Worcester Polytechnic Institute

Scalability in Web APIs

Ryan Baker
Mike Perrone

Advised by:
George T. Heineman

Worcester Polytechnic Institute
1 Introduction
2 Background
2.1 Problem Statement
2.2 Game Services and Tools
2.2.1 Graphics Engine
2.2.2 Map Editor
2.2.3 Friend Network
2.2.4 Achievements
2.2.5 | eaderboards
2.3 Our Service Definition
2.3.1 Leaderboards
2.4 Service Requirements
2.4.1 Administrative Ease
2.4.2 Security
2.4.3 Scalability
2.5 Internal Service Decisions
2.5.1 Application Framework
2.5.2 Cloud Computing
3 Methodology

3.1 Decisions of Design and Architecture

3.1.1 Leaderboards
3.1.2 API| Documentation
3.1.3 Developer Console
3.1.4 Admin Console
3.1.5 Java Client Package
3.2 Decisions of Implementation
3.2.1 Enterprise vs Public
3.2.2 Front End Implementation

3.2.3 Cloud Computing Provider (AWS)
3.2.4 Web Application Framework Implementation (Flask)
3.2.5 Continuous Integration Service

3.2.6 API
3.2.7 Logging

3.2.8 Database Schema

4 Success Metrics

4.1 Resiliency

4.1.1 Simulated Traffic
4.1.2 | oad Testing and Scalability

4.2 Design

4.2.1 Client Perspective

4.2.3 Admin Perspective

5 Conclusions & Future Work
5.1 Client Conclusions
5.2 Administrator Conclusions
5.3 The Future

6 References

7 Appendix
A - Why we chose Leaderboards
B - Facebook’s Game Development API
C - Playtomic’s API
D - Front End Tooling Decision
E - APl Documentation Tool
F - Elastic Beanstalk

1 Introduction

Game developers, especially those that make social games, undertake a large amount of work
to create them. There are many technical considerations and ways of building games, from
designing a game to deploying the first minimum viable product. Developers often implement a
number of generic services within their games, such as friend networks, map editors,
achievements, and leaderboards.There is an opportunity for game developers to instead use
services (Freeman, 2004).

Students enrolled in WPI's CS 3733 (Software Engineering) course have just this opportunity.
They have seven weeks to create a game as a small team using agile development methods,
and they do not have time to implement these generic services within their game. In this project,
we will design and implement a leaderboard service that can be easily integrated into CS 3733
group projects. This will allow the the development teams to focus on their own game while also
learning how to integrate with third party web services.

Facebook (Facebook Inc., 2015b) and Playtomic (Lowry, 2013) are two examples of services
that currently exist to help game developers in exactly this manner. They provide services via an
Application Programming Interface (API) as well as provide code libraries to access this API
with methods that send requests to the API. Creating standalone services like these provides an
interesting research opportunity for understanding the technologies that will enable them to
handle a large number of concurrent requests using the least amount of resources, while also
allowing for easy scaling as demand grows.

The goal of this project is to implement a leaderboard service to game developers. The service
will allow developers to register a new game, and subsequently allow them to use the service.
The service will report on the usage and analytics in an administrator console that is available to
the service owners. Most notably, the service will be resilient, easy to debug (as far as we can
tell), and easily scalable. At the end of this project, this service will be in production and easily
usable for the students of CS 3733 and it would be easy to shift this project available into
another context, such as one for consumer use.

2 Background

In this chapter we discuss research we conducted to make informed decisions about how to
design and implement our service. We intend to mimic how other platforms provide the services
to be consistent with industry standards. This research also includes the problem statement and
our solution and design for the features our service offers.

2.1 Problem Statement

Video game developers have a lot of work to do in order to create a game. Typically they are
pressed for deadlines to complete required features. This project reduces the effort of game
developers by creating a leaderboard service. This will allow the game developers to focus less
on some of the peripheral features of their game and instead focus on creating the logic and
mechanics of the game. Naturally, the service we offer will be scalable, functional, and
extensively tested.

2.2 Game Services and Tools

Many tools, frameworks, and libraries already exist that decrease the amount of work game
developers need to put into a game to make it modern and fully featured.

2.2.1 Graphics Engine

Almost every modern game is a graphical game (as opposed to textual games). In order to
render objects to the screen, these games have to interface with graphics cards in some way.
Graphics engines solve this problem. Most graphical games also have objects that relate to and
interact with other objects. A physics engine is typically used to govern these interactions. For
example, Unity is a game engine that provides a rendering engine and a physics engine, as well
as other useful features for a graphical game like networking capabilities (Unity Technologies,
2015). Unity and other game engines are powerful and provide a high level functionality for
building in-game functionality.

2.2.2 Map Editor

Most games will have some kind of terrain or environment where players move around to
accomplish some goal, often called a 'map'. The task of building maps can be difficult if it's done
by directly writing it into code. Some services have built tools around making this task easier for
game developers. For example, Tiled is a graphical editor for building environments for two
dimensional video games (Lindeijer, T., 2015). It outputs the description of the map to a
standardized XML document, which allows for use in many types of games.

2.2.3 Friend Network

Many multiplayer games will have some way of codifying social relationships between the
humans behind players. This usually involves saving pairs or groups of players that enjoy
playing with each other, to make it easier for them to play together again. This functionality is
usually called a friend or clan network. Some services exist to try to solve this problem. For
example, Facebook's Game APIs include ways to invite friends to join in a game (Facebook,
Inc., 2015b).

2.2.4 Achievements

Multiplayer and single player games both often have some kind of achievement system. When a
player performs a particular action or passes some sort of milestone (sometimes separate from
the main narrative goal), the game rewards the player with an in-game or out of game reward in
the form of some badge or ability. Playtomic is a service that manages these achievements,
providing an API for creation and filtered viewing of achievements (Lowry, 2013).

2.2.5 Leaderboards

Many games that have some sort of scoring or competitive structure also have a way for players
to see how well other players are doing. This usually manifests itself as a high score list or a
leaderboard that can be viewed in game or in a web browser. Both Playtomic and Facebook
provide an API for adding entries to a leaderboard, as well as listing different filtered views of
the leaderboard (Facebook, Inc., 2015a; Lowry, 2013).

2.3 Our Service Definition

This section will discuss how we intend to implement leaderboards. For more details on on why
we chose to build a leaderboard service, see Appendix A.

2.3.1 Leaderboards

A leaderboard is defined as a set of entries for a specific game. An entry is typically an
association between a user and a score for that game. The user association can simply be a
user id or it can contain metadata about the user. Likewise, a score can simply be a primitive
representation of a score for a game or it can also contain metadata about the game score.

There are multiple services that already implement leaderboards in a way that help game
developers focus on creating the logic and mechanics of their game. In this section, we will
discuss how these services implement leaderboards as well as how our features will compare to
their services.

Facebook offers many services to game developers to help them with features they may want
for their game (Facebook Inc., 2015b). Their services for games range from push notifications to
monetization via a subscription service. We are primarily interested in Facebook’s Scores API.
The Scores API defines functions for accessing the scores of a game. A developer has read
access for:

e A game’s scores. Asking for this will return a list of user/score associations.

e A user’s score. Asking for this will return a list with the user’s score in a sorted list with

any friends of the user that also play this game.

A developer has create and update access for:
e A user’s score. A user is allowed a single score per game, any request after the initial
create is an update for the user’s score

A developer has delete access for:
e A user’s score. This will remove a user/score association from the leaderboard.

e All scores in a game. This will delete all scores associated with the game.

For more information on Facebook’s API for game developers, see Appendix B.

Playtomic is another solution for hosting leaderboards (Lowry, 2013). While Playtomic has many
features, we will discuss Playtomic’s leaderboards features. Playtomic’s leaderboards seem to
be much more verbose than Facebook’s Scores API. A developer has read access for:
e A game’s scores. This has many filters including a player’s id, a friend’s list, a time span
(such as the last 7 days, last 30 days, etc.), pagination (page number and results per
page), and a few other filters of that nature

A developer has create access for:

e A user’s score. A user is allowed to have multiple scores per game based on an “allow
duplicates” flag. An entry on the leaderboard can also have an arbitrary “fields”
hashmap, saving things like “character_type” or “level_name” to the score. Playtomic
allows filtering on these saved fields when querying the leaderboard.

A developer can also do a create and list function at once, simultaneously posting to the
leaderboard and receiving a leaderboard with that score in return. For more information on
Playtomic’s API, see Appendix C.

For our leaderboard service we have decided to implement a few features from both Facebook
and Playtomic, as well as some of our own features. Here is a table that maps the service to the
features offered by the service:

Feature Playtomic | Facebook | Our Service
Read a game’s top N 0 0
scores

Read a user’s scores 0 0 0
Scores pagination 0 0
Score tags 0 0
Score deletion 0 0O
Multiple scores per 0 0
user per game

Scores + radius 0
queries

Filter scores with a

: . O O
time granularity

Externally hosted 0 0

Friend Network

Self-hosted

As can be seen from the table, we actively decided against implementing any notion of a friend
network, instead leaving that to the client, if they so desire. The reason for this is that many
games would already choose to use the existing Facebook social network to represent the
friends of the users. We also decided against making the service a self-hosted one. This means
that we, as the service owners, would be responsible for any service level agreements of our
clients and we would have to develop a subscription based model to fund and support the
project, instead of a software licensing model. The following list defines some features whose
definitions may not be obvious from the above table:

top N scores: given a number, N, return the top N scores for this game
scores pagination: allow scores for a game to be paginated based on a “scores per
page” and “page numbers” variables

e score tags: allow a tag to be associated with a leaderboard entry, this may indicate the
game’s “level” or other information about a leaderboard entry

e scores + radius queries: given a score’s id and a radius, r, return a list of length 2r+1 that

contains r scores above and r scores below the score associated with the specified id

2.4 Service Requirements

We make the following requirements of our leaderboard service.
This section will evaluate these requirements in terms of (a) ease of administration; (b) security
of service; and (c) scalability of service.

2.4.1 Administrative Ease

An administrator of this service should be able to modify or restart the service. This section will
outline the different features of this service that will make it easy for an administrator of this
service to do her job.

Server restarting: The service we use for our cloud servers should enable a fast and simple
server restart, should that be required. There are cases where this is necessary, as it will wipe
the cache for the server and start the service with a “clean slate” so to say. This could help by
closing any bad database connections, dropping any hung client requests, and things of that
nature.

Application deployment: The service should be easy to deploy. Given a new version of the
codebase it should be easy to drop the code on the server and start the service running in the
new version, given that it has the same startup or restart commands.

2.4.2 Security

Clients of this service should not be concerned with how data is handled and the security of the
service. Certain things, however, are out of control of the service in terms of security (such as a
client storing their API key in a public GitHub repository).

The only concern in terms of security right now is how the API key will be sent from the client to
the service in an HTTP request. The most simple solution we found for this is to register the
server with an HTTPS certificate. This will allow asymmetric encryption of the HTTPS request.
The HTTPS protocol encodes the entire HTTP payload over the encrypted TCP connection,
which is where the API key is specified. Putting the API key in the headers of the request will
keep the API key from being read by man in the middle attacks.

2.4.3 Scalability

The service should be able to scale to support more traffic as a game’s user base increases.
This means that as there are more players in a game, there will naturally be more requests to
the service. As our service gets more requests, it should not crash or hang, but should rather
scale as needed. This should either be an automatic process (which is something enabled by
the cloud computing service provider) or it should be a small amount of requests by an
administrator.

Because scalability in web services is a primary focus of this project, we intend to make sure
that this service can handle as many requests as possible before having to scale either
horizontally (adding more servers to our infrastructure) or vertically (making our current servers
able to handle more load). This means that there will be testing done to develop a reasonable
estimate for how many requests can be simultaneously handled on a specific server with
specific hardware.

10

2.5 Internal Service Decisions

To build this service, there are two basic things we will need. We need software (an application
server) to handle requests and build responses. We need hardware on which to run this
software.

2.5.1 Application Framework

We designed the application server more easily using the building blocks of an application
framework. Web application frameworks are software structures that abstract many of the low
level concerns of making a web application and allow high level programming of web concepts,
without which, we would have many hours of labor to write handlers for the HTTP requests. One
example of a common feature of web application frameworks is a templating system. Instead of
directly writing HTML, many frameworks will allow you to just write a template in an HTML
shorthand, give it some arguments, and it will dynamically render the template into HTML using
the arguments. Other common features include: caching, URL routing, object-relational
mapping, session management, and argument parsing. For more information, see Knupp’s blog
post on web frameworks (Knupp, 2014).

Some popular web application frameworks include: Django (Python), Ruby on Rails (Ruby),
Flask (Python), Bottle (Python), Sinatra (Ruby), CakePHP (PHP), Node.js (JavaScript),
Meteor.js (JavaScript), and JSF (Java). There are many more, and the differences between
each span larger distances than even the distance between each of the languages in which they
are implemented.

2.5.2 Cloud Computing

It used to be the case that if you wanted to run software, you needed to get the hardware
yourself. Now the physical computers and most of the administration around maintaining them
can be taken care of for you by renting virtual resources with a cloud computing provider. We
want to use one of these providers so we don't have to manage the physical hardware
ourselves.

11

Cloud computing removes the need to buy and maintain physical hardware on which to run
software. Instead, all of the hardware level management is taken care of by the cloud computing
provider, and one just buys virtual computing resources on which to run software. There are two
levels of granularity to these cloud computing services: Infrastructure as a Service, and Platform
as a Service.

First there is infrastructure as a service (laaS). laaS allows users to create and monitor remote
resources like servers, storage, and networking. Users can easily add or remove resources with
their variable needs. They have a lot of control over the the resources. Popular laaS providers
include Amazon Web Services (AWS), Google Compute Engine, and Windows Azure.

Second is platform as a service (PaaS). PaaS abstracts most parts of the system that laaS
requires explicit management, with the exception of the actual application. PaaS effectively
handles all of the specifics of laaS such as scaling, load balancing and high availability. Popular
PaaS providers include AWS Elastic Beanstalk, Heroku, and Google App Engine.

3 Methodology

Starting from the initial design of this project there are important decisions we had to make
about how the system would work internally as well as how it would handle external requests.
Along with that, there are decisions we made around how we would build this software and the
platforms, frameworks, and services we would use to help us. This chapter discusses the
decisions we made revolving around how we would theoretically implement the features we
needed, and how we implemented those features in practice.

3.1 Decisions of Design and Architecture

This section describes the system architecture and design and how we arrived at those
decisions. While it seems broad, this section will focus on more abstract decisions that we faced
with how the system should work internally as well as how it should handle external requests.

3.1.1 Leaderboards

To determine how our leaderboard would work, we compared how other services designed their
leaderboards as well as which model of leaderboard would be best suited for our use case. We
decided to make our leaderboard granularity on the level of allowing multiple scores on the

12

leaderboard per game per user per tag where a score is defined as an integer. Here is what a
simple leaderboard looks like:

oo ro [e |

Leaderboard

This Week Last Weok This Month Last bonth

Leaderboard for week 32: August 04 2014 - August 10 2014

Rank Display Name Peints

http://blog.spivi.com/wp-content/uploads/2014/08/leaderboard_1.jpg

To give an illustration of how a game using our leaderboard might work, let’s take Pac-Man as
an example game that might use our service. The user would not want to see their score on the
granularity of the whole game, because the score for one level might be the top score for that
entire level across all users, whereas their entire game score might not make the top 100
scores. The tag for these scores would then map to the different levels that a user could play.
Games that only had one level, however, would be able to get around this by only creating
scores on the leaderboard with the same tag.

A score is going to be represented as an integer to be able to easily order the scores. Ordering
is important because all of the different ways to query the leaderboard will return an ordered list
of scores. We considered using a JSON string representation (or really any arbitrary data
structure) for scores to allow greater flexibility, but this would make it very difficult to order and
compare scores, as the leaderboard would also have to introduce a scoring function to order
scores. Instead, the service will work with integers for the scores and if the developer wants
their scores to be based on something more complicated, they will have to create some sort of
encoding and decoding logic themselves.

Tags are represented as flat strings. We considered having a hierarchy or multiple dimensions
of tags. This would allow a client to specify the level, the difficulty, the items equipped, and
whatever else they might want to arbitrarily filter on later. Allowing an arbitrary data format for a
tag makes it much more difficult to store and query in most databases, and adds a lot of
complexity. We decided to stick with the simpler model of flat strings for tags. We also
considered making tags an enumeration, having clients define which tags are valid when they

http://blog.spivi.com/wp-content/uploads/2014/08/leaderboard_1.jpg

13

sign up. This imposes another burden of validating the tags on every new score addition. It also
would add extra work for clients that want to add new valid tags after scores were already
submitted. We decided to trust the clients to take care of validating tags on their end.

We chose not to make the leaderboard score global (that is, accessible across all games)
because comparing scores between different games would not make sense. Even if two
development teams made the same game, they could try experimenting with a different scoring
metric. This would render comparisons between the two games uneven.

For the purpose of leaderboard querying we decided to expose three different ways to get data.
The first would be a simple query, asking for the top N scores of a game and tag pairing. The N
value would have a default if no value was passed, as well as a limit if a value that was too large
was passed. Second, the client can query the leaderboard with a list of user_ids. This would
return the user _id, score tuples for those users in ascending order by score. Having this
capability would integrate easily with a friends network and would delegate that responsibility to
the game developer. The third way is by asking for adjacent scores when adding a new one.
Along with the information for the new score, a client would pass in a radius variable. The radius
describes how many scores would be listed above and below the new score. This query has a
maximum radius limit. We decided that an ordinal radius makes sense for this type of querying,
rather than a score radius. This ensures that the user knows exactly how many scores they’re
getting back (2*radius + 1) as well as having the score that was just created be the median
score in the returned list. The disadvantage of this approach is that developers would not be
able to construct a score-dependent radius based on the game.

We considered whether or not we would keep track of the timestamp of a score. We decided to
include time as a factor in our leaderboard. This would allow, externally, for requesting scores
on a granularity of time. A client could request the top scores for the past day, month, week, or
all time Along with that it would allow, internally, metrics and reporting of the usage of our
service and how often and frequently it was used. We decided that this would prove very useful
both internally and externally, so we decided to keep track of timestamps.

We considered allowing anyone to read any leaderboard. This would make it easier for third
parties to make custom leaderboard views outside of the game itself. Unfortunately, there might
be some games that don't want that kind of transparency. There might be a game that's focused
on weight loss that uses this service, and a player may not want their scores shared with
anyone outside of the game, or anyone outside of who the game allows to see it. To get the
best of both worlds we considered allowing user or game level permissions. We decided that
the added complexity wasn't worth the benefit of the feature, and will simply make everything
private to the game.

14

3.1.2 APl Documentation

The purpose of the APl documentation (shown here: http:/tmwild.com/static/docs/index.html) is
to make it easier for developers to integrate with the APl and to understand the peculiarities of
the interface. We wrote the documentation using the slate template which provides a beautiful
view of example code and text in parallel annotating the code. The documentation covers using
the HTTP API and using the Java Client Library. It is intended for developers to be able to more
easily integrate Rank into their game.

3.1.3 Developer Console

The developer console exists to allow client game developers to register their game. When the
developers register themselves, they will receive an API key along with a request limit. This
request limit will indicate how many requests they can send over a 24 hour period before
becoming throttled. Once they hit the ceiling for that 24 hour period, all incoming requests will
be rejected with an HTTP status code of 429 to indicate that the client has sent too many
requests (IETF, 2012). The developer console will have three primary views: overview,
settings, and manage.

= Rank Dashboard Account Settings Logout

Delete Scores

You can delete multiple scores from using any of the three attributes listed below. Please note that this action is
imeversible.

Show 10 & entries Search:

A
D Created At Score User Id Tag

1 2015-12-06T13:31:25 0 1 level one
2 2015-12-06T13:31:25 0 1 level one

A screenshot from the manage page.

http://tmwild.com/static/docs/index.html

15

From the overview, the developer will be able to see how many requests their games have
made in the current day starting at midnight. It will show the requests made compared to their
allotted limit, this will include the requests that were not processed due to exceeding their limit.
The developer will also be able to see the requests made over the period of the day starting at
midnight and see the requests made every day over the past week in a line graph.

From the settings view the developer will be able to invalidate an API key and request a new
one. This can be necessary in the case of the API key being compromised or obtained by some
malicious third party. This will render the API key to be invalid for all requests and only allow the
developer requests using the new API key that will be supplied to them. In addition to this, the
developer will also be able to close their account from this console. This means that the API key
will be invalidated and they will be unable to request a new one. Since the account is closed, all
data that belongs to that account will be unable to be reached by any external user and it can be
deleted. From this view the developer will also be able to close their account. This would mean
that all record of the client would be eradicated from the application.

From the manage view the developer will be able to view and delete specific entries based on
different things. All entries in their database will be exposed in a table. In this table they will be
able to delete entries based on a tag, user_id, or entry_id. This will be useful for developers
that are testing from a single user account, or developers that test with a tag called “test” or
something of that nature. This will also be useful if, for example, a user found some vulnerability
in their game and that user’s scores needed to be deleted. The developer will also be able to
see a graph of the requests from their API key over different time granularities.

3.1.4 Admin Console

The admin console presents analytical insights to the service. An admin in this sense is an
owner of this service. The admin console has three views: overview, manage clients, and
metrics.

16

Rank Dashboard Logout

Active APl Keys:

Requests Made Today

0

out of an expected

3600

A screenshot from the overview page.

The overview exposes to the admin how many API keys are currently active. The overview
page will also show how many requests have been made in respect to the total expected
amount based on the throttling limit of all the users together. This allows the service
administrator to evaluate what is needed in terms of server resources.

The manage clients view exposes the admin insights to the different users and allows the
admin to manage the users. One of the features of managing the users include “freezing” their
account. This means that the selected client cannot make requests with their API key, returning
a 403 (Forbidden) HTTP status response instead of processing the request and returning any
normally expected response. The admin console will also allow an admin to “impersonate” a
client. This means that the admin will be able to see the client’s developer console and have just
as many permissions as the game developer would have.

The metrics view shows the currently logged in admin how many requests have been made in
the past week. This line graph will show an aggregation of data over all the clients of the
service. There will also be a link to Amazon Web Services’ CloudWatch feature. In the AWS
console this feature shows resource usage of the servers that are currently being used for the
service. This will allow the service admin to see how the infrastructure is doing in terms of CPU
and memory usage.

17

3.1.5 Java Client Package

We planned to integrate the Rank API into an example game that is written in Java. The
Software Engineering students who will be using the API will similarly integrate the Rank API
into their Java games. We can significantly reduce the difficulty of that task by creating a Rank
Java Client Library. This library uses Java objects to wrap each of the API calls. It allows
developers to work directly with Score objects instead of having to deal with making HTTP
requests and parsing JSON responses.

The only major decision we made in the process was which Java HTTP request library to use.
Apache's library and Google's library seemed to be the most popular. We chose to use Google's
library because the example code seemed more simple. Other than that, creating the library
was a matter of having methods cover all of the endpoints.

There are detailed instructions on how to use the library in the APl documentation:
http://tmwild.com/static/docs/index.html

3.1.6 Logging

Due to the nature of the developer console and the admin console, we needed some way to
inform the users and system administrators of their usage and general usage of the service. To
do this we built a logger that reports metrics of usage at both an infrastructure level and an
application level.

We decided that we needed logging because we needed a way to provide metrics of usage and
system health to both the service administrators and the service users. We need to expose
usage to our users to show them how close they are to surpassing their daily allotment of
requests. We, as service administrators, need to see how many users there are, how many
requests are coming in, and how our hardware resources are handling user traffic.

We decided to log every request both to a database and a local file. The log files are rotated on
a daily basis. Every request that is logged contains the following information:
e timestamp

e http verb
e url route
e response code
e gameid

A link to AWS CloudWatch is also supplied. CloudWatch is a service that reports on the health
of any AWS resource, including servers and databases.

https://tmwild.com/static/docs/index.html

18

3.2 Decisions of Implementation

Whereas the previous section discussed how the service would work at an abstract level, this
section will detail how the service works on a lower level and how we decided to implement the
features we decided on having in the previous section.

3.2.1 Enterprise vs Public

Facebook's game API was centralized; everyone using it sent requests to the same set of
servers. Playtomic's API was a specialized enterprise solution, meaning that each game
development group has to host a copy of the API on their own servers. We had to choose
between an enterprise solution or the public solution.

The enterprise solution is better because it allows the service to be contained in the user's
internal network, isolated from the rest of the Internet. It also allows the user to have much more
control over uptime of the service, and it makes it impossible for the service creator to do
anything nefarious with the data given to the service, as the service creator doesn't have access
to the data. It also creates some additional overhead for version upgrades, requiring the
enterprise customer to download the new version and redeploy with that upgraded version. This
could have serious implications for how frequently bugs could be patched.

The public solution is better for a simpler client in that it doesn't require any overhead or system
administration for users. Users just use it directly. This requires less work for the service
developers. This also allows faster iteration because the development teams don’t have to
worry about maintenance of the service.

Since we don't think that our service will have incredibly sensitive data that game developers
wouldn't want us to be able to theoretically access, and it will take more time than we have to
complete an enterprise solution, we are going with the public solution.

3.2.2 Front End Implementation

The front end of the application is composed of multiple components: the API documentation
(shown here: http://tmwild.com/static/docs/index.html), the service admin console, and the
developer console. These three components have multiple libraries to help implement them.
The libraries and other details are discussed in the following paragraph.

http://tmwild.com/static/docs/index.html

19

The API documentation (shown here: http://tmwild.com/static/docs/index.html) is served as a
static page that is compiled from written HTML files that are compiled by Slate (Lord, R., 2013).
The static pages and static assets that make up the developer and administration consoles are
served from Flask. The HTML pages are styled using Material Design Lite (Google, 2015c). All
of the JavaScript is written first in Coffeescript then converted to JavaScript (Coffeescript, 2015).
This is done through a process of transpiling, whereby the Coffeescript code is transpiled into
JavaScript so the browser can run it. JQuery helps developers to manipulate the DOM of the
web page by exposing utility functions that make DOM related functions easier (The jQuery
Foundation, 2015). We use DataTables for rendering easily searchable tables. DataTables
helps by easily styling and exposing functionality for HTML tables (Spry Media Ltd, 2015).

The application framework we used came pre-loaded with the bootstrap library. Bootstrap is a
user interface library that is very standard among many websites that are created in today’s
software climate (Twitter, 2015). The developer and admin consoles use a different user
interface library, however. This is because we wanted the user experiences to feel different.
While we felt the home and about pages should feel like a normal website, we wanted the
console to have a stark difference and feel more like a web application. For this reason we used
Material Design Lite, which is an implementation of the Material Design Specification (Google,
2015b). Material Design is a design specification intended to make the elements of the web
page look and feel like “material”. Many of the specifications in the document include rules
around implementation that seem very intuitive, e.g. material casts shadows, material cannot
pass through each other, etc. The design specification is currently under active development by
Google.

3.2.3 Cloud Computing Provider (AWS)

We considered two popular cloud computing services: Amazon Web Services, and Digital
Ocean. Both are sufficient to be able to build the API, but they differ in level of control and
abstraction. Digital Ocean allows the user to make machine images, deploy those images to a
virtual server, manage domain names, and manage IP addresses. AWS allows all of those
things and more. It allows for specialized database servers to be spun up with little
configuration. AWS also provides easy load balancing, automatic scaling, a hugely scalable key
value store, and server metrics, all of which would have to be set up manually with Digital
Ocean.

Each of those services is necessary for the Rank API, so since AWS takes away the burden of
managing or developing those key services, we decided to go with AWS. We initially started
using just AWS's Elastic Beanstalk service, but decided it wasn't the best option for our use
case and time restraints. For more details on this decision, see Appendix F.

http://tmwild.com/static/docs/index.html

20

3.2.4 Web Application Framework Implementation (Flask)

With the multitude of web application frameworks available, it is nearly impossible to understand
all of them and compare them to make a decision on which is right for a particular task. We
narrowed the search space to a few that we personally know are being used in industry
production software: Ruby on Rails, Django, Flask, and Sinatra (Hamlett, 2015; Twitter, 2011).
Of these we chose Flask. This analysis is necessarily shallow, as the differences between even
these four frameworks could be a considerable research project itself.

Rails is a heavy framework built on top of Ruby that emphasises convention-over-configuration;
it does a lot of things for the user behind the scenes on its own (Hansson, 2015). It has a
model-view-controller structure, which allows for a clean separation between the application
data and its presentation.

Django is written in Python, is similarly as heavy as Rails, but emphasises explicitness over
implicitness (Pires, 2014; Makai, 2015). This means spelling out all of the configurations that
Rails has by default. It, too, uses the model-view-controller structure.

Flask is a light microframework in Python. To get all of the features of Django or Rails, it
requires extensions. Fortunately, Flask has an active extension ecosystem (Hamlett, 2015). For
smaller projects, it is much easier to hit the ground running with Flask than Django or Rails.
Sinatra is a lightweight DSL on top of Ruby for creating web apps. It, too, has many extensions.
Sinatra is very similar to Flask in that it is also easy to develop small projects (Jones, 2012).

Between these options, we have chosen Flask. We don't think the leaderboards API will be
complicated enough to warrant using the more powerful Django or Rails frameworks. Between
Flask and Sinatra, the choice isn't clear. Since we both have much more experience in Python
than Ruby, we chose to go with Flask.

3.2.5 Continuous Integration Service

For our continuous integration (Cl) service we have narrowed the choice down to be either
Travis Cl, or Drone(drone.io, 2013; Travis Cl, Gmbh, 2015b). We chose these because we did
not want to focus too much effort on our CI tool, because we can instead spend that time to
develop the core functionality of the service, which we find to be more important.

We chose to use Travis Cl for a couple reasons. The main reason we decided to use Travis ClI
was because of its Build Matrix feature (Travis Cl, Gmbh, 2015a). This feature enables the ClI
build to be run for many combinations of different versions of dependencies. For example, we

21

could specify to build with Python versions 2.5, 2.6, and 2.7 along with Flask versions 0.9.0,
0.10.0, and 0.10.2 and it would run the build with every combination. In a Quora posting, the
primary author of drone.io indicated numerous features that drone.io and Travis Cl share, as
well as some features in which they differ. As of the posting (November 2014) and the writing of
this document (September 2015), Travis Cl has more features that are relevant and useful for
this project (Rydzewski, B., 2014). Our current build runs on Travis Cl even though we don’t
currently use it to the full extent.

3.2.6 API

When building APls, it is typically regarded as good practice to make a RESTful API
(Searchsoa, 2015). For the actions on our API, however, we felt the best way to represent them
was without following REST. One requirement of a RESTful APl is that its actions on its
resources are informed by HTTP verbs on its universal resource identifiers (URIs). For example,
retrieving a list of scores would be the HTTP verb GET and the URI might be /scores. In our
case, we separate our leaderboard resource into a few URIs based on their actions and only
allow specific HTTP verbs to be used on them (attempted use of other verbs will return a 405,
method not allowed error). Here are our routes and what they do:

HTTP Verb URI Action

GET /api/leaderboards This URI returns a leaderboard for the game
specified by the API key used in the request. This
URI takes multiple different parameters and filters
the leaderboard on them.

POST /api/add_score This URI adds a new score to the database.

POST /api/add_score _and_list [This URI adds a new score and returns a list of the
new score with a radius of scores around it.

GET [status This URI returns the status of the API and the
current version.

These are the only endpoints that are exposed in the API. Since the APl was small (there was
only one resource) we found it appropriate to not follow RESTful recommendations. For more
information on the API endpoints and documentation, take a look at our APl documentation
page: http://tmwild.com/static/docs/index.html

To ensure a request is coming from an authorized user, the service checks the headers on each
incoming request. The header the service looks for is “Authorization” and the value of the

https://tmwild.com/static/docs/index.html

22

header must be “Bearer<space>“ then the client’'s API key. If the header is not present, the
request is rejected with an HTTP 401 code. If the API key is invalid, the request is also rejected
with an HTTP 401 code. If the header is present and the API key correctly maps to a client in
our database, but the client has used their allotted amount of requests for that day, then the
request is rejected with an HTTP 429 (too many requests) code.

To send requests to and from the server, there should be some standard method of
communication and message encoding. We chose to use JSON because it's currently adopted
as the industry standard and most languages and web frameworks (including Flask) have
libraries to handle interacting with JSON (JSON, 2015). All API endpoints in the service accept
JSON in the request data and return JSON in the response data.

3.2.7 Logging

Since we used Python with the Flask framework, we had to understand best practices for
logging with that technology stack. As it turns out, Flask has no special logger; it uses Python’s
logging under the hood. We created some new Python loggers that record the details of the
requests we want to keep track of and registered them to log after every request. They log to a
local file that is rotated every midnight and also to the database for the purpose of reporting
aggregate statistics.

The Python loggers have four components: the Logger, the Handler, the Filter, and the
Formatter (The Python Software Foundation, 2015). The service uses no logger, instead it
attaches a handler to Flask’s logger so that on every log, the log record will be sent to the
service’s handler. The service’s handler will send the logs to the file
“logs/<environment>_log.json” where the “environment” is either “dev” or “prod”. Every midnight,
the log will be rotated out, marked with the current date and replaced by a new log file for the
new day’s requests. The service attached a filter to this handler that filters out (refuses to log)
any request that did not hit any route path that is prefixed with “/api”. After those requests are
filtered out, the logger passes the log record to the formatter. The formatter will format the log
record by passing parameters into an ordered dictionary (an ordered hash map) and convert
that to JSON. During this process, the formatter will also create a new instance of a
UserRequest class. The UserRequest is used to measure how many requests have been sent
by a specific client, for the purpose of rejecting the requests after the allotted amount of
requests in the 24-hour period has been exceeded. The log record’'s message is then set to the
JSONified version of the ordered dictionary. The log record is then passed to the parent

formatter’s “format” method, so the record’s message can be logged to the local file.

23

3.2.8 Database Schema

The database has a limited number of tables, since the service is not currently complex. The
database tables consist of Users, Scores, Games, and UserRequests. The User table consists
of all the users that sign up for the service, including the service administrators. The fields
include an ID, a username, a (hashed) password, a created_at date, an is_admin boolean,
and a game_id foreign key. The Score table consists of all the scores created by any game (or
user). A score instance consists of a user_id (not a user’s foreign key), a score, a tag, a
created_at date, and a game_id foreign key. The Game table consists of all the games
associated with every user (1-to-1 relation, created every time a new user is created). A single
game instance consists of an api_key and a frozen boolean, which determines whether or not
the api_key can be used to make any requests on behalf of that game. Finally, the
UserRequests table is made up of all requests to the API from any game’s api_key. A
UserRequest instance consists of a time_requested date, a game_id foreign key, an
http_verb, a uri, and a status. All of these fields are the same fields that are logged on each
request.

24

4 Success Metrics

We'll be evaluating this service from two different perspectives: resiliency and design. Resiliency
testing will deal with simulated traffic, system scalability, and how it handles load, among other
things. Design, on the other hand, deals with how easily this service can be used and how
easily the service can be maintained as needed.

4.1 Resiliency

While it's important that the service works, it's arguably equally important that the service is
robust in the face of a large influx of traffic, while requiring litle manual intervention from any
system administrator. This section will discuss how well the service does when evaluated in
terms of how resilient and robust it is. The two topics of resiliency discussed are the simulated
traffic of the system and load testing & scalability. Both of these criteria are defined in their
respective sections.

4.1.1 Simulated Traffic

After a simple client integration for a Java game, we found that, on average, 35 requests were
made per hour by a single user. Based on our estimates, we can handle roughly 780 of these
users simultaneously on a single server instance. Based on these metrics, we can safely
conclude that any game developer (with an API key) will run out of requests well before their
expected 24 hour request period counter is reset. After a couple of minutes of this much traffic
(discussed more in detail in sections 4.1.2 and 4.2.3), the Amazon Web Services auto-scaling
policy will take effect and create another server instance and put that server instance behind the
Amazon Web Services’ Elastic Load Balancer (ELB). While it is important to decide on a good
balance of time between high CPU load on a server and creating a new server instance, we
unfortunately did not have enough time to thoroughly investigate what that ideal time (for our
service) would be.

The simulated (single user) traffic for this is based on a naive implementation of a Rank service
integration for a Java game. The Java game sends a request to the Rank service to create a
new score after a game has been finished. It also has a scoreboard open that will update the
scores every few minutes. Ideally, a new score would be added to the leaderboard upon a win
condition when a user finishes a game, and not a lose condition (for most games, anyway). This
would decrease the amount of requests per hour that are being sent to the service. Another way
to decrease the amount of requests sent to the service would be to only display the scoreboard
after a game is finished or if a user specifically asks to see the game’s scoreboard.

25

4.1.2 Load Testing and Scalability

We tested the capacity and scalability of the Rank service by hitting it with a large number of
concurrent users and monitoring the behavior. We used Locust (http://locust.io/), an open
source load testing tool, to simulate many concurrent users.

We created a simple model of a user, who starts by requesting a filtered score list, posting a
new score, and listing again. The user waits randomly between 5 and 10 seconds between each
action sequence, then repeats. Then we slowly scaled up the number of users until a request
failed. We defined a request failure either as returning a 500 error, or by taking more than 1
second to return a response. Here is the data from that load testing:

servers 1 2 4 8 16

failed after # 781 1532 3174 6518 13492
concurrent users

Second, we tested the scalability of the system by measuring the time to action of the
autoscaling service. As above, we hit the service with many concurrent simulated users, and
recorded when a request failed. We then monitored the system to see how long after the failure
the system would auto-scale itself to be able to handle the increased load. The average time to
action was 136 seconds.

This means that the system will scale itself with no human interaction within 4 minutes of a
problematic load. Since this is automatic and relatively quickly self-repairing, we consider our
autoscaling endeavor a success.

4.2 Design

It's important that our service is functional. It’s also very important that the functionality of the
service is easy to use and understand. This section will evaluate how well designed the service
is. First, in terms of a client perspective, to see how easy it is to integrate the service into an
existing Java-based game with the Java client as well as how understandable the developer
console is on the web application. Second, in terms of an administrator perspective. It is
important to determine how easy it is to deploy and scale the application, as well as how
understandable the admin console is.

http://locust.io/

26

4.2.1 Client Perspective

We wanted it to be very easy for a client (game developer) to add the use of our API to their
game, and manage their account through the developer console. To evaluate this goal, we
integrated our API with a game. We documented the troubles we had, and this was a rough
qualitative assessment for success or failure.

Since one member of our team worked alone to develop the Java client package, it made sense
that the other member followed the documentation provided to integrate the package into the
standalone Java project. In following the documentation that was provided, we found that we
were missing a couple details on how to get the project working well with the Java client. We
also found and fixed a few small problems with the Java client to make sure that the user of the
Java client would better understand the errors they were receiving.

We also evaluated how well the developer console was implemented. The core functionality of
the developer console was very easy to use. Signing up followed the natural user sign up flow.
The default view showed request rate and it was easy to navigate to account deletion, API key
cycling, and the score management page. Since each of the actions a developer can take are

relatively simple, and the Ul is very clean and intuitive, the developer console provides a very

easy way to manage the game account.

4.2.3 Admin Perspective

We want it to be very easy for us and future developers to deploy the API, scale it as needed,
and extend its functionality. This section will touch on the ease of deployment (refer to the
deployment steps for the deployment instructions in the source code of the project) and the
ease of scalability.

The steps for deploying the service was set up by one of us and the other of us followed the
steps to deploy the service. The deployment has clear and discrete steps for deployment and,
though it was found to be missing some information on the first pass, that was corrected in an
update to the deployment steps. The only potential problem arises in the fact that the steps for
the Amazon Web Services web console depends on the version of the web console
implemented as of December 2015. If a new version of the web site is released and major
things are changed, then the instructions may no longer suffice. Going through the entire
process, from registering an account on Amazon Web Services to having a production server
running serving the code to the website to external users took roughly one hour.

The service scales automatically. This is done by telling Amazon Web Services that after a
single server reaches a 70% CPU load, another server should be added behind the load

27

balancer. This only happens if the server maintains that CPU load for at least two minutes.
Once another server is added, all traffic from the load balancer cycles round-robin style between
all servers that are currently in service. Once there is very little traffic for another period of time,
Amazon Web Services will automatically start terminating server instances that it does not need.
The maximum number of servers that will be put behind the load balancer is five.

28

5 Conclusions & Future Work

This chapter will discuss how this project turned out after completion. It will describe the results
of our work from a client perspective, an administrator perspective, then future work that is
recommended, with recommendations on how to start going about some of that work.

5.1 Client Conclusions

After finishing this project and conducting a postmortem, we drew some conclusions about how
the application works from a client’s perspective. Specifically, the only things that a client
touches are the developer console, the APl documentation (shown here:
http://tmwild.com/static/docs/index.html), and the Java client library. The implementation of
these three things directly informs a client’s experience with using the Rank service for their
game.

The developer console allows many functions to the client of the Rank service. It's user
interface uses a library that is based on Google’s Material Design specification. As such, it has
the look and feel of a modern web application. The only functionality that the web application
does not offer is the possibility to modify the existing data in the leaderboard. Deleting and
viewing the data is available to the client users.

The APl documentation (shown here: http://tmwild.com/static/docs/index.html) is built with a new
library that was developed by Triplt for a slick and clean API documentation design. While the
library doesn’t allow the documentation pages to make on-the-fly example calls to the API, it
does have other features, such as showing how to make API calls in different languages based
on the client libraries that the developers might have created to aid the clients in making calls to
the API’s endpoints. Since the documentation tool allows for this functionality, it is used as the
documentation tool for the Java library as well. While this is sufficient as far as documentation
goes, it lacks things like exception catching.

The Java client library is a standalone .jar file (which needs its dependent libraries installed) to
help clients integrate their Java projects into Rank’s service. It's functions work and return what
is expected to be returned. The dependencies that it uses are libraries that are used and
developed by large corporations (Google). From a client perspective, the only downside is that
all of the existing documentation lives inside of the APl documentation itself.

http://tmwild.com/static/docs/index.html
http://tmwild.com/static/docs/index.html

29

5.2 Administrator Conclusions

Likewise, we found that after conducting the project’s postmortem, there were only a few things
from an administrator perspective that needed evaluation. Those three things are the
administrator console, the deployment documentation (shown here:
https://github.com/Rdbaker/Rank/blob/master/deploy/readme.md), and the code repository.
These three things will directly influence a Rank service administrator’s experience.

The administrator console allows many functions over the clients of the Rank service. The
administrator can see how many requests from the expected requests were hit today as well as
the number of active clients. The administrator can manage the clients by viewing their data,
freezing their API key (rendering their API requests useless), deleting a client’s account, or
promoting the user to an administrator. Finally the administrator can see the aggregate count
over time of the number of requests that has come into the service as well as a link to the
Amazon Web Services’ Cloudwatch information to see the health of the service’s resources.

The deployment documentation (shown here:
https://github.com/Rdbaker/Rank/blob/master/deploy/readme.md) for a service administrator
can be found in the code repository’s “deploy” folder (shown here:
https://github.com/Rdbaker/Rank/blob/master/deploy/readme.md). It has a discrete number of
detailed steps that the service administrator must follow to set the service up using Amazon
Web Services. All steps from creating an account to stopping a running server instance (which
halts any cost incurrence for that server instance) are detailed in the documentation. During the
project development, one member took on the primary role of setting up the infrastructure. The
other project member, towards the end of the project, followed the step-by-step guide to create
an account, create the resources, and deploy and run the service. At a leisurely pace, this took

a little under one hour (around 55 minutes).

The code repository for the Rank service is available and open sourced on GitHub
(https://github.com/Rdbaker/Rank). The same is true for the Rank Java client library
(https://github.com/mjperrone/RankJavaClientLibrary). The repositories themselves are made to
be readable and encapsulated through each of the subdirectories within the repository. The
“skate” folder has the APl documentation information. The “migrations” folder has all information
on the database migrations that need to be run in order to make sure the models used by the
object-relational mapping are up to date. The “rank” folder contains all the information used by
the service. The two main folders inside the “rank” folder are “api” and “user”. The logic for all of
the endpoints of the API and the dashboard are contained in those two folders, respectively.
Much of the code in the repository follows PEP8 guidelines
(https://www.python.org/dev/peps/pep-0008/). The entire service was scaffolded from the
Flask-Cookiecutter project template (https://github.com/sloria/cookiecutter-flask). This allows the
code base to be standardized across many different Flask projects and ensures readability.

https://github.com/Rdbaker/Rank/blob/master/deploy/readme.md
https://github.com/Rdbaker/Rank/blob/master/deploy/readme.md
https://github.com/Rdbaker/Rank/blob/master/deploy/readme.md
https://github.com/Rdbaker/Rank
https://github.com/mjperrone/RankJavaClientLibrary
https://www.python.org/dev/peps/pep-0008/
https://github.com/sloria/cookiecutter-flask

30

5.3 The Future

While working on this project we amassed a list of features we wished we could have added,
ranging from UI/UX improvements to cron jobs for the purpose of purging the database of
unnecessary data The paragraphs that follow discuss things that would be good to add to this
projects, as well as an idea on how to implement some of them. Obviously, the details of
implementation choice are left out for the sake of brevity, but please contact the authors if you
wish to discuss implementation details.

HTTPS: While it was one of our original goals, our service does not currently have HTTPS
support. The service we were investigating and invested a large amount of time into did not end
up natively supporting our type of infrastructure. We intended to certify our servers from the load
balancers, but the service we were investigating requires a single server, and does not support
a load balancer. This is something that should be investigated soon to ensure proper encryption
and protection during the transportation of client data. Using HTTPS would give the service SSL
encryption on traffic to and from the website. This means that our clients wouldn’t have to worry
about the security concerns of the data that was being sent over the internet traffic.

Client package implementations in other languages: As the number of potential users
grows, so does the possibility that the users will be using languages other than Java. While the
implementation of a client library will depend on the language itself (and the community behind
it), it is a good idea to have a client library because it will wrap the HTTP requests and decouple
the HTTP routes from the specific actions that they might represent. This is especially important
in cases where there is no specific pattern to the API routes, such as a non-RESTful API (like
Rank).

Global users: As the number of clients grows, it will be more likely that different clients will be
using different games, but the same user base. For that reason, it may be worthwhile to
investigate the possibility of having global users. Currently, Rank only implements users in the
form of an integer (representing a user’s id). It might be found worthwhile to investigate different
use cases that a client might have for persisting a user entity between different games (with
different API keys).

Database purging: Every time a user makes a request to any API endpoint of the service, the
request that was made is logged to the database. The use case for this is a quick lookup to
either see if the API key has surpassed the allotted amount of requests in a day and for usage
metrics and reporting of the service. While these requests are logged to the database, they are
also logged to the local file system. After one week, there are currently no uses for viewing the
requests. For this reason, it would be useful to periodically purge the database of requests that
are older than one week.

31

Log forwarding: Since the API requests are logged locally on each server that receives
requests, it would be good to forward the logs to some sort of more permanent storage. There
are services and libraries that exist that periodically send local log files to a remote storage,
such as AWS’ S3.

32

6 References

Ashkenas, J. (2015). BackboneJS. Retrieved September 12, 2015, from: http://backbonejs.org/

Apiary Inc. (2015). Apiary. Retrieved September 13, 2015, from: https://apiary.io/

Coffeescript (2015). Coffeescript. Retrieved November 21, 2015, from: http://coffeescript.org/

drone.io (2013). Drone. Retrieved September 12, 2015, from: https://drone.io/

Facebook, Inc. (2015a). React. Retrieved September 12, 2015, from:
http://facebook.github.io/react/

Facebook, Inc. (2015b). Scores API. Retrieved September 2, 2015, from:
https://developers.facebook.com/docs/games/scores

Freeman E., Robson, E., Sierra K., & Bates B. (2004). Head First Design Patterns. Sebastopol:
O’Reilly Media.

Google, Inc. (2015a). AngulardS. Retrieved September 12, 2015, from: https://anqularjs.org/

Google, Inc. (2015b). Material Design. Retrieved November 24, 2015, from:
https://www.google.com/design/spec/material-design/introduction.html

Google, Inc. (2015c). Material Design Lite. Retrieved November 21, 2015, from:
http://www.getmdl.io/

Hamlett, A. (2015). Pirates Use Flask, The Navy Uses Django. Retrieved September 4, 2015,
from: https://wakatime.com/blog/25-pirates-use-flask-the-navy-uses-django

Hansson, D. H. (2015). Ruby On Rails. Retrieved September 4, 2015, from:
http://rubyonrails.org/

Internet Engineering Task Force (2012). RFC 6585. Retrieved October 18, 2015, from:
https://tools.ietf.org/html/rfc6585

Jones, D. (2012). Rails or Sinatra: The Best of Both Worlds? Retrieved September 5, 2015,
from: http://www.sitepoint.com/rails-or-sinatra-the-best-of-both-worlds/

JSON (2006). Introducing JSON. Retrieved November 24, 2015, from: http://www.json.org/

http://backbonejs.org/
https://apiary.io/
http://coffeescript.org/
https://drone.io/
http://facebook.github.io/react/
https://developers.facebook.com/docs/games/scores
https://angularjs.org/
https://www.google.com/design/spec/material-design/introduction.html
http://www.getmdl.io/
https://wakatime.com/blog/25-pirates-use-flask-the-navy-uses-django
https://developers.facebook.com/docs/games/scores
http://rubyonrails.org/
https://tools.ietf.org/html/rfc6585
http://www.sitepoint.com/rails-or-sinatra-the-best-of-both-worlds/
http://www.json.org/

33

Knupp, J. (2014). What Is A Web Framework? Retrieved September 6, 2015, from:
https://www.jeffknupp.com/blog/2014/03/03/what-is-a-web-framework/

Lindeijer, Thorbjgrn (2015). Tiled Map Editor. Retrieved Septermber 22, 2015, from:
http://www.mapeditor.org/

Lord, R. (2013). Slate. Retrieved September 13, 2015, from: https://github.com/tripit/slate

Lowry, B. (2013). Playtomic. Retrieved September 4, 2015, from: http://playtomic.org/

Makai, M. (2015). Full Stack Python. Retrieved September 4, 2015, from:
http://www.fullstackpython.com/web-frameworks.html

Marionette (2015). Marionette.js. Retrieved September 12, 2015, from: http://marionettejs.com/

Nygard, M. T. (2007). Release It!: Design and Deploy Production-Ready Software. Raleigh:
Pragmatic Bookshelf.

Pires, B (2014). Rails Vs. Django: An In-Depth Technical Comparison. Retrieved September 4,
2015, from:
https://bernardopires.com/2014/03/rails-vs-django-an-in-depth-technical-comparison/

Rydzewski, B. (2014). What are the core differences between Travis Cl and drone.io? Retrieved
September 12, 2015 from: http://gr.ae/RHjLMU

Searchsoa (2015). REST (representational state transfer) definition. Retrieved November 22,
2015, from: http://searchsoa.techtarget.com/definition/REST

Solano Labs, Inc. (2015). Solano. Retrieved September 12, 2015, from:
https://www.solanolabs.com/

Spry Media Ltd. (2015). DataTables. Retrieved November 22, 2015, from:
https://www.datatables.net/

Swagger (2015). Swagger. Retrieved September 13, 2015, from: http://swagger.io/

The jQuery Foundation (2015). jQuery. Retrieved November 22, 2015, from: https://jquery.com/

The Python Software Foundation (2015). Logging facility for Python. Retrieved November 24,
2015, from: https://docs.python.org/2/library/logging.html

ThoughtWorks, Inc. (2015a). Continuous Integration. Retrieved September 12, 2015, from:
https://www.thoughtworks.com/continuous-integration

https://www.jeffknupp.com/blog/2014/03/03/what-is-a-web-framework/
http://www.mapeditor.org/
https://github.com/tripit/slate
http://playtomic.org/
http://www.fullstackpython.com/web-frameworks.html
http://marionettejs.com/
https://bernardopires.com/2014/03/rails-vs-django-an-in-depth-technical-comparison/
http://qr.ae/RHjLMU
http://searchsoa.techtarget.com/definition/REST
https://www.solanolabs.com/
https://www.datatables.net/
http://swagger.io/
https://jquery.com/
https://docs.python.org/2/library/logging.html
https://www.thoughtworks.com/continuous-integration

34

ThoughtWorks, Inc. (2015b). Snap. Retrieved September 12, 2015, from: https://snap-ci.com/

Tilde, Inc. (2015). Ember.js. Retrieved September 12, 2015, from: http://emberjs.com/

Travis Cl, Gmbh (2015a). Customizing The Build. Retrieved September 12, 2015, from:
http://docs.travis-ci.com/user/customizing-the-build/

Travis Cl, Gmbh (2015b). Travis Cl. Retrieved September 12, 2015, from: https://travis-ci.org/

Twitter, Inc. (2015). Bootstrap. Retrieved November 24, 2015, from: http://getbootstrap.com/

Twitter, Inc. (2011). The Engineering Behind Twitter's New Search Experience. Retrieved
September 5, 2015, from:
https://blog.twitter.com/201 1/engineering-behind-twitter%E2%80%99s-new-search-experience

Unity Technologies (2015). Unity. Retrieved November 12, 2015, from: http://unity3d.com/unity

https://snap-ci.com/
http://emberjs.com/
http://docs.travis-ci.com/user/customizing-the-build/
https://travis-ci.org/
http://getbootstrap.com/
https://blog.twitter.com/2011/engineering-behind-twitter%E2%80%99s-new-search-experience
http://unity3d.com/unity

35

7 Appendix

A - Why we chose Leaderboards
We want to build one of the options listed in the above section, so we considered each of them.

Game engines are extremely complicated systems that require both low level hardware
knowledge and intricate designs for building a sensible interface. This is far out of the scope of
what we can accomplish during this project.

A map editor is possibly contained enough to have enough time to build it, but it would not raise
any concerns about scalable design, which is a research goal of this project, so we chose not to
pursue this option.

A friend or clan network is a simple concept at first glance, but it becomes a bit more
complicated when you add privacy and abuse concerns. Data about who is friends with whom
can be considered personal information. Drafting terms of service for how we store, track, and
possibly sell data is out of the scope of this project. Direct user to user interaction like with a
friend network opens up a lot of potential abuse vectors like harassment, stalking, and friend
request spam. We don't want to have to deal with those problems, since they are of a more
social science nature and less of a technical nature.

Achievements

A leaderboard service is much simpler than the other options, and since it needs to be
centralized (instead of existing just on the game client), it is subject to scaling concerns. This is
well contained, and can be generalized to be useful for many different kind of games. For these
reasons, it fits the project objective (learn about scalable web systems) reasonably well.

36

B - Facebook’s Game Development API

Facebook offers many services to game developers to help them with features they may want
for their game (Facebook Inc., 2015b). Their services for games range from push notifications to
monetization via a subscription service. This section will focus on their Scores API, game
requests, and achievements.

The Scores API for Facebook associates a user and an app with one another via a “scores” ,
much like we intend to do with a leaderboard. Facebook matches users to game scores on the
granularity of one user score per game. This can be created, deleted, and updated. Another
interesting point to note about Facebook’s Scores APl is that it is from the perspective of a user,
and not from a game. All routes are RESTfully accessed from the USER_ID entity, and all
requests are sent with a developer token. This makes sense for Facebook’s use case, because
Facebook is user centered, whereas our service is game centered.

The Scores API allows read access of a user’s scores with a GET request to /USER _ID/scores.
This returns an array of objects with information about the user, the app, and the score. The API
allows update/create access of a user’s scores with a POST request to /USER_ID/scores. It
requires a payload of { “score” : <integer> } and returns with a boolean indicating whether or not
the create/update succeeded. Lastly, on the granularity of a user, the API allows deleting the
score for a play for the app by sending a DELETE request to /JUSER _|D/scores. It returns a
boolean indicating whether or not the operation was successful. Finally,the API allows deleting
all scores for a game by sending a DELETE request to /APP_ID/scores. It returns a boolean
indicating whether or not the operation was successful.

Facebook’s game requests are categorized into three different scenarios:
1. Sending to a friend who has not played before (i.e. inviting a friend to join a game)
2. Sending to a friend who has played before (i.e. turn-based notifications, gifting and
asking for help)
3. Sending to a non-friend who has played before (i.e. match-making)

The game request works by asking the USER ID (or IDs) to send the request to, the type of
request it is, and a message for the recipient to see. Facebook offers many client libraries and
SDKs to aid in development. Instead of exposing the url, they ask the developers to use the
functions in the SDK.

Lastly, Facebook has an Achievements API. Facebook enforces a total 1000 point limit between
the sum of all achievements, distributable across no more than 1000 achievements. They have
a recommended scoring policy for the achievements (50 - hard; 25 - medium; 10 - easy), and
they require that an achievement is never deleted, save for testing purposes. When developers
create a new achievement, Facebook requires certain specified properties: the title, the

37

description (which should indicate how the player earns the achievement), the url, the image url,
the point value, and the app id. They tell developers to send that information to the
/APP_ID/achievements url. There is no specification on how a player earns that achievement,
so | imagine that it is built into the rules of the game.

38

C - Playtomic’s API

Playtomic is an open source, hosted solution to a few problems game developers may have
(Lowry, 2013). It provides APIs for leaderboards, achievements, user content, dynamic content,
and newsletters.

The leaderboard API allows for many different filters to create custom leaderboards. It allows
filtering by a user's friends so that one can see how well she is doing compared to her friends. It
allows filtering just by one player id, so one can see how well he or a friend has progressed over
time. Playtomic also allows to filter based on recency; it can show the top scores for today, the
last week, the last month, and all time. You can also add custom fields to every score, and then
filter on them later. This would allow for many independent leaderboards, perhaps one per level
of the game, or one per class of player. Finally, it allows a configuration option to indicate
whether a lower score is better (like golf) or a higher score is better (like baseball).

Playtomic's achievements API provides a way to award and search for achievements that
players can unlock by performing specific in-game actions. The user content API| provides an
easy way to allow users to produce and share in game content such as custom maps. The
dynamic content API allows for quick modifications to your game post distribution via config
variables that live on the server. The newsletters API provides an easy way to subscribe users
to a mailing list for updates.

Playtomic does not host these APIs for you. Instead, it is preconfigured for heroku to deploy
these servers with one step. In order to get the server working, one needs to just have a heroku
account and point heroku at the playtomic git repository. Scaling up is simple, just select heroku
dynamos with more power. Scaling out is also simple, just add more dynamos. The only danger
to this is that the data is only eventually consistent; when there is a write to one dynamo, it does
not update other dynamos immediately.

39

D - Front End Tooling Decision

Front end web applications have been on a trend to becoming more mature and powerful, with a
wise community behind them. There are multiple different tools we may consider using in
building this service. There are frameworks for building front-end heavy web applications, such
as AngulardS and Ember.js (Google, 2015a; Tilde Inc., 2015). Frameworks typically enforce a
paradigm and a structure to use the functionality the framework provides. There are also
libraries to aid in building user experiences and interfacing with a web API, such as React,
Backbone.js, and Marionette.js (Ashkenas, J., 2015; Facebook Inc., 2015a; Marionette, 2015).
A library will provide utility functions without necessarily enforcing a paradigm or structure on the
code using the library’s functionality.

Our use case lends itself better to taking advantage of smaller, more composable libraries,
because the service is not focused very heavily on user interactions. For this reason, it is likely
that some combination of the aforementioned libraries (Backbone.js, React, and Marionette.js)
will be used, if at all.

React is an open source project created and maintained by Facebook (Facebook Inc., 2015a).
The tagline for the library is: “A JavaScript library for building user interfaces.” Most of React’s
functionality comes from allowing the developer to define and reuse web components that are
made for different situations. React allows the developer to create these components then act
based on the user interactions on these web components.

Backbone.js is a library that provides models, collections, and views for the developer to use
(Ashkenas, J., 2015). It was originally intended to model interactions on a RESTful API, to
create user interactions that made sense for the uses of the data. It follows a paradigm of
MVVM (model-view-viewmodel). The view handles the user interactions and rendering (or
re-rendering) the model, while the model handles the business logic of the application. When
needed the model can “sync” or “fetch”. These functions send information to the API to either
get the model’s data or update the model’'s data via HTTP requests.

Marionette.js is a library that is built on top of Backbone.js (Marionette, 2015). The purpose of
Marionette.js is to provide useful pieces of functionality to the views of a Backbone.js
application. Backbone.js’ strong features come primarily from the model interactions with the
API, whereas Marionette.js’ strong features come from providing Backbone.js views that already
have many helper functions in them.

Despite our research into this area, when it came time to build the front end of the web
application, we did not feel it was large enough to merit using any type of front end application
framework or library.

40

E - APl Documentation Tool

API documentation is important primarily to keep the service users up to date on what services
are available and how to use them. In our research, we have identified multiple different tools
that help to document APls. The tools we will consider include Swagger, Apiary, and Slate
(Swagger, 2015; Apiary Inc. 2015; Lord, 2013).

Swagger markets itself as a powerful yet simple tool to use for describing APIs (Swagger,
2015). Swagger has a tool called Swagger Ul, which is the collection of HTML, CSS, and
JavaScriptcode that take a Swagger compliant JSON document and renders the actions made
available by the API. A sample of how Swagger Ul works and looks can be found at Swagger’'s
example: the Swagger Pet Store (http://petstore.swagger.io/). The API developers can either
write the JSON document that describes the API actions themselves or they can find a tool that
will automatically generate the JSON document by reading their files. Multiple tools of this
nature exist for different languages and web frameworks. Swagger Ul allows the user to send a
request straight to the API by interacting with the web page.

Apiary aims at an enterprise level target market by claiming to offer a solution to inconsistent
API design across a company (Apiary Inc., 2015). If everybody has the same API specs written
on Apiary, then there will be one central place to know what actions are permitted on a given
service. Apiary works by writing the API description in the online editor and saving it online. It
can hook into a GitHub repository to publish the API document to the repository. To view the
resulting markdown you must have a link to the Apiary APl document. Self-hosted solutions are
also available for enterprise level customers.

Slate offers a way to write a markdown description of the API (Lord, 2013). Unlike Apiary and
Swagger, Slate is not interactive, meaning that the user cannot send a request to the API from
the documentation. Slate does, however, support multiple different ways of displaying how to
send a request to the service for a specific endpoint. This feature is useful if the API developer
would like to describe how to use client libraries in different languages, as well as how to send a
raw HTTP request from the bash shell, for example. Slate seems to offer the least overhead in
setting it up to work inside a project, as it is just a static file served from the project server; but it
also seems to require the most work, as it seems to require substantially more writing than
either Apiary and Swagger.

http://petstore.swagger.io/

41

F - Elastic Beanstalk

Elastic Beanstalk is Amazon Web Services' platform as a service which allows you to point it to
a python app, and it deploys it to servers with a load balancer, configures the firewall settings,
and sets up other services like that. We initially expected that this would cut down on the time it
took us to deploy the app, but it ended up increasing the effort. Since Elastic Beanstalk does so
much for you, it is much harder to tweak it. This made it hard to add HTTPS, and hard to control
the autoscaling properties. After we hit that barrier, we backtracked and just directly managed
the AWS resources ourselves.

