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Abstract 

This project created a proof of concept for an automated pedestrian detection and 

avoidance system designed for transit buses. The system detects objects up to 12 meters away, 

calculates the distance from the system using a solid-state LIDAR, and determines if that object 

is human by passive infrared. This triggers a visual and sound warning. A Xilinx Zynq-SoC 

utilizing programmable logic and an ARM-based processing system drive data fusion, and an 

external power unit makes it configurable for transit-buses. 
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Executive Summary 

Automation within the automobile industry is becoming an increasingly growing area of 

consideration for manufacturers. Automated functionality within motor vehicles can help to 

prevent accidents, alert drivers, and regulate the speed at which an individual is traveling. This is 

something being sought after not just in personal transportation, but in public transportation as 

well. This project seeks to provide the sensor foundation for automated functionality for transit 

city buses, specifically within the realm of accident avoidance with pedestrians. The initial proof 

of concept requires that a system be created that is able to accurately detect an object and its 

distance from the system, as well as determine if that object is a human being. This prototype 

seeks to notify the driver so that they can make accurate adjustments with the bus to avoid a 

potential accident. A final product would have the capability of taking over control of the bus if 

it reaches a critical point. The project, as proof of concept, focused on the area of greatest 

accidents which was when a bus would turn left, as this is when a pedestrian is most likely to 

enter a blind spot.  

A block diagram of the overall system can be seen in Figure 1. This system was 

implemented through the use of an Avnet Zedboard that utilized a Xilinx Zynq 7020 All 

Programmable System on Chip (SoC). This SoC contains functionality consisting of dual-core 

ARM Cortex A9 processors as well as a Xilinx Artix 7 Field Programmable Gate Array (FPGA) 

fabric. This functionality allows for programmable logic, as well as embedded software, which 

provided flexibility and robustness during the design process. The programmable logic was 

utilized for interfacing with various sensors, storing received data in memory, and ultimately 

passing that data to the processing system. The logic is capable of running in parallel, thusly 

increasing efficiency. Once data is passed to the processing system, the incoming information is 

then used to interpret the device’s surroundings and ultimately drive the output of the alert 

system, depending on the conditions detected by the combination of the individual sensors. The 

sensors communicated with the Avnet Zedboard through its digital Peripheral Module (PMOD) 

I/O Ports. 



xxiii 

 

 

Figure 1: System Hardware Block Diagram. This shows the complete hardware logic block 

design with its corresponding modules and connections. Each module provides unique 

functionality that makes the top-level design possible. LIDAR, IR, Data Fusion, Audible Alarm 

and Visual Alarm logic implementations are outlined in light blue, red, yellow, purple and dark 

blue, respectively.  
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 The sensors utilized for the final proof of concept consisted of a LeddarVu8 solid state 

LIDAR, and a Panasonic Electric Works EKMC Series Long Distance Detection Type passive 

infrared (PIR). These sensors provided object detection and the ability to determine if that object 

was a human. With the incoming data from the sensors acquired, a warning system was 

implemented that transitioned between green, yellow, and red displays on a VGA screen along 

with an audible buzzer. The displayed colors corresponded to the level of threat that an object 

posed with green indicating no threat, yellow that an object was detected and could potentially be 

a threat, and red indicating that an object was detected at a distance that requires immediate 

action to avoid an accident, and that the object was determined to be human. The buzzer 

provided an additional alert for when the VGA went red to further reiterate the need for 

immediate action.  

 The original electrical requirement for all of the devices required a power supply that 

would output 12 volts and at least 5.17 amps for an output of roughly 56 watts, but this changed 

as components were removed and added. The new power requirement came out to be 12 volts 

and at least 6.667 amps for an output of roughly 80 watts. The PMC-12V100W1A from Delta 

Electronics was used, which converted 120 volts AC to 12 volts DC. It also provided up to 8 

amps that satisfied the system and all of the modifications made. The power supply had two 

output rails, one fed the cooling fan and the other the LIDAR, warning screen and Zedboard. A 

junction box was used to house the connections of the LIDAR, warning screen and Zedboard to 

the power supply; it also housed a power switch for the LIDAR. The PIR sensors and buzzer 

received sufficient power from the Zedboard’s 3.3V PMOD connectors. 

 To effectively test this system, a stationary bus model was used. This model was a 

wooden structure that held the casing for the system as well as the power supply, which was 

wired and then fixed to the structure. A testing path was taped on the ground that simulated the 

relative location of a pedestrian in relation to the “bus” as if it was turning. A picture of the final 

design mounted to the structure, as well as a picture of the pedestrian model testing session may 

be seen in Figure 2. Table 1 shows a table of results from this test, where the distances at which 

the pedestrian was detected in both the danger warning zone (Yellow) and critical action zone 

(Red) were recorded for each trial.  
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Figure 2: System Mounted to Wooden Structure, Reverse Movement Test. The full system 

incorporated a LIDAR-based ranging system for object detection and two passive infrared 

sensors to verify that a detected object was a pedestrian by checking if the subject’s temperature 

was relatively close to human body temperature. A VGA screen and buzzer, which would be 

mounted to the dashboard of a city bus, are used to provide warning to the driver. The reverse 

movement test was performed by a test subject moving into the blind spot upon a defined path to 

mimic the turning of a city bus.  

Table 1: Test Results for Pedestrian Following Simulated Bus Turn Path. The data was found to 

be very consistent across the trials, indicating that the system was able to detect a pedestrian 

entering each zone with a sufficient reaction time. 
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The consistency of the detection distances recorded from the system testing indicates that 

this system is able to effectively detect pedestrians in each zone with a sufficient reaction time.  

For safety and liability purposes, the team was unable to utilize an actual bus for testing. Tests 

were completed for the PIR sensor and LIDAR sensor individually, for the system as a whole, 

and a simulation of the bus turning. This ensured everything worked as intended.  

 The proof of concept showed that the sensor application was viable for detecting an 

object, determining if that object was human, and providing an effective visual and audible alert 

in real time. The next steps in completing this system would require full implementation with a 

bus, as well as adding an accelerometer and temperature sensor to the design. This would make 

the system more effective and provide more information that can be utilized in the decision 

making process. These steps would be critical in making the system capable of having full 

automated control over the bus. 
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1: Introduction 

In 2014, there were 6,064,000 accidents on roadways in the United States. 32,675 

fatalities occurred from those accidents, according to the National Highway Traffic Safety 

Administration [1]. Of those accidents, there were approximately 69,000 involving buses. 

Approximately 1,088 of the 69,000 accidents involved a collision with a non-occupant of the 

bus: a pedestrian. 88 of the accidents showed to be fatal for the pedestrians who were hit, while 

the rest suffered injuries [1]. Bus accidents involving pedestrians are rare compared to other 

types of automobile traffic accidents, but when they do occur, the aftermath can be quite 

gruesome.  

Blind spots are the primary reason for buses striking pedestrians. One of the most 

common blind spots on buses is the one on the front left corner of the bus. Blind spots exist in 

the areas where drivers are unable to see outside the bus, and in total can encompass 15 to 19 

pedestrians located within all of them [2] [3]. The mirror placement and the position of the bus 

frame is often the cause of this particular left-side blind spot [4]. An approximated example of 

this blind spot, relative to a 40-foot bus, can be found in Figure 3:  

 

Figure 3: Approximated Left Side Blind Spot of 40-Foot Bus. This estimate ranges from up to 16 

feet perpindicularly from the driver’s side window and 29 feet back from the front of the bus. The 

blind spot is shown in yellow to the side of the bus (blue). 
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Another common blind spot is to the right of the bus driver. Tall fare boxes or other 

equipment can obstruct the view of the bus driver [4]. Due to these blind spots, many pedestrians 

were struck while they were in a side street crosswalk. There are some extreme cases where a 

pedestrian is struck and the bus driver does not realize it. Around two years ago, a bus driver 

struck a female pedestrian while turning and did not notice until other pedestrians stopped him. 

The woman was crushed by the back wheels of the vehicle. Unfortunately, she died at the scene 

[5]. The problem with blind spots on buses is nothing new, it has been known for some time. In 

2008 the National Academy of Sciences noticed the problems and concluded that these blind 

spots were not present with buses built before 1970 [4]. 

Driving a transit bus is often hard enough without the blind spot. Transit bus drivers have 

to handle more than just a 30,000 pound vehicle. The driver has to focus on maneuvering around 

various obstacles, manage riders, keep track of bus fares, stay on schedule, stay aware of other 

vehicles around them, and most importantly keep passengers safe. The rise of smartphones 

among other similar products keep some pedestrians, cyclists, and other drivers around them 

distracted, which makes the bus driver’s job more difficult [6]. Occasionally, major traffic 

engineering jobs take place without the collaboration of transit authorities. A prime example of 

this would be the addition of bike lanes. Bike lanes may interfere with buses pulling into their 

stops [6]. Potential issues of this sort can lead to accidents, as they showcase the danger 

presented by a bus to the surrounding pedestrians. The focus of this project was to develop a 

system that could aid in reducing bus collisions with pedestrians, such as the terrible accidents 

described. 

1.1: Technical Challenges of Pedestrian Detection 

 Detecting a human subject is something that has been accomplished through numerous 

other projects. However, the challenges this project faced in terms of pedestrian detection mostly 

stem from the necessity of a real-time application and decision making. Seconds can be the 

difference between an accident and an avoidance, so the need for a pedestrian detection system 

that can not only detect an individual, but also make split-second decisions was necessary. The 

rapid movement of a bus performing a left turn, for example, is a frequent cause of pedestrian 

accidents [7]. This required system that was properly calibrated to avoid false detections, and 

handle the environmental factors that could affect the effectiveness of the system [8]. It also 

included distinguishing between an inanimate object, a human, and non-human subjects, 
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including pets. To accomplish this distinction, a central system that can fuse the incoming data 

from multiple sensors was needed. The overall design had to be able to acquire distance readings 

from the object, read in object temperatures to determine if the object is human, measure the 

traveling speed and motion of the bus, and effectively power all components while maintaining a 

reasonable operating temperature. This required the integration of multiple sensors and 

components to effectively bring all factors together into a single solution.  

The main focus of this project was reducing the amount of pedestrian fatalities involving 

transit bus accidents. Annually there are approximately 30 to 60 pedestrian fatalities involving 

transit buses [6]. A singular pedestrian fatality due to a bus accident is one too many. Studies 

have shown that the number of pedestrians is increasing, especially in areas of high population 

density such as New York City, which may increase the chances of more fatalities if corrective 

action is not taken. This project aimed to create a system that can effectively detect pedestrians 

surrounding a bus, and take necessary corrective actions that will help prevent an accident from 

occurring. 

 

1.2: Project Objectives and Contributions 

This project sought to accomplish and provide a set of deliverables. This included a proof of 

concept system that was able to:  

1. Detect an object and the distance of that object in relation to the system 

2. Determine if that object is a human or not 

3. Provide an effective warning system to alert the driver 

4. Utilize an effective power system designed to support all components 

5. Establish a test environment that is able to simulate the turning of a transit bus 

 

The efforts towards completing this project resulted in a system that could effectively 

detect an object at a distance, determine if the object is human, and alert the operator in a critical 

scenario. The contributions that came along with this proof of concept were extensive.  

The use of a Zedboard in conjunction with the LeddarVu8 was accomplished for the 

implementation of object detection and ranging. The team was able to create custom controllers 

using the Verilog hardware description language to acquire data from a LIDAR sensor using a 
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Field Programmable Gate Array (FPGA). This functionality provided a means of detecting the 

distance of an object. This design was further improved using the Zedboard to fuse incoming 

data from passive infrared sensors to determine if the detected object was a human subject. The 

Zedboard was also programmed to implement a custom bidirectional Advanced Extensible 

Interface bus, capable of transferring data between the programmable logic and processing 

system. This allowed for the creation of a system design utilizing both hardware and software 

programming to maximize the efficiency and capability of the data fusion and processing. The 

logic design incorporated a VGA controller and a tone generator that created an effective two 

tiered warning system.  

In order to test the effectiveness of the overall design, the team needed to be able to 

simulate the turning of a city bus, without access to a physical bus. Research of potential 

solutions resulted in the creation of a stationary bus model centered around the sensor system. 

Once assembled, the full system was attached to a portable wooden structure. This created a 

mobile proof of concept. The structure incorporated a casing to house the components, with 

ventilation and a cooling fan to ensure proper heat dissipation. An AC-sourced 12 volt DC power 

system was also mounted to the structure with careful wiring to ensure safe practice and usage. 

The power system was designed to provide the needed voltage and current specifications to all 

components, sourced by a single wall outlet connection.  

Overall, the contributions towards this project created a proof of concept for pedestrian 

detection, and established a strong foundation that can be built upon to ultimately provide a fully 

autonomous pedestrian avoidance solution for transit buses.  

1.3: Project Organization and Timeline 

 In order to effectively manage the various tasks, the team was separated into different 

functional focuses. The overall design goal was broken down into 5 main concentrations: 

Zedboard and LIDAR Integration, Bus Structure Design, PIR and Alert System Implementation, 

Human Factors Research, and Power System Implementation. Michael Milliard and Michael 

Padberg served as the team leads, organizing the overall project with a functional lead for each 

of the activities. Dario Martinovic and Michael Padberg led the Zedboard and the LIDAR 

integration, Kazim Hyder Nizam Shaikh led the IR and Alert System Implementation, Alima 

Kargbo and Kazim Hyder Nizam Shaikh co-led the bus structure design and implementation, 
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Patrick Trant led the Human Factors Research, and Thomas Fong and Franc Luga co-led the 

Power System Implementation. Figure 4 details the breakdown of the project operations by main 

activities.  

 

 

Figure 4: High Level Activity Breakdown Detailing the Contributions and Organization for 

Tasks of the Project. The individuals leading the completion of each task are shown in red. 

  

The project also utilized a high level Gantt chart to manage the timeline for the project. 

As issues arose, there were deviations from this schedule to readjust priorities with the critical 

aspects of the project. This high level aspect of allowed the team to see all the necessary actions 

that would go towards the final design. The Gantt chart can be seen in Figure 5. 

 

Figure 5: Gantt Chart Detailing the Higher Level Planned Implementation of the Project Over 

the Course of Academic Terms. Each red bar represents the duration of each task. 
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1.4: Report Organization 

 The remainder of this technical report is separated into another 8 chapters, with each 

chapter pertaining to a necessary step in the project.  

 Chapter 2 is the background section. This details the research conducted during the 

proposal phase of the project. With all of the different aspects and considerations that ultimately 

went into the proof of concept system, it was necessary to have a well-versed foundation and 

understanding of those considerations. 

 Chapter 3 covers the considerations made in determining which approach would be the 

most effective implementation of the project. This chapter covers the necessary pros and cons of 

each potential component that would be used. Chapter 4 follows a similar structure to Chapter 3, 

however, it incorporates many human factors on top of the technological aspects in regard to the 

proactive driver alert and warning capabilities of the system. The information discussed in 

Chapters 3 and 4 directly tie into Chapter 5, which covers each of the proposed solutions and 

sensor integration considered in the project’s design.  

Chapter 6 details the single proposed solution based on the discussion in the three prior 

chapters, and then discusses what the final choice was for each part of the system design. 

Chapter 7 shows the methodology and implementation, which details the process the team took 

in accomplishing each piece of the project. The results of the final testing are shown in Chapter 

8, and Chapter 9 discusses the conclusions drawn from them. Chapter 9 also discusses 

recommendations for the future work, and what could be built upon from the team’s proof of 

concept design. Following this final chapter, there are various appendices, including the code 

design utilized in the operation of the full system. 
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2: Background Research and Considerations 

This project required background research that explored the many factors that will 

ultimately tie into the final product. This included research into embedded technology, multiple 

sensors, the considerations for transit buses and the bus drivers, and previous implementations of 

pedestrian detection.  

2.1: The Bus Factor 

 The bus factor required that there was a thorough understanding of the effect that the bus 

and driver would have on different considerations for the project. Understanding this provided a 

greater insight into the facets of the project that were external to the system.  

Transit buses require more maintenance than motor vehicles. Maintenance costs are 

dependent on multiple variables including vehicle age, duty cycle, topography, fleet maintenance 

practices and several other factors [9]. Over time, the per mile operating and maintenance costs 

tend to increase and bus replacement becomes more cost effective. The lifespan of a 40 foot, 

heavy duty bus can extend as long as 12 years [9]. This indicates the need for reliable systems 

that can provide the greatest efficiency in tandem with the bus. Operating systems such as the 

frame, body, electrical and other major components are designed to last in the 12 year time frame 

as well [9]. As buses decrease in size, the minimum life of the operating bus decreases. This is 

shown in Table 2. 

 

Table 2: Minimum Life Cycle Cost Replacement Ages & Mileages by Service-life. Listed large 

bus sizes to smaller bus sizes. Buses smaller in size have a lower minimum life of operation. [10] 
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Regular buses are essential in cities, but have a significant cost to repair and maintain. 

Companies such as Transdev provide top quality transportation that focuses on safety, efficiency 

and cost-effective results [11]. Specifically in Nassau County, there has been a 23% reduction in 

hourly operating cost over previous operators such as New York City’s Metropolitan 

Transportation Authority (MTA) [11]. Future electrical improvements to the Transdev bus 

models will increase the safety of passengers inside and outside of transit buses, and can help to 

reduce the frequency of accidents. Reducing accidents will mitigate repair costs due to any 

damages, and will eliminate the downtime of the bus. This increases the overall cost 

effectiveness of the bus, and prevents an unnecessary expense to the bus company. 

Nearly everyone has had the opportunity to ride in a bus at least once in their lives. Most 

children will ride a school bus to attend schooling, and adults will take buses for long distances 

to visit family or to get to work in the morning. In cities and towns, bus routes are defined to 

transport passengers to major areas of public use. Buses are known to keep a strict run time as 

well as having defined routes. What is often forgotten is that the individual who is operating the 

vehicle has upwards of 60 passengers onboard [12]. There are two main types of bus drivers, one 

being for school buses and the other being for commercial buses. There are certain procedures to 

follow if one wants to pursue a career as a bus driver. For school bus drivers, there a few 

minimum requirements from both the state and the school itself. The applicant needs to obtain an 

“S” type drivers’ license to be able to drive a school bus. This entails the applicant going to their 

local Department for Motor Vehicles (DMV). The applicant will take their initial written test 

and, upon passing, will return to complete their road test. The certain requirements are, a written 

test, road skill test, physical test, pass a criminal background check and pay the required fees 

[13]. Similarly, city bus drivers must fulfill the same requirements, although they do not have to 

pass a criminal background check. For school bus drivers, the age requirement is that the 

applicant must be twenty-one years of age or older. A city bus driver can be as young as eighteen 

years of age, but if the bus is to go on the interstate the applicant must be twenty-one years of 

age. For a person to become an applicant, they must possess a Commercial Driver’s License 

(CDL) with a passenger (P) endorsement [14].  

The city bus driver physical examination and the school bus driver examination are 

similar. Both need to have 20/40 in each eye to pass the eye test [13]. This means that the driver 

can have corrective lenses or glasses as long as they wear them while on route. An applicant 
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needs to possess good eye-hand coordination, good spatial (3D perception) and be able to 

interact well with both children and adults [13]. A bus driver applicant can go to a commercial 

driving school but it is not necessary, no previous work experience is needed. As long as the 

applicant passes the defined tests and pays the $40 fee they can become a bus driver [13]. 

The requirements for passing the tests are as follows. The written exam is a multiple 

choice exam and the applicant needs a grade 80 or above to pass. The vision exam, the applicant 

must pass a standard Snellen exam with 20/40 in each eye as mentioned previously. The skills 

exam is comprised of on-the-road driving skills test and a pre-trip vehicle inspection [13]. The 

employer is responsible for obtaining the vehicle to be used in the road test, and is responsible 

for obtaining and supplying the applicant's driving record [14]. Last is the license, which runs 

upwards of $164.50 to $180.50 for an 8-year renewal [13]. These are the minimum requirements 

to become a driver whom is often overlooked by the common bus user. On top of the process of 

becoming a bus driver, there comes a time when the applicant is actually hired and put on their 

daily route. Usually, pedestrians will hop on a bus and hop off and not give a second thought 

about the person responsible for being on time, driving to the correct destination, collecting fares 

and keeping all users inside and pedestrians outside the bus safe. This is a significant number of 

tasks to handle. Often times, stress causes the bus drivers to not function at their peak 

performance, and their driving, awareness, and attitude can be impacted [15].  

Bus drivers are not immune to the stresses of their jobs. Drivers usually take on odd 

hours and have to deal with argumentative passengers. It has been recorded that bus drivers are 

prone to, heart disease and back pain from sitting down for hours at a time [16]. There have been 

ties to strains on the minds of bus drivers. Bus drivers have experienced mental strains leading to 

anxiety and depression. Bus drivers have a higher rate of hypertension than the average working 

adult. These strains on the bus drivers have led to elevated blood pressure, obesity and course 

towards coping mechanisms [16]. 

Bus drivers have been recorded to abuse substances to cope with the stresses of their job. 

Some bus drivers use alcohol or tobacco to ease the high-stressed life. In 1990 that only 1 in 9 

drivers actually reached retirement [16]. On top of the normal stresses of driving, traffic 

congestion, pedestrians jaywalking and bikers peeking around in the blind spots, drivers also 

have to communicate with the patrons on their bus, who may be troublesome.  
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Patrons have been recorded attacking bus drivers. In one case, a driver was stabbed to 

death in Manitoba by a patron. This act of violence in Manitoba was presumably due to the 

patron and driver getting into a verbal debate over the patron not paying the bus fare [17]. Other 

attacks on bus drivers have been recorded over bus fare disputes, but there are some pedestrians 

that just want to assault bus drivers [18]. There have been other reports of bus drivers being 

blinded by laser lights and just generally being harassed while they are trying to do their job [16]. 

A retired bus driver by the name Brian Lennox has had been held at gunpoint, amongst multiple 

other uncomfortable situations. He tried to be friendly to passengers by saying “Hi” as they 

arrived on the bus, but some patrons responded to this by throwing feces or urine and even 

vomit. Lennox, whom is now retired, is living with Post Traumatic Stress Disorder (PTSD) after 

driving with Winnipeg Transit for 30 years [19]. A reporter had the opportunity to interview a 

New York City bus driver to gain an insight into what typically occurs on a daily route. An 

interesting fact is that bus drivers have a button they can press to signify that “X” amount of 

patrons did not pay the fare when they boarded the bus. This bus driver was told by the company 

to not worry about the fare because that is where the most confrontations occur that can lead to 

harm for either the driver or the patron [20]. The biggest truth that came out of the interview was 

the acts of the pedestrians outside of the bus. Most people do not understand how risky it is to 

drive a huge vehicle in a city environment. One of the quotes that stood out was the driver’s 

response to the question “Is there anything else that annoys you.” The driver’s response is shown 

in the following paragraph, and shows some of the difficulties that bus drivers face when dealing 

with the actions of surrounding pedestrians and passengers [20]: 

 

“People have to understand, if the light is red, a lot of people don’t like to stand on the sidewalk. 

They like to come off the curb. And I’m sorry to say, but those are the ones that always get their 

feet run over. People don’t understand it. If you see a big vehicle turn, just stay on the sidewalk. 

Once the vehicle clears, you can go about your business. Another thing that really irks me is 

people who get off the bus in the front, or even the rear, and they cross right in front of the bus. 

That is the worst thing you can do”. 

 

It is to no surprise that some bus drivers will actually experience PTSD [15]. There was a 

law passed in 2015 that states, in brief, that a bus driver or taxi driver cannot be held to the same 
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consequences as other drivers for harming pedestrians or cyclists if there is no evidence of foul 

play or any evidence that would suggest a criminal act has been committed [21]. This is because 

of the importance that paid personnel who are practically are the blood vein of the city. A lot of 

people in the city rely on the bus and taxi drivers to get from destination to destination, if their 

job is halted or slowed down then there will be consequences. Running along with this bill there 

have been voices arising about needing more safety measures for the average bus driver. 

2.2: Bus Driver Safety 

Safety of bus drivers has been a rising concern. It is a job that mixes the stress of being 

on time, transporting passengers in a safe manner all while overcoming traffic congestion and 

long hours. Now insert angry bus users that either had a rough day or just cannot pay for their 

fare. These people may become hostile towards the bus driver. Typically, the abuse faced by the 

bus driver consists of verbal harassment from patrons but this can quickly escalate to forms of 

assault if the bus driver becomes confrontational. One driver in 2017 was stabbed to death in 

Canada, this has led to an up rise in bus driver safety [22]. Bus drivers feel unsafe in their work 

environment, a feeling that results in an increased level of stress [23].  

Bus incidents involving passengers have shown a continued increase over the course of 

recent years. There were 60 incidents on transit buses in 2015, a 54% increase since 2014. In 

2016 there were 46 assaults on buses, 11 involving someone carrying a weapon reported by the 

ATU (Amalgamated Transit Union) which serves both in the United States and Canada [22]. In 

total around 2,000 attacks are actually reported each year against bus drivers in Canada 

according to Canadian Urban Transit Association (CUTA) [19]. CUTA’s President Patrick 

Leclerc summed up what is it like to be a bus driver; "Imagine you're in a driver's seat with a 

seatbelt, there's no escape possible, you've got a window on your left," said Leclerc. "You're very 

vulnerable" [19]. Bus drivers are on the front line and are easy targets [22]. Train conductors and 

airline pilots are all locked away and sit in protected areas, separated from the passengers. Bus 

drivers have a seat belt.  What is being done to protect bus drivers? Currently not a lot which is 

not good news for the bus drivers. There has been talk about equipping the buses with shields.  

Hundreds of Winnipeg transit workers rallied together in protest. They felt the 

government needed to make buses safer for both the driver and the passengers. One veteran bus 

driver, Nelson Giesbrecht, who was a colleague of Fraser the man stabbed to death, has 19 years 
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under his belt at Winnipeg Transit. He was quoted saying "I'm to the point of, 'put me in a cage.' 

I don't want to see money, I don't want to see nothing," said Nelson Giesbrecht [19]. Bus drivers 

are concerned with their safety every time they enter their bus in the morning. This adds 

significant pressure and tension, imagine constantly asking yourself if the next passenger you 

pick up will attack you. The idea of installing the shields within busses was brought up years ago 

but did not have enough support. The Canadian Bus Union has advocated for the installation of 

bulletproof shields, escape doors and windows on the left side as well as adding a panic button 

that alerts the authority in times of emergency [19]. 

These plastic shields did little to put a hold on the rising concerns about the violence 

towards bus drivers. Several bus companies in North America and Europe have actually 

implemented the shields and there was a negative reaction from the bus drivers themselves. San 

Francisco transit authority installed plastic shields on 10% of its 800 buses in the 1990s. The 

main issues were that the shield produced an odd glare, loud rattling, feeling claustrophobic and 

feeling cut off from the passengers. The number one assault to bus drivers’ face is being spat on, 

and the shield did aid in protecting the drivers from spitting customers [19]. It seems like a shield 

would be easy to install but in fact, there is a multitude of different bus models out in the world 

all with their different styles.  

 

Figure 6: Shield Installed as a Means to Protect Bus Drivers from Pedestrians. The shield is 

highlighted in green. These shields are usually constructed from strong plastic to withstand hits 

without worry of shattering. Potential issues with the shields include glare and feelings of 

claustrophobia, which may turn drivers away from using them. [24] 



13 

 

 

The shields are also not cheap to install. The shields in San Francisco and Miami were 

priced at $1,600 to $1,900 [19].  

Bus drivers do not have the easiest job in the world, but they do the best that they can. It 

would be beneficial to alleviate some of their worries by providing an aid that allows them keep 

their passengers as well as the pedestrians outside the bus safe. This is why the team proposed 

that an automated system should be implemented on buses. This system will provide the driver 

with another set of eyes, thus reducing their overall stress and increasing the safety on and 

around buses within the city. 

2.3: Bus Accidents Involving Pedestrians 

 The following Tables (3-5) are “anonymous data that was obtained for all motor vehicle 

crashes occurring in New York City over a seven-year period (1991–1997)” [7]. The table shown 

below depicts three different age ranges and the recorded places that they were hit by a motor 

vehicle. The data was taken from reports in New York City. 

Table 3: New York City Motor Vehicle Accidents – Pedestrian Actions and the Age Range of the 

Pedestrians Involved in Accidents. It was important to consider the varying actions that humans 

perform, as well as their age and height when designing a pedestrian detection system. [7] 

 

Three different age groups shown above represent the difference in height, knowledge 

and perhaps how well the bus driver can see them. This is important to note that there are 
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different sized pedestrians out in the world. With the varying sizes of pedestrians, as well as their 

knowledge of traffic rules, it is something the team took into consideration. It was desired to 

detect different pedestrians with similar accuracy for each range. This next table shows how the 

bus was moving when the different age groups were hit by a motor vehicle. 

Table 4: New York City Motor Vehicle Accidents – Motor Vehicle Actions Taken by the Drivers. 

Pedestrians most often hit by buses driving straight and performing left turns. Pedestrians at 

very young ages tend to be less attentive to potential danger near buses. [7] 

 

Pedestrians were most often hit while buses were either driving straight or taking a left 

turn. This supported the decision that the left side was to be most closely investigated in 

developing a semi-autonomous turning solution. This is important to note to because it shows 

when and where sensors were required to be the most accurate. This next table shows the days of 

the week in which each age group of pedestrians were more likely to be struck by a bus. 

 

Table 5: New York City Motor Vehicle Accidents – Age & Day of Week When the Accident 

Happened. Different age groups tend to show different probabilities of involvement in a bus-

pedestrian accident. 10 to 14 year olds tend to be at higher risk than children of other age 

groups throughout the week. This indicates that children are a critical consideration in 

pedestrian detection. [7] 
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Table 5 indicates the highest level of pedestrian traffic based on a daily basis, which 

should be an important consideration in future testing of pedestrian detection systems to plan for 

a “worst-case” scenario. 

It is not only walking pedestrians that are subject to blind spot collisions. Bicyclists 

frequenting the New York City roads and are often in just as much, in more danger, than 

pedestrians. “Between 1996 and 2005, 225 bicyclists died in NYC. Most fatalities resulted from 

motor vehicle crashes (92%)” [25]. With the large number of pedestrian and cyclist fatalities that 

involve motor vehicles, especially city buses, cities are determined to find a solution. 

2.4: City Solutions to Transit Bus Accidents 

Many transit agencies, such as the Metropolitan Transit Authority in New York City, 

have begun implementing changes within the past few years. One of the biggest changes 

occurring is the alteration of the design of buses in order maximize the field of view for the bus 

driver. Altering the design of buses has been a major argument for bus driver unions defending 

their drivers. The main argument is that if the design of the bus can be made to reduce blind 

spots, it will provide drivers with an increased level of safety knowing their vision is less 

obstructed and for protecting pedestrians [2] [4]. The two biggest changes that are necessary to 

reduce blind spots are redesigning and repositioning the mirror along with making the A-pillar 

design as slim as possible. The A pillar on a bus consists of the frame that exists on the edge of 

the front windshield [26]. Along with making physical alterations to buses, transit agencies have 

explored a large variety of options such as, raising public awareness about the issue, 

infrastructure and legislative based solutions, and lastly new training methods for bus drivers.  

Side view mirrors should be placed in a position in such that bus drivers have to slightly 

look up or down. In addition to this mirrors should be physically smaller [26]. The American 

Public Transit Association (APTA) recommended in a report that side mirrors should have 

height adjustable brackets along with the addition of convex mirrors in order to have a wider 

mirror view. The APTA also recommends that a mirror design criteria should be set that all 

transit agencies and bus manufacturers should follow [27]. With this alteration, the only object 

causing the blind spot is the frame of the bus. According to the MTA, the frame of the bus takes 

away a 3.16 degree viewing angle, which can mask many pedestrians. The next generation of 
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buses ordered by the MTA will only have a frame that takes away a 1.65 degree viewing angle 

[28]. Many transit agencies have already followed suit with this and are looking at ways to make 

the frame narrower.  

Transit agencies have worked and continue to work with government and community 

associations to reduce pedestrian fatalities. Data analysis has shown that disabled, young, and 

elderly people are at a higher risk of getting hit by a bus than all other groups [27]. Elderly 

people make up 38% of all pedestrian fatalities in New York City in 2008 [29]. The APTA 

recommended numerous community outreach programs to help reduce bus-pedestrian related 

fatalities. It is recommended that partnerships with local media and schools are a great way to 

raise awareness of this issue. One of the biggest points that the APTA is trying to spread is that a 

bus turns very differently from a car. Pedestrians need to be aware that a bus sweeps through the 

crosswalk, and if they are too close it is much more likely that they will be hit [27]. Research has 

shown that pedestrians rarely recognize when long rear axle vehicles turn left [30].  Being 

unaware of a large vehicle that may sweep close to the crosswalk can lead to potential fatalities. 

Creating an awareness for the danger a bus can pose will help prevent accidents in the future.   

Another method of combating this problem is implementing infrastructure and legislative 

based solutions. Many traffic engineering jobs occur without the input of transit agencies. These 

agencies have conducted numerous studies, and are experts in their field. Thus, it is essential that 

transit agencies have a say in traffic engineering jobs so the best possible solutions for drivers, 

passengers, and pedestrians can be determined. For infrastructure based solutions the APTA 

recommended many options. A possibility for reducing accidents with pedestrians is the use of 

“pedestrian scrambles” [27]. A pedestrian scramble works by allowing pedestrians to cross in all 

directions while all automobile traffic is stopped at the intersection. This can be useful in major 

street corridors where serious pedestrian crashes are more deadly than smaller local streets [29]. 

Many major cities around the world use pedestrian scrambles such as San Diego and New York 

City. A legislative based solution is banning curbside parking spaces at the approach of 

intersections which has been tested in New York City. The goal of this is to remove obstructions 

at intersections which helps pedestrians see oncoming vehicles and helps drivers see pedestrians 

[29].  

Lastly, the APTA recommended many ways to improve bus driver training to help 

combat this problem. The APTA recommends that bus drivers should have refresher training to 
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help maintain the importance of safe driving. Some safe driving techniques include squaring off 

turns and waiting a few seconds before performing the turn. It also stresses the constant “Rock 

and Roll” technique where a bus driver moves around in their seat in order to scan for 

pedestrians while performing a turn. A training course that combines classroom, behind the 

wheel practice, and analysis of top pedestrian accident locations is the most ideal training course 

[27]. Many officials from transit agencies across the US agree that getting pedestrian deaths to 

zero is the ultimate goal but avoiding these kinds of actions is a joint effort between pedestrians, 

city officials, transit agencies, and bus drivers [6] [30]. The New York City Transit Authority, 

the parent agency of the MTA, accounts for 18.7% of the total public transportation market in the 

United States with the next biggest market share taken up by Los Angeles County Metropolitan 

Authority with almost 7%. Any recommendations and changes these companies make have the 

possibility of having a deep impact on other transit agencies [31]. 

2.5: Pre Existing Technologies in Buses 

 Currently, many transit agencies and bus manufacturing companies have taken strides in 

reducing incidents with buses by incorporating various sensors that serve to make bus operations 

safer for all. Two notable examples are the Future Bus by Mercedes-Benz, and Volvo’s 

upcoming safety system for buses. Mercedes, more specifically the parent company Daimler AG, 

controls 27% of the truck and bus manufacturing market while Volvo controls roughly 11% [32]. 

Daimler and Volvo hold a considerable market share and therefore have a wide influence on 

other bus manufacturers. 

 In the summer of 2016, Mercedes-Benz launched a semi-autonomous bus called the 

Future Bus, as seen in Figure 7. It managed to drive 12 miles from Amsterdam’s Schiphol airport 

to Haarlem, a city adjacent to Amsterdam [33]. This bus route is a part of one of the longest Bus 

Rapid Transit (BRT) system lines in Western Europe. The route serves 125,000 passengers on 

average every day. Along the route there are tight bends, no barriers to the oncoming bus lane, 

22 traffic lights, and three tunnels [34]. The bus had the necessary technology to navigate along a 

precarious, high traffic route, and can show possible solutions for detecting and decision making 

based on what is surrounding the bus.  

For navigation the bus uses GPS while being supplemented by a lane camera and four 

other cameras to determine the position of the bus for pinpoint accuracy. The lane camera has a 
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range of up to 80 meters. For pedestrian and vehicle detection the bus uses a combination of 

cameras and radar systems. There are four close-range radar sensors in the front end and corners 

of the bus that detect pedestrians within 10 meters. The radar sensors continuously scan for 

object detection even if the bus is not moving. This is supplemented by ten cameras that can 

detect pedestrians within a range of 60 meters. For vehicle detection the bus uses a radar with a 

range of 200 meters [35]. A vehicle to infrastructure (V2I) communication system is 

incorporated on the Future Bus which is used to communicate with BRT infrastructure, mainly 

traffic lights. With the V2I system the bus can send signals to BRT traffic lights 300 meters away 

and the traffic lights can prioritize the bus instead of other pedestrians or vehicles. This allows 

for a quicker travel time for the bus. If a traffic light is unable to communicate with the bus, the 

front cameras can still read the traffic signal [34].  

The Future Bus shows that BRT lanes are ideal for autonomous buses. BRT lanes are 

separate from other lanes, the route will always be the same, and the bus will always encounter 

similar situations [34]. A driver will still be present in the bus in case the bus requires human 

control. Since there should be less stress on the drivers they should be fully alert for when they 

need to take over [35]. Ultimately the bus driver is still responsible for the bus and safety for the 

passengers. 

 

Figure 7: Mercedes-Benz Future Bus. This model, used to transport passengers in the 

Netherlands, is a fully-autonomous vehicle designed to avoid potential accidents in real-time. 

[34] 
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Research done by Volvo shows that there are 1.25 million annual road traffic deaths 

across the world. In order to reduce accidents involving people outside the bus, Volvo decided 

that the buses they produced will have a pedestrian and cyclist detection system that will be 

launched on its European city bus fleet in 2017. The detection system was field tested during the 

autumn of 2016. It is important to note that the new buses are not autonomous buses but will 

have a new safety system, the Pedestrian and Cyclist Detection System. The system works by 

using cameras to monitor the surroundings of the bus. If a pedestrian, bike rider, or any 

bystander becomes too close or if the system determines they may become too close to the bus 

the system transmits a warning. The warning consists of an alert sound that can be heard by 

pedestrians and the bus drivers is alerted by sound and light signals that come from the 

dashboard on the bus. Cameras on board the bus along with image processing and tracking 

software determines if a pedestrian or any other obstacle is getting too close. The system will 

activate the bus’s horn if it senses that anyone is getting too close to the bus [9]. The system in 

action can be seen in Figure 8. 

 

 

Figure 8: Volvo Pedestrian & Cyclist Detection System. This system monitors the bus’s 

surroundings using cameras and alerts the driver when action needs to be taken. [9] 

 

Volvo accounted for any noise issues that the system would make when designing it. A 

synthetic background sound was developed with a frequency range that is not disruptive to daily 

life. According to Peter Danielsson at Volvo, the sound from the alarm will not penetrate triple 



20 

 

glazed windows due to their sound resistive nature [9]. As previously stated, Volvo’s system is a 

tool to help keep non-bus occupants safe and to help bus drivers stay aware of the surrounding. 

Again, the bus driver is responsible for driving the bus safely and keeping everyone involved 

safe. 

In addition to a reliable pedestrian detection system that can alert the driver and trigger 

the bus to stop, a form of proactive technology that can warn unaware walkers and bikers of a 

turning bus can help to prevent pedestrian fatalities. There have been multiple technologies 

developed for the purpose of raising pedestrians’ awareness of nearby vehicles. These 

technologies exist for multiple types of vehicles, including factory and construction vehicles, as 

well as licensed road motor vehicles.  

For workplace vehicles, such as warehouse forklifts, Radio Frequency Identification 

(RFID) systems have been implemented to detect the proximity of nearby workers. RFID devices 

can be configured to emit electromagnetic fields, which are then read by an RFID receiver to 

determine the proximity of the transmitter. An example of a workplace RFID system is the 

Claitec Pedestrian Alert system, which can be mounted to a forklift or similar machine. Claitec’s 

solution uses RFID enabled tags worn by employees to warn the machine operator that other 

workers are in the area [36]. While appropriate for a workplace application, RFID detection 

would not likely be appropriate for a city bus, as it would require pedestrians to carry a unique 

device.  The concept of detecting devices nearby may assist in pedestrian detection. However, in 

a large-scale setting, in this case a city, detection would have to be through use of a common 

signal, such as Bluetooth from cell phones.   

As part of the Federal Transit Administration, the Tri-County Metropolitan 

Transportation District of Oregon conducted a demonstration test of multiple pedestrian turn 

warning systems designed for transit systems. The first attempt towards using a pedestrian 

warning system for turning buses was implemented by TriMet in the city of Portland, Oregon in 

2011 [37]. The system measured the position of the driver’s steering wheel to detect when a turn 

was initiated, then provided a verbal warning: “pedestrians, bus is turning” in both English and 

Spanish to nearby pedestrians. Testing was stopped after only a few months. The system was 

evaluated by surveying both bus operators and the general public. The system was described as 

“glitchy”, and seen as a nuisance by drivers as well as pedestrians [37]. The system would give 

very loud alerts as the bus completed turns, which became annoying for some pedestrians and 
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residents [38]. Reportedly, the alert often began to sound after the bus had already turned into the 

crosswalk [39]. The project cost $46,000 to test the alerts on 10 buses [37]. This project was 

revised and attempted by TriMet once again in 2013, which was a more successful 

experiment.  Five new pedestrian warning systems were prepared for testing. The devices 

differed in their method of delivering a cautionary message to nearby pedestrians. The five 

systems were configured as follows: One device gave an audible and visual warning, two gave 

audible warning only, one gave visual only, and one device displayed a warning sign at a fixed 

location (not attached to a bus). 

The audible and visual device, the “Safe Turn Alert” system by Protran technology, 

detects a bus’s turning when the steering wheel passes 45 degrees of turn [37]. A voice 

recording, as well as Light Emitting Diode (LED) lights warn pedestrians to the sides of the 

bus.  The external speaker volume is adjusted automatically to compensate for the noise level in 

the area outside the bus. Protran has also developed a “Safe Turn Alert 2.0”, which is activated 

by either proximity sensors on the lower front corners of the bus, or the turn signals [40].  An 

image of Protran’s sensor, LED, and speaker placement can be found in Figure 9: 

 

Figure 9: Protran Safe Turn Alert 2.0 Component Placement. Proximity sensors monitor the 

bus’s corner blind spots. Pedestrians are provided warning using LEDs and a speaker mounted 

to the bus’s exterior. [40] 
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The Clever Devices “Turn Warning System” utilizes a sensor within the housing of the 

bus’s steering column. This system also provides a verbal alert to pedestrians when the wheel is 

turned 45 degrees or more [37]. The speakers’ volume can be adjusted for day driving, night 

driving, or quieter areas.  This system also tracks the bus’s location via GPS, which is calibrated 

when the system starts up with the bus. This location data can be used to adjust exterior volume 

level on a location-based basis [41]. 

        Transit Tech Solutions develops an audible warning system that is dependent on the 

activation of the bus’s turn signal. When the turn signal is pressed, a verbal warning can be heard 

on the exterior of the bus. This system is disabled when the bus exceeds 35 miles per hour to 

avoid turn notifications while the turn signal is used to indicate a lane change on the highway 

[42]. 

        The Dinex Star system monitors a bus’s speed and steering wheel to determine when a 

turn is initiated. This system integrates pedestrian warning into an upgraded headlight. Designed 

to provide additional visibility for the driver, as well as warn pedestrians of the direction a bus is 

turning, one of the two headlights is set brighter than the other while the bus turns. A reported 

additional 35-degree viewing angle is provided to the driver by this headlight during a turn [10]. 

This system does not implement any audio-based alert. 

        The fixed-location device tested was the “BUS Blank-Out Sign” developed by TriMet to 

be installed at crosswalk corners [10]. The sign, reading “bus”, is illuminated when a bus begins 

to turn in the direction of the crossing. Having to install on every crosswalk would not be a cost 

efficient however, and it shows that a better implementation would be too have a system 

incorporated directly with the bus. 

The results of daily surveys revealed that bus operators were not exceptionally impressed 

with the devices’ abilities to warn pedestrians. “From the daily surveys, less than half of 

operators thought the systems were effective at alerting pedestrians at intersections and bus 

stops, and less than one third thought the systems were effective at reducing close-calls” 

[10]. During pedestrian surveys, the pedestrians responded more positively than the bus 

operators in regard to the systems raising their awareness of incoming buses. “About half of the 

cyclist and bus rider respondents thought the systems were effective at alerting them at 

intersections and bus stops, respectively. In total, 12% of pedestrians, 17% of cyclists, and 7% of 

bus riders reported the systems played a role in avoiding a collision with a bus” [10]. During 
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testing, both operators and pedestrians were asked about potential improvements they would like 

to see if the systems were deployed full-time. While the system was designed to be fully 

autonomous, operators suggested having a way to trigger a warning, such as a push button, if 

they are to notice risky behavior or unawareness in nearby pedestrians [10]. A common 

suggestion made by both pedestrians and bus drivers was that it is likely unnecessary to have the 

turn warning sound with every turn the bus makes. Therefore, an integration into the bus’s GPS 

or Computer Aided Dispatch (CAD) system could be used to sound warnings only in city areas 

that are suggested, or proven, to be problematic [10]. Interestingly, this type of suggestion is 

calling for a more autonomous solution, rather than a solution that would rely on the bus driver’s 

skills. This indicates that autonomous solutions for bus safety are of interest to both bus 

operators and pedestrians. 

        The warning protocols and technology used in one or more of these proactive warning 

devices could be compatible with the pedestrian detection system, with the exception of the 

fixed-location device, as the focus will be on solutions to be integrated into the bus itself. The 

aforementioned statistics that the Federal Transmit Administration (FTA) produced based on 

survey responses indicate that a proactive warning system would indeed be helpful in deterring 

collisions between buses and pedestrians. Even though only 12% of the pedestrians surveyed felt 

that the turn warning kept themselves and others safe, the avoidance of any potential injury is a 

considerable improvement 

2.6: Autonomous Braking Standards for Cars 

 Autonomous braking is a technology that many car manufacturers have begun to 

incorporate into their vehicles. The general term used to refer to autonomous braking features in 

automobiles is Automatic Emergency Braking (AEB). AEB systems are designed to monitor a 

vehicle’s surroundings in real-time for potential crash situations. If a hazardous situation is 

detected, the car will promptly provide an audible and/or visual warning to the driver, and 

intervene to stop the car if the driver is suspected to be inattentive. Many AEB systems 

incorporate two types of automatic assistive braking: Dynamic Brake Support (DBS) and Crash 

Imminent Braking (CIB) [43]. DBS is designed to increase the braking of the vehicle in a 

situation where the driver is aware of the immediate potential crash and applies the brakes, but 

does not brake strong enough to stop the vehicle. CIB activates in the situation where the driver 



24 

 

fails to apply the brakes in the event of an imminent crash, and the vehicle’s brakes are applied 

automatically. Most automobiles with AEB systems implement cameras, radar and laser 

proximity sensors to detect the distance of nearby objects and the speed at which they are 

approaching relative to the vehicle. The U.S. Department of Transportation National Highway 

Safety Administration (NHTSA) plans to make testing of AEB systems a standard procedure 

under the existing NHTSA 5-Star Safety Rating beginning with vehicles set to release for the 

2018 model year [44]. 

        AEB systems specifically created to avoid collisions with pedestrians are recognized and 

referred to by the NHTSA as Pedestrian Automatic Emergency Braking (PAEB) systems.  The 

NHTSA has not currently determined and/or formally released any performance specifications 

for PAEB specifically, however it is stated to be “a promising technology that may be added to 

the 5-Star Safety Ratings list of recommended technologies in the future” [43]. 

        The Insurance Institute for Highway Safety (IIHS) currently uses a standard testing 

procedure to evaluate the effectiveness of cars’ make and model specific AEB systems in their 

ability to stop or slow a vehicle. The test consists of an engineer driving the vehicle directly 

toward a stationary inflatable target, used to replicate the rear of a stationary car. These tests only 

consider the AEB’s performance in front-to-rear collisions. The stopping capability of the AEB 

is analyzed at speeds of 12 mph and 25 mph. Cameras are used to capture the driver’s view of 

both the road and the dashboard lights in each test [45]. The deceleration of the vehicle is 

monitored and recorded, as well as whether the car indicates a forward collision warning to the 

driver. For each independent vehicle tested, the IIHS judges the effectiveness of the AEB system 

using a scoring system. The score table can be seen in Table 6: 

Table 6: IIHS AEB Testing Score Chart. This chart was created to assess the effectiveness of 

AEB systems in stopping the vehicle. Higher score indicates greater stopping capability. [45] 
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Using the points determined by the test scenario, the AEB system of a single car model is 

given a rating of either “basic” with 1 point, “advanced” with 2 to 4 points, or “superior” with 5 

to 6 points [45].       

Announced by the NHTSA and the IIHS on March 17, 2016, 20 automobile 

manufacturers committed to ensuring AEB systems would become a standard feature for new 

cars by September 2022 [44]. The commitment applies to vehicles 8500 pounds or less in 

weight. The AEB standard inclusion agreement has also been set for vehicles between 8,501 and 

10,000 pounds, required before September 2025 [44]. These dates are expected to allow 

manufacturers to ensure proper functionality of AEB systems before fully launching the 

technology as a standard, as well as account for the time it may take to implement any recent 

AEB features that are still in development. 

Considering the technologies used by automotive manufacturers for automatic braking in 

cars, a similar system with a much greater weight and stopping time consideration would be 

needed in order to bring a city bus to a full stop. The main focus of this project was incorporating 

a sensor system that could identify an event where a bus needs to stop, which could then be 

integrated into an automatic braking system in the future. 

In addition to existing automatic braking standards in cars, research was conducted on 

how car manufacturers have developed blind spot detection technologies [46]. One example is 

the Volvo “Blind Spot Information System” (BLIS). BLIS works in Volvo vehicles by the 

following means: The car has two cameras in the rear view mirrors (one in each rear view 

mirror) and a computer connected to the cameras. If one of the cameras detect an object in the 

mirrors, this image will be transmitted to the computer. The computer will process the image 

from the cameras to determine if the object detected is a vehicle, and whether or not is is 

approaching the car. If that is the case, the door panel BLIS light will turn on and will stay on 

until the vehicle that was detected, either passes by the car or is out of range. An additional 

feature of BLIS is the Cross Traffic Alert (CTA) system which detects vehicles that could be 

approaching the car while the vehicle is driving backwards. This feature is activated 

automatically once the car switches gear into reverse [47]. The rise of blind spot detection 

systems in cars will aim to prevent highway fatalities, as the technology becomes more readily 

available in car purchases. 
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2.7: Blind Spot and Automatic Stopping 

 The project ultimately focused on one major factor that leads to pedestrian accidents: 

when the driver is unable to see a pedestrian in a blind spot caused by the structure of the bus. 

The proposed system needed to be equipped to deal with these blind spots, and in future 

revisions, ultimately automatically stop the bus to prevent an accident if the driver is unable to 

avoid the accident on their own.  

Most public buses in the United States are manufactured without much driver assistance 

in monitoring blind spots beyond the bus’s mirrors. A Washington Post report suggest that a 

blind spot of a bus can reach up to 6 feet in height [48]. The picture shown in Figure 10 describes 

the specific blind spot of a mid-sized bus. It was published by the Canadian society of insurance 

automobile in Montreal. 

 

Figure 10: Blind Spot Critical Areas Present on the Sides, Front, and the Back of the Bus. Red 

areas are not visible by the bus driver. This project focused on the blind spots on the sides of the 

bus originating from the two front corners, especially the driver-side (left) corner. [49] 

 

As for this project, the main concern was the blind spots originating from the corners of 

the bus, which corresponds to zones 2 to either side of the bus in Figure 10. As shown, the driver 
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has a very large part of his mirrors not covering any sides of the bus (red areas).  This is where 

the system sensor will detect any pedestrians and alert the driver of obstacles, especially humans, 

around that area. It is estimated that the bus driver will have no vision using his mirror for the 4-

5 meters to the right of his seat and the 9 meters at the back of his seat (which corresponds to 

Zone 2 at the driver’s seat side) [49]. From the other side, the blind spot is slightly smaller with 

about 3-4 meters of blind spot wide and about 6-7 meters long (which corresponds to Zone 2 at 

the passenger seat side of the bus). 

The blind spot was divided into the following zones: The potential threat zone, the danger 

zone and the critical action zone. In Figure 11, a detailed schematic of the defined blind spot of 

the bus is shown. 

 

Figure 11: Blind Spot Zone Division (Dimensions are Represented in Feet). Area extends up to 

16 Feet from the driver’s side window. The three zones represent increasing level of danger to 

the pedestrian, as the distance between the pedestrian and bus narrows. 
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 Each zone in the blind spot of the bus corresponds to a different level of system action 

because the distance between the pedestrian and the bus was a key factor in determining how fast 

the response needs to be. Starting from the potential threat zone, the systems sensors were able to 

detect that no obstacles were further than 13 feet away from the bus. The next two zones 

indicated increasing levels of danger. Understanding the level of danger in each zone of the blind 

spot allowed for the system to take the necessary degree of action. 

 Stopping the bus immediately was among the many factors that were considered in order 

to come to a full stop before hitting the pedestrian. One approach that can be implemented in a 

future revision, beyond the sensor integration achieved in this prototype, is to connect the 

systems FPGA data processing straight to the braking system of the bus. The decision making, 

managed by the system’s central computing, was connected to all of the sensors in order to be 

able to determine whether the received information strictly implied that the encountered obstacle 

is a human. The overall human detection and central computing system could eventually trigger 

the braking system of the bus without the need of any intervention from the bus driver. In order 

to achieve such integration, there would have been interfacing between the sensing system and 

an automatic braking system much like Automatic Emergency Braking (AEB) systems in cars. If 

the driver does not take an action and the sensors were to still be sending data that assure that an 

accident will occur, the autonomous part of the system will take over the control from the driver 

and apply the brakes automatically. Even though this method may seem the safest and most 

efficient for pedestrians, coming to an immediate and complete stop might have severe 

consequences on the bus passengers, especially the ones that are standing up and not holding 

tight to anything. Research indicated that the average force that can be absorbed by a mid-age 

person is about 4.6 G’s, or 4.6 times the force of gravity [50]. Studies have shown that a person 

should be able to withstand a short burst of 6-8 G’s at maximum without any major injury to the 

body [50]. This amount of force, however, would not be ideal. 

2.8: Technologies for Pedestrian Detection 

 In order to meet the requirements of the design different technologies were explored to 

determine what would be the most effective means of pedestrian detection for the overall system.  

The use of embedded technologies in the scope of this project was implemented through 

the use of a Field Programmable Gate Array (FPGA) with parallel microprocessor capabilities 
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allowing for proper data fusion between the sensors. The ability to simultaneously run hardware 

functionality and logic in tandem with the software systems of a microprocessor created a level 

of flexibility that would be pivotal. An FPGA provided the necessary functionality and 

implementation capabilities for any sensor needed.  

The use of the Zynq Evaluation and Development Board (Zedboard) was determined to 

provide better capabilities than the Nexys 4 DDR based on the considerations of the project. The 

Zedboard includes either a Xilinx Zynq-7000 series or Xilinx Zynq-7000S series All 

Programmable System on Chip (SoC) depending on the quality of the device chosen. The main 

difference is the 7000 series SoC contains a dual-core ARM Cortex A9 processor and the 7000S 

series has a single-core. All cost optimized devices have a Xilinx Artix-7 FPGA allowing for 

hardware and software programming within a singular device [51]. The Artix-7 in particular is 

designed with cost in mind, and allows for a low weight, low cost product that can be designed 

with the intention of large scale productions (i.e. every transit bus in New York). The mid-range 

devices utilize a Kintex-7, a higher end series-7 FPGA equivalent. The Kintex-7 is designed for a 

larger range of applications that can be expanded to larger scale applications such as advanced 

medical equipment. If cost was not a constraint there is also the Virtex-7 FPGA which is 

designed for high end FPGA applications in which the boards can have upwards of 2 million 

logic cells [52]. The cost alone of the Virtex-7 is upwards of $4,000 and the boards that utilized 

it cost well over $20,000 based on the prices available from Digikey [53].  

Based on the cost constraints it was most beneficial to utilize the Xilinx Zynq-7020 as it 

met the necessary requirements for the project’s design. This is the highest quality “cost 

efficient” series of board which utilizes the Artix-7, and the lowest quality of the mid-range 

boards start at over $1000 [51]. Spending over 40% of the available budget on the FPGA would 

not be the most cost effective solution. A detailed breakdown of the capabilities of the Zynq-

7000 series family can be seen in Table 7. 
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Table 7: Zynq-7000 All Programmable SoC Family Product Table. This table lists a number of 

the SoC options available, with their associated specifiations. A greater number of Flip-Flops, 

Lookup Tables (LUTs), and amount of RAM provides greater computing resources for the system 

design. [54] 
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Notable features on the Xilinx Zynq-7020 ZedBoard can be seen in comparison to the 

Nexys 4 DDR in Table 8 [51]. The functionality available on this specific device will provide 

enough capacity for the application of this project, and the student price shall cost $300.  

 

Table 8: Xilinx Zynq-7020 SoC Programmable Logic Features vs. Nexys-4 DDR. Based on these 

specifications, the Zedboard was chosen over Nexys 4 for its greater number of logic cells and 

DDR Memory (RAM). [55] [51] 

 

The board that was compared to the Zedboard was the Nexys-4 DDR. It featured the 

same Artix-7 technology, but it lacked the capacity that would be required for the scope of the 

project. For example, the Zedboard consists of 85,000 logic cells and 4.9 Mb block Ram while 

the Nexys 4 has roughly 31,700 and 4,860Kb block ram. A notable benefit of the Nexys-4 over 

the Zedboard for the project application was the lower power consumption as the Nexys-4 

requires a 5 volt (V) source, and the Zedboard requires a 12V source. However, from looking at 

examples of image processing there have been issues with memory [56]. The Nexys-4 has 

significantly less memory capabilities which could have led to issues during the implementation 

of the project. Because of this, the Zedboard was the clear choice as it does not fall short on 

memory capacity while maintaining the necessary peripherals and features. To further 

breakdown the differences between the board a comparison of the peripherals can be seen in 

Table 9 [55] [51].  

 

Table 9: Zedboard & Nexys-4 DDR Peripheral Comparison. The Zedboard provides a greater 

number of PMOD IO ports, which is ideal for connections to external sensors. [55] [51] 
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The datasheet block diagram for the Zedboard can be seen in Figure 12, which showcases 

the various features for the processing system, multiplexed I/O, and programmable logic of the 

Zedboard including LEDs, push buttons, slider switches, and PMOD IO. 

 

Figure 12: Zedboard Block Diagram. Integration of the Processing System, Programmable 

Logic and the Multiplexed I/O. This includes all of the hardware resources that are present on 

the Zedboard for user implementation. Hardware components utilized in this project are marked 

in red. [57] 
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The PMOD, GPIO, and VGA were components that the team previously learned to 

implement in courses, which further influenced the choice to consider this board for potential 

use. The JTAG interface allows for USB programming, and the DDR3 would provide more than 

enough memory for any processing the overall system may require [57]. 

Interfacing with the different sensors and peripherals that were chosen as a result of this 

project provided further functionality for the overall design. Possible sensors that were identified 

for use included radar, LIDAR, heat sensors and various cameras. The Zedboard provides ample 

computing power for the sensors investigated. For example, a radar application on the Zedboard 

would have the ability for real time continuous wave frequency modulation in which it would 

constantly scan the echo received and process the information [58]. This showed that the use of 

an FPGA, specifically the Zedboard, would be a more than viable option in properly connecting 

all the peripherals, making the correct logic based decisions, and decision making based on the 

data processed. 

This project aimed to implement a partially autonomous bus. More specifically, this stage 

of the project focused on developing an effective sensing system that will detect if a pedestrian is 

too close to the side of the bus when it is making a turn. In order to develop an effective system, 

it was important to determine what kind of monitoring sensors to use. The sensors are the most 

critical feature of the system because they are essentially the “eyes and ears” that the 

autonomous system relies on to make effective decisions. The final system aimed to involve a 

combination of different types of sensors. This section focused on exploring the use of a camera 

for pedestrian detection. 

           Two main features for a pedestrian detection system is to have a zero probability of miss 

detection and a very small probability of false alarms. For example, if the person is in the blind 

spot, the system must always detect the person. However, it is acceptable to detect another object 

that is in the blind spot as long as the probability of false alarm is very small. Since not many 

moving objects have a face, the idea of face detection came to mind. If the detection system is 

able to detect that the object inside of the blind spot has a face it is probably detecting a person. 

Therefore, it was important to explore the use of cameras in face detection. 

           Face detection is implemented through some type of image processing software that can 

locate human faces in an image regardless of their position, scale, in-plane rotation, orientation, 

pose and illumination [59]. According to Ming-Hsuan Yang from Honda Research Institute in 
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California, the face detection can be very difficult due to the pose of the subject, the presence or 

absence of structural components, such as beards and glasses, the pedestrian's facial expressions, 

the orientation and the imaging conditions such as lighting, camera characteristics and resolution. 

As a result, the problems of face localization and facial feature extraction arise [59].  Since the 

face detection system is operated in real time, the search strategy, the speed and the precision are 

the main constraints for the effective pedestrian detection. The next part of the paper explores the 

concurrent face detection software. 

           There are many different face detection softwares available. The main differences are in 

terms of algorithms they implement, real-time video processing capabilities as well as operating 

languages that they are written in. The nature of such software will determine the type of 

hardware and resources that would be used in order to implement the face detection system. This 

section looks into two contemporary face detection software, Google Mobile Vision and 

OpenCV. 

Google Mobile Vision Face API is a free Android and iOS library developed by Google 

software developers. The Google Face API finds human faces in photos, videos or live streams. 

The software is also capable of finding and tracking positions of facial landmarks such as the 

eyes, nose and mouth [60]. Therefore, it is obvious that this API could be used in the 

autonomous bus detection system to provide facial detection when an object is inside of the blind 

spot. The advantages of using Google Face API are that there is a lot of support and it is fairly 

easy to program because a high level object-oriented programming language, such as Android 

Studio, could be used. The immediate disadvantage of using the software is that it would require 

an Android device in order to implement. This means that the hardware that implements the 

camera would have to be capable of running Android OS. Usually, only consumer electronics, 

such as smartphones, run Android OS and it is clear that this is a very important limitation. 

OpenCV stands for Open Source Computer Vision Library and it is developed under 

Berkeley Software Distribution (BSD) license which makes it free for academic and commercial 

use [59].  According to the official website [61], OpenCV is an open source computer vision and 

machine learning software library, with over 2,500 optimized algorithms, that can be used to 

detect and recognize faces, identify objects, classify human actions in videos, track camera 

movements and track moving objects. It is obvious that this software library could be used to 

develop a pedestrian detection system. The advantages of using such software is that it has C++, 
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C, Python, Java and MATLAB interfaces and it supports Windows, Linux, Android and MAC 

OS. Furthermore, OpenCV is specifically designed for real-time vision applications which is 

exactly what the detection system for this project requires. Therefore, the hardware 

implementation can involve a Raspberry Pi running on Linux distribution and the face detection 

library can be implemented using Python programming language. Furthermore, since the library 

is licensed under BSD license the libraries are free to modify to suit the most optimized design. 

Similarly an FPGA can connect to a Raspberry Pi, and also run OpenCV software. This shows 

various implementation strategies that can be utilized in making the overall design function 

properly.  

FPGA’s have successfully been used for image processing and pedestrian detection in the 

past. There are numerous instances of FPGA based pedestrian detection that takes an image file 

and scans through it based on Histogram of Oriented Gradients (HOG). This method scans 

through an image using a box that slides from left to right and based on detectors of wanted and 

unwanted objects within the image it will create a detecting box around the desired objects. 

Usually this results in multiple boxes that detect the same object so this is averaged and the 

largest sample is taken [62]. Research into the OpenCV database showcased some 

implementations that had greater than 99% accuracy for person detection [63] However, this was 

not in real time, and scanned still images that came from a picture file, and not directly from a 

camera. The final design would require image processing within real time, and on a continuous 

basis from a camera feed. A recent MQP showcased a proof of concept for real time image and 

distance data processing that interfacing with an FPGA can provide [56]. The architectural 

design for the board would require an implementation of parallel processing capabilities. The 

programmable logic on the hardware would need to manage the peripheral sensors connected to 

the board and be able to transfer the image and sensor readings to the software functionality, the 

dual-core ARM Cortex A9 processor for the Zedboard, which would then handle the algorithms 

for the actual pedestrian detection. 

2.9: Sensor Technologies Considered for System 

For this project, it was necessary to analyze a certain number of sensors or technologies 

that could be used to detect human presence in the specified zone. Research for the appropriate 

technology brought about various considerations for possible technologies that could be 
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implemented for this project. Technology that was researched included: infrared, ultrasound, 

thermal sensor, sonar, LIDAR, and radar. 

Radar, radio detection and ranging, is another sensor commonly found on autonomous 

vehicles and it has been used throughout the automotive industry for quite some time [64]. The 

major reason for the success story of automotive radar is its physical principle that offers unique 

performance features at reasonable costs. It continues to be used for collision avoidance systems 

such as for self-parking and automatic braking. Radar can be used to determine the proximity, 

range, speed, and size of an object [65]. Due to the radio frequency technology and solid-state 

design, radar has an advantage over other sensors because it is more reliable in fog, rain and 

snow [66]. In addition, it is capable of virtually looking through vehicles by exploiting 

reflections between the road surface and vehicle floor and hence makes the invisible visible [66]. 

Therefore, it was obvious that the radar technology might be essential to develop an effective 

sensing system for this project.  

Radar technology has paved the way for vehicles to be autonomous. The introduction of 

semi-autonomous emergency braking and pre-crash systems was only possible by a dramatic 

improvement in radar technology and radar network architecture [8]. Those improvements 

include: a 250 meter multimodal range covering both long and short distances; Synthetic 

Aperture Radar (SAR), that is used to create images of objects in either 2 dimensional or 3 

dimensional representations; and a high angular accuracy with a fast update rate of few 10’s of 

milliseconds (ms) and a small latency of a few milliseconds [8] [67] [68].  

 It is not surprising that the radar technology is becoming a standard in autonomous 

vehicles. According to Digikey, the Advanced Driver Assistance Systems (ADAS) are increasing 

the adoption of 24GHz radar sensors in autonomous vehicles [69]; which has induced falling 

prices of radar sensors. Furthermore, ADAS that utilize radar sensing for adaptive cruise control 

and collision detection are becoming a requirement for car manufacturers to achieve the highest 

five star New Car Assessment Program (NCAP) safety rating in Europe [70]. It is obvious that 

these examples further enforce the idea of using radar when developing a detection system for 

automotive vehicles. The CDM324 is a relatively cheap 24GHz radar module available for 

purchase. The module’s specifications are shown in Table 10. 
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Table 10: CDM324 Radar Module Specifications. These are the specifications of the radar 

module that was considered as one of the sensors for the initial prototype of the system. Despite 

the capabilities of this sensor, which made it acceptable for potential use, radar technology was 

ultimately not chosen in the final design in favor of LIDAR technology. [71] 

 

This sensor can be interfaced with a microcontroller and by using the Doppler Effect it is 

possible to detect a moving object and its velocity [71]. Unfortunately, this system is not reliable 

for detecting slower speed objects [71]. Therefore, this radar sensor was not the best solution for 

pedestrian detection.  

According to Digikey, the newest radars for autonomous automotive applications are 

operating at 77 GHz band of frequency and provide a longer range and higher resolution [69]. 

This type of technology allows for multiple object detection in real time [69]. Unfortunately, this 

technology is still in the development stage and there is not an affordable complete module that 

could be easily interfaced with the rest of the system. Since building such a sensing system could 

become a project of its own, an alternative technology was explored. 

Light Detection and Ranging (LIDAR) is a common sensor found on many autonomous 

vehicles such as those used in Defense Advanced Research Projects Agency (DARPA) 

competitions [72]. This system provides a 3D or 2D reading of the field that its laser space 

covers [73]. Using the data from the reading, the processor is capable of implementing object 

identification, motion vector determination, collision prediction, and avoidance strategies [64]. 

Essentially LIDAR gives an autonomous vehicle obstacle and location perception.  
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Many autonomous vehicle companies choose LIDAR because it can provide a high 

resolution up to a range of 60 meters, and it can be integrated with other kind of sensors for more 

accurate measurements [72]. Low cost LIDAR sensors can only give a horizontal field range of 

180 to 270 degrees, but only provide single layer measurements. The problem with this is that 

determining the heights of objects and the detecting the profile of the road can be difficult. To 

alleviate this problem many autonomous vehicles use LIDAR systems that have horizontal range 

of at least 270 degrees and 32 to 64 layer measurements [8] [72]. One of the most known LIDAR 

systems is Velodyne’s HDL-64E with the most famous user being Google’s self-driving car [67]. 

By using a high quality LIDAR system an autonomous vehicle can map out its 

surroundings and plan a route based off of this. This has been accomplished by an unmanned 

aerial vehicle (UAV) operating without GPS. Testing and research has shown that if a UAV or 

any other kind of autonomous vehicle was trapped in an area without GPS, laser scans of its 

surroundings can be used to plan a safe escape route [74]. LIDAR data can be mapped out on a 

Cartesian plane which can be processed by another system aboard an autonomous vehicle, it can 

create a 3D cloud [64]. The information from the LIDAR can be used to plot an object on a 

Cartesian plane [72]. 

 There are a few drawbacks to using LIDAR. The first being that LIDAR is unable to 

recognize the object class [75]. LIDAR cannot tell the difference between a mailbox and a 

pedestrian. To combat this problem a more complex system with more sensors such as radar and 

cameras would be needed in order to confirm that an object is a pedestrian. Another drawback is 

that LIDAR measurements tend decrease as range increases. Experimental results showed that 

the height reading of an object was twice as inaccurate when the range was increased from three 

meters to seven meters [67]. The other drawback is that high quality LIDAR systems are very 

expensive. Velodyne’s HDL-64E can cost as much as $80,000 with the next model down costing 

$40,000 and the lower quality model from the company costing $8,000 [67]. As previously 

stated, low cost LIDAR systems provide a narrower horizontal field and a single layer 

measurement which provides less details about the surrounding. Any company or team working 

on autonomous vehicle with a tight budget may find the use of LIDAR systems not feasible. 

 The current available LIDAR systems are expensive and very costly for a project like this 

one. However, there are some startups that are trying to push the new, low-cost, LIDAR systems 

on the market. According to IEEE Spectrum [76], the recent academic and industry research 
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focuses on making cheaper LIDAR sensors while decreasing their footprint. For example, a 

startup from Israel, Innoviz, is promising a “high-definition solid-state LIDAR” with better 

resolution and a larger field of view than the concurrent LIDAR sensors [76]. Furthermore, 

Innoviz is promising a per chip cost of 100 USD [76]. While this type of sensors seems like a 

viable option it is important to note that the working prototype has yet to be released in 2018 

[76]. Therefore, this type of technology should be kept in mind for the future improvements of 

the sensing system. 

 A LIDAR sensor that has significant potential is the recently released Sweep LIDAR 

made by a California based startup, Scanse [77]. The sensor was released in March 2017, and it 

can be pre-ordered at relatively low cost of $350 [78]. According to Scanse [78], Sweep LIDAR 

sensor has scanning capabilities that allow on the fly adjustment of the rotation speed. When the 

rotation speed is slowed down, it is possible to extract more details about the surrounding. 

Similarly, fast reaction times are obtained by increasing the rotation speed [78]. More detailed 

specifications for this sensor can be seen in Table 11.  

 

Table 11: Sweep LIDAR Sensor Specifications. Showing the range, the Field of View and the 

Electrical specifications. These were considered when choosing a potential LIDAR for the first 

prototype. The long 40m range and 360-degree field of view of this sensor show the strong 

capability of a LIDAR sensor for object detection. [78] 
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 Another low cost LIDAR is RPLIDAR A2 manufactured by Slamtec. The RPLIDAR A2 

is a 360 degree 2D laser which can scan to within a 6 meter range [79]. The sensor generates 2D 

point cloud data that can be used in localization and environment modeling. With a relatively 

low cost of $375 it was obvious that this LIDAR solution might be a viable option for this 

project. The scanning frequency of this device can be freely adjusted for more detail or faster 

detection, depending on the application. Furthermore, the device is specifically designed to have 

a long life span which is a vital characteristic for this project.   

 

 

Figure 13: RPLIDAR A2 LIDAR Sensor. The sensor features a laser transmitter and receiver for 

determining object distance through reflections. The sensor’s housing is able to rotate 360 

degrees on the base for maximum field of view. [79] 

 

Low-cost LIDAR sensing technology is still in the development phase; however, it does 

show a lot of potential. The current technologies proved to be very expensive; however, some 

startups are coming up with relatively cheap solutions. Table 12 demonstrates the comparison of 

the two LIDAR sensors.  
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Table 12: Sweep vs. RPLIDAR A2 Specifications. The specifications were analyzed and 

compared to determine which one would be the most efficient LIDAR sensor for the system. At 

only a slightly higher price, the SLAMTEC RPLIDAR A2 features a much faster refresh rate 

within a range acceptable for this application. [78] [79] 

Features Scanse SLAMTEC 

Model Sweep RPLIDAR A2 

Price $350 $375 

Update Rate 500Hz 4000Hz 

Recommended Scan Rate 2.5 Hz 10 Hz 

Range Indoors 50m 0.15 – 6m 

Range Outdoors 40m 

Range Accuracy 1-2% of distance 0.2% of distance 

Range Resolution 1cm 1cm 

Horizontal FoV 360 deg 360 deg 

Vertical FoV 0.5 deg N/A 

Power 1W @ 5V 1.2W @ 5V 

Weight 120g 170g 

Interface UART/USB UART/USB 

Operating Temp. -10 to 60 C 0 to 45 C 

 

Low-cost LIDAR solutions are becoming increasingly accessible. The Sweep LIDAR 

sensor made by Scanse could potentially be an appropriate choice for this application. However, 

this product is in the beta phase and it has yet to be perfected. If the Sweep sensor proves to be 

robust, it could become a vital part of the pedestrian sensing system for this project. 

If used, any LIDAR sensor must prove to be very robust and immune to different 

mechanical vibrations and environmental conditions since it will be implemented on the side of a 

bus. Therefore, a solid-state LIDAR comes to mind. Solid-state LIDAR technology has no 

moving parts which enables very robust and reliable design at lower costs. This technology is 

still in its development stages and there are not many solutions on the market. However, 

LeddarTech, LIDAR sensing technology company from Quebec City, Canada, announced one of 
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the first solid-state LIDAR sensors available for purchase in September 2016 [80]. The 

LeddarVu8 LIDAR sensor has a high degree of modularity, which enables very flexible 

integration to meet the system’s specifications [80]. LeddarVu8 is shown in Figure 14. 

 

  

Figure 14: LeddarVu8 LIDAR. This is a solid state LIDAR sensor, featuring up to 100 degrees of 

horizontal Field of View (FoV). The FoV is divided into 8 segments and a distance is measured 

for the closest object in each segments. This device was chosen to be a part of the system for its 

robustness and individual segment readings. [80] 

 

 According to the manufacturer’s website, LeddarVu8 “leverages powerful class-1 laser 

illumination and eight independent active detection elements into a single sensor, which results 

in rapid, continuous and accurate detection and ranging of objects” [81]. Furthermore, 

LeddarVu8 has an advantage over conventional LIDAR because it has no moving parts which 

makes it very robust [81]. Also, due to its modular design it is possible to choose the hardware 

that gives the best possible Field of View (FoV) for the desired application. Depending on the 

FoV, the sensor is capable of detecting objects up to 215 meters away with multi-object detection 

[81]. The LeddarVu sensor has an operating temperature of -40℃ to 85℃ which makes it great 

for the outdoors use [81]. This sensor is also immune to ambient light and works in all weather 

conditions [81]. It was obvious that this sensor had all the characteristics for the pedestrian 
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detection system. The only downside was the $475 starting price, which makes it more expensive 

than the previous LIDAR solutions [81]. Table 13 shows the LeddarVu8 specifications. 

 

Table 13: LeddarVu8 Specifications. Showing the range, the Field of View and the Electrical 

specifications. These were considered when choosing a LIDAR for the first prototype. The 

capabilities of this sensor were impressive when compared to the other two aforementioned 

LIDAR sensor options, as it is a non-moving solid-state LIDAR technology. [81] 

LeddarVu Specifications: 

Number of Segments  8 

Vert9cap FoV options (degrees) 0.3, 3 

Beams (degrees) 20, 48, 100 

Interfaces SPI, USB, CAN, Serial (UART/RS-485) 

Wavelength  905 nm 

Power supply 12V 

Weight 14g 

Detection range 0 - 40 m 

Accuracy 5cm 

Data refresh rate Up to 100 Hz 

Operating temp. range  -40 to 80 degrees C 

Distance precision 6 mm 

Distance resolution 10 mm 

Power consumption 2 W 

 

 

A cheaper alternative is LeddarOne, also manufactured by Leddar Tech [82], with a 

starting price at $170 [82]. This sensor is different from LeddarVu because it is only capable of a 

single point measurement [82]. However, due to its RS-485 communication standard option, in 

combination with MODBUS, it is possible to integrate multiple of such sensors within an RS-

485 network [82]. It is obvious that this approach would require more focus into design of a 

multi-object detection system, which could become a very complex project of its own. Therefore, 

it was more feasible to choose the LeddarVu8 over the LeddarOne. LeddarOne specifications are 

shown in Figure 15 and Table 14. 
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Figure 15: LeddarOne Sensor. This is solid state LIDAR sensor capable of single point 

measurement. This module was considered when choosing a LIDAR sensor for the first prototype  

[82] 

 

Table 14: LeddarOne Specifications. Showing the range, the field of view, and the electrical 

specifications. These were considered when choosing a LIDAR for the first prototype. [82] 

LeddarOne Specifications:  

Beam 3 degrees 

Interfaces 3.3V UART or RS-485 

Wavelength  850 nm 

Power supply 5V 

Diameter 60.8 mm 

Weight 14g 

Detection range 0 - 40 m 

Accuracy 5cm 

Data refresh rate Up to 70 Hz 

Operating temp. range  -45 to 80 degrees C 

Distance precision 5 mm 

Distance resolution 3 mm 

Power consumption 1.3 W 
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2.10: Camera Sensor Technologies 

Cameras can give a clear and accurate picture of a bus’s surroundings.  An important 

requirement for using cameras was that there must be a system on board that can process the 

images from the camera such as system that uses software such as OpenCV. Two types of 

cameras could be used, a standard camera that uses visible wavelengths or a thermal imaging 

camera. It was necessary for this image processing to be independent, as the driver having to 

look at a monitor hooked up to the live feed from the camera system would distract them from 

focusing on the road. This system needed to be designed as an aid, and limit the distraction 

caused by it.  

A real-time vision algorithm could be created, using OpenCV, to detect and track 

pedestrians but there were many variables that would cause challenges. Some of the variables 

included clothing, human posture, lighting conditions, the background, etc. A common algorithm 

found in many object detection applications is the Histogram of Oriented Gradients (HOG) 

feature descriptor using a Linear Support Vector Machine (SVM) [83]. The HOG feature 

descriptor provides superior results because it highlights the head and shoulders clearly, the most 

relevant parts of the human body [84]. Studies have shown that a detection window of 64x128 

pixels should be used in the algorithm [83].  

The first step in this algorithm would be determining the histogram of oriented gradients 

to generate the features necessary for human detection. The features would be determined by 

solving for the histogram of oriented gradients of smaller rectangular regions of the detection 

window as it moves across the image. This process would scan through the entire image. One 

experiment used OpenCV’s AdaBoost, a two-class classifier. AdaBoost is primarily used for 

system training and classification purposes. The training purpose allowed for old images to be 

stored and compared to new images to aid in the classification purpose which determines the 

identifier features that would need to be scanned for. AdaBoost was used to determine if a 

pedestrian was present and then Linear SVM was used to confirm the classification from 

AdaBoost. If AdaBoost and Linear SVM both confirmed a pedestrian was present then both 

detection windows used in AdaBoost and Linear SVM were merged. When compared to the 

default human detector in OpenCV this experiment had a faster processing rate but operated at a 

lower precision. The authors of the experiment noted that the precision rate could have been 

improved if their system was trained with more images contained with negative results. 
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OpenCV’s default detector used 12,180 images with negative results compared to the experiment 

which used 7,308 images with negative results [85].  

The use of thermal cameras was also a possibility. Specifically, far-infrared (FIR) camera 

systems have shown a level of quality and functionality that would be necessary for the project. 

It captures thermal radiations that is in the wavelength of 8 to 12 micrometers. The thermal 

radiation of human body falls within this range. When compared to close range infrared cameras, 

FIR cameras do not require additional illuminators and the impact of absorption and scattering of 

infrared signals due to fog is less severe. A FIR camera and standard camera can be used 

together to scan the same image when calibrated properly. Through research, an experiment was 

found, which was conducted using this setup in various conditions such as the morning, night, 

afternoon, and a rainy day. To calibrate the cameras, 20 ground-truth points where compared 

from the images from both cameras. The results showed that the thermal cameras was roughly 97 

to 99 percent accurate during the daytime. During a rainy day, it was 99.63 percent accurate. The 

total processing time of this experiment was roughly 23 milliseconds [86]. This experiment used 

a different method compared to most human identification software that exists. In this 

experiment, the algorithm uses background subtraction of the thermal image and visible light that 

is apparent within the image to determine if a pedestrian is present within a particular region. 

Then the algorithm focuses on that region and determines if a pedestrian is present by using 

thermal imaging. If a pedestrian is detected across all of the stages then the algorithm merges the 

visible and thermal imaging positive images to give a clear and concise result [86]. 

Using standard and thermal cameras instead of other technologies to detect humans has 

its benefits. Camera sensors with the right detection and tracking software can be programmed to 

differentiate pedestrians from other objects. This is particularly useful in urban environments 

where there are many obstacles besides pedestrians [85]. The only drawback is that the type of 

algorithm, and computing power and architecture used can greatly influence the efficiency of the 

system along with the other variables mentioned earlier in this section [83]. 

2.11: Ultrasonic Sensors 

Ultrasound technology is commonly used in automobile sensors to measure the position 

of objects in close proximity to the vehicle. The term “Ultrasound” refers to a high-frequency 

acoustic wave, generally above 20 kHz, which exceeds the human range of hearing [87]. 
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Ultrasonic transducers are available as either transmitters, receivers, or transceivers. An 

ultrasonic transceiver is able to both transmit and receive ultrasonic waves. A matched pair of 

transmitter and receiver, or a single transceiver unit, can be used to transmit ultrasonic sound 

waves into a space and measure the waves that are reflected back. This enables ultrasonic 

technology to be used for measuring proximity of nearby objects. By calculating the change in 

proximity of a target object over time, ultrasonic sensors can also be used to measure an entity’s 

speed. One advantage that ultrasonic transmitters and transceivers have in detecting object 

distance is that “ultrasonic sound waves can be produced with high directivity” [87]. By forming 

a direct beam of sound, as opposed to a wide-angle transmission, ultrasound sensors are effective 

in producing a precise linear distance reading. As shown in reference [88], there was a report 

released on the experimental testing of directivity patterns in piezoelectric ultrasonic 

transducers. Three transmitter-receiver pairs were tested individually in a tank of deionized 

water, with the transmitters fixed at various angles relative to the receivers, ranging from 0° to 

10° in 0.1° increments. The operating frequencies of the three pairs were set at 2.25 MHz, 3.5 

MHz, and 5 MHz. By testing each sensor at multiple angles under the same conditions, the 

amplitude of received waves could be measured to analyze the effect of transmission frequency 

on the directivity of ultrasonic sensors. The results of these experimental trials can be found in 

Figures 16, 17 and 18. 

 

Figure 16: Ultrasound Directivity Test, at 2.25 MHz. A comparison between the actual measured 

data received from the Ultrasound sensor, and the theoretical predicted data. The theoretical 

zero amplitude “dips” indicate where the receiver was predicted to receive no signal from the 

transmitter, due to the directed angle. The behavior likely changes due to reflections of 

ultrasonic waves within the water tank. [88] 
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The normalized amplitude measurements of the 2.25 MHz sensor test shown in the 

Figure 16 demonstrated a relationship between the angle of the transmitter’s placement relative 

to the receiver and the strength of the detected ultrasonic signal. As the transmitter is turned 

away from the receiver, the measured amplitude drops in magnitude. This reduction becomes 

most apparent after roughly three degrees. 

 

Figure 17: Ultrasound Directivity Test 3.5 at MHz. A comparison between the actual measured 

data received from the Ultrasound sensor, and the theoretical predicted data. The theoretical 

zero amplitude “dips” indicate where the receiver was predicted to receive no signal from the 

transmitter, due to the directed angle. The behavior likely changes due to reflections of 

ultrasonic waves within the water tank. [88] 

 

The 3.5 MHz test revealed a sharper decrease in normalized amplitude as the transmitter 

was rotated. This graph indicates that an increase in frequency also increased the directivity of 

the ultrasonic beam, as the received signal was now weaker at narrower angles when compared 

to the 2.25 MHz trial. The normalized amplitude now shows most significant decrease at an 

angle just below two degrees. 
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Figure 18: Ultrasound Directivity Test at 5 MHz. A comparison between the actual measured 

data received from the Ultrasound sensor, and the theoretical predicted data. The theoretical 

zero amplitude “dips” indicate where the receiver was predicted to receive no signal from the 

transmitter, due to the directed angle. The behavior likely changes due to reflections of 

ultrasonic waves within the water tank. [88] 

 

The 5 MHz sensor test continued this trend, and further confirmed that an increase in 

frequency causes a more directional ultrasonic transmission.  A rapid decrease in signal 

amplitude was observed at roughly one-degree rotation. 

 It can be concluded that the frequency of a chosen ultrasonic sensor would be important 

if in incorporating ultrasound technology into a pedestrian detection system.  If ultrasound were 

to be used solely for finding the range between the bus and a target, a high frequency sensor may 

be useful because it could pinpoint a specific area and return a linear approximation.  In the case 

where ultrasound were to be implemented for detecting objects in a conical angle, a lower 

frequency transceiver would most likely be the better option.  However, the directivity of an 

ultrasound sensor would be best paired with another technology, designed to detect objects 

within a wide angle.  A separate technology could first detect an object within close proximity of 

the bus, and then the ultrasound sensor could be used to more accurately determine the distance 

of the object in question.   

One current application for ultrasound in the automotive industry is the acquisition of 

distance readings between a vehicle and surrounding structures. Ultrasonic sensors help to enable 
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autonomous and semi-autonomous features in cars, such as obstacle alerts for assisted 

parking. Reference [89] shows a report on multisensor integration techniques for an autonomous 

ground vehicle project. This study focused on the performance of both individual sensors and 

multisensor arrangements when used for the navigation of a vehicle among structured 

surroundings [89]. The autonomous vehicle interfaced with ultrasound transceivers amongst four 

other sensing technologies. The ultrasound sensors chosen were two MaxBotix MaxSonar-WRS 

7384 ultrasonic sensors. The MaxBotix 7384 sensor can be used as a rangefinder, measuring the 

“time of flight” for sound waves transmitted towards and reflected back by objects within the 

sensor’s line of sight [89]. Based on the time between transmission and reception of the reflected 

signal, the sensor then calculates and outputs a range reading.  The two ultrasonic sensors were 

used to monitor the surroundings of the front-left and front-right sides of the vehicle.  If an object 

were found in close proximity of the vehicle's path, these sensors would provide distance 

information to the remote motion controller that could adjust the steering accordingly.  At fixed 

range tests from 2 to 7m, the ultrasonic sensors were able to detect objects, however, they 

became less accurate as the range increased [89]. The findings of this study indicated that 

ultrasound technology is most useful for obstacle detection applications, while other 

technologies, such as cameras and Global Positioning System, are better suited for determining 

the vehicle’s navigation path. 

Based on the studies mentioned, the team concluded that ultrasonic sensors were most 

practical for range finding applications, where a narrow, linear beam is used to determine the 

distance between the mounted location of the sensor and an object in its direct line of 

sight. When mounted on a bus, an ultrasonic sensor could be used to detect the distance between 

a person and the bus’s surface. This information could be processed by the central computing 

system to determine if the person is in the dangerous zone of the bus’s turn path. Multiple 

ultrasonic sensors were investigated for potential use in this project.   

The MaxBotix MaxSonar series ultrasonic sensors are available in many different 

configurations for a wide range of applications. The MaxSonar series sensors are suitable for 

outdoor weather conditions with IP67 dust and water resistance ratings, and most are able to 

operate in a wide range of temperatures, as low as -40 °C and as high as 70 °C. The MaxSonar 

WRS 7384 model used in the aforementioned project was evaluated for potential use for the 

autonomous bus application, however, two major shortcomings were found. According to the 
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WRS 7384 datasheet, this sensor is rated for a theoretical maximum of 5 meters (~16.4 ft) in 

range, with a maximum refresh rate (data acquisition and serial output) of 6.67Hz [90]. These 

performance ratings presented two areas of concern to be considered in the consideration of an 

ultrasonic sensor choice: the range at which a sensor would be able to realistically detect 

pedestrians and the speed at which the range readings could be reported to the central data fusion 

and decision making system. While 5 meters is roughly the width of the zone to the side of the 

bus that the sensor technologies would aim to cover, it would be preferable to avoid limiting the 

maximum range of the ultrasonic sensor to only 5 meters. A longer theoretical maximum range 

would ensure that the sensor could cover such distance, with the capability of detecting targets 

further from the sensor depending on the configuration. For example, if the sensor were to be 

placed at an angle on the bus’s side, rather than facing outwards perpendicularly, then a 5-meter 

range sensor would not be able to fully reach the 5-meter edge of the required zone. A longer-

range sensor would provide the option of being placed in a greater number of configurations, in 

that it would be able to cover 5 meter from the bus at an angle. The refresh rate of the sensor was 

also a concern because the speed of the pedestrian detection system is an important factor in 

avoiding collisions. In the case of the WRS 7384, 6.67 Hz could pose latency issues. If the bus is 

taking a sharp turn into a side street as a pedestrian begins to cross, roughly 6.67 data samples 

per second may not be fast enough to provide ample warning in the case of an imminent 

crash. At this refresh rate, a theoretical maximum latency of 150 milliseconds would be added to 

the overall system when relying on the ultrasonic sensor’s measurements. 

The MaxBotix MaxSonar-WRLS 7363 ultrasonic sensor is very similar to the WRS 

7384, yet it supports longer range transmission. The WRLS 7363 model can identify the distance 

of an object up to a maximum of 10 m (~32.8ft) away [91]. This distance would enable the 

sensor to cover critical areas along side of the bus from a wide range of positions and angles. 

However, this model also shares a flaw with the WRS 7384: a rather low refresh rate of 6 Hz for 

data acquisition and serial transmission. The WRLS 7363 could prove to be useful in a situation 

where range is significantly more important than speed. Such situation would only occur if the 

ultrasonic sensor would not be a primary sensing technology for detecting a pedestrian, and is 

instead used for determining a range reading for an already acquired target. This refresh rate 

issue brings concern to ultrasound’s potential for an autonomous pedestrian detection system. 

However, there is one sensor manufactured by MaxBotix that could prove useful for this 
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application. Also within the MaxSonar series, the WR 7040 model makes use of I2C 

communication to support a 40 Hz data refresh rate, over six times faster than the 7363 model 

[92]. The I2C interface also enables the integration of multiple 7040 models with the use of only 

two wire lines, which would be helpful in a configuration consisting of more than one ultrasonic 

sensor. I2C would require different methods of integrating this sensor with the central data 

processing system than a similar serial peripheral interface device, however it is likely possible 

to achieve. The WR 7040 has an effective range of 7.65 m (~25 ft), with 1 cm resolution 

readings. An image of the sensor, as well as a beam pattern diagram from the official datasheet 

can be found in Figure 19. 

 

Figure 19: MaxBotix WR 7040 Ultrasonic Sensor & Beam Pattern. Pattern shows how the beam 

propagates from the sensor’s opening. The sensor’s conical shape assists in the directivity and 

range of the ultrasonic pulses. [92] 

 

The range and refresh rate specifications of this sensor make it a better choice than the 

WRLS 7363 or the WRS 7384, as it supports just over ¾ of the range of the longest range WRLS 

7363 at a significantly higher refresh rate for data acquisition. This sensor is capable of the 

convenient all-weather features that the MaxSonar series supports, which is beneficial to this 

application, where the sensor could be externally mounted on a city bus. The power requirements 
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of the WRLS 7363 is rather low, with an average current draw of 3.4 mA and 3.0V-5.5V 

operating voltage range. Conclusively, due to the capability of outdoor operation, suitable range, 

and comparatively fast data refresh rate, the ultrasonic sensor of choice for a pedestrian detection 

system would be the MaxBotix MaxSonar WR 7040. 

2.12: GPS in Autonomous Vehicles  

The primary sensor technology needed for any guidance system is location identification 

[65]. Global Positioning System has been used for many years to navigate the particular position 

of a vehicle. GPS technology has been successful in location accuracy on the order of one meter 

[65]. This project requires a greater degree of precision, and GPS is not a system that could work 

alone. Over the years, GPS has been able to evolve into more efficient subsystems that can be 

integrated into various designs. GPS can be produced on a chip (SoC) IC or multiple chips. 

These chips consists of an internal RF preamp for the 1.5-GHz GPS signal and an embedded, 

application-specific computed engine to perform the intensive calculations of the subsystems 

[64]. Typically, these antennas are on the roof of a vehicle with a low-noise amplifier RF 

preamplifier in order to locate the GPS circuitry in a more convenient location within the vehicle. 

In order to implement these chips the use of modular GPS solutions, for overall location 

awareness, are a good choice [65]. An example of a typical GPS module is the RXM-GPS-F4-T. 

It requires a single 1.8V supply at 33 mA, and has the ability to track up to 48 satellites 

simultaneously [64]. This is significant in that more channels will be able to allow the GPS to see 

and capture more data and ultimately yield better results and fewer dropouts. After it computes 

location based on the GPS received signal, it provides the output data to the system processor via 

serial interfacing. The industry-standard that needs to be followed is based on the National 

Marine Electronics Association. Another example of modular GPS technology is the Antenova 

M10478-A3. It includes wideband antenna to provide support for dropouts while providing 

simple UART-based interfaces with data rates up to 115.2 Kbits/sec for easy interfacing to 

virtually any standard microcontroller [65]. 

Even though GPS can be an essential factor in autonomous vehicles, it has performance 

drawbacks that need to be considered [64]. This includes the level of precision, as this project 

required a very small margin of error, and precision that is down to a fraction of a meter. 

External factors such as weather conditions, electronic noise sources, and mapping 
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inconsistencies can all interrupt the functionality of a GPS signal. In order to be implemented in 

autonomous vehicles it must act as a supplement to an inertial measurement unit (IMU). The 

IMU consists of a platform fixed to the vehicle with three gyroscopes and three accelerometers 

that individually connects to the orthogonal X, Y, and Z-axis [64]. The IMU is only capable of 

calculating the motion of a vehicle while GPS determines the initial location of a vehicle. 

2.13: High Sensitivity Thermal Sensor Technologies 

A thermal sensor is able to scan the temperature of an object by measuring the amount of 

atomic activity inside the object [93]. In case that there is no atomic activity in the object, the 

temperature is considered to be the coldest state of matter. As soon as there is atomic activity in 

an object and particles are moving, the thermal sensor is able to pick up this movement and 

translate this movement into a temperature [93]. The sensor would be continuously sending 

information to the microcontroller and would keep track of the temperature of the object that the 

sensor is scanning (in case no object is being scanned, the air temperature would be the 

temperature provided to the microcontroller). Therefore, in case of a change in the reading of the 

temperature, the sensor would pick up the temperature change immediately if the object is in the 

distance range of the sensor. While the object temperature is being scanned and if the 

temperature picked up by the sensor corresponds to the temperature of the human body, the 

microcontroller would receive this temperature reading from the thermal sensor and then alert 

the driver of any potential people in the blind spot. 

2.14: Infrared (IR) Image Sensor 

Infrared sensors have the capability of measuring the temperature of an object without 

being in physical contact with the object’s surface. The IR sensor can be implemented in this 

project in order to scan blind spots and scan objects that are in the blind spot area range. There 

are three major types of IR sensors: high, medium and low resolution sensors. These sensors 

work as lasers that scan the heat of objects in a certain range and a certain angle (the range and 

angle scanning depends from every sensor). Infrared Sensors have an analog to digital converter 

which converts the heat scanned into a temperature. Based on the heat dissipated from the 

sensor, the device will convert the heat into a temperature reading. The temperature accuracy is 

based on the resolution. By conducting a market research, the team found sensors with an 

accuracy varying from 0.1 degrees Celsius, up to an accuracy of 4 degrees Celsius.  



55 

 

After taking the infrared sensing and the thermal sensing technologies into consideration, 

research on some possible sensors to be used was conducted and is shown in Table 15.  

 

Table 15: IR Sensor Comparison Table. The MAX 30205 is more accurate (higher resolution) 

and power efficient in comparison to the other two. 

 Cost Technology 

used 

Accuracy Operating 

temperatures 

Voltage / 

Current 

Supply 

Resolution (if 

applicable) 

D6T 

44L06 

$33-

$52 

Thermal 

Sensing 

+/- 1.5 

degrees 

Celsius 

0 - 50 degrees 

Celsius 

4.5-5.5 

Volts 

5mA 

 

MAX 

30205 

NA Infrared 

image 

sensing 

+/- 0.1 

degrees 

Celsius 

0 - 50 degrees 

Celsius 

2.7-3.3V 

600uA 

16-Bit 

(0.0039 

degrees 

Celsius) 

ML8540 

IR Sensor 

NA Infrared 

image 

sensing 

NA -38 – 85 

degrees Celsius 

5V 

5mA 

0.5 degrees 

Celsius 

 

In Table 15, three sensors were analyzed and compared to each other by taking in 

consideration some of the most important factors and criteria that each of the sensors has to 

meet. It is notable from the table that option 2 (MAX 30205) is more accurate and power 

efficient than the other two sensors. It is notable that the prices for the MAX30205 and the 

ML8540 are missing. This is because the MAX30205 is available only for medical use, and the 

third sensor does not have a price listed on its official website as this sensor is still under 

development, therefore it is unknown as to how much of the limited budget this sensor would 

take. Whereas the D6T 44L06 sensor has a reasonable price range for this project. The Omron 

D6T sensor is a possible option to be considered due to its price. The specifications obtained 

from the data sheet meet the requirements for human sensing, as the average body human 
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temperature is in the range of 36.5 – 37 degrees Celsius. In Figure 20 is a picture of the D6T 

thermal sensor. 

 

   

Figure 20: Omran D6T Thermal Sensor. As highlighted, the sensor’s lens is used to acquire 

thermal readings of the surrounding environment. This can be used to distinguish between 

objects based on their temperature. [94] 

 

Shown in Table 15 are the specifications in which this sensor operates and picks up heat 

from any objects. This would help in determining the architectural implementation of the sensors 

and their positioning on the bus. Therefore, the Omrah D6T was a possible sensor to be 

implemented after being analyzed in detail by all the members of the group.  

From Table 15, where three possible options are listed, the team was limited by choosing 

the D6T sensor, since the MAX 30205 was available only for medical purposes and the ML8540 

IR Sensor does not have a price listed since it is still under development according to MELEXIS. 

Therefore, it is difficult, planning on purchasing this sensor due to the limited budget. Therefore, 

the most suitable sensor to take in consideration would be the D6T. While reviewing the specs of 

this sensor, a problem was noticed that might occur while using this sensor during the winter 

time, since the sensor will not provide as accurate measurements below the freezing point of 0 

degrees Celsius (32 degrees Fahrenheit), a solution had to be found that would solve this issue. 

In order to find a feasible sensor that would be capable of operating in temperatures below the 

freezing point, further research was conducted. The possible options that were found during the 

research phase are the following sensors shown in Table 16: 
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Table 16: MELEXIS Sensor Comparisons. The MLX90640 datasheet suggests that it is suitable 

for pedestrian detection. [95] 

 Cost Technology 

used 

Accuracy Operating 

temperatures 

Voltage / 

Current 

Supply 

Resolution 

(if 

applicable) 

MLX90614 

(Option 1) 

$20 Infrared 

sensing 

+/- 0.5 

degrees 

Celsius 

-40 - 125 

degrees 

Celsius 

4.5-5.5 

Volts 

2mA 

0.14 degrees 

Celsius 

MLX90621 $43 Infrared 

sensing 

+/- 1 

degrees 

Celsius 

-40 – 85 

degrees 

Celsius 

2.6-3.3V 

9mA 

0.5 degrees 

Celsius 

MLX90614 

(Option 2) 

$14 Infrared 

Sensing 

+/- 0.5 

degrees 

Celsius 

-40 – 85 

degrees 

Celsius 

2.6-3.6V 

2mA 

16-Bit 

MLX90640 $35 Infrared 

Sensing 

+/- 0.5 

degrees 

Celsius 

-40 – 85 

degrees 

Celsius 

3.6-5V 

14mA 

16-Bit 

 

The sensors shown in Table 16 use infrared technology for human sensing. The IR 

sensors above are manufactured by MELEXIS, from where the specifications for each of the 

sensors were obtained individually. Going through the data sheets for each of the sensors 

provided a better understanding of the specific capabilities of each of the sensors [95]. The 

MLX90640 is suitable for pedestrian detection and classification, but it is not specified as being 

suitable for blind spot detection. The MLX90621 has a higher price than the other sensors but 

has been used for presence detection and automatic blind spot detection [95]. The MLX90614 

sensor also has a greater price, but has shown success with various presence detection 

applications [95]. This provides a number of possible infrared sensors that could be used for 

pedestrian detection within the application of this project. Specifically, infrared can help with 
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determining when a person has entered the “blind spot” and the bus would need to take 

corrective action. 

2.15 Chapter Summary 

This chapter discussed the research performed by the team to gain insight into both the 

human factors that play into the cause of bus accidents, as well as potential technologies to 

implement in creating a pedestrian detection system. Multiple computing solutions and sensor 

types were investigated. Although no exact components were chosen at this stage, the 

information found helped ultimately drive the final design considerations. Later sections 

including Chapters 3, 4, and 5 stem from the information that was garnered during this chapter. 
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3: Design Considerations 

 In planning the final idea for the system design there were important factors that needed 

to be considered in order to have the best possible system implementation. These factors were 

broken into two main categories for consideration; defining of the bus environment, and situation 

identification. 

3.1: Bus Environment Definition & Situation Identification 

 In order to effectively create a system that could help prevent possible accidents through 

pedestrian detection, it was necessary to define the exact dimensions of the bus that would be 

used and the corresponding blind spots that result. Understanding the overall structure of the bus 

and what blind spot is created allowed for an optimal “blind spot” area that could be determined. 

The system would need to effectively cover this “blind spot” in order to have the most effective 

accident prevention. The Figure 21 corresponds to the dimensions of both the bus, and the 

crucial blind spot. The system would have different degrees of action based on the proximity of 

the pedestrian to the bus.  

 

Figure 21: Bus Blind Spot with Indicated Zones of Detection (Units in Feet). Blind spot reaches 

up to 16 feet from the driver’s side window. The three zones represent increasing level of danger 

to the pedestrian, as the distance between the pedestrian and bus narrows. 



60 

 

 

The blind spot was broken into three distinct zones including: Potential Threat, Danger 

Warning, and Critical Action. Each of the zones had the system react in a different manner. The 

“Potential Threat” zone is when a pedestrian will first be noticed by the system and be monitored 

accordingly. The system is aware of an object at this point, but does not take action. The next 

area of detection is the “Danger Warning” zone. This zone results in the proactive warning 

aspect of the system being applied so that the driver has the ability to take effective action 

without the automated response taking over. In a final design, if the bus driver is unable to take 

effective action in time the system will automatically take over. This will occur once a pedestrian 

has entered the “Critical Action” zone where if immediate course correction isn’t taken then an 

accident would be inevitable.  

A major factor to consider that ultimately drives the decision making is if the object 

detected is a pedestrian. The point of this project was to prevent accidents involving pedestrians, 

as they tend to be fatal. The bus will take more drastic measures if a pedestrian is to enter a 

crosswalk in comparison to if the system detects an inanimate object, such as a road sign. Other 

factors that were taken into consideration include the velocity and direction of the pedestrian. For 

example, if the pedestrian is walking away from the bus the corrective action could be as simple 

as slowing down the bus so that the pedestrian has time to pass into a safe distance. When a 

pedestrian begins, moving towards the bus the situation becomes increasingly complicated as the 

danger and possibility for an accident quickly escalates. If the pedestrian is traveling on a bicycle 

their velocity will thusly be higher. Because of this, the time to take corrective action is reduced. 

This can affect the decision-making as it could be within the best interest to forgo the proactive 

warning entirely and immediately allow the automated response to take over. The average 

walking speed of a human is 3.1 miles per hour (mph) while the average bike pedaling speed can 

be as high as 9.8 mph, over three times as fast [96] [97]. This cuts the time for the bus to react 

into a third. Similarly, it was important to analyze the general travel patterns of a city bus, 

especially in turning, to gain an understanding of how the blind angles and turn speed may vary. 

These factors were taken into consideration when finalizing sensor placements and the system’s 

decision-making. 
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3.2: Sensing Technologies 

Each of the sensors served a necessary purpose in accomplishing one of three major 

factors for the system. The two main factors were if there is an object in the “blind spot” and if 

that object is a person. The final factor was the ambient temperature under which the system is 

operating. This was required as each sensor has a different operating range, and certain 

temperatures can cause inaccuracies in particular sensors. Thusly, a temperature sensor would 

always be required for this system to determine which sensors should be utilized. Table 17 shows 

which sensors provide a possible solution for each main factor.  

  

Table 17: Sensor Applications. At least one sensor for object detection and pedestrian 

identification to be implemented in the system. 

Sensor Object Detection Pedestrian Identification 

Radar X  

Lidar X  

Ultrasound X  

Camera  X 

Infrared Thermal Sensor  X 

 

The benefit of utilizing an ambient temperature sensor is that it protects sensors from 

being damaged. The sensor would determine if the outside temperature is viable for the operating 

range of a sensor. In order to have an accurate system, the microcontroller would utilize only the 

sensors that are capable of operating in the current weather conditions where the bus is located. 

The temperature sensor could be placed anywhere on the bus as long as the temperature sensor is 

measuring the outside temperature. Once the temperature sensor sends this information to the 

Zedboard, the Zedboard itself would utilize only the sensors that are capable of operate in those 

weather conditions. Table 18 shows a comparison chart between two temperature sensors that 

were taken in consideration to be implemented.  
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Table 18: DHT11 and DHT22 Temperature Sensors Comparison Chart. The DHT22 provides a 

greater operating temperature range, as well as greater accuracy. The operating temperature 

range is critical, as a bus’s exterior could be subject to sub-zero degrees Celsius. 

 Price Operating 

temperatures 

Accuracy Power 

consumption 

Refresh 

Rate 

DHT 

11 

$5.00 0 - 50 degrees Celsius +/- 2 degrees Celsius 3-5 Volts 

2.5 mA 

1Hz 

DHT 

22 

$9.95 -40 - 120 degrees 

Celsius 

+/- 0.5 degrees 

Celsius 

3-5 Volts 

2.5mA 

0.5Hz 

 

3.3: Radar  

As mentioned in the earlier section, radar uses radio frequency waves to detect motion. 

Radar is capable of motion detection, which includes the distance to as well as the speed and 

direction of the target. This means that radar would be able to determine where a certain object is 

in relation to the bus and whether the object is approaching to or moving away from the bus. The 

main advantage of radar over other sensors is that it uses electromagnetic waves, which do not 

require a medium to propagate. Due to this form of operation, radar is capable of penetrating 

through any type of weather conditions. Another advantage is that it works well in either 

nighttime or daytime. Additionally, the waves propagate at the speed of light, which makes the 

radar long range and allows for the Doppler Effect to be used to estimate the target's distance, 

velocity, and angular position. This property enables radar to distinguish fixed targets from 

moving targets. Lastly, radar can be used in various configurations and it is a very reliable sensor 

with a fast refresh rate when compared to other sensors. Also, solid-state radar technology is 

much cheaper than the solid-state LIDAR technology. One of the biggest disadvantages of radar 

is that it cannot distinguish and resolve multiple targets that are very close to each other. Another 

very important limitation of a RADAR is that it can sometime take couple of seconds to “lock 

on” which makes it unsuitable for real-time operating systems. In addition, radar does not work 

well with short range targets. 
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3.4: LIDAR 

 LIDAR works on a similar principle as Radar, except that it uses light in a form of a 

pulsed laser instead of a radio wave. LIDAR is used to provide a 2D or a 3D mapping of the 

sensor’s surroundings by measuring the distances to the surrounding objects. LIDAR has a long 

range of detection and works in both dark and bright conditions. Due to the laser technology, 

LIDAR can provide better resolution than radar. LIDAR is also more available on the market 

than the radar technology. LIDAR is not as reliable in fog, rain or snow as radar. LIDAR usually 

has a much smaller operating temperature range than radar sensors. LIDAR modules are usually 

more expensive and are not as robust as the radar systems. Since it provides better resolution 

than radar, the raw data from the sensor is bulkier and takes longer to process. Because of this, 

LIDAR sensors usually have a slower refresh rate than radar sensors and require a higher 

processing power. 

3.5: Ultrasound 

As introduced earlier, ultrasonic sensors can be implemented for proximity and range 

detection of objects within the sensor’s line of sight. Most ultrasound-based sensors include an 

ultrasonic transceiver that enables the transmission of high frequency sound waves, and can then 

receive the sound waves that are reflected back by an object. The time between transmission and 

reception of the sound waves allows the sensor to determine a distance reading. The primary 

advantage of ultrasonic sensors is their ability to give an accurate distance reading, often with a 

precise resolution (divisions of distance that the sensor can discern between). An ultrasonic 

sensor is best used fixed to a surface, where it can then determine range of objects relative to its 

position.  The ultrasonic “beam” that is emitted by the sensor is highly directive, which is 

beneficial for applications where a straight, perpendicular distance reading is needed. Depending 

on the application, the directivity of ultrasonic sensors can also be a drawback. The linear, 

narrow angle at which the sensor is able to detect objects would not be ideal for detecting object 

presence within a wide space. This factor makes ultrasound less appealing for initial detection of 

objects within proximity. In the case of detecting pedestrians to the side of a city bus, ultrasonic 

sensors would be most applicable in a scenario where the sensor is focused on a specific area or 

angle from the bus’s side, secondary to a different wide-angle technology to detect humans in the 
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general vicinity. Ultrasound would be able to identify the distance of an object from the bus, but 

the sensor would have to be directed to point at the specific object linearly. 

3.6: Camera 

 Cameras are able to give a clear and accurate picture of the area surrounding a bus. The 

important part of using a camera is to not distract the bus driver; therefore, the system must be 

able to process images on its own. The camera is able to detect if the object would be a human or 

not. This is done by utilizing software such as OpenCV to detect and track pedestrians. The 

camera is able to have a high accuracy of identifying if an object is a human or not, and is then 

able to track the object. The combination of AdaBoost and Linear SVM are able to confirm the 

presence of a pedestrian faster than OpenCV but at a reduced accuracy. This system is looking to 

improve in the future. The camera has a slow computation rate, making it hard to implement 

within a fast decision operation. Most cameras often have operating temperatures that are not 

ideal for year round applications and the cameras that can survive in warmer or colder weather 

are higher in price. Cameras also have a problem with bright light, as the picture can be washed 

out and make collecting data extremely difficult. There are other variables such as clothing, 

human posture, and the background that may cause detection issues. There are too many niche 

variables that make the camera hard to utilize with a bus application within the scope of this 

project. 

3.7: Infrared Thermal Sensor 

 The Infrared Thermal Sensor is a crucial sensor for this project, as it is able to detect the 

temperature that an object is emitting; therefore, it can distinguish between an object and a body. 

Depending on the accuracy and the resolution of the sensor, it can distinguish whether the body 

being scanned is a human or another body, such as an animal. If the object temperature 

corresponds to the temperature of the human body, then the sensor “confirms” that the scanned 

object was a human body. The advantage of using the Infrared Thermal Sensor is that is fairly 

inexpensive. Different IR sensors range between $20 up to $50. Budget is not the biggest 

concern of this project, but accuracy is. The IR sensors chosen to be used can operate in 

temperatures from -35 degrees Celsius, up to temperatures of 85 degrees Celsius. The accuracy 

of the IR sensor varies on the temperature that the sensor is operating at and also depending on 

the temperature of the object that is being scanned. The IR sensor is accurate up to +/- 0.5 
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degrees Celsius when the sensor is operating in temperatures between 0 - 50 degrees Celsius. 

One of the cons that the IR sensors carry is the fact that the distance range is not very large and 

does not cover the whole blind spot itself. Therefore, a certain number of IR sensor has to be 

purchased in order to have as much human detection coverage as possible. 

3.8: FPGA Sensor Communications 

The FPGA is capable of handling various forms of peripheral communications with the 

different sensors via Universal Asynchronous Receiver/Transmitter communications (UART), 

Serial Peripheral Interface (SPI), or Inter-Integrated Circuit (I2C). Peripheral Module connectors 

(PMOD) on the Zedboard support UART, SPI, and I2C via PMOD functionality and 

communication [51]. Xilinx offers peripheral drivers that support communications via PMOD 

directly to the ARM processors located on the Zedboard. The ARM processors will be first used 

to process the incoming data from the various sensors, before this processed data is sent to the 

FPGA. The ARM processor is capable of communicating with the FPGA via Advanced 

eXtensible Interface (AXI). This interface will need to be configured to meet the requirements of 

this design. Once the FPGA has the correctly processed data, the necessary programmable logic 

implementation will determine what decision needs to be made, and will select the appropriate 

output from the corresponding Look-up Tables (LUTs) based on this information. The FPGA can 

then output the data to the necessary system application that would provide the appropriate 

response. This includes connecting to the proactive warning system in order trigger alerts, and 

eventually connecting directly to the braking and turning system that will activate if the point of 

critical action is reached. 

3.9 Chapter Summary 

This chapter focused on discussing the advantages and disadvantages of the various 

components considered for the final design. This took into consideration the necessary 

information that would ultimately be used for making a final decision as to what sensors and 

technology would be used in meeting the needs of the project. This chapter also investigated 

factors that exist in the environment surrounding the bus and how they may affect the system’s 

decision making process 

  



66 

 

4: Proactive Driver Alert 

 The tiered approach to the systems design was created so that as much control as possible 

would remain in the hands of the driver. A proactive system makes it so that before automated 

action is taken, the driver will be notified of possible situations that could lead to pedestrian 

accidents in order to make necessary course corrections. Possible alert methods were researched 

to determine an efficient and effective means of proactive driver alert. 

4.1: Liquid Crystal Display 

A Liquid Crystal Display (LCD) is an effective means of displaying detailed information 

including words and brief phrases. An LCD would be used in for the pedestrian detection and 

avoidance system to display a warning message to the driver indicating the issue. For example, 

when an object enters into the blind spot, it could start by displaying a message such as 

“WARNING” and could progressively blink at a faster rate to indicate how close the 

approaching pedestrian is in relation to the bus. The message could even be more detailed as to 

indicate the exact zone in which a pedestrian is detected, i.e. DETECTION, WARNING, 

CRITICAL. Driving of an LCD can be handled through the use of the FPGAs programmable 

logic functionality. Very often, the boards designed around an FPGA have a display interface 

directly implemented as a peripheral device on the board [98]. The design logic would include 

determining what to display, and when to display it based on the incoming data. 

 There are some possible issues that could arise from the use of an LCD. The biggest issue 

is the distraction that it would cause for the driver. In order to effectively read the LCD, the 

driver must take their eyes off of the road to check the warning message, read what it says, and 

then process the information to determine what course of corrective action should be taken. That 

process can easily take up more than the available time. This is an inherent drawback in the 

implementation of an LCD.  Therefore, if an LCD were to be implemented, it would need to be 

done in a way where the driver could notice a change in information through peripheral vision, 

rather than direct attention. 

4.2: Steering Wheel Vibration 

Steering wheel vibrations could be an effective solution for alerting a driver. This offers a 

means of alert that does not disturb passengers, and would not require the driver to take their 



67 

 

eyes off the road. Similarly, if a driver is distracted, the vibration could serve as a means for 

them to refocus their attention while an LED or LCD could potentially go unseen by a driver if 

they are distracted. The amount of vibration could correspond to the distance of the detected 

pedestrian to the bus, and the level of danger that they pose to causing an accident. As a 

pedestrian becomes closer to the bus, and is traveling towards it at a faster rate, the steering 

wheel vibration could increase indicating the need for a higher level of caution or corrective 

action.  

 This would require the design of a steering wheel that has some form of vibrating motor 

controller built-in or attached to it, and potentially multiple vibration capsules so that each part of 

the steering wheel would vibrate during an alert. The vibration, however, does not provide any 

form of location information for where a pedestrian could be present in the blind spot. The 

utilization of a vibrating steering wheel would require some other form of driver notification on 

top of it. A vibrating steering wheel could be cascaded with a display to identify when critical 

action is necessary. The vibrations would allow the driver to keep his eyes on the road, but also 

know that there is an imminent threat and corrective action is required. 

4.3: Dashboard LEDs 

LEDs offer a simple, cost effective alerting option that can be easily implemented. LED 

functionality is built directly into the Avnet Zedboard that can be used, and for the purposes of 

testing will require no additional purchase. The Zedboard has eight LEDs which can be utilized 

[51]. This will eliminate the need for any additional data lines during the testing phases of the 

application. The actual use for driver alert could incorporate three different colored LEDs that 

would indicate the three different zones of detection. Green could indicate that something has 

been detected. Yellow could indicate that a pedestrian has entered into the next zone where 

corrective action might be necessary and the pedestrian poses a possible threat. Red would 

indicate that the pedestrian has entered a critical region and immediate action needs to be taken 

in order to avoid an accident. The light that is turned on would be determined by the 

programmable logic of the FPGA fabric. After the incoming data from the various sensors is 

broken down in the ARM processors and transferred to the FPGA fabric, the system would 

determine the level of alert will be needed.  
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The LEDs could be positioned on the dashboard of the bus, so that they would remain in 

the driver's vision without having to take their eyes off of the road. There could be two sets of 

the three LEDs. Each set of LEDs could correspond to either the right side or left side of the bus 

accordingly to provide as much information while remaining simplistic in the design. The use of 

different colors would also provide a quick insight into the current situation detected by the 

system. It is easier to process the simple color of an LED than having to read a word or phrase, 

and will be seen only by the driver and not affect the passengers in any way. The color scheme 

would also mimic that of a traffic signal, which is familiar to a driver. Other LEDs could also be 

incorporated on the mirrors of the bus, and even on the steering wheel to provide a very thorough 

alert to the driver. Taking these factors into account, one may see how the simple nature of an 

LED can provide an effective means of driver alert without requiring the driver to divert a large 

portion of his attention. 

4.4: Sound Alarm 

The use of sound for an alerting system could provide a distinct means for notifying a 

driver that a pedestrian has been detected by the sensors. A sound alarm could be easily 

implemented through the use of a piezoelectric buzzer which can be found on Digikey for as low 

as $1 [99]. The buzzer would be driven by the programmable logic of the FPGA fabric, which 

would indicate when it would need to make noise. It could be possible for the buzzer to use 

different tones to indicate the proximity of the pedestrian detected. Additionally, the sound from 

the buzzer could be heard by the passengers, and could be found to be a nuisance to them. The 

driver might also find the sound to be bothersome especially if it is constantly going off, as the 

sound needs to be distinct enough to get the attention of the driver. Therefore, sound would 

likely be implemented to trigger in only a critical situation. Utilizing a buzzer in only a critical 

situation would make it so that the driver knows that action is required immediately to avoid a 

possible accident. The addition of a buzzer on top of a visual would provide a means of 

cascading effects to have a greater degree of notification. 

4.5: Driver Alert System Peripheral Combinations 

The proactive alert would be best implemented by combining the methods discussed 

above. The methods have two distinct characteristics that would be the reason for selection. 

These are catching the attention of the driver, and effectively relaying the information to the 
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driver. The use of a sound alarm or steering wheel vibration represent the methods for catching 

the driver's attention. The LED and LCD methods represent the effective relaying of information. 

Having an overall alert system that incorporates one attention grabbing method, and a means of 

relaying the information will provide the most effective alert. 

The use of steering wheel vibrations or a sound alarm can be used to effectively grab the 

attention of the driver. These are both alerts that would become bothersome to the driver if it 

constantly were going off for every slight detection. Also, it is more difficult to provide a clear 

description of the current situation that is detected by the system with these methods. This is why 

there is a need for the more information-based aspect on top of this. The attention grabbing 

would be utilized only when the situation has a higher level of threat. For an example, either a 

vibration or sound would be sent out when a pedestrian is passing through the danger warning 

zone and beginning to approach the critical action zone.  

 Overall, the sound alarm would be a better option for the implementation of the proactive 

driver alert. This is due to the simple and cost effective solution that it supplies. Steering wheel 

vibration can possibly be missed due to the innate shaking that is caused by the natural driving of 

a large bus. A more detailed breakdown of factors comparing the two methods can be seen in 

Table 19, consisting of the comparison of the specifications for a piezo electric buzzer and a 

vibration motor capsule. 

 

Table 19: Comparison of Piezo Electric Buzzer & Vibration Motor Capsule. The lower cost and 

power requirement of the buzzer makes it a more efficient solution. Audible warning can be 

provided to the driver in the event of a potential collision. [99] [100] 

Feature Buzzer Vibration Capsule 

Cost in USD 1.38 4.99 

Operating Temperature (Degrees Celsius) -20 to 70 -30 to 70 

Operating Voltage Up to 30V peak to peak 2.2V to 3.6V 

Current Consumption Less Than 30 mA 250 mA Max 
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This breakdown shows that the buzzer would require less power overall due to the low 

current consumption, and provides flexibility in design by allowing for large operating range for 

the voltage. Also the cost for the vibration motor capsule does not include the cost associated 

with designing a steering wheel based around the vibration feature. The buzzer would be capable 

of working in all applications and will provide a simple means for effectively alerting the driver 

that would be more effective than the vibrating steering wheel. 

The alert system will have an information-based display that will consist of either an 

LCD or a series of colored LEDs. For the purposes of testing the LED, a test application can be 

accomplished through the eight LEDs that are built directly into the Zedboard, while the LCD 

would require an external connection. The LEDs can be a good solution, but the driver may miss 

the blinking LED due to its small size on. The intensity of light that is emitted off an LED may 

also not be as apparent as compared to an LCD screen, possibly missed by the driver in the 

daylight. An LCD screen would act as a great attention grabber for the driver due its size. A 

single color image could be displayed on the entire LCD screen, making it easier for the driver to 

recognize what zone the pedestrian is in. The Zedboard comes with a VGA port by default, so 

installing an LCD monitor within the system should be feasible through the VGA interface.   

4.6: Chapter Summary 

This chapter focused on demonstrating methods that could be used for alerting the driver 

in a critical scenario. The details for each possible method were discussed as to show the 

considerations that were taken into account when determining an optimal solution for the 

proactive driver alert. The main concern was finding a solution that was not distracting nor 

bothersome to the driver, nor require them to take their eyes off the road.  
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5: Proposed Sensor Solutions  

 The team’s research into the sensor options provided insight in creating different 

proposed solutions. Based on the project considerations, the best solution was determined based 

on the following four system implementations.  

In order to identify a pedestrian that is located in the blind spot area of the bus, four 

different sensor implementations were designed. In these four different implementation 

strategies, different sensors capable of detecting movement and objects were considered, and 

other sensors were implemented that serve for human detection. The priority when implementing 

the sensors was the safety of the pedestrians. For the human detection process, it is crucial for the 

sensor implementation to detect whether the object in the blind spot is a person or not in order to 

prevent an accident, as well as to prevent false alarms in the case of an object being present 

instead of a human. In order to prevent a failure of the system, one of the components used in 

every implementation has to cover all (or most) of the blind spot area, and then other sensors will 

be used in order to determine whether the object is a human or not. It is important that every 

implementation designed can work in extreme weather conditions, such as temperatures below 

the freezing point and snow. After taking factors such as safety, accuracy and functionality of the 

system into consideration for all the above mentioned conditions, the four implementations were 

sketched to scale using Solidworks and AutoCAD. After each of the arrangements were 

sketched, advantages and disadvantages for each possible solution were taken into consideration 

to evaluate the design to be used for this project. In order to obtain a better insight of the four 

different implementations, each of them will be shown and described in detail. 
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5.1: Solution One: LIDAR Positioning, Heat detection, Face Detection 

The first system implementation consists of three components: LIDAR, IR Sensors, and 

Camera. The combination of these three sensors has the capability of detecting an object, and 

determining whether or not the object is a human. Figure 22 shows a proposed arrangement of 

these sensors on a 40-foot city bus. 

 

Figure 22: First Solution sensor Implementation. LIDAR, Camera and IR to be implemented in 

the system. Arranged for maximum coverage of the blind spot, with the camera positioned to 

view pedestrians near the front of the bus for detection of human faces. 



73 

 

In Figure 23, a flow chart of this proposed solution is shown, which describes the steps for how 

this implementation will detect the object and determine whether it is a human or not. 

 

Figure 23: First Solution Data Flowchart. Data fusion on how the information will be processed 

in order to trigger an alarm and warn the driver. The detection of objects is handled by the 

LIDAR sensor (blue). If an object is detected in the blind spot, the IR sensor (gray) and camera 

(red) are then used to detect human body temperature and a human face to verify the object is a 

pedestrian. 

 

Each of the four implementations has a temperature sensor, which measures the ambient 

temperature and can help the microcontroller determine which sensors and components this 

system should use under the current weather conditions. For the first proposed solution, as shown 

in Figure 23, the first component that will be used to scan the blind spot zone is the LIDAR, 

which has a field of view of 360 degrees and has a range up to approximately 140 ft. The LIDAR 

is the component in this implementation that is capable of covering the majority of the blind spot 

area, and it will be used to detect only whether there is a moving object or not. The LIDAR alone 

cannot distinguish between a human and another object. In order to determine whether the object 

detected by the LIDAR is human, IR Sensors will be used to scan the body temperature of the 

object. If the temperature read by the IR sensors corresponds to the temperature of the human 

body, a warning will be sent to the driver, alerting him that there is a person located in the blind 
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spot of the bus. Meanwhile, while the driver is being alerted of the presence of a pedestrian being 

in the blind spot, a camera is used for the human detection process in order to prevent false 

warnings. The camera is implemented with the purpose of being used for face detection. The 

reason why face detection is used after the IR sensor, even though both components are meant to 

sense human presence is the following: During many situations, people wear sunglasses, hats and 

during their winter time, some people cover their face as much as possible to prevent the cold. 

This can cause the face detection process to interpret incorrect information as to whether the 

object is a person or not. Therefore, the IR sensor is being used first, since every human body has 

heat that is being released. If the bus driver does not react even after the being alerted from the 

camera, which has sensed a human face, then the bus driver will not have any more control over 

the bus, and in further development processes, the bus has to be stopped automatically. This 

would be only if the bus driver does not react to any of the warnings provided by the Zedboard. 

This proposed solution has its advantages and disadvantages which will help in determining 

whether this solution is the most suitable for this application or not. A comparison chart that 

shows each of the advantages and disadvantages is seen in Table 20, shown below. 

 

Table 20: Advantages and Disadvantages of the First Proposed Solution. Factors such as 

accuracy, data processing speed and durability taken into consideration. 

ADVANTAGES DISADVANTAGES 

Image processing could be accurate Potentially slow 

Relatively inexpensive Heavily affected by weather conditions 

 

Since safety and accuracy are some of the major priorities while designing the 

implementation, and this solution may not be the most accurate due to the limitations of face 

detection, another proposed solution was designed with greater accuracy in mind. 
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5.2: Solution Two: Radar Positioning, Infrared Heat Detection, Ultrasonic Ranging 

The second proposed solution for the implementation and component placement uses radar, 

infrared (IR), and ultrasound technologies for large coverage of the blind spot. The positions of 

the three components, Radar (Yellow), IR sensors (Blue), and Ultrasound (Pink), may be found 

in Figure 24. 

 

Figure 24: Second Solution Sensor Implementation. Radar (Yellow), IR (Blue) and ultrasound 

(Pink) to be implemented in the system. Radar and IR placed for best coverage of the blind spot 

through overlapping field of view. The ultrasonic sensors are positioned to cover the small area 

where the IR sensors and radar do not overlap.  
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The use of the radar, IR, and ultrasound sensors makes it possible for the system to go 

through two steps in order to detect whether or not there is a person in the blind spot area. The 

flowchart shown in Figure 25 represents the order of how the human sensing process will 

proceed. 

 

Figure 25: Second Proposed Solution Flowchart. Data fusion for how the information will be 

processed in order to trigger an alarm and warn the driver. The radar and ultrasonic sensors 

are used for detection of objects. If an object is detected, the IR sensors are used to sense if the 

object’s temperature is roughly around human body temperature. This would indicate that the 

object is a pedestrian. 

 

As also shown in the first proposed solution, the temperature sensor will help the 

microcontroller determine which sensors to use under the current weather conditions that the bus 

is driving in. The flowchart shows that two components are being used at the same time to detect 

whether there is an object located in the blind spot zone or not. The radar, as shown in Figure 24 

above, is capable of covering the whole blind spot area because of its placement on the bus and 

its wide range and field of view. The radar is also capable of detecting if the object is moving, 

how fast it is moving, and in which direction it is moving. The ultrasonic sensor is placed at a 

fixed point and directed at an angle where the IR sensors are not capable of scanning. The 

ultrasonic sensor has a good detection range, which is capable of covering the length of the blind 

spot of the bus (but not with a wide FOV angle). These two components are able to alert the bus 
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driver that there is an object in the blind spot of the bus, as well as when the object is moving and 

either getting closer to the bus or further away. In order to detect whether to object sensed is a 

human or not, IR sensors are placed on the bus as shown in Figure 24. The IR sensor will scan 

the temperature of the object in question.  If the temperature of the object corresponds to the 

temperature of the human body, the driver will be alerted that there is a human in the blind spot. 

This implementation tends to be accurate and functional in extreme weather conditions. Table 21 

highlights the advantages and disadvantages of this proposed solution. 

 

Table 21: Advantages and Disadvantages of the Second Proposed Solution. Factors such as 

Accuracy, data processing speed, and durability taken into consideration. 

 

ADVANTAGES DISADVANTAGES 

Accurate, minimal system failure possibility Might result in a false alarm 

Durable in extreme weather conditions Slow processing speed 

Fast decision making  

 

This proposed solution will be able to detect objects in further distances of the blind spot 

zone, but will determine whether the object is a human or not only when it gets in the range of 

the IR sensor. The IR sensors cover a majority of the blind spot area, but for the area that it is not 

covering, the radar and ultrasound might trigger a false alarm in case that the object is not a 

human. The biggest advantage of this implementation is that the risk of an accident is likely very 

low, since the blind spot is completely covered and some of the areas are being overlapped, 

which will result in better coverage than the first proposed solution. 
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5.3: Solution Three: LIDAR and Radar Positioning, Infrared Heat Detection 

The third proposed implementation incorporates three sensor technologies: infrared (IR) heat 

detection, LIDAR, and radar. This solution is aimed to have a wide area of coverage, with each 

sensor incorporating either a wide-angle field of view, long effective detection range, or a 

combination of the two. Taking these factors into consideration, a preliminary sensor 

arrangement was created using a 40ft bus model, with each sensor in specific areas to maximize 

coverage of the critical blind spot. A diagram of the placement of the sensors can be found in 

Figure 26. 

 

Figure 26: Third Solution Sensor Implementation. IR, LIDAR and Radar to be implemented into 

the system. This solution aimed to have a very wide area of coverage in the blind spot. All three 

of the sensors have a large theoretical field of view. 
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As shown in the placement diagram, the radar implementation that was researched earlier 

made use of an 80˚ directional antenna and had a theoretical range well over the size of the blind 

spot. Due to these specifications, the radar sensor in this design will be placed near the back of 

the bus, so that the entire blind spot area will be within an 80˚ angle of the antenna. With the 

range that radar is capable of, it will likely be the first source of position information for objects 

that enter the blind spot. Also incorporating a relatively long range, and the widest angle of 

detection for all sensors, the LIDAR system will also serve as a sensor for object position 

detection. The LIDAR placement in this configuration was chosen at the midpoint of the bus, so 

that the 180˚ sensing field would cover a long radius from the bus’s center. The range of LIDAR 

in this diagram is estimated to be 20ft, yet it is theoretically capable of detecting objects at a 

longer distance. Because of the rotational operation of the researched LIDAR sensors, such as 

the Sweep, a small platform will likely need to be fixed to the bus so that the LIDAR can be 

mounted level, roughly parallel with the ground. The third sensor technology, IR heat detection, 

does not support the same long-range detection that radar or LIDAR would have, however, it 

maintains a wide 120˚ field of view. The advantage of IR in this implementation is that it can be 

used to detect whether or not an object is human by analyzing its temperature, after the radar 

and/or LIDAR have determined the object’s position. The two IR sensors are positioned both at 

the front and midway down the bus to completely cover the Danger Warning and Critical Action 

zones. This enables the system to detect humans within the two highest risk zones, where either 

the driver or the autonomous system would have to take action in stopping the bus. These sensor 

placements are designed to aid the flow of information in the central computing system’s 

decision making process, as shown in Figure 27. 
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Figure 27: Third Solution Data Flowchart. Data fusion for how the information will be 

processed in order to trigger an alarm and warn the driver. The radar and LIDAR sensors are 

used to detect the position of objects within the blind spot. If an object is detected, the IR sensor 

is used to check if the object’s temperature is roughly around human body temperature. This 

would indicate that the object is a pedestrian. 

 

This flowchart outlines the way that the central processing system (implemented in the 

Zedboard) will determine the necessary action based on the data received from each sensor. An 

ambient temperature sensor will first determine if the outdoor conditions are suitable for each 

sensor’s operating temperature range, in order to determine if the information from the sensor 

will be accurate. When operating temperatures are met, the system will focus on both the radar 

and LIDAR sensors to determine the position of nearby objects. If an object enters the blind spot 

area, and the radar and/or LIDAR detects the object crossing into the Danger Warning zone, the 

IR sensor will be engaged to analyze the temperature of the object in question. If the object is 

determined to be human based on body temperature readings, the driver will be alerted 

immediately and the system will send a signal to engage the brakes if the person crosses into the 

Critical Action zone. This proposed solution has both advantages and disadvantages to consider, 

as shown in Table 22. 
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Table 22: Advantages and Disadvantages of the Third Proposed Solution. Factors such as 

accuracy, data processing speed and durability taken into consideration. 

ADVANTAGES DISADVANTAGES 

Ample coverage of blind spot by all 

sensor technologies. 

LIDAR placement must compensate for rotational 

operation. 

LIDAR and radar are both very capable in 

position tracking. 

Determining whether to rely on Radar or LIDAR 

for definite object position adds complexity. 

IR will likely be faster in detecting 

humans than image processing via 

cameras. 

Relies solely on IR temperature readings to 

determine object is human. 

 

While this implementation is advantageous in its ability to cover the blind spot with 

multiple sensors, the added complexities that arise from this setup are also a disadvantage. If the 

LIDAR and radar sensors are both to pick up an object, yet the location of the object is slightly 

different in each, it may be difficult to determine the object’s exact location between the two 

sources. Additionally, the reliance on IR temperature readings will likely be faster than image 

processing via a camera to detect humans, yet temperature is subject to vary based on different 

people, as well as the outdoor conditions. This implementation has great potential, and these 

factors will have to be considered in the final decision. 

5.4: Solution Four: Solid-State LIDAR Positioning, Infrared Heat Detection 

This system implementation would consist of four components: an ambient temperature 

sensor, LeddarVu8 solid-state LIDAR module, servo motor, and an IR sensor. The combination 

of the LeddarVu8 and IR sensors together will have the capability of both object and human 

detection. A flowchart of this implementation is shown in Figure 28. 
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Figure 28: Fourth Solution Data Flowchart. Data fusion on how the information will be 

processed in order to trigger an alarm and warn the driver. The LeddarVu Solid State LIDAR 

sensor is used to detect the position of objects within the blind spot. If an object is detected, the 

IR sensor is used to check if the object’s temperature is roughly around human body 

temperature. This would indicate that the object is a pedestrian. 

 

In this solution, an ambient temperature sensor monitors the outside temperature, which 

is used to decide which sensors to use. For example, the LeddarVu8 has an operating 

temperature range from -40°C to 85°C. If the ambient temperature is outside of this range, the 

LeddarVu8 sensor reading would likely be inaccurate, and thus be ignored by the Zedboard. 

Note that this is done for every single sensor. Therefore, the ambient temperature sensor serves 

as a protection mechanism to ensure that all the sensors are used only within the operating 

temperature range specified by their manufacturer.  

In this solution, the LeddarVu8 would be the main sensor due to its robust design, wide 

operating temperature range, long detection range and multi-object detection capability. Because 

of these advantages, the LeddarVu8 would be set-up in such a way to cover the blind spot in the 

most optimized way possible. This sensor can detect multiple objects and report the distance of 

each one of them. This enables the sensor to detect the closest object location as well as its 

velocity. Furthermore, if the closest object is inside the predefined blind spot, the sensor data can 

be used to estimate the trajectory. The distance of the closest object can be used to determine the 
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zone in which the object resides. Recall that there are three segments within the blind spot: 

Potential Threat, Danger Warning and Critical Action. 

When the detected object is inside of the Potential Threat zone the “First Warning” is 

issued to the driver and this is a part of a proactive solution. This proactive solution would 

probably involve a non-intrusive alarm type, an LED array, for example. The LED array would 

light up in color green to indicate that something is in Potential Threat zone. This notification is 

non-intrusive and no action is taken at this point. Furthermore, using the input from the 

LeddarVu8, it is possible to determine the exact segment number in which the closest object 

resides. Recall that the LeddarVu8 sensor field of view is divided into eight segments, and each 

segment is capable of detecting the distance to the object within it. This is shown in Figure 29. 

 

 

Figure 29: LeddarVu8 Field of View. This figure shows the field of view divided into the eight 

detection zones. The sensor is able to detect a distinct object within each. 

 

The exact segment number, in which the closest object resides, is determined within the 

Zedboard software processing and this segment number is converted into a corresponding 

“servo” angle. Since the LeddarVu8 is capable of detecting the proximity of the object inside of 

the blind spot, an IR sensor controlled by a servo motor is used to determine if the object 

detected is indeed a person. For example, assume a 100 degree horizontal FoV (Field of View). 

Since the LeddarVu8 has eight segments, each segment will occupy 100/8 = 12.5 degrees. In 
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order to focus in the middle of a segment, the servo angle will be offset by 6.25 degrees 

compared to that of the LeddarVu8 segment. This is best illustrated with Figure 30. 

  

 

Figure 30: LeddarVu8 and SCIR Sensor Placement. This figure displays the area that the IR will 

cover while stationary. The IR sensor will rotate on a servo motor-controlled base to adjust the 

angle of view to be in line with the corresponding segment number of the nearest object detected 

by the LeddarVu. 

 

From Figure 30, notice that the blue solid lines indicate the field of view for LeddarVu8 

and red solid lines indicate the field of view for the IR sensor. Notice that the dashed red line 

indicates the 6.25 degree offset for the servo motor. The IR sensor will be fixed on the top of the 

servo motor and therefore this system will be referred to as a “Servo Controlled Infrared Sensor” 

(SCIR). The SCIR and LeddarVu8 will be aligned on the same z-axis. Based on the segment 

number in which the closest object resides, the Zedboard will convert this number to the 

appropriate servo angle, as shown in Table 23. 
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Table 23: Segment Number vs. Servo Angle. Representation of how much the servo must rotate 

to bring the IR to the desired position. 

Segment # Servo Angle in Degrees 

1 43.75 

2 31.25 

3 18.75 

4 6.25 

5 -6.25 

6 -18.75 

7 -31.25 

8 -43.75 

 

Notice that the SCIR sensor, hence the IR sensor, must have a horizontal field of view 

(FoV) of at least 12.5 degrees to cover the whole segment in which an object is detected. Once 

the SCIR is pointing at the selected segment, a more precise object temperature is determined. 

Based on the temperature reading, the Zedboard will classify the object using criteria similar to 

that of the following: “No person detected”, “Person potentially detected”, and “Person 

detected”. 

The system will keep monitoring the closest object distance to the bus and once the 

object is inside of the “Danger Warning” zone, the LED array would change to yellow as a part 

of the proactive solution. In case that the temperature reading from the SCIR sensor was not 

clear about whether the object is a person or not, the temperature scanning will be repeated to 

gain a better understanding. If the object keeps getting much closer to the “Critical Action” zone, 

the LED array would change to red color to indicate that the driver should take some action. 

Finally, if the detected object is determined to be a person and is inside of the “Critical Action” 



86 

 

zone the system would take control to either correct the course of the bus or bring the bus to a 

stop (in a final design with mechanical implementation). 

 

Table 24: Advantages and Disadvantages of the Fourth Proposed Solution. Factors such as 

range and data processing speed were taken into consideration. 

 

      This implementation is advantageous because it has the ability to cover the blind spot 

with only two sensors. Due to this factor, and that fact that both types of sensors have a relatively 

fast refresh rate, this system should prove beneficial in real-time use. Furthermore, due to the 

solid-state LeddarVu8 technology, this system is very robust to the outside mechanical and 

environmental conditions. Disadvantages of this system lie primarily in the SCIR system because 

it involves a servo motor. Due to of the moving parts inside of the servo motor, this system might 

prove sensitive to the mechanical noise. Also, the reflectivity of the objects will affect the 

detection range and its precision. All of these factors will be crucial when calibrating the final 

design. 

5.5: Chapter Summary 

 This chapter focused on discussing the proposed full implementation solutions. It brought 

all of the material for each of the past chapter into fruition and consideration so that various 

potential solutions could be discussed. Bring everything into a big picture view made it so that 

the system implementation could be mapped out for the future application of this specification 

project. Each proposed solution had the broad details of solution as well as its advantages and 

disadvantages discussed. 
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6: Overall Design Choices 

Based on the considerations for this project, it was decided that the best solution to 

implement was the 4th solution, which utilizes LeddarVu8 Solid state LIDAR and a servo 

controlled IR sensor. In comparison to the other three, this solution provided the greatest balance 

between a robust, effective, and efficient design. It did not have the drawbacks of a camera 

system that would require a latent intensive image processing application that would be difficult 

to implement. The sensors chosen are capable of working in any form of lighting, weather 

conditions, and have a wide enough temperature range that they can handle the range of 

temperatures present in the New England area. This solution met all the necessary requirements 

without any major drawbacks.  

 When combining the sensing portion with the FPGA and driver alert system, the overall 

system was planned to break down the blind spot into three distinct zones and make a decision 

based on which zone a pedestrian has been detected in. The Zedboard FPGA was chosen for its 

ability to provide sufficient capabilities for software and programmable logic, as well as sensor 

implementation and data fusion. The driver alert system chosen included an LCD screen to 

display warnings to the driver. The team was confident that this solution would provide the 

greatest degree of effectiveness on all fronts of implementation. The team’s final design choices 

were based both on research performed for the proposed solution, as well as other factors that 

occurred throughout the design process.  

6.1: Component Selection 

The final choice for object detection was that of a LIDAR sensor. The LIDAR used is the 

LeddarVu8, a solid state LIDAR available from LeddarTech Inc. based out of Quebec City, 

Canada. This sensor was chosen for its ability to detect objects in real time with a large field of 

vision, separated into eight distinct segments. This enabled the detection of multiple objects 

within the range of the three distance zones defined earlier. Its reliability is marked by a high 

range of operating temperatures, a compact size, and high degrees of precision and resolution. 

The exact specifications can be seen in the background section on LIDAR sensors in Figure 14 

and Table 13. The LeddarVu8 was also able to be directly interfaced with the Zedboard using 

SPI communications through PMOD connectors, and required 12 volt power like the Zedboard.  
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Taking this all into account, it was clear that the LeddarVu8 would provide the team with 

an effective means for object detection while having a manageable means of communication 

interfacing, power supply, and cost benefit.  

Once an object is detected the next step would be to determine if the object is a human. 

An IR sensor was the most cost effective means for determining this in real time. The initial IR 

sensor choice was the Melexis MLX90621. This IR communicates via the I2C protocol and is 

able to generate a heat map of its surroundings for object detection. However, due to the 

complexity of the device and timing restrictions, it was deemed that it would not be possible to 

integrate this sensor within the allotted time. One of the major reasons was that this sensor 

utilizes the I2C control protocol control, whereas the LIDAR, the device central to the design, 

was configured utilizing SPI. With the use of PL logic programming on the Zedboard, custom 

controllers were designed in order to meet the needs of data acquisition, and because the 

MLX90621 utilizes I2C, this required an entirely separate custom controller that could not be an 

adaptation of the SPI design.  

 This I2C controller needed to set up a bidirectional data line (SDA) and a clock line 

(SCL) that matched the timing requirements for the IR sensor. It was necessary to configure the 

controller to specify the Zedboard as the master device, and have it set the IR sensor as the 

corresponding slave device. This would be accomplished by driving the SCL low and having the 

master device send out 2 sets of 8 bits. The first 8 bits consists of 7 bits for the slave address and 

an 8th bit determined a read or write function. The 2nd set of 8 bits determined what address 

within the slave the master would be either reading from or writing to. After every 8 bits there 

was an acknowledgement buffer that would be configured in the controller. This was the 9th 

clock cycle that pulls the SDA low to show that the byte has been properly accepted. Depending 

on the controller design, the master would be controlled for how much of the IR’s data is read 

from either the full range, a particular column, a particular row, or a single pixel. However, it 

would be desired to have as much control and range as possible when receiving data from the IR 

sensor. The IR read data stream can be seen in Figure 31. This shows the complexity required for 

a read and the amount of data that would be coming in. The data line would require a sequence 

of addresses as outlined in Figure 31. To use the full detection range of the IR, this required a 40 

word buffer for detection. Each word consisted of 2 bytes of data and represented the data from a 

single pixel of detection for the IR [101]. After setting up the controller to handle this timing and 
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pulling in this data, it would then be required to process all of the information in a real time, 

functional manner. Taking all of this into consideration, it was clear that on top of the complexity 

of the LIDAR and data fusion that still needed to be completed, it was in the best interest of the 

project to seek a simpler IR sensor implementation.  

 

Figure 31: SDA Data Line for a Read Command on the MLX90621 IR Sensor. This transmission 

must be completed using the I2C protocol. The data packet consists of the addressing and read 

request data to be sent, as well as the corresponding response to be read in by the master. [101] 
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The alternative choice for an IR solution that was capable of meeting the project 

requirements with a simpler means of integration was a passive IR sensor (PIR). The particular 

sensor that was determined would be best was the Panasonic Electric Works EKMC Series Long 

Distance Detection Type sensor as shown in Figure 32, along with its timing chart in Figure 33. 

This series of PIR sensors have a very simple function in that they give a digital signal of either 

high or low, and was pulled high if a person is detected by the sensor. This series of sensors were 

made specifically for detecting a human being. The sensor determines that a person has entered a 

space by observing the difference between the body temperature of the object and the ambient 

temperature of its surroundings. A threshold difference of 4 degrees Celsius is needed between 

the object and the environment. Also the PIR sensor has a 92 degree field of view which was 

substantially higher than the original IR [102].   

 

 

 

Figure 32: EKMC Series Passive Infrared Sensor, Field of View, range and electrical 

specifications shown. The X-Y cross section shows the points at which the sensor measures to 

determine when a moving object’s temperature differs from that of its surroundings. [102] 
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Figure 33: PIR Timing Chart. Representation of how the clock signal changes in the presence of 

a person. The three initial pulses within the “Twu” (warm-up) period shown on the left 

demonstrate the uncertainty present during the warm-up time. Once the sensor is warmed up, the 

presence of a human in the sensor’s surroundings triggers a high pulse when the person moves 

into view. [102] 

 

The sensor has the flexibility of being able to work in either a digital or analog output 

format. For this design, the digital output was chosen for compatibility with the digital PMOD 

connectors on the Zedboard. This allowed for a more manageable data fusion with the modules 

for the LIDAR. 

Due to the lower level of complexity of the PIR sensor data output when compared to that 

of the Melexis sensor, this design choice simplified the required level of control to acquire 

infrared readings for the detection of a human. The data pin provides a “yes” or “no” answer for 

whether a person is within the sensor’s field of view. When the pin is driven high, the object 

detected was determined to be human. This much simpler PIR sacrificed some control and the 

ability to manually analyze a heat map for a simple 1-bit logic. However, this was sufficient for 

the initial design to ensure that the system was able to accurately detect when a person was 

present in the sensor’s view.  

Initially, the IR sensor was going to be mounted on a servo so that it could be directed 

towards the LIDAR’s zone of detection with the closest object. However, with the change in IR 

sensor and a now greater field of view, it was deemed that the cascading of two PIRs would 
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provide sufficient coverage of the space without the use of a servo to change the angle of view. 

Therefore, the PIR sensors were attached to the structure of the system just below each corner of 

the casing that contained the LIDAR and Zedboard. This two-sensor combination enabled a 

greater range for detection and essentially spread the field of view of the PIR. In Figures 34 and 

35, the top and side view of the detection area can be seen, including how the two fields of view 

overlap for greater coverage. Figure 36 displays the overall disparity of the X-Y cross section for 

detection. Taking this disparity into account, one can see how overlapping the detection areas of 

the two separate sensors makes up for the areas in which each sensor is lacking a detection beam. 

The white space in the at the side and top views indicate the holes in the field of detection. The 

overlap helps to fill in these holes and expand the overall covered area.  

 

Figure 34: Top View of the IR Detection Area. The areas separated by gaps in the sensor’s field 

of view show where the sensor measures to determine when a moving object’s temperature 

differs from that of its surroundings. With two sensors positioned next to one another, as 

pictured on the right, the overall field of view of the IR arrangement is increased significantly. 

This overlap also accounts for the gaps in a single sensor’s field of view. [102] 

 

 

Figure 35: Side View of IR Detection Area. Detection gaps in the vertical field of view are 

smaller than that of the horizontal field of view. [102] 



93 

 

 

 

Figure 36: Cross Section View of the IR Detection Area. The X-Y cross section shows the points 

at which the sensor measures to determine when a moving object’s temperature differs from that 

of its surroundings. [102] 

 

The PIR detects from the top of the sensor’s curved cap. Therefore, the sensors were 

mounted to the side of the bus structure so that the beams emit outward during operation. This 

arrangement has been attached to the structure as indicated in Figure 37.  

 

 

Figure 37: PIRs Attached to the Side of the Structure. PIRs connected to the Zedboard through 

the PMOD connectors. The PIRs are positioned to overlap their field of view, as planned. 
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The original design plan called for an accelerometer to measure the turning movement of 

the city bus. The PMODACL2 accelerometer was chosen based on its low voltage and current 

requirements as well as its SPI interfacing that could have been utilized in conjunction with the 

PMOD connectors on the Zedboard. The sensor’s characteristics can be seen in Table 25. 

 

Table 25: PMODACL2 Accelerometer Voltage, Current, & Interfacing Characteristics. The 

Zedboard is capable of providing the necessary power, and also utilizes SPI. [103] 

Voltage 1.6 V - 3.5V 

Current 2.5 µA 

Interface SPI 

 

The PMODACL2 is an ultra-low power, three axis, micro-electronic mechanical system 

that consumes less than 2µA at a 100 Hz output data rate and 270nA when in a “motion triggered 

wake-up mode.” The device is also capable of freefall detection as well as power saving features 

through its motion activated sleep and wake modes.  

 The accelerometer was relevant to the pedestrian detection and avoidance system as it 

determined various aspects for the actual motion of the bus. Having a three axis system 

determines the precise direction in which the bus is moving so that the system could make 

accurate judgements on the corresponding decision making. The turning of the bus is the critical 

time for the system to be in use as that is when there is the highest number of accidents. One of 

the main distinguishers is whether the bus is turning, or simply changing lanes. The 

accelerometer would have provided this information so that decision making can be made as to 

whether or not the bus is turning, or changing lines on a standard road or on the highway. 

Although this sensor was something that was important in a final design for a system of this 

make, it was not a critical design element for a proof of concept demonstration. Due to time 

constraints and complexity of the sensor for less than critical functional elements, it was deemed 

that it would not be necessary for the proof of concept.  

Similar to the accelerometer, a temperature sensor, although necessary in a final design, 

was deemed not necessary in a proof of concept evaluation. However, the following 

considerations were taken into account to determine an effective temperature sensor and the role 
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it would have played in a final design. The DHT22 AM2303 temperature sensor would have 

been utilized so that the current operating temperature is within the specifications of each of the 

sensors in use. The purpose of this sensor would have been to ensure that the data provided from 

all operating sensors is as accurate as possible. This sensor has the following specifications as 

shown in Table 26.  

 

Table 26: DHT22 AM2303 Sensor Specifications & Characteristics. The Zedboard’s PMOD 

connectors are capable of providing the necessary power and data communication. [104] 

Model AM2303 

Power Supply 3.3-6V DC 

Output Signal Digital signal via single-bus 

Sensing element Polymer humidity capacitor & DS18B20 for detecting temperature 

Measuring range humidity 0-100%RH;                            temperature -40~125 Celsius 

 

As shown in Table 26, this sensor would receive sufficient power from the Zedboard, as 

the PMOD connectors can supply 3.3V and up to 100mA, while the DHT22 needs 1.5mA [104]. 

The compatibility with the system design, low operating current, and reliability of this sensor 

made it a cost effective choice. Although this would have been a helpful feature for the system, it 

was not a necessity due to the fact that the operating temperature of the sensors used provide a 

wide range. These temperatures are outlined below for each sensor.  

 The LIDAR can operate between -40 degrees Celsius, up to +85 degrees Celsius, 

according to its user guide [105]. 

 The passive infrared sensor to be implemented can operate between -20 degrees Celsius, 

up to +60 degrees Celsius, according to its datasheet [102]. 

While the temperature sensor has a measuring range of negative 40 degrees Celsius, up to 

125 degrees Celsius [104]. The original idea was to have the temperature sensor implemented in 

order to assure high accuracy of the MLX 90621 Thermal Infrared sensor due to its 

specifications. The MLX 90621 has operating temperatures between -40 degrees Celsius up to 

+85 degrees Celsius, but it has the highest accuracy (+-0.5 degrees Celsius) when it is operating 

between 0 degrees Celsius up to +40 degrees Celsius [101]. By implementing the temperature 



96 

 

sensor, it would be possible to ensure a high accuracy while using the MLX90621 and 

determining the temperature at which the sensor would have been operating. 

Each of the datasheets for the sensors and other electrical components were analyzed to 

determine the maximum power rating which came out to be 56 watts (W) with the maximum 

current being 5.17 amps (A). These results corresponded to the use of the Zedboard, LIDAR, 

Melexis IR sensor, DHT22 temperature sensor, accelerometer and servo motor. There were three 

different operating voltages that were taken into account when designing the power supply: 12, 6 

and 3.3 volts. The Zedboard required 12 volts and 4 amps maximum with a maximum power 

rating of 48 watts. On the Zedboard were five PMOD connectors that can supply 3.3 volts and 

0.1 amps, which was sufficient for the accelerometer, IR and temperature sensor, so these 

sensors could be directly connected to the Zedboard [57]. The other device that needed 12 volts 

was the LIDAR which required 0.167 amps and the maximum power rating was 2.004 watts 

[105]. Lastly, the servo motor needed six volts and one amp with a power rating of 6 watts. 

Table 27 shows the power requirements for the original system. 

 

Table 27: Detailed Chart Showing the Power Requirements for the Overall System Design. 

These calculations of the total power and current were used to determine the required power 

supply for the system. 

Peripheral Voltage [V] Current [A] Power [W] 

Zedboard 12 4 48 

LIDAR 12 .167 2.004 

Accelerometer 3.3 .0000025 .00000825 

IR 3.3 .009 .0297 

Temperature Sensor 3.3 .0013 .00429 

Servo Motor 6 1 6 

Total Power [W]   56.03799825 

Total Current [A]  5.1773025  
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When determining the power supply needed for the system, many different approaches 

were considered. It was first determined whether the system could be powered by the alternator 

or any of the batteries on the bus itself. The alternator could provide the proper voltage and 

current requirements with just the need for a voltage regulation circuit. The signal from an 

alternator, however, could be very noisy, and once implemented into a bus this would need to be 

accounted for. Alternators are also very prone to brownouts. Another problem was knowing how 

the team may connect the pedestrian detection and avoidance system to the alternator, because a 

bus was not available to work on during the system development and testing. Determining the 

best solution for connecting the system to an alternator and properly powering it within the 

scenario of a bus-mounted design is something that will be discussed further in the 

recommendations section. 

After conducting some research and a series of personal interviews with a former bus 

driver (who wished to stay anonymous), it was determined that Transdev uses mainly the 

Xcelsior XN60/40 and the Orion VII buses. The Orion VII contains a 12 volt battery, which 

could provide power to the system. Since buses are considered a public space, there are no 12 

volt auxiliary (cigarette lighter) plugs that could be used, but newer buses are starting to use USB 

ports that allow passengers to charge their phones. If the fuses for the USB ports allow the 

amperage needed and output the correct voltage then the pedestrian detection system could 

theoretically be powered from the same source.  

Since there was no available functioning bus to test the pedestrian detection system, it 

was determined there were two viable options: purchasing a large 12 volt battery, or selecting a 

power supply that connected to a wall outlet. After some consideration, it was determined that 

buying a power supply was better than a battery because the amount of testing done may have 

drained the battery quickly, which would require multiple batteries to be purchased and charged 

on rotation. Another consideration was that a stationary bus model would be used, which allowed 

easy access to a nearby wall outlet. The only detrimental aspect in selecting a power supply is 

that it is far less portable than a 12-volt battery. It was also determined that the power supply 

selected would need to have a power rating twice the calculated value of 56 watts and a current 

rating roughly 20% greater than the calculated current rating of 5.17 amps to allow headroom in 

the power specification. These two requirements provided a safety net in case the actual power 

drawn exceeded the calculated value. 
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Figure 38: Delta Electronics PMC-12V100W1A Power Supply functional block diagram. The 

power supply takes in an AC signal and outputs a DC signal. The supply has built-in 

overcurrent, overvoltage, and temperature protection to ensure safety [106]. 

 

The power supply that was selected is the PMC-12V100W1A from Delta Electronics.  A 

block diagram of this device’s internals may be seen in Figure 38. It provides 100 watts, 12 volts 

and a maximum current of 8.33 amps. It converts the 120 volts AC signal from a common wall 

outlet and converts it to 12 volts DC [106]. These specifications provided almost twice the 

amount of power that was calculated and more than 20% of the calculated current rating. 

Another added benefit from the power supply is that it has two 12 volt output rails, which allows 

the servo motor to be powered by one rail with a step down converter to provide six volts, and all 

of the other components to be powered by the other rail. This simplifies the overall circuit by not 

having to attach a voltage regulator on one rail to step down the voltage while everything else on 

that rail needs 12 volts. The step down converter that would have been implemented for the 

system was the SMAKN DC/DC Converter, which takes in 12 volts and outputs six volts and a 

maximum of three amps [107]. The final design ultimately did not require this aspect due to the 

change in IR sensor not requiring a servo motor to manipulate the IR’s orientation. However, if 
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in the future the need for an IR that did not have the range of detection of the PIR sensor was 

used, this converter could easily be implemented to meet the power requirements of a servo so 

that it could manipulate the orientation of an IR and effective increase its range. 

The overall system requires an effective casing to neatly house the various sensors and 

Zedboard, provide room to connect everything to the power supply, and also be nonconductive. 

Due to these requirements, acrylic was utilized for the casing material, as it met all the necessary 

requirements, and could be effectively and flexibly implemented. More details on the design and 

construction of the casing will be discussed in the methodology.  

The alert system was deemed to be most effective through the cascading of visual and 

audible alerts. The system has a progressive color display and sound system to alert the driver. 

Initially there were considerations for an external sound or visual alert for the pedestrians, but 

this was deemed ineffective due to potential annoyance factor, and that people may eventually 

become accustomed to it and filter it out with the rest of the city noise. The first driver alert is 

when there is no object detected in a zone of potential danger by the system and the monitor will 

display the color green. The second is when an object is detected in a zone of potential danger, 

the “Danger Warning” zone. At this time, the monitor will display the color yellow. The third is 

when there is a pedestrian within the “Critical Action” zone, this will display the color red on the 

monitor. This zone requires immediate action in order to avoid an accidental collision. An 

audible secondary alert, which will occur only in the critical action scenario, was implemented to 

emphasize the need for action. The cascading of sound and visual was deemed as an effective 

way of alerting the driver without distracting them. The sound might normally be found as 

annoying if it were to be triggered repeatedly, but the limited use only in critical situations 

prevents the noise from becoming a nuisance. The screen used for the pedestrian detection and 

avoidance system is a 16:9, 800x480 color LCD display monitor with a VGA output. This screen 

in particular was chosen as it provides a large enough visual, has a VGA connector that can be 

utilized in conjunction with the Zedboard, and was easily powered by the existing power supply.  
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Figure 39: 800x480 resolution VGA screen that was used to display a visual alarm. Screen turns 

green (No Danger), yellow (Danger Warning zone) or red (Critical Action zone) based on the 

location of the object. 

Figure 40 shows the buzzer used for creating the audible alert for the driver. The buzzer 

was easily connected to the PMOD connectors on the Zedboard, and code could be written to 

drive it along with the rest of the alert system. This was the reasoning behind selecting this 

simple yet effective buzzer.  

 

Figure 40: 8Ω, 0.5W Buzzer that was used to sound an audible alarm. Sounds when a human is 

detected in the Critical Action zone. 

On a real city bus, the buzzer and the screen would be mounted in close proximity on the 

dashboard to provide the driver with a noticeable warning in the event of possible collision. 

6.2: Chapter Summary 

 This chapter provided an overview of the design choices that the team determined to be 

best for creating an initial prototype and proof of concept of a bus-mounted pedestrian detection 
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system. By considering the advantages, disadvantages, and complexities of the components 

originally proposed, the team maintained use of most of the originally planned components, such 

as the Zedboard and LeddarVu8, while finding new replacement solutions where necessary, such 

as the passive infrared sensors. The final design plan consisted of the LeddarVu8 solid-state 

LIDAR sensor and two passive infrared sensors to transmit data samples to the Zedboard for the 

computation of object distance and human detection, and to drive the system’s decision making. 

The plan for alerting the driver consisted of a VGA-connected LCD screen to flash different 

colors depending on the level of danger, along with an audible buzzer for critical action 

scenarios. A 12 Volt DC power supply was chosen to provide power to the overall system. All 

components were planned to be mounted on a wooden frame to mimic the side of a city bus. 

With the overall design choices selected, the team was then able to proceed into designing a 

functional integrated system. 

7: Methodology & System Implementation 

The pedestrian detection and avoidance system was designed based on certain criteria 

that the system had to meet. All components were chosen based on their functionality, efficiency 

and their cost. A diagram of the proposed sensor placement on a city bus, as well as an overall 

block diagram of the hardware connections can be seen in Figures 41 and 42. On a real-world 

city bus, rather than a scale model, the team would aim to place the system under the driver’s 

side window. This placement would maximize the coverage of the bind spot to the side of the 

bus, due to the wide field of view of both the LeddarVu8 LIDAR sensor, and the passive infrared 

sensors. There were five separate functional sections in the system. Each of the functional 

sections shown in the connection block diagram can be seen with an individual color. The power 

supply blocks are shown with the green boxes and arrows, the programmable logic block is 

shown in orange, the sensor blocks are shown in purple, the warning system block in dark blue, 

and the cooling system in light blue. The power supply is a 120VAC-12VDC converter that has 

two 12 volt rails, with each rail supplying different devices. One of the rails was used to connect 

an extension cord on which the Zedboard, the LIDAR and warning screen were connected. In a 

junction box mounted to the system, these wires were neatly packaged and run through to 

maintain a neat configuration. The other 12 volt rail was used to wire the fan, which is used to 

cool the Zedboard. 
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While the LIDAR and the warning screen were powered up by the power supply, the 

information was transmitted through connections to the Zedboard. The LIDAR was connected to 

the Zedboard via PMOD A port using the LIDAR controller and the warning screen was 

connected to the VGA port using the VGA controller. The PIRs were both powered up through 

the PMOD B port of the Zedboard and they transmitted data through those connectors to the 

internal logic. Lastly, the buzzer was connected to Zedboard via PMOD B port. 
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Figure 41: Proposed Placement of System on City Bus. This diagram shows how the team would 

work to place this system on a real-world city bus. By placing the system underneath the driver’s 

side window, the field of view of both the LeddarVu8 and PIR sensors will give the greatest 

coverage of the blind spot. 
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Figure 42: Top Level Connection Block Diagram. Representation of how the connections 

between the sensors and components are arranged. Colors distinguish between the five 

individual sections of the overall design: The power supply blocks are shown with the green 

boxes and arrows, the programmable logic block is shown in orange, the sensor blocks are 

shown in purple, the warning system block in dark blue, and the cooling system in light blue. 

 

The system works by first determining if an object is less than eight feet away using the 

LIDAR, which provides distance readings to the Zedboard. If an object is not less than eight feet 

away, then the system checks to see if it is less than thirteen feet away. If the object is more than 

thirteen feet away, then the VGA controller would send a signal turning the warning screen green 

indicating that there is no danger. The screen would turn yellow if an object is within the range 

of eight to thirteen feet, the danger warning zone, of the system. When an object is within eight 

feet of the system, the critical action zone, then the PIRs would be triggered to see if the object is 

human. If a human is present, then the warning screen would turn red and the buzzer would 
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sound to notify the driver, if not then the screen would turn yellow. The overall flow of decision 

making based on sensor data can be seen below in Figure 43. 

 

 

Figure 43: Logic Flow Diagram. The driver will be notified by the screen color changing to its 

respective color based on the decision made by the system. For example, if the object is less than 

8 feet away and the PIR senses that the object is human, the VGA display will change to red and 

the buzzer will turn on.  

 

In order to design the system, it was important to develop a detailed block diagram 

consisting of all of the logic modules with their corresponding connections. Figure 44 

demonstrates the block diagram used when implementing the logic with Xilinx Vivado Design 

Suite on an Avnet Zedboard. The following sections discuss the design process for each of the 

logic modules, and will reference individual components of this overall block diagram 

throughout the chapter.  
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Figure 44: Detailed Hardware Block Diagram. This shows the complete block design with its 

corresponding modules and connections. Each module provides unique functionality that makes 

the top-level design possible. LIDAR, IR, Data Fusion, Audible Alarm and Visual Alarm logic 

implementations are outlined in light blue, red, yellow, purple and dark blue, respectively. 
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7.1: LIDAR  

A critical factor that drove the team’s decision to implement a LIDAR-based ranging 

system was the need for accurate and fast distance readings. The implementation of the 

LeddarVu8’s segmented distance mapping and Zedboard’s PS-PL communication aimed to meet 

this need by providing a system with precise acquisition of the sensor’s surroundings and ample 

computing power to process incoming readings. This was accomplished by designing a custom 

SPI control driver in Verilog Hardware Description Language (HDL), along with a routine 

processing program in C. All custom code modules were written and compiled using the Xilinx 

Vivado Design Suite and Xilinx Software Development Kit (SDK). Figure 45 shows the logic 

from the detailed hardware block diagram that pertains to the LIDAR implementation. 

 

Figure 45: Detailed Hardware Block Diagram in Regards to LIDAR Implementation. The 

LIDAR sensor is connected through JA1-4 PMODA ports to the Lidar Controller. The Lidar 

controller utilizes an SPI protocol to retrieve raw distance readings from the LIDAR. These raw 

distance readings are passed to the ZYNQ PS via Custom AXI Slave Lite Interface. ZYNQ PS 

computes the actual distances in meters, compares them to the predefined zones and returns the 

results via AXI_slv_reg10 and AXI_slv_reg11. Note that BTNU is a push-button used to start the 

data acquisition. 
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The use of Verilog HDL enabled the creation of a logic-based driver specific to the 

timing and control signals required by the LeddarVu8 LIDAR sensor. The primary interface for 

communication between the LeddarVu8 module and the Zedboard was the Serial Peripheral 

Interface Bus (SPI) protocol.  By design, the SPI protocol utilizes four primary control lines for 

data transmission: clock, chip select, Master Out Slave In (MOSI), and Master In Slave Out 

(MISO) as shown in Figure 46 below. 

 

 

Figure 46: Four-Wire SPI Protocol is used to load data from LIDAR into the Avnet Zedboard 

registers. The protocol consists of a clock (provides timing), a chip select (used to select the 

device), MOSI (used to send commands/data to LIDAR from Avnet Zedboard), MISO (used to 

load/receive data into Avnet Zedboard from LIDAR)  

 

When the master device would like to send data to or request data from the slave device, 

it must pull the chip select line low, transmit data serially at one bit per clock cycle, then 

complete the transmission by pulling chip select high once again. In the system design, the 

Zedboard was programmed to act as the master device, which requested data to be returned by 

the slave LeddarVu8 module. With respect to the general configuration of the standard SPI data 

lines, the LeddarTech’s LeddarVu8 device was designed with its own specific protocol 

requirements that must be satisfied in order to obtain a stable data transmission from the device. 

As specified in the LeddarVu user guide, in order to receive data from the LIDAR sensor, a read 

data command must be issued from the master device that includes the “read” opcode, memory 

address at which the requested data is stored, and the size of the data packet that should be 

returned to the master in bytes [105]. There must then be a break between the time where the 

request is sent and when the master device expects a stream of data in return. This allows for the 
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LIDAR module to prepare the necessary data for transmission. Finally, the module will respond 

with the requested data in full, starting at the specified address for the number of bytes requested. 

A chronogram of the described data protocol from the LeddarVu user guide may be found in 

Figure 47. 

 

 

Figure 47: LeddarVu8 Read Data Protocol Chronogram [105]. This timing diagram illustrates 

the specific timing requirements for the LIDAR’s SPI signals including clock, chip select, MOSI 

and MISO. 

 

The transmission described above may be performed at a clock cycle rate of anywhere 

between 500 kHz and 25 MHz. 

         The factor in which the LeddarVu’s implementation of the SPI protocol differs from 

other SPI interfaces is the break period between request and receive. The user guide specifies 

that this break period can be held for 1 millisecond, upon which chip select must remain low 

(active), yet the clock signal must be halted. This requirement set a specific design parameter 

when planning the control logic, as the timing constraint would have to be satisfied in order to 

collect data with consistent accuracy. 

         The LeddarVu stores all distance readings and configuration values in an arrangement of 

local memory, divided into multiple memory banks. The LeddarVu user guide provides a 

reference table of the memory banks with their associated addresses and sizes. Extracts from the 

table are as follows: 
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Table 28: LeddarVu8 Data Memory Banks [105]. This table demonstrates the LIDAR’s memory 

map which is divided in four memory banks each dedicated to store specific type of data. For 

example, Bank 5 starts at 0x00400000 base address which is 128KB wide. This bank is read-only 

and stores the device information and constants data. 

Bank 

Number 

Start Base 

Address 

Bank Size 

(KB) 

Access Description 

0 0x00000000 1024 Read/Write Configuration data 

5 0x00400000 128 Read Only Device information and constants 

13 0x00500000 1024 Read Only Detection list 

19 0x00FFFB00 1 Read/Write Transaction configuration 

 

One critical location in the data memory that is regularly accessed for acquiring distance 

readings is the Detection List. The detection list holds the raw distance samples recorded by the 

LIDAR module, which are refreshed and overwritten at the same memory location for each of 

the eight segments. Tables of the detection list memory bank and detection structure format as 

shown in the LeddarVu User Guide may be found in Tables 29 and 30. 

 

Table 29: LeddarVu8 Detection List Memory Bank. This is Bank 13 with 0x00500000 base 

address and it stores all the detection/acquisition data. For example, the raw detections are 

stored in detection list array starting at 0x0050000C.  [105] 

Offset Length Type Description 

0 4 uint32_t Timestamp: in ms since power up 

4 2 uint16_t Number of detection (N) 

6 2 uint16_t Current percentage of light source 

8 4 uint32_t Acquisition options 

12 

N * 

detection 

structure 

size 

Array of 

detection 

structure 

Start of detection list array 
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Table 30: LeddarVu8 Detection Structure Format. Raw readings for one of the eight LIDAR 

segments are stored in the Detection Structure format as shown below. Table 29 shows that the 

raw reading of one segments consists of 12 bytes. Therefore, to get all 8 segment readings one 

has to start at 0x0050000C and read length of 96bytes. [105] 

Offset Length Type Description 

0 4 uint32_t 

Distance expressed in distance scale. 

To convert to meters, the distance must be 

divided by the distance scale. 

 

4 4 uint32_t 

Amplitude expressed in raw amplitude scale 

To convert the amplitude to count, it must 

be divided by the amplitude scale. 

Amplitude = Contents of this 

register/(Amplitude Scale Register + 8192) 

 

8 2 uint16_t Segment number 

10 2 uint16_t 

Bit-field detection flags: 

Bit 0: Detection is valid (will always be set) 

Bit 1: Detection was the result of object 

demerging 

Bit 2: Reserved 

Bit 3: Detection is saturated 

 

 

The detection data for the eight segments are stored in the form of a common structure of 

12 bytes, containing the raw distance reading, amplitude of sensor signal, segment number, and 

validity flags. To obtain a raw distance reading that includes one or more segments of the 

LIDAR sensor’s full field of view, one can issue a read command to the base address of memory 

bank 13, with an addressing offset of 12 bytes and a size of n*12 bytes, where n is the number of 

segments to read, starting with segment seven (following 7 to 0 indexing) [105]. This directs the 

LeddarVu8 to return n*12*8 bits of data starting at the base address of the detection structure 

array, which ends with the last bit of the n’th segment’s data. All distance acquisitions are 

initially transmitted by the LeddarVu8 module in a raw, unitless data format. In order to convert 

the raw data into a measurable format, the sample must be divided by a corresponding distance 

scale value. This scale value is stored in the Device Information and Constants memory bank 

(bank 5) at byte offset 354, and may also be read by issuing a read command to the LeddarVu8 

module.  With the above requirements taken into consideration, it was then possible to begin 
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developing a LIDAR sensor control driver through the FPGA hardware logic, written in Verilog 

HDL. 

With full understanding of the data acquisition requirements, it was possible to develop 

the LIDAR controller logic block as shown in Figure 48 below. 

 

Figure 48: Block Diagram of LIDAR Controller. The LIDAR sensor is connected through JA1-4 

PMODA ports to the Lidar Controller. The Lidar Controller utilizes an SPI protocol to retrieve 

raw distance readings including the distance scale from the LIDAR. The acquired sample of 

readings is then passed out to the Custom AXI Slave Lite Interface. Note that BTNU is a push-

button used to start the data acquisition 

In order to acquire regular segment distance samples in a routine format, the design for 

the LIDAR controller employed a digital logic based state machine utilizing both synchronous 

and combinational elements. The logic controlling the shift between states is set up as 

combinational logic, meaning that the status of the current state and next state will be checked 

and updated whenever any of the conditions listed in the “always @” sensitivity list are altered. 

This enables the use of push buttons and counter-based enable signals to change the value of the 

next state at the moment they are triggered. The combinational next state logic is located in the 

LIDAR controller module under Appendix A, beginning with the “always @ (current_state…” 

statement. The variables that the state machine dictates for the storage and manipulation of data 

are controlled within synchronous logic using non-blocking assignment, which allows for any 

changed data to be updated in parallel on the positive edge of each clock cycle. The synchronous 
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individual state logic may be found in the LIDAR controller module under Appendix A, 

beginning with the “always @ (posedge fpga_CLK, negedge reset)” statement. 

Upon startup, the control system will first await user input from the Zedboard’s push 

button BTNU. When the button is pushed operations will begin, the device then proceeds 

through a single branch of states to acquire and store the distance scale value from the LeddarVu 

module’s information and constants bank. With the scale data then stored in logic, the system 

begins iteration through a looping series of states to sample distance readings. This allows for the 

distance scale constant to be recorded once at startup, then used for calculation of object ranges 

upon each acquisition. A diagram of the state machine flow may be found in Figure 49 below. 

 

 

Figure 49: LIDAR Control State Machine Flow. This diagram illustrates the finite state machine 

(FSM) used to implement the LIDAR Controller logic, which meets the SPI timing constraints, 

and hence retrieves raw readings from the LeddarVu8.  
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The state machine begins in state_start, where the device waits for a high signal (1) from 

push button BTNU. Until this button signal is received, the next state logic will remain set to 

state_start. When the button is pressed by a user to initiate operation, the device then progresses 

to state_load_scale. This state lasts one clock cycle, where the synchronous logic prepares the 

necessary bits for issuing a read command at the distance scale value’s address in the LeddarVu8 

module’s memory. This command contains the read opcode, bank 5 start address with distance 

scale offset (0x400162), and the 4 byte size. The command is loaded into a buffer, and is then 

sent out serially in the next state, state_scale_command. State_scale_command shifts the bits in 

the send buffer out one by one on the MOSI pin at a rate of 1MHz. This is done by waiting for 

the positive edge of a 1 MHz custom clock (clk_1M_posedge), generated by counting the 100 

MHz FPGA clock cycles. In the next state, state_delay_scale, the state machine then utilizes a 

similarly generated 1 kHz clock counter to allow for the required 1 millisecond break between 

send and receive for the LeddarVu8’s transmission protocol. State_reading_scale is where the 

distance scale value is read in serially from the LIDAR module. The data on the MISO pin is 

sampled at each 1MHz positive edge, then shifted left into scale_receive_buffer. After thirty-two 

1MHz clock edges are counted, the machine shifts to state_store_scale, where a single clock 

cycle is used to store the data in scale_received_data, which will ultimately be used for the 

distance reading calculations.   

At this stage, the device will enter the loop of reading distance samples, beginning with 

state_wait, to await the next signal of a 2 Hz clock generator. 2 Hz was chosen to match the 

default sample rate of the LeddarVu8 due to the process time of incoming data acquisitions. 

Upon receiving the enable signal, the state machine then shifts through the process of loading 

and transmitting the read command, waiting for the 1 ms break, and then receiving the LIDAR 

distance data. This is done in states state_load, state_read_command, state_delay, state_reading, 

and state_store reading in similar fashion to the state shifts performed to acquire the distance 

scale value. In this loop, the sent command requests 96 bytes of data (768 bits) from memory 

bank 13 at the detection list array offset (0x50000C). This allows for the detection data for all 

eight segments to be clocked in at 12 bytes per segment. In state_store_reading, the segment 

distance data is parsed and arranged so that the samples are prepared for division by the distance 

scale to convert to meters.  
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Once the data acquisition state machine was created, the implemented protocol was tested 

to ensure that reading requests were sent properly to the LeddarVu8, and that the module 

responded with the expected data. This testing was performed by sending a repeated read request 

for a constant with a known value, and then making sure the data returned by the LIDAR module 

matched the value expected. The value selected for this test was the LeddarVu8’s onboard FPGA 

version number, which exists as a set of ASCII characters in the device’s memory as “2572". 

The FPGA version is located in the Device Information and Constants memory bank (Bank 5) at 

offset 288 (Address 0x400120). This request was sent to the LIDAR module over the defined 

SPI protocol, and the returned reading was analyzed using an oscilloscope on the clock, chip 

select, and MISO lines. The results were captured from the oscilloscope for each individual 

ASCII character, as seen in the following figures: 

 

Figure 50: ASCII “2” From LeddarVu8 FPGA Version. The Zedboard receives the first ASCII 

character of the “2572” version number stored in the LIDAR module via SPI transmission. 
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Figure 51: ASCII “5” From LeddarVu8 FPGA Version. The Zedboard receives the second 

ASCII character of the “2572” version number stored in the LIDAR module via SPI 

transmission. 

 

Figure 52: ASCII “7” From LeddarVu8 FPGA Version. The Zedboard receives the third ASCII 

character of the “2572” version number stored in the LIDAR module via SPI transmission. 
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Figure 53: ASCII “2” From LeddarVu8 FPGA Version. The Zedboard receives the fourth ASCII 

character of the “2572” version number stored in the LIDAR module via SPI transmission. 

The accurate reception and storage of the LeddarVu8 onboard FPGA version number 

confirmed that the SPI protocol designed for LIDAR data acquisition was successful. The 

constant value was received in the same format with every SPI transmission performed. With 

this test completed, the send command was readjusted to receive the scale and distance readings, 

as defined earlier. The next step in developing the LIDAR module control was to implement a 

means of computing scaled distance readings. 

Due to the complexity of floating point division, the necessary mathematical operations 

for converting raw distance readings to meters could not be performed efficiently in real-time 

within the LIDAR control state machine. This limitation drove the decision to use the 

Zedboard’s ARM-based processing system for distance computation, which separates the 

complex mathematical operations from the time-critical data acquisition performed by the 

programmable logic. The efforts performed to enable the passing of data between the 

programmable logic and the processing system involved a separate protocol, to be explained in 

detail shortly. Overall, the use of programmable logic via Verilog HDL successfully created a 

robust state machine to control LIDAR data acquisition. 
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With all data transmission to and from the LIDAR sensor controlled by the 

programmable logic (PL) state machine, it was necessary to implement a means of computing 

the sampled distances from the raw data acquired. The division of the stored raw binary data by 

the distance scale constant required floating point arithmetic to ensure that fractions of a meter 

were represented by decimal values. Such mathematical operations were performed using a C 

program on the embedded ARM core; however, it was necessary to establish a communication 

protocol that the ARM-based Processing System (PS) and the Programmable Logic could 

share. This full computation system was designed by instantiating the ZYNQ computation block 

IP available in Xilinx Vivado, as well as customizing Vivado’s base Advanced Extensible 

Interface (AXI) protocol IP. With this in mind, it was possible to develop a second part of the 

detailed hardware diagram pertaining to LIDAR implementation, as shown in Figure 54 below. 

 

 

Figure 54: Block Diagram of ZYNQ PS with Custom AXI Interface. The raw distance readings 

from LIDAR controller are passed to the ZYNQ PS via Custom AXI Slave Lite Interface. ZYNQ 

PS computes the actual distances in meters, compares them to the predefined zones and returns 

the results via AXI_slv_reg10 and AXI_slv_reg11 to the Data Fusion logic module.  
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The following explanations will outline the process completed to utilize these modules 

and pass data over AXI communication. 

In order to make use of Zedboard’s ARM processors, it was necessary to create a ZYNQ 

Base System. Note that this approach was inspired by “Creating a Base System for the Zynq in 

Vivado” [108]. This was accomplished in Vivado by creating a new RTL project, targeting the 

“Zedboard Zynq Evaluation and Development Kit” board. 

 The first step was to add the Zynq Processor System (PS) and establish the minimal 

required connections. This was achieved by creating a new Block Design and inserting the 

“ZYNQ7 Processing System” from the IP catalog, as shown in Figure 55. 

 

 

Figure 55: Illustrates how to add a “ZYNQ7 Processing System” IP to a Block Design in Vivado 

2017.3 using the existing IP manager. “ZYNQ7 PS” is used to execute C code on ARM cores in 

order to convert raw distance readings to meters and compare the distance in meters to 

predefined zones such as Critical Action zone.  
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After successfully adding the IP, it was then possible to select “Run Block Automation”. 

This built in Vivado tool was used to ensure proper connection and pin assignment between the 

PS instantiation and external hardware, such as DDR and fixed IO as shown in Figure 56. 

 

 

Figure 56: Run Block Automation Settings for ZYNQ7 PS. This is used to set up a basic version 

of ZYNQ7 (PS) which introduces external connections to DDR and FIXED_IO. With this it is 

possible to execute C code on one of the ARM cores of ZYNQ7 PS. 

 

At this point, the block design was adjusted and the instance of the ZYNQ7 PS appeared 

with DDR and Fixed IO connected externally. It was then necessary to make a connection 

between the PL clock and the AXI General Purpose Master bus. ZYNQ7 PS was customized to 

enable the default 100MHz PL clock as shown in Figure 57 below. 
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Figure 57: Re-Customize ZYNQ7 PS to Enable PL Fabric Clock. This clock is used to provide 

timing for all of the programmable logic (PL) including AXI interfaces. 

 

Similarly, using the PS-PL Configuration, it was possible to enable General Purpose AXI 

Master interface 0 as shown in Figure 58.  

 

Figure 58: Enable Master AXI GP0 Interface. This interface is used to take in data from AXI 

Slave peripherals. This interface takes raw distance readings from Custom AXI Slave Lite 

interface and stores them in specified locations in DDR so that they can be accessed using 

ZYNQ7 PS via C code. 



122 

 

 

Finally, the 100 MHz PL fabric clock was connected to drive the General Purpose AXI 

master interface and the block design changed as shown in Figure 59. 

 

 

Figure 59: ZYNQ7 PS Block Design. ZYNQ7 PS consists of 2 ARM cores which are used to 

execute C - code. C code reads raw distance readings from DDR. The readings are converted to 

meters, compared against the distances of predefined zones such as Critical Action zone. 

 

This point marked the successful instantiation of the Processing System. With the 

ZYNQ7 Processing System in place, the next stage of the project involved the integration of the 

existing Verilog HDL LIDAR controller into the block design from Figure 59.  

A custom AXI IP block in Vivado was created which integrated the custom PL LIDAR 

controller. Just as with the instantiation of the Processing system, this approach was inspired by 

“Creating a custom IP block in Vivado” [109]. The first step was to create a new AXI4 

peripheral using “Create and Package IP…” from Tools menu in Vivado. When adding the AXI4 

interface the Custom AXI IP was configured as AXI Lite type. The interface was set up as a 

Slave to the ZYNQ7 PS with sixteen 32-bit registers as shown in Figure 60. These registers were 

used to pass information between the ZYNQ7 processing system and the custom programmable 
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logic. Sixteen registers were chosen to prepare an ample number of lines for the transmission of 

all eight segments’ distance data, the distance scale constant, and the zone detection signals. 

 

 

Figure 60: Add AXI Slave Lite Interface with 16 32-bit registers. Defines AXI Custom interface 

to be a slave to the ZYNQ7 PS with 16 32-bit registers which are used to read/write data to 

DDR. 

 

It was important to choose “Edit IP” as a “Next Steps” option in order to modify the 

automatically generated AXI peripheral. It was then possible to edit the AXI Lite Slave 

peripheral to customize the sixteen I/O slave registers by connecting the inputs and outputs of a 

PL top module containing instantiations of the device hardware control modules. 

 In order to do this, it was necessary to first create a top module for the PL LIDAR 

controller code, which is shown in Appendix A as pl_lidar_top_module. The 

pl_lidar_top_module instantiates the custom lidar_controller module which is also shown in 

Appendix A. Notice that the lidar_controller module prepares raw detections of 8 segments each 

35 bits wide where bits [2:0] contain the unsigned 3-bit segment number and bits [34:3] store the 
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raw distance reading as an unsigned 32-bit integer. For example, segment_0 stores one raw 

distance reading in segment_0[34:3] and the corresponding segment number is stored in 

segment_0[2:0]. It is also important to notice that lidar_controller also prepares a 32-bit unsigned 

integer distance scale which is used to convert the raw distance reading to a measured distance in 

meters. Therefore, pl_lidar_top_module parses and prepares the distance_scale, segment distance 

readings and segment numbers as 32 bit outputs to be used as inputs to 32-bit AXI slave 

registers. For example, the module outputs one of the raw 32-bit distance readings 

(segment_0[34:3]) via segment0 output and the corresponding segment number via 

seg_nums[2:0] output. Since pl_lidar_top_module prepared all of the data needed to perform the 

conversion to meters, the next step involved integrating this custom logic with the Vivado 

generated AXI Slave interface. 

In order to add the custom PL logic to AXI Lite Slave interface, the automatically 

generated lidar_axi_v1_0_S00_AXI module had to be modified as shown in Appendix B. The 

first change was to add the port connections under “/Users to add ports here/” comment. As 

mentioned previously, the data was to be passed from pl_lidar_top_module as 32 bit inputs, 

including the 8 raw distance readings, a distance scale, and segment numbers. The second 

change to lidar_axi_v1_0_S00_AXI was to instantiate the pl_lidar_top_module and make the 

connections as shown under “// Add user logic here”. The last set of changes involved ensuring that 

inputs from the pl_lidar_top_module were stored in the appropriate registers as shown under “// 

Address decoding for reading registers”. Note that only the first 10 registers out of 16 (slv_reg0 

through slv_reg9) were used to implement the passing of LIDAR data from the PL to the PS. 

Two additional registers, slv_reg10 and slv_reg11, were later utilized for passing data from PS to 

PL when objects are present in either the danger warning or critical action zone. The values 

passed to these two registers are used for displaying the appropriate warning which is dependent 

on detected object positioning. Details of the warning display logic will be discussed in later 

sections. 

Finally, the topmost module, lidar_axi_v1_0 of the Custom AXI Slave Lite interface, had 

to be modified to add the user ports for the custom PL logic as shown in Appendix B. This 

brought the user ports to the highest module in the block, where they then could be set external 

to connect to hardware pins. After all of these changes were made, the custom IP was repackaged 

via “Package IP” wizard and it was time to add it to the block design with ZYNQ7 PS. 
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After successfully creating the custom lidar_axi_v1_0 IP, the next step was to add it to 

the existing block design via “Add IP”. Before running “Block Automation” to establish 

connections between the customized blocks, it was important to specify the external ports so that 

Vivado is aware of the ports connecting to physical I/O on the Zedboard. The final block design 

is shown in Figure 61 below.  

 

 

Figure 61: Final Block Diagram as seen in Vivado. Outlined are ZYNQ7 PS (black), Custom 

AXI interface (red), Custom AXI’s LIDAR external inputs and output (orange), AXI Interconnect 

and PS Reset (green). 

 

As shown in Figure 61, the customized AXI IP is highlighted by the red box and the 

external ports associated with the lidar_controller module are outlined by orange. The ZYNQ7 

PS block is outlined in black. The connections that were made automatically via Vivado’s Block 

Automation are boxed in green. The Block Automation ensured that the Master AXI General 

Purpose interface of ZYNQ7 was connected appropriately with the Custom AXI Slave block via 

the AXI Interconnect block. From Figure 61, it can also be seen that there are other ports which 

are related to the passive infrared sensor, VGA display control and buzzer logic. There is also a 

Mixed Mode Clock Manager (MMCM) IP to control clocking for the VGA display timing. The 
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infrared sensor, screen, and buzzer logic found within these blocks will be discussed in later 

sections.  

After all of the connections were established, it was important to create the Hardware 

Description Language (HDL) wrapper by right-clicking on the block design within Sources as 

shown in Figure 62. The HDL wrapper ensures that the entire design is factored into the 

synthesized and exported hardware data. 

 

 

Figure 62: Create HDL Wrapper. This creates a Verilog file that instantiates the top level 

hardware logic with its appropriate connections. This file is used to synthesize, implement and 

generate a bitstream of  the design. 

 

After creation of the HDL wrapper, the bitstream was generated. The hardware design 

and bitstream could then be exported for programming the PL to the FPGA fabric of the 

Zedboard device, as shown in Figure 63. 
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Figure 63: Export Hardware with Bitstream. This bitstream is used to program the FPGA of 

Avnet Zedboard via Xilinx Software Development Kit (SDK). SDK implements the custom PL 

design (bistream), with C-code executing on one of the ARM cores of ZYNQ7 PS. 

 

Finally, the Xilinx Software Development Kit could then be launched and used as the 

coding environment for developing C code. All written C code runs on the ZYNQ PS for the 

calculation and processing of distance data sampled and acquired by the PL. 

 The full C code portion of the project is shown in Appendix D. One critical element in 

this C code is the pointer to the base address of the memory location where transmissions over 

AXI are performed. Writing and reading to this location are what make the PS-PL 

communication possible. The following line of code shows the definition of the pointer to this 

location:  

 

//pointer to base address of PS-PL memory location shared over AXI. 

Xuint32 *baseaddr_p = (Xuint32 *)XPAR_LIDAR_AXI_0_S00_AXI_BASEADDR; 

 

The proper definition of this pointer was created with reference to “Creating a Custom IP 

Block in Vivado” [109]. An example of this pointer’s use can be seen in the passing of the 

distance scale value. The distance scale that was read from the LIDAR device was transmitted to 

the PS from the PL over slv_reg_9. Therefore, to read the distance scale in the C code, the 

following line of code was used to dereference an offset of 9 from the base address:  
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distance_scale = *(baseaddr_p+9); 

 

Similarly, to read the raw distance from segment0 on slv_reg_0, the following line of 

code was used: 

 

distance_seg0 = *(baseaddr_p+0); 

 

In order to convert the raw distance readings to meters, the raw data held in each 

distance_seg variable is divided by the distance scale. The following line was used to perform 

the division operation for segment zero. The use of floating point arithmetic preserves the 

decimal value of the distance reading in meters:  

 

segMeters[0] = ((float)distance_seg0) / ((float) distance_scale); 

 

The variable segMeters is a global array that holds 8 different distance readings from 

their corresponding segments, once converted to meters.  

In order to read all of the active segment numbers, transmitted across in a single register, 

the following line of code was used: 

 

seg_nums = *(baseaddr_p+8); 

 

This operation reads in the seg_nums value that exists as an output from the the PL logic, 

where each individual segment number collected is written to this output in a set of three bits, as 

described earlier. 

Finally, in order to associate the segMeters[0] reading in meters to a corresponding 

segment number the following line of code was used: 

 

distanceSegNums[0] = (int) (seg_nums & SEG0_NUM); 

 

Where distanceSegNums is a global array that holds 8 segment numbers, and 

SEG0_NUM0 is a bitmask used to extract the corresponding segment number from seg_nums. 

This array is used for printing the segment readings to the console. Note that the remaining 7 out 
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of 8 distance readings with corresponding segment numbers are read via C code in the same 

fashion as described above for that of segment zero.  

The acquisition and conversion of the distance readings were tested using a serial console 

output.  The LIDAR sensor was placed in a hallway to test the distances of the walls and objects 

surrounding the system. A screenshot of the serial console output is pictured in Figure 64. 

 

 

Figure 64: Console Output from LIDAR Sensor Hallway Test.  Segments 6 through 2 are directly 

facing a wall approximately 1.8 meters away from the sensor’s center point.  Segments 0 and 1 

point towards another open space through a nearby doorway.  Segment 7 detects a person 

standing roughly half of a meter away. 

 

The segment distances printed the console updated in real-time. If an object was placed in 

segment 7, for example, and then was moved further away, the distance value displayed on the 

screen would increase to track this change. This test showed that the LIDAR was successful in 

mapping the surroundings of the system, picking up individual readings in each of the eight field 

of view segments and converting them to meters using the distance scale value. 

Once the C code successfully completes the conversion of all segment distances to 

meters, it then writes corresponding flag values for each segment to the memory locations 

associated with AXI registers slv_reg10 and slv_reg11. This allows for the C code running in the 

PS to provide a signal to the PL logic when an object is detected within either the Critical Action 

zone or the Danger Warning zone. For example, if an object is found to be within the critical 

action zone, a flag is written to offset 11 of the AXI base address with a logic OR operation. The 

n’th bit, starting with bit zero, corresponds to the n’th segment. The line of code that performs 

this write is as follows: 
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*(baseaddr_p+11) |= (flagToWrite << segNum); 

 

When the PL side running on the FPGA detects that a flag value of 1 has been written to 

AXI slv_reg11, the logic is designed to interpret this as an object present in the Critical Action 

zone, and can process this data to provide a warning output when appropriate. More details on 

the warning logic will be described in later sections. 

This concludes the implementation of both the hardware logic controller for LIDAR data 

acquisition, as well as the custom PS-PL communication to process distance samples. The 

designed state machine logic enabled data transfer to and from the LeddarVu8 modules, 

compliant with its unique SPI protocol. Furthermore, an AXI Stream Lite interface was used to 

integrate this logic with the ZYNQ7 processing system, which then stored the raw data from the 

PL logic into DDR memory. Finally, an embedded C code application was designed to process 

the raw data stored in memory and convert it to meters using floating point operations. These 

efforts resulted in a design that could produce accurate distance readings from the data acquired 

by the LIDAR sensor, and set position flags to be integrated with other modules in the system. 

 

7.2: PIR Sensor  

The Passive Infrared Sensor (PIR) was the second critical part of the project, which 

enabled the detection of moving human beings within the LIDAR’s field of view. To set up the 

interfacing for the EKMC Series PIR, the Zedboard’s programmable logic was used to write a 

simple controller for reading from the sensor. As with the LIDAR control design, all custom 

code modules were designed using Vivado and the Xilinx SDK. 

Initially, the IR sensor was to be mounted on top of a servo motor so that it could rotate 

and effectively scan any of the areas being detected by the LIDAR sensor. With the choice to 

switch to the PIR, this was no longer needed due to a significant increase in the field of view. 

Therefore, it was decided to utilize two of the PIR sensors so that a larger area of detection could 

be covered. The IR sensors were soldered into small protoboards and 22 gauge wire was used to 

make a connection to the to the PMOD located on the Zedboard. It was important to pull-down 

the PIR data line to keep the current below 100uA as specified by the data sheet, as well as 

ensure data line stability [102]. This was accomplished by adding a 51k ohm pull-down resistor 
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between the data line and the ground, which ensured that the output current was below 100uA at 

around 65uA. This is shown in a simplified diagram in Figure 65 below.  

 

 

Figure 65: Connecting PIR to Zedboard PMOD. PIR is powered via 3.3V of Zedboard’s PMOD 

connector. The DATA pin of the PIR is pulled-down using a 51kΩ resistor to keep the data 

current below 100uA which ensures data line stability. 

 

Just as with the LIDAR sensor control, the use of Verilog HDL enabled the creation of a 

logic-based driver specific to the timing and signals required by the PIR sensor. This turned out 

to be a much simpler protocol than the SPI protocol implemented for the aforementioned 

LIDAR. The EKMC PIR has only one data line, which outputs either logic low (target absent) or 

logic high (target present). Before implementing this data acquisition controller, it was important 

to understand the sensor’s timing diagram. Figure 66 below shows the timing diagram for the 

EKMC Series PIR used in this design.  
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Figure 66: Timing Diagram of EKMC Series PIR illustrates that the stabilization time (Twu) is 

apparent during the initial power up phase. During Twu (warm-up) stage, the output is 

undefined and detection is not guaranteed. This was considered when testing.  [102] 

 

From Figure 66, one may see that a major consideration for the PIR is that it has a circuit 

stabilization time, during which the output is undefined and valid detections are not guaranteed. 

This stabilization time is only apparent during the initial power up phase for the PIR (EKMC 

PIR). The maximum stabilization time is 30 seconds, which was taken into the account before 

doing any experiments and tests. This understanding of the timing diagram was critical when 

designing the PIR controller within programmable logic (PL) and performing test runs. 

With full understanding of the PIR sensor’s data acquisition requirements, it was possible 

to develop the IR controller logic block, as shown in Figure 67. 
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Figure 67: Block Diagram of IR Controller. Two PIR sensors (IR_0 and IR_1) are connected 

through JB3-4 PMODB ports to the IR Controller. At each rising edge of the 100MHz clock, the 

IR Controller reads the data pins from the two PIR sensors and outputs the IR_Detection signal, 

which indicates a valid/invalid detection. 

The primary interface for communication between the PIR module and the Zedboard was 

a data input checked at the 100MHz rate of the PL clock frequency. Due to the use of two PIR 

sensors in this final design, a valid detection was considered when either one or both of the 

sensors were triggered. To accomplish this functionality, two PIR inputs were ORed as shown in 

the IR_top verilog module from Appendix C.  

 

//detection for sound output determined from IR & Lidar  

always @ (posedge clk_100M) begin 

        IR_detection <= IR_data[0] | IR_data[1];  //Two IR sensor 

signals ored for single detection 

    end 

 

From the code above one may see that on every rising edge of the PL fabric clock, the 

IR_detection signal was updated based on the two PIR inputs: IR_data[0] and IR_data[1]. The 

IR_detection signal was used as a decision flag to signal a valid detection. For example, if a 

person was in the field of view of either one or both of the sensors, the IR_detection signal 
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would be set high. Similarly, if the person was not in the field of view of either sensor, or an 

inanimate object was present, the IR_detection signal would stay low and the detection ignored.  

In order to check that both sensors were working properly, they were first tested 

individually using the same approach, except that the IR_detection was assigned to only one of 

the IR_data inputs at a time. Then, the IR_detection signal was tied to an LED output to prove 

the sensor operated properly through a visual cue. If IR_detection was valid, the LED would 

light up. Once the PIR was proven to be working, the control logic was instantiated in the IR_top 

module, connecting the IR control to warning display logic, in place of the LED indication used 

for testing. This allowed for the PIR to be connected to alarm system logic that incorporated a 

VGA display and buzzer. Based on the output of the PIR, along with the distance acquired by the 

LIDAR sensor, the color of the screen changes and the buzzer sounds. The logic driving this alert 

system will be introduced later. The warning system is a method of alerting the driver to show 

that there is potential danger, and this was the beginning of the data fusion for the PIR into the 

overall system of pedestrian detection and driver notification.  

 

7.3: Data Fusion between LIDAR and PIR 

 In sections 7.1 and 7.2, it was shown how the data was obtained from the LIDAR and 

PIR modules. This section discusses the data fusion between LIDAR and PIR sensors that was 

used to signal the alarm system. More specifically, this section introduces the logic design that 

provides control signals for the buzzer and the warning display.  

Section 7.1 showed that the Custom AXI module (Appendix B) took raw distance 

readings from the LIDAR module and stored them in DDR memory. These readings were then 

accessed from DDR via a C program (Appendix D) running on ZYNQ7 processing system. 

Using the C program, the raw distance readings were then converted to appropriate floating point 

readings in meters. The distance readings of each of the 8 segments (segments 0 to 7) were 

compared against the predefined thresholds for “critical action” and “danger warning” zones, and 

the results of these comparisons were then stored to the DDR memory via slvreg11[7:0] and 

slvreg10[7:0], respectively. For example, if the LeddarVu8 segments 0, 1 and 5 measured 

distances below “critical action” threshold then the slvreg11[7:0] would take on a binary value of 

0b00100011 . Similarly, if the segments 1, 3, and 4 measured distances below the “danger 

warning” zone then the slvreg10[7:0] would take on a value of 0b00011010. Therefore, if all of 
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the distance readings for all 8 segments were beyond both range thresholds, then slvreg10[7:0] 

and slvreg11[11:0] registers would take values of 0b00000000. Hence, if the value of either one 

of the registers was greater than 0, it would indicate that there was at least one segment that 

located an object within a threshold range. 

 Section 7.2. showed that a valid PIR detection was defined by an ORed signal between 

the two PIR sensors. This signal was labeled as IR_detection in IR_top module (Appendix C) 

and it is an active high signal. For example, if either one or both of the PIR sensors detect a 

moving human body, the IR_detection signal is pulled high. 

With the full understanding of the LIDAR signals passed from the Custom AXI module, 

as well as the IR_detection signal passed from the IR controller module, it was possible to 

develop the data fusion logic block, as shown in Figure 68 below. 

 

Figure 68: Block Diagram of Data Fusion. Data Fusion module takes results from LIDAR and 

PIR logic and fuses them to generate control signals for the Alarm logic. Tone and color_signal 

output signals are used to set the tone and color for the Audible and Visual Alarm logic, 

respectively.  

 

The signals from Sections 7.1 and 7.2 were put into a combinational logic design within 

the IR_top module (Appendix C) as shown in the code below. 

always @ (AXI_slv_reg10, AXI_slv_reg11, IR_detection, tone) begin 

        if((AXI_slv_reg11 > 0) && IR_detection) begin   //if object in 

critical zone, IR's detect person 

            color_signal = 2'b10;   // show red 

            tone = 22'd30000; //play sound 

        end 

        else if (AXI_slv_reg10 > 0) begin       //if object is in danger 

warning zone 

            color_signal = 2'b01;   //show yellow 

            tone = 22'd0000; //turn of buzzer 

        end 

        else begin 

            color_signal = 2'b00;   //show green 

            tone = 22'd0000; //turn off buzzer 

        end 

    end 
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From the “if” statement written above, one may observe that if there was some object 

within the “critical zone” (AXI_slv_reg11>0), and the PIR also detected a human (IR_detection), 

the color_signal is set to choose red for the VGA display and the tone is set to turn on the buzzer. 

Otherwise, the next statement checks if the object is in “danger warning” zone. If so, the module 

sets the display color to yellow and turns off the buzzer. Finally, if nothing is within the two 

zones, color_signal is set to display green on VGA display and buzzer is kept off.  

Now that the control signals for VGA color and buzzer tone were shown, it is now 

possible introduce the usage of these signals to control the VGA driver logic and the tone 

generator logic as demonstrated in Sections 7.4 and 7.5, respectively.  

 

7.4 VGA Controller and Color Logic 

 In order to show the visual warnings on a VGA screen, it was necessary to understand the 

signals involved with controlling the VGA lines, so that a color logic module for setting images 

could be designed. To reduce design complexities, a VGA controller from a known source was 

implemented. 

The VGA controller module used was originally designed by Ulrich Zoltán from Digilent 

Inc. [110], as shown in vga_controller_640_60 from Appendix C, and is used to control the 

graphics of the VGA display. It is written in VHDL. This module is often referenced and used 

for academic study at WPI, so it was a design that the team was comfortable with. Note that the 

reset signal input was modified to be active-low to agree with the active low peripheral reset of 

ZYNQ7 processing system. The controller contains the logic to generate the synchronization 

signals, horizontal and vertical pixel counter, and a video disable signal, which ensure proper 

protocol for displaying images of 640x480 resolution at 60Hz over the VGA port. The 

vga_controller_640_60 also provides horizontal and vertical counters for the currently 

displayed pixel, as well as a blank signal that is active when a pixel is not inside the visible 

screen and the color outputs should be reset to zero. The block diagram of the VGA controller 

module can be seen in Figure 69. A 25 MHz clock is used as an input for this module, which is 

generated using a Mixed-Mode Clock Manager (MMCM) IP block. HS is the horizontal sync 

pulse outpin pin to the VGA port monitor, while VS is the vertical sync pulse. Hcount is the 

horizontal count of the display screen, while vcount is the vertical count to the active video on 

the display screen. Blank is active when pixels are not in the visible area. The blank signal is 
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delayed one pixel clock period (40ns) from where the pixel leaves the visible screen, according 

to the counters, to account for pixel pipeline delay. This delay occurs because it takes time from 

when the counters indicate current pixel should be displayed to when the color data actually 

arrives at the monitor pins (memory read delays, synchronization delays). 

 

 

Figure 69: Block Diagram of The VGA Controller. This module takes a 25MHz clock from the 

MMCM and generates output signals used to drive a display via VGA port. HS and VS are 

horizontal and vertical sync signals passed straight to the VGA port and they take care of the 

horizontal and vertical pixel synchronization/timing. hcount, vcount, and blank are signals 

related to the current pixel position and these are used to control the graphics/color on the 

display. 

 

The current pixel horizontal (hcount) and vertical (vcount) counts are passed with the 

blank signal to the color_logic module from Appendix C. The color_logic module from 

Appendix C takes these signals together with color_signal mentioned in Section 7.3 and decides 

on the output color by setting the RGB signals (clrg_rgb) on the VGA connector. For example, if 

the color_signal chosen is red, the RGB signals would get set to red as shown in code from 

color_logic module from Appendix C: 

 

//display a color to fill the screen based on the input from IR_top 

always @ (blank, color_signal, clr_rgb) begin 

    if (blank == 0) begin 

        case(color_signal) 

            2'b01 : clr_rgb = YELLOW; 

            2'b10 : clr_rgb = RED;  

            default: clr_rgb =  GREEN; 

        endcase 
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    end 

    else begin 

        clr_rgb = BLACK;    //if blank signal =1, display no color. 

    end 

end           

 

 

The horizontal sync (HS) and vertical sync (VS) together with RGB signals (clr_rgb) are 

used to drive the VGA color graphics. The Zedboard allows 12-bit color video output through a 

standard VGA connector. Therefore, the clr_rgb output is a 12 bit output. The VGA connection 

pins along with their mapping to Zynq I/O pins are shown in Table 31. 

 

Table 31: Table showing the VGA connector pin numbers and descriptions and their 

corresponding Zynq pins on the Avnet Zedboard. These are crucial when routing VGA signals 

from programmable logic to external pins of the VGA connector.  [57] 

VGA Pin Signal Description Zynq Pin 

1 RED Red video V20, U20, V19, V18 

2 GREEN Green video AB22, AA22, AB21, AA21 

3 BLUE Blue video Y21, Y20, AB20, AB19 

4 ID2/RES Formerly monitor ID bit 2 NC 

5 GND Ground (HSync) NC 

6 RED_RTN Red return NC 

7 GREEN_RTN Green return NC 

8 BLUE_RTN Blue return NC 

9 KEY/PWR Formerly key NC 

10 GND Ground (VSync) NC 

11 ID0/RES Formerly monitor ID bit 0 NC 

12 ID1/SDA Formerly monitor ID bit 1 NC 

13 HSync Horizontal sync AA19 

14 VSync Vertical sync Y19 

15 ID3/SCL Formerly monitor ID bit 3 NC 

 

The final block design used to control the VGA color warning graphics is shown in 

Figure 70. 
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Figure 70: Block Diagram of a Visual Alarm System. The MMCM module takes a 100MHz PL 

clock and creates a synchronous 25MHz clock used to drive the VGA controller. VGA Controller 

takes a 25MHz clock and generates output signals that drive a display via VGA port. HS and VS 

are horizontal and vertical sync signals passed straight to the VGA port. They control the 

horizontal and vertical pixel synchronization/timing of the VGA display. hcount, vcount, and 

blank are signals related to the current pixel position and these are used to control the 

graphics/color on the display via Color Logic module. Color Logic module changes the color 

based on the control signal from the Data Fusion block, color_signal.  

 

From Figure 70 one can see that the VGA Controller is supplied a 25MHz clock via 

MMCM. The MMCM takes a 100MHz clock from PL fabric and creates a synchronous 25MHz 

clock. This method of stepping-down clock rate via MMCM is a common practice for generating 

clean clock signals from the stock FPGA source clock. The MMCM was instantiated and 

configured via Vivado’s included IP catalog. The VGA controller takes the 25 MHz input clock 

and generates five output signals that are used for the VGA display protocol: blank, hcount, 

vcount, hsync and vsync. The signals blank, hcount, and vcount give information about the 

current pixel position and are passed to the color logic module. The color logic module takes 

these inputs with the color_signal input and it outputs the appropriate 12-bit RGB value in order 

to set the graphics on the VGA display. Hsync and vsync are used as synchronous pulse signals 

to display the RGB value, according to the VGA protocol.  

 

7.5: Tone Generator 

For the purpose of sounding an audible alarm warning on a buzzer, it was necessary to 

develop a tone generator logic module. 
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A buzzer is used by system to alert the driver in sync with the VGA display colors on the 

LCD screen. The buzzer used for this system was the 8 ohm model introduced in Section 6, 

connected to JB1 of PMOD ports of the Zedboard. A current limiting resistor of 51 ohms was 

connected in series with the buzzer in order to keep the current at around 56mA. This was 

necessary in order to satisfy the PMOD’s power ratings. The final block diagram of this portion 

of the design is shown in Figure 71. 

 

 

Figure 71: Block Diagram of Audible Alarm. Tone Generator takes a 100MHz clock and 

generates a sound signal based on the tone signal. tone is a control signal that comes from the 

Data Fusion module and is used to set the sound frequency. The output sound signal is fed into 

an 8Ω buzzer through a 51Ω current-limiting resistor via JB1 PMODB port.  

 

Tone generator is a simple module that counts the positive edges of a 100MHz 

programmable logic (PL) clock to a create a pulse width modulated (PWM) signal for the 

purpose of driving the 8 ohm buzzer. The tone (counter) is a control variable that is used to 

specify the logic high duration of the PWM signal. This way it is possible to control the audible 

frequency of the buzzer, depending on the duty cycle of the output square wave. Recall that the 

tone (counter) signal was supplied by the data fusion logic as explained in Section 7.3. For 

example, if the data fusion logic decided that the detected object is potentially a human inside of 

the Critical Action zone, it would set the tone signal to a specified value, thus sounding an alarm. 

The detailed code is shown in the tone_generator module under Appendix C. 
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7.6: Final Block Design in Vivado 

The final hardware layout block design, as it appeared in Vivado after all of the modules 

were implemented, can be seen in the Figure 72 below. 

 

Figure 72: Final Block Design as seen in Vivado 2017.3. Outlined are ZYNQ7 PS (black), 

Custom AXI interface(red), AXI Interconnect and PS Reset (green), Custom AXI’s LIDAR 

external inputs and output (orange), Custom AXI’s PIR external inputs (gray), Custom AXI’s 

Audible Alarm external output (yellow), Custom AXI’s Visual Alarm external input and outputs 

(brown), MMCM (purple). Note that all custom programmable logic modules, such as Lidar 

Controller, IR Controller, Data Fusion, VGA Controller, Tone Generator, were instantiated 

within the Custom AXI Interface (red). 

 

As shown in Figure 72, the customized AXI IP is highlighted by the red box, which 

contains all of the custom logic such as LIDAR controller, IR controller, VGA controller, Tone 

generator, and Data Fusion. The external ports associated with the LIDAR controller, IR 

controller, VGA controller and Tone Generator module are outlined by orange, gray, brown and 

yellow, respectively. The ZYNQ7 PS block is outlined in black. The connections that were made 

automatically via Vivado’s Block Automation are boxed in green. Block Automation ensured 

that the Master AXI General Purpose interface of ZYNQ7 was connected appropriately with the 

Custom AXI Slave block via the AXI Interconnect block. There is also a Mixed Mode Clock 

Manager (MMCM) IP to control clocking for the VGA display timing.  

The custom AXI interface establishes a protocol to acquire raw distance readings from 

the LIDAR using the LIDAR controller module and passes these readings via AXI Interconnect 
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into DDR memory. The ZYNQ7 PS reads the raw distance readings from DDR, converts the raw 

readings to meters, compares the distances against predefined zones (“e.g. Critical Action 

zone”), and stores the results to DDR. The custom AXI IP reads the results from DDR memory 

and passes them to Data Fusion PL (instantiated within Custom AXI IP). The PIR data is read 

using the IR controller module, which passes the detection signal to Data Fusion PL. Based on 

these input signals, the Data Fusion logic decides the color and the tone frequency for the VGA 

controller and Tone Generator, respectively. 

This concludes the methodology related to the hardware and software design of the 

project. The next section focuses on the power supply implementation to provide energy to all of 

the physical components. 

  

7.5: Power Supply 

The original plan for the power supply was to have two different output voltages, one 

with 12 volts and the other with 6 volts using a step down converter. Due to design and 

component changes, the servo motor was no longer needed, which allowed both power supply 

rails to be used for 12 volt output with no step down converter. In addition to the Zedboard and 

LIDAR, a new power requirement was determined to account for the added cooling fan and 

warning screen. With the addition of these two devices, the new power requirement totaled at 

roughly 80 watts. The power supply still provided at least 20 percent more power than needed. 

All of the sensors, except the LeddarVu8 LIDAR, were powered by the Zedboard directly, since 

it supplied the necessary 3.3 volts through the PMOD connectors. Figure 73 represents the 

wiring diagram for the system implemented with the different voltages accounted for. 

 



143 

 

 

Figure 73: Wiring Diagram for the System Implemented. The red boxes represent devices 

receiving 12 volts and green represents devices receiving 3.3 volts. 3.3 volts is provided directly 

from the Zedboard’s PMOD ports. The blue boxes represent the external AC power source, and 

its conversion to DC by the power supply. 

The wire gauges used were 16, 18 and 22. To connect the wires to the power supply, 

spade connectors and solder were used to safely attach them together. The power supply had 

screws that clamped down on a piece of wire or metal that would be attached to the power supply 

with terminal connectors, as shown in Figure 74. These were used to make safe contact between 

the power supply and wire. The wire and spade connectors were crimped onto each other. For 

additional safety, heat shrink was placed near the connection, which helps in preventing stress on 

the connector and the possibility of wires becoming exposed and touching each other.  
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Figure 74: Connections at the Power Supply Terminals. Fork crimp connectors were used to 

provide a reliable connection. Heat shrink is used to ensure isolation. 

 

To connect the power supply to the wall outlet, an existing 16-gauge wire with a male 

and female end was used. The female end was cut off and the wire was stripped in order to 

connect the spade connectors. The power supply was then connected to the wall outlet and it was 

left alone for 20 minutes while monitored using a volt meter for any problems. The power supply 

ran smoothly during that time period and there were no heat issues.  

 The next step was connecting the first output channel that would be used to supply 12 

volts to the Zedboard, LIDAR and warning screen. The outputs of the power supply were tested 

with a multimeter to ensure that they output 12 volts. After both rails gave the expected 12-volt 

output (shown in Figure 75), an extension cord with three female sockets replaced this setup. The 

male end of the extension cord was cut off and the wire was stripped down to be connected to the 

terminal connectors, and then to the power supply. After it was connected to the power supply, a 

multimeter was used to test the female sockets and they output the expected approximate 12 

volts as shown in Figure 76.  
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Figure 75: Testing of the 12 Volt Output Rails. Each output rail was tested and output roughly 

12 volts. The red multimeter probe was connected to the positive terminal of the power supply 

and the black probe was connected to the negative terminal of the power supply. 

 

Figure 76: Testing the Female Socket Plugs from the Extension Cord Running from the Power 

Supply. It provided roughly 12 volts. The red multimeter probe was connected to the positive 

terminal of the female socket plug and the black probe was connected to the negative terminal. 
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To connect the LIDAR sensor, Zedboard, and warning screen to the extension cord, 

additional wire was used along with a two RC jacks (same size) and a two-pin terminal 

connector (known as a phoenix connector). The warning screen and Zedboard both required an 

RC jack, while the LIDAR sensor needed the terminal connector. One of the RC jacks had two 

strands of wire provided, which was used for the Zedboard. For the warning screen, the power 

adapter, AC to DC converter, and step down converter were cut off from the wire and a two 

prong male plug was soldered on in its place. Additional heat shrink tubing was placed over the 

soldered wire for safety. For the LIDAR sensor, a three pin rocker switch was needed to allow 

the Zedboard to initialize before turning on the LeddarVu8 module. A piece of wire with a male 

plug and two separate strands of 22 gauge wire were used for the LIDAR sensor. The two wires 

with the positive polarity were twisted together and crimped on to a connector, while the wires 

with the negative polarity were connected to the two other pins, as shown in Figure 77. 

 

 

Figure 77: Crimp Connector Used for the Rocker Switch. 22 AWG wires crimped inside the 

junction box. The positive pin of the switch handled the positive output rail of the power supply 

and LIDAR while the other two pins handled the negative terminals of the LIDAR and power 

supply. 
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After creating the necessary wires for each component, each wire was individually tested 

to ensure that it output 12 volts. First, the wire for the Zedboard was plugged into the extension 

cord and a multimeter was attached to the RC jack. As shown in Figure 78, the RC jack output 

12 volts for the Zedboard. Initially, a multimeter was attached to the terminal connector going to 

the LIDAR and it output 12 volts. Further testing was done after the switch was installed as 

shown in Figure 79. Testing at the switch terminals confirmed that the wire still output 12 volts. 

Lastly, the wire for the warning screen was tested using the same method as the wire for the 

Zedboard. As shown in Figure 80, the RC jack output 12 volts for the warning screen.  

 

 

Figure 78: Testing the RC Jack for the Zedboard. The output was roughly 12 volts. The red 

probe of the mulimeter was inserted into the inner diameter of the RC jack while the black probe 

was connected to the outer diameter. 
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Figure 79: Testing the LIDAR Switch. It outputted roughly 12 volts as expected. The red probe 

was connected to the positive pin of the switch which handled the positive polarity of the LIDAR 

and power supply while the black probe was connected to ground. 

 

Figure 80: Testing the RC Jack for the Warning Screen. The output was roughly 12 volts. The 

red probe was connected to the inner diameter while the black probe was connected to the outer 

diameter of the RC jack. 
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It was decided that a small extension cord would be used instead of wire nuts because it 

would be easier to remove or add components whenever needed. Due to this modularity, it was 

much faster using an extension cord rather than building a circuit on one rail that can safely 

power the LIDAR, warning screen, and Zedboard. A junction box was used to house all of the 

connections from each component to the extension cord. This was done to ensure that the 

connections would be safe from any outside elements. A cutout for the rocker switch was made 

in the junction box as seen in Figure 81. 

 

 

Figure 81: Switch Used For the LIDAR. Provides time to power the LIDAR after the Zedboard is 

initialized. A cutout for the switch was made using a drill and a filer. 

The cooling fan for the system received its own dedicated power rail for simplicity. Two 

separate strands of wire would run from the power supply to the three pin connector of the 

cooling fan. The third pin of the fan was not needed as it was the data pin to control when to run 

the fan and when not to. For the implemented system, the fan would stay on the whole time so 

this feature was not needed. It was also determined that that would be the simplest approach for 

powering the fan, as converting the fan’s three pin connector into the standard wall outlet plug 
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was unnecessary. Before connecting the fan, the wires were tested to verify it would receive 12 

volts, which was the case, as shown in Figure 82. 

 

Figure 82: Testing the Wires Supplying Power to the Cooling Fan. Output of roughly 12 volts. 

The orange wire carried the positive polarity for the fan while the black wire handled the 

negative polarity.   

 

When testing the output rail for the LIDAR sensor, warning screen, and Zedboard, each 

device was tested individually to minimize any problems, such as all three devices burning out. 

First, the Zedboard was connected to the power supply and it ran for 10 minutes without showing 

any issues. Next, the LIDAR module was tested with a data connection to a laptop, and the 

Zedboard connection was removed. Again, the LIDAR sensor ran successfully for 10 minutes 

with no issues. Lastly, the LIDAR was taken out and the warning screen was powered on. This 

process was repeated multiple times and there were no issues. In all of these cases, the LIDAR 

and Zedboard were simply plugged in to ensure they powered up, no computations or 

measurements were taken. After this the LIDAR and Zedboard were powered together with both 

components performing under load; the LIDAR was actively taking measurement readings and 

the Zedboard was performing the necessary computations. Lastly, the warning screen was 

plugged in while the other devices were running and all three components operated successfully.  
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With one of the power supply rails working correctly, the LIDAR, warning screen and 

Zedboard were disconnected and the cooling fan was plugged into the other rail. The fan worked 

with no problem when connected to the power rail. All devices worked as expected.  

 The power supply and junction box used had existing mounting holes. Six wood screws 

were used to mount the power components. When placing these two items on the bus frame, it 

was determined that they should be placed on the side, where the wires are not overly stressed. 

This was determined based on the wire lengths available used, and the placement of the sensors. 

Six pilot holes were drilled where the devices would go and then they were drilled in to place. A 

piece of PVC piping was used to help manage the wires going from the power supply to the 

junction box, this helped in regards to safety and aesthetics (Figure 83). 

 

Figure 83: Power Supply, PVC and Junction Box Mounted onto the Frame. PVC was used to 

help manage the wiring and protect the cables from any outside elements. The junction box was 

to protect the connections from any outside elements and for safety considerations. 
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With the power system now fully set up, the casing could be built to house all of the 

sensitive electronic components. 

7.6: Casing 

The casing of the detection system houses the Zedboard, LIDAR sensor and the fan. To 

form a spacious encapsulation to hold these devices securely, a Solidworks model was designed. 

The model consists of four sides, a bottom, and a top compartment. Based off of Figure 84, each 

of the four sides of the model consists of a 1” x 5.67”, rectangular cut out to allow accessibility 

to the development board and allow air flow from the fan. The bottom, shown in Figure 85 

below, has four hexagon cutouts that will allow the standoffs on the Zedboard to be placed 

securely. The top consists of an extruded part specifically made to hover a computer fan over the 

Zedboard for cooling. Figure 86 shows the top compartment in a Solidworks model. With all 

parts of the case assembled together in Solidworks as shown in Figure 87, the final dimensions 

are 6.50”x 7.50” x 7.50”. 

 

 

Figure 84: Solidworks Model of Casing Side Part with Rectangular Cutout. The dimensions of 

the cutout are 6.50” x 7.50”. A cutout of 1” x 5.67” was made to help manage airflow and for 

accessibility to the Zedboard. 
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Figure 85: Solidworks Model of Bottom Casing Part with Four Hole Cutout Features. The 

dimensions for this part are 7.50” x 7.50”. The four holes are for the standoffs needed for the 

Zedboard. 

 

 

Figure 86: Solidworks Model of Top Compartment with Holder for Fan. The dimensions for the 

top compartment are 7.50” x 6.37”. The circular component serves as a mounting bracket for 

the fan. 
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Figure 87: Solidworks Model of Acrylic box with All Parts Assembled Together. The box was 

designed to be assembled and disassembled quickly if needed. 

 

Acrylic is the material used for each part of the case. This material has many advantages 

that are beneficial to the final design. It is capable of being milled, cut, and machined easily with 

common wood tools, unlike glass or metal [111]. Overall, it is easy to work with and durable 

enough to hold the Zedboard, LIDAR sensor, and fan in place.  Figure 88 and 89 below both 

show how the devices are positioned using the available casing. 
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Figure 88: Acrylic Container Containing the Zedboard and LIDAR Sensor. The LIDAR and 

Zedboard were mounted with standoffs into the Acrylic container. The cutouts in the side panel 

of the acrylic box allow for easy access to the Zedboard and for wire management. 

 

 

Figure 89: Acrylic Top Casing Part with Fan Component Attached. Rubber standoffs were used 

to attached the fan to the casing. 
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The actual test of the system is based off the placement of each device. In order to mount 

the acrylic box securely to properly perform tests of the overall system, a wooden structure was 

created, which is shown in Figure 90. 

 

Figure 90: Wooden Structure Used to Handle All Components of the Autonomous Bus System. 

The wooden structure was designed to be mobile and support the implemented design. A shelf 

was added to hold the acrylic box holding all of the necessary components and to provide a 

mounting point for the PIRs. 
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For placement of devices in the acrylic box, the LIDAR required drilling of holes in one 

side of the casing. The LIDAR sensor was mounted by four 440 standoffs that are ½” long. 

Figure 91 shows the placement of the sensor on the side of the box. As for the Zedboard, it was 

prepackaged with standoffs, therefore; screws were attached onto the bottom of the acrylic to 

ensure no type of movement. 

 

Figure 91: LIDAR Sensor Mounted onto the Acrylic Box (Rear View) with 440 standoffs, 1/2” 

Long. Four holes were drilled out to allow for the LIDAR sensor to be easily mounted. 
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A shelf was created to provide a designated height for the LIDAR to detect objects or 

humans reasonably. Once every individual part was pieced together in the acrylic case, the power 

supply and the VGA screen were then mounted onto the structure as well. Figure 92 shows the 

final implementation of all components needed for the detection system. 

 

Figure 92: Final Implementation of the Components with the Acrylic Box, the Two PIR Sensors, 

a VGA Screen and a Buzzer Mounted onto the Wooden Structure. This final implementation was 

used to test the accuracy and response of the system.  

With the entire system assembled, the cooling fan was tested to ensure that the Zedboard 

would remain cool during system testing. As a precaution, it was necessary to keep the Zedboard 

from overheating so that no components would get damaged. To test the effectiveness of the 

cooling fan, the entire system was powered on for an hour with the ambient temperature inside 

the box being taken every ten minutes. The temperatures taken throughout the test are shown in 

Table 32. 

 



159 

 

Table 32: Temperatures Recorded from Inside the Acrylic Box. The temperature was taken every 

ten minutes and it remained consistent over the course of 60 minutes. 

 

 

The temperature remained fairly constant around 23.8 degrees Celsius. During the 

development phase, the Zedboard did not show any signs of overheating, however, the team 

wanted to implement this cooling system to be sure that heat issues would not occur over time. 

These results showed that it would be unlikely for any overheating to occur with the fan in place. 

With the components, casing, and structure now fully assembled, the team was able to 

begin creating a plan for overall testing procedures. 

 

7.7: Stationary Bus Model Planning 

Creating a system to simulate the bus turning was necessary. Rather than creating a 

moveable 40-foot structure, the team worked on creating a stationary bus model. Objects would 

move around the stationary bus model to test the effectiveness of the pedestrian detection and 

avoidance system. Figure 93 explains the idea and movement of an object around the stationary 

bus model. The yellow triangle is the object, while the bus is represented by the olive green box. 

Figure 94 shows how the blind spot area rotates as the bus turns towards the pedestrian.  

 



160 

 

 

Figure 93: Stationary Bus Model Movement. Showing the change in location between the 

pedestrian and the bus during a bus turn. The yellow triangle represents the pedestrian while the 

olive green box represents the bus. Movement 1 represents a bus turning towards a pedestrian 

while Movement 2 represents the pedestrian’s movement in relation to the bus. 

 

In Figure 93, there are two types of movements. Movement 1 depicts how a bus would 

make a left turn in relation to the stationary object. This was used to create Movement 2, in 

which the object moves in relation to the stationary bus. This was useful because the team was 

not able to acquire an actual bus, and needed to have a test scenario that could be controlled by 

the team. With the stationary bus model, the team was able to keep the structure stationary and 

map out a path for one of the team members to walk. This was necessary for testing the system to 

get accurate results with the absence of a real bus.  

With the stationary bus model selected, the next stage was determining where on the bus 

the blind spot is in relation to the pedestrian in the crosswalk. Figure 94 depicts the blind spot of 

the bus (shown in red) and how it would move with the bus. 
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Figure 94: Representation of a Bus Turning by a Pedestrian. Representation of the change in 

location between the bus and the pedestrian by the pedestrian’s field of view. 

 

Figure 94 is a more detailed version of Movement 1 within Figure 93. The blind spot 

attached to the bus moves in sync with the bus around the left turn. The pedestrian is not in the 

blind spot until the bus has completed about ¾ of the left turn. This means that, when the bus is 

straightening out and going forward, the bus driver is not aware of the pedestrian in the possible 

danger zone. 

In order to test the system, the team created a way for the pedestrian to walk into the 

blind spot of the bus. This meant reversing the movement of the bus in relation to the pedestrian 

within the sidewalk. In Figure 95, the pedestrian is now moving in relation to the bus. Here, the 

red triangle represents the pedestrian. The bus is labeled along with its blind spot, shown in 

black.  
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Figure 95: Reverse Bus and Pedestrian Movement. Change in location between the bus and the 

pedestrian while the pedestrian enters the blind spot. The bus remains stationary while the 

pedestrian (red triangle) moves into the blind spot of the bus.  

 

The team used this stationary bus model for system level testing as shown in section 8, 

where the pedestrian walked up to the bus in the same manner. The pedestrian followed a certain 

path leading up to the blind spot of the bus, mimicking the bus turn in relation to the pedestrian.  

In order to have a deeper look at the movement of the tires of the vehicle, the Ackermann 

Steering model was taken into consideration. The intention of Ackermann geometry is to avoid 
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the slip of rear tires sideways when following the turning path around a curve. The geometrical 

solution to this is for all wheels to have their axles arranged as radii of circles with a common 

center point. As the rear wheels are fixed, this center point must be on a line extended from the 

rear axle. Intersecting the axles of the front wheels on this line requires that the inside front 

wheel is turned at a greater angle than the outside wheel. The equations in Figure 96 are used for 

the rotation transformation with the back axle of the bus as the center of rotation. Figure 97 

outlines the parameters needed for the Ackermann model. T is tread, and L is the wheelbase. 

Tread is the distance between the center point of the tires in width, while L indicates the length. 

 

 

Figure 96: Equations Used for the Ackermann Steering Model. These equations were used to 

model the path of the bus with an ideal center tire on the back axle of the bus. 

 

 

Figure 97: Image Showing the Parameters of the Ackermann Model. The back axle center point 

is represented by the black and white circle. The parameter L represents the length from center 

point of both of the axles while T represents the distance between the two tires on the same axle. 

[112] 
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When the bus is moving, the path of the rear axle center point is measured. The rear tires 

may not travel in the same path as the front tires, as seen in Figure 98. To make up for this, the 

rear axle is replaced with an ideal tire that would correspond to the path of the front axle, as seen 

in Figure 99. When going straight, a line through the center matches with the front and the rear. 

 

 

Figure 98: Image of the Rear Axle Following a Different Path from the Front Axle. This models 

a standard turn by most automobiles where the rear axle is fixed.  [112] 

 

 

Figure 99: The Ideal Tire in the Front and Rear Axle. In this case, the ideal front and rear tire 

follow the same path. [112] 
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Figure 100: Equations and Parameter Needed for the Ideal Tire Model. “L” is the distance 

between the axles of the front and rear sets of tires. “r” is the distance from the pedestrian to the 

rear axle center. “δ” represents the angle from the pedestrian to both of the bus axles. Using 

these parameters, the movement of the bus can be simulated.  [112] 

 

Table 33: Results from Each Individual Equations in the Ideal Tire Model. The parameter “t” 

was determined from the time it would take a bus to make a left turn in the middle of the 

intersection. The parameter “r” was determined based off the turning movement of the bus. With 

these values, “dθ/dt”, “δ”, and velocity was determined with tan(δ)= L/r. 

r (distance 

between 

pedestrian and 

the center-back 

axle of the bus) 

t (time in 

seconds while 

the bus is 

turning) 

𝒅𝜽/𝒅𝒕 
(the front wheel 

rate of change 

of angle 

𝝳 

(Angle from the 

pedestrian to 

both bus axles) 

V(m/s) 

(Velocity of the 

bus in relation 

to defined 

parameters) 

6 1 36 80.54 6 

5.5 2 9 81.31 2.75 

5 3 4 82.09 1.67 

4.5 4 2.25 82.87 1.125 

4 5 1.44 83.66 0.88 

3.5 6 1 84.45 0.58 

3 7 0.73 85.24 0.43 

 



166 

 

Table 33 shows the necessary equation and parameters used for the ideal tire model. 

Figure 100 shows the results from the equations used. The parameter L was selected to be 40 

feet, the standard size of a bus. The distance between the pedestrian and the center back axle was 

predetermined along with the corresponding time in seconds of the bus executing a turn. To get 

the front wheel rate of change of angle, the following equation in Figure 101 was used. 

 

Figure 101: Rate of Change Equation for Front Wheel Angle. Used to express the rate at which 

the front wheel angle (θ) changes as an expression of velocity and the angle from both bus axles. 

 

Figure 102 shows a scaled down version of the reverse pedestrian movement path using 

the results from Table 33. Styrofoam blocks were used to outline the bus and its blind spot. The 

model below was scaled 1:10. The value of r and δ were used from Table 33 to outline the 

movement of the pedestrian. A protractor was carefully used to mark the angle for the next block 

to be placed for each new value of r.  

 

 

Figure 102: Scaled Down Reverse Pedestrian Movement Model. Foam blocks are used to show 

the path of the pedestrian’s movement into the bus’s blind spot area. This is a movement of the 

pedestrian, instead of the bus, to mimic the bus making a left turn. 
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Figure 103: Construction and Execution Of The Model. A protractor was used to map out the 

angle from the pedestrian to both bus axles. Using foam blocks, the test subject was able to 

follow the path into the blind spot area of the bus. 

 

Figure 103 shows how the model in Figure 102 was constructed and tested. The 

pedestrian is to be detected by the system once he/she enters the blind spot area (the triangle) to 

warn the driver. 
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7.8: Chapter Summary 

This chapter provided a detailed explanation of the methodologies used in making this 

project a reality, including the design of the sensor logic and software, power system, casing and 

structure assembly, and reverse-movement stationary bus model testing plan. Hardware logic 

modules were created to control the acquisition of distance data and human detection from the 

LeddarVu8 and passive infrared sensors, respectively. The distance data was passed over an 

implemented AXI bus to be computed and checked against predefined thresholds in the 

Zedboard’s processing system. This determined when an object was within the blind spot area 

surrounding the bus. Signals were passed accordingly back to the programmable logic, which 

was fused with the received passive infrared sensor data to determine when a human was in 

danger and alert the driver via visual and audible warning. The power supply was established to 

maintain a 12 volt connection with all the electrical components at their required current level, 

and mounted to a wooden frame for optimal wiring. An acrylic casing housed the sensitive 

devices and secured them in place, while providing cooling to avoid any potential heat issues. 

Finally, a plan was devised for testing the system from a stationary location by replacing the turn 

path of the bus with an equivalent movement by the pedestrian. With all of these components in 

order, the team was ready to begin testing the overall system. 
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8: Testing & Results  

Once all of the components were mounted on the bus model frame, the LIDAR sensor 

and Passive Infrared sensors (PIR) were tested to ensure accurate detection of a pedestrian. In 

this testing scenario, the accuracy of the system was tested as well by determining if false alarms 

would be a potential issue. The testing of the stationary bus model consisted of two parts, the 

first one was to assure the detection (and differentiation) between objects and humans. The 

second part was testing of the accuracy of the system. In the background, it was determined that 

the average blind spot for city buses reaches between 13-16 ft (3.96-4.88m) from the bus itself, 

as shown in Figure 104.  

 

 

Figure 104: Bus Blind Spot with Indicated Zones of Detection (Units in Feet). Blind spot reaches 

up to 16 feet from the driver’s side window. The three zones represent increasing level of danger 

to the pedestrian, as the distance between the pedestrian and bus narrows. 
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Two zones are being utilized for the system designed. The first one is the critical action 

zone, which reaches up to 8 ft (2.44m) from the bus. The second zone is the danger warning zone 

that starts after the critical action zone and is 5 ft wide, reaching up to 13 ft (3.96m) from the bus 

itself. After the danger warning zone, the area around the bus is clear indicating that there is no 

danger, but the system has the ability to still detect and monitor the distance of objects in the 

potential threat zone pictured.  

The testing was performed based on the system implementation and its data fusion. The 

LIDAR sensor is always performing object detection during normal operation. In case that no 

object is detected in either the critical action or danger warning zones, the area will be 

considered clear and the driver will be notified of that by the screen displaying green. In the case 

of an object being detected in the danger warning zone (regardless of being an object or a 

human) the driver would be alerted by the screen turning yellow. The testing of the critical action 

zone is more complex than the danger warning zone, due to the fact that the difference between 

human and object will be made in this most critical zone. If an object detected is within the 

critical action zone, and has been determined to be human based on the PIR readings, the driver 

would be notified by the screen flashing red and the buzzer beeping, indicating a potential 

accident. If the IR readings do not determine that the object is human, the detected object is said 

to be inanimate or non-human, and the screen remains yellow. 

In order to assure full functionality of this part of the system, a variety of tests were 

performed in the critical action and in danger warning zones, as well as beyond the danger 

warning zone, to assure that no false alarms are triggered by movement outside of those zones. 

The testing was performed in an open, wide area and the danger zones were marked by tape on 

the ground as shown in Figure 105. 
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Figure 105: Testing Setup of the Indicated Blind Spot Zones for the Transit Buses. The 100-

degree field of view of the LeddarVu8 is mapped out on the floor in blue with a center line 

originating from the sensor. The critical action zone and danger warning zone are highlighted in 

red and yellow markings, respectively. This setup is used to test the detection of objects and 

pedestrians in each zone. 

 

As shown in Figure 105, the tape in the center is aligned with the LeddarVu8 LIDAR 

sensor, while the two tape strips on the sides are the extreme edges of the 100-degree field of 

view (FOV) angle of the LIDAR sensor. The tests were performed in various locations, both on 

the thresholds of each zone and within each zone. The variety of tests performed were as 

follows:  

1. People standing and walking through the zones and in different areas of the zones.  

2. Sliding/rolling objects through the different zones. 

3. Having objects and humans in the blind spot area to see how the system reacts. 
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For the first test, the main focus was on the thresholds in order to assure that the system 

can detect whether the object is in the critical action, danger warning, or in none of the zones. 

This test can be seen in Figure 106, where the subject is standing on the outer edge of the danger 

warning zone. In this case, the screen turned yellow. 

\ 

 

Figure 106: Distance Threshold Test at Danger Warning Line. Test subject is at the 3.96 meter 

mark, which is the outer threshold of the danger warning zone. As shown, the screen turns 

yellow because the test subject is in this trigger zone. 
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Figure 107: Distance Threshold Test at Critical Action Line. Test subject has moved into the 

critical action zone, which is past the red mark. As shown, the screen turns to red because he has 

been detected as a human entering the critical action zone, as opposed to an inanimate object. 

 

After the person moved in to the critical action zone as shown in Figure 107, the screen 

turned red and buzzer started sounding as expected. The critical action and the danger warning 

zone thresholds were marked on the tape with a marker at the distances defined as before at 8 ft 

(2.44m) and 13 ft (3.96m). Other testing was performed, such as rolling a whiteboard through the 

danger warning zone and the critical action zone, as well as out of any of the detection zones 

multiple times. Once the whiteboard was rolled by a person (who was standing outside of the 

detection zones) through the danger warning zone, the LIDAR picked up the moving object, 

therefore the screen turned yellow indicating that there is an object within the threshold. The 
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same rolling whiteboard test was done within the critical action zone, and the screen turned 

yellow due to the fact that the object was detected, yet the PIR sensors did not detect a body that 

was emitting heat in the critical action zone. After the testing with the whiteboard was 

completed, the same tests were performed with a human, walking through the different zones and 

the results were the following:  

1. Walking through the danger warning zone turned the screen yellow. 

2. Walking through the critical action zone turned the screen red and the buzzer played 

sound. 

 

An additional test was performed by using the whiteboard as well as having a person in 

the detection zones to see how the system would behave and the decision it would make based 

on having an object and a human in the blind spot areas. Four tests were performed which were 

set up in the following way: 

1. The person and the board were in the critical action zone. 

2. The person was in the danger warning zone and the board was in the critical action zone. 

3. The person was in the critical action zone and the board was in the danger warning zone. 

4. The person and the board were in the danger warning zone. 

 

The data fusion of the system works as following: Once an object is detected in either of 

the two zones, the LIDAR will pick up that object and will notify the Zedboard about the object 

detected and the screen will turn yellow. In the case of an object being detected in the critical 

action zone (whether it is a human or an object), the IRs will be triggered to check if there is a 

heat emitting body in either the critical or the danger zone. Therefore, the following results were 

obtained by the four different test setups. For the first scenario, since both the human and the 

object were in the critical action zone, the PIR sensors were triggered and detected the heat 

emitted by the human body. The screen turned red and the buzzer sounded. In the second 

scenario, the board was located in the critical action zone, therefore the IRs were triggered to 

detect a heat emitting object, which in this case was the human body in the danger warning zone, 

therefore the screen turned red and the buzzer was sounding. Even though the board was 

technically the object within the critical action zone, the alarm was played because the human 

detected in the danger warning zone could potentially be injured by a real-life bus setting. For 
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the third scenario, since the person was in the critical action zone and their body temperature was 

detected by the PIR sensors, the screen turned red with the buzzer sounding. In the last testing 

setup, both of the objects were in the danger warning zone, therefore only the LIDAR sensor was 

detecting the object’s distance and the PIR sensors were not triggered. Therefore, the screen 

turned yellow due to the human and the board being in the danger zone. These four testing 

strategies ensured the full expected functionality of the system, and then more technical tests 

could be performed. 

 The accuracy (in terms of distance) of the system was tested in order to check for 

objects/people being located at measured points (the critical action zone and danger warning 

zone thresholds). This was done in order to evaluate the accuracy of the LeddarVu8 LIDAR 

sensor by viewing the distance readings measured once it detects an object in its FOV. The tests 

were performed at the following positions: 

1. The right extreme FOV angle of the LIDAR sensor. 

2. The center of the LIDAR sensor’s FOV. 

3. The Left extreme FOV angle of the LIDAR sensor. 

 

The tests consisted of a person standing at the critical action zone threshold and the 

danger warning zone threshold, ten times at each of the 3 different test locations. Once the 

person was at the marked thresholds, the distance calculated from the LIDAR readings was 

recorded, and a table with 10 data points for every test position was generated.  The distances 

were read using a laptop computer configured to read the processing system’s print commands 

via a Universal Asynchronous Receiver/Transmitter (UART) serial connected console. The 

average of each set of 10 distance readings was taken once all the data was acquired. The actual 

distances for each threshold line were compared to the measured values to determine a final idea 

of the system’s accuracy, as shown in Tables 34 and 35. From the data obtained, it is notable that 

the system at each threshold had a standard deviation of less than 10 centimeters. This tolerance 

can be considered negligible, relative to the scale of the area that is covered by the system.  
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Table 34: Danger Warning Zone Test Values Obtained for the Threshold. 10 trials were 

performed at the far left, far right, and center of the LeddarVu8’s field of view to record the 

distance at which a test subject was detected within the danger warning threshold (3.9624 

meters). The data was found to be very consistent with the expected value across all tests for 

each position, indicating that the LIDAR sensor readings were accurate for this distance. 

 

Trial Far Left (3.9624m) Center (3.9624m) Far Right (3.9624m) 

1 4.018 3.929 4.011 

2 3.956 3.878 4.016 

3 3.990 3.893 3.949 

4 3.986 3.852 4.005 

5 3.992 3.915 4.11 

6 4.004 3.907 4.01 

7 3.97 3.916 4.13 

8 4.016 3.917 4.108 

9 4.034 3.899 4.055 

10 4.021 3.905 4.05 

TOTAL AVERAGE 3.9987 3.9011 4.0444 

STANDARD DEVIATION 0.02443 0.0223 0.05732 
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Table 35: Critical Action Zone Test Values Obtained for the Threshold. 10 trials were performed 

at the far left, far right, and center of the LeddarVu8’s field of view to record the distance at 

which a test subject was detected within the critical action threshold (2.4384 meters). The data 

was found to be very consistent with the expected value across all tests for each position, 

indicating that the LIDAR sensor readings were accurate for this distance. 

Trial Far Left (2.4384m) Center (2.4384m) Far Right (2.4384m) 

1 2.241 2.436 2.399 

2 2.44 2.39 2.42 

3 2.46 2.424 2.383 

4 2.47 2.385 2.47 

5 2.41 2.375 2.47 

6 2.45 2.48 2.474 

7 2.5 2.436 2.474 

8 2.511 2.411 2.474 

9 2.475 2.41 2.415 

10 2.522 2.368 2.474 

TOTAL AVERAGE 2.4479 2.4115 2.4454 

STANDARD DEVIATION 0.08018 0.03410 0.03657 

 

 

To test the overall movement as if the system were to be implemented on a 40-60 ft 

Transdev city bus, the reverse pedestrian model was created. Instead of moving the wooden 

structure relative to the pedestrian, the test consists of moving the pedestrian relative to the 

movement of a bus making a left turn onto an adjacent lane. The reverse pedestrian model was 

derived from the Ackermann Steering Model introduced earlier, used to solve the angular 

distance from the wheels on the inside and outside of a given turn of a vehicle. 

The team was able to take the stationary model in Figure 102 in Section 7, and plan out 

the pedestrian movement in relation to the wooden structure and the blind spot detection zone. 

To outline the path for the pedestrian for unit testing, the angles calculated in Table 33 were 

used. The path was carefully marked using a protractor and was joined using a blue tape on the 
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ground for the pedestrian to follow. Figure 108 shows the path in relation to the blind spot. For 

the test, the team designated one person to follow the path from the crosswalk to the detection 

zone of the LIDAR and two PIR sensors, as shown in Figure 109. Measurements were taken at 

the point where the screen turns yellow upon the danger warning threshold, as well as when the 

screen turns red upon the critical action threshold. These tests were repeated ten times, recording 

each time the subject caused the screen to change yellow and red. The measurements for the two 

thresholds were averaged. The data is organized in Table 36. The average measurement distance 

for when the screen turns yellow given the test subject has followed the mapped out pedestrian 

path is 3.6186 meters. The average measurement distance for when the screen turns red when the 

subject continues on the pedestrian path is 2.3188 meters. These distances were calculated from 

the second segment on the LIDAR sensor. It is also notable that the overall standard deviation 

for both test trials were less than 11 centimeters. Since this value is very similar to the deviation 

found in the distance readings test, it shows the consistency of the LIDAR sensor’s ability to 

determine the distance of an object in its distinct eight segment field of view.  

 

 
Figure 108: Pedestrian Movement Mapped on Floor. Beginning at the crosswalk, pedestrian 

movement is shown through black rectangles on floor leading to the blue triangular “blind 

spot”. Depending on where the pedestrian is standing, the screen on the bus system will either 

stay green, or turn yellow or red. 
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Figure 109: Test Subject Follows Mapped Movement of the Pedestrian Path with Respect to the 

Bus. Walking slowly along the path starting from the crosswalk, the subject stops at this point 

because the screen from the autonomous bus system has turned yellow. Subject will continue 

until the screen turns red and then repeat the process from the beginning. 

 

Based off the obtained results shown in Table 36, the team determined that the 

autonomous bus system is capable of detecting a human being given the event that an actual bus 

is making a left turn whilst a pedestrian is about to enter, or within, the crosswalk. This test is 

significant in that it provides evidence that this system is capable of providing the needed 

feedback for the driver of the bus to take necessary precaution in either stopping or slowing 

down the bus. 
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Table 36: Trial Results of the Reverse Movement Model. 10 trials were performed where a test 

subject moved into the blind spot area, following the planned path to replicate the turn of a bus. 

The data was found to be very consistent across the trials, indicating that the system was able to 

detect a pedestrian entering each zone with a sufficient reaction time. 

Trial Distance When Yellow Distance When Red 

1 3.435 2.313 

2 3.558 2.22 

3 3.715 2.388 

4 3.695 2.424 

5 3.623 2.435 

6 3.676 2.352 

7 3.443 2.278 

8 3.616 2.262 

9 3.752 2.29 

10 3.673 2.226 

TOTAL AVERAGE 3.6186 2.3188 

STANDARD DEVIATION 0.10925 0.07787 

 

Chapter Summary 

This chapter provided an overview of all the testing that was implemented to test the 

sensor accuracy. There were two types of testing conducted, with the first set of tests consisting 

of tracking stationary objects or humans in the different zones of the blind spot. The goal of this 

test was to validate the distances in which the system takes the appropriate danger warning and 

critical action responses. It was determined that the LIDAR and PIR were able to identify objects 



181 

 

entering different zones of the blind spot with accurate distance readings, as well as whether an 

object was a human or not. The crossing of distance thresholds was represented on the warning 

screen, with the addition of the buzzer sounding when a human was detected in the critical action 

zone. The second set of testing was done to determine if the system was able to detect humans in 

different zones of the blind spot during a turning scenario. To do that, a reverse pedestrian model 

was used, which consisted of moving the pedestrian into the “blind spot” of the stationary bus 

structure to mimic the turning of a bus into a cross street. The recorded results from the reverse 

pedestrian model were consistent with the data from the stationary human testing in that the 

system was able to detect pedestrians entering each of the defined zones. Therefore, the 

pedestrian detection and avoidance system was able to detect a human in the blind spot of a 

turning bus and alert the driver as intended. 
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9: Conclusion 
In conclusion, the system was effective while detecting an object, determining if that 

object was a human, and kick starting an effective alert system respective to how close the 

pedestrian is to the “bus”. The system does not generate a false alarm if the object detected is not 

a human, which is ideal for a transit bus since there are a number of animate and inanimate 

objects the bus passes by on the road. Our goal was to only alert the driver if the object is a 

human within the detection zone, and based on the tests and results in the section above, and the 

performance of the system, the team feels that the project effectively met the proof of concept 

requirements for the sensor application of an automated pedestrian detection and alert system. 

The project as a whole was a success, but there are still steps that can be taken in the future to 

better solidify the project as a whole and eventually push it towards becoming a system that can 

be implemented on all buses currently in operation for Transdev. The first steps in furthering the 

automated pedestrian detection system would be to complete a more fully implemented design. 

This would require the additional implementation of an accelerometer, temperature sensor, and 

an IR that could provide more information and control. 

 The most important of these is the accelerometer. Adding this sensor would provide the 

ability to track the motion of the bus. For one, this allows the system to determine the axis of 

motion and make decisions based on how the bus is moving. The system would be able to make 

more accurate decisions, as it would know whether or not the bus is traveling at slow speeds on 

standard city streets or at high speeds on the freeway. If there is detected motion in the y 

direction, which indicates right and left motion for the bus, the system can determine if it is a 

simple lane shift at higher speeds or a turn during low speeds. At low speeds, having detected 

motion in the y direction will allow the system to know that it is turning and interpret the other 

sensor’s data accordingly. As testing is further completed for this application, the motion 

detection could be calibrated and the code adapted based on the testing data from the 

accelerometer during right and left hand turns. Knowing what the incoming data from the 

accelerometer looks like during a left turn, and that it is a problem area for accidents, the system 

could potentially enter a state of increased awareness, whereas it would be in a more idle state 

during other movement scenarios. An increased awareness state would mean that the system can 

both alert the driver and utilize an automated stopping functionality earlier as it knows that there 

is a higher likelihood of an accident during this maneuver by the bus. Being able to detect that 
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the bus is traveling at higher speeds would typically indicate that the vehicle is traveling at 

highway speeds. Knowing that this is the case, the system could be idle during higher speeds so 

that it is not unnecessarily using power. Conclusively, the implementation of an accelerometer 

would provide the system the ability to track the motion of the bus and give a further degree of 

control.  

 The temperature sensor is another sensor that provides a higher degree of control. Due to 

the potential of sub-zero or abnormally hot temperatures, while the system utilizes components 

that have operating temperature restrictions, this sensor would provide a safety measure. If any 

of the sensors temperature limits are reached, this could provide a functionality so that the 

decision making logic does not utilize that particular piece of the system, and is instead more 

aware of data received by sensors within a range of normal operation. 

 The original infrared sensor that was going to be utilized in the design was that of the 

Melexis MLX90621. This IR sensor has the functionality to create a heat map. Being able to 

implement this would allow for a more accurate measurement and image disparity. The current 

PIR implementation relies exclusively on a detection as to whether or not an object is moving 

greater than 1 meter per second and has a temperature difference of greater than 4 degrees 

Celsius from its environment. For the case where a person is standing still, the movement of the 

subject relative to the bus’s movement would trigger the PIR sensor. A potential hole in the 

design right now would be if an individual is standing still and the bus is moving extraordinarily 

slow. The MLX90621 has the ability of recording the temperature of an object. This greater 

degree of control makes it so that the system can determine not only the temperature difference 

between an object and its environment, but also determine if a detected object is human, other 

animal, or a heated inanimate object. The MLX90621 could also be cascaded with the PIR 

sensor, as the PIR sensor has a greater detection range and could provide another layer of 

detection for the system.  

One of the biggest objectives for the future of this system would be to integrate the 

electrical and sensor computing alongside the mechanical turning and braking of a bus. This is a 

part of the overall design that is out of the scope of the current team’s qualifications as a group of 

electrical and computer engineers. Turning and braking would have to be implemented based on 

the location of an individual detected and based on the severity and likeliness of impact. This 

would also require a significant amount of programming in conjunction with the mechanical 



184 

 

implementation to coordinate the decision making based on the digital signal, so that it could 

have the appropriate mechanical operation. This project, as proof of concept, provided the 

correct implementation for a simulated design of a bus. The calibrations and rigging for the 

sensor system would have to be incorporated into a real bus, so that it is able to receive accurate 

and calibrated readings as well as protect the system. The power would also have to be 

implemented to correctly run off of the alternator of the bus at whichever output it is able to 

provide. Issues could occur on this front, as the power signal needs to be stable, which may 

require various converters to ensure power consistency as the source from the bus could have a 

potentially unclean signal. All of this would need to be taken into account, and appropriately 

overcome so that the system could be brought to a larger scale. The Zedboard is also a test and 

development board. The system on the bus would likely benefit from a custom circuit design and 

FPGA specifically for this one sole purpose. This would cut down power consumption as only 

the necessary functionality would be utilized.  

 In terms of the alert system, there is also potential for improvement on this front. The 

LeddarVu8 ships with an included Windows application that shows the eight detection zones as 

well as where the closest object is located in these zones. A similar information panel could be 

implemented on a displayed screen with the color of the warning. This would make it so that the 

simple color information is cascaded with the eight segments shown, providing a greater degree 

of information to the bus driver. This addition would not be a major distraction either, as it could 

be designed to be a basic and easy to read configuration that maintains the three colors for 

warnings alongside the eight detection zones.  

 Overall, the future goals for this project would be for it to meet its full potential that was 

out of reach given the time constraints for this one team, and for the system to be expanded to a 

stage that is capable of fully automated sensing and accident avoidance for the bus. 
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Appendix A: Lidar Control Modules 
 
`timescale 1ns / 1ps 

/////////////////////////////////////////////////////////////////////////////

///// 

// Company: Worcester Polytechnic Institute 

// Engineers: Dario Martinovic, Michael Padberg 

//  

// Create Date: 11/19/2017 12:59:46 PM 

// Module Name: pl_lidar_top_module 

//  

// Description: Top module to control passing of data and I/O between lidar 

//           controller and higher control modules.   

/////////////////////////////////////////////////////////////////////////////

///// 

 

 

module pl_lidar_top_module( 

 

    //Physical board I/O 

    input fpga_CLK, //Zedboard clock 

    input reset, //BTND 

    output CS_N_L,  //chip select line 

    output MOSI_L,  //Master out slave in data line 

    output clk_1M_L,   //Clocking signal to lidar device 

    input MISO_L,   //Master in slave out data line 

    input start_lidar_btn, //BTNU 

     

    //Outputs for PS connection over AXI. 

    output [31:0] distance_scale_out, 

    output [31:0] segment7, //distance reading for segments 7-0 

    output [31:0] segment6, 

    output [31:0] segment5, 

    output [31:0] segment4, 

    output [31:0] segment3, 

    output [31:0] segment2, 

    output [31:0] segment1, 

    output [31:0] segment0, 

    output [31:0] seg_nums  //segment nums corresponding to distance 

readings.  

                            //seg_nums[2:0] corresponds to segment0 distance 

reading, etc. 

     

    ); 

       

    wire [31:0] scale_received_data;    //Scale data from lidar control 

module 

     

    //Segment distances - raw data from lidar control module 

    wire [34:0] segment_7,      //MSB byte = Distance MSB byte, LSB byte = 

Segment # 

                segment_6, 

                segment_5, 

                segment_4, 

                segment_3, 

                segment_2, 
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                segment_1, 

                segment_0;  

     

    //distance scale value passed to PS over AXI for distance conversion to 

meters            

    assign distance_scale_out = 

{scale_received_data[7:0],scale_received_data[15:8],scale_received_data[23:16

],scale_received_data[31:24]}; 

     

    //individual segment distance readings passed to PS over AXI. Raw sample 

data. 

    assign segment7 = 

{segment_7[10:3],segment_7[18:11],segment_7[26:19],segment_7[34:27]}; 

    assign segment6 = 

{segment_6[10:3],segment_6[18:11],segment_6[26:19],segment_6[34:27]}; 

    assign segment5 = 

{segment_5[10:3],segment_5[18:11],segment_5[26:19],segment_5[34:27]}; 

    assign segment4 = 

{segment_4[10:3],segment_4[18:11],segment_4[26:19],segment_4[34:27]}; 

    assign segment3 = 

{segment_3[10:3],segment_3[18:11],segment_3[26:19],segment_3[34:27]}; 

    assign segment2 = 

{segment_2[10:3],segment_2[18:11],segment_2[26:19],segment_2[34:27]}; 

    assign segment1 = 

{segment_1[10:3],segment_1[18:11],segment_1[26:19],segment_1[34:27]}; 

    assign segment0 = 

{segment_0[10:3],segment_0[18:11],segment_0[26:19],segment_0[34:27]}; 

    assign seg_nums = {8'b0, segment_7[2:0], 

segment_6[2:0],segment_5[2:0],segment_4[2:0],segment_3[2:0],segment_2[2:0],se

gment_1[2:0],segment_0[2:0]}; 

     

    //Lidar control logic instance 

    lidar_controller lidar_controller_inst ( 

    .reset(reset), 

    .fpga_CLK(fpga_CLK), 

    .MISO(MISO_L), 

    .CS_N(CS_N_L), 

    .clk_1M_L(clk_1M_L), 

    .MOSI(MOSI_L), 

    .start_lidar_btn(start_lidar_btn), 

    .scale_received_data(scale_received_data), 

    .segment_7(segment_7), 

    .segment_6(segment_6), 

    .segment_5(segment_5), 

    .segment_4(segment_4), 

    .segment_3(segment_3), 

    .segment_2(segment_2), 

    .segment_1(segment_1), 

    .segment_0(segment_0)  

    );  

     

endmodule 
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`timescale 1ns / 1ps 

/////////////////////////////////////////////////////////////////////////////

///// 

// Company: Worcester Polytechnic Institute 

// Engineers: Dario Martinovic, Michael Padberg 

//  

// Create Date: 11/19/2017 01:14:27 PM 

// Module Name: lidar_controller 

// 

// Description:  Programmable logic based state machine for controlling 

//                       data transmission to from LeddarTech LeddarVu8. 

/////////////////////////////////////////////////////////////////////////////

///// 

 

 

module lidar_controller( 

 

    //Physical board I/O 

    input reset,    //BTND 

    input fpga_CLK, //Zedboard clock 

    input MISO,     //Master in slave out data line 

    input start_lidar_btn, //BTNU 

    output CS_N,    //Chip select lane 

    output clk_1M_L,   //Clock output to lidar device 

    output MOSI,        //Master out slave in 

     

    //Data output to PS over Axi 

    output reg [31:0] scale_received_data,  //scale data to PS 

    output reg [34:0] segment_7, //MSB byte = Distance MSB byte, LSB byte = 

Segment # 

                      segment_6, 

                      segment_5, 

                      segment_4, 

                      segment_3, 

                      segment_2, 

                      segment_1, 

                      segment_0  

    ); 

     

    //state machine 

    reg [3:0] current_state,  

              next_state; 

      

    //Parameters for state labels 

    parameter [3:0]  

              //read distance scale states 

              state_start = 4'b0000, 

              state_load_scale = 4'b0001, 

              state_scale_command = 4'b0010, 

              state_delay_scale = 4'b0011, 

              state_reading_scale = 4'b0100, 

              state_store_scale = 4'b0101, 

              //read data states 

              state_wait = 4'b0110, 

              state_load = 4'b0111, 

              state_read_command = 4'b1000, 

              state_reading = 4'b1001, 
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              state_delay = 4'b1010, 

              state_store_reading = 4'b1011; 

             // state_stop = 4'b1011; 

     

    //Lidar control opcodes for commands 

    parameter [7:0] LIDAR_READ_OPCODE = 8'h0B, 

                    LIDAR_WRITE_OPCODE = 8'h02, 

                    LIDAR_CE_OPCODE = 8'hC7; 

    //LeddarVu8 memory bank base addresses           

    parameter [23:0] BANK_0_START_ADDRESS = 24'h000000,  //Configuration Data 

               BANK_5_START_ADDRESS = 24'h400000,  //Device Information and 

constants 

               BANK_13_START_ADDRESS = 24'h500000, //Detection list 

               BANK_19_START_ADDRESS = 24'hFFFB00; //Transaction 

configuration 

     

    //Offsets applied to memory bank addresses for data access            

    parameter [23:0] FPGA_Version_Offset = 24'h120; //Register offset of FPGA 

Version in Bank 5 

    parameter [23:0] Detection_List_Array_Offset = 24'hc; //Register offset 

of Detection List Array in Bank 13 

    parameter [23:0] Distance_Scale_Offset = 24'h162; // Register offset of 

Distance Scale in Bank 5 

                

    //used to generate 1kHz clock 

    reg [16:0] count_100M_1K; //count from 0 to 99999 

    parameter [16:0] MAXIMUM_COUNT_1K = 100000; 

    wire clk_enable_1K; 

     

     

     //used to generate 2Hz clock 

    reg [25:0] count_100M_2; 

    parameter [25:0] MAXIMUM_COUNT_2 = 26'd50000000; 

    wire clk_enable_2; 

     

     

     //used to generate 1MHz clock 

    parameter [6:0] MAXIMUM_COUNT_1M = 7'd100; 

    reg [6:0] count100M_1M; 

    wire clk_1M_posedge; 

    reg clk_1M_enabled = 1'b1; 

     

    //send buffer used to send data out on MOSI pin 

    reg [47:0] send_buffer; 

    reg [7:0] count_shifts_W = 8'h00; 

     

     

    //receive buffer used to load in lidar response 

    reg [767:0] receive_buffer; 

    reg [31:0] scale_receive_buffer;  

    reg [9:0] count_shifts_R = 10'h0; 

    reg [6:0] scale_count_shifts_R = 7'b0; 

      

     

    //sequential logic for FSM 

    always @ (posedge fpga_CLK, negedge reset) begin 

       if(reset == 1'b0)begin 
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           current_state <= state_start; 

       end 

       else begin 

           current_state <= next_state; 

       end 

    end 

     

    //combinational next state logic 

    always @ 

(current_state,clk_enable_1K,count_shifts_W,count_shifts_R,scale_count_shifts

_R,clk_enable_2,start_lidar_btn)begin 

        case(current_state) 

            state_start: begin 

                if(start_lidar_btn)     //wait for start button signal 

                    next_state = state_load_scale; 

                else 

                    next_state = state_start; 

            end 

            state_load_scale: begin 

                next_state = state_scale_command; 

            end 

            state_scale_command: begin 

                if(count_shifts_W == 8'h30) 

                    next_state = state_delay_scale; 

                else 

                    next_state = state_scale_command;    

            end 

            state_delay_scale: begin 

                if(clk_enable_1K) 

                    next_state = state_reading_scale; 

                else 

                    next_state = state_delay_scale; 

            end 

            state_reading_scale: begin 

                if(scale_count_shifts_R == 7'h20)   //hex 20 = 32 

decimal.  Count in 32 bits.  

                    next_state = state_store_scale; 

                else 

                    next_state = state_reading_scale;             

            end 

            state_store_scale: begin 

                    next_state = state_wait; 

            end 

            state_wait: begin   //wait for enable signal from counter 

                if(clk_enable_2) //acquire_distance_data 

                    next_state = state_load; 

                else 

                    next_state = state_wait; 

            end 

             

            state_load:begin 

                next_state = state_read_command; 

            end 

             

            state_read_command:begin 

                if(count_shifts_W == 8'h30) 

                    next_state = state_delay; 
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                else 

                    next_state = state_read_command;             

            end 

             

            state_delay:begin 

                if(clk_enable_1K)  //1ms has elapsed 

                    next_state = state_reading; 

                else 

                    next_state = state_delay; 

            end 

             

            state_reading:begin 

                if(count_shifts_R == 12'h300) //hex 300 = 768 decimal.  Count 

in 768 bits. 

                    next_state = state_store_reading; 

                else 

                    next_state = state_reading; 

            end 

             

            state_store_reading:begin 

                next_state = state_wait; 

            end 

 

            default: 

                next_state = state_wait;  

        endcase 

    end 

     

    //individual state logic  

    always @ (posedge fpga_CLK) begin 

        case(current_state) 

            state_start: begin  //first state, wait for start button signal 

                count_shifts_W <= 8'b0; 

                count_shifts_R <= 10'b0; 

                scale_count_shifts_R <= 7'b0; 

                clk_1M_enabled <= 1'b1; 

                send_buffer <= 48'b0; 

                scale_receive_buffer <= 32'b0; 

                scale_received_data <= scale_received_data; 

                receive_buffer <= 768'b0; 

                 

                segment_7 <= segment_7; 

                segment_6 <= segment_6; 

                segment_5 <= segment_5; 

                segment_4 <= segment_4; 

                segment_3 <= segment_3; 

                segment_2 <= segment_2; 

                segment_1 <= segment_1; 

                segment_0 <= segment_0; 

            end 

            state_load_scale: begin     //load scale read command into send 

buffer 

                clk_1M_enabled <= 1'b1; // enable clk_1M    

                send_buffer <= {LIDAR_READ_OPCODE,BANK_5_START_ADDRESS | 

Distance_Scale_Offset,16'h0004}; 

                //send_buffer <= {LIDAR_READ_OPCODE,BANK_5_START_ADDRESS | 

FPGA_Version_Offset,16'h0020}; 
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                count_shifts_W <= 8'b0; 

                count_shifts_R <= 10'b0; 

                scale_count_shifts_R <= 7'b0; 

                 

                scale_receive_buffer <= 32'b0;  

                scale_received_data <= scale_received_data; 

                receive_buffer <= 768'b0;  

                 

                segment_7 <= segment_7; 

                segment_6 <= segment_6; 

                segment_5 <= segment_5; 

                segment_4 <= segment_4; 

                segment_3 <= segment_3; 

                segment_2 <= segment_2; 

                segment_1 <= segment_1; 

                segment_0 <= segment_0;               

            end 

            state_scale_command: begin  //send scale read command 

                if(clk_1M_posedge) begin 

                    count_shifts_W <= count_shifts_W + 8'b1; 

                    send_buffer <= {send_buffer[46:0], 1'b0}; 

                end 

                else begin 

                    count_shifts_W <= count_shifts_W; 

                    send_buffer <= send_buffer; 

                 

                end 

                 

                clk_1M_enabled <= 1'b1; 

                count_shifts_R <= 10'b0; 

                scale_count_shifts_R <= 7'b0; 

                scale_receive_buffer <= 32'b0; 

                scale_received_data <= scale_received_data; 

                receive_buffer <= 768'b0; 

                 

                segment_7 <= segment_7; 

                segment_6 <= segment_6; 

                segment_5 <= segment_5; 

                segment_4 <= segment_4; 

                segment_3 <= segment_3; 

                segment_2 <= segment_2; 

                segment_1 <= segment_1; 

                segment_0 <= segment_0; 

            end 

            state_delay_scale: begin    //delay between command and data 

reading 

                clk_1M_enabled <= 1'b0; //disable clock output 

                count_shifts_W <= 8'b0; 

                count_shifts_R <= 10'b0; 

                scale_count_shifts_R <= 7'b0; 

                send_buffer <= 48'b0; 

                scale_receive_buffer <= 32'b0; 

                scale_received_data <= scale_received_data; 

                receive_buffer <= 768'b0; 

                 

                segment_7 <= segment_7; 

                segment_6 <= segment_6; 
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                segment_5 <= segment_5; 

                segment_4 <= segment_4; 

                segment_3 <= segment_3; 

                segment_2 <= segment_2; 

                segment_1 <= segment_1; 

                segment_0 <= segment_0; 

            end 

            state_reading_scale: begin  //read in lidar response 

                if(clk_1M_posedge) begin 

                    scale_count_shifts_R <= scale_count_shifts_R + 8'b1; 

                    scale_receive_buffer <= {scale_receive_buffer[30:0], 

MISO}; //receive and shift left 

                end 

                else begin 

                    scale_count_shifts_R <= scale_count_shifts_R;    

                    scale_receive_buffer <= scale_receive_buffer;  

                end 

                 

                clk_1M_enabled <= 1'b1;  

                count_shifts_W <= 8'b0; 

                count_shifts_R <= 10'b0; 

                send_buffer <= 48'b0; 

                scale_received_data <= scale_received_data; 

                receive_buffer <= 768'b0; 

                 

                segment_7 <= segment_7; 

                segment_6 <= segment_6; 

                segment_5 <= segment_5; 

                segment_4 <= segment_4; 

                segment_3 <= segment_3; 

                segment_2 <= segment_2; 

                segment_1 <= segment_1; 

                segment_0 <= segment_0; 

            end 

            state_store_scale: begin    //store the scale value 

                clk_1M_enabled <= 1'b1;  

                scale_receive_buffer <= scale_receive_buffer; 

                scale_received_data <= scale_receive_buffer[31:0]; 

                count_shifts_W <= 8'b0; 

                count_shifts_R <= 10'b0; 

                send_buffer <= 48'b0; 

                scale_count_shifts_R <= 7'b0; 

                receive_buffer <= 768'b0; 

                segment_7 <= segment_7; 

                segment_6 <= segment_6; 

                segment_5 <= segment_5; 

                segment_4 <= segment_4; 

                segment_3 <= segment_3; 

                segment_2 <= segment_2; 

                segment_1 <= segment_1; 

                segment_0 <= segment_0; 

            end 

             

            state_load: begin   //load the distance reading command into send 

buffer 

//                send_buffer <= {LIDAR_READ_OPCODE,BANK_5_START_ADDRESS | 

FPGA_Version_Offset,16'h0020}; 
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                send_buffer <= {LIDAR_READ_OPCODE,BANK_13_START_ADDRESS | 

Detection_List_Array_Offset,16'h0060}; 

                clk_1M_enabled <= 1'b1; // enable clk_1M 

                count_shifts_W <= 8'b0; 

                count_shifts_R <= 10'b0; 

                scale_count_shifts_R <= 7'b0; 

                scale_receive_buffer <= 32'b0; 

                scale_received_data <= scale_received_data;  

                receive_buffer <= 768'b0; 

                 

                segment_7 <= segment_7; 

                segment_6 <= segment_6; 

                segment_5 <= segment_5; 

                segment_4 <= segment_4; 

                segment_3 <= segment_3; 

                segment_2 <= segment_2; 

                segment_1 <= segment_1; 

                segment_0 <= segment_0; 

            end 

            state_read_command: begin   //send distance read command  

                if(clk_1M_posedge) begin    //bit shifted on each positive 1M 

clock edge 

                    count_shifts_W <= count_shifts_W + 8'b1; 

                    send_buffer <= {send_buffer[46:0], 1'b0}; 

                end 

                else begin 

                    count_shifts_W <= count_shifts_W; 

                    send_buffer <= send_buffer; 

                end 

                 

                clk_1M_enabled <= 1'b1; 

                count_shifts_R <= 10'b0; 

                scale_count_shifts_R <= 7'b0; 

                scale_receive_buffer <= 32'b0; 

                scale_received_data <= scale_received_data;  

                receive_buffer <= 768'b0; 

                 

                segment_7 <= segment_7; 

                segment_6 <= segment_6; 

                segment_5 <= segment_5; 

                segment_4 <= segment_4; 

                segment_3 <= segment_3; 

                segment_2 <= segment_2; 

                segment_1 <= segment_1; 

                segment_0 <= segment_0; 

            end 

            state_delay:begin   //delay between command and data reading 

                clk_1M_enabled <= 1'b0; //disable clk_1M 

                count_shifts_R <= 10'b0; 

                scale_count_shifts_R <= 7'b0; 

                scale_receive_buffer <= 32'b0; 

                scale_received_data <= scale_received_data; 

                count_shifts_W <= 8'b0; 

                send_buffer <= 48'b0; 

                receive_buffer <= 768'b0; 

                 

                segment_7 <= segment_7; 
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                segment_6 <= segment_6; 

                segment_5 <= segment_5; 

                segment_4 <= segment_4; 

                segment_3 <= segment_3; 

                segment_2 <= segment_2; 

                segment_1 <= segment_1; 

                segment_0 <= segment_0; 

            end 

            state_reading:begin //read in segment distance data from lidar 

                clk_1M_enabled <= 1'b1;  

                scale_count_shifts_R <= 7'b0; 

                scale_receive_buffer <= 32'b0; 

                scale_received_data <= scale_received_data; 

                count_shifts_W <= 8'b0; 

                send_buffer <= 48'b0;  

                 

                segment_7 <= segment_7; 

                segment_6 <= segment_6; 

                segment_5 <= segment_5; 

                segment_4 <= segment_4; 

                segment_3 <= segment_3; 

                segment_2 <= segment_2; 

                segment_1 <= segment_1; 

                segment_0 <= segment_0; 

           

                if(clk_1M_posedge) begin 

                    count_shifts_R <= count_shifts_R + 8'b1; 

                    receive_buffer <= {receive_buffer[766:0], MISO}; 

//receive and shift left 

                end 

                 

                else begin 

                    count_shifts_R <= count_shifts_R; 

                    receive_buffer <= receive_buffer; 

                end 

            end 

            state_store_reading: begin  //store the distance readings 

                clk_1M_enabled <= 1'b1;  

                scale_count_shifts_R <= 7'b0; 

                scale_receive_buffer <= 32'b0; 

                scale_received_data <= scale_received_data; 

                count_shifts_W <= 8'b0; 

                count_shifts_R <= 10'b0; 

                send_buffer <= 48'b0; 

                receive_buffer <= receive_buffer; 

                //received data is parsed for each segment. 

                segment_7 <= 

{receive_buffer[767:736],receive_buffer[698:696]}; 

                segment_6 <= 

{receive_buffer[671:640],receive_buffer[602:600]}; 

                segment_5 <= 

{receive_buffer[575:544],receive_buffer[506:504]}; 

                segment_4 <= 

{receive_buffer[479:448],receive_buffer[410:408]}; 

                segment_3 <= 

{receive_buffer[383:352],receive_buffer[314:312]}; 

                segment_2 <= 
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{receive_buffer[287:256],receive_buffer[218:216]}; 

                segment_1 <= 

{receive_buffer[191:160],receive_buffer[122:120]}; 

                segment_0 <= {receive_buffer[95:64],receive_buffer[26:24]}; 

            end 

            state_wait:begin    //wait for enable signal from counter 

                clk_1M_enabled <= 1'b1; 

                count_shifts_W <= 8'b0; 

                count_shifts_R <= 10'b0; 

                receive_buffer <= 768'b0; 

                send_buffer <= 48'b0; 

                scale_receive_buffer <= 32'b0; 

                scale_received_data <= scale_received_data; 

                scale_count_shifts_R <= 7'b0; 

                  

                segment_7 <= segment_7; 

                segment_6 <= segment_6; 

                segment_5 <= segment_5; 

                segment_4 <= segment_4; 

                segment_3 <= segment_3; 

                segment_2 <= segment_2; 

                segment_1 <= segment_1; 

                segment_0 <= segment_0; 

            end 

 

         

        endcase 

    end 

     

    assign MOSI = send_buffer[47];  //serial output is sent out from MSB of 

send buffer. 

     

    //chip select is pulled low during command & data transmission. 

    assign CS_N = !(current_state == state_read_command || current_state == 

state_delay || current_state == state_reading || 

                     current_state == state_scale_command || current_state == 

state_delay_scale || current_state == state_reading_scale ); 

     

    //creates a 1KHz clock         

    always @ (posedge fpga_CLK) begin 

        if (count_100M_1K == MAXIMUM_COUNT_1K - 1) 

            count_100M_1K <= 0;  

        else  

            count_100M_1K <= count_100M_1K + 1'b1;  

    end 

     

    assign clk_enable_1K = (count_100M_1K == MAXIMUM_COUNT_1K - 1); //clocked 

at 1KHz 

     

   //creates a 2Hz clock         

    always @ (posedge fpga_CLK) begin 

        if (count_100M_2 == MAXIMUM_COUNT_2 - 1) 

            count_100M_2 <= 0;  

        else  

            count_100M_2 <= count_100M_2 + 1'b1;  

    end 
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    assign clk_enable_2 = (count_100M_2 == MAXIMUM_COUNT_2 - 1); //clocked at 

2Hz 

     

     

    //creates a 1MHz clock 

    always @ (posedge fpga_CLK) begin 

        if (count100M_1M == MAXIMUM_COUNT_1M - 4'b1) 

            count100M_1M <= 0;  

        else 

            count100M_1M <= count100M_1M + 4'b1; 

    end 

                         

    assign clk_1M_L = (count100M_1M < 5) && clk_1M_enabled;  //50% duty cycle 

clock at 1MHz rate           

    assign clk_1M_posedge = (count100M_1M == 0);    

     

endmodule 

 

 

 
`timescale 1ns / 1ps 

/////////////////////////////////////////////////////////////////////////////

///// 

// Company: Worcester Polytechnic Institute 

// Engineers: Dario Martinovic, Michael Padberg 

//  

// Create Date: 02/06/2018 09:03:32 PM 

// Module Name: LED_warning 

// 

// Description: A module created to display data on the eight zedboard LEDs. 

//              LEDs indicate presence of objects within danger warning zone 

/////////////////////////////////////////////////////////////////////////////

///// 

 

 

module LED_warning( 

    input clk, 

    input [7:0] LEDdata,    //eight bit input for eight leds 

    output reg [7:0] LEDs   //LED outputs 

    ); 

     

    always @ (posedge clk) begin 

     

        LEDs <= LEDdata;    //assign 8 input 1 or 0 to LEDs. 

    end 

     

endmodule 
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Appendix B: AXI Protocol Files – Standard Xilinx IP Files Modified for 

Integration with Lidar Controller Logic 
 
`timescale 1 ns / 1 ps 

 

 module lidar_axi_v1_0 # 

 ( 

  // Users to add parameters here 

 

  // User parameters ends 

  // Do not modify the parameters beyond this line 

 

 

  // Parameters of Axi Slave Bus Interface S00_AXI 

  parameter integer C_S00_AXI_DATA_WIDTH = 32, 

  parameter integer C_S00_AXI_ADDR_WIDTH = 6 

 ) 

 ( 

  // Users to add ports here 

        input fpga_CLK, 

        input reset, //BTND 

        output CS_N_L, 

        output MOSI_L, 

        output clk_1M_L, 

        input MISO_L, 

        input start_lidar_btn, //BTNU 

        output [7:0] LEDs, 

 

        //-----------IR----------------- 

        input [1:0] data_IR, 

        input reset_IR_N, 

        input clk_25M, 

        output sound, 

        output [11:0] clr_rgb_VGA, 

        output HS_VGA, 

        output VS_VGA, 

        //------------------------------- 

 

  // User ports ends 

  // Do not modify the ports beyond this line 

 

 

  // Ports of Axi Slave Bus Interface S00_AXI 

  input wire  s00_axi_aclk, 

  input wire  s00_axi_aresetn, 

  input wire [C_S00_AXI_ADDR_WIDTH-1 : 0] s00_axi_awaddr, 

  input wire [2 : 0] s00_axi_awprot, 

  input wire  s00_axi_awvalid, 

  output wire  s00_axi_awready, 

  input wire [C_S00_AXI_DATA_WIDTH-1 : 0] s00_axi_wdata, 

  input wire [(C_S00_AXI_DATA_WIDTH/8)-1 : 0] s00_axi_wstrb, 

  input wire  s00_axi_wvalid, 

  output wire  s00_axi_wready, 

  output wire [1 : 0] s00_axi_bresp, 

  output wire  s00_axi_bvalid, 
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  input wire  s00_axi_bready, 

  input wire [C_S00_AXI_ADDR_WIDTH-1 : 0] s00_axi_araddr, 

  input wire [2 : 0] s00_axi_arprot, 

  input wire  s00_axi_arvalid, 

  output wire  s00_axi_arready, 

  output wire [C_S00_AXI_DATA_WIDTH-1 : 0] s00_axi_rdata, 

  output wire [1 : 0] s00_axi_rresp, 

  output wire  s00_axi_rvalid, 

  input wire  s00_axi_rready 

 ); 

// Instantiation of Axi Bus Interface S00_AXI 

 lidar_axi_v1_0_S00_AXI # (  

  .C_S_AXI_DATA_WIDTH(C_S00_AXI_DATA_WIDTH), 

  .C_S_AXI_ADDR_WIDTH(C_S00_AXI_ADDR_WIDTH) 

 ) lidar_axi_v1_0_S00_AXI_inst ( 

  .S_AXI_ACLK(s00_axi_aclk), 

  .S_AXI_ARESETN(s00_axi_aresetn), 

  .S_AXI_AWADDR(s00_axi_awaddr), 

  .S_AXI_AWPROT(s00_axi_awprot), 

  .S_AXI_AWVALID(s00_axi_awvalid), 

  .S_AXI_AWREADY(s00_axi_awready), 

  .S_AXI_WDATA(s00_axi_wdata), 

  .S_AXI_WSTRB(s00_axi_wstrb), 

  .S_AXI_WVALID(s00_axi_wvalid), 

  .S_AXI_WREADY(s00_axi_wready), 

  .S_AXI_BRESP(s00_axi_bresp), 

  .S_AXI_BVALID(s00_axi_bvalid), 

  .S_AXI_BREADY(s00_axi_bready), 

  .S_AXI_ARADDR(s00_axi_araddr), 

  .S_AXI_ARPROT(s00_axi_arprot), 

  .S_AXI_ARVALID(s00_axi_arvalid), 

  .S_AXI_ARREADY(s00_axi_arready), 

  .S_AXI_RDATA(s00_axi_rdata), 

  .S_AXI_RRESP(s00_axi_rresp), 

  .S_AXI_RVALID(s00_axi_rvalid), 

  .S_AXI_RREADY(s00_axi_rready), 

  .reset(reset), //BTND 

        .fpga_CLK(fpga_CLK), 

        .CS_N_L(CS_N_L), 

        .MOSI_L(MOSI_L), 

        .clk_1M_L(clk_1M_L), 

        .MISO_L(MISO_L), 

        .start_lidar_btn(start_lidar_btn),  //BTNU 

        .LEDs(LEDs), 

          //-----------IR----------------- 

        .data_IR(data_IR), 

        .reset_IR_N(reset_IR_N), 

        .clk_25M(clk_25M), 

        .sound(sound), 

        .clr_rgb_VGA(clr_rgb_VGA), 

        .HS_VGA(HS_VGA), 

        .VS_VGA(VS_VGA) 

        //------------------------------- 

 

 ); 

 

 // Add user logic here 
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 // User logic ends 

 

 endmodule 

 

 

 

 
 

`timescale 1 ns / 1 ps 

 

 module lidar_axi_v1_0_S00_AXI # 

 ( 

  // Users to add parameters here 

 

  // User parameters ends 

  // Do not modify the parameters beyond this line 

 

  // Width of S_AXI data bus 

  parameter integer C_S_AXI_DATA_WIDTH = 32, 

  // Width of S_AXI address bus 

  parameter integer C_S_AXI_ADDR_WIDTH = 6 

 ) 

 ( 

  // Users to add ports here 

        input fpga_CLK, 

     

        input wire [31:0] distance_scale_out, 

        input wire [31:0] segment7, 

        input wire [31:0] segment6, 

        input wire [31:0] segment5, 

        input wire [31:0] segment4, 

        input wire [31:0] segment3, 

        input wire [31:0] segment2, 

        input wire [31:0] segment1, 

        input wire [31:0] segment0, 

        input wire [31:0] seg_nums, 

         

        input reset, //BTND 

        output CS_N_L, 

        output MOSI_L, 

        output clk_1M_L, 

        input MISO_L, 

        input start_lidar_btn, //BTNU 

        output [7:0] LEDs, 

 

 

        //-----------IR----------------- 

        input [1:0] data_IR, 

        input reset_IR_N, 

        input clk_25M, 

        output sound, 

        output [11:0] clr_rgb_VGA, 

        output HS_VGA, 

        output VS_VGA, 

        //------------------------------- 
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  // User ports ends 

  // Do not modify the ports beyond this line 

 

  // Global Clock Signal 

  input wire  S_AXI_ACLK, 

  // Global Reset Signal. This Signal is Active LOW 

  input wire  S_AXI_ARESETN, 

  // Write address (issued by master, acceped by Slave) 

  input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR, 

  // Write channel Protection type. This signal indicates the 

      // privilege and security level of the transaction, and whether 

      // the transaction is a data access or an instruction access. 

  input wire [2 : 0] S_AXI_AWPROT, 

  // Write address valid. This signal indicates that the master 

signaling 

      // valid write address and control information. 

  input wire  S_AXI_AWVALID, 

  // Write address ready. This signal indicates that the slave is 

ready 

      // to accept an address and associated control signals. 

  output wire  S_AXI_AWREADY, 

  // Write data (issued by master, acceped by Slave)  

  input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA, 

  // Write strobes. This signal indicates which byte lanes hold 

      // valid data. There is one write strobe bit for each eight 

      // bits of the write data bus.     

  input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB, 

  // Write valid. This signal indicates that valid write 

      // data and strobes are available. 

  input wire  S_AXI_WVALID, 

  // Write ready. This signal indicates that the slave 

      // can accept the write data. 

  output wire  S_AXI_WREADY, 

  // Write response. This signal indicates the status 

      // of the write transaction. 

  output wire [1 : 0] S_AXI_BRESP, 

  // Write response valid. This signal indicates that the channel 

      // is signaling a valid write response. 

  output wire  S_AXI_BVALID, 

  // Response ready. This signal indicates that the master 

      // can accept a write response. 

  input wire  S_AXI_BREADY, 

  // Read address (issued by master, acceped by Slave) 

  input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR, 

  // Protection type. This signal indicates the privilege 

      // and security level of the transaction, and whether the 

      // transaction is a data access or an instruction access. 

  input wire [2 : 0] S_AXI_ARPROT, 

  // Read address valid. This signal indicates that the channel 

      // is signaling valid read address and control information. 

  input wire  S_AXI_ARVALID, 

  // Read address ready. This signal indicates that the slave is 

      // ready to accept an address and associated control signals. 

  output wire  S_AXI_ARREADY, 

  // Read data (issued by slave) 
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  output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA, 

  // Read response. This signal indicates the status of the 

      // read transfer. 

  output wire [1 : 0] S_AXI_RRESP, 

  // Read valid. This signal indicates that the channel is 

      // signaling the required read data. 

  output wire  S_AXI_RVALID, 

  // Read ready. This signal indicates that the master can 

      // accept the read data and response information. 

  input wire  S_AXI_RREADY 

 ); 

 

 // AXI4LITE signals 

 reg [C_S_AXI_ADDR_WIDTH-1 : 0]  axi_awaddr; 

 reg   axi_awready; 

 reg   axi_wready; 

 reg [1 : 0]  axi_bresp; 

 reg   axi_bvalid; 

 reg [C_S_AXI_ADDR_WIDTH-1 : 0]  axi_araddr; 

 reg   axi_arready; 

 reg [C_S_AXI_DATA_WIDTH-1 : 0]  axi_rdata; 

 reg [1 : 0]  axi_rresp; 

 reg   axi_rvalid; 

 

 // Example-specific design signals 

 // local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH 

 // ADDR_LSB is used for addressing 32/64 bit registers/memories 

 // ADDR_LSB = 2 for 32 bits (n downto 2) 

 // ADDR_LSB = 3 for 64 bits (n downto 3) 

 localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1; 

 localparam integer OPT_MEM_ADDR_BITS = 3; 

 //---------------------------------------------- 

 //-- Signals for user logic register space example 

 //------------------------------------------------ 

 //-- Number of Slave Registers 16 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg4; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg5; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg6; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg7; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg8; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg9; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg10; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg11; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg12; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg13; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg14; 

 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg15; 

 wire  slv_reg_rden; 

 wire  slv_reg_wren; 

 reg [C_S_AXI_DATA_WIDTH-1:0]  reg_data_out; 

 integer  byte_index; 

 reg  aw_en; 
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 // I/O Connections assignments 

 

 assign S_AXI_AWREADY = axi_awready; 

 assign S_AXI_WREADY = axi_wready; 

 assign S_AXI_BRESP = axi_bresp; 

 assign S_AXI_BVALID = axi_bvalid; 

 assign S_AXI_ARREADY = axi_arready; 

 assign S_AXI_RDATA = axi_rdata; 

 assign S_AXI_RRESP = axi_rresp; 

 assign S_AXI_RVALID = axi_rvalid; 

 // Implement axi_awready generation 

 // axi_awready is asserted for one S_AXI_ACLK clock cycle when both 

 // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is 

 // de-asserted when reset is low. 

 

 always @( posedge S_AXI_ACLK ) 

 begin 

   if ( S_AXI_ARESETN == 1'b0 ) 

     begin 

       axi_awready <= 1'b0; 

       aw_en <= 1'b1; 

     end  

   else 

     begin     

       if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en) 

         begin 

           // slave is ready to accept write address when  

           // there is a valid write address and write data 

           // on the write address and data bus. This design  

           // expects no outstanding transactions.  

           axi_awready <= 1'b1; 

           aw_en <= 1'b0; 

         end 

         else if (S_AXI_BREADY && axi_bvalid) 

             begin 

               aw_en <= 1'b1; 

               axi_awready <= 1'b0; 

             end 

       else            

         begin 

           axi_awready <= 1'b0; 

         end 

     end  

 end        

 

 // Implement axi_awaddr latching 

 // This process is used to latch the address when both  

 // S_AXI_AWVALID and S_AXI_WVALID are valid.  

 

 always @( posedge S_AXI_ACLK ) 

 begin 

   if ( S_AXI_ARESETN == 1'b0 ) 

     begin 

       axi_awaddr <= 0; 

     end  

   else 

     begin     
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       if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en) 

         begin 

           // Write Address latching  

           axi_awaddr <= S_AXI_AWADDR; 

         end 

     end  

 end        

 

 // Implement axi_wready generation 

 // axi_wready is asserted for one S_AXI_ACLK clock cycle when both 

 // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is  

 // de-asserted when reset is low.  

 

 always @( posedge S_AXI_ACLK ) 

 begin 

   if ( S_AXI_ARESETN == 1'b0 ) 

     begin 

       axi_wready <= 1'b0; 

     end  

   else 

     begin     

       if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en ) 

         begin 

           // slave is ready to accept write data when  

           // there is a valid write address and write data 

           // on the write address and data bus. This design  

           // expects no outstanding transactions.  

           axi_wready <= 1'b1; 

         end 

       else 

         begin 

           axi_wready <= 1'b0; 

         end 

     end  

 end        

 

 // Implement memory mapped register select and write logic generation 

 // The write data is accepted and written to memory mapped registers 

when 

 // axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. 

Write strobes are used to 

 // select byte enables of slave registers while writing. 

 // These registers are cleared when reset (active low) is applied. 

 // Slave register write enable is asserted when valid address and data 

are available 

 // and the slave is ready to accept the write address and write data. 

 assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && 

S_AXI_AWVALID; 

 

 always @( posedge S_AXI_ACLK ) 

 begin 

   if ( S_AXI_ARESETN == 1'b0 ) 

     begin 

       slv_reg0 <= 0; 

       slv_reg1 <= 0; 

       slv_reg2 <= 0; 

       slv_reg3 <= 0; 
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       slv_reg4 <= 0; 

       slv_reg5 <= 0; 

       slv_reg6 <= 0; 

       slv_reg7 <= 0; 

       slv_reg8 <= 0; 

       slv_reg9 <= 0; 

       slv_reg10 <= 0; 

       slv_reg11 <= 0; 

       slv_reg12 <= 0; 

       slv_reg13 <= 0; 

       slv_reg14 <= 0; 

       slv_reg15 <= 0; 

     end  

   else begin 

     if (slv_reg_wren) 

       begin 

         case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] ) 

           4'h0: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 0 

                 slv_reg0[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           4'h1: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 1 

                 slv_reg1[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           4'h2: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 2 

                 slv_reg2[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           4'h3: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 3 

                 slv_reg3[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   
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           4'h4: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 4 

                 slv_reg4[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           4'h5: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 5 

                 slv_reg5[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           4'h6: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 6 

                 slv_reg6[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           4'h7: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 7 

                 slv_reg7[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           4'h8: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 8 

                 slv_reg8[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           4'h9: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 9 
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                 slv_reg9[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           4'hA: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 10 

                 slv_reg10[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           4'hB: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 11 

                 slv_reg11[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           4'hC: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 12 

                 slv_reg12[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           4'hD: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 13 

                 slv_reg13[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           4'hE: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 

                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 14 

                 slv_reg14[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           4'hF: 

             for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-

1; byte_index = byte_index+1 ) 

               if ( S_AXI_WSTRB[byte_index] == 1 ) begin 
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                 // Respective byte enables are asserted as per write 

strobes  

                 // Slave register 15 

                 slv_reg15[(byte_index*8) +: 8] <= 

S_AXI_WDATA[(byte_index*8) +: 8]; 

               end   

           default : begin 

                       slv_reg0 <= slv_reg0; 

                       slv_reg1 <= slv_reg1; 

                       slv_reg2 <= slv_reg2; 

                       slv_reg3 <= slv_reg3; 

                       slv_reg4 <= slv_reg4; 

                       slv_reg5 <= slv_reg5; 

                       slv_reg6 <= slv_reg6; 

                       slv_reg7 <= slv_reg7; 

                       slv_reg8 <= slv_reg8; 

                       slv_reg9 <= slv_reg9; 

                       slv_reg10 <= slv_reg10; 

                       slv_reg11 <= slv_reg11; 

                       slv_reg12 <= slv_reg12; 

                       slv_reg13 <= slv_reg13; 

                       slv_reg14 <= slv_reg14; 

                       slv_reg15 <= slv_reg15; 

                     end 

         endcase 

       end 

   end 

 end     

 

 // Implement write response logic generation 

 // The write response and response valid signals are asserted by the 

slave  

 // when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are 

asserted.   

 // This marks the acceptance of address and indicates the status of  

 // write transaction. 

 

 always @( posedge S_AXI_ACLK ) 

 begin 

   if ( S_AXI_ARESETN == 1'b0 ) 

     begin 

       axi_bvalid  <= 0; 

       axi_bresp   <= 2'b0; 

     end  

   else 

     begin     

       if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && 

S_AXI_WVALID) 

         begin 

           // indicates a valid write response is available 

           axi_bvalid <= 1'b1; 

           axi_bresp  <= 2'b0; // 'OKAY' response  

         end                   // work error responses in future 

       else 

         begin 

           if (S_AXI_BREADY && axi_bvalid)  

             //check if bready is asserted while bvalid is high)  
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             //(there is a possibility that bready is always asserted 

high)    

             begin 

               axi_bvalid <= 1'b0;  

             end   

         end 

     end 

 end    

 

 // Implement axi_arready generation 

 // axi_arready is asserted for one S_AXI_ACLK clock cycle when 

 // S_AXI_ARVALID is asserted. axi_awready is  

 // de-asserted when reset (active low) is asserted.  

 // The read address is also latched when S_AXI_ARVALID is  

 // asserted. axi_araddr is reset to zero on reset assertion. 

 

 always @( posedge S_AXI_ACLK ) 

 begin 

   if ( S_AXI_ARESETN == 1'b0 ) 

     begin 

       axi_arready <= 1'b0; 

       axi_araddr  <= 32'b0; 

     end  

   else 

     begin     

       if (~axi_arready && S_AXI_ARVALID) 

         begin 

           // indicates that the slave has acceped the valid read 

address 

           axi_arready <= 1'b1; 

           // Read address latching 

           axi_araddr  <= S_AXI_ARADDR; 

         end 

       else 

         begin 

           axi_arready <= 1'b0; 

         end 

     end  

 end        

 

 // Implement axi_arvalid generation 

 // axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both  

 // S_AXI_ARVALID and axi_arready are asserted. The slave registers  

 // data are available on the axi_rdata bus at this instance. The  

 // assertion of axi_rvalid marks the validity of read data on the  

 // bus and axi_rresp indicates the status of read 

transaction.axi_rvalid  

 // is deasserted on reset (active low). axi_rresp and axi_rdata are  

 // cleared to zero on reset (active low).   

 always @( posedge S_AXI_ACLK ) 

 begin 

   if ( S_AXI_ARESETN == 1'b0 ) 

     begin 

       axi_rvalid <= 0; 

       axi_rresp  <= 0; 

     end  

   else 
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     begin     

       if (axi_arready && S_AXI_ARVALID && ~axi_rvalid) 

         begin 

           // Valid read data is available at the read data bus 

           axi_rvalid <= 1'b1; 

           axi_rresp  <= 2'b0; // 'OKAY' response 

         end    

       else if (axi_rvalid && S_AXI_RREADY) 

         begin 

           // Read data is accepted by the master 

           axi_rvalid <= 1'b0; 

         end                 

     end 

 end     

 

 // Implement memory mapped register select and read logic generation 

 // Slave register read enable is asserted when valid address is 

available 

 // and the slave is ready to accept the read address. 

 assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid; 

 always @(*) 

 begin 

       // Address decoding for reading registers 

       case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] ) 

              4'h0   : reg_data_out <= segment0;    //pass segment distances 

              4'h1   : reg_data_out <= segment1;    //0-7 and distance scale 

              4'h2   : reg_data_out <= segment2;    //to PS over AXI 

              4'h3   : reg_data_out <= segment3; 

              4'h4   : reg_data_out <= segment4; 

              4'h5   : reg_data_out <= segment5; 

              4'h6   : reg_data_out <= segment6; 

              4'h7   : reg_data_out <= segment7; 

              4'h8   : reg_data_out <= seg_nums; 

              4'h9   : reg_data_out <= distance_scale_out; 

              4'hA   : reg_data_out <= slv_reg10;   //10 and 11 reserved 

              4'hB   : reg_data_out <= slv_reg11;   //for zone detection 

              4'hC   : reg_data_out <= slv_reg12;   //signals 

              4'hD   : reg_data_out <= slv_reg13; 

              4'hE   : reg_data_out <= slv_reg14; 

              4'hF   : reg_data_out <= slv_reg15; 

              default : reg_data_out <= 0; 

       endcase 

 end 

 

 // Output register or memory read data 

 always @( posedge S_AXI_ACLK ) 

 begin 

   if ( S_AXI_ARESETN == 1'b0 ) 

     begin 

       axi_rdata  <= 0; 

     end  

   else 

     begin     

       // When there is a valid read address (S_AXI_ARVALID) with  

       // acceptance of read address by the slave (axi_arready),  

       // output the read dada  

       if (slv_reg_rden) 
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         begin 

           axi_rdata <= reg_data_out;     // register read data 

         end    

     end 

 end     

 

 // Add user logic here 

  

 //lidar top modue instance 

    pl_lidar_top_module pl_lidar_top_module( 

        .fpga_CLK(fpga_CLK), 

        .reset(reset), //BTND 

        .CS_N_L(CS_N_L), 

        .MOSI_L(MOSI_L), 

        .clk_1M_L(clk_1M_L), 

        .MISO_L(MISO_L), 

        .start_lidar_btn(start_lidar_btn), //BTNU 

        .distance_scale_out(distance_scale_out), 

        .segment7(segment7), 

        .segment6(segment6), 

        .segment5(segment5), 

        .segment4(segment4), 

        .segment3(segment3), 

        .segment2(segment2), 

        .segment1(segment1), 

        .segment0(segment0), 

        .seg_nums(seg_nums) 

        ); 

     

    //LED warning instance 

    LED_warning LED_warning_inst (.clk(S_AXI_ACLK), .LEDdata(slv_reg10[7:0]), 

.LEDs(LEDs)); 

     

    //IR control top module instance 

    IR_top IR_top_inst(.IR_data(data_IR),   //input from IR sensor (HIGH if 

there is a detection)    

        .AXI_slv_reg10(slv_reg10[7:0]),     // Danger warning detection 

        .AXI_slv_reg11(slv_reg11[7:0]),     // Critical action detection 

        .sound(sound),                      //output to speaker/buzzer    

        .vga_reset_N(reset_IR_N),           // input active low reset coming 

from PS  

        .clr_rgb_top(clr_rgb_VGA),         // output that define the color 

display of the VGA 

        .HS_top(HS_VGA),             // Hsync output to the VGA 

        .VS_top(VS_VGA),             // Vsync output to the VGA 

        .clk_25M(clk_25M),         // input 25 MHz 

        .clk_100M(fpga_CLK)          //input 100MHz - FPGA/AXI Clock 

    ); 

     

 // User logic ends 

 

 endmodule 
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Appendix C: Infrared Sensor, VGA Controller, Buzzer Controller (VGA 

.vhd File from Digilent, Inc.) 
 

`timescale 1ns / 1ps 

/////////////////////////////////////////////////////////////////////////////

///// 

// Company: Worcester Polytechnic Institute 

// Engineer: Kazim Shaikh 

// Integration by: Dario Martinovic, Michael Padberg 

//  

// Create Date: 01/21/2018 

// Module Name: IR_top 

// 

// Description: Top module for controlling IR sensor integration with VGA 

//              color display and sound buzzer. 

//  

/////////////////////////////////////////////////////////////////////////////

///// 

 

 

module IR_top( 

 

     

    input [1:0] IR_data,               //input from IR sensor (HIGH if there 

is a detection)  

    //data loaded from ps AXI transmission      

    input [7:0] AXI_slv_reg10,      //high if object is in danger warning 

zone 

    input [7:0] AXI_slv_reg11,      //high if object is in critical action 

zone 

    output sound,                   //output to a speaker/buzzer 

    output reg [1:0] color_signal,  //color selection for color_logic_inst 

   

    //VGA controller signals  

    input vga_reset_N,           // active low reset coming from PS  

    output [11:0] clr_rgb_top, // takes values that define the color display 

of the VGA 

    output HS_top,             // Hsync output to the VGA 

    output VS_top,             // Vsync output to the VGA 

 

    //input clock signals 

    input clk_25M,         // 25 MHz from MMCM 

    input clk_100M          //100MHz - FPGA/AXI Clock 

 

); 

     

    wire blank_wire;           // a blank signal to the VGA 

   

    wire [10:0] hcount_wire;   // hcount output to the VGA 

    wire [10:0] vcount_wire;   // vcount output to the VGA 

     

    reg [21:0] tone;           // tone for buzzer 

      

    reg IR_detection;          // Combined data from two IRs 
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    //detection for sound output determined from IR & Lidar  

    always @ (posedge clk_100M) begin 

        IR_detection <= IR_data[0] | IR_data[1];  //Two IR sensor signals 

anded for single detection 

    end 

         

    always @ (AXI_slv_reg10, AXI_slv_reg11, IR_detection, tone) begin 

        if((AXI_slv_reg11 > 0) && IR_detection) begin   //if object in 

critical zone, IR's detect person 

            color_signal = 2'b10;   // show red 

            tone = 22'd30000; //play sound 

        end 

        else if (AXI_slv_reg10 > 0) begin       //if object is in danger 

warning zone 

            color_signal = 2'b01;   //show yellow 

            tone = 22'd0000; 

        end 

        else begin 

            color_signal = 2'b00;   //show green 

            tone = 22'd0000; 

        end 

    end 

     

    // Frequency Divider 

    tone_generator tone_generator_inst( .clk(clk_100M), 

        .counter(tone), 

        .sound(sound) 

    ); 

     

    // This module is creating outputs that will be manipulated by the color 

logic module to display  

    // graphics on the monitor.  VGA controller is Digilent IP. 

    vga_controller_640_60 in3 (.pixel_clk(clk_25M), 

                               .rst(vga_reset_N),  

                               .HS(HS_top),  

                               .VS(VS_top),  

                               .hcount(hcount_wire),  

                               .vcount(vcount_wire),  

                               .blank(blank_wire));  

     

    //RGB color logic for VGA port                            

    color_logic color_logic_inst (.blank(blank_wire),  

                                .vcount(vcount_wire), 

                                .color_signal(color_signal), 

                                .hcount(hcount_wire),  

                                .clr_rgb(clr_rgb_top)); 

                           

     

endmodule 
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`timescale 1ns / 1ps 

/////////////////////////////////////////////////////////////////////////////

///// 

// Company: Worcester Polytechnic Institute 

// Engineer: Kazim Shaikh 

// Edited by: Dario Martinovic 

//  

// Create Date: 01/21/2018 

// Module Name: tone_generator 

// 

// Description: Module to generate sound output on buzzer when critical 

action 

//              should be taken.  Person in critical action zone. 

//  

/////////////////////////////////////////////////////////////////////////////

///// 

 

module tone_generator(   

    input clk,  //clock input 

    input [21:0] counter,   //count signal 

    output reg sound    //output sound 

    ); 

 

    wire sound_next; 

    wire sound_invert; 

     

    reg [21:0] num; 

    wire [21:0] next_num; 

     

    always@(posedge clk) begin 

        if(num == counter) 

        begin 

            sound <= sound_invert; 

            num <= 22'd0; 

        end 

        else 

        begin 

            sound <= sound_next; 

            num <= next_num; 

        end 

    end 

     

    assign next_num = num + 22'b1; 

    assign sound_next = sound; 

    assign sound_invert = ~sound; 

     

endmodule 

 

 

 

 
`timescale 1ns / 1ps 

/////////////////////////////////////////////////////////////////////////////

///// 

// Company: Worcester Polytechnic Institute 
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// Engineer: Kazim Shaikh 

// Edited By: Dario Martinovic, Michael Padberg 

// 

// Create Date: 01/21/2018 

// Module Name: color_logic 

// 

// Description: This module takes in five input signals from the vga 

controller 

//              and gives an output to the VGA monitor. 

//  

//  

/////////////////////////////////////////////////////////////////////////////

///// 

 

module color_logic( 

input blank,                // input from vga_controller. It determines if 

pixels are visible on the screen 

input [10:0] vcount ,       // input from vga_controller. It describes the 

vertical location of a pixel from 0 to 479. 

input [1:0] color_signal,   // input from IR_top for color display based on 

object position. 

input [10:0] hcount ,       // input from vga_controller. It describes the 

horizontal location of a pixel from 0 to 649. 

output reg [11:0] clr_rgb   // output describing red, green and blue  

    ); 

           

//Color parameters 

parameter YELLOW = 12'hF0F; 

parameter RED = 12'h00F; 

parameter BLACK = 12'h000; 

parameter WHITE = 12'hFFF; 

parameter GREEN = 12'hF00; 

 

 

//display a color to fill the screen based on the input from IR_top 

always @ (blank, color_signal, clr_rgb) begin 

    if (blank == 0) begin 

        case(color_signal) 

            2'b01 : clr_rgb = YELLOW; 

            2'b10 : clr_rgb = RED;  

            default: clr_rgb =  GREEN; 

        endcase 

    end 

    else begin 

        clr_rgb = BLACK;    //if blank signal =1, display no color. 

    end 

end           

 

endmodule 

 

 

 

 

 

***Vga_controller_640_60.vhd file from Digilent, Inc.*** 
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------------------------------------------------------------------------ 

-- vga_controller_640_60.vhd 

------------------------------------------------------------------------ 

-- Author : Ulrich Zoltán 

--          Copyright 2006 Digilent, Inc. 

------------------------------------------------------------------------ 

-- Software version : Xilinx ISE 7.1.04i 

--                    WebPack 

-- Device         : 3s200ft256-4 

------------------------------------------------------------------------ 

-- This file contains the logic to generate the synchronization signals, 

-- horizontal and vertical pixel counter and video disable signal 

-- for the 640x480@60Hz resolution. 

------------------------------------------------------------------------ 

--  Behavioral description 

------------------------------------------------------------------------ 

-- Please read the following article on the web regarding the 

-- vga video timings: 

-- http://www.epanorama.net/documents/pc/vga_timing.html 

 

-- This module generates the video synch pulses for the monitor to 

-- enter 640x480@60Hz resolution state. It also provides horizontal 

-- and vertical counters for the currently displayed pixel and a blank 

-- signal that is active when the pixel is not inside the visible screen 

-- and the color outputs should be reset to 0. 

 

-- timing diagram for the horizontal synch signal (HS) 

-- 0                         648    744           800 (pixels) 

-- -------------------------|______|----------------- 

-- timing diagram for the vertical synch signal (VS) 

-- 0                                  482    484  525 (lines) 

-- -----------------------------------|______|------- 

 

-- The blank signal is delayed one pixel clock period (40ns) from where 

-- the pixel leaves the visible screen, according to the counters, to 

-- account for the pixel pipeline delay. This delay happens because 

-- it takes time from when the counters indicate current pixel should 

-- be displayed to when the color data actually arrives at the monitor 

-- pins (memory read delays, synchronization delays). 

------------------------------------------------------------------------ 

--  Port definitions 

------------------------------------------------------------------------ 

-- rst               - global reset signal 

-- pixel_clk         - input pin, from dcm_25MHz 

--                   - the clock signal generated by a DCM that has 

--                   - a frequency of 25MHz. 

-- HS                - output pin, to monitor 

--                   - horizontal synch pulse 

-- VS                - output pin, to monitor 

--                   - vertical synch pulse 

-- hcount            - output pin, 11 bits, to clients 

--                   - horizontal count of the currently displayed 

--                   - pixel (even if not in visible area) 

-- vcount            - output pin, 11 bits, to clients 

--                   - vertical count of the currently active video 

--                   - line (even if not in visible area) 

-- blank             - output pin, to clients 



216 

 

--                   - active when pixel is not in visible area. 

------------------------------------------------------------------------ 

-- Revision History: 

-- 09/18/2006(UlrichZ): created 

------------------------------------------------------------------------ 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

-- simulation library 

library UNISIM; 

use UNISIM.VComponents.all; 

 

-- the vga_controller_640_60 entity declaration 

-- read above for behavioral description and port definitions. 

entity vga_controller_640_60 is 

port( 

   rst         : in std_logic; 

   pixel_clk   : in std_logic; 

 

   HS          : out std_logic; 

   VS          : out std_logic; 

   hcount      : out std_logic_vector(10 downto 0); 

   vcount      : out std_logic_vector(10 downto 0); 

   blank       : out std_logic 

); 

end vga_controller_640_60; 

 

architecture Behavioral of vga_controller_640_60 is 

 

------------------------------------------------------------------------ 

-- CONSTANTS 

------------------------------------------------------------------------ 

 

-- maximum value for the horizontal pixel counter 

constant HMAX  : std_logic_vector(10 downto 0) := "01100100000"; -- 800 

-- maximum value for the vertical pixel counter 

constant VMAX  : std_logic_vector(10 downto 0) := "01000001101"; -- 525 

-- total number of visible columns 

constant HLINES: std_logic_vector(10 downto 0) := "01010000000"; -- 640 

-- value for the horizontal counter where front porch ends 

constant HFP   : std_logic_vector(10 downto 0) := "01010001000"; -- 648 

-- value for the horizontal counter where the synch pulse ends 

constant HSP   : std_logic_vector(10 downto 0) := "01011101000"; -- 744 

-- total number of visible lines 

constant VLINES: std_logic_vector(10 downto 0) := "00111100000"; -- 480 

-- value for the vertical counter where the front porch ends 

constant VFP   : std_logic_vector(10 downto 0) := "00111100010"; -- 482 

-- value for the vertical counter where the synch pulse ends 

constant VSP   : std_logic_vector(10 downto 0) := "00111100100"; -- 484 

-- polarity of the horizontal and vertical synch pulse 

-- only one polarity used, because for this resolution they coincide. 

constant SPP   : std_logic := '0'; 

 

------------------------------------------------------------------------ 



217 

 

-- SIGNALS 

------------------------------------------------------------------------ 

 

-- horizontal and vertical counters 

signal hcounter : std_logic_vector(10 downto 0) := (others => '0'); 

signal vcounter : std_logic_vector(10 downto 0) := (others => '0'); 

 

-- active when inside visible screen area. 

signal video_enable: std_logic; 

 

begin 

 

   -- output horizontal and vertical counters 

   hcount <= hcounter; 

   vcount <= vcounter; 

 

   -- blank is active when outside screen visible area 

   -- color output should be blacked (put on 0) when blank in active 

   -- blank is delayed one pixel clock period from the video_enable 

   -- signal to account for the pixel pipeline delay. 

   blank <= not video_enable when rising_edge(pixel_clk); 

 

   -- increment horizontal counter at pixel_clk rate 

   -- until HMAX is reached, then reset and keep counting 

   h_count: process(pixel_clk) 

   begin 

      if(rising_edge(pixel_clk)) then 

         if(rst = '0') then 

            hcounter <= (others => '0'); 

         elsif(hcounter = HMAX) then 

            hcounter <= (others => '0'); 

         else 

            hcounter <= hcounter + 1; 

         end if; 

      end if; 

   end process h_count; 

 

   -- increment vertical counter when one line is finished 

   -- (horizontal counter reached HMAX) 

   -- until VMAX is reached, then reset and keep counting 

   v_count: process(pixel_clk) 

   begin 

      if(rising_edge(pixel_clk)) then 

         if(rst = '0') then 

            vcounter <= (others => '0'); 

         elsif(hcounter = HMAX) then 

            if(vcounter = VMAX) then 

               vcounter <= (others => '0'); 

            else 

               vcounter <= vcounter + 1; 

            end if; 

         end if; 

      end if; 

   end process v_count; 

 

   -- generate horizontal synch pulse 

   -- when horizontal counter is between where the 
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   -- front porch ends and the synch pulse ends. 

   -- The HS is active (with polarity SPP) for a total of 96 pixels. 

   do_hs: process(pixel_clk) 

   begin 

      if(rising_edge(pixel_clk)) then 

         if(hcounter >= HFP and hcounter < HSP) then 

            HS <= SPP; 

         else 

            HS <= not SPP; 

         end if; 

      end if; 

   end process do_hs; 

 

   -- generate vertical synch pulse 

   -- when vertical counter is between where the 

   -- front porch ends and the synch pulse ends. 

   -- The VS is active (with polarity SPP) for a total of 2 video lines 

   -- = 2*HMAX = 1600 pixels. 

   do_vs: process(pixel_clk) 

   begin 

      if(rising_edge(pixel_clk)) then 

         if(vcounter >= VFP and vcounter < VSP) then 

            VS <= SPP; 

         else 

            VS <= not SPP; 

         end if; 

      end if; 

   end process do_vs; 

    

   -- enable video output when pixel is in visible area 

   video_enable <= '1' when (hcounter < HLINES and vcounter < VLINES) else 

'0'; 

 

end Behavioral; 
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Appendix D: Processing System C Code 
/****************************************************************************

** 
* 
* Copyright (C) 2009 - 2014 Xilinx, Inc.  All rights reserved. 
* 
* Permission is hereby granted, free of charge, to any person obtaining a 

copy 
* of this software and associated documentation files (the "Software"), to 

deal 
* in the Software without restriction, including without limitation the 

rights 
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 
* copies of the Software, and to permit persons to whom the Software is 
* furnished to do so, subject to the following conditions: 
* 
* The above copyright notice and this permission notice shall be included in 
* all copies or substantial portions of the Software. 
* 
* Use of the Software is limited solely to applications: 
* (a) running on a Xilinx device, or 
* (b) that interact with a Xilinx device through a bus or interconnect. 
* 
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 
* XILINX  BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, 
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF 
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 
* SOFTWARE. 
* 
* Except as contained in this notice, the name of the Xilinx shall not be 

used 
* in advertising or otherwise to promote the sale, use or other dealings in 
* this Software without prior written authorization from Xilinx. 
* 
*****************************************************************************

*/ 
 
/* 
 *   ps7_uart is configured to 115200 
 *   Authors: Michael Padberg & Dario Martinovic 

 */ 

 
#include "platform.h" 
#include "xbasic_types.h" 
#include "xparameters.h" 
#include "xil_printf.h" 
#include <stdio.h> 

 
#define NUMSEGMENTS 8 
#define DISTANCETHRESHOLD 1.0 
#define DANGERWARNTHRESHOLD 3.9624 //3.9624 meters 
#define CRITACTIONTHRESHOLD 2.4384 //2.4384 meters 
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//function prototypes 
void testSegmentThreshold(float dist, int segNum); 
void checkSegmentThresholds(float dist, int segNum); 
void delay_time(); 

 
//Global Variables 
 
//pointer to base address of PS-PL memory location shared over AXI. 
Xuint32 *baseaddr_p = (Xuint32 *)XPAR_LIDAR_AXI_0_S00_AXI_BASEADDR; 

 
//bitmasks 
const Xuint32 SEG7_NUM = 0x00E00000; 
const Xuint32 SEG6_NUM = 0x001C0000; 
const Xuint32 SEG5_NUM = 0x00038000; 
const Xuint32 SEG4_NUM = 0x00007000; 
const Xuint32 SEG3_NUM = 0x00000E00; 
const Xuint32 SEG2_NUM = 0x000001C0; 
const Xuint32 SEG1_NUM = 0x00000038; 
const Xuint32 SEG0_NUM = 0x00000007; 
 
//raw readings from shared PS-PL memory 
Xuint32 distance_scale = 0; 
Xuint32 distance_seg7 = 0; 
Xuint32 distance_seg6 = 0; 
Xuint32 distance_seg5 = 0; 
Xuint32 distance_seg4 = 0; 
Xuint32 distance_seg3 = 0; 
Xuint32 distance_seg2 = 0; 
Xuint32 distance_seg1 = 0; 
Xuint32 distance_seg0 = 0; 
Xuint32 seg_nums = 0; 

 
//segment distances converted to meters. 
float segMeters[NUMSEGMENTS]; 

 
//segment numbers parsed from seg_nums reading. 
int distanceSegNums[NUMSEGMENTS]; 
 
int main() 
{ 
 
 init_platform(); 

 
 //begin operating loop 
 while(1) 
 { 

 
  xil_printf("Getting reading....\n\r"); 
 
  //Short delay to give the Lidar some time to acquire distance 

data before next computation 
  delay_time(2500000); 
 
  xil_printf("Reading ready\n\r"); 
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  //get raw distance readings from shared PS-PL memory 
  distance_scale = *(baseaddr_p+9); 
  distance_seg7 = *(baseaddr_p+7); 
  distance_seg6 = *(baseaddr_p+6); 
  distance_seg5 = *(baseaddr_p+5); 
  distance_seg4 = *(baseaddr_p+4); 
  distance_seg3 = *(baseaddr_p+3); 
  distance_seg2 = *(baseaddr_p+2); 
  distance_seg1 = *(baseaddr_p+1); 
  distance_seg0 = *(baseaddr_p+0); 
  seg_nums = *(baseaddr_p+8); 
 
  //print scale value for conversion 
  xil_printf("Distance Scale : 0x%08x \n\r", distance_scale); 
 
  //print seg_nums output from memory 
  xil_printf("Segment Nums Read : 0x%08x \n\r", seg_nums); 
 
  //Calculate Distance Reading in Meters 
  segMeters[7] = ((float)distance_seg7) / ((float) distance_scale); 
  segMeters[6] = ((float)distance_seg6) / ((float) distance_scale); 
  segMeters[5] = ((float)distance_seg5) / ((float) distance_scale); 
  segMeters[4] = ((float)distance_seg4) / ((float) distance_scale); 
  segMeters[3] = ((float)distance_seg3) / ((float) distance_scale); 
  segMeters[2] = ((float)distance_seg2) / ((float) distance_scale); 
  segMeters[1] = ((float)distance_seg1) / ((float) distance_scale); 
  segMeters[0] = ((float)distance_seg0) / ((float) distance_scale); 

 
  //Decode seg nums for printing using bitmask 
  distanceSegNums[7] = (int) (seg_nums & SEG7_NUM) >> 21; 
  distanceSegNums[6] = (int) (seg_nums & SEG6_NUM) >> 18; 
  distanceSegNums[5] = (int) (seg_nums & SEG5_NUM) >> 15; 
  distanceSegNums[4] = (int) (seg_nums & SEG4_NUM) >> 12; 
  distanceSegNums[3] = (int) (seg_nums & SEG3_NUM) >> 9; 
  distanceSegNums[2] = (int) (seg_nums & SEG2_NUM) >> 6; 
  distanceSegNums[1] = (int) (seg_nums & SEG1_NUM) >> 3; 
  distanceSegNums[0] = (int) (seg_nums & SEG0_NUM); 
 
  //check all segment readings for distances within object 

detection threshold 
  for(int i=0; i<NUMSEGMENTS; i++) 
  { 
   checkSegmentThresholds(segMeters[i], distanceSegNums[i]); 
  } 

 
  // Distance Reading 
  printf("Seg7 Distance Reading : %f \t Segment: %i \n\r", 

segMeters[7], distanceSegNums[7]); 
  printf("Seg6 Distance Reading : %f \t Segment: %i \n\r", 

segMeters[6], distanceSegNums[6]); 
  printf("Seg5 Distance Reading : %f \t Segment: %i \n\r", 

segMeters[5], distanceSegNums[5]); 
  printf("Seg4 Distance Reading : %f \t Segment: %i \n\r", 

segMeters[4], distanceSegNums[4]); 
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  printf("Seg3 Distance Reading : %f \t Segment: %i \n\r", 

segMeters[3], distanceSegNums[3]); 
  printf("Seg2 Distance Reading : %f \t Segment: %i \n\r", 

segMeters[2], distanceSegNums[2]); 
  printf("Seg1 Distance Reading : %f \t Segment: %i \n\r", 

segMeters[1], distanceSegNums[1]); 
  printf("Seg0 Distance Reading : %f \t Segment: %i \n\r", 

segMeters[0], distanceSegNums[0]); 
 
  xil_printf("End of test\n\n\r"); 

 
 } //end while(1) operation loop 
 
 return 0; 
 
} //end main 

 

 

 

/* 
 * Tests segment distances to see if they are below the 1m testing distance 

threshold. 
 * Segments lower than threshold are flagged in DDR memory to pass to PL. 
 * 
 * @param dist  The distance in one segment from the LeddarVu, 

converted to meters. 
 * @param segNum The segment number associated with the distance reading. 
 */ 
void testSegmentThreshold(float dist, int segNum) 
{ 
 Xuint32 flagToWrite = 0x00000001; 

 
 if( dist < DISTANCETHRESHOLD ) 
 { 
  *(baseaddr_p+10) |= (flagToWrite << segNum); //left shift by 

segment number to write flag. 
 }            

 //flag written high if distance in segment is below threshold 
 else 
 { 
  *(baseaddr_p+10) &= ~(flagToWrite << segNum); //flag written 

low if distance in segment is above threshold 
 } 
} 
 

 

 

/* 
 * Checks segment distances to see if they are below the Critical Action and 
 * Danger Warning zone thresholds. 
 * Segments lower than threshold are flagged in DDR memory to pass to PL. 
 * Critical Action - slv_reg11 
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 * Danger Warning - slv_reg10 
 * 
 * @param dist  The distance in one segment from the LeddarVu, 

converted to meters. 
 * @param segNum The segment number associated with the distance reading. 
 */ 
void checkSegmentThresholds(float dist, int segNum) 
{ 
 Xuint32 flagToWrite = 0x00000001; 

 
 if( dist < CRITACTIONTHRESHOLD ) 
 { 
  *(baseaddr_p+11) |= (flagToWrite << segNum); //Critical action 

written to slv_reg11 
  *(baseaddr_p+10) |= (flagToWrite << segNum); //Danger warning 

written to slv_reg10 
             

 //left shift by segment number to write flag. 
 }            

 //flag written high if distance in segment is below threshold 
 else 
 { 
  *(baseaddr_p+11) &= ~(flagToWrite << segNum); //Critical action 

flag written low 
 
  if( dist < DANGERWARNTHRESHOLD ) 
  {           

  //Danger warning written to slv_reg10 
   *(baseaddr_p+10) |= (flagToWrite << segNum); //left 

shift by segment number to write flag. 
  }           

  //flag written high if distance in segment is below threshold 
  else 
  { 
   *(baseaddr_p+10) &= ~(flagToWrite << segNum); //Danger 

warning flag written low 
             

  //flag written low if distance in segment is above threshold 
  } 
 } 
 
} 

 

/* 
 * Software polling delay. 
 * 
 * @param t Number of iterations to poll for delay. 
 */ 
void delay_time(long t) 
{ 
 long i; 
 for(i= t; i>0; i--) 
 { 
 } 
} 
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