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Abstract

With the goal of making vast collections of open educational resources (YouTube,

Khan Academy, etc.) more useful to learners, we explored how automatically ex-

tractable text representations of math tutorial videos can help to categorize the

videos, search through them for specific content, and predict the individual learning

gains of students who watch them. In particular, (1) we devised novel text repre-

sentations, based on the output of an automatic speech recognition system, that

consider the frequency of different tokens (symbols, equations, etc.) as well as their

proximity from each other in the transcript. Unsupervised learning experiments,

conducted on 208 videos that explain 18 math problems about logarithms show

that the clustering accuracy of our proposed methods reaches 85%, surpassing that

of standard TF-IDF features (78% using log normalization). (2) In a video search

setting, the proposed text features can significantly reduce the number of videos

(up to 88% reduction on our dataset) and amount of video time (up to 82%) that

users need to spend looking for desired content in large video collections. Finally,

(3) in an experiment on Mechanical Turk with n = 541 participants who watched

a randomly assigned tutorial video between a pretest & posttest, the text features

and their multiplicative interactions with students’ prior knowledge provide a sta-

tistically significant benefit to predicting individual learning gains.
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Chapter 1

Introduction

Consider a large repository (Khan Academy, edX, etc.) of open educational re-

sources (OERs) such as tutorial videos, and a scenario in which the ultimate goal

is to help learners to learn by recommending relevant and high-quality content that

matches the students’ needs. In order to help learners to learn optimally, knowing

what the learner needs and providing the right content that suits them is crucial.

For the former (what is needed), we can ask for the student for a specific math prob-

lem they want to understand better; alternatively, we could estimate automatically

the most beneficial content by analyzing their performance on prior examinations

(e.g., if a student does not know much about topic i but they know a lot about

topic j, then a video about topic i is probably more useful for them than a video on

topic j ). For the latter (right content), a current challenge with contemporary OER

repositories is that the content within each resource is typically poorly annotated,

with tags that are too general, e.g., “algebra” or “linear equations” rather than

“Simplify log10 1000.”. Given the high labor and time involved in manual annota-

tion, it is desirable to devise methods of automatically analyzing OER content and

devising representations that can facilitate efficient search and categorization.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Two example videos in our study. For the bottom video, Google’s
Speech-to-Text API extracts the text “and we’re going to solve for x ok our problem
is log base 3 of x minus 1 equals 4 we’re good then log base B of X is equal to Y
and this is equivalent to B to the Y equals X”, which shows high agreement with
the visual content in the video.

To characterize math videos for their content, one could consider both visual

(what is shown) and auditory (what is said) representations. For the former, while

optimal character recognition and handwriting recognition are both mature fields,

they are typically evaluated in much more constrained settings than math tutori-

als, in which math is mixed with natural language, and extraneous lines and other

graphics can exist (see Figure 1.1). For example, PhotoMath, a population smart-

phone application that uses the phone’s camera to recognize and solve mathematical

equations, requires that the math expression be approximately pre-segmented. In

full-fledged tutorial videos, this segmentation can be very challenging.

Our research focuses instead on analyzing the speech transcript of the video

(while ignoring other potential audio characteristics such as background noise, pitch,

etc.). When a particular expression or equation is presented in a video, there is a

high chance that the speaker will also say that expression/equation out-loud to the

learners (Figure 1.1). Rather than manually transcribing the text from the video,

we consider only fully automatic approaches based on automatic speech recogni-

tion (ASR; we used the Google Speech-to-Text API in our work). Hence, the

text representations we explore must contend with imperfect transcripts. We then

2



CHAPTER 1. INTRODUCTION

assess the utility of the proposed representations for three tasks: (1) cluster the

videos automatically into the specific math problems that they explain; (2) search

through a library of videos for one that explains a particular math problem; and

(3) predict the individual learning gains of students who watch the videos in a

pretest/treatment/posttest paradigm. In these ways, we hope to make available to

students the right content that is already available, but not easily findable, among

large-scale OER repositories.

We conduct our investigation on a collection [1] of math tutorial videos about

logarithms, and another dataset from YouTube on basic algebra. Our goal is not

just to make coarse distinctions between videos about “algebra” versus “geometry”,

but rather fine-grained distinctions about specific math problems. Mirroring our

goals from the previous paragraph, our research questions are the following:

RQ1: How accurately can the devised text features cluster math tutorial videos

into fine-grained categories about the specific problem they are solving, and which

aspects of these representations are most important?

RQ2: By how much can we reduce the search time of a user who wants to find

a relevant video?

RQ3: Are the text features predictive of the individual learning gains of students

who watch these videos in a pretest/posttest setting?

3



Chapter 2

Background

2.1 Text Representations

There are several prominent text representations used for language modeling: (1)

Term frequency and Inverse document frequency (TF-IDF) [2]: It characterizes each

of a set of documents by the relative frequencies of a finite set of tokens contained

within them. TF-IDF has several variants depending on the functions used to com-

pute the TF (e.g., raw count, binarized count) and IDF components (e.g., log).

TF-IDF features typically do not require training and are thus suitable for unsuper-

vised settings. The representation is usually easy and efficient to compute, and it

lends itself to bag-of-words models for downstream classification. (2) Word embed-

ding models [3], [4]: These models are based on neural networks that are trained

using supervised learning; they map each token into a real-valued vector whose lo-

cation in an embedding space carries semantic meaning. (3) Sentence-level language

models such as BERT [3]: These are also based on neural networks, but in contrast

to the first two feature types, they operate on whole sentences and can thus capture

higher-order semantics.
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CHAPTER 2. BACKGROUND

2.2 Video Content Categorization & Clustering

For categorizing video content automatically, much of the prior work has focused on

classifying films into their high-level genres [5], [6] rather than highly specific content

like we pursue. One example of classifying videos into narrower sub-categories is by

[7], who focus on sports videos. Most prior methods on video categorization focus on

visual aspects such as frame transitions, object detection and segmentation. Some

as them include the audio (e.g. [5]) such as the audio frequency and amplitude

statistics as an additional feature. We are unaware of any previous research that

clustered video content at the low-level tags of individual math problems.

2.3 Video Retrieval

As OER repositories have grown dramatically during the past 10 years, there has

been increasing interest in the task of video retrieval. Many works in this area

have pursued combined feature representations with both textual and visual infor-

mation [8]–[10]. Yang et al. [9] proposed a method combining Optical Character

Recognition (OCR) and ASR to help learners search for specific keyword in German

lectures. Hürst [10] found that the lecture slides are more useful than the corrected

transcriptions. In our work, while we focus solely on text representations that are

automatically extracted using ASR, the features we devise could be easily combined

with visual features.

2.4 Estimating the Effectiveness of OERs

For the task of estimating the effectiveness (e.g., associated learning gains) of viewing

tutorial videos, researchers have pursued various approaches, including estimating
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CHAPTER 2. BACKGROUND

their effectiveness through correlated measures such as engagement while watching

the video [11]–[13]. For estimating the effectiveness of OERs in general, one can

also use a combined experimental and reinforcement learning-based approach such

as bandit algorithms [14]. While Rafferty et al. [14], [15] suggested the poten-

tial use of context (for example, features of the OERs as well as of the students’

prior knowledge) for predicting learning gains, they did not actually pursue that

approach.
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Chapter 3

Text Representations

In this paper we explore unsupervised representations of the transcripts of math

tutorial videos. When designing the representations, we considered the following

characteristics: (1) Similar content should involve similar tokens. A math video

whose transcript consists of just “two plus three”, for example, is unlikely to be

similar to a video whose transcript is “four times x”. (2) The most important tokens

tend to recur within a video transcript. Conversely, tokens that are uttered only

once are often less important or even be transcription errors. (3) The relative order

of nearby tokens is important for deciphering the math content. For example, “four

over two” and “two over four” are different fractions, but the difference is reflected

only in the relative order of tokens, not in their frequencies. For characteristics

(1) and (2) above, we created several variations of “1D” text representations that

capture which tokens occur more frequently in each video. With the additional

characteristic (3), we also explored “2D” text representations that can capture the

relative order within a fixed radius from token i w.r.t. token j for each (i, j) pair.

The straightforward way to extract text features that represent the tutorial

videos’ content is to find the sequence of words that constitute each math equa-

7



CHAPTER 3. TEXT REPRESENTATIONS

tion or expression. For example, in Figure 1.1 (right), the text in the blue box “log

base 3 of x minus 1 equals 4” will be considered as one expression. Nevertheless,

we note that extracting the precise mathematical expression or equation from the

transcript is inherently ambiguous. For example, the two distinct expressions 2x+2

and 2x + 2 would likely both be spoken as “two to the x plus two”, which is in-

distinguishable without the visual perception. Fortunately, our objective is not to

capture the math content perfectly, but to capture enough of it to enable effective

clustering, search, and prediction of learning gains.

3.1 Speech-to-Text Transcription

All the feature types we explore are based on obtaining an approximate transcript

of the video from an ASR. In particular, we use Google Speech-to-Text API. As a

pilot test of its accuracy on the OERs in our dataset, we manually annotated 10

videos (in total of 3044 words in the ground-truth transcripts) and compared it to

the ASR. Google’s API achieved a word error rate (WER) of 5%, which intuitively

seemed sufficient for our purposes. An example of extracted speech is shown in

Figure 1.1 (caption). After obtaining the transcript for each video in our collection,

we then tokenized it and summarized the token frequencies.

3.2 Token Types

3.2.1 Individual Token

As our simplest representation, we call each word (separated by space) a token, and

then we count the number of math-related tokens. For example, if the transcript

contains “hello everyone today we will solve the equation log of 5 base 10”, it

8



CHAPTER 3. TEXT REPRESENTATIONS

gets tokenized to the sequence (‘hello’, ‘everyone’, ‘today’, ‘we’, ‘will’, ‘solve’, ‘the’,

‘equation’, ‘log’, ‘of’, ‘5’, ‘base’, ‘10’). Next, we removed all token that are not

math-related, defined as: (1) numbers (digit-only), (2) operations (e.g. +,−,×),

or (3) variables (an alphabet). For the operations, we map synonyms to the same

token, e.g., ‘plus’ to ‘+’, ‘to the [power]’ to ‘^’. Additionally, we add the words

corresponding to each digit 0 to 9 (i.e. ‘zero’, . . . , ‘nine’) as math-related tokens.

For variables, we used a restricted alphabet consisting of {b, c, n,m,w, x, y, z} (we

omitted ’a’ since it is also a common English word), which we found worked better

than a− z.

3.2.2 Expression Token

To infer which math problem a video presents, it might be useful to extract the entire

equation or expression, not only the variables and numbers. For example, “2 plus 3”

could be considered as one token ‘2+3’ not ‘2’, ‘+’, and ‘3’. We simply concatenated

the (adjacent) sequence of math-related tokens together in the alternate fashion:

literal, operator, literal, operator and so on. So, we had the text representation

where each index is the frequency of occurrences of each expression.

Specifically, this feature is extracted as follows. (1) We mark all tokens in the

transcript as either math-related or non-math-related. Tokens that are labeled as

math-related are literals (LIT) and operators (OP) in mathematics such as plus

(+), minus (−), square root, log, etc. (2) For each consecutive math-related token

sequence, we read each token one-by-one and concatenate each token into one math

expression by this specific rule: the math expression must start with LIT followed

by OP, LIT, OP, and so on (alternately). If, at some specific location where this

rule fails, we end and store the previous expression into our dictionary and start

over with the “new” expression parsing process continuing from where we are. For

9



CHAPTER 3. TEXT REPRESENTATIONS

example, if we have a text “x plus 2 equals 4 and 6 − y = 5”, the total of 2 expression

tokens will be tokenized: ‘x + 2 = 4’ and ‘6 − y = 5’ because the rule fails when

encounter the word ‘and’ so it wraps up the previous expression up to that point as

one expression token and starts to look for the new expression. Not that it cannot

capture some math expressions if there exists random (non-math-related) tokens

interrupt in between the literals and operators.

3.3 Token Count Vector

Given the sequence of tokens in each video, we then compute either a 1D vector

or 2D matrix of frequency statistics (which are finally summarized as described in

Section 3.4. In the subsections below we let T be the set of all tokens that appear

in any of the videos.

3.3.1 1D (No Order Dependencies)

The count vector of each video contains |T | components, each of which records how

many times the corresponding token occurs in the video.

3.3.2 2D (First-Order Dependencies)

With the goal of encoding the relative order of tokens in the transcript, we also

tried a method based on computing a 2D matrix M , of size |T | × |T |, such that

Mij is the number of times that token i (if any) appears before token j (if any) in

the transcript. In this approach, we introduced a “radius” parameter k to limit the

distance of token pairs (i, j) that need to be considered. For example, if k = 4, all

token pairs (i, j) such that the distance between i and j is ≤ 4 will be counted,

otherwise, ignored.

10



CHAPTER 3. TEXT REPRESENTATIONS

Compared to the 1D approach, the 2D method is more powerful since it can

capture order dependencies. While there is a greater risk of overfitting (since there

are |T |2 features), it may offer an advantage on larger datasets.

3.4 Token Summarization Methods

Given the token count vector computed in Section 3.3, we then summarize each

count x using a summarization function f . We considered the following functions:

• Raw Frequencies: In the simplest implementation, we let f(x) = x.

• Binarized Frequencies: Binarizing the counts x might be less susceptible

to noise; hence, we tried setting: f(x) = 1 if x ≥ 1 and f(x) = 0 if x = 0.

• Weighted Frequencies: It might be beneficial to weight down tokens which

appears only once because tokens that appear only once during the extraction

process in each video might be noise. In other words, if the token appears

only once (we call it t=1) in a video, its weight will be weighted lower than

tokens that appear more than once (t>1). Intuitively, important tokens should

be mentioned multiple times in the video; token found only once are either

insignificant or incorrectly extracted. Instead of removing t=1, we introduced

the parameter r to downweight t=1. In this case, instead of having the raw

frequencies, We fixed the weight of t>1 as 1; however, we downweight t=1 by r

(e.g. if r = 2, the weight of t=1 will be 1/2 = 0.5). We thus let f(x) = 1/r if

x = 1, f(x) = 0 if x = 0, and f(x) = 1 if x > 1. Note that when r = 1, this

can be seen as Binarized counts.

11



CHAPTER 3. TEXT REPRESENTATIONS

3.5 Fixed-Size Representation (Dataset Indepen-

dent)

Due to the potential of instability in vector representation size of the dataset depen-

dent representation (previous methods), we introduce data independent representa-

tion (i.e. it would not be affected by the dataset in terms of vector representation

size). The high-level idea is that we will consider the numbers and letters ‘a’ to ‘z’

as tokens. We then count the frequency for each variable, but for the numbers, since

numbers are the infinite set we will look at each digit (0 to 9) in each location (e.g.

ones, tens) instead. Note that the representation also depends on the maximum

number of digits of the numbers. But we can enlarge the digit dimension by a little

amount to capture more digits if needed, e.g., increasing the dimension from 10 to

11 can capture all 11-digit numbers.

The algorithm works as follows: Let any integer n that occurs in the video be

represented as
∑k

i=0 c(i)10i, where c gives the coefficient for the i-th power of 10.

We can then represent this number with a sparse matrix A that has a value of 1 at

each location (c(i), i), ∀1 ≤ i ≤ k. We then flatten this matrix into a 10 ∗k-element

vector. Note that this representation has some weaknesses that it cannot distinguish

the difference in some scenarios such as between having 23 and 45, and having 25

and 43. The representations of both scenarios would be exactly the same.

12



Chapter 4

Dataset

We applied the text representations above to two sets of math tutorial videos: (1)

Logarithms and (2) Algebra.

Logarithms: This is the dataset collected by Whitehill & Seltzer [1], which

contains both a repository of 208 math tutorial videos about logarithms. Most

videos are between 1-3 minutes long. In total the collection spans 18 logarithm

problems, with 9 to 17 videos per problem. Relevant only to Section 7, the dataset

also contains students’ pretest and posttest scores of 541 participants from Amazon

Mechanical Turk who watched the videos. There are 226 males, 207 females, and 108

of undefined, with the average age of 33.71 ±9.84. Specifically, each participants

were asked to answer 19 logarithm pretest problems, which was classified into 3

main categories: (1) the logarithmic term without variables e.g. log9 1, (2) the

logarithmic term with variables e.g. logw
1
w

, and (3) the logarithmic equation e.g.

solve for x where x log4 16 = 3 (category 1, 2 and 3 contain 102, 61, and 45 videos,

respectively). Then, they were assigned to one random video among 208 logarithm

tutorial videos, and were asked to complete a posttest (same level of difficulty as

the pretest but slightly different problems).

13



CHAPTER 4. DATASET

Algebra: For the search task, we collected another dataset, containing 234

algebra math tutorials on Youtube (because we need many different math problems

for the retrieval task). As of 234 videos, 213 of them contains one math problem

and 21 of them contains multiple math problems (total of 87 math equations). We

manually annotated which equation (e.g. 2x2− 2x− 12 = 0, x+ 7 = 10) each video

explains. For videos that contain multiple math problems, we marked the start end

time of each problem.

14



Chapter 5

Clustering: Video Categorization

Given the different feature types described above, we test whether they serve as

an effective basis for clustering the videos. In this section, as ground-truth cluster

labels, we took the math problem (there were K = 18 unique problems in total)

that each video explained as its label. Note, however, that we could also cluster the

videos by the category of problems that they explain (see Chapter 4); we do so in

Chapter 7.

Methods: For each of the different text representations, we applied K-means

clustering to group the videos into K = 18 clusters, followed by the Hungarian

algorithm [16] to optimally match from the estimated cluster indices to the ground-

truth indices. Since K-means converges to different local minima depending on the

random initialization, we executed the algorithm 512 times and then applied one

of two alternative methods for evaluation: (1) We computed the accuracy for the

clustering with lowest sum of squared distances; and (2) we computed the average

over all 512 trials. As a baseline, we considered a method (averaged over 512 sim-

ulations) that “knows” the size of each cluster according to the ground-truth labels

and then randomly assigns videos to the clusters.

15



CHAPTER 5. CLUSTERING: VIDEO CATEGORIZATION

Results: Table 5.1 shows the clustering accuracy results. We found that the

clustering with lowest associated sum of squared errors (SSE) typically gave better

accuracy than an average of random local minimum chosen from a set of 512 cen-

troids. We thus report the accuracy of best local minima alone. All three methods

yield accuracies that are much greater than the random baseline, which achieved

only 18.27% accuracy.

5.1 Feature Modifications

5.1.1 Binarizing Token Counts

The results improve significantly on the frequency counts for all methods (column

2 in Table 5.1), suggesting that the binary representation is more robust against

overfitting.

5.1.2 Weighted Frequencies

We tried multiple values of r, e.g., r = 2, 4, 8. Note that r = 1 is equivalent to

the Binarized Token Counts. We also added r = 0.5, 0.25; this contrasts with our

intuition for when it weights t=1 more; we added this as a sanity check that the

accuracy should be getting worse. Table 5.1 shows that the weighted frequencies

increase the accuracy significantly up by 10% on average. r = 2 performs the best

among r = 2, 4, 8. As r gets larger, we see a slight decrease in accuracy. When

r = 0.5, 0.25, the accuracy decreases markedly.

16



CHAPTER 5. CLUSTERING: VIDEO CATEGORIZATION

Table 5.1: The Clustering Percent Accuracy (%)

Math Variables Unrestricted: a - z Restricted: b, c, n, m, w, x, y, z

Methods Simple Binarized
Weighted (r)

TF log norm
0.5 1 2

Individual (3.2.1) 48.56 63.46 42.79 63.94 68.28 73.56

Expression (3.2.2) 53.85 68.75 50.48 75.00 83.65 78.67

Fixed-Size (3.5) 45.19 65.87 51.92 65.87 70.67 71.63

Column 1 2 4 5

5.1.3 Restricting the Alphabet

For all three tokenization methods, using a restricted alphabet delivered accuracy

that was at least as good as with the whole set of math tokens; compare the r = 1

column under “Weighted” under the restricted alphabet columns (column 4), to the

“Binarized” column under the unrestricted alphabet (column 2).

5.1.4 1D vs. 2D

Table 5.2 shows clustering accuracy with the 2D approach. For the radius k = 2

on the Expression token (and using weighted frequencies with r = 2), the accuracy

increases around 2% compared to with 1D. However, we can see lots of variance in

the accuracy over the different k, and hence the advantage may not be statistically

reliable.
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CHAPTER 5. CLUSTERING: VIDEO CATEGORIZATION

Table 5.2: The Clustering Percent Accuracy (%) comparing 1D v.s. 2D Represen-
tations

Methods Dimension Weighted (r = 2)

Equation Token

1D 83.65

2D (k = 1) 83.65

2D (k = 2) 85.58

2D (k = 4) 75.96

2D (k = 8) 71.63

2D (k = 16) 73.56

2D (k = ∞) 51.44

5.2 Comparison to TF/IDF

Our 1D methods of building text representation (i.e., token summarization meth-

ods) can be seen as variations of TF-IDF, where only the TF term f(x) is used; in

other words, we used a constant 1 for the IDF term. (We experimented with several

IDF functions but found that they all worked worse than just 1.) The weighted

frequency scheme we tried can be seen as a coarse (piecewise-constant) approxima-

tion to the (smooth) log function commonly used as the TF function in TF-IDF.

Using TF-IDF (with log for TF and 1 for IDF) and Expression Tokens, the cluster-

ing achieved 78.67% for the Expression Token (down about 5% from our weighted

frequency method). For the Individual Tokens, it performed similarily in accuracy

compared to the weighted frequency methods. (See the “log” column in Table 5.1.)

In summary, the results provide some evidence that our text representations may

yield a worthwhile accuracy advantage over TF-IDF.
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Chapter 6

Searching

In this section we explore to what extent the text representations in Chapter 3

can enable a more efficient search through a large collection of tutorial videos for a

specific math problem. This could help to reduce the amount of time that students

need to filter through the millions of math YouTube videos to find the ones that

are most helpful. In pilot experiments, we found that contemporary video search

engines, even Youtube, do not consider the transcript when returning search results.

They mostly rely on the title, description, tags that authors of the video provided,

but not the content itself. Thus, it is an interesting question whether the proposed

feature representations might reduce a user’s search time to find the desired math

problem. Here, we describe two experiments in which we used text representations

to help the search task to reduce (1) the number of videos to watch, and (2) the

amount of time to watch.

6.1 Architecture

Using the text representations, we can build a simple search engine as follows: (1)

From each video i in a collection S, we transcribe its speech into text (using Google
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Table 6.1: The Percent Decrease in Number of Videos Watched

Methods Dimension Simple Binarized Weighted (r = 2)

Individual Token

1D 80.08 83.94 83.44

2D (k = 1) 80.80 85.61 84.20

2D (k = 2) 81.28 87.83 86.14

2D (k = 4) 80.49 86.73 87.79

2D (k = 8) 79.55 88.25 87.17

2D (k = 16) 79.20 87.95 87.95

2D (k = ∞) 77.80 84.82 84.29

Equation Token

1D 77.91 81.08 81.62

2D (k = 1) 77.66 80.63 81.25

2D (k = 2) 78.19 81.41 81.70

2D (k = 4) 78.44 82.89 82.78

2D (k = 8) 77.81 83.73 83.12

2D (k = 16) 76.38 83.48 83.00

2D (k = ∞) 73.59 81.15 80.93

ASR) and then extract its text representation vi. Then, (2) for any search query

(e.g., “Simplify: log4 16”), we likewise extract its text representation q using any of

the methods presented in Section 3. Finally, (3) we rank all the videos in S by the

cosine similarity between vi and q.

6.2 Number of Videos Watched

Here we assume that each video in S explains a single math problem. To make the

task interesting, assume that these problems are all part of a subdomain such as

“algebra” or “logarithms”; this focuses the search task on fine-grained (e.g., “log28”
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versus “log82”) rather than coarse-grained (algebra versus statistics) distinctions.

If the user wishes to find any video that explains a specific problem, then by just

randomly watching the videos one by one (which, after performing a keyword search,

is often how this is done), the expected number of videos they must watch is |S|/2.

How much does the search engine help to reduce the number of videos the user must

watch compared to this baseline? Due to page limits, we only present our main

findings.

Methods: The pipeline to test and evaluate is as follows: (1) For each algebra

equation we found in the video i from our dataset (see above), we turn them to a

search query, say qi. (2) We extract the text representations (using all methods pre-

sented in clustering problem, Section 5) from all t’s and q’s: t1, . . . , t213, q1, . . . , q213.

(3) For each qi, we ranked t’s by the highest of cosine similarity between their vec-

tors to the query vector qi, (4) then calculated the number of videos to watch (if we

watch them one by one from the list of t’s) before the correct one was found, say vi.

(5) We finally averaged v’s to be the final E[# of video to watch] and compared with

the random baseline (213/2 = 106.5 videos), which can be derived mathematically

as number of videos divided by 2.

Results on the Algebra dataset: On the 213 videos of the Algebra dataset

that explain exactly one problem, the search engine using the 2D Binarized Indi-

vidual Token (k = 8) can decrease the number of videos (compared to the baseline)

to watch by 88.25% (Table 6.1). The trends were that the 2D representations were

generally more effective, with a higher percentage decrease in search time for nearly

all the values of k that we tried. After k > 8, the performance started to drop. For

the 1D approach, the best text representation was TF-IDF (with log for TF and

identity for IDF); the reduction was slightly lower at 86.19%.

Results on the Logarithm dataset: For each of 18 logarithm problems, we
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search for any of the videos that solve that particular problem. Comparing the

results with random baseline, the results show the same trend as for the Algebra

dataset: The 2D Representation gives the best results. We found, for instance,

Binarized Individual Token yields the results of 89.96%, and 93.19% for 1D and

2D (k = 8), respectively. The same holds true for Weighted Expression Token

(r = 2) with the results of 91.25% and 93.20%. For the 1D approach, the best text

representation was TF-IDF (with log for TF and identity for IDF); the reduction

was slightly lower at 92.85%.

6.3 Amount of Time Watched

Here we consider a setting in which multiple math problems may be explained in a

single video. A search engine that can pinpoint which segment of a video explains

the solution could save the user significant time compared to watching the whole

video. For this setting, there is a trade-off between granularity and accuracy: the

search engine may be more accurate if the segment length is longer, but the user

can save more time if the segment returned to them by the search engine is shorter.

Hence, we introduced a segment length parameter, L. We divided each video into

multiple segments of length L (e.g. 15 secs, 30 secs, 1 mins, 2 mins, etc.). Each

segment has its own (sub-)transcript and its own problem that it explains. We can

thus conceptualize the task as similar to Section 6.2, but we treat each segment as its

own “video”. Our goal is to find any segment in the video that explains the problem

in the user’s query q. As a baseline, we used a simulation (repeated 20 times and

averaged) to estimate the sum of the segment lengths (in seconds) that a user would

have to watch before finding a segment that explains the desired problem.

Results on the Algebra dataset: We analyzed the 21 videos of the Algebra
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Figure 6.1: The decrease in time needed to find specific math content in a set of
math tutorial videos. Each line shows a different text representation over different
segment lengths used for evaluation.

dataset that contain multiple problems; in total, these videos explain 87 algebra

problems. We varied the segment length L over the set {15s, 30s, 1m, 2m, 4m}

(see Table 6.1). The results are consistent with Section 6.2, where the best text

representations were 2D Binarized Individual Token (k = 8). In particular, the

2D representations showed an advantage (compare the pairs of {blue, pink}’s solid

and dashed lines). We found that radius k = 8 for 2D Representation preforms best

across each method. For the Interval Length, the percent decrease, at L ∈ {30s, 1m},

in watch time is highest (i.e., the most helpful, see Figure 6.1). As L continues

to grow, the results go down and at L = 15s, the performance seems to drop.

This exemplifies the trade-off between (1) the segment length and (2) the available

information. For example, the segment length of 15 seconds might be more likely

to cut an equation into two parts so that it cannot be recognized.
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Learning gain prediction

In the previous sections, we showed that the proposed text representations can cap-

ture the video contents and thereby help to reduce the search time and cluster similar

videos together. In this section, we investigate whether the text representation can

be used to predict the learning gain of students who watch the videos as an edu-

cational intervention. The high-level idea is that the effectiveness of each tutorial

video can be estimated by the interaction of the content within the video and the

student’s prior knowledge. In contrast to some prior work that predicted the average

learning gains of a video over many students, here we tackle the arguably harder

problem of predicting individual learning gains of each student, measured as the

difference in test scores on the curriculum before and after watching the video. Our

goal is thus to investigate whether the text representations facilitate personalized

learning.

As described in Section 4, the Logarithms dataset contains pretest and posttest

scores of students who received one of the logarithm tutorial videos as an inter-

vention. Hence, we can use each participant’s pretest score, as well as the text

representation of the video they watched, as predictors to estimate their learning
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gains, i.e., posttest minus pretest score. Rather than use the text representation

as a feature vector itself, we instead use the category label assigned to the problem

(Chapter 5) by the clustering algorithm as a 0-1 indicator variable with an associ-

ated model coefficient; hence, our models can potentially find interactions between

gaps in a student’s prior knowledge and the topic that was explained in the video

they received.

7.1 Simple Linear Models

Let pij, j = 1, 2, 3, be student i’s prior knowledge (pretest score) within the 3 prob-

lem categories (j) on logarithms. Let cij, j = 1, 2, 3, be 0-1 indicator variables that

reflect whether student i’s assigned video belongs to each category j. (Note that

each video is assigned to exactly one of the three categories.) We can compute

cij using either (a) Manually Labeled Categories (MLC) from human annotators,

or (b) Automatically Labeled Categories (ALC) from the text representations and

clustering algorithm (Section 5).

Prediction Model 1: We first consider a linear prediction model in which the

individual learning gains (posttest minus pretest) yi is estimated by yi =
∑3

j=1 (wjpij)+

εi, where wj, j = 1, 2, 3 are model coefficients and εi is a sample from a 0-mean Gaus-

sian distribution. We then used an ANOVA to assess the predictive value of the

model.

Results: The prior knowledge has a statistically significant effect on the learning

gain (F1, 593 = 10.08, p = 1.754e− 06), with the Root Mean Square Error (RMSE)

of 0.479.

Prediction Model 2: Based on the results above, we constructed a second

model that considers multiplicative interactions between the student’s prior knowl-
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edge pij in each problem category and the cluster label cij of the student’s assigned

video: yi =
∑3

j=1 (wjpij + vjcij + uj(pij × cij))+εi. Importantly, this model contains

multiplicative interaction terms pij × cij.

Results: We found that the interaction pij × cij using MLC has a statistically

significant effect on the learning gain (F11, 582 = 5.839, p = 5.11e− 09), and so does

this interaction using ALC (F11, 582 = 6.425, p = 4.125e− 10). The RMSE is 0.464,

which is slightly better (about 3.1% relative decrease) compared to prediction model

1. Specifically, we found that, for example, u3 is negative and statistically significant

(p = 0.0005) in the ALC model. The negativity of u3 means that, if pi3× ci3 is low,

then the learning gain is high (and vice versa). In turn, pi3×ci3 is low either because

(1) pi3 is low and ci3 = 1, i.e., an individual knows little about topic 3 and receives a

tutorial about topic 3, yielding high learning gain; or (2) pi3 is high and ci3 = 0, i.e.,

an individual already understands topic 3 and receives on another (more helpful)

topic, yielding high learning gain.

The fact that both the MLC and ALC interactions were statistically significant

(albeit with only a small decrease in RMSE) is evidence that the text representations

can group videos in ways that predict their effectiveness for individual learners, and

that these text representations might serve as a useful context vector in bandit

algorithms [14].

7.2 Deeper Models

For the deeper model, we split up the data into a training and a testing portion,

and performed double student-wise cross-validation on the training portion to train

models, and then applied it to the testing portion. However, the results did not

suggest any consistent benefit of the deeper models compared to the simple linear
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ones. We describe the experiments and results in the following sections.

7.2.1 Model Architectures

As our goal is to analyze the effects of the feature and model types in predicting

learning gain, we build 3 simple neural network models: linear regression (LR), 1-

hidden-layer neural network (1NN) and 2-hidden-layer neural network (2NN). We

build the 1NN and 2NN with the following architecture: Input layer followed by

hidden layers using the ReLu activation. On each hidden layer, it is followed by

the dropout layer and finally the output layer is a dense layer maps to 1 final value

which is the normalized learning gain. We left the number of neurons in each hidden

layer and the dropout percentage as the hyperparameters at training time. We use

the mean squared error loss as our evaluation metrics

7.2.2 Implementation

We use double cross-validation techniques to run the model on 5 folds to benefit

from all the data. The inner cross-validation is for tuning the hyperparameter to

find the best hyperparameter, says h*, on each fold. While the outer cross-validation

will train the model on all training data each fold (i.e. 80% of entire set of data)

using h* as the hyperparameter and test on 20% left. We split the data (fix the

seed so that every time we run we get the same splits) using two scenarios described

before: (1) predicting learning gain (of new students) from existing videos and (2)

predicting learning gain (of new students) from new videos. We will split the data

into 5 folds randomly in scenario 1. The same is applied to scenario 2, but we will

make sure that the sets of videos in training and testing set are disjoint. This means

that the videos in the test set have never been trained on before, which represents

the new video term we mentioned in scenario 2. Finally, we average the correlations
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of the predicted learning gain versus the ground truth among all 5 folds.

Our hyperparameters are (1) the neural unit in each hidden layer: {16, 32}, (2)

batch size: {4, 32}, (3) dropout percent: {0, 0.1, 0.5}, and (4) numbers of epoch:

{100, 250}.

7.2.3 Experiments and Results

To assess how differences between the model types and feature types affect the accu-

racy of predicting subjects’ learning gains, we conducted a randomized experiment

on Mechanical Turk. Each participant was asked to do a similar survey as conducted

in [1] by Whitehill Seltzer, except some irrelevant data such as their demographic

information. Thus, we make a slight change to the survey template and collect the

total of 100 data points. The steps of analysis will be done as follows: (1) running

the 5-fold double-cross validation on the training data, (2) given the results from

training the models, we will make hypotheses on the results we found, (3) we then

test the hypotheses on a completely new dataset collecting from MTurk.

Do model types and feature types affect the predicted learning gain?

(RQ3) We will focus on two main questions (1) Effects of Model Types and (2)

Effects of Feature Types by including the results of 5-fold cross-validation (training

state), the hypotheses we make after seeing the trained results, and test results on

new MTurk collected dataset.

First, in order to tell whether the model types (LR, 1NN, and 2NN) affect the

prediction task, we run the 3 models on different feature types to see the differences

between using linear regression and neural networks. The results are shown in Table

7.1. The values are the correlation of average predicted normalized learning gain and

the ground-truth. We run each model (i.e. each cell in the table) 10 times so get 10

model predictions, then we ensemble them by averaging to get the final prediction

28



CHAPTER 7. LEARNING GAIN PREDICTION

Table 7.1: Existing Video Correlations

Training Testing

Inputs LR 1NN 2NN LR 1NN 2NN

PS 0.06 0.05 0.04 0.56 0.57 0.61

PV 0.29 0.29 0.31 0.21 0.35 0.56

PV+3C 0.30 0.23 0.27 0.20 0.36 0.51

PV+18P -0.003 0.33 0.32 0.22 0.35 0.54

PV+ER 0.26 0.27 0.23 0.23 0.24 0.24

PV+NVR 0.26 0.20 0.12 0.21 0.16 0.04

PV+C-ER 0.30 0.27 0.25 0.17 0.25 0.43

PV+C-NVR 0.30 0.29 0.30 0.23 0.38 0.55

Average 0.22 0.25 0.23 0.25 0.33 0.44

Table 7.2: Existing Video ANOVA

Variables Training (p-value) Testing (p-value)

Models 0.37 0.09

Features 0.43 0.96
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(we run this to minimize the variance of our analysis). The higher correlation is

better. The last row shows the average correlation of each model type.

Scenario 1 Training State: We can consider (1) the difference between model

types. In the training state, from the average correlation (last row in Table 7.1 on

the left side), we do not see any significant changes in the correlation value. Though,

in some cases the correlation is very low such as -0.0029 of the PV + 18P with LR

model. This can happen just by chance that the data we split (5 folds) does not

have a good linear relationship with the learning gain values because other features

in the LR model do not have the same trend. Additionally, the ANOVA yields the

p-value of 0.38 (>0.05) for the model-type analyses. Therefore, we hypothesis that

H1: The model type does not have any significant effects on the learning gain

prediction

For (2) the difference between feature types, the correlation of other features we

add to the baseline PV does not seem to have a significant effect on the learning

gain prediction. As the PV correlations are ranging around 0.29 - 0.31 which is the

same for other feature cases. Some features lead to a significantly lower correlation

such as -0.0029 of PV + 18P with LR model. This might suggest that the input

features PV + 18P does not have a good linear relationship with the learning gain

values. But this does not mean that PV + 18P is a bad feature since, in the 1NN

and 2NN models, PV + 18P performs slightly better than other models. There are

two interesting results here (i) the PV + NVR in the 1NN and 2NN model performs

worse than other models (except the PS that we will discuss next) which yields lower

than 0.20 in correlation values. This might be because of the overfitting training

data (80%) problem. Although the ANOVA results show that the feature types does
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not have a significant effect on the learning gain (p-value of 0.43), in the (training

state) results, (ii) it suggests that PV performs much better than the PS. The PS

yields very low correlation in all of the model types. Thus, we hypothesis that

H2: The feature type does not have any significant effects on the learning gain pre-

diction, but H2.1: The pretest vector (PV) is a better based-feature than pretest

score (PS). In other words, the pretest vector gives a much higher correlation.

Scenario 1 Testing State: To test our hypotheses, we collect the new data from

MTurk using the same setup. Although the average learning gain suggests that

deeper models yield higher correlation, the ANOVA does not support this with the

p-value of 0.09. Thus, we conclude that correlation values are different across the

model types just by chance and do not have a significant effect on the learning gain

results which support our H1. For the feature-type analyses, the range of correla-

tions are wider than in the training state; however, the ANOVA suggests that there

is still no significant effect on the learning gain prediction (supports our H2). For

H2.1 (the sub-hypothesis about the comparison between PV and PS), we get a very

contrasting trend on the testing state. The PS yields much higher correlation than

in the training state (contradicts our H2.1). This might be because the variance of

the data in the training set and new collected data (though both are from MTurk

but different time). To test this, we run a quick analysis on the correlation between

the pretest scores and learning gain values. The correlation of these of the training

data is 0.0854 whereas this of the testing data is 0.5572. This suggests a huge differ-

ence which could mean there is a lot of variance from day to day in the population

and/or behavior of MTurkers.

Scenario 2 Training State: In this setup, we do the same analyses and setup
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Table 7.3: New Video Correlations

Training Testing

Inputs LR 1NN 2NN LR 1NN 2NN

PS -0.19 -0.39 -0.45 0.57 0.55 0.59

LN -0.10 -0.06 -0.12 0.03 -0.05 0.03

PV+LN+NVR 0.12 -0.006 -0.16 0.05 0.24 0.38

PV+LN+CER 0.12 -0.05 -0.07 0.12 0.35 0.33

WRD -0.14 -0.02 -0.12 -0.15 0.14 -0.12

PV+WRD 0.13 -0.06 -0.08 0.15 0.41 0.30

PV+WRD+NVR 0.11 -0.05 -0.22 0.06 0.09 0.17

PV+WRD+CER 0.13 -0.05 -0.07 0.12 0.35 0.33

Average 0.04 -0.07 -0.15 0.12 0.26 0.24

Table 7.4: New Video ANOVA

Variables Training (p-value) Testing (p-value)

Models 0.0008 0.000003

Features 0.10 0.08
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as in scenario 1. Table 7.3 suggests that the LR might be more suitable to predict

the learning gain than neural nets as the average correlation keeps decreasing as

the model goes deeper (deeper model is worse). This might suggest the model is

unable to predict the learning gain on the new video. In other words, in order to

see how good the video can help the learners learn, we might have to have the set

of data (e.g. small sample) on that video to train (e.g. the existing video scenario).

Since the ANOVA result suggests that the p-value of 0.0008 for the model type, this

means that is a significant effect on the model type when it comes to predict the

learning gain. Thus, we hypothesis that

H3: The model types have a significant effect on predicting the learning gain (deeper

is worse)

For the feature there is no significant high result since most of the correlation results

we get is negative. Together with the ANOVA results yields p-value of 0.10 (>0.05),

we hypothesis that

H4: The feature type does not have a significant effect on predicting the learn-

ing gain.

Scenario 2 Testing State: Table 7.4 (right side) shows the ANOVA analysis re-

sults, yielding the p-value for model-type independent factor of 0.000003 suggesting

that model type brings a significant effect on the learning gain prediction. However,

Table 2 (right side) shows the significant improvement using neural nets over the

linear regression (the deeper is better on average) but in the training state (left) it

suggests the deeper is worse. Thus, we can roughly conclude that the model types
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do affect the learning gain prediction statistically (partially supports H3), but in

which way is still unexpectable. This suggests a lot of variance in the data collected

from time to time from MTurk and might need further investigation on the effect of

the model types. For the feature types, we can conclude as the same in scenario 1

which is there is no significant effect on the predicting learning gain (supports H4).

Note that the correlations using PS as based-feature is still high (0.5 approximately)

which due to the possibility of the variance in collected data we have discussed in

the previous scenario section.

Can we teach students by automatically selecting a video according to

a policy? In this section, we run a simple experiment focusing on the question of

selecting the (probably) best video to a student based on the pretest history data of

the student. Since in the previous section, we run different model policies and get

their correlation. We can use these policies to train and predict the learning gain

of the new student for a specific given video. Then, we can assign the best video

that has the highest predicted learning gain to the student, and hopefully they

will learn the most (compared to other videos given). Hence, we conduct another

MTurk experiment by collecting 200 new data using the same format survey as we

use to answer RQ3 (the experiment is conducted on a different day). However, the

differences are that, in this new MTurk experiment, we will not assign a random

video, but rather train and provide the best video.

We pick three policies to run: (1) the best-video policy which always gives the

best video that has the highest average learning gain in the training dataset (the

best-video policy gives the same video always). (2) the PV+ID policy (pretest

vector and each video unique id). We include this in order that the policy will treat

each video independently not like in other previous features we have that always

combine the videos into classes (categories). (3) the PV+C-ER policy (pretest
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Table 7.5: The Average Learning Gain of Students

Policies Average (Normalized) Learning Gain

Best Video 0.081

PV+ID -0.029

PV+C-ER 0.035

vector and clustering equation representation), we pick this model because PV+C-

ER policy includes (automatically extracted) text feature representations which can

be a helpful thing to see whether text representation has some effects.

Given these 3 policies, we modified the MTurk experiment by, at the start of the

session, each participant will be randomly assigned to one policy. Then, throughout

the experiment, we use this policy to analyse and assign the video to students.

Table 7.5 suggests that by training policies using standard supervised learning (not

re-sampling in any way), trained policies (e.g. PV+C-ER, PV+ID) do not do better

than just giving the best video since the average learning gain of the students who

are assigned the video by best-video policy is higher than the average of using the

PV-C-ER and PV+ID policy. As our previous results suggest that the feature

types have no statistically effect on the learning gain prediction, the variance in the

learning gain might be random by chance.

We also compared these results to the new 100 collected in Section 7.2.3. The

survey was conducted by randomly assigned the video. We found that the average

of the learning gain is much higher (average learning gain = 0.164). This means

when everyone gets a random video, the average learning gains are much higher

than during the day we collected 200 data points using the fixed policies. Since the

different is significantly high and the experiments are run during the different days,
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this suggests that there might be a lot of variance from day to day in the population

and/or behavior of MTurkers
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Conclusion and Future Work

We have devised novel text representations, based on speech transcripts extracted

automatically from an automatic speech recognition service, to represent the con-

tent of math tutorial videos. On a dataset of hundreds of math videos and hundreds

of students who watched them, we showed that the proposed text feature vectors

can be used to (1) accurately (around 85%) cluster the videos into the math prob-

lems they solve (RQ1); (2) search for specific video content in a large repository of

videos, thereby saving the user considerable (up to 88%) search time (RQ2); and

(3) predict individual learning gains, in conjunction with features of the students’

prior knowledge, with statistical significance (RQ3).

Specifically, we found some mild evidence that 2D representation (ordering) can

be better than 1D, though there is a risk of overfitting. Also, using the text summa-

rization other than the raw count yields consistently better results. For the retrieval

task where one video contains many problems, we found that interval range of 30, 60

seconds are the most beneficial, balancing between the information provided, and

the length (time-consumption).

For the clustering problem, we provided evidence that the proposed representa-
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tions outperform TF-IDF and its variants. One possible reason is that TF-IDF was

designed for natural language, whereas our feature representations were designed

from the ground up for math content.

However, we have presented that the model types (linear regression, neural nets

with different depth) and the feature types does not have any significant effect on

the learning gain prediction. It might do a better job in some cases just by chance.

We investigated and tested whether the trained policy can be helpful to assign the

best video to the student (hoping that the students will learn the most compared to

all other videos); however, we found out that the best video which has the highest

average learning gain (from history data) gives the better results. Also, the av-

erage learning gain of students is significantly different from days to days (as we

conducted 2 MTurk experiments). This could have implications for the open educa-

tional resources (OER) that the task of predicting the learner’s learning gain might

not be obvious using just the pretest and resourced video information. Students

also vary from day to day and might have different backgrounds and learning im-

provement curves that one should consider. However, we have presented that the

text-representation of the video content is useful in some settings.

Future work can explore how to use the text representations to serve open ed-

ucational resources such as tutorial videos to real users in real time, for example,

for contextual bandit algorithms. We can also continue to explore whether deeper

prediction models can be trained without overfitting.
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