plume. In this case, the guidance scheme is adjusted 

so that the sensor follows the maximum estimated concentration, thus returning to an area of 

nonzero concentration measurements. Figure 32 shows the resulting UAV trajectory. As it is 

seen, the UAV is moving towards the intruder with oscillations caused by the wind direction, 

the sensor time response, and the time required for the UAV to complete a maneuver. The 

loops in the trajectory are due to the fact that the sensor leaves the plume moving upwind and 

it takes several time iterations to return it back to the source’s proximity. 

  

 
 

Figure 30. UAV trajectory: red line – UAV path; green line – intruder. 
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The estimator performance is quantified by the behavior of the normalized RMS error, 

which measures the difference between the estimated and true concentration field, and the 

distance between the sensor and the intruder. Figure 32 shows the normalized RMS error as a 

function of time. As it is observed, the RMS drops rapidly after the estimator activation and 

 
 

Figure 32. Normalized root-mean-square error vs. time. 

 
 

Figure 31. Distance between the sensor and the source vs. time. 
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stays on average within 10%. The oscillations are due to the fact that the source is releasing 

material continuously. The spikes around 360s, 400s and 460s are explained by the fact that 

the UAV looses the source’s proximity, and it takes several seconds for it to relocate the plume. 

Figure 31 shows the distance between the sensor and the source as a function of time. It is seen 

 
 

Figure 33. Evolution of the estimated plume from 240s to 480s with 80s increments. 
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that the sensor approaches the gaseous source, which proves that the proposed guidance 

scheme indeed moves the UAV towards the larger estimation error that coincides with the 

source location in the case of continuous release. 

 Figure 33 shows the real-time estimates of gas concentration from a ground mobile 

source. 

4.4 Multiple Sensors 
For the “practical” application of the suggested estimation approach the concentration 

gradients are estimated using multiple sensor readings. In Section 2.4.6 we suggest to take 

advantage of the additional measurements and to include them into the estimator (2.18). The 

performance of the estimation algorithm is tested numerically for this case. The sensors are 

assumed to be attached to different UAVs that maintain a rigid formation during the whole 

simulation time. The distance dl  between the leader UAV and a follower is equal in all the 

directions X , Y , and Z , and is dictated by the numerical resolution of the process model 

equation (2.13). However, in a real life situation, such parameter would be chosen based on 

the advection length-scale  
a

Ut  and diffusion length-scale  
d

Kt  in order to give the 

meaningful gradient.  

 
 
Figure 34. Comparison of the trajectory in case of the concentration estimation with a single sensor 

and with multiple sensors. 
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In the first considered case the source is moving across the domain. The wind speed is 9 

m/s, the total simulation time is 360 seconds. The results are shown in comparison with the 

single sensor case, provided that a single sensor has full knowledge of concentration and 

concentration gradients at its location.  

Figure 34 shows the resulting trajectory for a single sensor and the sensor formation. In 

the first case, the trajectory results from the guidance scheme (2.55), and in the second case it 

results from Eq. (2.67) with constant  ’s. It is seen that the flying formation is more successful 

in chasing the source by the end of the simulation time. The corresponding distance between 

the sensor and the source is shown in Figure 36.  

The concentration error normalized by the total amount of material released is shown in 

Figure 35. Specifically, the last minute of the simulation is zoomed in order to clearly show 

the oscillations. It is seen that the oscillations are smaller in case of multiple sensors. 

Another example is considered for application of the multiple sensors. In this case, the 

source is moving along an arc trajectory, similar to Section 4.3.2. The simulation time in this 

case is 420 seconds. The trajectory and the corresponding distance between the sensor and 

 
 

Figure 35. The normalized concentration error versus time for the case of a single sensor and the 
case of multiple sensors. 
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source for this case is shown in Figure 38 and Figure 37 accordingly. Similar to the previous 

example, the flight formation improves the estimation approach by the end of the simulation 

time as compared to a single sensor.  

 

 
 

Figure 36. The distance between the sensor and source versus time for the case of a single sensor 
and the case of multiple sensors. 
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Figure 38. Comparison of the trajectory in case of the concentration estimation with a single sensor 

and with multiple sensors; the source is moving along an arc trajectory. 

 
 

Figure 37. The distance between the sensor and source versus time for the case of a single sensor 
and the case of multiple sensors; the source is moving along an arc trajectory. 
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Chapter 5. Summary, Conclusions and Recommendations 

for Future Work 

5.1 Summary 
This dissertation expanded the earlier work [18], [19], [20], [21], [22], [23], [24], [25] on 

a coupled CFD-control approach that provides the real-time estimate of a gaseous plume in the 

atmosphere presented by an UAV equipped with sensors. These developments involve the 

mathematical model, the computational model and the applications, and have been presented 

also in [39], [40], [41], [42]. The mathematical model for the process of gas release was 

extended to a 3D unsteady advection-diffusion equation and it was implemented numerically 

using a finite volume method. The numerical implementation was supplemented with a total 

variation diminishing scheme for the advection term. The numerical code created in Fortran 

90 considers different source trajectories and release types (pulsed or continuous), and different 

models for winds and eddy diffusivities. The sensor model was expanded to a 3D case and 

implemented given a specific response time and sensitivity range. A 3D dynamical model for 

the UAV was developed and implemented in the code. The guidance law based on the 

Lyapunov redesign methods was modified in such a way, that the Lyapunov function resulted 

in the desired direction for the vehicle. A lower-level controller in turn provided the UAV with 

the inputs that a pilot commonly controls: thrust, lift, and bank angle. For the purpose of 

numerical efficiency in the real-time tracking problem, the algorithm for the computational 

grid adaptation was developed. According to this algorithm, the computational grid is adapted 

continuously, thus keeping an area of high resolution near the sensor. The desired direction, 

namely Cartesian velocity components for the UAV, was expressed in terms of the 

concentration error gradient. The concentration error gradient was calculated using multiple 

concentration sensors, which were assumed to be attached to different vehicles that maintain a 

rigid flying formation around a leader-UAV. The measurements from additional sensors were 

included in a 3D estimator model via the use of the observation operator given by the 7-

dimensional vector. The approach was tested as applied to different source trajectories using 

physical parameters of the Aerosonde® UAV. The applications included detection of a ground-
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based intruder, and an aerial source. In addition, the case of a flying formation for estimation 

of the concentration plume as well as the source proximity was examined. 

Figure 39 shows the main steps of the approach implementation. The plume is assumed to 

be generated by a moving aerial source with unknown strength and location, and is modeled 

by the unsteady advection-diffusion equation with winds and eddy diffusivities. The UAV 

equipped with concentration sensors patrols the domain and collects sensor readings. As soon 

as the sensor reads the data above a certain threshold, the estimator is activated. The estimated 

concentration results from the numerical solution of the advection-diffusion equation 

supplemented with the concentration sensor readings. The approach couples the UAV 

guidance with the performance of the estimator through the state (concentration) estimation 

error. Via the appropriate choice of the Lyapunov function for the resulting state estimation 

error the estimation scheme provides the desired Cartesian velocities of the UAV. A lower-

level controller in turn accepts these desired velocities as reference inputs and provides the 

control signals to the UAV in order to follow the desired velocities. As a result, the UAV 

moves towards the areas with the maximum estimation error. The finite-volume discretization 

of the estimator incorporates a second-order total variation diminishing scheme (TVD) for the 

 
 

Figure 39.Flow chart of the approach. 
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advection term. To achieve greater computational efficiency, the computational grid for the 

estimator is adapted dynamically with local grid-refinement centered at the UAV location. 

 

5.2 Conclusions 
The mathematical model for the advection-diffusion equation, for the point-sensor 

measurements, as well as for the Luenberger observer estimator was expanded to a 3D case. 

The 3D dynamical model was developed for the UAV. The guidance law for the UAV was 

modified in order to provide the control inputs in terms of the values that a pilot commonly 

controls: engine thrust, lift, and bank angle. The gradient measurement issue was addressed by 

using multiple sensors. The estimator was modified to include multiple sensor readings. 

Numerically, the discretization of the advection-diffusion equation was improved by adding 

total variation diminishing scheme for the advection term. In addition, the equation was solved 

using more sophisticated computational grid adaptation approach. The computational grid was 

adapted continuously during the simulation time to provide higher resolution near the sensor 

location. The 3D UAV dynamical model was implemented numerically, and the aircraft 

response to the control inputs based on the estimator performance was visualized. The 

approach was tested using physical parameters of the Aerosonde® UAV for different source 

trajectories and atmospheric conditions. As part of the project, the approach was applied to a 

realistic scenario of a ground-based intruder. Finally, the approach was tested using additional 

sensor readings meant for calculation of the concentration gradient in the estimator. 

5.3 Recommendations for Future Work  
The following discussion presents potential directions for future work. 

• The simulation studies presented in this work were implemented using realistic 

sensor characteristics, such as sensitivity and time response. However, an 

important assumption of noiseless sensor readings was made. Further 

improvement of the approach implies the inclusion of the sensor noise. One may 

view a matrix   in Eq. (2.63) as a version of this, if one assumes that the filter 

covariance operator (or matrix) is identity, and then   becomes the sensor noise 

covariance. 



71 
 

• The simulation results were obtained taking into account the sensor response time. 

As a part of the future work, the sensor time response should be included in the 

mathematical model. 

• Another possible direction for the future work is the modification of the estimator 

model. One may consider using a Kalman-based estimator instead of a Luenberger 

observer design. 

• The UAV flight visualization shows some erratic motion, which is due to the fact 

that the UAV receives the new control signal every time the new measurements 

are taken. This means that every 1.5-2 seconds the new control signals are 

generated. At that, the new desired direction may be opposite to the previous one, 

which causes the UAV to turn around as fast as possible. The implemented 

visualization smoothens these turns by imposing constraints on the rotation rates 

of the UAV. In future work, a more sophisticated filtering algorithm may be 

suggested for this problem. 

• The distance dl  between the leader UAV and a follower used to calculate the 

concentration gradient can be altered throughout the process to account for the 

changes in the wind speed. For this reason, a guidance model for a flying formation 

should be developed. 

• Since the ultimate goal of this work is to develop the approach for the real-time 

gaseous plume estimation for the real world applications, such as detection of 

intruder or identification of the hazardous leakages, the future work should be 

aimed at setting up the experimental setup to test the approach proposed in this 

work. At first it can be implemented in enclosure using a ground-based robot with 

several concentration sensors attached to it. An open-air experiment that involves 

unmanned aerial vehicle would be the final step in this work.  
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