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ABSTRACT 

This work describes the application of porous metal supported Pd-membranes to the 

water-gas shift catalytic membrane reactor in the context of its potential application to 

the Integrated Gasification Combined Cycle (IGCC) process. The objective of this work 

was to develop a better understanding of Pd-membrane fabrication techniques, water-

gas shift catalytic membrane reactor operation, and long-term behavior of the Pd-

membranes under water-gas shift conditions. 

Thin (1.5 – 16 �m) Pd-membranes were prepared by electroless deposition techniques 

on porous metal supports by previously developed methods. Pd-membranes were 

installed into stainless steel modules and utilized for mixed gas separation (H2/inert, 

H2/H2O, dry syngas, and wet syngas) at 350 – 450°C and 14.5 atma to investigate 

boundary layer mass transfer resistance and surface inhibition. Pd-membranes were 

also installed into stainless steel modules with iron-chrome oxide catalyst and tested 

under water-gas shift conditions to investigate membrane reactor operation in the high 

pressure (5.0 - 14.6 atma) and high temperature (300 – 500°C) regime. After the 

establishment of appropriate operating conditions, long-term testing was conducted to 

determine the membrane stability through He leak growth analysis and characterization 

by SEM and XRD. Pd and Pd/Au-alloy membranes were also investigated for their 

tolerance to 1 – 20 ppmv of H2S in syngas over extended periods at 400°C and 14.0 

atma. 

Water-gas shift catalytic membrane reactor operating parameters were investigated with 

a focus on high pressure conditions such that high H2 recovery was possible without a 

sweep gas. With regard to the feed composition, it was desirable to operate at a low 

H2O/CO ratio for higher H2 recovery, but restrained by the potential for coke formation 

on the membrane surface, which occurred at a H2O/CO ratio lower than 2.6 at 400°C. 

The application of the Pd-membranes resulted in high CO conversion and H2 recovery 

for the high temperature (400 – 500°C) water-gas shift reaction which then enabled high 

throughput. Operating at high temperature also resulted in higher membrane 

permeance and less Pd-surface inhibition by CO and H2O. 
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The water-gas shift catalytic membrane reactor was capable of stable CO conversion 

and H2 recovery (96% and 88% respectively) at 400°C over 900 hours of reaction 

testing, and 2,500 hours of overall testing of the Pd-membrane. When 2 ppmv H2S was 

introduced into the membrane reactor, a stable CO conversion of 96% and H2 recovery 

of 78% were observed over 230 hours. Furthermore, a Pd90Au10-membrane was 

effective for mixed gas separation with up to 20 ppmv H2S present, achieving a stable 

H2 flux of 7.8 m3/m2-h with a moderate H2 recovery of 44%. The long-term stability 

under high pressure reaction conditions represents a breakthrough in Pd-membrane 

utilization. 
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EXECUTIVE SUMMARY 

The results and discussion presented in this thesis pertain to the application of Pd and 

Pd-alloy membranes to the separation of hydrogen from syngas and to the water-gas 

shift catalytic membrane reactor. Several gaps still exist in the relevant literature 

regarding Pd-membrane fabrication techniques, water-gas shift catalytic membrane 

reactor operation, irreversible poisoning by coking, irreversible poisoning by H2S, and 

long-term membrane leak development under WGS conditions. The work presented 

here aims to develop a better understanding of these issues. 

Lab-scale Pd-membranes (25 cm2) were prepared by electroless deposition of 1.5 – 16 

�m of palladium onto �-alumina graded porous stainless steel supports by previously 

developed methods. These membranes were initially tested in pure H2 for up to 1,000 

hours and exhibited stable H2 permeance as high as 61.7 m3/m2-h-atm0.5 at 400°C, with 

stable H2/He selectivity as high as 75,000. A Pd90Au10-membrane was also prepared by 

a previously developed method and had a H2 permeance of 38.0 m3/m2-h-atm0.5 at 

400°C with a stable H2/He selectivity of 25,000. The method of membrane fabrication 

which was comprised of sequential grading of large (greater than 10 �m) to small (0.02 

�m) �-alumina particles proved reproducible, assuming good support quality, potentially 

justifying pilot scale production. 

After initial testing, membranes were utilized to separate H2/inert, H2/H2O, dry syngas, 

and wet syngas mixtures at 350 – 450°C and 14.5 atma. H2 fluxes as high as 47.0, 

19.4, 33.1, and 14.2 m3/m2-h were achieved with each mixture respectively at 400°C. At 

low feed flow rates of less than 1.2 L/min, H2 recovery of 90% was achieved for all gas 

mixtures. It was demonstrated that reversible adsorption by the water-gas species CO 

and H2O significantly inhibited the H2 permeance of the Pd-membrane below 400°C, but 

had little effect at higher temperatures. Gas boundary layer resistance was found to be 

significant over the entire range of feed rates utilized (up to 9 L/min). 

Pd-membranes were loaded into the water-gas shift catalytic membrane reactor with 

iron-chrome oxide catalyst and tested under water-gas shift conditions (CO + H2O and 

simulated syngas mixtures fed at 0.23 - 1.2 L/min, 300 – 500°C, and 4.4 – 14.6 atma). 
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The reactor operation was characterized with respect to the feed composition, feed flow 

rate, system pressure, and temperature. CO conversion and H2 recovery as high as 

98% and 88% respectively were achieved at 450°C and 14.4 atma. The removal of H2 

by the membrane resulted in an increased CO conversion, which was greater than that 

achieved by a packed bed reactor, due to Le Chatelier’s principle. Increasing H2O in the 

feed resulted in increased CO conversion due to the equilibrium nature of the reaction, 

but also decreased H2 recovery due to the dilution of H2 in the reaction mixture. 

Increasing the feed flow rate resulted in a lower CO conversion and H2 recovery due to 

lower residence time, but a higher net flux of H2. Increasing the system pressure 

resulted in a significant gain in H2 flux and recovery by both raising the residence time 

and increasing the driving force for H2 flux. The equilibrium CO conversion, which was 

pressure invariant in the packed bed case, was significantly pressure dependent in the 

membrane reactor due to the increased H2 recovery associated with higher pressure. 

Notably, the high reaction pressure utilized in this study distinguished it from the 

previous literature. A maximum in CO conversion with respect to temperature was 

observed at approximately 450°C due to the interplay between the membrane 

permeance (which was covariant with temperature) and the equilibrium constant (which 

was contravariant with temperature). A better understanding of membrane reactor 

performance was developed which was paramount to its effective incorporation into the 

IGCC process. 

Coke formation was found to be problematic in the water-gas shift catalytic membrane 

reactor for steam to carbon ratios of less than 2.6. The rate of coke formation was highly 

erratic and was perhaps catalyzed by the contact between the iron-chrome catalyst 

particles and the Pd-surface. The development of a better analysis framework for coke 

formation was important as a restraint upon operating conditions for the membrane 

reactor. 

Pd and Pd/Au-membranes were utilized to separate shifted syngas (enriched in H2 and 

depleted in CO) containing 1 – 20 ppmv H2S at 400°C and 14.0 atma. For the pure Pd-

membrane, a H2 flux of 12.3 m3/m2-h with a H2 recovery of 76% was achieved with 2.5 

ppmv H2S in the feed. For the Pd/Au-membrane, a H2 flux of 7.8 m3/m2-h with a H2 
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recovery of 44% was achieved with 20 ppmv H2S in the feed. The Pd/Au-membrane 

had no clear advantage over the pure Pd-membrane when exposed to 1 - 2.5 ppmv 

H2S. Pd4S was observed slightly on both membranes, but to a lesser extent than what 

was previously observed in the literature, indicating some interaction of the water-gas 

shift species with H2S. 

After operating conditions were refined, membranes were tested for extended periods of 

time (65 – 1,000 hours) under mixed gas and water-gas shift reaction conditions. 

Several of the membranes exhibited stable H2 permeance and gradual He permeance 

growth (as low as 1.0*10-7 m3/m2-h2-atm) which was in agreement with pure H2 testing. 

Experiments with H2/H2O mixtures indicated that H2O did not adversely affect the 

membrane selectivity. Long-term testing under WGS conditions also indicated that CO 

and CO2 did not increase the leak growth rate or decrease the H2 permeance of the 

membranes. The gradual leak growth observed under WGS conditions agreed with the 

pinhole formation mechanism. Moreover, due to the stable membrane behavior, stable 

CO conversion and H2 recovery of 96% and 88% respectively were achieved for over 

900 hours for the water-gas shift catalytic membrane reactor. Given the low leak growth 

rates observed in several membranes tested under reaction conditions, a membrane 

lifetime of greater than 10 years was projected to be possible. 

Lastly, a pure Pd-membrane was tested under water-gas shift conditions with 2 ppmv 

H2S present and achieved a stable CO conversion and H2 recovery of 96% and 78% 

respectively for 230 hours. The final H2/He selectivity of the membrane remained above 

2,500. No Pd4S was detected on the membrane surface indicating that the presence of 

the WGS species increased the H2S threshold for irreversible poisoning. The 

understanding of H2S tolerance by Pd-membranes was also directly relevant to their 

commercial application since there is a high cost associated with H2S removal. 

The successful application of the porous stainless steel supported Pd-membranes to 

the water-gas shift catalytic membrane reactor represents a significant potential process 

intensification for the IGCC process. Over the coming decades the IGCC process 

incorporating Pd-membranes may prove to be a pivotal stepping stone in efficient 

energy production.  



x 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS II 
ABSTRACT V 
EXECUTIVE SUMMARY VII 
TABLE OF CONTENTS X 
LIST OF FIGURES XIV 
LIST OF TABLES XIX 

1. INTRODUCTION 1 
 
2. LITERATURE REVIEW 7 

2.1. The water-gas shift (WGS) reaction 7 
2.1.2. Iron-chrome oxide catalyst 9 
2.1.3. Copper-zinc oxide catalyst 14 
2.1.4. Other WGS catalysts 16 

2.2. Palladium membranes 18 
2.2.1. H2 permeability of thin Pd foils 20 
2.2.2. H2 permeability of Pd/Alloys 25 
2.2.3. Synthesis of supported membranes 27 

2.2.3.a. Supported foils 28 
2.2.3.b. Electroplating 30 
2.2.3.c. Magnetron sputtering 31 
2.2.3.d. Chemical vapor deposition 32 
2.2.3.e. Electroless plating 33 

2.3. WGS catalytic membrane reactor 35 
2.3.1. The WGS CMR system 37 
2.3.2. Modeling of the WGS CMR system 44 
2.3.3. Economic considerations 48 
2.3.4. Other considerations 49 

2.4. Summary 52 

3. EXPERIMENTAL 53 

3.1. Introduction 53 

3.2. Porous metal supported Pd-membrane synthesis 53 
3.2.1. Gravimetric thickness 56 
3.2.2. IPA bubble test 56 
3.2.3. Mechanical polishing 56 
3.2.4. Electro-deposition of gold 57 
3.2.5. Defect repair by electro-deposition 57 

3.3. Pd-coupon synthesis 58 

3.4. Mixed gas experimental 59 
3.4.1. H2 and mixed gas setup 59 
3.4.2. Mixed gas testing procedure 61 



xi 

3.5. WGS CMR experimental 61 
3.5.1. WGS CMR Setup 61 
3.5.2. WGS CMR loading procedure 63 
3.5.3. WGS experimental procedure 64 

3.6. Post-testing characterization 65 
3.6.1. Leak characterization 65 
3.6.2. SEM and EDS analysis 66 
3.6.3. XRD analysis 67 

3.7. Summary 68 

4. PURE GAS TESTING OF Pd-MEMBRANES 69 

4.1. Introduction 69 

4.2. Background 70 
4.2.1. Grading 70 
4.2.2. Porous intermediate layers 71 
4.2.3. Dense, H2 permeable Pd-layer 72 

4.3. Experimental 73 
4.3.1. Porous supports 73 
4.3.2. Synthesis methodology 73 
4.3.3. H2 characterization 75 

4.4. Results and discussion 77 
4.4.1. Attainment of a dense Pd-layer 77 
4.4.2. H2 permeance characterization 85 
4.4.3. H2 flux behavior at high pressures 91 
4.4.4. H2/inert selectivity and leak stability 101 

4.5. Conclusions 111 

5. ASSESSMENT OF ONE-DIMENSIONAL MODEL USING LITERATURE DATA 113 

5.1. Introduction 113 

5.2. 1-D model details 113 
5.2.1. Reaction rate equation 116 
5.2.2. Membrane surface inhibition by CO and H2O 116 
5.2.3. Gas boundary layer mass transfer resistance 118 

5.3. Model evaluation 120 

5.4. Discussion 124 

5.5. Conclusions 126 

6. H2 SEPARATION FROM SYNGAS BY Pd-MEMBRANES 128 

6.1.  Introduction 128 

6.2. Background 128 



xii 

6.2.1. Gas phase mass transfer resistance 128 
6.2.2. Reversible surface inhibition 130 
6.2.3. Irreversible surface inhibition 132 

6.3. Experimental 133 

6.4. Results and discussion 136 
6.4.1. Gas boundary layer resistance and depletion 136 
6.4.2. Surface inhibition 139 

6.5. Conclusions 144 

7. WATER-GAS SHIFT CATALYTIC MEMBRANE REACTOR INCORPORATING A Pd-MEMBRANE  
  146 

7.1. Introduction 146 

7.2. Experimental 147 

7.3. Results and Discussion 150 
7.3.1. Effect of H2O/CO ratio 155 
7.3.2. Effect of temperature 156 
7.3.3. Effect of reaction pressure 159 
7.3.4. Effect of feed space velocity 161 

7.4. Conclusions 167 

8. COKE FORMATION IN THE WGS CMR 168 

8.1. Introduction 168 

8.2. Background 168 
8.2.1. Thermodynamics of coke formation 168 
8.2.2. Kinetics of coke formation 170 
8.2.3. Solubility of carbon in palladium 172 

8.3. Experimental 175 
8.3.1. Thermodynamic calculations 175 
8.3.2. Pd-coupon coking 176 

8.4. Results and discussion 177 
8.4.1. Thermodynamic analysis of coke formation in the WGS CMR 181 
8.4.2. Kinetic evaluation of coke formation 182 

8.5. Conclusions 187 

9. H2S POISONING OF Pd-MEMBRANES 188 

9.1. Introduction 188 

9.2. Background 188 

9.3. Experimental 192 
9.3.1. Pd/Au-membrane synthesis 192 



xiii 

9.3.2. Mixed gas and WGS experimental procedure 192 

9.4. Results and discussion 194 
9.4.1. H2/inert/H2S mixtures 194 
9.4.2. H2/H2O/H2S mixtures 196 
9.4.3. Syngas/H2S mixtures 199 
9.4.4. WGS CMR with syngas/H2S feed 209 

9.5. Conclusions 218 

10. DURABILITY OF SUPPORTED Pd-MEMBRANES UNDER MIXED GAS AND WGS 
CONDITIONS 219 

10.1. Introduction 219 

10.2. Experimental 222 

10.3. Results and discussion 223 
10.3.1. Effect of high pressure H2 on leak growth 223 
10.3.2. Effect of H2O on leak growth 225 
10.3.3. Effect of syngas on leak growth 228 
10.3.4. Effect of the high-temperature WGS reaction on leak growth 231 

10.4. Conclusions 243 

11. CONCLUSIONS 244 

12. RECOMMENDATIONS FOR FUTURE RESEARCH WORK 246 

NOMENCLATURE 248 

REFERENCES 252 

APPENDIX A: DERIVATION OF EQUATIONS AND OTHER EXPRESSIONS 268 

A.1. WGS equilibrium constant (Bisset, 1977) 268 

A.2. Derivation of equation 2.30 270 

A.3. Derivation of equation 4.10 268 

A.4. 1-D simulation output 271 

APPENDIX B: MEMBRANE FABRICATION PROCEDURE 275 

APPENDIX C: GC METHOD DETAILS 282 

APPENDIX D: SYNTHESIS AND CHARACTERIZATION DETAILS FOR ALL MEMBRANES 287 

APPENDIX E: CODE FOR MODELING 291 
�

� �



xiv 

LIST OF FIGURES 

Figure 2.1. Equilibrium conversion versus temperature for a 1:1 mixture of CO and H2O. 8 

Figure 2.2. Rate constant versus Cu/Zn atomic ratio at 180°C (Uchida et al., 1967). 14 

Figure 2.3. Pressure isotherms of the Pd-H system at several temperatures (Reproduced from Frieske 
and Wicke, 1972). 19 

Figure 2.4. SEM image of a PSS supported Pd-membrane which has undergone hydrogen embrittlement 
(Guazzone et al., 2006). 20 

Figure 2.5. Mechanism of hydrogen permeation into a metal. 21 

Figure 2.6. Permeability of Pd-alloy divided by that of pure Pd versus alloy composition at 350°C. 27 

Figure 2.7. Axial cross-section of a shell and tube WGS CMR. 36 

Figure 2.8. WGS CMR studies in the literature with regards to the feed conditions. 43 

Figure 2.9. Diagram of a 1-D, non-isothermal, steady state membrane reactor system. 45 

Figure 2.10. Diagram of a 1-D, non-isothermal, unsteady state membrane reactor system. 47 

Figure 3.1. Block diagram of the membrane synthesis [a] Synthesis Method A [b] Synthesis Method B 
(Further details given in Appendix B). 55 

Figure 3.2. Pictures of synthesized membranes [a] Membrane AA-29, unpolished [b] Membrane AA-14, 
polished and buffed. 55 

Figure 3.3. Schematic of the pure H2 and mixed gas testing system. 59 

Figure 3.4. Schematic of the WGS CMR system. 62 

Figure 3.5. WGS CMR scale rendering. 63 

Figure 4.1. Membrane synthesis diagrams [a] Successful synthesis of AA-8 [b] Failed synthesis of AA-9.
 77 

Figure 4.2. SEM cross-section images of fabricated membranes [a] AA-2 (M-PI0.1), 1,500X [b] AA-22 (C-
PH0.1), 500X [c] AA-27 (C-PSS316,0.2B), 1,000X [d] RK-16R (M-PSS316,0.2), 1,000X. 80 

Figure 4.3. Membrane synthesis diagrams [a] Successful weld plating of AA-30 [b] Failed weld plating of 
AA-33. 81 

Figure 4.4. Synthesis diagrams of AA-20, AA-33, and AA-39, featuring the electro-plating of defective 
regions. 82 

Figure 4.5. Dense Pd thickness versus number of grading steps. 84 

Figure 4.6. H2 permeance characterization of the membrane AA-5. 86 

Figure 4.7. Sieverts’ law plots for membrane AA-5 at 350, 400, and 450°C. 87 



xv 

Figure 4.8. Arrhenius plots for the membranes AA-1, AA-6, AA-6R, AA-25, and AA-40. 88 

Figure 4.9. H2 permeance versus inverse gravimetric thickness at 400°C [a] Considering dense Pd 
thickness [b] Considering overall gravimetric thickness (Solid lines indicate free-standing Pd-foil {Morreale 
et al., 2003}). 90 

Figure 4.10. Sieverts’ law plots over large pressure range (1 – 16.8 atma) for the membranes AA-4R, AA-
6R, and AA-8R. 92 

Figure 4.11. Data fitting to equation 4.3 for the membranes AA-4R, AA-6R, and AA-8R, best-fit n-values 
for each series are included in the trend line labels. 93 

Figure 4.12. Sieverts’ law plots of the high pressure H2 experiments conducted with the membrane AA-
12R [a] Series 1-4 [b] Series 1, 5-8. 95 

Figure 4.13. Estimation of H-atom solubility in Pd by equations 4.7 and 4.8. 98 

Figure 4.14. Experimental H2 flux for the membrane AA-12R (Series 1 and 2 from Table 4.5), including 
the calculated H2 flux by equations 4.8 and 2.24. 99 

Figure 4.15. He permeance versus time for the membranes AA-8, AA-12R, and AA-14. 102 

Figure 4.16. SEM image of membrane AA-14R at 2,500X (A: initial Pd-plating and first re-plating, B: 
polished, buffing, and additional plating). 103 

Figure 4.17. SEM images of membrane AA-21 [a] Surface image of large defect viewed at 85° angle 
(700X) [b] Cross section of a defect (unmounted sample, 700X). 104 

Figure 4.18. He permeance resulting from first heating in He and initial H2 testing. 105 

Figure 4.19. He permeance versus time showing the second stage of leak growth. 107 

Figure 4.20. He permeance growth rate during pure H2 testing [a] 400°C [b] 450°C. 109 

Figure 5.1. Diagram of a 1-D isothermal and isobaric plug flow system. 114 

Figure 5.2. Simulation of CO conversion and H2 recovery data from Dolan et al. (2010) Case 1: FH2 = 6.2 
m3/m2-h-atm0.5, Ac = 1.36*10-4 m2; Case 2: FH2 = 15.4 m3/m2-h-atm0.5, Ac = 4.80*10-5 m2). 122 

Figure 5.3. Simulation of CO conversion and H2 recovery data from Damle et al. (2008), Prxn = 7.8 atma.
 122 

Figure 5.4. Comparison of the model with WGS CMR experimental studies in the literature [a] CO 
conversion [b] H2 recovery. 123 

Figure 6.1. Permeate flux and H2 recovery versus GHSVSTP for membrane AA-5, 400°C, 14.5 atma, and 
Gas A (Overlaid curves represent solutions of a simplified 1-D model, horizontal line indicates pure H2 flux 
at equal H2 partial pressure). 136 

Figure 6.2. Permeate flux over J0 versus GHSVSTP with membrane AA-6 and three gas mixtures at 14.5 
atma [a] 350°C [b] 400°C (membrane AA-21 used for Gas E only) and [c] 450°C. 140 

Figure 7.1. CO conversion versus temperature (Membrane: AA-5, 14.4 atma, H2O/CO = 1.1, GHSVSTP = 
1,600 h-1). 150 



xvi 

Figure 7.2. CO conversion and H2 recovery versus time (Membrane: AA-5, 450°C, 14.4 atma, H2O/CO = 
1.1, and GHSVSTP = 1,600 h-1). 151 

Figure 7.3. Sieverts’ law permeance of the membrane AA-5 at 450°C. 152 

Figure 7.4.  Image of the membrane AA-5 after use in WGS experiments. 152 

Figure 7.5. CO conversion [a] and H2 recovery [b] as a function of temperature for a constant CO feed 
rate of 7.95 mmol/min (Membrane: AA-6, 14.4 atma, �: H2O/CO = 1.6, GHSVSTP = 2,100 h-1, : H2O/CO 
= 2.6, GHSVSTP = 2,900 h-1). 154 

Figure 7.6. CO conversion and H2 recovery versus time on stream [a] 400°C [b] 450°C (Membrane: AA-6, 
14.4 atma, H2O/CO = 1.6, and GHSVSTP = 2,100 h-1). 155 

Figure 7.7. CO conversion as a function of temperature for WGS CMR results from several studies. 158 

Figure 7.8. CO conversion and H2 recovery versus reaction pressure (Membranes: AA-24R and AA-30; 
19% CO, 18% H2, 8% CO2, and 55% H2O; 400°C; 4,500 h-1). 160 

Figure 7.9 [a] CO conversion versus GHSVSTP [b] H2 recovery versus GHSVSTP [c] Retentate composition 
(dry basis) versus time for three experiments at 400°C (Membrane: AA-8R, Feed: 22.7% CO, 22.0% H2, 
9.9% CO2, 45.4% H2O, 14.4 atma). 162 

Figure 7.10. CO conversion and H2 recovery versus temperature (Membrane: AA-8R, Feed: 22.7% CO, 
22.0% H2, 9.9% CO2, 45.4% H2O, 14.4 atma, GHSVSTP = 4,500 h-1). 166 

Figure 8.1. Pd/C phase diagram (Okamoto, 2007). 172 

Figure 8.2. Diffusivity of carbon in palladium obtained from experimental studies. 174 

Figure 8.3. CO conversion and H2 recovery versus time (Membrane: AA-5, 450°C, 14.4 atma, H2O/CO = 
1.1, and GHSVSTP = 1,600 h-1). 177 

Figure 8.4. Membrane AA-5 appearance after use in WGS experiments. 178 

Figure 8.5. Evidence of coking for the long-term experiment with membrane MA-79 [a] WGS CMR results 
(23% CO, 22% H2, 10% CO2, 45% H2O; 400°C; 14.6 atma; GHSVSTP = 2,100 h-1) [b] Pure H2 permeance 
at 400°C before and after the reaction experiment. 179 

Figure 8.6. PBR and CMR experimental results indicating evidence of coke formation. 180 

Figure 8.7. Coupons C-7 and C-8 along with coke plug blocking inlet (lower left) and used catalyst (lower 
right). 183 

Figure 8.8. XRD scans of the Pd-coupons [a] C-3: 2� = 10 – 150° [b] C-1, C-3, and a green (freshly 
prepared coupon): 2� = 38 – 42°. 184 

Figure 9.1. Initial H2 characterization and H2/H2S testing at 400°C (Membrane: AA-31). 195 

Figure 9.2. H2/H2O/N2 testing of the membrane AA-31 with 1 ppmv of H2S [a] First series of experiments 
(25% H2O) [b] Second series of experiments (4 – 37% H2O). 197 

Figure 9.3. Syngas separation with H2S in feed stream [a] RK-16R [b] AA-40R (50% H2, 30% CO2, 19% 
H2O, 1% CO; 14.0 atma; 400°C; 5,600 – 5,800 h-1). 200 



xvii 

Figure 9.4. H2 recovery versus H2S concentration for syngas mixtures containing H2S (Membranes: RK-
16R, AA-40R, and literature data). 202 

Figure 9.5. Diagram of the experimental membrane module indicating the locations where membrane 
samples were cut for characterization. 204 

Figure 9.6. SEM images and EDS line scans of membrane cross-sections [a] SEM, RK-16R outlet, 
2,500X [b] EDS, RK-16R outlet [c] SEM, AA-40R outlet, 2,500X [d] EDS, AA-40R outlet. 205 

Figure 9.7. XRD analysis, asterisks indicate characteristic peaks of the Pd4S-tetragonal phase (Gronvold, 
1956) [a] RK-16R inlet [b] RK-16R outlet [c] AA-40R inlet [d] AA-40R outlet. 206 

Figure 9.8. Images of AA-40R-outlet at 5,000X [a] SEM image [b] X-ray image of the gold M�1 emission 
energy. 208 

Figure 9.9. Reaction experiments with H2S in the feed stream [a] Membrane AA-38R testing history [b] 
Reaction experiments conducted with membrane AA-38R (19% CO, 18% H2, 8% CO2, 55% H2O; 14.6 
atma; 400°C; 2,700 h-1). 210 

Figure 9.10. Post-testing characterization of AA-38R by XRD (2� = 20 - 100�) [a] Inlet-sample [b] Outlet-
sample. 213 

Figure 9.11. H2S/H2 ratio versus temperature indicating Pd4S formation (Membrane data organized as 
Inlet  Outlet, offset horizontally from 400°C, coupon data from Chen {2011} in circles). 214 

Figure 9.12. Surface morphology images of membranes poisoned with H2S (2,500X) [a] AA-38R-inlet [b] 
AA-38R-outlet [c] RK-16R-inlet [d] RK-16R-outlet [e] AA-40R-inlet [f] AA-40R-outlet. 216 

Figure 10.1. He leak development during pure H2 testing at elevated pressure for AA-29 and IM-79 (H2 
permeance shown for IM-79 only). 224 

Figure 10.2. Testing history of AA-21 including H2, He, and H2/H2O testing (Pure He leak plotted on the 
secondary y-axis). 226 

Figure 10.3. Pure H2 testing of IM-86b, with 50 hour periods of H2/H2O mixed gas testing (He leak plotted 
on the secondary Y-axis). 227 

Figure 10.4. Leak development during shifted syngas testing [a] RK-16R [b] AA-40R (50% H2, 30% CO2, 
19% H2O, and 1% CO; 400°C; 13.9 atma; GHSVSTP = 5,600 h-1). 229 

Figure 10.5. H2, He, and WGS testing of AA-24R [a] Testing history [b] WGS CMR results [c] CO 
measured in the permeate and H2/CO separation factor during WGS test (19% CO, 18% H2, 8% CO2, and 
55% H2O; 400°C; 4.4 atma; GHSVSTP = 2,700 h-1). 233 

Figure 10.6. WGS CMR results and He leak development of the membrane IM-79 (23% CO, 22% H2, 
10% CO2, and 45% H2O; 400�C; 14.6 atma; GHSVSTP = 2,100 h-1). 234 

Figure 10.7. H2, He, and WGS testing of AA-30 [a] Leak development [b] WGS CMR results and CO 
measured in the permeate (Feed: 19% CO, 18% H2, 8% CO2, and 55% H2O; 400�C; GHSVSTP = 2,700   
h-1). 236 

Figure 10.8. Rising water He leak test for the membrane AA-30. 238 

Figure 10.9. H2 and WGS testing of the membrane AA-38R (19% CO, 18% H2, 8% CO2, 55% H2O; 14.6 
atma; 400°C; GHSVSTP = 2,700 h-1). 239 



xviii 

Figure 10.10. SEM images of the Pd-surface morphology [a] AA-29; 2,500X [b] AA-29; 5,000X [c] AA-
24R; 2,500X [d] AA-24R; 5,000X [e] AA-30; 2,500X [f] IM-79; 5,000X. 241 

Figure A.1. CO conversion and H2 recovery versus dimensionless length (A: GHSV = 2,900 h-1, B: GHSV 
= 8,700 h-1).                 272�

Figure A.2. H2 flux versus dimensionless length (A: GHSV = 2,900 h-1, B: GHSV = 8,700 h-1).       273 

Figure A.3. [a] PH2,r versus dimensionless length [b] PCO,r and PCO2,r versus dimensionless length (A: 
GHSV = 2,900 h-1, B: GHSV = 8,700 h-1).             274 

Figure C.1. Sample gas chromatograph of a 1:1:1:1 mixture of H2, N2, CO, and CO2.        282 

Figure C.2. Calibration curves for each of the WGS species [a] H2 [b] CO [c] CO2.         283 

Figure C.3. Sample gas chromatograph of 5 ppmv H2S in 62% H2, 37% CO2, and 1% CO.       284 

Figure C.4. Calibration curves for H2S in H2 with high sensitivity detector setting (conducted for this study 
{2/1/12} and conducted by Chen {2011}).                         285 

Figure C.5. Calibration curves for H2S in H2 with low sensitivity detector setting (conducted by Chen 
{2011}).                              285�



xix 

LIST OF TABLES 

Table 2.1. Empirical parameters as calculated by various studies. 10 

Table 2.2. Parameters for equations 2.14 and 2.15, for iron-chrome oxide catalyst (�S in J/mol-K, �H in 
kJ/mol, EA in kJ/mol, and k0 in mol/g-s). 12 

Table 2.3. Parameters for k1 and k2 in equations 2.21 and 2.22. 14 

Table 2.4. Parameters for Langmuir-Hinshelwood rate equation 2.14 for copper-zinc oxide catalyst. 16 

Table 2.5. Composition and catalytic activity of experimental WGS catalysts as a multiple of the activity of 
Zn/Cu oxide, at the same temperature. 17 

Table 2.6. Pre-exponential factor and activation energy for Pd and Pd-alloy foils. 26 

Table 2.7. Synthesis methods and properties of a selection of membranes reported on in the literature. 29 

Table 2.8. Palladium electroless plating bath composition (Ma et al., 2008). 33 

Table 2.9. Syngas mixtures utilized in literature studies, on a dry basis. 39 

Table 3.1. SEM settings for two different modes of operation. 67 

Table 4.1. Summary of grading methods used on porous metal supports and resulting Pd-thickness. 71 

Table 4.2. Specifications of the porous metal supports used in this study. 73 

Table 4.3. Membranes synthesized and/or tested in this study. 78 

Table 4.4. Membranes which have been tested then mechanically polished and re-plated. 85 

Table 4.5. List of conditions for the experiments conducted with the membrane AA-12R. 94 

Table 4.6. Optimal n-values derived by fitting to equation 4.3. 95 

Table 5.1. Binding energy and estimated adsorption equilibrium constant for each species at 400°C. 117 

Table 5.2. Modeling parameters of the experimental WGS CMR studies found in the literature. 121 

Table 6.1. Estimation of the Sherwood number from different literature sources. 129 

Table 6.2. Estimated values of �CO, �H2O, and �CO2 (atm-1). 132 

Table 6.3. Membranes tested in this chapter, comprehensive details are given in Appendix D. 133 

Table 6.4. Composition of gas mixtures used in this study. 134 

Table 6.5. 1-D model parameters for simulation results shown in this chapter. 135 

Table 6.5. Diffusivity of H2 in each binary H2/X mixture (Reid et al., 1987). 141 

Table 7.1. Membranes tested in this chapter, comprehensive details are given in Appendix D. 147 



xx 

Table 7.2. 1-D model parameters for simulation results shown in this chapter. 149 

Table 8.1. Starting composition for the determination of coke formation. 176 

Table 8.2. Coupon coking conditions (P = 14.4 atma). 176 

Table 8.3. Equilibrium mixtures of syngas determined by the minimization of Gibbs free energy. 182 

Table 8.4. Coupon coking results. 184 

Table 9.1. Proposed binding energies, adsorption constants, and relative surface coverage factors for gas 
species on the palladium surface at 400°C. 190 

Table 9.2. Membranes tested in this chapter, comprehensive details are given in Appendix D. 192 

Table 9.3. H2/H2S mixtures used in this chapter (concentration measured by Airgas Inc). 193 

Table 9.4. Spot scan results corresponding to the locations marked on Figure 9.8[a]. 209 

Table 10.1. Summary of long-term testing of Pd and Pd/alloy membranes. 220 

Table 10.2. Membranes tested in this chapter, comprehensive details are given in Appendix D. 222 

Table 10.3. Comparison of He leak growth rates under H2, mixed gas, and WGS conditions. 225 
 
Table A.1. Modeling parameters utilized for the example.             271 

Table B.1. Solutions used in membrane synthesis.             275 

Table B.2. Activation Cycle procedure; the membrane was dipped into each solution sequentially for the 
prescribed time.                              277 

Table B.3. Pd/Ag Barrier Treatment procedure.              277 

Table B.4. 1st palladium plating, 3x90 minutes.              278 

Table B.5. Mechanical Treatment procedure; the membrane was treated on a lathe at ~200 rpm 
sequentially with each grade of SiC paper for the prescribed time.           278 

Table B.6. 2nd palladium plating, 3x90 minutes.              279 

Table B.7. 3rd palladium plating, 2x90 minutes.              279 

Table B.8. Alumina grading treatments for Synthesis Method B.            280 

Table B.9. Palladium plating for Synthesis Method B.             281 

Table C.1. GC method details for the HP 5890 GC.             282 

Table C.2. GC method details for the SRI 8610C GC.             284 

Table D.1. Synthesis details of all membranes utilized in this study.           287 



0 
 

  



1 
 

1. INTRODUCTION 

Fossil fuels currently account for approximately 86% of the total energy consumed in 

the United States each year in terms of electricity, heating, and transportation, all of 

which are ubiquitous in our everyday lives (US EIA, 2008). In the United States the 

current electricity consumption is approximately 1.5x1016 BTU and will continue to 

increase over the next 20 years as hybrid and electric vehicles become increasingly 

adopted (Obama, 2011). Currently, approximately 50% of electricity consumption is met 

by coal combustion and an additional 19% is met by natural gas combustion (US EIA, 

2008). These two fuels are paramount due to their low cost and nearly inexhaustible 

supply. 

Unfortunately, the use of fossil fuel produces a significant amount of CO2, over 21 billion 

tons per year, which has potentially begun to result in global climate change (Keeling et 

al., 2009). Due to concerns over climate change, CO2 emission has come under 

increasing regulations in Europe, and more recently in the United States. Renewable 

technologies such as wind, solar, and biomass, which could potentially replace coal as 

a major electricity provider, are still in their infancy. Nuclear power, which is well 

developed and cost effective on a large scale, suffers from increasing safety concerns, 

preventing its further proliferation. Based on this potential energy bottleneck, it is 

prudent to develop efficient means by which energy from coal and natural gas could still 

be utilized but without the emission of CO2. 

A midterm (20 – 40 years) solution to this problem is the potential sequestration of CO2 

underground. It has been demonstrated that relatively pure CO2 can be sequestered in 

some geologic formations with relatively low compression cost (Shukla et al., 2010). 

The energy sub-sector to which CO2 sequestration could be best applied is coal based 

power plants. Coal based (and natural gas based) power plants are built on an 

economy of scale at which CO2 processing and storage is feasible, with costs of 

approximately 13% overall process efficiency (Li et al., 2008a). While that cost is high, 

CO2 capture from other fossil fuel use such as homes and/or vehicles is completely 

unrealistic. Depending on the stringency of the CO2 regulation, home heating and 
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transportation may be forced to move in the direction of electricity and/or hydrogen as 

the energy transport medium, further increasing the demand for coal based gasification 

and power plants. 

The most advanced coal-fired power plants with 90% CO2 capture by Acid Gas 

Removal (AGR) have a limiting efficiency of approximately 36% (Li et al., 2008a). The 

Integrated Gasification Combined Cycle (IGCC) plant, a relatively young technology, 

has already demonstrated an efficiency of 35% with 90% CO2 capture by AGR. In 

contrast to a coal-fired power plant, an IGCC plant can separate out most of the carbon 

as CO2 in an intermediate step at significant cost savings over a post-combustion 

separation. If IGCC plants can be modified with membranes capable of separating H2, 

either incorporated into, or immediately following the Water-Gas Shift (WGS, equation 

1.1) reaction step, the overall efficiency can be as high as 43% (Bracht et al., 1997). 

This technology has the added bonus of producing high purity H2, which can either be 

sold directly or burned on-site for electricity generation depending on market demand 

(Koc, 2012). 

 �� � ��� ��	�
��	������� � ���       1.1 

In the IGCC, coal/water slurry is burned with a minimal quantity of O2 enriched air to 

generate syngas (H2, CO, and CO2). The syngas is cleaned of mercury and sulfur, and 

then put through the WGS reaction (equation 1.1) in two steps: high temperature (300 - 

400°C) for high through-put, then low temperature (200 - 250°C) for increased 

equilibrium CO conversion. The CO2 in the effluent stream can then be separated by 

AGR for sequestration. The remaining gas is composed primarily of H2 and can be 

burned in a gas turbine or a fuel cell to generate electricity, or used in a chemical 

process. Using a WGS Catalytic Membrane Reactor (CMR) to replace the high-

temperature shift, the low temperature shift, and the AGR steps of the IGCC has the 

potential to increase the overall process efficiency by a significant amount (Bracht et al., 

1997). If only the AGR step of the process is replaced by a Pd-membrane separator, the 

overall efficiency could be increased by up to 2.9% (Gray et al., 2009). 
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The ability of palladium membranes to separate hydrogen from gas mixtures has been 

well-known and studied for over a century. In recent years, Porous Stainless Steel 

(PSS) supported Pd-membranes have been prepared as thin as 8 �m (Mardilovich et 

al., 2006). These membranes have both high H2 permeance (68.5 m3/m2h*atm0.5 at 

500°C) and high selectivity (greater than 140) over testing periods of up to 1,400 hours. 

The mechanical strength provided by the PSS supports is also greatly desirable for 

industrial applications. The application of Pd-membranes to H2 producing, equilibrium 

limited reactions has been highlighted in the literature because of the potential for 

process intensification and to drive the reaction conversion beyond the traditional 

equilibrium via the in situ removal of the product H2 (Shu et al., 1991). WGS CMR 

experiments with thin Pd-membranes have thus demonstrated CO conversion in 

significant excess of the thermodynamic equilibrium conversion (Basile et al., 1996a; 

1996b; 2001; Damle et al., 2008; Iyoha et al., 2007a; Uemiya et al., 1991a). 

Despite the apparent viability of PSS supported Pd-membranes to the WGS step of the 

IGCC process, several obstacles still exist. Cost effective membrane fabrication has not 

yet been extensively demonstrated. H2 separation from syngas and from the WGS CMR 

at high pressure (greater than 10 atma) has not yet been thoroughly investigated. 

Poisoning phenomenon (by H2S and coke) on the Pd-surface from syngas mixtures are 

not yet fully understood. Lastly, few long-term stability studies have been conducted 

with Pd-membranes under syngas separation conditions or in the WGS CMR, making 

life-time estimation difficult. 

The application of Pd-membranes to the IGCC process is dependent on the 

development of a simple and reproducible fabrication method that is at least somewhat 

independent of the support quality. There is a wide variance in PSS support costs, with 

highly uniform supports costing up to five times more than the lowest cost alternative. 

Unfortunately, no studies have yet demonstrated reproducible fabrication techniques 

that could be applied to the lower cost supports. Better fabrication methodology is 

necessary before investment in a pilot scale operation can be considered. 

The separation effectiveness of the Pd-membrane may be impaired by several effects: 

mass transfer resistance in the dense Pd-layer, gas phase mass transfer resistance, 
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reversible surface inhibition by adsorbed species, and irreversible surface inhibition due 

to surface reactions (Catalano et al., 2009; 2010; 2011; Li et al., 2000; 2007b; Gallucci 

et al., 2007). Depending on the membrane characteristics as well as the feed 

conditions, any one of the above effects can serve to significantly limit the percentage of 

separated H2 and/or the rate of the separation. A better understanding of the H2 

separation at high pressures and under the above limitations is necessary before a pilot 

scale design could be proposed. 

Considering the WGS CMR, little work exists in the literature studying the high pressure, 

high temperature operating regime. Indeed, the majority of literature studies have 

utilized a sweep gas (of up to 100 times the feed flow rate) to establish a driving force 

for H2 across the membrane, which would be counter-productive for high-purity H2 

production. The use of a high reaction pressure can allow for H2 recovery above 90% 

without a sweep gas and with high through-put (Damle et al., 2008). A better 

understanding of the relationship between feed conditions and reactor operation in the 

high pressure regime is necessary so that optimal operating parameters can be 

determined. 

While coke formation has not typically been a concern in the WGS system (Newsome, 

1980), coke formation can be a significant problem in the WGS Pd-CMR. First, a low 

H2O/CO ratio is preferred for high H2 recovery and secondly, the Pd-surface most likely 

has some catalytic propensity for coke formation (Li et al., 2007b; 2008b). The coke 

formation in the WGS Pd-CMR has the potential to block active H2 adsorption sites on 

the Pd-surface over time, limiting the long-term efficacy of the reactor. Additionally, 

several studies have suggested that carbon may dissolve in the Pd-lattice to some 

extent, causing increased strain and therefore leak growth in Pd-membranes (Selman et 

al., 1970; Li et al., 2007b). A better understanding of the coke formation 

thermodynamics and kinetics in the WGS CMR is important as a constraint upon the 

possible system design and operating conditions. 

For a Pd-membrane to be utilized in the IGCC process, at least a small degree of 

tolerance to H2S is necessary. The exit stream from the coal gasifier typically contains 

0.7 mol% of H2S, which can then be reduced down to 15 ppmv at a reasonable cost by 
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the Selexol AGR process (Klara et al., 2007; Korens et al., 2002). It is known in the 

literature that pure Pd-membranes cannot tolerate 15 ppmv of H2S in pure H2 over the 

temperature range of 300 – 500°C, but that Pd/Au and Pd/Cu-membranes can. Still 

undocumented in the literature is the effect that other reversibly adsorbed gases (such 

as CO and H2O) will have on H2S poisoning of pure Pd, Pd/Au, and Pd/Cu membranes. 

It is possible that competitive adsorption of the CO and H2O will prevent some poisoning 

by H2S. Additionally, reactions between the H2S, CO, and H2O may either prevent or 

promote irreversible poisoning of the Pd-surface. A better understanding of H2S 

poisoning phenomena is essential to establishing the required level of sulfur removal for 

the IGCC process incorporating a Pd or Pd/alloy-membrane. 

Lastly, a key performance requirement for PSS supported Pd-membranes to be applied 

in a commercial setting is long-term permeance and selectivity stability. Relatively few 

studies have unambiguously demonstrated robust Pd-membrane stability over periods 

on the order of 1,000 hours. Furthermore, no long-term WGS CMR experiments have 

been conducted in the literature to demonstrate the stability of PSS supported Pd-

membranes under reaction conditions. Through better characterization of leak growth 

mechanisms under high-pressure syngas and WGS reaction conditions, a better life-

time estimation could be achieved such that the economic case for supported Pd-

membrane commercialization can be made. 

The overall aim of this thesis is to develop a better fundamental understanding of the 

operating principles and impediments which are relevant to the application of the WGS 

CMR to the IGCC process. The development of this understanding will aid in solving the 

engineering problem of how to best utilize the WGS CMR in a commercial setting. The 

specific objectives supporting this goal are as follows: 

(1) Develop a better understanding of synthesis methodology which allows for 

the production of highly permeable, robust, and reproducible membranes. 

(2) Understand the membrane separation effects which limit H2 flux and 

recovery: mass-transfer resistance of the Pd-layer, gas phase mass transfer resistance, 

reversible inhibition, and irreversible inhibition by surface species. 
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(3) Understand the operation of the WGS CMR incorporating a PSS 

supported Pd-membrane in terms of H2O/CO ratio, temperature, pressure, and feed 

flow rate. A focus was made on high pressure to more closely align with industrial 

conditions. 

(4) Understand the kinetic and thermodynamic factors which result in coke 

formation in the WGS CMR system such that coke formation can be avoided. 

(5) Understand the effect that reversibly adsorbed gas species (such as CO 

and H2O) might have on the H2S poisoning of Pd and Pd/Au-membranes under mixed 

gas and WGS conditions. 

(6) Understand and characterize leak growth mechanisms which may occur 

under mixed gas and WGS conditions, but otherwise may not be present during pure H2 

and inert gas testing. 
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2. LITERATURE REVIEW 

2.1. The water-gas shift (WGS) reaction 

The reaction of carbon monoxide and steam, commonly known as the Water-Gas Shift 

(WGS) reaction yields hydrogen and carbon dioxide as in equation 2.1. 

 �� � ��� � ��� � ��       2.1 

Town-gas or water-gas, referring to a gas mixture of carbon monoxide and hydrogen, 

was first named for being the product of steam reforming of coke by the reaction given 

in equation 2.2. This gas was first distributed in England in 1828 for gas heating and 

lighting (Singer, 1954). The use of water-gas in this way was continued in many cities 

and towns around the world up to the 1970’s. 

 ���� � ��� � �� � ��       2.2 

The use of the WGS reaction for the industrial production of hydrogen first began in the 

United States in 1870 in a process invented by Thaddeus Lowe (Christain and Boyd, 

1949), steam reforming of coke followed by the WGS. The WGS reaction is still used 

industrially for the production of hydrogen from natural gas, coal, and biomass. 

The WGS reaction is reversible and weakly exothermic with a reaction enthalpy of -40.6 

kJ/mol. The reaction also has a negative Gibbs free energy and therefore occurs less 

preferentially at higher temperatures. The equilibrium constant is below unity at 

temperatures above 800°C and does not exceed 20 until the temperature is below 

350°C. A good approximation of the equilibrium constant is given by equation 2.3 (Moe, 

1962). A highly accurate expression for the equilibrium constant was derived by Bisset 

(1977) and can be found in Appendix A.1. 

 � � �������� �����        2.3 

Figure 2.1 shows a plot of equilibrium conversion versus temperature for a 1:1 mixture 

of steam and carbon monoxide calculated using equation 2.3. 
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Figure 2.1. Equilibrium conversion versus temperature for a 1:1 mixture of CO and H2O. 

 

Due to the equilibrium limitation, high conversion for the reaction is not possible at 

elevated temperatures.  Unfortunately, the uncatalyzed reaction proceeds very slowly at 

temperatures lower than approximately 600°C (Bustamante and Enick, 2004), so the 

reaction is always catalyzed in industry (Newsome, 1980). 

Many types of materials were found to catalyze the water-gas shift reaction in the 

temperature range of 100 - 500°C in order to maximize both the conversion and the 

throughput.  The most common of these catalysts are iron-chrome oxide (Fe2O3/Cr2O3) 

and copper-zinc oxide (Cu/ZnO). The iron-chrome oxide catalyst is generally known as 

a “high-temperature” WGS catalyst since it has better activity at temperatures of 320 - 

450°C.  Copper-zinc oxide is generally known as a “low-temperature” WGS catalyst 

since it has better activity at temperatures of 180 - 250°C (Newsome, 1980). 

Despite the equilibrium conversion being greater in the lower temperature range, the 

catalytically enhanced reaction rate is always greater at higher temperatures. To 

achieve maximum throughput in the industrial process, a combination of catalysts is 
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utilized in two steps, first higher, then lower temperature to obtain a high conversion 

with a high throughput. The reaction is first performed at higher temperatures to take 

advantage of the high catalytically enhanced rate, then at lower temperature to take 

advantage of the high equilibrium conversion. The majority of the CO is shifted at the 

higher temperature where the rate is highest, and then most of the remaining CO is 

shifted at the lower temperature where a higher conversion is thermodynamically 

permitted. 

2.1.2. Iron-chrome oxide catalyst 

The iron-chrome oxide catalyst is generally used in the bulk form as porous pellets. The 

Cr2O3 content is generally less than 14 wt%, which is the maximum amount of 

chromium oxide that will form a homogeneous solid solution with ferric oxide. The iron-

chrome oxide catalyst has typically been produced by co-precipitation of Fe(III) and 

Cr(III) nitrates with excess ammonium hydroxide followed by filtration and mechanical 

formation into pellets. The catalyst produced in this way was shown to be very cheap 

and robust under WGS conditions (Christain and Boyd, 1949). 

The rate of the WGS reaction on iron-chrome oxide has been extensively studied in the 

range of 250 - 500°C, and many different forms of the rate equation have been 

proposed. Rates based on the Eley-Rideal model, the oxidation-reduction model, the 

Hulburt-Vasan model (Hulburt et al., 1961), the Tempkin model (Kul’kova and Temkin, 

1949), and the Kodama model (Kodama et al., 1955) have been largely dismissed in 

more recent literature since they didn’t fit modern experimental studies conducted over 

larger pressure ranges (Podolski and Kim, 1974). The rate equations which have 

survived intense scrutiny are the empirical rate equation and the Langmuir-Hinshelwood 

rate equation. The empirical rate equation, given by equation 2.4, was not based on a 

model or kinetic mechanism but instead approximated the rate as proportional to the 

concentration of each species raised to a constant power. 

 � ! � "# !$#%&!'# !&(#%&)�* + ,�     2.4 

where , � -./&-0& 123-./-0&/4 , " � "5627 894 , Pi [atma] is the partial pressure of species 

i, k0 [mol/g-s] is the pre-exponential factor, Ea [kJ/mol] is the activation energy for the 
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reaction, and m, n, o, and p are adjustable parameters. k0, Ea, and the exponents m, n, 

o, and p were typically estimated by a series of up to 16 experiments with differing feed 

concentrations and at multiple temperatures. The empirical parameters calculated by 

various experimental studies are given in Table 2.1. 

 

Table 2.1. Empirical parameters as calculated by various studies. 

 

The alternate rate equation that was favored in the literature was based on the 

Langmuir-Hinshelwood model (Keiski et al., 1996; Podolski and Kim, 1974). The 

Languir-Hinshelwood model assumed that the reaction took place first by adsorption of 

each species onto the surface, then surface reaction, then desorption of each species 

from the surface. A high surface coverage of any single species adversely affected the 

amount of other species (reactants or products) that could be adsorbed and reacted. 

When the model was applied to the WGS reaction five elementary steps were indicated 

as shown in Mechanism I (Keiski et al., 1996). One step was for the adsorption of each 

species, equations 2.5 - 2.8, and one step was for surface reaction, equation 2.9. 

  Mechanism I 

 1) :; �<= :; <       2.5 

 2) >�; �<= >�; <       2.6  

 3) :;� <= :;� �<       2.7  

ln(k0) Ea [kJ/mol] m n o p Reference 

8.61 114.7 0.90 0.25 -0.60 0 Bohlbro, 1961 

7.61 118.9 0.81 -0.024 -0.16 -0.044 Podolski and Kim, 1974 

11.4 95.0 1.1 0.53 0 0 Keiski et al., 1996 

8.52 122.0 0.84 0.08 -0.4 0 Koukou et al., 1998 

11.7 112 1 0 0 0 Rhodes et al., 2002 

6.55 111 1.0 0 -0.36 -0.09 Hla et al., 2009 

1.52 88 0.9 0.31 -0.16 -0.05 Hla et al., 2009 
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 4) >� <= >� �<        2.8 

 5) :; < �>�; <= :;� < �>� <     2.9 

Generally surface adsorption and desorption took place very fast so steps 1 - 4 were 

assumed to be at equilibrium, allowing their overall rates to be set equal to zero. 

Equation 2.10 gave the overall rate of adsorption, ri [mol/g-s], for species i, which was 

valid for all species in equations 2.5 - 2.8. Equation 2.10 was simplified to result in 

equation 2.11, the gas-surface equilibrium expression. 

 ?@ � A � B@CD@EC<E + B�@CF@E      2.10 

 CF@E � �@#GHC<E        2.11 

where ki [mol/g-s-atm] was the forward rate constant for species i, k-i [mol/g-s] was the 

reverse rate constant, [*] was the dimensionless concentration of unoccupied surface 

sites, [Si] was the concentration of adsorbed species i on the surface, and ki/k-i = Ki 

[atm-1] was called the Langmuir adsorption equilibrium constant for species i. 

The rate equation for step 5 (equation 2.9), given by equation 2.12, was the rate limiting 

step. 

 ?� � B�C:; <EC>�; <E + B��C>� <EC:;� <E    2.12 

By utilizing the material balance for the surface coverage given by equation 2.13 as well 

as the gas-surface equilibrium expression for each species given by equation 2.11, the 

overall rate, r5 [mol/g-s], could be simplified to that given by equation 2.14. 

 :� � C<E � C:; <E � C>�; <E � C:;� <E � C>� <E    2.13 

 ?� � B�:;�>�;IJKILMK�N�O�
�NP�:;IJKP�>�;ILMKP�:;�IJKMP�>�ILM��    2.14 

Where k = k5*Cs
2 = k0e-Ea/RT, Cs [mol/m2] was the concentration of all surface sites, and 

KEQ = k5KH2KCO2/k-5KCOKH2O. 

The overall rate of equation 2.14 was promoted by an increase in the concentration of 

the reacting species, CO and H2O, and so those species were found in the numerator of 
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equation 2.14 to the first power. The overall rate was also inhibited by an increase in the 

concentration of any one of the four species since that species would cover the surface 

and lower the concentration of free sites. The inhibition effect was represented by the 

terms in the denominator of equation 2.14. The concentration of each of the reactant 

species, therefore, had either a promoting or an inhibiting effect on the overall reaction 

rate depending on the concentration. The values of the Langmuir adsorption equilibrium 

constants, Ki [atm-1], were defined by equation 2.15 and with the parameters listed in 

Table 2.2. 

 �@ � QRST�+ U>@
V� � WF@

V �       2.15 

 

Table 2.2. Parameters for equations 2.14 and 2.15, for iron-chrome oxide catalyst (�S 

in J/mol-K, �H in kJ/mol, EA in kJ/mol, and k0 in mol/g-s). 

* Not reported 

The activation energy and pre-exponential factor for the Langmuir-Hinshelwood model 

was very near that of the empirical model. The absolute reaction rate was also very 

similar between both equation sets and only differed significantly at high reaction 

pressure (greater than 10 atma) and where the partial pressure of any one reaction 

component was much greater than all the other species, resulting in a significant 

inhibition by occupying the majority of surface sites (Podolski and Kim, 1974). 

An additional aspect of reaction modeling was the unsteady state reaction behavior. It 

was shown that the iron-chrome oxide catalyst underwent oxidation and reduction over 

the course of the reaction so that the unsteady state behavior could potentially be 

modeled by an oxidation-reduction mechanism like that shown by Mechanism II, 

equations 2.16 - 2.20 (Salmi et al., 1988; Tinkle and Dumesic, 1987). Step 1, equation 

2.16, represented the reaction of gas phase CO with an adsorbed oxygen atom. Steps 2 

�HCO �SCO �HH2O �SH2O �HCO2 �SCO2 �HH2 �SH2 EA ln(k0) Reference 

-12.8 -28.2 26.0 53.4 -52.5 -77.2 - - 122.9 8.01 Podolski and Kim, 
1974 

-43.1 N/R* - - -8.8 N/R* 27.6 N/R* N/R* N/R* Keiski et al., 1996 
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and 3, equations 2.17 and 2.18, represented adsorption and desorption of CO2 and H2O 

from the surface. Step 4, equation 2.19, represented the dissociation of surface H2O to 

surface bonded atomic H and O. Step 5, equation 2.20, represented the association of 

surface bonded atomic H and subsequent desorption of H2. It was demonstrated 

experimentally by reactions with 13C labeled CO that the rate limiting steps were Steps 1 

and 5 resulting in the approximated rate given by equations 2.21 and 2.22 (Tinkle and 

Dumesic, 1987). 

Mechanism II 

1) :; � ; <= :;� �<       2.16 

2) :;� <= :;� �<       2.17 

3) >�; �<= >�; <       2.18  

4) >�; < �� <= �> < �; <      2.19  

5) �> <= >� � � <       2.20 

 ?:;� � BND:;�N + O�       2.21 

 ?>� � B�X��N + Y;��       2.22 

where ri [mol/g-s] was the rate of formation of species i, BZ � BA[Z\]^_`, with values for k0,1 

[mol/g-s-atm], k0,2 [mol-m4/g-s-molSS
2] and En [kJ/mol] defined in Table 2.3 as reported 

by Salmi et al. (1988), PCO [atm] was the partial pressure of CO, L [molSS/m2] was the 

concentration of surface sites on the catalyst, and �O was the fraction of oxygenated 

Surface Sites (SS). 

Equations 2.21 and 2.22 were simplified from more complex equations (Salmi et al., 

1988) based on the following assumptions. In transient experiments CO2 was found to 

evolve immediately while the evolution of H2 from the catalyst was significantly delayed. 

Based on the lag-time for the evolution of H2, and calculations of available surface sites, 

the surface coverage of the oxygenated sites was assumed to be nearly total. The 

immediate appearance of CO2 in transient experiments suggested that the adsorption 

and desorption of CO and CO2 took place very fast compared to the adsorption and 

desorption of H2O. Also, the H2O/CO ratio was assumed to be greater than 1.0. 
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Table 2.3. Parameters for k1 and k2 in equations 2.21 and 2.22. 

 

 

2.1.3. Copper-zinc oxide catalyst 

Copper based catalyst, which typically contained around 20 mol% ZnO as a promoter 

and up to 25 mol% Cr2O3 as a stabilizer, came into study and use in the 1960’s 

(Newsome, 1980). These catalysts had exceptional activity in the temperature range of 

100 - 300°C and were utilized in the second step of the industrial WGS process. 

Copper based catalysts were prepared by kneading zinc oxide, copper hydroxide, and 

chromium oxide together, followed by extrusion into pellets, and calcination at 250°C. 

The optimal composition of CuO and ZnO was found experimentally to be 29 mol% Cu 

(Uchida et al., 1967). A plot of the reaction rate constant, k180 in mol/atm-mLcat-h, versus 

Cu/Zn ratio at 180°C is shown in Figure 2.2. With increasing Cu/Zn ratio, the rate 

increased to a maximum at a Cu/Zn ratio of 0.4, then decreased slightly in the range of 

0.4 - 2.0, then further decreased at a Cu/Zn ratio of greater than 2.0. 

 

Figure 2.2. Rate constant versus Cu/Zn atomic ratio at 180°C (Uchida et al., 1967). 

ln(k0,1) E1 [kJ/mol] ln(k0,2) E2 [kJ/mol] Reference 

5.67 97.2 4.37 -26.5 Salmi et al., 1988 
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In a subsequent study, Uchida et al. (1968) studied the porosity, surface area, and 

surface morphology of catalyst samples with varying Cu/Zn ratios. They concluded that 

the optimal activity occurring at a Cu/Zn ratio of 0.4 was due to an optimal catalyst 

structure at that Cu/Zn ratio. They found that the majority of the catalytic activity 

occurred on the copper and that the zinc oxide acted as a support. At high percentages 

of copper however, the copper particles tended to aggregate and sinter under reaction 

conditions lowering the available surface area. The optimal balance between high 

catalyst surface area and low extent of sintering was achieved at approximately 29 

mol% Cu. 

The rate of the WGS reaction on copper-zinc oxide catalyst, in the temperature range of 

100 - 400°C, has been thoroughly studied in the literature (Newsome, 1980). The 

predominant forms of the rate equation seen in the literature were also the empirical 

rate law and the Langmuir-Hinshelwood based rate law (Amadeo and Laborde, 1995; 

Newsome, 1980; Salmi and Hakkarainen, 1989). The empirical rate law, equation 2.23, 

was largely agreed to be dependant only on the concentrations of CO and H2O, and not 

on CO2 or H2 (Salmi and Hakkarainen, 1989). Additionally the exponents m and n have 

been found to vary with temperature over the range of 130 - 410°C. Salmi and 

Hakkarainen (1989) reported the varying m and n values as well as the rate constant 

data for that range. 

 ? � BC:;EaC>�;EZ�N + O�       2.23 

Since the empirical rate law, equation 2.23, did not adequately express the temperature 

dependence of the reaction, the Langmuir-Hinshelwood rate law, equation 2.14, was 

generally utilized. The parameters for the Lagmuir isotherm constants and the rate 

constants are given in Table 2.4. 
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Table 2.4. Parameters for Langmuir-Hinshelwood rate equation 2.14 for copper-zinc 

oxide catalyst. 

 

2.1.4. Other WGS catalysts 

A third type of catalyst, cobalt-molybdenum based catalyst, has also been extensively 

studied and has come into mainstream use but to a lesser extent than the other two 

catalysts (Newsome, 1980). This catalyst was usually supported on silica or alumina 

and promoted cesium salts. In contrast to the iron-chrome and copper-zinc oxide 

catalysts, the cobalt-molybdenum catalyst was made more active by the presence of 

sulfur in the WGS reaction mixture. In the intermediate temperature range, 250 - 350°C, 

and in the presence of 2 mol% sulfide species, cobalt-molybdenum catalysts have 

shown activity as high as five times that of copper-zinc oxide catalyst for the same feed 

mixture, excluding the sulfide (Newsome, 1980). For this reason, Co/Mo catalysts are 

not typically used in situations where sulfide species were absent from the WGS feed 

mixture. 

In recent years alternative catalysts have been developed based on both transition 

metals such as iron, nickel, and cobalt (Hilaire et al., 2004) as well as noble metals such 

as palladium, gold, platinum, and rhodium (Kim and Thompson, 2005; Burch, 2006; Iida 

and Igarashi, 2006). These catalysts have been designed primarily to operate in the 100 

- 300°C temperature range where a high equilibrium conversion was possible and 

increased catalytic activity was greatly sought after. Practically all novel transition metal 

catalysts failed to compete with commercially available Zn/Cu-oxide catalyst in the low 

temperature range (Hilaire et al., 2004). A few of the best examples of these catalysts 

are listed in Table 2.5. The catalytic activity is presented as a multiple of the catalytic 

rate of a commercial copper-zinc oxide catalyst. 

 

�HCO �SCO �HH2O �SH2O �HCO2 �SCO2 �HH2 �SH2 EA ln(k0) Reference 

-0.84 6.59 -1.32 -7.62 -22.8 -44.6 -13.3 -24.6 5.94 0.049 Amadeo and Laborde, 
1995 
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Table 2.5. Composition and catalytic activity of experimental WGS catalysts as a 

multiple of the activity of Zn/Cu oxide, at the same temperature. 

Catalyst Temperature (°C) Activity ( bcdefghiTbdfcbdfcThiTji.k/) Reference 

CoMoCs/Al2O3 300 5.24* Newsome et al., 1980 

Au/CeO2 – 400 240 3.81 - 2.0 Kim and Thompson,  
2005 

Pt/TiO2 (rutile) 250 1.24 Iida and Igarashi, 2006 

Pd/CeO2 227 0.1 Hilaire et al., 2004 

Ni/CeO2 227 0.1 Hilaire et al., 2004 

Co/CeO2 227 <0.01 Hilaire et al., 2004 

*2 mol% H2S utilized in the feed 

Despite many synthesis attempts, all but a few noble metal catalysts (primarily Au and 

Pt) have shown lower catalytic activity than commercial Zn/Cu oxide catalysts in the 100 

- 300°C temperature range (Burch, 2006). It was believed that the activity of these 

catalysts was strongly influenced by the microstructure of the support material and the 

noble metal. Kim and Thompson (2005) developed a ceria supported gold catalyst by 

the deposition of chloroauric acid onto basic aqueous suspended ceria which proved to 

have significantly higher activity than the commercial Zn/Cu oxide catalyst at a 

temperature of 240°C. The catalyst prepared by Kim and Thompson (2005) showed an 

initial activity of 3.81 times that of the commercial Zn/Cu oxide reference catalyst 

although its activity declined by 48% over 10 hours. Iida and Igarashi (2006) prepared 

several supported platinum catalysts on titanium dioxide, zirconium dioxide, and 

alumina by evaporation of aqueous platinum chloride solution onto each support 

followed by calcination. Of the four supported Pt-catalysts prepared by Iida and Igarashi 

(2006), only the Pt/TiO2(rutile) sample showed catalytic activity slightly higher than the 

commercial alternative. Burch (2006) reviewed over 20 experimental papers presenting 

gold and platinum supported catalysts and showed that the most important aspects of 

the supported noble metal catalysts were the noble metal particle size (smaller particles 

being better) and the extent of contact between the particles and the support (more 

intimate contact being better). Burch (2006) postulated that the mechanism of the WGS 
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reaction on the noble metal catalysts involved not only the metal surface but also metal-

support interface. 

The relatively minor gains in catalytic activity achieved by noble metal catalysts in 

recent years have not been great enough to outweigh the added cost of the noble metal 

use. 

 2.2. Palladium membranes 

The solubility of hydrogen in palladium was first discovered in 1863 by Deville and 

Troost (Graham, 1866). The first separation of hydrogen by thin palladium tubes was 

performed shortly thereafter by Thomas Graham in 1866. Despite the early discovery of 

this unusual property of palladium, little research was done until the 1930’s. Palladium is 

capable of occluding vast quantities of hydrogen in a non-stoichiometric way and, at 

elevated temperatures, transporting that hydrogen throughout the metal lattice (Lewis, 

1967). The quantity of hydrogen dissolved in palladium is dependent on both 

temperature and pressure. Figure 2.3 shows the partial pressure of hydrogen as a 

function of solubility (given by the atomic ratio, H/Pd) for different isotherms.  Figure 2.3 

also indicates that there are two distinct phases of dissolved hydrogen. Below the 

critical temperature of 298°C two distinct phases exist which are separated by the 

dashed parabola. The �-phase exists to the left of the parabola and the �-phase exists 

to the right of the parabola. Under the parabola both phases are present as a 

heterogeneous mixture in the metal. 
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Figure 2.3. Pressure isotherms of the Pd-H system at several temperatures 

(Reproduced from Frieske and Wicke, 1972). 

 

Since transitions between the � and �-phases were accompanied by a large change in 

the lattice constant, 3.89 to 4.02Å, significant stress and deformation could occur in the 

metal during the transition (Lewis, 1967; Smith, 1948). When palladium foils were 

subjected to repeated �/� transitions, deformations were observed on both the 

macroscopic and microscopic levels. Thin membranes subjected to �/� transitions have 

developed pinholes and cracks due to these deformations in a process known as 

hydrogen embrittlement. An example of a thin supported membrane put through an �/� 

transition is shown in Figure 2.4 (Guazzone et al., 2006). 
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Figure 2.4. SEM image of a PSS supported Pd-membrane which has undergone 

hydrogen embrittlement (Guazzone et al., 2006). 

 

At temperatures above 298°C there are no distinct � and �-phases so the increase to 

higher H-concentration happens smoothly, with far less stress and deformation 

(Guazzone et al., 2006). Pure palladium membranes are typically utilized at 

temperatures of greater than 298°C to avoid possible failures due to hydrogen 

embrittlement.  Alternatively at lower temperatures a Pd-membrane can be kept clear of 

the �/� transition by keeping the hydrogen partial pressure below the transition 

pressure. Alloying the palladium with other metals, silver for instance, also lowers the 

temperature at which the distinct � and �-phases can coexist. A Pd60Ag40-alloy has no 

distinct two phase region at temperatures as low as 50°C (Lewis, 1967). 

2.2.1. H2 permeability of thin Pd foils 

The permeation of pure hydrogen through a palladium foil happens in several steps. 

Hydrogen is first adsorbed on the surface and dissociates. The dissociated hydrogen 

atoms then dissolve into the metal lattice. Both of these steps are reversible and occur 

at both sides of the foil. The hydrogen diffuses through the lattice and can thereby cross 
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the foil (Barrer, 1951). Figure 2.5 shows the adsorption, dissociation, dissolution, and 

diffusion process. 

 

Figure 2.5. Mechanism of hydrogen permeation into a metal. 

 

The flux of hydrogen permeating through a thin palladium layer depended mainly on the 

diffusion of hydrogen through the bulk palladium, which was the rate determining step 

for membranes thicker than approximately 1 �m (Shu et al., 1991). For membranes 

thinner than approximately 1 �m, the mass transfer resistance in the bulk can become 

very low such that it is no longer rate limiting. In this case, the H2 flux can be limited by 

the desorption step on the low pressure side of the membrane (Ward and Dow, 1999). 

For thicker membranes the permeation flux, JH [molH/m2-h] at steady state was obtained 

by the integration of the Fick’s law across the foil, resulting in equation 2.24. 

 l> � �m>noDp��:N + :��       2.24 

Where DH [m2/h] was the diffusion coefficient for atomic hydrogen in the lattice, �Pd [m] 

was the thickness of the foil, and Cx [molH/m3] was the concentration of hydrogen 

immediately beneath surface x on one side of the foil. The concentration can be defined 
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as a constant, q = 1.130*105 molPd/m3, multiplied by the H/Pd atomic ratio, r, as in 

equation 2.25.  

 :s t qrs         2.25 

The following derivation was elucidated by Shu et al. (1991), a list of all terms and their 

definitions can be found in the Nomenclature section, and a more thorough derivation of 

the following equations can be found in Appendix A.2. For surface x of the membrane 

the flux of adsorption/desorption, Ja [mH2
3/m2-h], is given by equation 2.26. 

 l� � B�Ds�N + Y>�� + BpY%&       2.26 

Where the two terms are rate expressions for adsorption and desorption, ka [mH2
3/m2-h-

atm] and kd [mH2
3/m2-h] are the rate constants for adsorption and desorption 

respectively, Px [atma] is the partial pressure of hydrogen in the gas phase adjacent to 

surface x, and �H is the fraction of surface covered by dissociated hydrogen. 

The flux of dissolution into the lattice, Jd [molH2/m2-h] is given by equation 2.27. 

 lp � qB@Y>�N + us� + qusBv�N + Y>�     2.27 

Where the two terms are rate expressions for dissolution of surface H2 into the lattice 

and evolution of H2 from the lattice to the surface, and ki [m/h] and ko [m/h] are the rate 

constants for dissolution into and out of the dense Pd respectively. 

Since diffusion has been shown experimentally to be the rate limiting step for 

membranes thicker than approximately 1 �m, the flux will be given by equation 2.24. 

The rates of equations 2.26 and 2.27 are much greater, allowing for the assumption that 

those processes are at equilibrium. Equations 2.26 and 2.27 can therefore be set equal 

to zero and simplified to generate an expression for concentration, Cx, inside the bulk 

palladium and close to surface x. The expression for H-concentration near surface x 

was given by equation 2.28. 

 :s � q
��wDs�N + us� x q

��wDs      2.28 
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Where Ks [atm0.5-molH/molPd] is known as Sieverts’ constant, �� � �Bv B@4 �w�Bp B�4 �.  
Sieverts’ constant is an equilibrium constant relating the partial pressure of hydrogen in 

contact with a metal surface to the concentration of hydrogen, rs , just below the 

surface, �� � yD u4 . The equation is simplified greatly by the assumption that u z N 

(the last term in equation 2.28), meaning that the hydrogen concentration in the metal is 

very low. The acceptable conditions which validate the u z N assumption can be found 

from Figure 2.3 (u � {|n-}{), the �-phase region to the left of the dashed parabola. 

Incorporating equation 2.28 into equation 2.24 gives the equation known as Sieverts’ 

law, equation 2.29. Sieverts’ law is the most common expression for the relationship 

between hydrogen flux and partial pressure in Pd-membranes. 

 l � mq
oDp�� ~wDN +wD��       2.29 

Equation 2.29 expresses that the flux of hydrogen across the foil is dependent on the 

difference in square root partial pressures of hydrogen on both sides of the foil. The flux 

is directly proportional to the diffusion coefficient and inversely proportional to the 

thickness of the foil. If the assumption, � z * , is not justified, for example at low 

temperature and/or very high pressure, then the total flux across the barrier is given by 

equation 2.30, derived directly from the substitution of equation 2.28 into equation 2.24 

with no further assumptions or simplifications. 

 l � mq
oDp � wDN

��PwDN + wD�
��PwD��       2.30 

A more thorough derivation of equation 2.30 is given in Appendix A.2. As can be seen, 

at lower pressure, when w#� z 1� for both sides of the foil, equation 2.30 simplifies to 

equation 2.29. When this simplification cannot be made due to high pressure the flux no 

longer obeys a square root dependence on pressure. 

The permeability of hydrogen in a metal, defined by QH2 [m3-�m/m2-h-atm0.5] = D�/KS, 

can also be expressed as the diffusivity, D [m2/h], multiplied by the solubility, S 

[m3
H2/m3

Pd], where S = �/KS. Incorporating the above definition of permeability of 

hydrogen in a metal into equation 2.29 results in equation 2.31.  
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 l � �>
oDp ~wDN +wD��        2.31 

The permeability of hydrogen is a temperature-dependant property of the metal which 

can differ significantly between metals and alloy compositions. For ideal membranes the 

flux is dependent on the square root partial pressure difference as given by equation 

2.29 but for supported membranes the dependence may not well fit the ½ power due to 

support resistance, surface adsorption resistance, or leaks. For membranes that are not 

ideal an empirical equation, 2.32, has been used to characterize the H2 flux. 

 l � �>�
oDp �DNZ + D�Z�        2.32 

where n is the exponent of the pressure dependence. 

In non-ideal membranes, different effects can alter the n-value in predictable ways. For 

very thin films (less than 1 µm) the flux can cease to be limited by the diffusion of 

hydrogen in the metal lattice and instead become partially limited by the desorption of 

hydrogen from the downstream metal surface, equation 2.26 (Ward and Dao, 1999). 

The pressure dependence of equation 2.26 is first order, so that if the flux becomes 

partially limited by desorption the n-value in equation 2.32 will approach one. 

Additionally, the hydrogen flux of membranes supported on microporous supports can 

be partially limited by the mass transfer resistance in the support. The flux through 

microporous media occurs through Knudsen diffusion which is also first order with 

respect to partial pressure difference and would cause the n-value of equation 2.32 to 

approach one (Knudsen, 1995). When the membrane is being utilized to separate a gas 

mixture, a concentration boundary layer will form above the surface such that a 

concentration gradient will exist between the bulk gas phase and the surface (Caravella 

et al., 2009). The flux across the boundary layer is first order with respect to partial 

pressure so if there is significant mass transfer resistance in the boundary layer it will 

also cause the n-value of equation 2.32 to approach one. 

An important aspect of non-ideal membranes is that they may have leaks. Guazzone 

and Ma (2008) studied leak growth in Pd membranes supported on PSS and found that 

above approximately 400C, in a H2 atmosphere, pinholes formed due to sintering and 
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rearrangement of the Pd crystallites. Microscopic defects and pinholes will allow a flux 

of otherwise non-permeable gas. For this reason the separation factor, �>��@, of the 

membrane must be defined, equation 2.33. 

 �>��@ �
�>� �@�s>� s@�          2.33 

where yH2 [mol/mol] is the mole fraction of H2 in the permeate, yi [mol/mol] is the mole 

fraction of gas species i (non-hydrogen gas) in the permeate, xH2 [mol/mol] is the mole 

fraction of H2 in the retentate, and xi [mol/mol] is the mole fraction of gas species i in the 

retentate. An alternate way to characterize the efficacy of a membrane is by the ideal 

separation factor, �%&��� , as defined by equation 2.34. 

 �%&��� � l>� l@4         2.34 

where JH2 [m3/m2-h] and Ji are the fluxes of pure hydrogen and pure non-permeable gas 

species i respectively, measured at the same temperature and pressure difference. The 

‘real’ separation factor (equation 2.33) will frequently be less than the ideal separation 

factor (equation 2.34). In many types of membranes, chemical or physical interactions 

between one gas species and the surface, can affect the permeability of the membrane 

to a different gas species. A specific example dealing with Pd-membranes is H2 

permeation inhibition caused by CO, H2O, or H2S (Hou and Hughes, 2002; Unemoto et 

al., 2007; Peters et al., 2012), causing a lower membrane permeance to H2 and the 

‘real’ separation factor, �>��@, to be less than the ideal separation factor. 

2.2.2. H2 permeability of Pd/Alloys 

The permeability of hydrogen in a metal is dependent on temperature as in equation 

2.35. 

 �> � �AQRST�+��nV��       2.35 

where Q0 [m3-�m/m2-h-atm0.5] is a pre-exponential factor and EA [kJ/mol] is the 

activation energy of hydrogen permeation. The pre-exponential factor and the activation 

energy are unique for different alloy compositions. Table 2.6 lists the pre-exponential 
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factors and activation energies for the hydrogen permeation of several different 

palladium alloy foils. 

 

Table 2.6. Pre-exponential factor and activation energy for Pd and Pd-alloy foils. 

Material Q0 [m3-
µm/m2*h*atm0.5] 

EA  

[kJ/mol] 
T [°C] PH2 [atma] Reference 

Pd 4.397x103 13.81 350 - 900 1.0 - 27.3 Morreale et al., 2003 

Pd 6.59x103 15.48 100 - 620 3x10-7 - 7x10-5 Balovnev, 1974 

Pd 8.47x103 18.26 300 - 700 0.001 - 1 Latyshev and 
Bystritskiy, 1991 

Pd75Ag25 1.986x103 6.60 300 - 500 6.8 - 68 Ackerman and 
Koskinas, 1972 

Pd85Ag15 9.40x103 17.43 400 - 700 0.001 - 1 Latyshev and 
Bystritskiy, 1991 

Pd60Cu40 9.24x102 10.77 350 - 450 1 - 26 Howard et al., 2004 

Pd80Cu20 1.67x103 18.60 350 - 950 1 - 26 Howard et al., 2004 

Pd90Au10 2.32x103 10.70 350 - 500 1.0 - 6.9 Gade et al., 2010 

Pd80Au10 1.43x103 7.95 350 - 500 1.0 - 6.9 Gade et al., 2010 

 

Pd/Ag, Pd/Au, and Pd/Cu membranes prepared by McKinley (1967) as well as Pd/Au 

and Pd/Cu membranes prepared by Knapton (1977), demonstrated permeabilities in 

excess of pure Pd membranes for some alloy compositions: less than approximately 35 

at% Ag, less than 15 at% Au, and approximately 40 at% Cu. Figure 2.6 shows the 

permeability of different Pd/Ag, Pd/Au, and Pd/Cu compositions as a fraction of the 

permeability of pure Pd, and at 350°C.  
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Figure 2.6. Permeability of Pd-alloy divided by that of pure Pd versus alloy composition 

at 350°C. 

 

Lewis (1967) suggested that the improved permeability of Pd/Ag-alloys with less than 

approximately 35 at% Ag was caused by the lattice dilation which significantly increased 

the solubility of H-atoms in the alloy. Knapton (1977) and McKinley (1967) both 

suggested that the higher or lower H2 permeability of the Cu and Au alloys was also due 

to the higher or lower lattice constant caused by the fraction of the alloying metal. For 

the Pd/Au-alloy, the lattice constant increased approximately linearly with increasing Au 

composition. For copper, a spike in permeability was seen at approximately 40 at% Cu, 

caused by the formation of a body-centered cubic (bcc) phase which had very high H2 

diffusivity, resulting in high H2 permeability (Knapton, 1977). 

2.2.3. Synthesis of supported membranes 

A variety of synthesis techniques have been developed to produce thin foils or thin 

supported membranes of palladium and palladium alloys for hydrogen separations. 

Since the flux of such membranes was inversely proportional to their thickness, 
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substantial effort has been made to produce thinner membranes. In addition, the 

majority of membrane synthesis efforts have been directed towards supported or 

composite membranes instead of free standing foils. Supported membranes generally 

have better mechanical strength and durability than thin foils. Thin foils (less than 100 

µm thick) have been attached by various means (such as mechanical clamping, 

welding, or diffusion welding) to different types of porous supports in order to improve 

their mechanical strength. Thin layers of dense metal have also been synthesized on 

top of porous supports in a variety of ways, the most common of which were 

electroplating, magnetron sputtering, chemical vapor deposition, and electroless plating. 

Table 2.7 lists the synthesis methods and properties of several dense metallic 

membranes that have been prepared in the literature. 

2.2.3.a. Supported foils 

One way of producing a supported membrane has simply been to attach a piece of foil 

onto a porous support; the foil accomplished the separation, the support provided the 

mechanical stability. Tosti (2003) bonded a Pd76Ag24-foil (42 µm thick) to Ni/Ag coated 

stainless steel mesh by diffusion welding (heating to above the Tamman temperature 

and applying mechanical pressure). They observed a hydrogen permeance of 0.98 

m3/m2h*atm0.5 with an assumed infinite selectivity at 350°C. DeRosset (1960) tested a 

20 µm palladium foil held at the edges of a PSS disk by a diaphragm. The author 

reported a permeance of 6.0 m3/m2h*atm0.8 at 450°C and an n-value of 0.8. The author 

did not report selectivity or stability over time. Peters et al. (2008) synthesized a 2.2 µm 

Pd77Ag23-foil by magnetron sputtering (discussed in section 2.2.3.c) onto a silicon 

substrate, then removed the foil from the substrate and clamped it to a tubular Porous 

Stainless Steel (PSS) support. They reported a flux of 150.8 m3/m2h*atm0.54 at 400°C, 

an n-value of 0.54, and a selectivity of over 650 for up to 500 hours of testing. Peters et 

al. (2009) synthesized another supported foil, 2.6 µm Pd77Ag23, and tested it for up to 

2,400 hours in a 50/50 mixture of hydrogen and nitrogen, at 350 - 450°C; they observed 

an initial H2/N2 separation factor of 550 which declined to 50 over the testing time. They 

determined that the leak development was due to grain growth in the Pd-layer, and that 

the rate of leak growth at 400°C led to a projected membrane lifetime of 2.5 years. 
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Table 2.7. Synthesis methods and properties of a selection of membranes reported on in the literature. 

 

Deposition 
Method 

Support Composition Thickness 
[µm] 

H2 Permeance 
[m3/m2h*atmn] 

n-value Temperature 
[°C] 

Selectivity 
[FH2/FHe] 

Testing 
Time [h] 

Reference 

Foil SS Mesh PdAg 42 0.98 0.5 350 N/R N/R Tosti, 2003 
Foil PSS Pd 20.3 5.97 0.8 450 N/R N/R deRosset, 1960 
Foil PSS Pd77Ag23 2.2 150.8 0.52 400 N/R 500 Peters et al., 2008 

Vacuum EP PSS Pd78Ni22 1 105.9 1 550 600 N/R Nam et al., 1999 
1 141.2 1 550 2700 N/R 
1 150.0 1 550 4700 N/R 

Vacuum EP PSS Pd63Cu37 2 68.4 1 550 70,000 960 Nam and Lee, 2001 
Vacuum EP PSS Pd82Ni18 3 26 1 450 4500 1400 Nam and Lee, 2005 

MS Ceramic Pd76Ag24 1 90 1 462 800 N/R Zhao et al., 2000 
MS Silicon Pd77Ag23 0.75 153.2 0.5 450 1500 N/R Gielens et al., 2002 
MS PSS Pd77Ag23 2.6 24.1 0.5 0.5 8700 2400 Peters et al., 2009 

CVD Ni-PSS Pd 5 141.1 1 450 1600 48 Jun and Lee, 2000 
Pd80Ni20 22 17.6 1 450 400 48 
Pd70Nb30 N/R 21.2 1 450 120 48 

CVD Alumina Ir 8.3 34.7 0.5 500 93 15 Kajiwara et al., 2000 
Rh 17.3 30.2 0.5 500 80 15 

CVD Alumina Pd 3.2 80.3 0.5 500 240 15 Uemiya et al., 2001 
Pt 5.8 22.6 0.5 500 210 15 
Ru 3.3 45.2 0.5 500 120 15 

Electroless Alumina Pd77Ag23 2.2 49.2 1 410 330 N/R Keuler and Lorenzen, 
2002 

Electroless PSS Pd 8 38.5 0.5 500 800 N/R Tong et al., 2004 
Electroless PSS Pd 6 24.4 0.5 500 � 300 Tong et al., 2005 
Electroless Alumina Pd90Cu10 1.0 95.0 0.5 350 1390 8 Roa et al., 2002 
Electroless Alumina Pd60Cu40 1.5 97.9 0.52 350 93 N/R Roa et al., 2003a 
Electroless Alumina Pd81Cu19 11.6 36.5 0.5 500 170 480 Roa et al., 2003b 

Pd91Cu9 12.0 56.1 0.5 500 1400 624 
Pd70Cu30 1.5 46.3 0.5 350 47 144 

Electroless PSS Pd 7.9 68.5 0.5 500 149 1388 Mardilovich et al., 2006 
Electroless P-Hastelloy Pd 4.0 42.4 0.5 400 100,000 2286 Guazzone and Ma, 2008 
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With the exception of Peters et al. (2008; 2009), the hydrogen permeances achieved by 

the other two investigators (Tosti, 2003; DeRosset, 1960) were significantly lower than 

those achieved with supported membranes prepared by alternate methods, most likely 

due to the thickness of the membranes utilized in these studies, 42 and 20 µm. The 

membranes synthesized by Peters et al. (2008) were exceptionally thin, but upon longer 

testing at up to 450°C experienced a substantial decline in selectivity and so may not be 

suitable for industrial applications. 

2.2.3.b. Electroplating 

Electroplating (EP) is a plating technique characterized by the use of a direct electric 

current in an electrolyte solution to reduce metal ions from the solution directly onto a 

substrate. Typically the metal salt to be plated is dissolved along with stabilizing ligands 

to moderate its availability in the solution. A platinum mesh is usually used as the anode 

due to its inert nature. The sample to be plated is made to be the cathode by wire 

attachment or by placement in a metallic tray. For electroplating to be successful the 

sample to be plated must be highly conductive. The anode and the cathode are 

submerged in the solution with stirring and a voltage is applied across them in order to 

reduce the metal ions in solution directly onto the support. A good control of the plating 

rate can be achieved by adjusting the voltage and the concentrations of different 

species in the solution. Membranes as thin as 1 µm have been synthesized in this 

manner (Nam et al., 1999; Nam and Lee, 2000; 2001; 2005). 

Nam et al. (1999) produced Pd78Ni22-membranes approximately 1 µm think on porous 

stainless steel supports by vacuum electroplating of both metals simultaneously onto 

one side of the support, while applying vacuum on the opposite side. Their best 

membrane had a hydrogen permeance of 150 m2/m2h*atm at 550°C. They observed a 

selectivity of 4,500 and an n-value of approximately one, but did not report the testing 

time. In a subsequent study Nam and Lee (2001a) also produced Pd53Cu47-membranes 

approximately 2 µm thick on PSS graded with silica. One of these membranes had a 

hydrogen permeance of 68 m3/m2h*atm and a selectivity of 70,000 at 550°C with 

stability over 960 hours of testing. In another study (Nam and Lee, 2000) they treated 

their support with a titanium nitride barrier deposited by radio-frequency vacuum 
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sputtering in order to prevent intermetallic diffusion of the support metals into the 

membrane. They then electroplated a 3 µm layer of Pd82Ni18 onto treated support. The 

membrane they prepared had a hydrogen permeance of 26 m3/m2h*atm and a stable 

selectivity of 4,500 at 450°C over 1,440 hours of testing. The authors indicated that the 

use of either the silica or titanium nitride as an intermediate layer simultaneously 

smoothed the support surface for good deposition morphology and acted as an 

intermetallic diffusion barrier, leading to good long-term permeance and selectivity 

stability. 

Membranes demonstrating very good permeance and selectivity as well as high 

mechanical strength have been prepared by vacuum electroplating. Due to the nature of 

electroplating, only metallic or highly conductive samples can be plated, which limits this 

technique almost exclusively to porous metal supports. Complex shapes also present a 

challenge since all surfaces of the support must be nearly equidistant from the anode 

for uniform plating. Nam et al. (1999) and Nam and Lee (2000; 2001; 2005) have thus 

far only utilized porous disks as supports. 

2.2.3.c. Magnetron sputtering 

Magnetron Sputtering (MS) is a technique which uses high energy plasma, usually 

generated from high-voltage gas discharge, to vaporize metal atoms from the surface of 

a target sample. The vaporized metal atoms then condense on a nearby substrate. The 

type of plasma as well as its temperature affect the rate of vaporization, and the position 

and the gas flow characteristics around the substrate affect the rate and properties of 

the deposition. Particularly thin supported membranes (0.75 µm) have been synthesized 

by this technique (Gielens et al., 2002). 

Zhao et al. (2000) produced Pd76Ag24-membranes approximately 1 µm thick on porous 

ceramic graded with �-alumina by magnetron sputtering. They measured an H2 

permeance of 90 m3/m2h*atm, with a selectivity of 50 at 462°C. They observed a 

columnar grain structure in the deposited layers when the substrate temperature was 

low (less than 350°C). They achieved better selectivity by utilizing a higher substrate 

temperature (350 - 400°C) which allowed for greater diffusion of surface Pd-atoms, 
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suppressing the columnar structure during the deposition. Regardless, their best 

membranes still lost selectivity when changing temperatures in the range 300 - 500°C. 

They suggested that the loss of selectivity by leak growth was due to sintering of the 

Pd/alloy-grains at temperatures greater than 411°C. It was unclear if they had good 

selectivity stability below 411°C because the testing times were not reported. 

Gielens et al. (2002) synthesized a 0.75 µm thick Pd77Ag23-membrane on a non-porous 

silicon substrate by magnetron sputtering; they then chemically etched 5 µm pores into 

the substrate from the reverse side. They measured a hydrogen permeance of 153.2 

m3/m2h*atm0.5 with a selectivity of 1,500 at 450°C, utilizing an inert sweep gas to 

establish a partial pressure difference. The membranes prepared by magnetron 

sputtering were roughly the same thickness and had nearly the same permeance as 

those prepared by vacuum electroplating. Unfortunately, no long-term testing of these 

membranes has been conducted so no statements could be made on their selectivity 

stability. 

2.2.3.d. Chemical vapor deposition 

Chemical Vapor Deposition (CVD) is a plating technique accomplished by the 

decomposition of an organo-metallic species on the surface of the object to be plated. 

An organo-metallic such as palladium bis(acetylacetonate)-complex is evaporated at a 

low pressure and circulated around a hot (200 - 300°C) substrate. When the organo-

metallic species comes in contact with the substrate, decomposition occurs leaving the 

metal deposited on the substrate. By controlling the pressure, the temperature of 

evaporation, and the temperature of deposition, the rate of deposition can be well 

controlled. Membranes as thin as 3.2 µm have been prepared on porous substrates with 

this technique (Uemiya et al., 2001). 

Jun and Lee (2000) synthesized Pd, Pd80Ni20, and Pd70Nb30-membranes by CVD of 

metal-(C3H5)(C5H5) precursors onto nickel-powder-graded PSS. Their best performing 

membrane was a pure Pd-membrane, 5 µm thick, with a permeance of 141.1 

m3/m2h*atm and a selectivity of 1,600 at 450°C. They reported n-values of one for all 

membranes. Their pure Pd-membrane had a significantly better selectivity than their 
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Pd/Ni and Pd/Nb-membranes because the H2 permeability of the pure Pd was higher 

than either of the alloys, resulting in higher H2 flux. The inert gas flux (0.001 – 0.002 

m3/m2-h at a �P of 1 atm) was similar for each membrane, suggesting that the integrity 

of the CVD deposited layer was not dependent on the alloy composition. 

Kajiwara et al. (2000) and Uemiya et al. (2001) synthesized membranes of pure iridium, 

rhodium, palladium, platinum, and ruthenium by chemical vapor deposition of metal-

bis(acetylacetonato) precursors onto porous alumina substrates. Their best performing 

membrane was also the pure Pd-membrane (3.2 µm thick) with a permeance of 80.3 

m3/m2h*atm and a selectivity of 240 at 500°C. They suggested that for Rh and Ir, the 

rate limiting step was surface adsorption in conjunction with surface diffusion of H-

atoms, which significantly limited the H2 flux through those metal-layers. The properties 

of the membranes prepared by these different investigators can be found in Table 2.7. 

2.2.3.e. Electroless plating 

Electroless plating is plating of metal ions out of an electrolyte solution by reaction with 

a chemical reducing agent. The metal salts to be plated are dissolved along with 

stabilizing ligands to moderate their availability in the solution. A solution of the reducing 

agent (NH2HN2, NaH2PO2, (CH3)2S*BH3, etc.) is added and the substrate is immersed in 

the solution. The reaction is autocatalytic so the substrate is usually activated 

chemically in advance by some manner. A typical palladium electroless plating bath 

composition is shown in Table 2.8. 

 

Table 2.8. Palladium electroless plating bath composition (Ma et al., 2008). 

Component Concentration 

Pd(NH3)4Cl2*2H2O 4.0 g/L 

NH4OH (28%) 198 mL/L 

Na2EDTA*2H2O 40.1 g/L 

NH2NH2 (1M aq.) 5.7 mL/L 
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Keuler and Lorenzen (2002) synthesized Pd77Ag23-membranes by electroless plating on 

porous �-alumina supports with thicknesses in the range of 1.4 - 2.2 µm. Their best 

performing membrane had a hydrogen permeance of 49.2 m3/m2h*atm with a selectivity 

of 330 at 410°C. They reported the n-value to be one. They identified the leak growth 

mechanism as pinhole formation, which they suggested was accelerated by changing 

temperature while the membrane was in H2. They achieved the high H2 permeance by 

first annealing in Ar at 550°C, followed by surface oxidation in air at 310°C, followed by 

surface reduction in H2 at 400°C. They suggested that this procedure both annealed the 

Pd/Ag-layer to allow for good selectivity stability and increased the surface roughness to 

allow for a high H2 flux.  

Tong et al. (2004; 2005) synthesized pure Pd-membranes by electroless plating on PSS 

with aluminum hydroxide grading. Their best performing membrane had an approximate 

thickness of 8 µm and a hydrogen permeance of 38.5 m3/m2h*atm0.5 at 500°C. They 

reported a selectivity of 800 but did not report the length of testing. They indicated that 

the thin Pd-layer with high selectivity was a result of plugging the support pores with the 

porous aluminum hydroxide grading. 

Roa et al. (2002; 2003a; 2003b) synthesized a series of Pd/Cu-membranes (1 - 12 µm 

thick) by sequential electroless plating of copper and palladium on porous alumina 

supports. Their best performing membrane was 1.0 µm thick (10 at% Cu), had a 

hydrogen permeance of 95.0 m3/m2h*atm0.5, and a selectivity of 1,390 at 350°C. They 

attributed the remarkable selectivity stability of one membrane over 1,400 hours to 

accidental air exposure during testing at 350°C, followed by additional Pd/Cu plating to 

achieve a high selectivity. They suggested that the nano-porous structure of the Pd-

oxide layer created by the accidental air exposure had very good surface properties for 

the plating of the additional Pd/Cu-layer. 

Ayturk et al. (2007) and Ma et al. (2007) developed a method for preventing 

intermetallic diffusion from the support by oxidizing the support surface, followed by 

application of a porous Pd/Ag-layer, followed by the dense Pd-layer. The oxide layer 

prevented intermetallic diffusion of the support elements into the Pd-layer. The Pd/Ag-

layer both prevented intermetallic diffusion and allowed for a smoother surface for 
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dense Pd-plating. That same group reported a 7.9 µm thick membrane with a hydrogen 

permeance of 68.5 m3/m2h*atm0.5 and a selectivity of 149. They also reported 

permeance and selectivity stability over 1,400 hours of testing, made possible by the 

intermediate oxide and porous Pd/Ag-layers (Mardilovich et al., 2006).  

Electroless plating results in a uniform layer regardless of membrane shape or surface 

contours, allowing for easy scale-up. Non-toxic and only moderately corrosive solutions 

for electroless plating (such as that described in Table 2.8) make the technique 

amenable to commercial use. Lastly, membranes possessing high permeability and 

selectivity as well as good long-term stability have been prepared by electroless 

deposition making this technique very attractive for industrial applications. 

 2.3. WGS catalytic membrane reactor 

Most commonly, the term “Catalytic Membrane Reactor” (CMR) refers to a reactor 

where a membrane is utilized to introduce a reactant into a reacting mixture as well as 

to potentially catalyze the reaction on the membrane surface. For the purposes of this 

study however, CMR will refer to a subtype of Packed Bed Reactor (PBR) in which a 

selective membrane extends along the length of the reactor and is in contact with the 

reacting mixture. The membrane, which is selectively permeable to one of the reaction 

products, continuously separates the product from the reacting mixture (Shu et al., 

1991; Marcano and Tsotsis, 2002). CMR’s have been utilized to improve yields on many 

dehydrogenation reactions through the selective removal of hydrogen. Sheintuch and 

Dessau (1996) performed the dehydrogenations of propane and of isobutane utilizing 

Pd75Ag25-tubes to selectively remove hydrogen from the reaction mixture. They 

observed yields of propylene and isobutene in significant excess of the traditional PBR 

for a variety of the experimental conditions tested. Uemiya et al. (1991b) performed 

methane steam reforming using a porous glass supported Pd membrane to selectively 

remove hydrogen from the reaction mixture. They also observed CH4 conversions in 

significant excess of the equilibrium values. The in situ separation of products is often 

beneficial in at least two ways: process intensification and overcoming equilibrium 

limitation.  The coupling of the separation step of a process (by the membrane) with the 

reaction step can increase throughput and lower the energy and cost associated with 
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that process. Economic analyses suggest that many industrial processes could be 

optimized by the use of a membrane reactor although few have yet been employed 

(Shu et al., 1991; Marcano and Tsotsis, 2002).  

According to Le Chatelier’s principle, when a change (in pressure, temperature, 

concentration, etc.) is imposed on a chemical system in equilibrium, the system will 

react by opposing that change. If a reaction product is removed from the system 

causing the concentration of that product to be reduced, the system will respond by 

forming more of that product. In the case of a WGS reactor incorporating a palladium 

membrane, hydrogen is removed from the reacting gas mixture in situ, which causes 

the system to shift further in the direction of H2 and CO2 formation.  

The WGS reaction is also amenable to the application of a CMR, resulting in both 

process intensification and increased hydrogen yield, beyond the equilibrium conversion 

(Kikuchi et al., 1989; Uemiya et al., 1991a). A cut-away drawing of a shell and tube 

WGS CMR is shown in Figure 2.7. The reaction occurs in the catalyst bed surrounding 

the membrane while hydrogen is selectively separated from the reaction mixture. The 

resulting effluent streams are composed primarily of hydrogen in the permeating stream 

and primarily of CO2 and H2O in the retentate stream. 

 

Figure 2.7. Axial cross-section of a shell and tube WGS CMR. 
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2.3.1. The WGS CMR system 

Several studies in the literature exploring the fundamental characteristics of the WGS 

reaction in CMR’s have been performed. A variety of palladium membranes have been 

used in these studies including self supported foils, Pd-alloy/ceramic supported 

membranes, Pd-alloy/porous glass supported membranes, and Pd-alloy/PSS 

membranes. The selective layers used were Pd, Pd/Ag, Pd/Cu, as well as microporous 

silica. All of these studies have demonstrated that yields in significant excess of the 

PBR equilibrium conversion were possible for both CO/H2O and syngas feeds. 

Kikuchi et al. (1989) and Uemiya et al. (1991a) performed WGS CMR experiments with 

20 �m thick Pd-membranes supported on microporous glass tubes, including iron-

chrome oxide catalyst. Their most successful result was 98% CO conversion (20% in 

excess of equilibrium) at 400°C, 5 atma, a steam to carbon ratio of 1.0, and a gas hourly 

space velocity (GHSV at STP) of 630 h-1 (Kikuchi et al., 1989). They also utilized a 

permeate side sweep flow of Ar with an Ar/CO ratio of 16. They utilized an one-

dimensional steady state model to simulate the WGS CMR, finding excellent agreement 

between their simulation and experimental results (Uemiya et al., 1991a). They utilized 

the model to determine the relationship between membrane thickness and CO 

conversion for various feed rates. They found that reducing the membrane thickness 

increased conversion until the membrane was approximately 10 �m thick, after which 

the system was reaction rate limited and no further advantage was gained. They also 

found a clear relationship between the reaction pressure and the conversion; higher 

pressure resulted in higher conversion due to the removal of H2 from the system and 

the greater residence time for the reaction. They found a clear relationship between 

conversion and GHSV; lower GHSV resulted in higher conversion for the same reason 

(removal of H2 and greater residence time). The group collected a broad range of 

consistent data, concluding that the extent of hydrogen removal by any means was 

responsible for the increased CO conversion. 

Basile et al. (1996b) performed WGS CMR experiments with Pd membranes supported 

on porous ceramic tubes synthesized by MS, Physical Vapor deposition (PVD), and 

CVD, and including copper-zinc oxide catalyst. Their MS membranes were 10 �m thick, 
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their PVD membranes were 1.0 �m thick, and their CVD membranes were 

approximately 0.1 �m thick. Their best result was 98% CO conversion for their 0.1 �m 

thick CVD membrane at 323°C and a steam to carbon ratio of 2.2. Unfortunately, some 

of the experimental conditions (pressure, GHSV, and the use of a sweep gas) were 

unclear in their report. They concluded that the membrane prepared by CVD achieved 

the best results due to its low thickness, resulting in higher H2 flux and recovery. The 

same group also experimented with a 0.2 �m thick Pd-membrane prepared by CVD on 

an alumina support (Basile et al., 1996a). The best conditions identified in that study 

resulted in greater than 99.8% CO conversion at 323°C, 1.2 atma, a steam to carbon 

ratio of 3.85, and a GHSVSTP of 518 h-1. They employed a permeate side sweep flow of 

N2 with N2/CO ratios of 0.09, 0.45, and 1.8. Their results displayed a maximum in CO 

conversion versus temperature at approximately 323°C which they attributed to a 

compromise between the kinetic reaction rate and thermodynamic considerations (the 

equilibrium value). They also observed that CO conversion in the greatest excess of the 

equililbrium CO conversion (94%, 10% in excess of the equilibrium conversion), was 

achieved with a low steam to CO ratio of 0.96. Although Basile et al. (1996b) did not 

offer a reason for this, it was most likely due to a lesser dilution of (and therefore greater 

removal of) hydrogen from the reaction mixture, with respect to that which occurred with 

more steam present. 

The same group later experimented with 70 �m thick Pd-foils on tubular ceramic 

supports packed with copper-zinc oxide catalyst (Criscuoli et al., 2000). This study 

utilized simulated syngas mixtures as feeds; the feed gas compositions, on a dry basis, 

are listed in Table 2.9. They pointed out that the equilibrium conversion for any mixture 

of syngas and steam would be lower than that for a mixture of CO and H2O (at the 

same temperature, with the same steam to CO ratio) because the mixture was already 

shifted to some extent. In this case, the membrane reactor was even more necessary to 

achieve high CO conversion because the presence of H2 and CO2 in the syngas had an 

adverse effect on further CO conversion. The best result obtained by Criscuoli et al. 

(2000) was 99.5% conversion (16% in excess of the PBR equilibrium conversion) for 

Gas A (Table 2.9) at 322°C, 1.0 atma, a steam to carbon ratio of 1.1, and a GHSVSTP of 

350 h-1. They employed a permeate side sweep flow of N2 with a N2/CO ratio of 3.2. 
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They concluded that the greatest CO conversion values could be achieved by using 

mixed gas feeds which were initially very far from thermodynamic equilibrium (meaning 

that the PBR equilibrium conversion for the conditions was high). 

 

Table 2.9. Syngas mixtures utilized in literature studies, on a dry basis. 

 % CO % CO2 % H2 % N2 % CH4 Reference 

Gas A 32 12 4 52 - Criscuoli et al., 2000 

Gas B 12.3 11.5 75 - 1.2 Criscuoli et al., 2000 

Gas C 27 - 73 - - Criscuoli et al., 2000 

Gas D 28.6 71.4 - - - Tosti et al., 2003 

Gas E 53 12 35 - - Iyoha et al., 2007a 

Gas F 15.6 7.1 75.2 - 2.1 Damle et al., 2008 

 

The same group later experimented with Pd (70 �m thick) and Pd/Ag (50 �m thick) foils 

supported on porous ceramic tubes (Basile et al., 2001). The best result obtained was 

99.0% CO conversion (15% in excess of equilibrium conversion) utilizing the pure Pd 

membrane at 331°C, 1.0 atma, a steam to CO ratio of 1.0, and a GHSVSTP of 210 h-1. 

They employed a permeate side sweep flow of N2 with a N2/CO ratio of 12.3. Here they 

noted that the use of the permeate side sweep allowed for a higher H2 driving force 

across the membrane, and therefore greater H2 recovery, and therefore higher CO 

conversion. The same group again experimented with 50 �m thick Pd/Ag foils supported 

on porous ceramic tubes (Tosti et al., 2003). They presented excellent results with 

greater than 98% CO conversion at 325°C, 1.0 atma, steam to CO ratios of 1.0 and 1.5, 

and GHSV’s of 420 – 2,500 h-1. They utilized a permeate side sweep of N2 with N2/CO 

ratios of 3 - 14. Additionally they performed WGS CMR experiments with a mixed gas 

feed (Table 2.9, Gas D). They achieved a CO conversion of 96.6% at 325°C, 1.0 atma, 

a steam to CO ratio of 1.5, a GHSVSTP of 2,500 h-1, and a N2/CO sweep ratio of 6. They 

observed the same basic relationships with pressure and GHSV as most previous 

studies did and attributed them to the same reason (greater H2 recovery at higher 
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pressure and lower GHSV). They also observed a clear relationship between the steam 

to CO ratio and the CO conversion; a higher steam to CO ratio resulted in higher CO 

conversion. They concluded that the CMR could achieve significantly higher CO 

conversions than could be achieved at lower steam to CO ratios (less than 2.0) in a 

PBR. Utilizing a lower steam to CO ratio (less than 2.0) in the CMR was important 

because it allowed for a greater H2 recovery via a higher H2 partial pressure in the 

reaction mixture. The data collected by this group (Basile et al., 1996a; 1996b; 2001; 

Criscuoli et al., 2000; Tosti et al., 2003) was exceedingly wide ranging in both reaction 

conditions used as well as the types of membranes applied. This group was also the 

first to investigate the WGS reaction with a syngas feed in the CMR. In regards to 

syngas feed experiments, they concluded that all the same trends were present 

regarding feed composition, temperature, and pressure conditions as when only CO 

and steam were used as the feed. 

Iyoha et al. (2007a) experimented with 125 �m thick Pd and Pd80Cu20 self supported 

foils and mixed gas feed (Table 2.9, Gas E). Their setup utilized no WGS catalyst. The 

best result obtained was 99.7% CO conversion for the Pd membrane (65% in excess of 

the equilibrium conversion) at 900°C, 4.1 atma, a steam to carbon ratio of 1.5, and a 

GHSVSTP of 1,800 h-1. The high testing temperature allowed for the reaction to proceed 

uncatalyzed. They experimented at such a high temperature in order to test sulfur 

resistance of the Pd80Cu20-alloy. They utilized a counter-current sweep gas of an 

unspecified composition and flow rate. They concluded that high conversion could be 

achieved with a membrane reactor at 900°C with no catalyst present. They 

hypothesized that most of the reaction was occurring on the surface of the Pd and 

Pd/Cu-membranes. They also pointed out that with the (presumably high rate of) 

counter-current sweep gas, H2 recovery of over 95% was possible, shifting the CO 

conversion to a very high level (99.7%) based on Le Chatelier’s principle. They noted 

that the presence of up to 60 ppm H2S in the feed caused a significant drop in H2 

recovery because of the blocking of Pd-surface sites for H2 adsorption, and also a 

significant drop in CO conversion because of the reduced catalytic activity of the Pd-

surface for the WGS reaction. Iyoha et al. (2007a) performed several long-term WGS 

CMR experiments lasting over 70 hours each. They did not observe any degradation of 
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the membranes under WGS conditions (when no H2S was present) although this was 

unsurprising given the thickness (125 �m) of the membranes tested. 

Brunetti et al. (2007a) performed WGS CMR experiments with an 1 �m thick silica 

membrane supported on PSS, and incorporating copper-zinc oxide catalyst. The best 

result obtained was 95% CO conversion (8% in excess of the equilibrium conversion) at 

228°C, 4 atma, a steam to carbon ratio of 1.0, and a GHSVSTP of 2,000 h-1. No sweep 

gas was used. The silica membrane had separation factors ranging from 15 - 45 for 

H2/N2, H2/CO, and H2/CO2 (and depending on temperature) determined by GC 

measurement of mixed gas permeation experiments. Separation factors this low were 

inadequate for the production of high-purity hydrogen, but still high enough to allow for a 

CO conversion in excess of the equilibrium conversion. They observed that at a higher 

pressure (greater than 4 atma) the CO conversion was no longer aided by a further 

increase in pressure. At a higher pressure the separation factor of the membrane was 

lower, so the permeation of CO and CO2 significantly affected the overall CO 

conversion. The results made clear that a highly selective membrane was necessary for 

high reaction pressure operation. 

Barbieri et al. (2008) performed WGS CMR experiments with a 60 �m thick self 

supported Pd/Ag-foil. They designed a CMR with the membrane mounted only in the 

second half of the catalyst bed, essentially a PBR in series with a CMR. They 

postulated that their design would be optimal for WGS feed mixtures with low H2 

concentrations since the partial pressure of H2 would not allow for permeation until 

some WGS conversion had taken place. The best result obtained was 94% CO 

conversion (8% in excess of the equilibrium conversion) at 300°C, 6 atma, a steam to 

carbon ratio of 1.0, and a GHSVSTP of 2,070 h-1. The reactor design allowed for 

significantly less membrane area (and therefore a lower cost), while still achieving high 

CO conversion and H2 recovery with regard to the moderate feed flow rate (2,070 h-1). 

The primary difficulty with utilizing thin, self supported foils was that no significant trans-

membrane pressure could be applied; this study was limited to a pressure difference of 

5 atm. These studies, as well as others (Brunetti et al., 2007b; Barbieri et al., 2008; 
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Damle et al., 2008) have shown that a higher trans-membrane pressure was beneficial 

to the H2 recovery and the CO conversion. 

Damle et al. (2008) experimented with 4 �m thick Pd membranes supported on PSS, 

incorporating iron-chrome oxide catalyst, with mixed gas feed (Table 2.9, Gas F). The 

best result obtained was 84% CO conversion (35% in excess of equilibrium conversion) 

at 375°C, 10.2 atma, and a steam to carbon ratio of 1.2. No sweep gas was used and 

the GHSV was unclear. Damle et al. (2008) constructed and tested a pilot scale WGS 

CMR with a total membrane area of 300 cm2 in a three tube configuration. They ran 

experiments in the temperature range of 375 - 550°C and operated at high pressures 

(6.8 - 10.2 atma), achieving a H2 production rate as high as 14 L/min. Their results 

demonstrated the scalability of the WGS CMR and the effectiveness of a multi-tube-in-

tube reactor design. They pointed out that the production rate of H2 was strongly 

dependant on the pressure due to the driving force of H2 across the membrane. They 

also pointed out that the H2 production rate was strongly dependent on the H2 recovery 

(with higher production rates occurring at lower values of H2 recovery) although they did 

not discuss the reason for this trend. 

The pressure and temperature ranges for the literature studies discussed in this section 

are outlined in Figure 2.8. For each literature study, the highest CO conversion is noted 

with a star. 
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Figure 2.8. WGS CMR studies in the literature with regards to the feed conditions. 

 

More important than the specific results achieved in the various studies were the trends 

identified in those studies between the feed conditions and the resulting yields. As in 

traditional PBR’s, the CO conversion in the WGS CMR was enhanced by higher steam 

to carbon ratios (Basile et al., 1996a; 1996b; Uemiya et al., 1991a). It was clear that the 

higher CO conversion in the membrane reactor over a packed bed reactor was a direct 

result of the in situ removal of hydrogen from the reacting gas mixture (Damle et al., 

2008; Uemiya et al., 1991a). Effects either with regards to the feed conditions or the 

membrane properties that maximized the H2 recovery subsequently increased the CO 

conversion. Lowering the feed rate also allowed for increased CO conversion, both 

through greater residence time with the catalyst as well as more complete H2 recovery 

(Basile et al., 1996b; Kikuchi et al., 1989; Uemiya et al., 1991a). Membranes with 

greater H2 permeances, either through thickness reduction, alloying, or composite 

design also proved effective in increasing H2 recovery and CO conversion, but only in 

situations where the gas phase mass transfer was not rate limiting (Basile et al., 1996b). 

A greater H2 partial pressure difference across the membrane either by increasing the 
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total pressure difference or by the use of a permeate side sweep gas has also been 

shown to result in a greater CO conversion (Barbieri et al., 2008; Basile et al., 1996b; 

Kikuchi et al., 1989). 

The effect of the reaction temperature on WGS CMR yield was not as simple as the 

effects of the other feed conditions. At lower temperatures the equilibrium constant was 

higher but the reaction rate was lower and the permeance of Pd-based membranes was 

lower. At higher temperatures the reaction rate was higher and the permeance of Pd 

membranes was also higher, but the equilibrium constant was lower. The presence of 

these opposing factors suggested the possibility of a maximum in CO conversion at 

some intermediate temperature. Several of the studies listed above performed WGS 

CMR experiments at several temperatures with identical feed conditions. Basile et al. 

(1996b) observed a maximum in CO conversion with regard to temperature at 323°C, 

1.1 atma, a steam to CO ratio of 0.96, and GHSV’s of 210 and 420 h-1, utilizing a 0.2 �m 

Pd/alumina membrane. Barbieri et al. (2008) observed a maximum in CO conversion 

with regard to temperature at 300°C, 6 atma, a steam to CO ratio of 1.0, and GHSV’s of 

2,070, 3,180, and 4,550 h-1, utilizing a 60 �m unsupported Pd/Ag membrane. They also 

observed a maximum in the CO conversion with regard to temperature at 300°C with 

similar conditions in their traditional packed bed reactor. Both of these studies utilized 

low-temperature shift copper-zinc oxide catalyst. Unfortunately, no studies presented 

temperature trend data utilizing high-temperature shift iron-chrome oxide catalyst. 

Additionally, the composition of the mixed gas feed would likely affect the optimal 

reaction temperature but no studies have been conducted to quantify that relationship. 

2.3.2. Modeling of the WGS CMR system 

There is a great deal of modeling work available in the literature dealing with membrane 

reactors in general as well as several dealing specifically with the WGS CMR. The WGS 

CMR system is inherently two-dimensional (2-D). The flow of the reaction gas mixture is 

axial, while the separation of H2 through the membrane is radial, therefore concentration 

gradients can exist in both dimensions. A 2-D WGS CMR model was utilized by 

Chiappetta et al. (2006; 2008) and Tiemersma et al. (2006) to simulate the radial 

concentration profiles for the WGS and Methane Steam Reforming (MSR) CMR’s. If the 
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aspect ratio of the reactor (length divided by characteristic width) is greater than 

approximately ten, the assumption can be made that no significant radial concentration 

gradient exists (Kumar et al., 2006). This assumption simplifies the model immensely 

and allows for a one-dimensional (1-D) set of equations to be applied. Ayturk et al. 

(2009) utilized a 1-D model to simulate a MSR CMR. To validate the model they 

reproduced the CH4 conversions of nine experimental and modeling studies performed 

in the literature, including both PBR and CMR cases; the simulation results correlated to 

within 99% of the reported data. 

Two types of 1-D models have typically been applied to membrane reactors, a steady 

state model which assumes plug flow behavior, and an unsteady state model which 

approximates a PBR by several Continuous Stirred Tank Reactors (CSTR’s) in series. 

The 1-D steady state model is diagramed in Figure 2.9 (Ayturk et al., 2009; Barbieri et 

al., 2001; Basile et al., 2003; Brunetti et al., 2007b; Kumar et al., 2006). 

 

Figure 2.9. Diagram of a 1-D, non-isothermal, steady state membrane reactor system. 

 

In Figure 2.9 Ni [kmol/h] is the molar flow rate of component i on the reaction side, with i 

representing each gas species present, Ni,p [kmol/h] is the molar flow of each species 

on the permeate side, ri [kmol/kg-h] is the rate of formation or consumption of species i, 

P [atma] is the pressure, and T [K] is the temperature. The system was represented 

mathematically by a mass balance (dF/dz) for each species in the reaction and 

permeate mixtures, energy balance (dT/dz), and a momentum balance (dP/dz), all as a 

function of reactor position z [m]. This model did not take into account any thermal or 
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mass dispersion in the axial direction. It also did not take into account any mass, heat, 

or momentum transfer in the radial direction. 

This model has been solved by integrating numerically along z with Euler’s method and, 

more recently, by the more precise Runge-Kutta method. Uemiya et al. (1991a) utilized 

this model to simulate the WGS CMR system varying GHSV, steam to CO ratio, 

reaction pressure, and membrane thickness. They found that CO conversion increased 

with lower GHSV, higher steam to CO ratio, higher reaction pressure, and lower 

membrane thickness (their results were discussed in greater detail in Section 2.3.1). 

Barbieri et al. (2001) used this model to demonstrate the operating capabilities of a 

MSR CMR employing only a sweep gas to establish a driving force across the 

membrane, and operating at the relatively low temperature of 350°C. They determined 

that a very high sweep rate (Fsweep/Ffeed greater than 100) would be necessary in order 

to achieve the optimal conversion of CH4. The same group also solved this model for a 

WGS CMR equipped with a counter-current sweep gas which utilized a Monte Carlo 

method to match feed and effluent conditions for the permeate side (Basile et al., 2003). 

They demonstrated that operating with a counter-current sweep gas resulted in up to 

2% greater conversion (99.9% overall) than could be achieved by using a co-current 

sweep for otherwise identical systems. The same group also solved this system of 

equations for a WGS CMR (minus the energy balance) in order to demonstrate the 

possible size reduction for a CMR achieving equivalent performance with a PBR, which 

was possible when using a higher reaction pressure (Brunetti et al., 2007b). They 

reported that a WGS CMR could be up to 65% smaller by volume than a WGS PBR 

while still achieving the same throughput and conversion. Ayturk et al. (2009) utilized 

the 1-D model to demonstrate a framework, involving a parameter called the �-index, by 

which the advantage of a CMR over a PBR could be quantified. They characterized the 

�-index for the operating parameters of the MSR CMR. 

The alternative, but equally valid method of modeling a plug flow reactor (with or without 

a membrane) is to treat it as several CSTR’s in series (Battersby et al., 2009; Luyben, 

2000; Marigliano et al., 2003; Ramaswami et al., 2005; Reyes and Luyben, 2000). In 

each theoretical CSTR reaction conversion occurs on 1/Nth (for a system of N-
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segments) of the catalyst bed and separation occurs on 1/Nth of the membrane area 

with ideal mixing in each segment. The 1-D unsteady state model is diagramed in 

Figure 2.10. 

 

Figure 2.10. Diagram of a 1-D, non-isothermal, unsteady state membrane reactor 

system. 

 

In Figure 2.10 Cl,i [kmol/m3] is the concentration of component i in the l segment, Vl [m3] 

is the volume of the l segment, Vl,p [m3] is the volume of the permeate side of the l 

segment, Tl [K] is the temperature of the l segment. The system was represented 

mathematically by a mass balance (dC/dt) for each species in the reaction and 

permeate mixtures, and energy balance (dT/dt), both as a function of time for each 

segment. The total number of equations will be equal to the number of segments, times 

the number of species, times two (for reaction side and permeate side).The advantages 

of this model are that the time dependent mass balance equations can be established 

with little difficulty and if the right number of CSTR’s are used, axial dispersion can also 

be approximated (Battersby et al., 2009). 

This model has been solved by integrating numerically over time with the Runge-Kutta 

method or the Adams-Bashforth method, for each of n-segment sequentially. Luyben 

(2000) and Reyes and Luyben (2000) solved similar systems of equations for a WGS 

CMR which included control systems. Marigliano et al. (2003) utilized this model to 

demonstrate the maximum conversion which could be achieved by the use of a 

membrane reactor, for either the MSR or the WGS reaction, over a range of different 

feed and temperature conditions. They demonstrated that almost 100% conversion 
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could be achieved for both MSR and WGS reactions at 500 and 300°C respectively, 

with high sweep (Fsweep/Ffeed equal to 10), and that such conversions were only limited in 

experimental systems by the activity of the catalyst and/or the permeance of the 

membrane. Battersby et al. (2009) also used this model for a WGS CMR in order to 

determine the effects of different operating parameters on the performance of the 

system. They found that higher conversion was achieved at lower feed rates, higher 

pressures, higher temperatures, and higher sweep rates, which agreed well with the 

experimental studies in the literature. 

2.3.3. Economic considerations 

The most significant barrier at present to the commercialization of the WGS CMR is the 

mechanical strength and long term stability of the palladium membranes (Hagg, 2009). 

The unsupported membranes prepared by cold rolling techniques (Barbieri et al., 2008; 

Basile et al., 2001; Tosti et al., 2003) had a limiting thickness of approximately 50 µm 

and were extremely fragile with thicknesses below 200 µm. Unsupported membranes 

were typically utilized with a sweep gas to establish a partial pressure driving force as 

they would be unable to withstand a larger total pressure difference. Membranes 

chemically deposited or sputtered onto porous ceramics or porous glass have been 

produced and were extremely thin, 0.2 - 10 µm (Basile et al., 1996b; Hou and Hughes, 

2002), but were brittle and had low mechanical strength. The most promising membrane 

design for commercial CMR applications has been porous metal supported Pd or Pd-

alloy membranes. Peters et al. (2008) prepared a 2.2 µm foil by magnetron sputtering 

and then supported it on a porous stainless steel tube. Damle et al. (2008) prepared 4 

µm Pd membranes by electroless deposition onto yittria stabilized, zirconia graded 

stainless steel supports. Thin Pd-membranes, 5 - 20 µm, have been prepared by 

electroless deposition of Pd onto �-alumina graded stainless steel supports (Lin and 

Rei, 2001; Mardilovich et al., 2006). Membranes prepared in these ways have shown 

good long term stability as well as good mechanical strength, making them suitable for 

use in high pressure, commercial applications. 

Four significant economic feasibility studies have been done to determine the potential 

industrial application of the WGS CMR (Criscuoli et al., 2001; Bracht et al., 1997; Damle 
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et al., 2008; Koc, 2012). Bracht et al. (1997) utilized a model developed by Koukou et al. 

(1996) as well as a hypothetical silica membrane to demonstrate that with a WGS CMR 

operating at the end of an IGCC plant, 80% CO2 capture could be achieved at a cost of 

only 3.3% overall efficiency, down from 46.7% (efficiency for a plant with no CO2 

capture). Unfortunately the authors did not clearly explain the methodology of the 

calculations, resulting in seemingly unsupported conclusions. Criscuoli et al. (2001) 

used previously acquired experimental data (Criscuoli et al., 2000) to estimate the 

specifications for a CMR syngas plant of equivalent throughput to a syngas plant 

located in Augusta Italy. They demonstrated that the use of a membrane reactor with a 

Pd-membrane thickness of less than 20 µm both enhanced yields and reduced costs 

when compared to the existing syngas plant, largely by preventing the need for 

pressure-swing adsorption in the gas separation step. Damle et al. (2008) used the 

experimental data from their own pilot scale system in order to estimate the cost of 

hydrogen produced by a hypothetical syngas plant. They demonstrated that with a 4 µm 

Pd/PSS membrane hydrogen could be produced at a cost of $0.28/kg less than the 

existing techniques. 

Koc (2012) utilized a Monte Carlo method to evaluate the net present value of an IGCC 

plant in the presence of uncertainty, incorporating a WGS CMR. She found that for a 

550 MW plant, producing only electricity, having a total capital cost of $1.5 billion, and 

operating under a CO2 tax of $25/ton, there was a net present value of up to $1.0 billion 

for the incorporation of a WGS CMR. The necessary membrane area was 

approximately 13,000 m2, with an estimated capital cost of $134 million for the 

membrane reactor module. The positive net present value of the IGCC incorporating a 

WGS CMR over other methods of electricity generation (pulverized coal combustion 

and methane combustion) indicated the favorability of that process if a moderate CO2 

tax of $25/ton was enacted. 

2.3.4. Other considerations 

The separation of hydrogen by a palladium membrane is by no means a trivial or easily 

modeled process. Depending on the gas composition, the permeability of the 

membrane, and the flow properties, the concentration polarization around the 



50 
 

membrane could significantly impede the separation efficiency (Caravella et al., 2009; 

Peters et al., 2008). It has also been found that both steam and CO can lower the 

effective permeance of the membrane significantly by reversibly binding to the 

palladium surface and blocking the adsorption of H2 (Hou and Hughes, 2002; Peters et 

al., 2008). Several mixed gas permeation studies have been done to determine the 

separation characteristics of palladium membranes operated under syngas feed 

streams. Hou and Hughes (2002) found that 2.2% of CO in H2 caused an 18, 12, and 

6% decrease in H2 permeate flux from that of an equivalent mixture of H2/N2 at 275, 

325, and 400°C, respectively for a Pd/Ag alumina supported membrane. The trend they 

observed suggested that the inhibitory effect of CO was greater at lower temperature 

which agreed with the physical adsorption mechanism. Gallucci et al. (2007) performed 

a series of experiments with varying compositions of H2/N2, H2/Ar, H2/CO2, and H2/CO 

at 250 and 350°C. They found that CO2 caused an almost undetectable decrease in flux 

as compared with N2. They also found that CO caused a 21 - 44% flux decrease for 5 - 

50% CO in H2 at 250°C; they did not observe any flux decrease for CO mixtures at 

350°C. They suggested that CO did not bind significantly to the membrane surface at 

temperatures of 350°C and above. All of the above mentioned studies concluded that 

the permeation inhibition caused by CO was reversible. Reversible surface binding 

indicated a relatively low binding energy and a surface coverage equilibrium that was 

greater at lower temperatures. Brunetti et al. (2006) found that 50% CO caused no 

effect on permeance at 252 and 291°C when compared to a 50/50 mixture of H2/N2, for 

a silica membrane supported on PSS. This result was unsurprising since the transport 

of material through a silica membrane occurred through porous diffusion, not surface 

adsorption followed by solution and diffusion. 

There was some discrepancy in the literature regarding the effects of steam on the H2 

permeance of Pd membranes. Hou and Hughes (2002) found that 2.0% of H2O in H2 

caused a 61, 53, and 37% decrease in H2 permeate flux compared to that of an 

equivalent mixture of H2/N2 at 275, 325, and 400°C respectively with their Pd/Ag 

membrane. Unemoto et al. (2007) observed a 54% decrease in H2 permeance with 

9.5% steam present at 172°C, but no detectable decrease with 9.5% steam present at 

358°C with a Pd/Ag-membrane. Iyoha et al. (2008) reported very little effect (less than 
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3% permeance decrease when compared to an inert gas mixture) from the presence of 

50% steam at 350 to 900°C in their Pd/Cu-membrane. It is yet unclear how steam 

affects the permeance of Pd/alloy-membranes. It is also unknown if some alloys may 

possess greater tolerance to surface inhibition by either CO or steam. 

A potential obstacle to the commercialization of palladium CMR’s is the chemical 

reactivity of palladium to trace impurities that are often found in industrial process 

streams. Industrial coal gasification streams often contain in excess of 1,000 ppm H2S, 

a poison which is particularly harmful to palladium membranes as well as various 

catalysts. Only a minimal number of studies have attempted to characterize H2S 

poisoning of palladium membranes and of those studies only a few have yielded some 

success in mitigating the poisoning effects by alloying. Pd/Au and Pd/Cu-alloys have 

shown limited resistance to lower ppm concentrations of H2S at temperatures in the 

range of 300 - 500°C (McKinley and Nitro, 1976; Li et al., 2000; Iyoha et al., 2007a; 

Pomerantz and Ma, 2009). 

Pomerantz and Ma (2009) demonstrated that a porous stainless steel supported 

Pd92Cu8-alloy membrane retained 20% of its permeance when exposed to 43 ppm H2S 

at 500°C. The alloy was synthesized by plating a layer of Cu on the surface of a pure Pd 

membrane followed by annealing at 500°C. They also performed similar poisonings at 

350, 400, and 450°C. After poisoning with H2S they again tested with pure H2, noting 

the extent to which the H2 permeance returned to its pre-poisoned level, they termed 

this as “recovery” (FH2,f/FH2,i, where FH2,f was the pure H2 permeance after poisoning 

and FH2,i was the permeance before poisoning). They found that the poisoning effect 

was less at higher poisoning temperatures and that the extent of recovery was greater 

at higher recovery temperatures (up to 100% recovery at 450 and 500°C). They 

attributed this to the thermodynamic equilibrium of the sulfur adsorption, with a higher 

degree of surface coverage at lower temperature. 

McKinley and Nitro (1976) demonstrated that a Pd60Au40-membrane retained 65% of its 

permeability when exposed to 20 ppm H2S at 350°C. Iyoha et al. (2007a) investigated 

the effects of sulfur poisoning on the membrane in a WGS membrane reactor (with no 

catalyst present) for both pure Pd and Pd/Cu 125 µm thick unsupported membranes. 
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They found relatively little effect of up to 1,000 ppm H2S at temperatures of 900°C. The 

results of the studies conducted by Pomerantz and Ma (2009) and Iyoha et al. (2007a) 

indicated that the testing temperature played a key role in the H2S tolerance, with higher 

temperature allowing for greater resistance to poisoning. Pomerantz and Ma (2009) 

observed significant poisoning with a relatively low concentration of H2S while Iyoha et 

al. (2007a) observed no poisoning with a high concentration of H2S, but at a much 

higher temperature. The reaction that occurs between H2S and Pd to form bulk Pd4S 

has a negative Gibbs free energy, and therefore occurs to a greater extent at lower 

temperatures (Mundschau et al., 2006; Chen, 2011). Mundschau et al. (2006) 

demonstrated that a Pd80Cu20-membrane retained 80% of its permeability when 

exposed to 20 ppmv H2S at 320°C although their results were not well documented. A 

more thorough discussion of the H2S poisoning phenomenon is presented in Chapter 9.  

 2.4. Summary 

A great deal of work has been done to fabricate thin, supported Pd-membranes, 

resulting in high permeance (greater than 50 m3/m2-h-atm0.5) and high selectivity 

(greater than 1,000) membranes that seem complimentary to the IGCC process. 

Unfortunately, relatively few membranes have been fabricated on lower cost stainless 

steel supports and with well established, reproducible methods. An additional 

shortcoming is that few of the membranes in the literature have been tested for 

extended periods of time under mixed gas and reaction conditions. A good deal of work 

has been done in the application of Pd-membranes to the WGS reaction in order to both 

increase reaction conversion and simultaneously separate H2 from the reaction mixture. 

Up until now the majority of the studies have utilized low temperatures (250 – 350°C), 

low pressures (less than 6 atma), and low feed rates (less than 1,000 h-1) due to the 

fragile nature of the membranes used. A more comprehensive testing of the WGS CMR 

and the supported Pd-membranes, with conditions approaching that of the IGCC 

process is needed. 
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3. EXPERIMENTAL 

3.1. Introduction 

This chapter thoroughly describes the experimental apparatus and procedures utilized 

in this thesis. Section 3.2 describes specific methods for membrane synthesis, by which 

most of the membranes utilized were prepared. The membrane synthesis methods were 

initially developed by Ma et al. (2000; 2004; 2007; 2010), Ma and Guazzone (2010), 

Ayturk et al. (2006), and Koc (2012). Aberrations from the published methodology, for 

the preparation of some specific membranes are discussed in Chapter 4. Section 3.3 

describes the method for coupon synthesis which was also based on previous literature 

(Ma et al., 2000; 2007). Sections 3.4 and 3.5 describe the experimental setups for the 

mixed gas and WGS CMR experiments. The experimental apparatus in those sections 

were designed based on systems used by colleagues in the Center for Inorganic 

Membrane Studies (Ayturk, 2007; Chen, 2011; Guazzone, 2005), with modifications for 

H2O vaporization, pre-heating, pre-mixing, H2O condensation, better temperature 

control, better pressure control, and analysis of gas composition. Sections 3.4 and 3.5 

also explicitly describe the protocol by which mixed gas and WGS CMR experiments 

were conducted. Amendments to that protocol for the utilization of H2S containing 

mixtures are described in Chapter 9. Section 3.6 describes the post-testing 

characterization procedures. Leak testing, SEM, and XRD analysis were conducted by 

similar procedures as those utilized by colleagues in our laboratory (Ayturk, 2007; 

Guazzone, 2005). 

3.2. Porous metal supported Pd-membrane synthesis 

The membrane supports used in this study were PSS316L and porous Inconel (PI) tubes 

(6 cm length, 1.3 cm OD, Media Grade 0.2 �m), capped at one end, and welded to a 

stainless steel tube at the other, purchased from either Mott Metallurgical Corp. 

(Farmington, CT) or Chand Eisenmann Metallurgical (Burlington, CT). A block diagram 

of the specific membrane synthesis procedure, Synthesis Method A, is shown in Figure 

3.1[a]. The support tubes were heated in air for 12 hours at 600°C (PSS) (or 700°C for 
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PI) to generate an oxide layer as the intermetallic diffusion barrier layer and then graded 

with 0.02 - 1.0 µm � and �-alumina slurry mixture (Alfa Aesar, 99.98% min) via the 

method reported by Ma et al. (2007). A composite Pd/Ag-layer, acting as additional 

grading and intermetallic diffusion barrier was prepared via the method reported by Ma 

et al. (2007) and Ayturk et al. (2006). Pd was then plated by electroless deposition until 

the membrane became dense. The composite Pd/Ag-layer was not thought to alloy 

significantly with the subsequent Pd-layers (Ayturk et al., 2006) so the completed 

membrane was supposed to have properties in line with pure Pd-membranes. In some 

cases where higher temperature testing (greater than 450°C) was not planned, 

membranes were prepared without a composite Pd/Ag-layer. In these cases, additional 

grading steps were conducted to establish a smooth surface. A block diagram of the 

specific membrane synthesis procedure, Synthesis Method B, is shown in Figure 3.1[b] 

with grading layers based on Koc (2012) and Ma and Guazzone (2010). A detailed 

account of both synthesis procedures as well as the composition of all prepared 

solutions is presented in Appendix B. 
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[b]  

Figure 3.1. Block diagram of the membrane synthesis [a] Synthesis Method A [b] 

Synthesis Method B (Further details given in Appendix B). 

 

The appearance of the completed membrane ranged from a dull steel color to a mirror 

finish depending on the aggressiveness of the polishing treatments employed as shown 

in Figure 3.2[a] and [b] of membranes AA-29 and AA-14 respectively. Membrane AA-29 

was not polished during the synthesis, membrane AA-14 was aggressively polished 

after most synthesis steps and buffed after the final step. 

[a]  

[b]  

Figure 3.2. Pictures of synthesized membranes [a] Membrane AA-29, unpolished [b] 

Membrane AA-14, polished and buffed. 
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3.2.1. Gravimetric thickness 

The gravimetric thickness, �Pd [�m], of the deposited metal was estimated by dividing 

the weight gain after plating, �w [g], by the plated area, A [cm2], and the density of the 

metal, �Pd [g/cm3], as shown in Eq. 3.1.  

 �I� � ��
�<��� < �*���� n�� �       3.1 

The thickness could be underestimated by this technique if there was any corrosion of 

the support due to the strongly alkaline plating solution. Additionally, the thickness could 

be overestimated by this technique if the plating solution was not completely rinsed from 

the support before drying, resulting in trapped salts and EDTA. 

3.2.2. IPA bubble test 

Defects on the membrane surface were identified by the Isopropyl Alcohol (IPA) bubble 

test in which a pressure of 1.3 – 2.0 atma was applied to the tube-side and then the 

membrane was submerged in IPA. Bubbles were then visible emerging from any 

defects. During the membrane synthesis this technique was used to determine if any 

additional Pd-plating was required on specific areas of the membrane surface. Pd-

plating on a specific area involved covering the membrane with Teflon tape, leaving the 

defective area exposed, then electroless plating 5 – 10 �m of additional Pd. 

3.2.3. Mechanical polishing 

Membranes were mechanically polished for two different reasons, either to smooth the 

surface features and/or to lower the overall thickness of the dense Pd-layer. Mechanical 

polishing was conducted by mounting the membrane tube in a lathe and rotating at 100 

– 200 rpm and polishing first with a fine SiC paper (600 grit, ca. 16 �m particles) then 

with a finer (1200 grit, ca. 8 �m particles). For each stage of polishing 1 - 5 strips (1 x 10 

cm) of the paper were cut, then hand-held at both ends for application to the rotating 

membrane. The strip was held so that it was in contact with about 1/4th of the 

circumference of the membrane, then slid from one end to the other along the axis of 

the membrane, while maintaining gentle to moderate pressure. By gravimetric thickness 
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measurements, one strip of 600 grit SiC-paper would remove about 0.2 �m of dense 

Pd, if greater removal was desired more strips were used. After polishing with SiC-

paper the membrane was rinsed thoroughly with IPA and H2O to ensure that all SiC-

particles were removed. If washing was not thorough further Pd-plating would be non-

uniform. Alternatively, P1500 grit Al2O3 paper (ca. 13 �m particles) could be used in the 

same way and had the same effect. Al2O3-paper was preferred since it did not seem to 

interfere with further Pd-plating. 

If an extraordinarily smooth Pd-surface was desired, the membrane was buffed with a 

cloth wheel rotating at ~7,500 rpm with blue rouge (sub-micron particles of Al2O3 binded 

together with grease). The membrane was moved quickly (within 1 second) across the 

wheel 1 – 3 times on each 1/8th of the membrane circumference resulting in a mirror-like 

finish. A photograph of the buffed membrane AA-14 was shown in Figure 3.2[b]. After 

buffing the membrane was submerged in acetone for two ten-minute intervals to remove 

any grease. 

3.2.4. Electro-deposition of gold 

For the purpose of H2S resistance, some membranes were prepared with a thin layer 

(0.5 – 2 �m) of Pd/Au-alloy on the surface of the membrane. This layer was fabricated 

by electro-deposition of gold from Gold 25 ES RTU Solution (Technic Inc., Cranston, 

RI). A platinum clad niobium mesh (diameter = 2.5 cm) was used as the anode and the 

membrane was attached as the cathode. The electro-deposition was conducted at 60°C 

with a current density of 3 mA/cm2 (V = 0.89 v) for 10 minutes. Within seconds of 

initiating the current, the color of the membrane changed to yellow/gold. 

3.2.5. Defect repair by electro-deposition 

For the purpose of defect repair, copper was electro-deposited on the defective regions 

of one finished membrane. The objective of the electro-deposition was to block 

defective regions with 20 – 100 �m of either copper, chromium, or nickel. The elements 

were chosen because of their low cost, low chemical reactivity, and simple electro-

deposition methods from commonly available starting materials. A copper plating 

solution composed of 200 g/L CuSO4•(H2O)5 and 25 mL/L H2SO4 (conc.) in H2O was 
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utilized. A copper foil (total area = 10 cm2) was used as the anode bent around the 

membrane and the membrane was attached as the cathode. The electro-deposition was 

conducted at 20°C with a current density of 24 mA/cm2 (V = 1.0 v) for four cycles of 60 

minutes each. 

Chromium was electro-deposited on the defective regions of one finished membrane. A 

chromic acid solution composed of 224 g/L CrO3 and 2.4 mL/L H2SO4 (conc.) in H2O 

was utilized. Three lead strips (total area = 63 cm2) were used as the anode and 

positioned around the membrane. The membrane was attached as the cathode. The 

electro-deposition was conducted at 45°C with a current density of 175 mA/cm2 (V = 6 

v) for 60 minutes. 

Nickel was electro-deposited on the defective regions of one finished membrane. A 

nickel plating solution composed of 235 g/L NiSO4•(H2O)6 , 50 g/L NiCl2•(H2O)6, 30 g/L 

H3BO4, and 0.1 g/L sodium dodecyl sulfate in H2O was utilized. A nickel mesh was used 

as the anode, wrapped around the membrane at a distance of 1.5 cm, and the 

membrane was attached as the cathode. The electro-deposition was conducted at 50°C 

with a current density of 20 mA/cm2 (V = 0.63 v) for 60 minutes. 

3.3. Pd-coupon synthesis 

Coupons were used in some instances to investigate possible coke formation on the 

Pd-surface. Coupons were prepared by cutting a sheet of Hastelloy (0.1 �m grade) into 

1 x 1.5 cm squares with a sand-stone cutting wheel. Hastelloy was utilized because of 

its availability and because it was considered irrelevant which metal was underneath the 

Pd-layer for the coking experiments. A small (1/16”) hole was drilled at the corner of 

each coupon for mounting purposes. The coupons were oxidized at 700°C in air for 12 

hours (Ma et al., 2000, 2007). The coupons were hung from stainless steel hooks 

attached to a sample holder. 12 pieces were hung from the sample holder such that 

they could all fit into a 400 mL beaker without touching one another. The coupons were 

put through 5 activation cycles (see Figure 3.1) and Pd-plated for three periods of 90 

minutes. Since the coupons appeared somewhat blotchy they were polished with 600 
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grit SiC paper. The coupons were then put through an additional three activation cycles 

and Pd-plated for three periods of 90 minute. 

3.4. Mixed gas experimental 

3.4.1. H2 and mixed gas setup 

The pure H2 and mixed gas testing system is diagramed in Figure 3.3.  

 

Figure 3.3. Schematic of the pure H2 and mixed gas testing system. 
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Pressure regulators A (Swagelok KPR1B1C3GA10A01 for 1.2 – 10 atma and SGC Inc. 

Model 3101-500-350NV for 10 – 21 atma) were used to control the pressure of the H2, 

He, or mixed gas supplied to the membrane. De-ionized water was supplied via the 

micropump B (Harvard Apparatus Series I Pump). The pre-heater C consisted of a 

coiled 0.16 cm OD and 90 cm long (1/16” x 3’) SS tube, a coiled 0.64 cm OD and 120 

cm long (1/4” x 4’) SS tube, a tubing union, and a mixing volume D (150 mL, packed 

with 1 cm quartz Raschig rings). The water was vaporized in the 0.16 x 90 cm tube, 

mixed with the feed gas at the union then heated additionally in the 0.64 x 120 cm tube. 

The feed/steam mixture was then mixed thoroughly in the mixing volume D. The pre-

heater was encased in a ceramic tubular oven E (Watlow) with a thermocouple and PID 

controller to control the temperature of the feed/steam mixture. The membrane was 

mounted in a shell consisting of a 2.54 cm OD and 25.4 cm long (1” x 10”) SS tube. The 

membrane was mounted with a Swagelok® stainless steel ferrule and nut assembly 

which was essential for high pressure (greater than 6 atma) use. The membrane and 

shell F were encased in a ceramic tubular oven G (Watlow) with a thermocouple and 

PID controller to control the temperature of the membrane. Thermal tape controlled by a 

variable autotransformer (Staco Inc., Type 2PF 1010) was fitted to the outlet end of the 

reactor apparatus and its power adjusted to minimize the axial temperature gradient 

along the membrane (not shown in Figure 3.3). A thermocouple was mounted inside the 

membrane to measure the membrane temperature. A mass flow meter (MKS) was used 

to measure the hydrogen flux permeating the membrane. A stainless steel cold trap H 

(180 mL internal volume, maintained at room temperature) was used to condense the 

steam from the retentate gas mixture. A needle valve I was used to regulate the flow of 

the retentate gas. A volumetric flow meter J (GCA Precision Scientific) was used to 

measure the retentate flow rate. A 0.32 cm OD (1/8”) SS tube K was positioned inside 

the membrane and provided a flow of He sweep gas (approximately 15 sccm) to the 

permeate side. The sweep gas was used to purge the permeate side of the membrane 

before and after experiments, not to increase the H2 partial pressure driving force. A gas 

chromatograph (HP 5890 Series II) with a Carboxen 1000 column for permanent gas 

separation, and a thermal conductivity detector was used to analyze both the permeate 

and the retentate gas streams in the case of mixed gas feeds. The GC method and 
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calibration details can be found in Appendix C. A bypass L was in place before the pre-

heater to divert feed gas directly to the GC for feed composition analysis. Pressure 

sensors (MKS, 722A14TCD2FA), labeled P1, P2, and P3 in Figure 3.3, were attached 

at the inlet of the pre-heater, the outlet of the membrane module, and the permeate 

outlet respectively. 

3.4.2. Mixed gas testing procedure 

In a typical mixed gas experiment the following procedure was used. Prior to the 

experiment, the mixed gas was delivered to the system at 100 sccm and a pressure of 

4.4 atma (PH2 > 1.0 atma) for at least one hour to ensure that the system was 

thoroughly purged. The pressure was then raised to 14.4 atma over several minutes. 

The retentate flow was adjusted by means of a needle valve I (Figure 3.3). Once the 

pressure and retentate flow were adjusted the system was allowed to reach steady 

state for at least 10 minutes before measurements were taken. Flow measurements of 

the retentate and the permeate streams were taken by the volumetric flow meter J 

(GCA/Precision Scientific). Samples of the retentate and permeate streams were 

analyzed via the HP 5890 Series II GC. The retentate flow rate was increased and 

measurements were taken at intervals of 300 sccm up to 6,000 sccm. At retentate flow 

rates in excess of 4,000 sccm, the temperature was adjusted by the PID controller to 

ensure that the system temperature remained stable despite convective cooling. 

3.5. WGS CMR experimental 

3.5.1. WGS CMR Setup 

The WGS CMR setup consisted of the reactor system diagramed in Figure 3.4 and was 

similar to the H2 and mixed gas system with the following exceptions. Mass flow 

controllers A (Brooks 5850E) were used to deliver feed gases to the pre-heater during 

reaction experiments. A back pressure regulator B (SGD Inc. Model 12-253) was in line 

after the cold trap to control the system pressure. For long-term (greater than 20 hour) 

reaction experiments an infrared continuous gas analyzer C (Siemens, Ultramat 6) was 

utilized to measure the level of CO in the permeate stream. For experiments in which 

H2S was present in the feed, a second GC D (SRI Model 8610C) equipped with a 1/32” 
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MXT stainless steel capillary column and a Flame-Photometric Detector (FPD) was 

used in line with the first. The GC method and calibration details for this device can also 

be found in Appendix C. 

 

Figure 3.4. Schematic of the WGS CMR system. 
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The WGS CMR, shown in Figure 3.5, consisted of a 2.54 cm OD and 25.4 cm long (1” x 

10”) SS tube with a 1.3 cm OD and 25.4 cm long (1/2” x 10”) membrane tube assembly 

mounted inside. The membrane tube assembly was mounted at the approximate center 

of the reactor and held in place with a Swagelok® stainless steel ferrule-nut assembly. 

The reactor was packed with 40 - 48 mesh (297 - 400 �m) iron-chrome-oxide catalyst 

(HiFUEL W210) in the annular space around the membrane. A one-time reduction in 

catalyst particle size of 5 – 10% was observed during high temperature testing and/or 

calcinations, if this size reduction occured for the first time in the loaded membrane 

reactor, 5 – 10% of empty space will be available for the catalyst to move around and 

create channels. To prevent channeling, the catalyst was calcined at 500°C for 12 hours 

prior to use in the reactor. Inert packing, 50 - 70 mesh white quartz sand, was packed 

above and below the membrane. Quartz wool was used to separate the sand and the 

catalyst. SS porous disks were used to plug the ends of the reactor. 

 

Figure 3.5. WGS CMR scale rendering. 

 

3.5.2. WGS CMR loading procedure 

The WGS CMR was assembled and loaded by first mounting the membrane vertically 

with one end cap (2.54 cm to 1.27 cm reducing union, modified with an additional 0.32 

cm tube) and a porous SS washer (2.22 cm OD, 1.27 cm ID) in place. Sand 
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(approximately 15 g) was then added until the proper depth was reached (a foam-tipped 

plunger was used to measure the depth). The SS tube was tapped hard with a hammer 

several times to settle the sand. The plunger was then used again to measure the 

proper depth (more sand was added if needed). A plug of quartz wool (approximately 

0.2 – 0.3 cm thick when compressed) was inserted and pushed down on top of the sand 

and surrounding the welded interface between the membrane and the support. Iron-

chrome-oxide catalyst (approximately 13 g) was then added until the plunger indicated 

the proper depth (the top end of the membrane). The reactor was tapped again with a 

hammer to settle/pack the catalyst bed and the depth was measured. A second plug of 

quartz wool was inserted and pushed down to the top of the catalyst bed. Sand 

(approximately 75 g) was then added to the top of the reactor tube and the reactor was 

tapped hard repeatedly until all the packing material in the tube was settled and no 

change in depth was observed. A porous disk was placed on top of the reactor tube and 

a reducing union (2.54 to 0.32 cm [1” to 1/8”]) was secured. The reactor assembly was 

leak tested by pressurizing to 4 atma of helium and applying soap water to all pipe 

connections (while looking for bubbles). 

3.5.3. WGS experimental procedure 

In a typical WGS experiment the following procedure was used. The reactor was purged 

with inert gas (N2, 200 sccm) for 1 hour prior to the start of the steam feed. The catalyst 

was oxidized with the steam feed (260 µL/min of H2O to the preheater, 14.4 mmol/min) 

for 15 minutes prior to the introduction of other feed gases. During this 15 minute period 

steam began to condense in the cold-trap and the pressure was ramped up to 14.5 

atma at 1 atm/min with the back pressure regulator. Pre-mixed feed gas (42% CO, 40% 

H2, 18% CO2; Middlesex Gases & Tech. Inc., Everett, MA) was fed to the system and at 

the same time the inert sweep (He, 10 sccm) to the permeate side of the membrane 

was shut off, as was the N2 flow to the retentate side. The permeate flow, CO level in 

the permeate, system pressure, and tube-side temperature were recorded at 4 min 

intervals by the data acquisition software (LabVIEW 7.1, National Instruments). 

Samples of the retentate stream were analyzed via the HP 5890 Series GC at 30 

minute intervals for short reactions (less than 20 hour) and at 3 hour intervals for long 
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reactions (greater than 20 hour). Volumetric flow measurements were manually 

recorded every time a GC analysis was started. Samples of the retentate stream were 

also analyzed by the SRI 8610C GC at 10 minute intervals when H2S was present in the 

feed mixture. The condensed water was drained from the cold-trap every 12 hours by 

the drain valve E (Figure 3.4) and measured. At the end of an experiment the mixed gas 

was shut off and the inert purge (N2, 200 sccm) was resumed. When retentate side was 

purged with N2, an inert sweep (He, 20 sccm) to the permeate side was necessary to 

prevent back-flow of H2 through the membrane. Flow of H2 from the permeate-side to 

the retentate-side could draw air through the system tubing and into the membrane, 

potentially damaging the support and/or Pd-layer by oxidation. 15 minutes after the 

mixed gas was shut off, the H2O feed was also shut off. Shortly after the H2O feed was 

shut off, the volume of water in the cold trap was drained and measured. 

3.6. Post-testing characterization 

3.6.1. Leak characterization 

The membrane inert gas leak was characterized during high temperature testing by 

flushing the system with He at 1.5 atma for at least 3 hours, then pressurizing the shell-

side of the membrane to 4 atma, and measuring the He flow through the membrane 

with a bubble flow meter (1.0 mL pipette). When the leak was large (greater than 0.1 

sccm at a �P of 1 atm) the leak was measured at several pressure differences. 

After high temperature testing, an IPA bubble test was usually conducted to determine if 

any defects had formed due to the testing. If any significant defects were apparent, a 

‘rising water leak test’ was conducted to determine what fraction of the He leak was due 

to the defective area (Guazzone and Ma, 2008). The rising water leak test was 

conducted by first measuring the leak at a pressure difference of 1 atm in a vertically 

mounted, clear plastic shell. Water was then added into the shell so that increments of 

0.5 cm of the membrane length were progressively blocked and the leak was measured 

again. 
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3.6.2. SEM and EDS analysis 

After testing, some membranes were cut and examined by SEM (Amray Model 1610, 

equipped with a Si(Li) x-ray detector {PGT}) to develop a better understanding of the 

grading, intermediate, and dense Pd-layers. The samples prepared for this type of 

analysis were of two types: surface samples and cross-section samples. Surface 

samples were prepared by cutting the membrane into 1 cm long, 1 cm wide pieces (90° 

segments of the round tube). The membrane pieces were then affixed to aluminum 

sample holders by carbon paint (SPI Supplies, Structure Probe Inc.), care was taken not 

to touch the Pd-surface while the sample was being prepared. Cross-section samples 

were prepared by first cutting an 1 cm long round section of the membrane, then 

mounting in a polymer matrix (EpoMet-F Molding Compound, Buehler Ltd.) by heating 

under pressure to 140°C via an automatic mounting press (SimpliMet Inc.). The 

membrane section was mounted vertically such that the circular cross-section of the 

membrane was visible at the top of the polymer cylinder. The polymer mounted 

membrane sample was then polished sequentially with 240, 320, and 600 grit SiC-paper 

on a water-cooled spinning table. The sample was then polished sequentially on 

spinning felt tables with 1.0, 0.3, and 0.05 �m alumina slurries. At each step of polishing 

the sample was polished at multiple orientations with respect to the direction of the 

spinning table. After the first polishing with 1.0 �m alumina particles the surface had a 

completely smooth appearance to the naked eye, with no directional polishing marks. 

The polished sample was affixed to an aluminum sample holder with carbon paint.  

During operation of the SEM, electrons could build up on non-conductive surfaces or 

conductive pieces that were not grounded in a phenomenon known as “charging”, 

resulting in an excessively bright or glowing appearance to the acquired images. To 

prevent charging a line of carbon paint was made from the sample holder on the 

bottom, around the side of the polymer cylinder, and extending to touch one edge of the 

membrane cross-section. The carbon paint conducted charge from the membrane piece 

to the grounded sample holder. The whole sample was also sputter-deposited (Denton 

Desk II) with approximately 10 nm of Pd to prevent charging on the polymer surface. 
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The SEM was operated with two different setting configurations depending on whether 

the objective was to acquire high quality images or to detect X-ray emissions for 

Energy-Dispersive Spectroscopy (EDS). The settings for both modes of operation are 

given in Table 3.1. Images and EDS were recorded with the SEM instrument software 

Spirit 1.04.02 (PGT Inc.). 

 

Table 3.1. SEM settings for two different modes of operation. 

Optimized for 
image quality 

Energy 15 keV 
Spot size 9 
Working distance 15 
Tilt 0° 

Optimized for 
EDS analysis 

Energy 20 keV 
Spot size 6 
Working distance 45 
Tilt 33° 

 

3.6.3. XRD analysis 

After testing, some membranes were cut and analyzed by X-Ray Diffraction (XRD, 

Rigaku equipped with a Cu-source) to determine if alloying had occurred as expected or 

if sulfur or carbon had been incorporated into the Pd-lattice. Surface samples were 

prepared by cutting the membrane into 1 cm long, 1 cm wide pieces (90° segments of 

the round tube). The sample pieces were positioned on an adjustable Teflon mount in 

the XRD such that the top of the sample (flat or curved surface) was at the same level 

as where the x-ray beam crossed the incident plane of the machine. The x-ray source 

was excited with a current of 25 mA at 37.5 kV. X-ray diffraction scans were taken 

between 2� values of 20 – 100°, with a resolution of 0.2° for broad scans, and a 

resolution of 0.05° for high definition scans. Scans were recorded with the XRD 

software DataScan 4.5 (MDI). The XRD software Jade 8.5.4 (MDI) was utilized to check 

sample spectra against a database of known materials. 
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3.7. Summary 

Methods were described for the synthesis and testing of PSS supported Pd-

membranes. The experimental apparatus for mixed gas and WGS testing were explicitly 

described. Lastly, the characterization methods for the Pd-membranes were described. 

In Chapter 4 the membrane synthesis methods delineated in Section 3.2 are discussed 

based on their ability to reproducibly fabricate Pd-membranes, with high H2 permeance 

and high selectivity, from low cost PSS supports. In Chapters 6 and 9 membranes are 

tested under mixed gas conditions in the apparatus and by the procedure described in 

Section 3.4. In Chapters 7, 9, and 10 membranes are tested under WGS conditions in 

the apparatus and by the procedure described in Section 3.5. In Chapter 8 coupons are 

utilized which were prepared by the procedure delineated in Section 3.3. In Chapters 4, 

8, 9, and 10 characterization techniques (described in Section 3.6) are utilized after 

membranes and coupons have been exposed to mixed gas and reaction conditions. In 

some cases aberrations to the methods described here were made; they are detailed in 

the Experimental subsections of each chapter. 
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4. PURE GAS TESTING OF Pd-MEMBRANES 

4.1. Introduction 

The application of Pd-membranes to the WGS CMR in a commercial setting is 

dependent on their being fabricated by a simple, reproducible method which is at least 

somewhat independent of the support quality. To address this, grading methods have 

been devised to smooth the support surface and fill pores near the surface with particles 

(Ma et al., 2007; Nam et al., 1999; Tong et al., 2004), intermediate layers have been 

devised to further reduce the surface pore size and prevent intermetallic diffusion, and 

dense Pd-plating techniques have been demonstrated which result in uniform 

deposition (Ayturk et al., 2007; Keuler and Lorenzen, 2002; Ma et al., 2007; Mardilovich 

et al., 2006; Roa et al., 2002; 2003a; 2003b). Of these three methodologies the dense 

Pd-plating has often been highlighted as the cardinal process upon which successful 

synthesis depends, overlooking the grading and intermediate layer functions. If low 

quality supports with large surface features (contours, bumps, or pores greater than 1 

�m in size) are to be utilized, grading may be the most important aspect of membrane 

synthesis. If supports are produced from low cost metals such as 310-stainless steel, 

intermediate layer integrity may also be crucial. 

It was important to develop a solid understanding of grading methodology, intermediate 

layer treatment, and surface modification techniques which would lead to highly H2 

permeable, selective, and stable membranes. The objective of this chapter was 

therefore to develop a better understanding of synthesis methodology, which synthesis 

steps led to which membrane properties. A focus was also made on those aspects of 

membrane synthesis which allowed for high reproducibility, an aspect not widely 

discussed in the literature. An important aspect of synthesis efficacy was the 

characterization methods by which completed membranes could be evaluated: H2 flux 

and inert gas leak stability. As an additional objective for this chapter, a better 

understanding of the mechanisms of H2 permeation and leak growth in supported 

membranes should be developed. 
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4.2. Background 

4.2.1. Grading 

The preferred support material for commercial application is porous stainless steel 

(PSS) due to its low cost, thermal and chemical stability, and mechanical strength. 

Mardilovich et al. (2002) demonstrated that a Pd-layer at least three times thicker than 

the diameter of the largest pore mouth was necessary to achieve a dense membrane. 

Highly permeable PSS, with a maximum surface pore size of greater than 10 �m thus 

required significant support modification to achieve thin (less than 10 �m) and highly H2 

permeable membranes. In order to utilize PSS supports with moderately inconsistent 

features (pore size distribution, surface roughness, and randomly distributed defects), 

as well as prohibitively large pore sizes, grading techniques were typically employed 

(Ma et al., 2007; 2010). Grading consists of anchoring particles either onto the support 

surface or into the surface pores in order to smooth the surface, reduce the surface 

pore size, and narrow the pore size distribution. Grading materials which have been 

used in the literature are � and �-Al2O3, Al(OH)3, Ce(OH)4, Ni, Ag, and W (Ma et al., 

2007; Nam et al., 1999; Tong et al., 2004). 

Table 4.1 lists several different grading materials and methods reported in the literature 

for porous metal supports. Nam et al. (1999) produced an exceptionally thin dense Pd-

layer by grading with nickel powder applied over 5 hours by vacuum and sonication. 

The use of electroplating probably also aided in the formation of the thin and uniform 

Pd-layer. Ma et al. (2010) also produced an exceptionally thin Pd-membrane by 

sequential deposition of three different sizes of Al2O3-particles (3, 0.3, and 0.01 �m). 

While it was difficult to compare grading methods from different studies due to the 

different support qualities and different Pd deposition methods, it was somewhat 

intuitive and apparent from Table 4.1 that a longer and more intense application of 

grading material resulted in a better graded layer, which allowed for the fabrication of a 

thinner Pd-layer. 
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Table 4.1. Summary of grading methods used on porous metal supports and resulting 

Pd-thickness. 

Grading 
Material 

Application Method Pd, Pd/Alloy-
thickness (�m) 

Reference 

Ni 5 h, vacuum, sonication 1 Nam et al., 1999 
Ce(OH)4 1 h, vacuum, sonication 6 Tong et al., 2004 

W 2 x 90 sec, vacuum 33.6 Ma et al., 2007 
W + Ag 2 x 30 sec, vacuum 13.1 
Al2O3 30 sec, vacuum 14.8 Ma et al., 2010 
Al2O3 Sequential, 3 x 30 sec, vacuum 3.9 

 

4.2.2. Porous intermediate layers 

An alternative method to improve the support surface was the application of a thin (1 - 

20 �m) layer of porous material which had more preferable surface properties than the 

PSS (i.e. smooth with nano-size pores). An additional function of the intermediate layer 

was to prevent diffusion of the support metals into the palladium layer, which can result 

in significant loss of H2 permeance at temperatures above 400°C (Ayturk et al., 2006). 

The three primary types of porous intermediate layers which have been reported in the 

literature were metal-oxides, porous metals, and sol gels. Ma et al. (2000; 2007) formed 

an intermediate layer of iron and chromium oxides to prevent intermetallic diffusion of 

the support metals into the Pd-layer and, more recently, to anchor alumina grading 

particles to the surface of the support (Koc, 2012). The oxide layer was formed by 

heating in air at 500 – 600°C for high chromium content stainless steels, and 700 - 

800°C for high nickel content steels such as Hastelloy or Inconel. Ma et al. (2007; 

Ayturk et al., 2006) produced a Pd/Ag intermetallic diffusion barrier by sequential 

electroless deposition of those two metals. The layer prevented intermetallic diffusion by 

the extremely low solubility of iron in Pd/Ag-alloys. Additionally, since the silver 

deposited in a dendritic manor, the surface pore size was significantly reduced so that a 

thin dense Pd-layer could be formed. An alternative intermediate layer was formed by 

sputtering titanium in a N2 atmosphere to deposit TiN on the support (Shu et al., 1996). 

They demonstrated that the TiN-layer prevented intermetallic diffusion of iron from the 

PSS support up to a temperature of 700°C. 
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The final category of intermediate layers which have been utilized to prevent 

intermetallic diffusion, anchor grading particles, and smooth porous surfaces were sol 

gels. Sol gels are suspensions of colloid particles produced from the partial hydrolysis 

and polymerization of transition metal salts (Brinker and Scherer, 1990). When the gel is 

dried on a surface it forms a solid polymer structure, further drying by calcination at 300 

- 600°C drives off more water and results in a nano-porous glass structure. Li et al. 

(2007a) showed that the application of an alumina sol gel with suspended alumina 

particles (0.3 – 2.5 �m) to a PSS316L support reduced the surface pore size from 20 

down to 1 �m with only a 50% loss of support permeance. Nam and Lee (2001) utilized 

a silica sol gel on a nickel graded SS disk to support a 2 �m Pd63Cu37-membrane 

prepared by electrodeposition. After the sol gel application they observed a drop in inert 

gas flux of two orders of magnitude, suggesting that the sol gel layer was causing 

significant mass transfer resistance, however, in the completed membrane they 

measured a high H2 permeance of 54.7 m3/m2-h-atm at 450°C. 

The use of intermediate layers has generally resulted in membranes which remained 

stable at high (500 – 700°C) temperatures. Unfortunately, the application of both 

grading and intermediate layers can significantly increase the mass transfer resistance. 

If the layers are applied in an inefficient manor, the deposition of particles and material 

can occur deep inside the porous support, resulting in significant loss of permeance. 

What is instead desired is an ordered layer which is confined completely to the surface 

but still has strong adhesion to that surface, an aspect which very few literature studies 

have discussed. 

4.2.3. Dense, H2 permeable Pd-layer 

The primary methods of Pd and Pd-alloy dense layer synthesis including electroplating, 

magnetron sputtering, chemical vapor deposition, and electroless plating were reviewed 

in Chapter 2, Section 2.2.3. The primary method of interest in this study was electroless 

plating due to its scalability, inherent safety, and proven efficacy (Ayturk et al., 2007; 

Keuler and Lorenzen, 2002; Ma et al., 2007; Mardilovich et al., 2006; Roa et al., 2002; 

2003a; 2003b). Examples in the literature of Pd-membranes prepared by electroless 

plating were also given in detail in Chapter 2, Section 2.2.3.e. 
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4.3. Experimental 

4.3.1. Porous supports  

The membrane supports used in this study were PSS316L, PSS310, porous Hastelloy 

(PH), and porous Inconel (PI) tubes (6.5 cm length, 1.3 cm OD, Media Grade 0.2 �m), 

capped at one end, and welded to a stainless steel tube at the other, purchased from 

either Mott Metallurgical Corp. (Farmington, CT) or Chand Eisenmann Metallurgical 

(Burlington, CT). A total of seven different types of porous metal supports were utilized 

which are detailed in Table 4.2. The supports varied considerably in terms of their mass 

transfer resistance and surface features. The PH supports, for instance, had a very low 

mass transfer resistance such that a He permeance of 3000 m3/m2-h-atm was initially 

measured. While a very low mass transfer resistance was desired, it was offset by the 

very large surface pores, up to 50 �m, observed on those same supports, potentially 

complicating the membrane synthesis. 

 

Table 4.2. Specifications of the porous metal supports used in this study. 

Provider Designation Material Nominal 
grade 
(�m) 

Surface 
pore size 

(�m) 

He permeance 
(m3/m2-h-atm) 

Mott Corporation 
(Farmington, CT) 

M-PI0.1 Inconel 0.1 5 390 – 410 
M-PSS316, 0.2 316L SS 0.2 10 480 – 650 

Chand 
Eisenmann 

Metallurgical 
(Caribou, ME) 

C-PH0.1 Hastelloy 0.1 50 2900 – 3100 
C-PSS316, 0.1 316L SS 0.1 10 350 – 440 
C-PSS316, 0.2A 316L SS 0.2 20 460 – 500 
C-PSS316, 0.2B 316L SS 0.2 10 270 – 370 
C-PSS310, 0.2 310 SS 0.2 Unknown 220 – 240 

 

4.3.2. Synthesis methodology 

Two specific methods of membrane synthesis were used and described in detail in 

Section 3.1 and Appendix B. The general method of membrane synthesis was as 

follows: Initial support treatments (cleaning and oxidation) were conducted first. Grading 

material (�-Al2O3, �-Al2O3, or Al(OH)3) was applied second and repeated if deemed 
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necessary. Intermediate layers (Pd/Ag barrier or sol-gel) were applied third, and dense 

Pd-plating was conducted last. Specific aberrations from published synthesis 

procedures and their perceived effects on membrane properties will be detailed in the 

Results and Discussion (Section 4.4). 

Up until the dense Pd-plating step, the only diagnostic tests considered relevant to 

synthesis quality were visual inspection and gravimetric thickness (Section 3.1.1). If the 

color and texture of the membrane were not uniform after a certain treatment, a light 

mechanical polishing (Section 3.1.3) was conducted and the treatment was repeated. If 

the change in gravimetric thickness was too low for a certain step, that step was also 

repeated, typically without mechanical polishing. The He permeance of the membranes 

was also measured after each synthesis step, but was considered irrelevant up until the 

dense Pd-plating since the grading and intermediate layers were not expected to cause 

a significant change in He permeance due to their very slight thickness and porous 

nature. The IPA bubble test (Section 3.1.2), which was capable of identifying defects 

and non-uniform regions of the deposited layers, was not conducted until at least 1 �m 

of dense Pd was applied. The application of a slightly higher pressure in the tube-side 

(0.2 – 1 atmg) during the test was considered potentially damaging to the grading and 

intermediate layers due to their fragile nature. 

During dense Pd-plating all four characterization tests were considered relevant. The 

gravimetric thickness was used to confirm that Pd-plating was proceeding at the 

expected rate, 3 �m/h for a well activated surface (Ayturk and Ma, 2009). By visual 

inspection if a blotchy or non-uniform surface was observed, mechanical polishing was 

conducted to smooth the surface prior to further Pd-plating. The IPA bubble test was 

conducted to identify defects such that spot plating could be done. Lastly the He 

permeance was measured to determine if a dense layer had been achieved, or to 

estimate how much more plating was likely to be required. 

After dense Pd-plating, membranes were generally annealed in He or H2 for 12 hours at 

a temperature of greater than the anticipated testing temperature in order to release 

microstrains and stresses inherent in the electroless deposited layers (Guazzone et al., 

2006). Following annealing the He leak of the membrane typically increased by up to 
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one order of magnitude, and so the membrane was mechanically polished and plated 

with additional Pd. 

4.3.3. H2 characterization 

An initial characterization in pure H2 was conducted to judge both the suitability of the 

support and the synthesis method efficacy. Since the primary focus of this thesis was 

the operation of the WGS CMR incorporating a Pd-membrane, the initial 

characterization was also conducted to establish the viability of the Pd-membrane for 

use in the WGS CMR. 

After installation of the membrane into the system, the system was first flushed with He 

and the tube-side He sweep was turned on. The temperature was increased at 

0.5°C/min to 400 or 450°C. The system was transitioned to H2 by shutting off the He 

feed and setting the H2 feed pressure to 1.5 atma. After H2 permeation flux was 

observed (less than 1 hour), the tube-side He sweep was turned off. The membrane 

was allowed to come to steady state in H2 for approximately 48 hours. The membrane 

was typically tested for 3 - 5 days at 450°C, then 400°C, then 350°C, all in H2 and taking 

Sieverts’ law data and He leak measurements at each temperature. 

Sieverts’ law data were taken by measuring the H2 permeate flux for at least 8 different 

shell-side pressures, ranging from 1.5 - 4.0 atma. At least 5 minutes at each pressure 

was given for the steady state flux to be reached. The Sieverts’ law permeance, FH2 

[m3/m2h-atm0.5], was calculated by a linear regression analysis of the data based on 

equation 4.2. 

 �%M � �%M~w#%&[� +w#%&[��       4.2 

where JH2 [m3/m2-h] was the measured H2 flux, PH2,s [atma] was the shell-side pressure, 

and PH2,t [atma] was the tube-side pressure (note that the unit of absolute pressure, 

atma, was used throughout this document except for situations in which pressure terms 

were subtracted, divided, etc such that relative pressure, atm, was used). Equation 4.2 

was identical to equation 2.31 with FH2 = QH/�Pd, for a Pd-foil, but could not be used 

directly to determine the permeability of palladium because of the uncertainty in the 
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gravimetric thickness measurement. Where the mass transfer in the support was 

significant, or the leak was considerable, or the membrane was very thin, the Sieverts’ 

law data was also fitted to the empirical equation 4.3 (similar to equation 2.32, 

discussed in Chapter 2) by the Newtonian iterative method via Microsoft Excel ®. 

 �%M � �%M' ~#%&[�' + #%&[�' �       4.3 

where nFH2 [m3/m2-h-atmn] is the n-dependent permeance and n is the exponent of the 

absolute pressure difference. 

The He leak measurements were typically taken every three days and before and after 

any changes in temperature so that the rate of leak growth could be estimated. The He 

leak measurements were taken by first switching the system to helium and switching on 

the tube-side He sweep. After the system was purged with He for several hours the He 

pressure was increased, typically to 4 atma. The tube-side sweep was shut off and the 

He flow was measured with a 1-mL bubble flow meter (minimum detection limit = 0.05 

sccm). If the leak at 4 atma was greater than 1.0 sccm, subsequent leak measurements 

were also taken at 3 and 2 atma shell-side pressures and a linear regression analysis 

was conducted to determine the He permeance, FHe [m3/m2h-atm], via equation 4.4. 

 �%� � �%�~#%�[� + #%�[��       4.4 

The ideal selectivity, �i
H2-He, was determined for a pressure difference of 1 atm (Pt = 1 

atma) via equation 2.34. 

 �%&�%�� � l>�
l>� � �>�<�y&��$�y���$�

�>�<�&��$����$�       2.34 

If the H2 permeance at 400°C was at least 20 m3/m2-h-atm0.5 and the ideal H2/He 

selectivity was greater than 1,000 after the H2 characterization the membrane was 

deemed acceptable for use in further experiments. If the selectivity was too low a light 

mechanical polishing was conducted, followed by Pd-plating. If the H2 permeance was 

too low, an aggressive mechanical polishing was conducted followed by Pd-plating, 

resulting in a net loss of gravimetric thickness. 
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4.4. Results and discussion 

4.4.1. Attainment of a dense Pd-layer 

A membrane synthesis was deemed successful if no He leak was detectable by the 1-

mL bubble flow meter (less than 0.05 sccm/atm, 0.001 m3/m2-h-atm). A membrane 

synthesis was aborted or deemed a failure if a dense layer could not be achieved with 

less than 20 �m of dense Pd-plating, or if there was indication from the He permeance 

changes (less than one-order of magnitude decrease after 5 �m of Pd-plating) that a 

dense layer would not be possible in that thickness range. A successful membrane 

synthesis by Method A (described in Section 3.1) is diagramed by a plot of He 

permeance versus gravimetric thickness as shown in Figure 4.1[a]. A failed membrane 

synthesis, also by Method A, is diagrammed in Figure 4.1[b]. In the course of this work 

41 syntheses were attempted by the author and a further five membranes were 

contributed from colleagues in the Center for Inorganic Membrane Studies and tested 

by the author. All of the membranes utilized in this study as well as failed synthesis 

attempts are listed in Table 4.3 along with the relevant synthesis details. 

It should be reiterated that the primary objectives of this research thesis were the 

investigation of the WGS CMR so the preparation of many of these membranes were 

conducted with that goal in mind. Nevertheless, some trends among synthesis attempts 

were observed and are discussed in the following sections of this chapter. 

[a] [b]  

Figure 4.1. Membrane synthesis diagrams [a] Successful synthesis of AA-8 [b] Failed 

synthesis of AA-9. 
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Table 4.3. Membranes synthesized and/or tested in this study. 

 Support Grading (�m) Intermediate 
Layer (�m) 

Pd 
�m 

Notes 

AA-1 M-PI0.1 - - 10.8  
AA-2 M-PI0.1 Al2O3 (0.01 – 1.0) Pd/Ag (3.3) 9.0  
AA-3 M-PI0.1 Al2O3 (0.01 – 1.0) - - Aborted (support defect) 
AA-4 M-PI0.1 Al2O3 (0.01 – 1.0) Pd/Ag (4.5) 7.3  
AA-5 M-PI0.1 Al2O3 (0.01 – 1.0) Pd/Ag (2.7) 9.7  
AA-6 M-PI0.1 Al2O3 (0.01 – 1.0) Pd/Ag (2.4) 10.3  
AA-7 M-PI0.1 Al2O3 (0.01 – 1.0) Pd/Ag (2.5) 9.1  
AA-8 M-PI0.1 Al2O3 (0.01 – 1.0) Pd/Ag (3.4) 6.4  
AA-9 C-PSS310, 0.2 Al2O3 (0.01 – 1.0) Pd/Ag (3.5) 10.0 Aborted (weld defects) 
AA-10 C-PSS310, 0.2 Al2O3 (0.01 – 1.0) Pd/Ag (4.5) 5.8 Aborted (weld defects) 
AA-11 C-PSS310, 0.2 Al2O3 (0.01 – 1.0) Pd/Ag (5.7) 5.8 Aborted (non-uniform surface) 
AA-12 C-PSS316, 0.2B Al2O3 (0.01 – 1.0) Pd/Ag (<1) 9.9 Support corrosion 
AA-13 C-PSS316, 0.2B Al2O3 (0.01 – 1.0) Pd/Ag (<1) 8.7 Aborted (support corrosion) 
AA-14 C-PSS316, 0.2B Al(OH)3 - 11.4 3x pre-annealing and polishing 
AA-15 C-PSS316, 0.2B Al(OH)3 - 8.3 Ruined by H2 embrittlement 
AA-16 C-PH0.1 Al2O3 (0.01 – 1.0) Pd/Ag (10.0) - Aborted (large surface pores) 
AA-17 C-PH0.1 Al(OH)3 - 4.7 Aborted (large surface pores) 
AA-18 C-PSS316, 0.1 Al2O3 (0.01 – 1.0) Pd/Ag (6.0) 12.6 Pre-annealing and polishing 
AA-19 C-PSS316, 0.1 Al2O3 (0.01 – 1.0) Pd/Ag (6.1) - Aborted (high He flux) 
AA-20 C-PSS316, 0.2B Al2O3 (0.01 – 1.0) Pd/Ag (6.8) 13.3 Cu electroplating 
AA-21 C-PSS316, 0.2B Al2O3 (0.01 – 1.0) Pd/Ag (4.8) 15.7 Pre-annealing and polishing 
AA-22 C-PH0.1 Al2O3 (0.01 – 5.0) Pd/Ag (<1) 10.6 Support corrosion 
AA-23 C-PSS316, 0.1 Al2O3 (0.01 – 3.0) Pd/Ag (<1) 3.1 Aborted (support corrosion) 
AA-24 C-PSS316, 0.1 Al2O3 (0.01 – 1.0) Pd/Ag (6.2) 6.9 Pre-annealing and polishing 
AA-25 C-PSS316, 0.1 Al2O3 (0.01 – 1.0) Pd/Ag (9.0) 8.5 Pre-annealing and polishing 
AA-26 C-PH0.1 Al2O3 Sol Gel 12.8 Sol-gel peeling 
AA-27 C-PSS316, 0.2A Al2O3 Sol Gel 4.2 Aborted (sol-gel peeling) 
AA-28 C-PSS316, 0.2A Al2O3 Sol Gel - Aborted (sol-gel peeling) 
AA-29 C-PSS316, 0.2A Al2O3 (0.01 – 5.0) Pd/Ag (<1) 9.3 2x grading 
AA-30 C-PSS316, 0.2A Al2O3 (0.01 – 5.0) Pd/Ag (<1) 9.5 2x grading, single weld defect 
AA-31 C-PSS316, 0.2A Al2O3 (0.01 – 5.0) Pd/Ag (1.8) 6.8 2x Pd/Ag, weld defects 
AA-32 C-PSS316, 0.2A Al2O3 (0.01 – 5.0) Pd/Ag (6.2) 8.4 Aborted (weld defects) 
AA-33 C-PSS316, 0.2A Al2O3 (0.01 – 5.0) Pd/Ag (3.0) 3.8 Aborted, Cr weld plating 
AA-34 C-PSS316, 0.2A Al2O3 (0.01 – 5.0) Pd/Ag (2.7) 4.1 Aborted (weld defects) 
AA-35 C-PSS316, 0.2A Al2O3 (0.01 – 10) Pd/Ag (2.3) 4.8 Aborted (general defects) 
AA-36 C-PSS316, 0.2A Al2O3 (0.01 – 10) Pd/Ag (2.7) 4.7 Aborted (general defects) 
AA-37 M-PSS316, 0.2 Al2O3 (0.3 – 3.0) - 3.9 Aborted (peeling from polishing) 
AA-38 M-PSS316, 0.2 Al2O3 (0.01 – 50) - 1.5 Heavy polishing treatment 
AA-39 M-PSS316, 0.2 Al2O3 (0.01 – 10) - 2.7 Ni weld plating, 0.6 �m Ag-layer 
AA-40 M-PSS316, 0.2 Al2O3 (0.01 – 10) - 1.5  
AA-41 M-PSS316, 0.2 Al2O3 (0.01 – 10) - 7.7 Aborted (weld defects) 
EA-054* C-PSS316, 0.2B Al(OH)3 - 9.3 Aborted (high He flux) 
IM-79† C-PSS316, 0.2A Al2O3 (0.01 – 1.0) Pd/Ag (12.2) 10.2  
IM-76C† C-PSS316, 0.2A Al2O3 (0.01 – 1.0) Pd/Ag (5.6) 17.3  
IM-86b† C-PSS316, 0.2A Al2O3 (0.01 – 1.0) Pd/Ag (1.0) 7.5  
RK-16R ‡ M-PSS316, 0.2 Al2O3 (0.01 – 10) - 8.3 Plated with additional 3.2 �m Pd 
*Prepared by M. Engin Ayturk 
†Prepared by Ivan P. Mardilovich 
‡Prepared by Reyyan Koc  
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The synthesis details of all the membranes synthesized in this study are tabulated in 

Appendix D. Out of the 41 attempted syntheses, 19 ended in failure due, for the most 

part, to defects inherent to the lower cost stainless steel supports. The two membranes 

AA-8 and 9, diagramed in Figure 4.1 were fabricated on porous Inconel and porous SS 

respectively, with the SS costing 1/3rd - 1/6th as much. As was clear from Figure 4.1[b], 

the grading and intermediate layers fabricated by Synthesis Method A were inadequate 

for the preparation of a dense Pd-layer on the C-PSS310, 0.2 support for the membrane 

AA-9. 

SEM images (shown in Figure 4.2) of cut cross sections of several membranes 

fabricated on different supports revealed that, although the supports were all rated 

nearly identically with regards to the fineness of the pore structure, some had 

significantly larger pores on the surface. The support ratings of 0.1 or 0.2 �m indicated 

that the support was capable of filtering particles of that size out from a solution with 

95% effectiveness (5% of 0.1 or 0.2 �m particles pass through). The most important 

aspects of the support, for ease of membrane synthesis, were surface pore size and 

surface roughness, neither of which were captured in the support rating. For instance 

the supports used for membranes AA-22, AA-27, and RK-16R all had surface pores 

larger than 15 �m as shown in Figure 4.2[b], [c], and [d] respectively. In order to 

effectively synthesize membranes on supports with larger surface pores, more intense 

grading was necessary such as the Synthesis Method B based on work by Koc (2012) 

and Ma and Guazzone (2010). Koc (2012) demonstrated effective membrane syntheses 

on the C-PH0.1 supports with surface features as large as 50 �m, by 5 grading steps, 

beginning with 50 �m, and ending with 0.01 �m alumina particles. Her synthesis 

methodology was repeated in this study for the four membranes AA-38, AA-39, AA-40, 

and AA-41 prepared on M-PSS316, 0.2 supports. Out of those four membranes, one 

synthesis was still aborted due to defects at the welded regions which were presumably 

larger than the largest grading particle size (10 �m). 



 

[a]

[c]

Figure 4.2. SEM cross-section images 

1,500X [b] AA-22 (C-PH0.1), 500X [c] AA

PSS316,0.2), 1,000X. 

 

In many cases defects were observed by the IPA bubble test at the intersection where 

the porous and non-porous tubes were welded together. When the welding was done 

(by the support manufacturer) the high temperature could have caused non

sintering in the PSS immediately adjacent to the weld. Excess sinterin

regions resulted in rough surface m

�m) than the expected maximum pore size. In some cases such as the synthesis of AA

30, diagrammed in Figure 4.3

in those areas. In other cases such as AA

22 �m of Pd-plating on the defective region was not sufficient to block the defects, 
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 [b]

 [d]

section images of fabricated membranes [a] AA

), 500X [c] AA-27 (C-PSS316,0.2B), 1,000X [d] RK

In many cases defects were observed by the IPA bubble test at the intersection where 

s tubes were welded together. When the welding was done 

(by the support manufacturer) the high temperature could have caused non

sintering in the PSS immediately adjacent to the weld. Excess sinterin

resulted in rough surface morphology and/or pores much larger (greater than 

�m) than the expected maximum pore size. In some cases such as the synthesis of AA

3[a], additional weld plating was sufficient to bloc

as. In other cases such as AA-33, diagramed in Figure 4.3[b]

plating on the defective region was not sufficient to block the defects, 

 

 

of fabricated membranes [a] AA-2 (M-PI0.1), 

000X [d] RK-16R (M-

In many cases defects were observed by the IPA bubble test at the intersection where 

s tubes were welded together. When the welding was done 

(by the support manufacturer) the high temperature could have caused non-uniform 

sintering in the PSS immediately adjacent to the weld. Excess sintering in the weld 

nd/or pores much larger (greater than 10 

�m) than the expected maximum pore size. In some cases such as the synthesis of AA-

[a], additional weld plating was sufficient to block the leaks 

], a total of 12 + 

plating on the defective region was not sufficient to block the defects, 
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indicating that those defects were initially larger than 10 �m in size (Mardilovich et al., 

2002). 

[a] [b]  

Figure 4.3. Membrane synthesis diagrams [a] Successful weld plating of AA-30 [b] 

Failed weld plating of AA-33. 

 

Three further attempts were made to block the defective regions of the membranes AA-

20, AA-33, and AA-39 by electro-deposition of copper, chromium, and nickel. The 

electro-plating procedures were described in Chapter 3 (Sections 3.2.5). The rationale 

for these attempts was that the defective regions could be completely covered by 

greater than 100 �m of non-permeable dense metal. Electro-deposition was used since 

much higher plating rates (20 – 100 �m/h) were possible. Figure 4.4 shows the 

synthesis diagrams of the three membranes AA-20, AA-33, and AA-39. The final step 

shown in each of the membrane syntheses was electro-deposition of the metal on the 

regions where defects were observed by IPA bubble test (described in the Chapter 3, 

Section 3.2.2). For the membrane AA-20, defects were observed on 50% of the surface 

and including the lower weld. For the membranes AA-33 and AA-39, defects were 

observed only on the welded regions. 
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Figure 4.4. Synthesis diagrams of AA-20, AA-33, and AA-39, featuring the electro-

plating of defective regions. 

 

The 180 �m Cu-plating conducted on AA-20 significantly lowered the He permeance of 

the membrane by blocking many of the defects, however, the IPA bubble test showed 

small leaks still existed in the copper layer indicating that the layer was not completely 

dense or that the defects were initially larger than 60 �m (significantly greater than 

previously suspected defect size). The Cr-plating of AA-33 was a complete failure since 

the Pd-layer warped and cracked where the deposition was occurring due to hydrogen 

embrittlement. For Cr-plating a higher electric potential of 6.0 volts was required, which, 

along with the acidic solution, resulted in the evolution of H2 on the anode (observed as 

small bubbles) along with the chromium deposition. The deposition of 22 �m of nickel 

on the welded regions of AA-39 resulted in a significant drop in He flux by masking the 

surface defects, but was not completely effective as evidenced by IPA bubble test. It 

was considered possible that a thicker layer of nickel could have effectively blocked the 
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the surface defects. Koc (2012) achieved limited success at blocking weld defects by 

repeatedly (up to three times) grading the defective regions with 5 – 0.01 �m �-alumina 

particles, followed by Pd weld-plating. 

Even if grading and additional weld plating could be made effective, an issue still 

existed with non-weld defects, or defects located randomly on the support surface. 

These defects could not be dealt with in a specific region by weld-plating but could only 

be fixed by a treatment applied to the whole membrane surface without significantly 

increase the membrane thickness. There is not yet a proven method to accomplish this. 

The most relevant criterion by which different membrane synthesis methods could be 

compared was the dense Pd thickness. There seemed to be a correlation between the 

number of grading layer applications and the final Pd-thickness for the completed 

membranes as shown in Figure 4.5. The membranes prepared with zero to two grading 

steps required significantly more Pd-plating to achieve a dense layer. The membranes 

prepared with four to six grading steps (large particles first, followed by smaller particles 

as detailed in Synthesis Method B, Experimental, Section 3.1) required as little as 1.5 

�m of additional Pd to become dense. The membranes prepared by Guazzone et al. 

(2008), which were also graded with alumina, followed the same trend. It was clear that 

sequential cycles of grading improved the quality of the grading layer resulting in finer 

surface features, for at least up to four grading treatments. The membranes prepared by 

Nam and Lee (1999; 2001) were graded for an extended period (5 hours) suggesting 

that the quality of grading also improved over time, although that conclusion was not 

supported by the similar work of Tong et al. (2004; 2006) who required 8 �m of Pd-

plating to achieve a dense layer even after 10 hours of grading. 
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Figure 4.5. Dense Pd thickness versus number of grading steps. 

 

The application of the Pd/Ag intermediate layer was also believed to play the same role 

as grading (Ma et al., 2007; Ayturk et al., 2006), however, there did not seem to be any 

correlation between the Pd/Ag thickness and the required dense Pd thickness. In some 

cases such as AA-31 and AA-34 a second application of the Pd/Ag intermediate layer 

seemed to decrease the required Pd-thickness as compared to similarly prepared 

membranes with only one Pd/Ag layer such as AA-29 and AA-30. In other cases such 

as IM-79 and IM-86b, up to four intermediate Pd/Ag layers did not reduce the required 

dense Pd-thickness even though the same C-PSS316,0.2A supports were used. Some of 

the C-PSS316, 0.2A supports had extensive defects and some were defect free. The use 

of a thicker Pd/Ag intermediate layer for the membranes IM-79 and IM-86b would 

suggest that the supports utilized had small defects (3 – 7 �m in size), which were not 

big enough to prevent membrane fabrication. The number of Pd/Ag intermediate layers 

and the estimated Pd/Ag gravimetric thickness for each membrane can be found in 

Appendix D. 
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Some membranes developed leaks rapidly upon H2 testing or, after having been tested 

for many hundreds of hours, developed a great enough leak so that further testing was 

not useful, and so those membranes were mechanically polished and re-plated. The 

membranes which were re-plated in this way are summarized in Table 4.4 and 

designated by the same name, with a suffix “R”. All of the membranes in Table 4.4 were 

subsequently tested in H2 and are considered in this study as different membranes. 

 

Table 4.4. Membranes which have been tested then mechanically polished and re-

plated. 

Membrane Reason for re-
plating 

Polishing 
depth (�m) 

Pd-Plating 
(�m) 

Comments 

AA-4R Low selectivity 0.6 3.2  
AA-6R Long testing period 3.0 1.5 Heavy polishing treatment 
AA-8R Long testing period 0.9 1.5  
AA-8RR Low selectivity 0.6 2.1  
AA-8RRR Low selectivity 1.8 2.1 Heavy polishing treatment 
AA-12R Annealing required 1.2 2.4 Mechanical, plating, annealing, 

mechanical, and plating 1.2 2.1 
AA-14R Low selectivity 1.3 2.2 Polishing and buffing 
AA-24R Low selectivity 0.5 1.0  
AA-38R Higher leak stability 0 2.9 No polishing 
AA-40R Low selectivity 2.1 4.0 Heavy polishing treatment, 

additional fine grading, 0.8 �m Au 
RK-16R Thicker dense layer 0 3.2 No polishing, plated to obtain 

similar permeance to AA-40R 
 

4.4.2. H2 permeance characterization 

The H2 permeance characterization of the membrane AA-5, shown in Figure 4.6, was 

representative of most of the initial H2 testing conducted on the membranes described 

in this study. Upon admitting hydrogen into the system at time = 5 hours, H2 very quickly 

(within 1 hour) began permeating the membrane and reached a stable rate. He leak 

tests were conducted before changing temperatures and are labeled in the figure, the 

selectivity stability of the membranes will be discussed at length in a following section 

(Section 4.4.4). When the temperature was changed at 28, 53, and 73 hours, the 
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membrane permeance changed immediately and stabilized quickly. At each 

temperature Sieverts’ law data were collected. 

 

Figure 4.6. H2 permeance characterization of the membrane AA-5. 

 

Typical Sieverts’ plots for the membrane AA-5 at 350, 400, and 450°C are shown in 

Figure 4.7 and are also representative of the initial testing conducted on all the 

membranes. The linear relation shown in the figure confirmed that the H2 permeation 

was mainly controlled by the hydrogen diffusion through the bulk Pd-layer. 
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Figure 4.7. Sieverts’ law plots for membrane AA-5 at 350, 400, and 450°C. 

 

The activation energy, EA [kJ/mol], for H-atom diffusion through the Pd-lattice was 

related to the membrane permeance via equation 4.5. 

 �>� � �A
oDp QRST�+��nV��       4.5 

Taking the natural log of equation 4.5 and simplifying resulted in equation 4.6, known as 

an Arrhenius relation. 

 � ��>�� � � ¡ �AoDp¢ + ��
V�       4.6 

The natural log of the permeance was plotted versus the inverse temperature and a 

linear regression was conducted. The Arrhrenius relation was plotted for several 

membranes in Figure 4.8. The slope of the regression was equal to -EA/R and the y-

intercept was equal to the natural log of Q0/�Pd. 
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Figure 4.8. Arrhenius plots for the membranes AA-1, AA-6, AA-6R, AA-25, and AA-40. 

 

For every membrane tested at three or more temperatures the activation energy was 

calculated and can be found in Appendix D. As shown in Figure 4.8 and listed in 

Appendix D, the activation energy for H2 permeation in approximately half of the 

membranes tested was found to be between 11.6 (AA-6R) and 14.7 kJ/mol (AA-6), 

which was close to the literature value of 13.81 kJ/mol for a Pd-foil (Morreale et al., 

2003). The activation energy of higher than the literature value might suggest that some 

intermetallic diffusion of support metals had occurred. Since the membrane AA-25 

incorporated a Pd/Ag barrier, it was unclear why intermetallic diffusion would have 

occurred. An activation energy lower than the literature value might suggest that mass 

transfer resistance from the support was partially rate limiting (such as with the thinner 

membrane AA-40, which had a dense Pd thickness of only 1.5 �m). Mass transfer by 

Knudsen diffusion was weakly dependant on temperature (to the ½ power) so that the 

combined activation energy for transport through the composite layer would be low if 

Knudsen diffusion was the rate limiting step. 
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The H2 permeance of the Pd-membranes should be proportional to the inverse 

thickness of the dense membrane layer (Shu et al., 1991), however, the structure of the 

intermediate layers, as well as the grain structure of the dense Pd-layer could also have 

significant effects which could be difficult to isolate and identify. The H2 permeance of 

each membrane at 400°C is plotted versus the inverse gravimetric Pd-thickness and 

versus the inverse overall gravimetric thickness (including the Pd-glue and Pd/Ag 

barrier) in Figure 4.9[a] and [b] respectively. Note that the gravimetric thickness 

estimate included significant error due to the slight weight changes being measured on 

significantly heavier supports (0.01 g weight change on a 160 g support). Thickness 

estimates were also inaccurate if support corrosion had occurred during plating and/or if 

plating salts were not adequately rinsed from the support after plating. Only the outlier 

membranes were specifically labeled in the figure so that they could be discussed; the 

H2 permeance of all membranes tested and at every testing temperature can be found 

tabulated in Appendix D. 
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[b]  

Figure 4.9. H2 permeance versus inverse gravimetric thickness at 400°C [a] Considering 

dense Pd thickness [b] Considering overall gravimetric thickness (Solid lines indicate 

free-standing Pd-foil {Morreale et al., 2003}). 

 

Generally, when the Synthesis Method A (described in the Experimental, Section 3.1) 

was adhered to (as was the case with the majority of membranes in Figure 4.9) the H2 

permeance at 400°C was between 15 – 35 m3/m2-h-atm0.5 and was most closely 

proportional to the inverse overall thickness. 

The H2 permeance of most of the membranes was 10 – 35% lower than that calculated 

based on the dense Pd-layer due to the moderate influence of the mass transfer 

resistance in the PSS support, potentially increased by the alumina grading and Pd/Ag 

layers. Some membranes such as AA-1, AA-31, and AA-39 had even lower permeance 

for other reasons. The low H2 permeance of membrane AA-1 was the result of 

intermetallic diffusion since that membrane had no oxide or Pd/Ag intermediate layers. 

The membrane AA-31 was fabricated with significant additional weld plating, effectively 

blocking about 1/6th of the membrane area, reducing the average permeance. If an area 

of only 19.6 cm2 (instead of 23.5 cm2) was used for the H2 permeance calculation, then 
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a permeance value of 26.4 m3/m2-h-atm0.5 was obtained, which was in line with the 

other membranes shown in Figure 4.9[a] and [b]. The membrane AA-39 was plated with 

0.6 �m of Ag as the final step in an attempt to fabricate a Pd/Ag-alloy membrane. The 

membrane was then annealed at 550�C for 70 hours. It was possible that complete 

alloying did not occur in the membrane AA-39 since the permeance was very low 

relative to its thickness. 

The membranes AA-38 and AA-40 were fabricated by Synthesis Method B (described in 

the Experimental, Section 3.1) such that the alumina grading was much more extensive, 

and no Pd/Ag intermediate layer was applied. When considering just the dense Pd-

thickness, both of these membranes fell significantly below the expected H2 permeance 

(75% below) due to mass transfer resistance in the support and grading layers. Since 

both membranes were very thin and the H2 permeance was high, mass transport in the 

support potentially became rate limiting. The trend seen in Figure 4.9[a] suggested that 

membranes with thinner Pd-layers had a smaller fraction of the theoretical foil H2 

permeance, indicating that the fabrication of a thinner Pd-layer would not necessarily 

result in higher H2 flux. Further improvement in H2 permeance should be achieved via 

better supports and/or intermediate layer modification to obtain lower mass transfer 

resistance. 

4.4.3. H2 flux behavior at high pressures 

The membranes AA-4R, 6R, and 8R were all tested in H2 at shell-side pressures of up 

to 16.8 atma as shown by the Sieverts’ law plots in Figure 4.10. It was clear from the 

figure that there was a systemic deviation of the Sieverts’ law equation 4.2, from the 

data for the membranes AA-6R and 8R as the H2 flux exceeded the fitting by as much 

as 4% at high pressure (16.8 atma) and fell short of the fitting by as much as 20% at low 

pressure (1.2 – 2.3 atma). The accuracy for the mass flow meters was 2% of the full-

scale value (5 L/min) and that of the pressure sensors was 0.5% (full-scale: 17.0 atma). 

The inadequate fitting for those two membranes was potentially due to the solubility of 

hydrogen in the Pd-lattice deviating from the ½ power in terms of partial pressure. The 

inadequate fitting may also have been due to mass transfer resistance in the support 

which also could not be fitted to the ½ power in terms of pressure difference. The flux 
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data for membrane AA-4R fit the Sieverts’ law equation better since the pressure range 

was not so great (Ps = 1.4 – 9.1 atma) as that applied to the other two membranes. 

 

Figure 4.10. Sieverts’ law plots over large pressure range (1 – 16.8 atma) for the 

membranes AA-4R, AA-6R, and AA-8R. 

 

The data sets shown in Figure 4.10 were each fitted to equation 4.3 by the method of 

least squares and the results are plotted in Figure 4.11 with the calculated n-values 

labeled in the figure. The addition of the adjustable parameter, n, allowed for a very 

good fitting to equation 4.3, and resulted in a highly linear relationship under the range 

of conditions tested. 
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Figure 4.11. Data fitting to equation 4.3 for the membranes AA-4R, AA-6R, and AA-8R, 

best-fit n-values for each series are included in the trend line labels. 

 

The higher n-values of 0.65 and 0.59 calculated for AA-6R and AA-8R respectively, 

indicated several potential phenomena could have been occurring: rate limiting 

desorption on the downstream Pd-surface, significant leak through defects, a change in 

solubility of H-atoms in the Pd-lattice at elevated pressures, or significant resistance 

from the porous support (Ward and Dao, 1999; Catalano et al., 2010; Guazzone et al., 

2006; Morreale et al., 2003). The potential existence of each of these phenomena will 

be discussed below. The n-value of 0.53 for AA-4R suggested that the diffusion of 

hydrogen in the Pd-lattice was the rate limiting transport step and that no assumptions 

inherent in the derivation of Sieverts’ law were violated. 

A more comprehensive set of flux data was collected by also changing the tube-side 

pressure. The membrane AA-12R was comprehensively tested in H2 at 450°C with the 

shell-side pressure varied from 0.97 – 21.5 atma and the tube-side pressure varied from 
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0.97– 13.7 atma. The shell and tube-side pressure ranges for each series of 

experiments conducted both in the ascending and descending order of the pressure 

settings are reported in Table 4.5. Sieverts’ law plots of the flux data collected from the 

experiment series 1-4 and 5-8 are presented in Figure 4.12[a] and [b] respectively. The 

n-value of 0.5 was used to plot the data in each figure so that a clear comparison and 

discussion could be made of the membrane permeance. 

 

Table 4.5. List of conditions for the experiments conducted with the membrane AA-12R. 
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�� � �

Figure 4.12. Sieverts’ law plots of the high pressure H2 experiments conducted with the 

membrane AA-12R [a] Series 1-4 [b] Series 1, 5-8. 

 

While the square root relationship was used to plot the data in Figure 4.12, the best-fit 

n-value for each series of measurements was also calculated by fitting to equation 4.3 

using Newton’s iterative method, and is listed in Table 4.6. 

 

Table 4.6. Optimal n-values derived by fitting to equation 4.3. 

� � ��� ��	� �)* � �+ � � ��,����
%-� �)�)� �� ���

�� "�&%� �(���
�� "�(%� �'�&�
%� "�$$� �# ���
'� "�&'� �(�%�
�� "�&�� %����
&� "�&�� %��"�
$� "�$�� �����
(� "�&$� �$�'�

 

	E

%�@��
���C

�E

%�@��	���C

�E

%�@����
�C

�E

%�@������C

�E

%�@������C

�

��

��

��

��

	��

	��

	��

	��

	��

���

��� ��� 	�� 	�� ��� ��� 
�� 
�� ���

E �
�
��

 
��

�
-4


����-��
��� �������

	E�F�C�8�:��(:��@�����)

�E�F�C�8�:��(:��@���	)

�E�F�C�8�:��(:��@���	)

�E�F�C�8�:��(:��@�	���)

�E�F�C�8�:��(:��@�	
�
)



96 
 

Series 1 in Figure 4.12, which was the baseline case and the typical method of H2 

permeance measurement (a fixed Pt equal to the atmospheric pressure and an 

incrementally increasing Ps), yielded a H2 permeance of 43.9 m3/m2-h-atm0.5, 17% 

higher than the H2 permeance measured at low pressure (Ps = 2.0 and Pt = 0.97 atma). 

The deviation from Sieverts’ law for this series, which corresponded to an n-value of 

0.63, was similar to the behavior observed for membranes AA-6R and AA-8R. 

Series 2 and 3 (Figure 4.12[a]) were conducted by fixing the shell-side pressure and 

increasing (or decreasing) incrementally Pt. Both series resulted in a significantly higher 

H2 permeance (up to 17% higher) for the membrane than the baseline case of Series 1 

and significantly higher n-values. Series 3 and 4 (Figure 4.12[a]) were conducted in the 

reverse order of Series 1 and 2 to verify that the order of measurements would not 

affect the results; indeed Series 1 and 4 matched to within 1.1% despite being 

measured in ascending and descending order respectively. Series 2 and 3 would be 

expected to overlap if Sieverts’ law was applicable, but they did not because fixed shell-

side pressures were not the same. 

Series 5-8 (Figure 4.12[b]) were conducted with fixed Pt > 1 atma, such that the Pt for 

each series was higher than the previous; Pt,5 < Pt,6 < etc. At each higher Pt, the 

estimated H2 permeance also increased, up to 58.3 m3/m2-h-atm0.5 (Pt = 13.3 atma), the 

calculated n-values, however, were all very close to 0.62, deviating by less than 4%. 

The H2 permeance calculated from Series 8 was 56% higher than the H2 permeance 

measured at low pressure. All the series conducted with a fixed Pt yielded low n-values 

(less than 0.64), while the series conducted with a fixed Ps yielded high n-values 

(greater than 0.77). It was clear that over the large range of pressures neither Sieverts’ 

law (equation 4.2) nor the generalization of Sieverts’ law (equation 4.3) were adequate 

to fit the experimental data and a more complex model would have to be utilized. 

It was expected that the n-value would differ slightly from 0.5 due to the inherent 

uncertainty in the data, however, significantly higher n-values could indicate that 

another transport step was partially rate limiting or that the solubililty relationship 

assumed in Seiverts’ law was invalid at the higher pressure. For data fit to equation 4.3, 

an n-value in excess of 0.5 could indicate one or more potential phenomena: rate 



97 
 

limiting desorption on the downstream Pd-surface at low temperatures or due to surface 

impurities, significant leak through defects (a H2/inert selectivity of less than 400), a 

change in solubility of H-atoms in the Pd-lattice at elevated pressures partial, or 

significant resistance from the porous support (Ward and Dao, 1999; Catalano et al., 

2010; Guazzone et al., 2006; Morreale et al., 2003). Considering that the selectivity of 

all three membranes was in excess of 1,000 at the time of testing it was unlikely that 

flow through defects altered the n-value (Guazzone et al., 2006). Ward and Dao (1999) 

showed that for a 10 �m Pd-layer, desorption limited flux only occurred at temperatures 

below 300°C, so it was very unlikely that such a limitation existed in our case. 

It was possible that the high n-values were an indication that the Pd-lattice was 

becoming saturated with hydrogen such that Sieverts’ law was no longer valid at the 

high pressure. At 450°C and a H2 pressure of 21.5 atma the approximate solubility of 

hydrogen atoms in the Pd lattice was 0.040 H/Pd (Magnouche and Fromageau, 1984). 

If the assumption of low H/Pd ratio was relaxed, the H2 flux would be governed by 

equation 2.30 (derived in Section 2.2.1 and in more detail in Appendix A.2). 

 l � m>q
oDp � wDN

��PwDN + wD�
��PwD��       2.30 

Magnouche and Fromageau (1984) estimated the Sieverts’ constant, KS, to be 

1.032x105 atm0.5-molPd/m3
H2 at 450°C, which was much greater than the square-root of 

the highest pressure (4.63 atm0.5), so saturation of the Pd-lattice was unlikely. The 

possibility still existed that the square-root dependence of the dissolved H-atom 

concentration was not legitimate such that equation 4.7 (algebraically rearranged from 

equation 2.28 in the Literature Review) could not be used. 

 wDs � £¤us
�N�us�         4.7 

Magnouche and Fromageau (1984) investigated the solubility of H-atoms in the Pd-

lattice at high pressure and found the equation 4.8 to better fit the experimental data. 

 � ~wDs� � � ¡�FusN�us¢ � us2L
V�        4.8 
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Where EH [kJ/mol] was the energy of interaction between dissolved H-atoms which was 

approximately -52.8 + 0.0257*T kJ/molH. The interaction term, vxEH/RT, accounted for 

increased solubility at higher pressures due to a partial attraction between dissolved H-

atoms. At temperatures below 298°C, the interaction term manifested as plateau of 

pressure versus H/Pd ratio (such as those seen in Figure 2.3 in the Literature Review), 

corresponding to the �/�-phase transition. Isotherms of the hydrogen solubility (in H/Pd 

atomic ratio) versus the square-root pressure are plotted in Figure 4.13 based on both 

equations 4.7 and 4.8. The highest pressure utilized in the experimental measurements 

(21.5 atma) is also indicated in the figure as a solid vertical line. 

 

Figure 4.13. Estimation of H-atom solubility in Pd by equations 4.7 and 4.8. 

 

The deviation of equation 4.8 from the square-root dependence necessary for Seiverts’ 

law was significant at pressures exceeding approximately 4 atma such that equation 4.8 

exceeded equation 4.7 by as much as 32% at 450°C. The deviation was much greater 

at lower temperature (300°C) such that the H/Pd ratio reached a vertical asymptote at a 

pressure of approximately 23 atma (close to the critical pressure of 19.7 atma 

determined by Frieske and Wicke {1972} for the limit of the �, � two-phase region).  
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The equation 4.8 was used to determine vx, which was then used to calculate the H2 

flux by equation 2.24 (Fick’s Law) for the range of pressures tested in Series 1 and 2 

with the membrane AA-12R (Table 4.5). The calculation and the experimental results 

are plotted in Figure 4.14. A Pd-thickness of 12.1 �m (representing the membrane AA-

12R) and an H-atom diffusivity of 2.72x10-5 m2/h (Holleck, 1970) were used in the 

calculation. 

 

Figure 4.14. Experimental H2 flux for the membrane AA-12R (Series 1 and 2 from Table 

4.5), including the calculated H2 flux by equations 4.8 and 2.24. 

 

Since the calculated H2 flux displayed the same deviation from Sieverts’ law as the 

experimental data (Figure 4.14, positive curvature for Series 1 and negative curvature 

for Series 2) it seemed likely that the cause could have been the interaction between 

dissolved H-atoms, expressed by the vxEH/RT term in equation 4.8 (Magnouche and 

and Fromageau, 1984). As discussed by Magnouche and Fromageau (1984) the 

interaction was attractive in nature and resulted in greater hydrogen solubility with 

increasing pressure. The greater solubility (as shown by Figure 4.13) resulted in H2 flux 

exceeding that projected by Sieverts’ law at high pressures. In Figure 4.14, the 
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experimental flux was significantly greater (approximately 45%) than the calculation 

based on the literature values of solubility and diffusivity. This discrepancy could have 

been due to the inaccuracy in the gravimetric thickness estimate (the actual Pd-

thickness may have been closer to 8 �m) or partial alloying of the Pd/Ag barrier, 

resulting in a higher H2 permeability. 

The final possible cause for an n-value of greater than 0.5 was that the mass transfer 

resistance in the porous support limited the flux to some extent (Guazzone et al., 2006). 

Although the He permeance of the bare supports were quite high (220 - 650 m3/m2-h-

atm), the application of grading and intermediate layers reduced that permeance by up 

to one-order of magnitude. The mass transfer resistance in the support, Rsup. [atm-h/m], 

was estimated based on the He permeance, FHe [m3/m2-h-atm], measured during the 

synthesis as in equation 4.9. The H2 mass transfer resistance was adjusted for 

temperature and gas composition (He to H2) assuming that the transport in the porous 

support was primarily Knudsen flow. The mass transfer resistance, RPd [atm-h/m], for 

transport through the dense Pd-layer was calculated by equation 4.10, note that JH2 = 

�PH2/RPd is algebraically equivalent to Sieverts’ law, equation 4.2. The equation 4.10 is 

derived in Appendix A.3. 

 ¥�¦)� � �
§L¨ < ©9LM�

9ª�«� < ©$LM
$L¨       4.9 

 ¥I� � ¬��®
¯L° ~w#� �w#&�       4.10 

Where TH2 [K] was the H2 testing temperature and mH2 [kg/mol] and mHe [kg/mol] were 

the molecular masses of the gas species. Considering the membrane AA-12R, the H2 

mass transfer resistance of the support + grading + intermediate Pd/Ag was 0.0046 

atm-h/m, and the mass transfer resistance of H2 through the 12.1 �m Pd-layer was 

0.0135 atm-h/m at the same �P (Ps = 2 atma and Pt = 1 atma). Since the mass transfer 

resistances were within one order of magnitude of each other, the support resistance 

probably influenced the H2 flux to some extent and altered the n-value. If the dense 

layer thickness was less than 12.1 �m and/or there was some alloying from the Pd/Ag-

layer, the resistance of the dense layer would have been less than the above estimate, 
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making the support resistance more significant in comparison. A further inaccuracy was 

introduced by the estimation of the support resistance from the He permeance. It was 

unclear from the synthesis diagram at what thickness of Pd-plating the mechanism of H2 

transport changed from Knudsen diffusion in the porous media to lattice diffusion in the 

Pd-layer, leading to only a rough estimate of the true support resistance. 

Based on the calculations it seemed likely that both the increased solubility of H-atoms 

in the Pd-lattice at higher pressure and the contribution of support resistance caused 

the deviation from Seiverts’ law behavior. It was not clear how these two effects could 

be disentangled and quantified for the composite Pd/PSS membrane. 

4.4.4. H2/inert selectivity and leak stability 

A thorough understanding of the leak growth in the PSS supported Pd-membranes 

under pure H2 testing was a prerequisite to the more complex issue of leak growth 

under high pressure, high flow, and reactive conditions. A significant obstacle to 

understanding the occurrence and mechanisms of leak growth in Pd-membranes was 

the lack of work in the literature dealing with the subject. Very few studies extensively 

tested the inert gas leak over extended periods of time in supported Pd-membranes. To 

more properly explore the phenomenon of leak growth in Pd-membranes, long-term 

testing (greater than 100 hours) was conducted on over 17 membranes and the results 

are discussed. 

The development of leaks in the dense Pd-layer occurred in several potential stages. An 

initial high rate stage sometimes occurred upon first heating to a high temperature and 

switching to H2. A second stage usually occurred which was characterized by a slow but 

constant rate of growth. Lastly, a third stage sometimes occurred in which a 

discontinuous jump in leak was observed. The plot of He leak versus time in Figure 4.15 

shows the leak growth for the membrane AA-8 which was primarily second stage. The 

Figure 4.15 also shows the first stage of leak growth for AA-12R, and the second and 

third stages for AA-14. 
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Figure 4.15. He permeance versus time for the membranes AA-8, AA-12R, and AA-14. 

 

The very gradual increase in leak observed for membrane AA-8 in Figure 4.15 typically 

indicated pinhole formation in the dense Pd-layer, a process which was very slow at 

temperatures less than 500°C (Guazzone et al., 2006). The immediate jump in leak for 

the membrane AA-12R, first upon heating, then further upon switching to H2 was 

potentially caused by annealing and grain growth of the Pd-layer, resulting in the 

opening of pre-existing defects or weak areas. The discontinuous jump in leak growth 

seen in the case of AA-14R also probably resulted from the opening of pre-existing 

defects. The synthesis step most closely related with this phenomenon was the 

mechanical treatment since it sometimes resulted in gaps between subsequently plated 

dense Pd-layers such as those seen in Figure 4.16. The membrane AA-14R was first 

polished to a depth of 1.3 �m and re-plated by 2.2 �m, between which a gap (labeled ‘A’ 

in the figure) was apparent between the Pd-layers. After further testing, the membrane 

was polished and buffed (labeled ‘B’ in the figure), followed by further plating, which 
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resulted in a more extensive line of gaps between the Pd-layers. Gaps between Pd-

layers could contain trapped gases or water from the membrane synthesis which could 

then result in micron-sized defects upon heating to temperature. Based on this 

hypothesis, membranes fabricated with no polishing or lighter polishing (less than 0.5 

�m of Pd removed) would have less initial leak growth and fewer instances of 

discontinuous leak growth. 

 

Figure 4.16. SEM image of membrane AA-14R at 2,500X (A: initial Pd-plating and first 

re-plating, B: polished, buffing, and additional plating). 

 

The membrane AA-21 was synthesized with multiple intermediate polishing treatments 

(four treatments removing 4.6 �m Pd total). The membrane developed leaks rapidly 

during H2 and H2/H2O testing at 400°C, after which, specks were observed on the 

membrane by visual inspection which were not previously visible. Examination by SEM 

revealed large (100 �m) defects (not to be confused with pinholes, less than 1 �m in 

size) with clean cut edges as shown in Figure 4.17[a]. The 50 - 100 �m wide defects 

(numbering approximately 4/cm2) were randomly distributed across the membrane 

surface. It was apparent by looking at a cross section of one of these defects Figure 

4.17[b], that they extended partially into the Pd-layer but not all the way to the support. 

B        A 
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Defects extending several microns into the Pd-surface could certainly cause erratic leak 

growth during H2 testing. The cause of these defects, however, was purely speculative. 

The appearance of the defects gave the impression that a piece of the Pd-layer had 

flaked or chipped off such as may have occurred due to trapped gases rupturing the 

membrane at high temperature. This possibility was unusual because electroless Pd-

plating has typically resulted in very good adhesion between subsequent Pd-layers. 

[a]  [b]  

Figure 4.17. SEM images of membrane AA-21 [a] Surface image of large defect viewed 

at 85° angle (700X) [b] Cross section of a defect (unmounted sample, 700X). 

 

The He permeance of several as-prepared membranes, after heating to temperature, 

and after 30 – 60 hours of H2 exposure is shown graphically in Figure 4.18[a] and [b]. In 

Figure 4.18[a] and [b] an H2 exposure time of zero indicates the leak after heating to 

temperature in He (but before introduction of H2). A shaded region, corresponding to a 

H2/He ideal selectivity of 1,000 is also shown in Figure 4.18; the region was roughly 

defined because membranes with higher H2 permeance had higher ideal selectivity for 

an identical He leak (H2 permeance of 20 – 45 m3/m2-h-atm0.5 were used in equation 

2.34 to define the shaded region). A number of the membranes developed significant 

leaks during the initial heating in He as shown in Figure 4.18[a]. An additional group of 

membranes showed significant leak development during the first 30 – 60 hours of H2 

testing as plotted in Figure 4.18[b]. 
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[a]  

[b]  

Figure 4.18. He permeance resulting from first heating in He and initial H2 testing. 
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It has been shown that microstrain in the electroless deposited Pd-layer on the order of 

100 MPa was irreversibly relaxed at temperatures in excess of 350 - 400°C due to 

crystallite growth in the Pd-layer (Guazzone et al., 2006). In the same study Guazzone 

et al. (2006) also concluded that the relaxation of approximately 100 MPa of microstrain 

did not lead to significant leak growth since the strain was not large enough to cause 

cracks in the Pd-layer, nor did its relaxation result in pinhole formation. The initial leak 

development observed in the membranes AA-2, AA-7, AA-14R, AA-29, AA-38, AA-40, 

and IM-79 (shown in Figure 4.18[a]) was clearly the result of the increase in 

temperature, suggesting that an alternate mechanism was causing leak growth during 

heating. In some cases such as AA-4R, AA-8RRR, and AA-30, a pre-annealing step or 

previous testing and repair (which was similar to a pre-annealing step) seemed to 

prevent the initial stage of leak growth in helium. However, the membranes AA-14R, 

AA-29, AA-38, and AA-40 were pre-annealed and re-plated but still had significant initial 

leak growth. 

A subset of the membranes exhibited little or no leak growth upon first heating in He, 

but then had significant leak development during the first 50 hours of H2 exposure. At a 

H2 pressure of 2 atma the concentration of H-atoms in the Pd-lattice was only 0.019 

H/Pd, far less than the approximate 0.1 H/Pd necessary to significantly change the Pd-

lattice constant (Magnouche and Fromageau, 1984; Lewis, 1967; Smith, 1948). 

Guazzone et al. (2006), however, investigated the influence of H2 pressure on the Pd-

layer and showed that at PH2 = 2 atma a compressive stress of 100 MPa was introduced 

into the Pd-layer, approximately equal in magnitude to the tensile stress that was first 

present in the Pd-layer from deposition. Based on several membranes tested at 

different temperatures, they concluded that stresses of up to 260 MPa did not lead to 

increased leak growth. It seemed likely that in the above cases of initial leak growth 

(Figure 4.18), weak spots on the Pd-layer due to support defects or overly aggressive 

mechanical treatments succumbed to stresses of only 100 MPa, leading to leak growth. 

Keuler and Lorenzen (2002) observed a similar high rate of leak growth in their �-

alumina supported Pd-membranes upon first heating in Ar and upon first admitting H2, 

followed by a stabilization of the leak (with a very low rate of leak growth). They 
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attributed the initial rapid leak growth to the formation of pinhole defects, but did not 

explain why the leak mostly stabilized after 2 – 5 hours. 

The second stage of leak growth was only accurately measureable over longer periods 

of time (greater than 300 hours). Figure 4.19 shows the long-term H2 testing results of 

several membranes in terms of He leak at a constant temperature. 

 

Figure 4.19. He permeance versus time showing the second stage of leak growth. 

 

The membranes AA-8RRR and AA-38R were polished extensively (removing 4.8 and 

4.4 �m of Pd for each membrane respectively), the other two membranes, AA-29 and 

AA-30, were only lightly polished (removing less than 1.2 and 0.6 �m of Pd for each 

respectively). The pure He leak of membranes AA-29 and AA-38R were remarkably 

stable over time despite the fact that one membrane was aggressively polished and the 

other was not. The pure He leak of the membranes AA-8RRR and AA-30 increased 

steadily over time, again inspite of different polishing treatments. The results of these 

four membranes showed no correlation between leak development and polishing 

treatments. SEM analysis was not conducted on the cross-sections of two of these 
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membranes (AA-8RRR and AA-38R) so a comparison of the composite structure could 

not be made. 

The membrane AA-8RR, replated to AA-8RRR presented an interesting case. During 

the testing of AA-8RRR, there was a significantly higher He permeance growth rate than 

during the testing of AA-8RR. Since the membrane AA-8RR was already mechanically 

treated and plated twice and had very low leak growth, it might be supposed that the 

mechanical treatment was beneficial to (or at least benign to) the synthesis. It seemed, 

however, that the gaps between subsequent Pd-layers sometimes occurred, suggesting 

that the mechanical treatment was difficult to reproduce. 

The membrane AA-30 had a considerably higher leak growth rate due to a weld defect. 

During the synthesis of AA-30, defects were observed on both welds by the IPA bubble 

test and so weld plating was conducted. While any such defects were completely 

covered by the 9.5 �m Pd layer plus the 9 �m of extra Pd applied to the welds, the 

welded regions probably still remained weak and prone to leak growth even though very 

little leak developed upon initial heating and H2 exposure. Indeed, upon removal of the 

membrane from the system, the IPA bubble test showed a single large defect on the 

welded region at the outlet end of the membrane. Unfortunately, the extent of the leak 

due to the defect in AA-30 was not estimated until after the WGS testing (discussed in 

Chapter 10), so the leak growth due to pinhole formation during pure H2 testing could 

not be estimated. 

The He permeance growth rate during H2 testing, given in m3/m2-h2-atm is plotted in 

Figure 4.20[a] and [b] for the testing temperatures of 400 and 450°C respectively. For 

every permeance growth rate plotted in Figure 4.20 at least three leak measurements 

were taken over a 150 hour period to determine the leak growth rate. All the 

membranes were tested with a shell-side H2 pressure of 1.5 atma except for the 

membranes AA-29 and IM-79. AA-29 was tested with an elevated PH2 of 4.9 atma for 

the final 550 hours of testing. The membrane IM-79 was tested with an elevated PH2 of 

4.9 and 7.9 atma for 50 hours at 400°C, during which time the He permeance growth 

rate was in line with the other 800 hours of testing at 400°C, for that same membrane. 
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[a]  

[b]  

Figure 4.20. He permeance growth rate during pure H2 testing [a] 400°C [b] 450°C. 
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There is somewhat of a consensus that the leak growth in Pd-membranes was mainly 

the result of pinhole formation which occurred due to sintering, and began at 

temperatures in excess of 450°C (Guazzone and Ma, 2008; Peters et al., 2009; 

Guazzone et al., 2006; Paglieri et al., 1999). The exceptionally low rate of leak growth 

observed in the membranes AA-6, AA-6R, AA-8RR, AA-21, AA-29, AA-31, AA-38, AA-

38R, AA-40R, IM-79 and IM-86b was in line with previous literature as shown in Figure 

4.20[a] and [b], within one order of magnitude of the leak growth rates reported by both 

Guazzone and Ma (2008) and Peters et al. (2009) at the same temperature. The low 

rate of leak growth of these membranes was thus in line with the pinhole formation 

mechanism. The low leak growth measured for the membranes AA-29 (tested for 500 

hours at PH2 = 4.9 atma) and IM-79 (tested for 50 h at PH2 = 4.9 and 50 h at PH2 = 7.9 

atma) confirmed that the leak growth was not accelerated by high H2 pressure. 

There was no clear correlation in Figure 4.20[a] or [b] between the leak growth rate and 

the inverse Pd-thickness. A correlation was expected because the mass transfer 

resistance by Knudsen flow through a porous media, given by equation 4.11 

(Mardilovich et al., 1998; Guazzone and Ma, 2008), was proportional to the thickness of 

the media, L [m], therefore, pinholes which formed through a thicker Pd-layer would 

have had a lower He permeance. 

 ¥ � ±
&©²

³
´w89$H
µ¶·�¸ª         4.11 

Where mi [kg/mol] was the molecular mass of the permeating gas i, 	 was the porosity 

of the layer, 
K [N-s/m2] was the Knudsen viscosity, and dpr [m] was the pore diameter. It 

was possible that, since most of the thicker membranes in Figure 4.20 were fabricated 

with Pd/Ag intermediate layers, gradual annealing resulting in the Kirkendall effect 

(Smigelskas and Kirkendall, 1947) might have slightly increased He permeance growth 

in those membranes, masking the correlation with Pd-thickness. Guazzone and Ma 

(2008) tested only pure Pd-membranes and observed a lower rate of leak growth for 

thicker membranes (greater than 5 �m). 
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The vast range of leak growth rates measured in the Pd-membranes suggested that a 

different leak growth mechanism was occurring besides pinhole formation. The 

formation of, or opening up of defects has been shown to significantly increase leak 

growth rates, especially in lower quality SS supports. Methods of mitigating defect 

formation have not been successfully demonstrated. The lack of a reliable and 

reproducible method for mitigating defect formation will continue to be a stumbling block 

for low cost and reproducible membrane synthesis. 

4.5. Conclusions 

Membrane synthesis attempts have been conducted on economically viable 0.1 and 0.2 

�m PSS316L supports with the objective of producing membranes equal in quality (high 

H2 permeance and selectivity stability) to those synthesized on higher cost Hastelloy 

and Inconel supports. The primary problem encountered with these less expensive 

supports was presence of defects mostly, but not entirely, localized to the welded 

regions between the porous and non-porous sections of the tubes. Aggressive weld Pd-

plating, attempting to block the defects with a very thick (greater than 20 �m) dense 

layer failed because some of the defects were larger than 10 �m in size. Weld plating 

with copper, nickel, and chromium also failed due to difficulties in achieving dense 

layers of those metals. A potential solution to the problem of defect repair was additional 

alumina grading and Pd-plating of the welded areas. 

Multiple grading treatments (up to six) with sequentially smaller particle sizes (ranging 

from 10 – 0.01 �m) resulted in significantly thinner Pd-layers and much higher 

membrane H2 fluxes. Membranes were synthesized by this method on the lower cost 

support as thin as 1.5 �m, with H2 permeance of 61.7 m3/m2-h-atm0.5 and stable 

selectivity in excess of 3,900.  

Membranes which were prepared on high quality supports and membranes which were 

fabricated with extensive grading treatments exhibited very low leak growth rates, in line 

with literature values, for periods of up to 1,100 hours in H2 and at 400 and 450°C. The 

very low leak growth of these membranes was in line with the pinhole formation 

mechanism. Other membranes which had some weak spots or defects due to the low 
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quality supports exhibited significant leak growth upon heating and discontinuous jumps 

in leak during testing. 

A comprehensive set of H2 flux data was taken by varying both the shell and the tube-

side H2 pressures so that the relationship between flux and partial pressure driving force 

could be more thoroughly investigated. Neither the Sieverts’ law nor the generalization 

of Sieverts’ law with an n-dependent driving force was adequate to fit the H2 flux data 

obtained at high pressure (greater than 4 atma). The deviation from Sieverts’ law was 

caused by both the mass transfer resistance in the porous support and grading layers 

and the increased solubility of H-atoms in the Pd-layer at higher pressure (greater than 

4 atma). 
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5. ASSESSMENT OF ONE-DIMENSIONAL MODEL USING 

LITERATURE DATA 

5.1. Introduction 

An integral part of the advancement of chemical engineering research is modeling and 

simulation of chemical engineering processes. The modeling of the WGS CMR can 

provide important insights into the characteristics and capabilities of the actual system, 

allowing for improvements and modifications which would not have otherwise been 

apparent. An accurate model allows for rapid optimization of feed conditions and 

operating parameters which could take a significant amount of time and money 

otherwise. 

As discussed in the Literature Review (Section 2.3.2), a variety of modeling studies 

have previously been conducted for CMR’s which have achieved good agreement with 

experimental data. In many studies the use of a 1-D model has provided invaluable 

insight into membrane reactor function (Ayturk et al., 2009; Barbieri et al., 2001; Basile 

et al., 2003; Brunetti et al., 2007b; Kumar et al., 2006). In this chapter, a 1-D model was 

applied to the WGS CMR system incorporating a Pd-membrane and taking into account 

WGS kinetics, gas phase mass-transfer resistance, and surface adsorption of WGS 

species on the Pd-membrane. The model was compared to the relevant experimental 

literature data available for the WGS CMR system. The purpose of this chapter was to 

evaluate the model such that it can be used in subsequent chapters to aid in the 

elucidation of experimentally observed phenomena. 

5.2. 1-D model details 

The use of a 1-D model over a 2-D model was possible since the length of the reactor 

(6.5 cm) was greater than ten times the characteristic width (0.44 cm) of the catalyst 

bed (Kumar et al., 2006). A 1-D model was preferred for development simplicity. A 

steady-state model was chosen over an unsteady-state model since none of the 

experiments were transitory in nature. Since the catalyst bed was relatively thin (0.44 

cm) and the reactor walls were made of stainless steel (with moderate thermal 
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conductivity, 11 - 45 W/m-K {Perry and Green, 1997}) the simplification of isothermal 

behavior was made. Also, since an estimation of the pressure drop across the packed 

bed by the Ergun equation was only 0.12 atm with the specifications of our experimental 

system (accounting for the maximum expected flow rate of 61 mol/h, GHSVSTP = 10,000 

h-1), the assumption of constant pressure was also made. The model was developed 

under the following standard assumptions: 

• isothermal and isobaric conditions 

• plug flow behavior 

• no radial concentration gradient 

• no axial dispersion 

• infinitely selective Pd-membrane 

• one-way transport through the membrane (no back flow) 

• no mass transfer resistance around the catalyst particles (effectiveness 

factor equal to unity) 

The model was based on the steady state mass balance equations written in one-

dimensional Cartesian coordinates explicitly for all species involved on both the 

retentate (reaction) side, equation 5.1, and the permeate side, equation 5.2, which 

correspond to the diagram shown in Figure 5.1. 

 

Figure 5.1. Diagram of a 1-D isothermal and isobaric plug flow system. 
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where Ni,r and Ni,p [kmol/h] were the molar flow rates of species i in the reaction and 

permeate sides respectively, � was the dimensionless axial coordinate defined as z/L, z 

[m] was the axial position, L [m] was the length of the reactor, � was the catalytic 

effectiveness factor, vi was the reaction coefficient for each species (-1 for CO and H2O, 

+1 for H2 and CO2), rCO [kmol/kg-h] was rate of CO consumption, �cat [kg/m3] was the 

density of the catalyst, Ac [m2] was the cross sectional area defined as �(Rs
2-Rt

2), APd 

[m2] was the membrane area defined as 2�RtL, Rs [m] was the inner radius of the 

reactor shell, Rt [m] was the radius of the membrane, Ji [Nm3/m2-h] was the permeating 

flux, T0 = 273 K was the standard temperature, P0 =1.0 atma was the standard 

pressure, and R = 0.0821 m3-atm/kmol-K was the gas constant. The factor P0/R-T0 

accounted for the unit conversion (volume in m3
H2 at STP converted to kmolH2). Note 

that, for i = CO, CO2 and H2O, Ji was zero since hydrogen was assumed to be the only 

permeating species. 

As the reaction occurred and H2 was separated along the length of the reactor, the 

pressure of each species changed. The partial pressure profile of each species was 

given by equation 5.3. 

 #�[Â � #9[Â ¹H[ª
Ã ¹Ä[ªÄ         5.3 

The system of steady state differential equations (5.1 and 5.2) were simplified by the 

transformation of the state variables (Ni,r and Ni,p) to two new dimensionless variables: 

XCO and YH2, defined by equations 5.4 and 5.5 respectively. 

 Å ! t * + ¹JK[ª
¹JK[ª[Á        5.4 

 Æ%& t ¹LM[¸
¹JK[ª[Á         5.5 
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where XCO was the fraction of CO that was converted to products via the WGS reaction, 

YH2 was the fraction of H2 that permeated through the membrane, and NCO,r,0 [kmol/h] 

was the feed rate of CO on the retentate side. The partial pressure of H2 in the retentate 

with respect to the variables XCO and YH2 was given by equation 5.6 and that of each 

other non-permeable species in the retentate was given by equation 5.7. 

 #%&[Â � #9[Â ÇLMPÈJK�ÉLM
�PÇLMKPÇLMPÇJKM�ÉLM      5.6 

 #�Ê%&[Â � #9[Â ÇHPËHÈJK
�PÇLMKPÇLMPÇJKM�ÉLM      5.7 

where �i = Ni,r,0/NCO,r,0 was the molar ratio of species i to CO in the feed. 

5.2.1. Reaction rate equation 

In the IGCC process and in numerous literature studies two types of WGS catalysts 

have typically been utilized: iron-chrome oxide catalyst (Klara et al., 2007; Kikuchi et al., 

1989; Uemiya et al., 1991a; Damle et al., 2008; Dolan et al., 2010) and copper-zinc 

oxide catalyst (Basile et al., 1996a; 1996b; Mendes et al., 2010). The 1-D model initially 

incorporated a rate expression for iron-chrome oxide catalyst reported by Rhodes et al. 

(2002) for temperatures from 360 – 440°C and given by equation 5.8. As discussed in 

Chapter 2 (Section 2.1.2) a number of mechanistic rate expressions for the WGS 

reaction on iron-chrome oxide catalyst had proven to be inadequate at elevated 

pressures (greater than 10 atma) and therefore the empirical expression has usually 

been preferred. 

 � ! � � JK
�Ì7«�� � "# !�* + ,�       5.8 

where CCO [kmol/m3] was the concentration of CO in the gas phase, k = 4.34*108e-Ea/RT 

[kmol/kg-h-atm], Ea was the activation energy of 112 kJ/mol, and  = PCO2PH2/KPCOPH2O. 

Other rate expressions were also utilized in the model as discussed in further sections. 

5.2.2. Membrane surface inhibition by CO and H2O 

The gas species CO and H2O are known to reversibly adsorb on the Pd-surface with the 

net result of lowering the H2 permeance of the membrane by blocking active surface 
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sites for H2 adsorption (Li et al., 2000; Hou et al., 2002; Gallucci et al., 2007). The 

inhibition by these gas species was approximated by considering the fraction of blocked 

surface sites as though it were a fraction of the membrane area which was no longer 

permeable (Scura et al., 2008). The flux of H2 through the membrane was determined 

by Sieverts’ law, equation 4.2, incorporating the experimentally determined permeance 

of the supported Pd-membranes, FH2,0 [m3/m2-h-atm0.5], as well as an inhibition 

coefficient, �, defined by equations 5.9. 

 �%& � Í�%&[5~w#%&[� +w#%&[��      4.2 

 Í � �
�PÎJKIJK[ÏPÎLMKILMK[Ï       5.9 

where Pi,s [atma] was the partial pressure of species i at the retentate-side Pd-surface, 

PH2,t [atma] was the partial pressure of H2 on the tube-side, and �i [atm-1] was the 

adsorption equilibrium constant for species i on the Pd surface. Scura et al. (2008) 

utilized a similar approach to model H2 permeance inhibition by CO through a Pd 

membrane. The adsorption equilibrium constants, �CO and �H2O were estimated based 

on literature data for the binding energy of each species to the Pd-surface via the 

statistical mechanics equation 5.10. The binding energy (�Ei) of each species, which 

most closely agreed with literature studies of Pd-surface inhibition, is listed in Table 5.1. 

The adsorption equilibrium constant for each gas at 400°C are also calculated by 

equation 5.10 and listed in Table 5.1 for comparison. 

 Ð� � ÑÒ
9ÓnMÔ�&²$HÔ�ÒnM 6¡

�]H_`¢       5.10 

 

Table 5.1. Binding energy and estimated adsorption equilibrium constant for each 

species at 400°C. 

 �Ei (kJ/mol) �i @400°C (atm-1) Reference 
CO -149 0.239 Guo and Yates, 1989 
H2O -125 0.00691 Catalano et al., 2011 
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5.2.3. Gas boundary layer mass transfer resistance 

For any surface in which a gas phase species interacts and changes (surface reaction, 

separation, condensation, etc.), a phenomenon known as concentration gas boundary 

layer formation or concentration polarization will occur. The species being consumed, 

condensed, or separated will become depleted to some extent at the surface/gas 

interface and other species will become concentrated. In the WGS CMR the partial 

pressure of H2 at the interface becomes somewhat lower than that in the bulk causing a 

concentration gradient and therefore diffusion of H2 towards, and non-permeable 

species away from the membrane surface. The flux of a species through the gas 

boundary layer was estimated by a corrected average mass transfer coefficient, kB* 

[m/h], as in equation 5.11 (Catalano et al., 2009). 

 �%& � ÔÕ< 9ÁIÁ9 ~#%&[Ö + #%&[��       5.11 

where PH2,b [atma] was the partial pressure of H2 in the bulk gas and PH2,s [atma] was 

the partial pressure of H2 at the Pd-surface. Since there was a net flow of gas through 

the membrane, resulting in a slowing of the axial flow, a correction was needed such 

that the corrected average mass transfer coefficient, kB* [m/h], was given by equation 

5.12 (Catalano et al., 2009). 

 "×< � "×ØÙ�I`�ILM[ÏI`�ILM[Ú�        5.12 

where PT [atma] was the total shell-side pressure. 

The average mass transfer coefficient, kB [m/h], was calculated by its relationship to the 

dimensionless Sherwood number, Sh, as in equation 5.13. 

 "× � GÑ<¯LM
�Û          5.13 

where DH2 [m2/h] was the diffusivity of H2 in the feed mixture estimated by the kinetic 

theory of gases (Reid et al., 1987) and dh [m] was the hydraulic diameter of the 

membrane separator. The hydraulic diameter was the diameter of a hypothetical 

cylindrical tube in which the fluid flow Reynolds number was the same as the flow 
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through the real, non-tubular system (defined as 4AC/Perimeter, D1-D2, for empty tube-

in-shell cases, and the particle diameter, dp [m], for packed bed cases {Caravella et al., 

2009}). The Sherwood number was estimated by its relationship with the dimensionless 

Schmidt number, Sc (equation 5.14), and Reynolds number, Re (equation 5.15), via 

equation 5.16 (Wakao and Funazkri, 1978; Perry and Green, 1997). 

 Ü�� ¶
�¯LM         5.14 

 ¥\ � �Ë�Û
¶          5.15 

 ÜÝ � *�*ÞÜ�5�±±± ¡8�µ ¢
5�ß

 Re > 1      5.16 

where 
 [kg/h-m] was the dynamic viscosity (Perry and Green, 1997; Wilke, 1950), � 

[kg/m3] was the density of the fluid, v [m/h] was the interstitial fluid velocity, and 	 was 

the void fraction of the catalyst bed. 

Finally, equation 5.11 was set equal to 4.2 resulting in equation 5.17, which was solved 

at each discrete step for the partial pressure of H2 at the membrane surface, PH2,s 

[atma]. The quadratic formula, equation 5.18, was used to determine the PH2,s
0.5 (note 

that the negative root was discarded since it had no physical significance). 

 �%& � �%&~#%&[�5�ß + #�5�ß� � ÔÕ< 9ÁIÁ9 ~#%&[Ö + #%&[��     5.17 

 w#%&[� � à+�%& �©�%&& + á ÔÕ< 9ÁIÁ9 < ¡+�%&w#%&[� + ÔÕ< 9ÁIÁ9 #%&[Ö¢â ¡ã ÔÕ< 9ÁIÁ9 ¢ä  5.18 

The overall system of equations 5.4 - 18 were simulated and solved numerically via a 

standard 4th order Runga-Kutta algorithm using the Matlab® software package, utilizing 

the boundary conditions: å � æ
´ � � � ç�[Â � ç�[Â[5TèTç�[) � ç����)[5 � �� The basic 

annotated Matlab® code can be found in Appendix E. 

When the model was solved a profile was generated of the state variables (XCO and 

YH2) with regard to the axial position in the reactor; only the final value of each variable 

(corresponding to � = 1) was retained for comparison to the experimental data. The 
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partial pressure profile of each species with regard to the axial position in the reactor 

could be determined algebraically from the state variables by equations 5.6 and 5.7. An 

example of the full simulation output and subsequent algebraic transformations can be 

found in Appendix A.4. 

5.3. Model evaluation 

The model was used to simulate several experimental WGS CMR studies in order to 

evaluate its capabilities and weaknesses. Studies which were amenable to the model 

had the following specifications: iron-chrome oxide catalyst, 350 – 500°C, co-current 

sweep gas or no sweep gas, and a high aspect ratio (reactor length at least ten times 

greater than the characteristic width). The modeling parameters of all the simulated 

studies (Dolan et al., 2010; Damle et al., 2008; Kikuchi et al., 1989; Uemiya et al., 

1991a) are tabulated in Table 5.2. 

The model results were overlaid with two sets of experimental results from Dolan et al. 

(2010) and one set from Damle et al. (2008) for both CO conversion and H2 recovery in 

Figure 5.2 and 5.3 respectively. The experimental results by Kikuchi et al. (1989) and 

Uemiya et al. (1991a) were simulated using the kinetic rate expression given by Uemiya 

et al. (1991a) on their particular iron-chrome oxide catalyst. The rate constant which 

they estimated was on the same order as that of Rhodes et al. (2002). A much lower 

rate constant, given by Hla et al. (2009), was utilized for the simulation of Dolan et al. 

(2010) since the results could not be fit by the kinetic expression of Rhodes et al. 

(2002). While the activation energy was approximately the same (111 and 112 kJ/mol), 

the difference in the pre-exponential factor was approximately two orders of magnitude, 

for which no explanation was given in the more recent rate study (Hla et al., 2009). The 

comparison between the experimental results and those generated by the model are 

shown in terms of CO conversion and H2 recovery in Figure 5.4[a] and [b] respectively 

for all the data from four experimental studies. 
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 Table 5.2. Modeling parameters of the experimental WGS CMR studies found in the literature. 

(1) Catalyst weight not reported, typical void fraction and bulk density assumed 
(2) Catalyst was diluted with an unspecified quantity of alumina, typical void fraction assumed 
(3) Estimated graphically for three equidistant tubes centered in a larger tube 
*Calculated fluid properties such as average velocity, dimensionless Reynolds, and Schmidt numbers are not listed

Research Study Damle et al., 2008 Dolan et al., 2010 Kikuchi et al., 1989 Uemiya et al., 1991a 
Catalyst Properties Fe/Cr-oxide 
Catalyst density, �.cat [kg/m3] 1.19*103 (1) 1.19*103 4.78*102 
Catalyst void fraction, 	 NR(1) 0.47 assumed NR(2) 0.47 assumed 0.68 
Particle size,  dp [m] 7.0*10-4 3.5*10-4 3.0*10-4 
Rate expression, rCO/(1-) 
[kmol/kg-h] á�éá ê *�³\���&n89# ! 

(Equation 5.19, Rhodes 
et al., 2002) 

ã�Þã ê *�ë\�ììì
_` # !# !&�5�±ë#%&�5�5í 

(Equation 5.20, Hla et al., 
2009) 

î�ãã # !#%&!�* � á�á#%&! � *é��# !&� 
(Equation 5.21, Uemiya et al., 1991a) 

Effectiveness factor,  � 1.0 (no mass transfer resistance around catalyst particles assumed) 
Reactor Dimensions 3-tubes-in-tube Planar Tubular (catalyst 

inside) 
Tube-in-tube 

Reactor Length, L [m] 0.3 0.07 0.08 
 Case 1: Case 2:  

Cross-sectional area, Ac [m
2] 2.95*10-3 4.80*10-5 1.36*10-4 5.54*10-5 1.76*10-5 

Aspect ratio 12 - 16 estimated (3) 10.3 29.2 8 10 
Membrane Properties  3-tubes  Planar Tubular 
Membrane area, APd [m

2] 3.0*10-2 1.4*10-3 2.51*10-3 
Permeance, FH2,0 [m

3/m2-h-atm0.5] 23, 34 6.2 15.4 10.5 
Binding energy, �Ei [kJ/mol] CO: -149 (Guo and Yates, 1989), H2O: -125 (Catalano et al., 2011) 
Feed Properties* Simulated syngas Enriched feed CO + H2O CO + H2O 
Feed composition, �i �H2O = 1.2,  �H2 = 4.8, 

�CO2 = 0.46,  �CH4 = 0.15 
�H2O = 3,  �H2 = 0.55 

 
�H2O = 1 

 
�H2O = 1, 2, 3 

 
Feed rate, NCO,r,0 [kmol/h] 2.82*10-3 – 5.14*10-3 2.48*10-4 – 9.98*10-4 1.35*10-4 - 1.09*10-3 1.35*10-4 - 3.89*10-3 
Inert sweep, Ni,p,0 [kmol/h] None None Ar: 1.07*10-3 
Temperature, T [�C] 375, 550 400 400 
Reaction pressure, Ps [atma] 7.8, 11.2 20 1.0 – 5.0 1.0 
Tube-side pressure, Pt [atma] 1.0 1.0 (0.0 for Case 3 and 4) 1.0 1.0 
Dynamic viscosity, 
 [kg/h-m] 0.063 0.077 0.091 0.083 - 0.091 
Diffusivity of H2, DH2 [m

2/h] 0.0835, 0.126 0.0914 0.0817 
Sherwood number approximation, 
Sh 

*�*ÞÜ�5�±±± ¡8�µ ¢
5�ß

 (Equation 5.16, Perry and Green, 1997) 
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Figure 5.2. Simulation of CO conversion and H2 recovery data from Dolan et al. (2010) 

Case 1: FH2 = 6.2 m3/m2-h-atm0.5, Ac = 1.36*10-4 m2; Case 2: FH2 = 15.4 m3/m2-h-atm0.5, 

Ac = 4.80*10-5 m2). 

 

Figure 5.3. Simulation of CO conversion and H2 recovery data from Damle et al. (2008), 

Prxn = 7.8 atma. 
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[a]  

[b]  

Figure 5.4. Comparison of the model with WGS CMR experimental studies in the 

literature [a] CO conversion [b] H2 recovery. 
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In terms of CO conversion (Figure 5.4[a]) the model had good agreement (less than 5% 

difference) with the experimental results accounting for about 70% of the conditions 

tested. In terms of H2 recovery (Figure 5.4[a]) the model also had reasonable 

agreement (less than 10% difference) with the experimental results accounting for about 

70% of the conditions tested. The model well captured the trends in some sets of 

experimental CO conversion and H2 recovery data as shown in Figure 5.2 (Dolan et al., 

2010). The model also partially captured the trend apparent in a further set of 

experimental data as shown in Figure 5.3 (Damle et al., 2008). 

5.4. Discussion 

Considering that the primary utility of the model was to aid in the understanding of 

operational aspects of the WGS CMR, the most important validation test for the model 

was the comparison of the model to a data set which had a clear trend, to see if the 

simulation would capture that same trend. In some cases, such as the results simulated 

in Figure 5.2, the simulation fit the data exceptionally well in terms of H2 recovery, and 

captured the trends observed in the data, suggesting that the rate limiting mechanisms 

(mass transfer in the gas phase and mass transfer in the dense Pd-layer) were 

appropriately estimated. In other cases such as the results simulated in Figure 5.3, the 

fit was poor but the trend apparent in the simulation results was in agreement with the 

data, suggesting that the mechanistic aspects of the model were correct, but that 

particular constants may have been incorrect, or that some additional mechanistic 

aspects were unaccounted for. 

In cases such as Figure 5.3 and also the other data sets from Damle et al. (2008), the 

simulation diverged from the experimental data by as much as 10% in terms of CO 

conversion due to an inadequate kinetic rate expression. A significant discrepancy 

between the sets of literature data in terms of modeling accuracy was the choice of 

appropriate kinetic rate expression. The four experimental studies which were simulated 

in Figure 5.4 all used iron-chrome oxide catalyst but displayed results which suggested 

highly different catalytic activity. The probable explanation for the discrepancy, which 

was not accounted for in the model, was mass transfer resistance from the bulk reaction 

mixture to the catalyst particle surface and intraparticle mass transfer resistance. 
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Depending on the Reynolds number of the gas flow and the size and porosity of the 

catalyst particles, significantly different coefficients for bulk to catalyst mass transfer 

could result. The estimated packed-bed Reynolds number of 87 (with dh equal to dp) in 

the kinetic studies by Rhodes et al. (2002) was significantly higher than the Reynolds 

number of 5.0 in the study by Hla et al. (2009), suggesting that the gas boundary layer 

mass transfer resistance from the bulk to the catalyst surface (which was incorporated 

into the rate constant) was more significant in the later study. A potential correction for 

this would be to model the bulk-to-catalyst mass transfer with a similar relation to 

equations 5.11 – 5.13 (bulk to Pd-surface mass transfer). Since Uemiya et al. (1991a) 

and Kikuchi et al. (1989) provided a rate expression measured from their own testing 

setup, which mirrored their WGS CMR setup, a good correlation was observed for both 

of their data sets in Figure 5.4[a].  

Unfortunately neither Uemiya et al. (1991a) nor Kikuchi et al. (1989) reported H2 

recovery for their experiments, so the model results could not be compared (and are not 

shown). For both of the studies which reported H2 recovery (Dolan et al., 2010; Damle 

et al., 2008), the simulation overshot the experimental data by as much as 20%, due to 

inadequate characterization of the membrane permeance. Dolan et al. (2010) utilized 50 

�m Pd and 40 �m Pd75Ag25-foils supported on porous ceramic, but did not first test the 

pure H2 permeance of those composite membranes. In the simulation the permeance 

was assumed to be equal to that of the foils only (7.74 and 11.6 m3/m2-h-atm0.5 

respectively at 400°C) and did not consider additional resistance from the ceramic 

support. If the ceramic support was thick (as would be necessary for operation at 20 

atma) then the support resistance might have been high, resulting in a composite 

membrane permeance significantly less than that of the foil. 

The model also might have been inaccurate for the prediction of H2 flux due to the 

simplification of modeling surface inhibition by equation 5.9. The extent to which the flux 

was inhibited by a surface species was dependent upon the temperature (resulting in a 

higher or lower adsorption coefficient) and the membrane thickness (with a thicker 

dense layer having a lattice diffusion limited flux {Catalano et al., 2011}). The most 

accurate way to calculate the H2 flux in the presence of reversible surface adsorption by 
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non-permeable species was through a five step transport model such as that utilized by 

Ward and Dao (1999) and Catalano et al. (2011). The five step model considered the 

adsorption of H2 on the upstream surface (equation 2.26 from Chapter 2) the solution of 

H-atoms into the Pd-lattice from the upstream surface (equation 2.27), the diffusion of 

H-atoms from the upstream to the downstream surface (equation 2.24), the dissolution 

of H-atoms from the Pd-lattice to the downstream surface (equation 2.27), and the 

desorption of H2 from the downstream surface (equation 2.26), such that each step had 

the potential to be rate limiting. A practical assumption was made that fractional surface 

coverage by a non-permeable gas species would block an equal fraction of the 

membrane area, resulting in equation 5.9 and simplifying the calculation of the H2 flux 

considerably (Scura et al., 2008). In the experimental Pd-membrane system, as the 

surface coverage by CO (for instance) gradually increased, there was a transition 

between diffusion limited flux and adsorption limited flux. The equation 5.9 was the most 

inaccurate for surface coverages in the transitionary region where the surface 

adsorption step (equation 2.26) became partially rate limiting. 

5.5. Conclusions 

A 1-D model was defined to enable a better understanding of the dynamics of the mixed 

gas separation and WGS CMR systems. The model was applied to simulate several 

experimental WGS CMR literature studies. The model accurately portrayed trends 

apparent in the experimental data, indicating that the mechanistic aspects of the system 

(mass transfer in the gas phase, mass transfer in the dense Pd-layer, and reaction rate) 

were reasonably estimated. A compact model such as the one presented in this chapter 

is essential for process modeling in order to design the overall IGCC process 

incorporating a WGS CMR. 

The application of the model to some sets of literature data was impaired by inadequate 

membrane characterizations reported in those studies. Additionally, the choice of 

reaction rate expression was complicated by the significant variance in pre-exponential 

factors reported for various rate studies of iron-chrome oxide catalyst. The simplifying 

assumption that the reduction in membrane flux was proportional to surface coverage 

by WGS species also introduced inaccuracy into the model. Lastly, it was possible that 
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radial concentration gradients existed in the experimental WGS CMR studies which 

were not accounted for by the model. 

The model is able to show relationships between various feed properties (temperature, 

pressure, GHSV, and composition) and the resultant CO conversion and H2 recovery. In 

the following chapters the model will be utilized to aid in the elucidation of mixed gas 

separation and WGS CMR behavior. 
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6. H2 SEPARATION FROM SYNGAS BY Pd-MEMBRANES 

6.1. Introduction 

In the relevant literature it has been apparent that H2 separation under conditions 

approaching a commercial setting can be considerably more hindered and less efficient 

than a first order approximation would suggest (Abdollahi et al., 2010; Damle et al., 

2008; Scura et al., 2008; Ma and Lund, 2003). In order to prepare such a technology as 

the supported Pd-membrane for introduction into the IGCC process, a more thorough 

understanding of H2 separation under complex conditions must be developed. 

The separation effectiveness of the Pd-membrane may be impaired by several effects: 

depletion, resistance of the membrane (1/permeance), gas phase mass transfer 

resistance, reversible inhibition by adsorbed species, and irreversible inhibition due to 

surface reactions. Depending on the membrane characteristics as well as the feed 

conditions, any one of the above effects can significantly limit the H2 recovery and/or the 

rate of H2 separation. The interplay of depletion, membrane resistance, and gas phase 

mass transfer resistance under low Reynolds number (less than 100) conditions has not 

been well explored in the literature. Additionally, although several studies have 

investigated the surface inhibition phenomenon, there are significant discrepancies as 

to the relative effects of H2O, CO, and CO2 on the membrane surface, and the 

temperature at which those effects are significant. The objective of this chapter was 

thus to develop a better understanding of each of the above effects so that the 

improvement and optimization of a membrane separator system could be achieved. 

6.2. Background 

6.2.1. Gas phase mass transfer resistance 

As the mixture is separated by the membrane, H2 will become depleted to some extent 

at the surface/gas interface in a phenomenon known as a gas boundary layer formation 

or concentration polarization. The partial pressure of H2 at the interface becomes lower 

than that in the bulk causing a concentration gradient. The concentration gradient 
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causes H2 to diffuse towards the membrane surface and non-permeable species to 

diffuse away. The transport of a species through the gas boundary layer can be 

estimated by a mass transfer coefficient, kB [m/h], which is related to the dimensionless 

Sherwood number, Sh, as in equation 6.1. 

 "× � GÑ<¯LM
�Û          6.1 

Where DH2 [m2/h] is the diffusivity of H2 in the gas mixture and dh [m] is the hydraulic 

diameter of the membrane separator (4AC/Perimeter, 4�(D1
2-D2

2)/(4�(D1+D2) for empty 

shell-in-tube cases, and the particle diameter, dp [m], for PBR cases {Caravella et al., 

2009; Perry and Green, 1997}). The flux through the gas boundary layer is then given 

by equation 6.2. 

 �%& � "×~#%&[Ö + #%&[��       6.2 

Where PH2,b [atma] and PH2,s [atma] are the partial pressures of H2 in the bulk gas on 

the retentate side and at the membrane surface (also on the retentate side) 

respectively. The Sherwood number could be estimated by its relationship with the 

dimensionless Schmidt number (Sc = 
/�*DH2) and the dimensionless Reynolds number 

(Re = �*v*dh/
), where 
 [kg/m-h] is the dynamic viscosity (Wilke, 1950), � [kg/m3] is the 

density of the fluid, and v [m/h] is the average velocity of the fluid. The Sherwood 

number could be estimated by the relationships given in Table 6.1. 

 

Table 6.1. Estimation of the Sherwood number from different literature sources. 

Sherwood number Qualifiers Equation Reference 

ÜÝ< � *�*ÞÜ�5�±±± �¥\ï �
5�ß

 
Re > 1 6.3 Perry and Green, 1997 

ÜÝ � ã � *�*Ü�5�±±±¥\5�ß 3 < Re < 10,000 6.4 Wakao and Funaskri, 
1978 ÜÝ � *�ð*�Ü�< ¥\ < ñÑ�5�±±±  6.5 Ludtke et al., 1998 

ÜÝ � ��ððãÜ�5�±±±¥\5�ß Sc > 1 6.6 Coulson et al., 1999 

ÜÝ � *�ðã �Ü�< ¥\ ñÑ¿ �
5�±±±

 
Re < 2100 6.7 Cussler, 1997 

 *For packed bed systems 
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At steady state, equation 6.2 can be set equal to the Sieverts’ law expression (equation 

4.2) such that the flux through the boundary layer is equal to the flux through the dense 

Pd-layer as in equation 6.8. 

 �%& � �%&~#%&[�5�ß + #%&[)�Â$5�ß � � "×~#%&[Ö + #%&[��    6.8 

Since the resistance of the dense Pd-layer, (PH2,perm
0.5+PH2,s

0.5)/FH2 [h/m], was non-

linear it could not simply be added to the resistance of the gas boundary layer, 1/kB 

[h/m], as resistances in series. In practicality, the H2 partial pressure at the membrane 

surface, PH2,s [atma], could be solved by either the quadratic formula or a numerical 

method such as the Newtonian iterative method (Caravella et al., 2009; Catalano et al., 

2009) in order to then estimate the H2 flux by equation 6.2. 

When the flux through the boundary layer was high, such that the flow velocity changed 

significantly over the length of the membrane, the use of a corrected mass transfer 

coefficient, kB* [m/h], was necessary. The corrected mass transfer coefficient was 

estimated at each point along the membrane by equation 6.9 (Catalano et al., 2009) 

and then used in equation 6.10. 

 "×< � "×ØÙ�I`�ILM[ÏI`�ILM[Ú�        6.9 

Where PT [atma] was the total pressure on the retentate side. 

 �%&~#%&[�5�ß + #%&[)�Â$5�ß � � "×< ~#%&[Ö + #%&[��     6.10 

PH2,s could not be determined from equation 6.10 by the quadratic formula since PH2,s 

appeared in the logarithm equation for kB*, equation 6.9, so a numerical method had to 

be used (Caravella et al., 2009; Catalano et al., 2009). 

6.2.2. Reversible surface inhibition 

The WGS species CO and H2O are known to reversibly adsorb onto the Pd-surface with 

the result of lowering the overall H2 permeance of the membrane by blocking surface 

sites for H2 adsorption (Li et al., 2000; Gallucci et al., 2007; Hou and Hughes, 2002; 

Peters et al., 2008; Gielens et al., 2006). There is also some indication that CO2 has an 
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effect on the Pd-surface (Hou and Huges, 2002). The reversible surface inhibitions by 

CO and H2O were shown to be temperature dependent with more inhibition at lower 

temperatures as was consistent with physical adsorption (Li et al., 2000; Hou and 

Hughes, 2002). 

There was significant discrepancy in the literature as to the relative extents of surface 

adsorption by H2O, CO, and CO2. Both Li et al. (2000) and Hou and Hughes (2002) 

agreed that inhibition by H2O was greater than CO, but several other papers (Catalano 

et al., 2011; Alfonso, 2006) indicated the opposite. The comparison of surface 

inhibitions between gas species was complicated by the potential non-ideal behavior of 

CO adsorption. Dulaurent et al. (1999) showed with infrared spectroscopy that the 

enthalpy of adsorption for CO on the surface gradually increased from -92 kJ/mol at 

zero surface coverage to -54 kJ/mol at full surface coverage, and therefore the Temkin 

model (equation 6.11) was best for estimating surface coverage (Kul’kova and Temkin, 

1949). 

 ò ! � 89
ó%7�Ï[Á�ó%7�Ï[ì < ôõT ¡�PÎÁ<IJK�PÎì<IJK¢     6.11 

where Ð� � ÑÒ
9ÓnMÔ�&²$Ô�ÒnM 6¡

�]
_`¢  was the adsorption equilibrium constant given in the 

previous chapter as equation 5.10, �Hads,0 [kJ/mol] was the enthalpy of adsorption at 

zero surface coverage (�CO = 0), and �Hads,1 [kJ/mol] was the enthalpy of adsorption at 

full surface coverage (�CO = 1), h [J-s] was Planck’s constant, k [J/K] was Boltzmann’s 

constant, and m [kg/mol] was the molecular mass of CO. 

Based on the estimated binding energy and equation 5.10, adsorption equilibrium 

constants were estimated from several literature studies and listed in Table 6.2. 
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Table 6.2. Estimated values of �CO, �H2O, and �CO2 (atm-1). 

 350°C 400°C 450°C Reference 
CO (�CO = 0) 1.40 0.31 0.083 Dulaurent et al., 1999 
CO (�CO = 1) 0.00091 0.00035 0.00015 Dulaurent et al., 1999 
CO (�CO = 0) 2.44 0.24 0.032 Guo and Yates, 1989 
CO (�CO = 1) 1.0x10-6 2.9x10-7 1.0x10-7 Guo and Yates, 1989 
CO 0.95 0.094 0.013 Behm et al., 1980 
CO 55,500 2,580 181 Alfonso, 2006 
CO 2,800 165 14.0 Rogal et al., 2008 

 
H2O 0.050 0.0069 0.0012 Catalano et al., 2011 
H2O 1.4x10-10 8.5x10-11 5.4x10-11 Alfonso, 2006 

 
CO2 0.091 0.011 0.0017 Guo and Yates, 1989 

 

The estimated binding energy of CO varied greatly between different literature studies, 

resulting in extreme values differing by up to four orders of magnitude. The adsorption 

of H2O also varied greatly between theoretical (Alfonso, 2006) and experimental studies 

(Catalano et al., 2011). Alfonso (2006) showed a surface binding energy of only 23.1 

kJ/mol indicating that adsorption should be undetectable over the temperature range of 

350 – 450°C (see Table 6.2), but the experimental study by Catalano et al. (2011) 

showed a distinct inhibition in that range. Alfonso (2006) pointed out that the 

dissociation of H2O to adsorbed OH and H, followed by further dissociation to O and H 

species could result in greater overall surface coverage by oxygen containing species. 

Guo and Yates (1989) pointed out that CO2 would also dissociate to some extent on the 

Pd-surface, resulting in an effective surface coverage that could have been orders of 

magnitude greater than initial theoretical studies indicated. 

6.2.3. Irreversible surface inhibition 

Coke formation was likely to occur when the steam to CO ratio was low; it was 

promoted by the presence of H2 and suppressed by the presence of H2O or CO2 (Li et 

al., 2007b; 2008c). The formation of coke on the membrane surface can be considered 

‘irreversible’ since the reaction for steam reforming of coke, equation 6.12 proceeds 

very slowly in the temperature range considered (200 – 500°C). 
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 ���� � ��� � �� � ��       6.12 

Since the formation of coke on the membrane can block the membrane surface for H2 

permeation, it must be avoided completely. A thorough consideration of coke formation 

is conducted in Chapter 8. 

Another well known contaminant which is likely to be encountered in the IGCC process 

is H2S. The exposure of a pure Pd-surface to low ppm levels of H2S inhibits the Pd-

surface against H2 adsorption. Additionally, as little as 2.8 ppm H2S in H2 caused the 

formation of bulk sulfides at 400°C via equation 6.13 (Mundschau et al., 2006). 

 ö÷� ��ø � ö÷�ø � ��       6.13 

A consideration of H2S poisoning is presented in Chapter 9. 

6.3. Experimental 

The relevant synthesis details and initial H2 testing results of the membranes utilized in 

this chapter are listed in Table 6.3. The preparation and initial testing of those 

membranes was discussed in Chapter 4. 

 

Table 6.3. Membranes tested in this chapter, comprehensive details are given in 

Appendix D. 

 Pd/Ag 
[�m] 

Dense 
layer [�m] 

H2 permeance* 
[m3/m2-h-atm0.5] 

Final select.J 
[FH2/FHe] 

Other details 

AA-5 2.7 9.7 18.5 2,800  
AA-6 2.4 10.3 21.3 1,100  
AA-21 4.8 15.7 20.2 175  
*at 400°C 
Gselectivity after final mixed gas experiment described here 
 

The experimental setup for the mixed gas experiments was described in the 

Experimental, Section 3.4.1. Several gas mixtures were used in this study with the 

compositions listed in Table 6.4. The Gases A, B, C, and D were prepared mixtures 

received from Middlesex Gases & Technologies Inc (Everett, MA). The Gas E was 
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prepared from pure H2 gas and H2O added via HPLC pump (Harvard Apparatus Series 

I), also as described in the Experimental, Section 3.4.1. Pure H2 was received from 

ABCO Welding Supply (Waterford, CT). 

 

Table 6.4. Composition of gas mixtures used in this study. 

� ,�� ,� � / 0�� / 0� ,�0�
1 � ��2� ("3 � )� �"3 � )� )�
1 � ��4� &��$3 � )� %$��3 � ���3 � )�
1 � ��/ � &��$3 � %(�%3 � )� )� )�
1 � ��5 � &��$3 � )� %(�%3 � )� )�
1 � ��6 � &��$3 � )� )� )� %(�%3 �

 

The experimental H2 recovery, YH2, was defined by equation 6.14. 

 Æ%& t ¹LM[¸[ùú«
¹LM[ª[Á          6.14 

Where NH2,p,out [kmol/h] was the permeate flow rate and NH2,r,0 [kmol/h] was the feed 

flow rate of H2. The Gas Hourly Space Velocity, GHSVSTP [h-1] was calculated via 

equation 6.15. 

 û|üý � é[ð�� ~Ã ¹H[ÁH �þ�
þª        6.15 

Where Ni,0 [kmol/h] was the feed flow rate of species i, Vm was the molar volume (22.4 

m3/kmol at STP), Vr [m3] was the reactor volume of 1.32*10-5 m3, and 3,600 was the 

time conversion factor (seconds per hour). Note that the GHSV was calculated at the 

standard temperature and pressure, and accounting for H2O as a gas. The residence 

time, � [s], was calculated by equation 6.16. 

 � � þª<µ
~Ã ¹H[ÁH �þ�

9®`�
9ª

Iª
I®`�       6.16 

Where 	 was the void fraction of the catalyst bed, Pr [atma] was the reaction pressure 

and Tr [K] was the reaction temperature. Note that the residence time was calculated for 

the gas mixture at system conditions. Also note that the void fraction was unity for the 
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membrane separator (with no catalyst present) as will be applicable for all of Chapter 6. 

In the Chapters 7 - 10 a void fraction of 0.47 was estimated for the WGS CMR loaded 

with iron-chrome oxide catalyst. 

The 1-D model described in Chapter 5 was utilized to generate simulation results 

overlaid onto the experimental results. The model was altered by elimination of the state 

variable XCO and Æ%& t ¹LM[¸
¹LM[ª[Á. The simulation parameters for the experimental system 

are listed in Table 6.5. The membrane permeance was that measured by pure H2 

testing of each membrane listed in Appendix D. The reversible surface adsorption by 

CO and H2O was accounted for as described in Section 5.2.2. The gas boundary layer 

mass transfer coefficient was estimated by the Sherwood number empirical correlation 

given by Coulson et al. (1999). No adjustable parameters were utilized. 

 

Table 6.5. 1-D model parameters for simulation results shown in this chapter. 

 Simplified 1-D model, 
used in Section 6.4.1 

Full 1-D model, used in Section 
6.4.2 

Separator Dimensions Tube-in-tube 
Length, L [m] 0.065 
Cross-sectional area, Ac [m2] 2.33*10-4 
Aspect ratio 14.8 
Membrane Properties Tubular 
Membrane area, APd [m2] 2.5*10-3 m2 
Permeance, FH2,0 [m3/m2-h-atm0.5] AA-5, 18.5 AA-6 and AA-21 (see Appendix D) 
Binding energy, �Ei [kJ/mol] None CO: -149 (Guo and Yates, 1989) 

H2O: -125 (Catalano et al., 2011) 
Feed Properties 
Feed composition, �i Gas A (Table 6.4) Gases B, C, D, and E (Table 6.4) 
Feed rate, NH2,r,0 [kmol/h] 2.4*10-4 – 3.1*10-2 2.4*10-4 – 2.0*10-2 
Inert sweep, Ni,p,0 [kmol/h] None 
Temperature, T [�C] 400�C 350 - 450�C 
Reaction pressure, Ps [atma] 14.5 
Tube-side pressure, Pt [atma] 0.98 
Dynamic viscosity, 
 [kg/h-m] None* 0.060 - 0.066 
Diffusivity of H2, DH2 [m2/h] None* 0.0724 – 0.225 
Sherwood number 
approximation, Sh 

None* ÜÝ � ��ððãÜ�5�±±±¥\5�ß (Equation 
6.6, Coulson et al., 1999) 

*Simplifed model assumed no gas boundary layer mass transfer resistance 



136 
 

6.4. Results and discussion 

6.4.1. Gas boundary layer resistance and depletion 

A better understanding of gas boundary layer resistance and depletion was important to 

provide a basis for the WGS CMR experiments. Both of the effects were present to the 

greatest extent under low flow conditions where a low H2 flux was expected. 

Initially, an experiment was conducted by varying the total feed flow rate at a fixed 

pressure, and utilizing the membrane AA-5 (described in Table 6.3), and Gas A 

(specified in Table 6.4) to gain a preliminary understanding of the separation dynamics 

in the system. The results of that experiment in terms of permeate flux and H2 recovery 

versus feed flow rate are shown in Figure 6.1. Overlaid on the data are the flux and H2 

recovery calculated by 1-D model described in Chapter 5 (with the parameters listed in 

Table 6.5, incorporating resistance of the dense Pd-layer and discounting gas boundary 

layer resistance). 

 

Figure 6.1. Permeate flux and H2 recovery versus GHSVSTP for membrane AA-5, 400°C, 

14.5 atma, and Gas A (Overlaid curves represent solutions of a simplified 1-D model, 

horizontal line indicates pure H2 flux at equal H2 partial pressure). 
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The difference between the experimental data points and the calculated flux and 

recovery from the 1-D model was due to mass transfer resistance of the gas boundary 

layer, an important phenomenon that was not accounted for in the calculation. It was 

clear from the figure that this effect was significant over almost the entire flow range, up 

to a GHSVSTP of approximately 50,000 h-1. At very low total feed rates of less than 1,000 

h-1, the H2 recovery was as high as 98% due to the high residence time of the gas in 

contact with the membrane (approximately 21.0 seconds by equation 6.16). At the low 

feed rates, the partial pressure of hydrogen on the shell-side was reduced by depletion 

to very close to that of the tube-side (note that the total shell-side pressure did not 

change detectably over the length of the membrane). As a consequence, at low total 

feed rates the hydrogen recovery was high (although the permeate H2 flux was low). In 

the WGS CMR, a high degree of H2 removal from the reaction zone was necessary to 

achieve CO conversion in excess of the thermodynamic equilibrium (Damle et al., 2008; 

Dolan et al., 2010; Mendes et al., 2010). 

There is a heat transfer analogy to the Pd-membrane separator consisting of a hot fluid 

being cooled by heat exchange with a constant temperature heat sink (analogous to the 

constant tube-side pressure of 0.98 atma). When the heat exchanger had a high contact 

area or a high heat transfer coefficient, the Number of Transfer Units (NTU) became 

large, resulting in an outlet temperature very close to that of the heat sink. The heat 

transfer effectiveness was similar to the H2 recovery in so far as it was defined as the 

ratio of the permeated H2 to the maximum amount of H2 present in the feed (equation 

6.14). The analogy was less suitable when one considered the comparison of the partial 

pressure driving force of H2 across the membrane with the temperature difference 

across a heat exchanger. In the case of the constant temperature heat sink with very 

large contact area, the outlet temperature approached the heat sink temperature and 

the effectiveness approached 100%. For the membrane separator with infinite 

selectivity and very large area, the partial pressure of H2 in the retentate approached 

that in the permeate, but the H2 recovery (defined by equation 6.14) approached a value 

of less than unity (bounded by the 0.98 atma partial pressure of H2 which remained in 

the retentate). In Figure 6.1, when the feed rate was less than 1,000 h-1, the partial 



138 
 

pressure of H2 in the retentate was approximately 0.99 atma (such that the partial 

pressure driving force was almost zero), and the H2 recovery was approximately 98%. 

Since the Pd-membranes had extraordinarily high selectivity (greater than 2,800 for the 

membrane AA-5) the separation was fundamentally different than that of microporous or 

polymeric membranes. In polymeric membranes with H2/CO2 selectivities of up to 100 

(Robeson, 2008) a low stage cut, Np/(Np + Nr), must be used to achieve reasonable 

purity of the separated product. In those membrane systems, an increase in membrane 

area (or a decrease in feed rate) resulted in a higher stage cut and therefore a lower 

permeate purity. In the dense Pd-membrane system (assuming infinite selectivity) the 

stage cut could not exceed the mol fraction of H2 in the feed since the non-permeable 

species could not cross the membrane, even if the membrane area was increased to 

infinity. For the series of experiments shown in Figure 6.1, the stage cut was 

approximately 0.16 at the highest feed rate (65,000 h-1) and approximately 0.79 at the 

lowest feed rate, 500 h-1 (note that the mol fraction of H2 in Gas A was 0.80). Since the 

Pd-membrane had a slight leak, the H2 purity was likely dependent on the stage cut. 

However, that dependence could not be determined since the level of CO2 in the 

permeate was less than the 0.5% detection limit of the GC over the whole range of feed 

conditions. 

At high total feed rates, greater than 50,000 h-1, the permeate flux reached the upper 

bound of the membrane permeance (shown as a solid horizontal line in Figure 6.1). At 

high feed rates the velocity of the gas was high, resulting in a low gas phase mass 

transfer resistance and a high Sherwood number given by equation 6.3 – 6.7. The flux 

of H2 through the boundary layer was dependent upon two mechanisms: bulk flow of 

gases to and from the surface (convection), and molecular diffusion of gaseous 

components. The Sherwood number is the ratio of the convection mass transfer rate to 

the diffusion mass transfer rate. It has been experimentally shown in a number of 

studies (listed in Table 6.1) that the average Sherwood number can be estimated by an 

empirical correlation with the Reynolds number and the Schmidt number. The Reynolds 

number is the ratio of inertial to viscous forces in a flowing fluid and can be thought of 

as a measure of the convective mixability of that fluid in a particular system. The 
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Schmidt number is the ratio of the viscous transport to the molecular diffusion transport 

and remains invariant to the fluid velocity and flow channel dimensions. 

In order to overcome the boundary layer mass transfer resistance, the Reynolds 

number of the flow should be increased (Caravella et al., 2009). Unfortunately, in the 

experimental system it was virtually impossible to exceed a Reynolds number of 200 

due to the convective cooling caused by the flow of greater than 9,000 sccm of room 

temperature gas into the hot membrane module (higher flow rates and therefore a 

higher Reynolds number would have been possible with better heat transfer in the 

preheater module). In a commercial system with larger dimensions, a characteristic 

length of 4 cm for instance (as opposed to 4.4 mm in our case), a turbulent flow with a 

Reynolds number of 2,000 – 4,000 could be established with the same feed space 

velocity (and considering appropriate feed pre-heating via a heat exchanger). 

6.4.2. Surface inhibition 

In addition to the gas phase mass transfer resistance, it was also likely that the 

presence of CO and H2O caused some decrease in the permeance by reversible 

binding to the surface (Hou and Hughes, 2002; Arstad et al., 2006; Li et al., 2000). The 

inhibition effects of CO and H2O were further investigated with a series of experiments 

conducted with the membranes AA-6 and AA-21 (described in Table 6.3) and using the 

Gases B, C, D, and E (specified in Table 6.4). The gas mixtures chosen all had the 

same mol fraction of H2 present (62%) and therefore it was expected that differences in 

H2 flux would be due to either the interaction of the other gas species (CO and H2O) 

with the Pd-surface or the differences in the molecular size and mass of those species 

(He, CO2, CO, and H2O). The results from the experiments are shown in Figure 6.2 in 

terms of J/J0, where J [m3/m2-h] was the measured H2 flux and J0 [m3/m2-h] was the flux 

of pure H2 at 7.9 atma (equivalent to the partial pressure of H2 in the gas mixtures), 

which was extrapolated from the Seiverts’ law permeance (see Table 6.3). Neither 

membrane AA-6 nor AA-21 was tested in pure H2 at a pressure of greater than 5 atma. 

Results from the 1-D model (described in Chapter 5, and with parameters listed in Table 

6.5) are also plotted in Figure 6.2. 
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[a]  

[b]  

[c]  

Figure 6.2. Permeate flux over J0 versus GHSVSTP with membrane AA-6 and three gas 

mixtures at 14.5 atma [a] 350°C [b] 400°C (membrane AA-21 used for Gas E only) and 

[c] 450°C. 
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Figure 6.2[a], [b], and [c] show the relationships between the permeating H2 flux and the 

total feed space velocity of the four mixed gases at three different temperatures: 350, 

400, and 450°C. Since the concentration of H2 in each mixture was the same, 

discrepancies between them must have been caused by either the different diffusivity of 

H2 in the gas mixtures or differing interactions between the additive gases and the Pd-

membrane. The qualification of these effects will lead to a better understanding of the 

permeation inhibition caused by the additive gases. 

There has been some discrepancy in the literature regarding the potential surface 

inhibition by CO2, with Hou and Hughes (2002) observing slight inhibition of the Pd-

surface and Arstad et al. (2006) observing no effect. The results presented in Section 

6.4.1, namely the final flux measurement in Figure 6.1 which was very near to the flux 

measured under pure H2 testing, suggested that there was not significant inhibition by 

CO2 at 400°C. It was therefore expected that the difference in H2 flux behavior between 

the Gases C and D would be due entirely to the mass transfer resistance which was 

greater for the H2/CO2 mixture (Gas D) because the diffusivity of H2 was lower in that 

mixture. The diffusivity of H2 in each binary mixture, calculated by the kinetic theory of 

gases, is listed in Table 6.6. 

 

Table 6.6. Diffusivity of H2 in each binary H2/i mixture (Reid et al., 1987). 

 350°C 400°C 450°C 
H2/He   (m2/h) 0.176 0.201 0.2254 
H2/CO2 (m2/h) 0.0724 0.0824 0.0929 
H2/CO  (m2/h) 0.0785 0.0892 0.0958 
H2/H2O (m2/h) 0.0803 0.0918 0.104 

 

The diffusivity of H2 in the H2/He mixture was approximately 2.5 times greater than that 

of the H2/CO2 mixture, which allowed for considerably better mass transfer. For the Gas 

C, at feed rates of greater than 35,000 h-1, the permeating flux approached 

asymptotically (within 5%) to that of the flux at the equivalent partial pressure of pure H2 

(Figure 6.2[a-c]), suggesting that the only limitation was the permeance of the 
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membrane. With the exception of Gas C, the flux measured for all of the gases over the 

whole range of feed rates was significantly affected by gas phase mass transfer 

resistance. For Gas D, the lower diffusivity of H2 in the H2/CO2 mixture resulted in a 

reduction in H2 flux of about 23% for the feed rate range of 5,000 – 35,000 h-1 due to 

greater mass transfer resistance. These results were in agreement with the set of 

experiments described in Section 6.4.1, which indicated that for the H2/CO2 mixture, a 

feed space velocity of over 50,000 h-1 would be necessary to overcome the gas 

boundary layer resistance. 

At total flows of less than 1,000 h-1, the H2 recovery for all of the gas mixtures was very 

high (approximately 90%) due to the high residence time of the gas mixtures in contact 

with the membrane (21.0 seconds at 1,000 h-1 compared to 0.6 seconds at 35,000 h-1 at 

400°C and 14.5 atma via equation 6.16). This result indicated that there was very little 

driving force for H2 separation towards the outlet end of the membrane. Over the whole 

range of feed rates two effects limited the permeating H2 flux, the gas boundary layer 

resistance and the resistance through the dense Pd-layer. Even though these 

resistances both factored into the data presented in Figure 6.2, information could still be 

extracted as to the relative extent of surface inhibition by CO and H2O, resulting in a 

lower H2 flux when those species were present. The diffusivity of the H2 in the H2/CO 

and H2/H2O mixtures was slightly higher than that of the H2/CO2 mixture (indicating 

lower gas phase resistance), yet the H2 flux from those two mixtures was lower than that 

of the H2/CO2 mixture due to reversible surface inhibition. 

At 350°C Gas B, containing 1.2% CO, showed an 11% lower flux than Gas D due to the 

reversible adsorption of CO on the Pd-surface. At 450°C Gas B showed an H2 flux that 

was approximately equal to Gas D, indicating that CO inhibition was not occurring to a 

detectable extent at that temperature. The permeation inhibition by CO was significantly 

less at 400°C than at 350°C, and undetectable at 450°C; this was in good agreement 

with the literature (Hou and Hughes, 2002; Arstad et al., 2006; Li et al., 2000). 

At 400°C Gas E, containing 37% H2O, showed a 32% lower H2 flux than Gas D at the 

highest feed rate, 20,500 h-1, due to inhibition by the high concentration of H2O, which 

has also been previously reported in the literature (Li et al., 2000). Even though the 
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surface interaction of the steam was significant, a high H2 flux of 27.9 m3/m2-h-atm (with 

40% H2 recovery) was achieved at the highest feed rate (20,500 h-1). At the lowest feed 

rate (2,700 h-1) a high H2 recovery of 90% was achieved along with an H2 flux of 8.3 

m3/m2-h. 

The lack of agreement by the 1-D model with the experimental data was disappointing 

and indicated significant shortcomings of the model. The possible reasons for this lack 

of agreement were the assumptions of no radial concentration gradient and an average 

mass transfer coefficient (instead of a local mass transfer coefficient). Regardless, it 

should be pointed out that at feed rates of less than 10,000 h-1, reasonable agreement 

was observed in some cases such that the model may still be relevant for WGS CMR 

experiments (which were conducted with feed rates of less than 6,000 h-1). Additionally, 

the model did predict the lower H2 flux measured for the H2/CO/CO2 (Gas B in Table 

6.4) mixture at 350 and 400°C, as well as that of the H2/H2O mixture (Gas E in Table 

6.4) at 400°C, suggesting a reasonable estimation of the surface inhibition phenomenon 

for those two gas species. 

Since the mass transfer resistance was significant over the whole range of feed 

conditions, a quantitative analysis of the surface inhibition could not be achieved. 

Experiments should be conducted with a higher flow velocity such that the Reynolds 

number of the flow would be higher, and gas phase mass transfer resistance would be 

lower. In conjunction with the inhibition experiments, the surface coverage of CO and 

H2O should be directly measured at experimental conditions with infrared spectroscopy 

(Behm et al., 1980; Dulaurent et al., 1999). 

Gielens et al. (2006) conducted experiments on a micro-sieve supported Pd-membrane 

prepared by sputter deposition, with H2/CO2 and H2/H2O mixtures at 350, 400, and 

450°C and 1 atma (Ptube = 1 atma, N2 sweep). The study found that (reversible) 

inhibition by H2O was much greater than that of CO2, but that coke was gradually being 

deposited by the H2/CO2 mixture, resulting in a gradual decline in the membrane 

permeance over several hours. Li et al. (2000) conducted mixed gas permeation 

experiments on PSS supported Pd-membranes with H2/N2, H2/CO, and H2/H2O mixtures 

at 380°C and 3 atma (Ptube = 1 atma). At a composition of 1.8% CO in 98% H2 there 
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was almost no discernible inhibition by CO (when compared to N2), but there was a 

16% lower H2 flux for the H2O mixture indicating much more significant inhibition (H2O > 

CO). Unfortunately, Li et al. (2000) did not describe their system and conditions in 

enough detail to calculate the Reynolds number of their flow, so it was unclear if 

significant gas phase mass transfer resistance was present. Hou and Hughes (2002) 

conducted experiments with H2/CO2, H2/CO, and H2/H2O mixtures at 275°C and 2 atma 

(Ptube = 1 atma). The study concluded that the extent of inhibition by each species was 

ordered as H2O > CO > CO2. Hou and Hughes (2002) also conducted experiments with 

an H2/H2O mixture (20% H2O in H2) over the temperature range of 275 - 350°C, 

observing that the inhibition by H2O was greater at lower temperatures. Due to the 

discrepancy between these literature studies, further experiments should be conducted 

with several H2/CO and H2/H2O mixtures, at temperatures of 350, 400, and 450°C, and 

with high Reynolds number (greater than 2,000) fluid flows. A complication in 

conducting these experiments is the tendency of H2/CO mixtures to form coke on the 

membrane surface when little or no H2O is present. 

 6.5. Conclusions 

Mixed gas separation experiments were conducted with simulated syngas at 350 – 

450°C, and over a range of total flow rates to investigate the effects of gas boundary 

layer mass transfer resistance and Pd-surface inhibition by CO, CO2, and H2O. In all 

cases, at low feed rates (less than 1,000 h-1), H2 recoveries of over 90% were observed 

in which the partial pressure driving force of H2 was very low at the retentate outlet. At 

high feed rates (up to 40,000 h-1) the permeate flux for H2/He mixtures was observed to 

closely approach that of pure H2 such that gas boundary layer resistance was 

negligible. For the H2/CO2 mixture, the gas phase mass transfer resistance was 

significant for feed rates of up to 50,000 h-1. For other gas mixtures containing CO, H2O, 

and CO2, the permeate flux was significantly lower than that for pure H2 such that gas 

phase mass transfer resistance was significant. 

For the gas mixtures containing H2O and CO, the permeate flux was lower than the 

mixture containing CO2, due to reversible surface inhibition. The inhibition by CO was 

inversely dependent on temperature such that there was a significant effect at 350°C 
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and no observable effect at 450°C. The inhibition by H2O was significant at 400°C, 

resulting in approximately 34% lower H2 flux than that of the H2/CO2 mixture over the 

feed rate range of 5,000 – 20,000 h-1. 
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7. WATER-GAS SHIFT CATALYTIC MEMBRANE REACTOR 

INCORPORATING A Pd-MEMBRANE 

7.1. Introduction 

As was discussed in the Literature Review, Section 2.3.1, it has been established that 

by utilizing elevated reaction pressure in a membrane reactor, both CO conversion and 

H2 recovery can be increased significantly. A high reaction pressure can also allow for 

cost savings during CO2 capture as the retained CO2 will already be at an elevated 

pressure. Operating at low pressure has severely limited the majority of previous 

studies by requiring the use of a sweep gas to establish the driving force for H2, 

resulting in a highly dilute H2 product. A sweep gas is impractical in the IGCC process 

because a subsequent separation step would then be necessary. Utilizing steam as a 

sweep gas would simplify the separation step but would increase the energy demand of 

the process. When a high H2 recovery is achieved (by way of high reaction pressure) 

CO conversion in significant excess of the PBR equilibrium can be achieved so that 

higher reaction temperatures can be used. At higher temperatures commercial WGS 

catalysts have significantly higher catalytic activity, which would enable higher 

throughput compared to an equivalently sized PBR. Additionally, the H2 permeance of 

Pd-membranes is greater at higher temperatures and the surface inhibition phenomena 

are less, which would allow for greater H2 recovery. 

Few studies have explored the characteristics of the WGS CMR at pressures exceeding 

6 atma since robust, highly permeable, PSS supported membranes were not available. 

High pressure operation is essential to achieving high CO conversion and H2 recovery 

at high through-put. The aim of this chapter was therefore to utilize PSS and PI 

supported Pd-membranes for the WGS CMR in order to characterize and assess the 

effects of the operating conditions (H2O/CO ratio, temperature, and feed flow rate) on 

the CO conversion and H2 recovery achieved by the reactor at high temperature (350 - 

500°C) and high reaction pressure (14.4 atma). By way of this characterization, a better 

fundamental understanding of the WGS CMR system was developed. 
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7.2. Experimental 

The relevant synthesis details and initial H2 testing results of the membranes utilized in 

this chapter are listed in Table 7.1. The preparation and initial testing of those 

membranes was discussed in Chapter 4. 

 

Table 7.1. Membranes tested in this chapter, comprehensive details are given in 

Appendix D. 

 Pd/Ag 
[�m] 

Dense 
layer [�m] 

H2 permeance* 
[m3/m2-h-atm0.5] 

Final select.† 
[FH2/FHe] 

Other details 

AA-5 2.7 9.7 18.5 2,800  
AA-6 2.4 10.3 21.3 1,100  
AA-8R 3.4 6.4 26.9 174  
AA-24R 6.2 7.4 28.5 365 High temp. 

annealing 
AA-30 <1.0 9.3 28.6 240  
*at 400°C 
†selectivity after final WGS testing 

The system configuration was shown in Figure 3.4 (Chapter 3, Section 3.5.1). The 

loading procedure for the membrane reactor including quartz sand, plugs of quartz 

wool, and iron-chrome oxide catalyst was described in Section 3.5.2. The operating 

procedure for a typical WGS experiment was described in Section 3.5.3. 

The syngas mixture used for the experiments in Sections 7.3.3 and 7.3.4 was chosen 

based on the composition of syngas produced by a GE Energy coal gasification plant 

(Klara et al., 2007). The feed gas on a dry basis was composed of 41.6% CO, 40.3% 

H2, and 18.1% CO2 and was prepared by Middlesex Gases & Technologies Inc (Everett, 

MA). Water was purified by a MilliQ deionization system, then allowed to degas for at 

least 24 hours in air so that no bubbles would form in the pump lines. Pure CO gas was 

received from ABCO Welding Supply (Waterford, CT). 

The experimental CO conversion, XCO, was calculated by equation 7.1 and the 

experimental H2 recovery, YH2, was calculated by equation 7.2. 
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 Å ! � ¹JK[�¨¨��¹JK[ª «̈[ùú«�¹JK[¸ ª̈�[ùú«
¹JK[�¨¨�       7.1 

 Æ%& � ¹LM[¸ ª̈�[ùú«
¹LM[�¨¨�P¹JK[�¨¨�       7.2 

The equilibrium conversion, XCO,EQ, for a given set of feed conditions was calculated by 

solving the equation 7.3 via the quadratic formula. Note that the quadratic formula 

yielded two solutions; the negative solution was discarded since it had no physical 

significance. 

 � � ~�JKMPÈJK[]� �~�LMPÈJK[]� �
~�JK�ÈJK[]� �~�LMK�ÈJK[]� �      7.3 

where � � �������� ����� (Moe 1962) and xi [mol/mol] was the mol fraction of species i in 

the feed. 

The ‘dynamic’ equilibrium conversion, XCO,d, (Basile et al., 2001; Damle et al., 2008) 

was determined by assuming that the removal of H2 occurred until there was zero 

driving force for H2 across the membrane at the outlet; PH2,ret,out = PH2,perm,out. The mol 

fraction of H2 in the retentate, xH2,ret, was then given by equation 7.4 and the ‘dynamic’ 

equilibrium expression by equation 7.5. 

 �%&[Â�� � ILM[¸ ª̈�[ùú«
I`         7.4 

 � � ~�JKM�ÈJK[����LM[¸ ª̈�[ùú«
�` �

~�JK�ÈJK[��~�LMK�ÈJK[��        7.5 

where PT was the total reaction pressure. 

The 1-D model described in Chapter 5 was utilized to generate simulation results 

overlaid onto the experimental results presented in this chapter. The simulation 

parameters for the experimental system are listed in Table 7.2. The membrane 

permeance used in the simulation was that measured by pure H2 testing of each 

membrane listed in Appendix D. The reversible surface adsorption by CO and H2O was 

incorporated into the simulation as described in Section 5.2.2. The gas boundary layer 
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mass transfer coefficient was estimated by the Sherwood number empirical correlation, 

equations 5.12, 5.13 and 5.16, discussed in Section 5.2.3. No adjustable parameters 

were utilized. 

 

Table 7.2. 1-D model parameters for simulation results shown in this chapter. 

Catalyst Properties Fe/Cr-oxide 
Catalyst density, �.cat [kg/m3] 1.06*103 
Catalyst void fraction, 	 0.47 
Particle size, dp [m] 3.5*10-4 (average particle size) 
Rate expression, rCO/(1-) 
[kmol/kg-h] 

ã�Þã ê *�ë\����n89# !# !&�5�±ë#%&�5�5í 
(Equation 5.20, Hla et al., 2009) 

Effectiveness factor,  � 1.0 (assumed) 
Reactor Dimensions Tube-in-tube 
Reactor Length, L [m] 0.065 
Cross-sectional area, Ac [m2] 2.33*10-4 m2 
Aspect ratio 14.8 
Membrane Properties    Tubular 
Membrane area, APd [m2] 2.5*10-3 m2 
Permeance, FH2,0 [m3/m2-h-
atm0.5] 

Specified for each membrane in Appendix D 

Binding energy, �Ei [kJ/mol] CO: -149 (Guo and Yates, 1989) 
H2O: -125 (Catalano et al., 2011) 

Feed Properties 
Feed composition, �i Specified in figure captions 
Feed rate, NCO,r,0 [kmol/h] 1.47*10-4 – 7.22*10-4 (specified in figure captions) 
Inert sweep, Ni,p,0 [kmol/h] None 
Temperature, T [�C] 350 - 500 (specified in figure captions) 
Reaction pressure, Ps [atma] 5 – 14.6 (specified in figure captions) 
Tube-side pressure, Pt [atma] 0.98 
Dynamic viscosity, 
 [kg/h-m] 0.074 - 0.090 
Diffusivity of H2, DH2 [m2/h] 0.0785 – 0.114 
Sherwood number 
approximation, Sh 

*�*ÞÜ�5�±±± ¡8�µ ¢
5�ß

 (Equation 5.16, Perry and 

Green, 1997) 
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7.3. Results and Discussion 

A series of four WGS PBR experiments were conducted at a pressure of 14.4 atma and 

with a feed composed of CO and H2O (1.1:1 steam to CO ratio) to validate the 

equilibrium calculation for the WGS reaction as shown in Figure 7.1. Four WGS CMR 

experiments were also conducted at the same pressure, feed composition, and feed 

rate with the membrane AA-5 and the results of those experiments are also plotted in 

Figure 7.1. In all of the WGS CMR experiments a gradual decrease in H2 recovery and 

CO conversion over time was observed; an example of which is shown in Figure 7.2. 

The WGS PBR data did not show similar drifting over time indicating that a steady state 

was reached within the first 60 minutes of each experiment; in all cases experiments 

were continued for at least four hours. 

 

 

Figure 7.1. CO conversion versus temperature (Membrane: AA-5, 14.4 atma, H2O/CO = 

1.1, GHSVSTP = 1,600 h-1). 
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Figure 7.2. CO conversion and H2 recovery versus time (Membrane: AA-5, 450°C, 14.4 

atma, H2O/CO = 1.1, and GHSVSTP = 1,600 h-1). 

 

For the PBR experiment at 300°C the CO conversion was only 55.1%, 37% below the 

equilibrium conversion for that temperature. The iron-chrome oxide catalyst (HiFUEL 

210, Alfa Aesar), had optimal activity above approximately 400°C, and therefore could 

not achieve equilibrium conversion with respect to the feed rate at 300°C. At 350, 400, 

and 450°C the CO conversion was within 1.6% of the expected equilibrium value. The 

carbon balances for the reactions were 94.6, 96.9, 100.1, and 100.6% respectively. For 

all four CMR experiments, higher CO conversions were achieved than for the PBR 

experiments conducted at the same temperature and pressure, despite the gradual 

decrease in H2 recovery and CO conversion over time. CO conversion in excess of the 

equilibrium conversion resulted from the removal of H2 from the system causing the 

reaction mixture to shift further towards the products as per Le Chatelier’s principle 

(Basile et al., 1996b; Barbieri et al., 2008). 

Figure 7.2 shows the CO conversion and H2 recovery over time for a reaction carried 

out at 450°C, with a steam to CO ratio of 1.1, and a GHSVSTP of 1,600 h-1. After 300 

minutes the hydrogen recovery had decreased by 8.7% from its initial value of 79% and 

the CO conversion had decreased by 0.9% from 92%. The permeance of the 
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membrane was incrementally decreased after each experiment as shown in Figure 7.3. 

The CMR was dismantled without attempting experiments at different feed and 

temperature conditions due to the decreased membrane permeance. A picture of the 

membrane after use in the WGS experiments is shown in Figure 7.4. The membrane 

was observed to have coke deposits embedded on the surface, mainly towards the inlet 

end of the reactor. The deposits were very thin and tightly bound to the surface. The 

weight change of the membrane due to the coke deposites could not be determined 

since the membrane tube had to be cut in order to remove it from the system. 

 

Figure 7.3. Sieverts’ law permeance of the membrane AA-5 at 450°C. 

 

 

Figure 7.4.  Image of the membrane AA-5 after use in WGS experiments. 
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The low H2O/CO ratio of 1.1 allowed for carbon formation to gradually occur on the 

membrane surface. The deposition of carbon reduced the membrane permeance over 

time by blocking the Pd-surface for H2 permeation, resulting in the gradual reduction of 

H2 recovery seen in Figure 7.2, as well as the incremental decreases in the Sieverts’ 

law permeance shown in Figure 7.3. The carbon balances for the reaction experiments 

were all within 4% of unity, and any weight gain by the catalyst due to coking was 

undetectable, it was therefore unlikely that any significant amount of coke was 

deposited on the catalyst. Furthermore, the four PBR experiments shown in Figure 7.1 

had constant CO conversion over time suggesting that there was no loss of catalytic 

activity due to coking. 

While it is generally known that the iron-chrome oxide catalyst is resistant to coke 

formation under WGS conditions (Newsome, 1980), there is some literature evidence 

that the Pd-surface has a propensity towards coke formation in the presence of CO by 

equation 7.7 (Li et al., 2007b; 2008b). Since it was unlikely that the activity of the 

catalyst was decreased by coking, the gradual decline in CO conversion observed in all 

four CMR experiments was probably the result of lower H2 removal, and therefore a 

lesser shift in the WGS reaction. 

 ��� � ���� � ���        7.7 

A further set of WGS CMR experiments was conducted with the membrane AA-6 over 

the temperature range of 350 - 500°C and with H2O/CO ratios of 1.6 and 2.6. Higher 

H2O/CO ratios were utilized in an attempt to avoid coke formation on the membrane 

surface. The results of all the experiments in terms of CO conversion and H2 recovery 

versus temperature are shown in Figure 7.5[a] and [b] respectively. The results in 

Figure 7.5[a] are also overlaid with the equilibrium conversion at the experimental 

conditions and the 1-D simulation results from the WGS CMR model (described in 

Chapter 5, and by Augustine et al., 2011). The results in Figure 7.5[b] are also overlaid 

with the 1-D simulation results. The parameters of the 1-D simulation are listed in Table 

7.2. 
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 [a]  

[b]  

Figure 7.5. CO conversion [a] and H2 recovery [b] as a function of temperature for a 

constant CO feed rate of 7.95 mmol/min (Membrane: AA-6, 14.4 atma, 	: H2O/CO = 1.6, 

GHSVSTP = 2,100 h-1, 
: H2O/CO = 2.6, GHSVSTP = 2,900 h-1). 
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At the temperatures of 350 and 400°C, with a H2O/CO ratio of 1.6, the CO conversion 

and the H2 recovery decreased gradually over the testing period. Figure 7.6[a] shows 

the CO conversion and the H2 recovery over time for the experiment performed at 

400°C. The gradual decline observed was similar to that seen in the experiments 

performed previously with a steam to CO ratio of approximately 1.1, indicating that 

similar coke formation was probably occurring. At the temperatures of 450 and 500°C 

the reactions reached a steady state, with very little change after the first hour of testing. 

Figure 7.6[b] shows the CO conversion and the H2 recovery over time for the 

experiment performed at 450°C. At the highest steam to CO ratio of 2.6, no evidence of 

coke formation was observed at any temperature tested (400, 450, and 500°C). 

[a] [b]  

Figure 7.6. CO conversion and H2 recovery versus time on stream [a] 400°C [b] 450°C 

(Membrane: AA-6, 14.4 atma, H2O/CO = 1.6, and GHSVSTP = 2,100 h-1). 
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conversion for all three sets of experiments, as expected and consistent with WGS PBR 

cases (Damle et al., 2008; Bi et al., 2009). The equilibrium conversion for the H2O/CO 

ratio of 2.6 was significantly higher than for the H2O/CO ratio of 1.6 over the whole 

temperature range shown in Figure 7.5[a]. The H2 recovery was dependent on the 

membrane permeance and the CO conversion, while the CO conversion increased as 

the H2O/CO ratio increased. However, when the H2O/CO ratio was too high (such as 

with excess steam), the dilution of H2 caused the H2 recovery to decrease, as seen 

when comparing the H2 recoveries at the same temperature in Figure 7.5[b]. The best 

H2 recovery, observed at the H2O/CO ratio of 1.6 and 450°C, resulted from the high CO 

conversion of 97.3% in addition to lower dilution by the steam. A lower H2O/CO ratio 

was therefore preferable for high H2 recovery, but limited by the deposition of coke 

which occurred at or below the H2O/CO ratio of 1.6. 

7.3.2. Effect of temperature 

Figure 7.5[a] shows the CO conversion profile as a function of temperature for 

experiments conducted with H2O/CO ratios of 1.6 and 2.6. CO conversions of 97.3 and 

98.2% were observed for H2O/CO ratios of 1.6 and 2.6 respectively, both at 450°C. At 

temperatures of 400°C and above the CO conversion in all experiments exceeded the 

equilibrium conversion, with greater advantage being gained under conditions where the 

equilibrium conversion was much lower, such as at high temperatures and low H2O/CO 

ratios. At 350°C the CO conversion was 68.4%, significantly less than the equilibrium 

conversion, indicating that the system was reaction rate limited at that temperature; 

350°C was below the optimal temperature range of the iron-chrome oxide catalyst. 

Several factors influenced the relationship between the CO conversion and the 

temperature in the WGS CMR. At lower temperatures the equilibrium constant was 

higher but the reaction rate was lower, and the permeance of the Pd-membrane was 

lower. At higher temperatures the reaction rate was higher and the permeance of the 

Pd-membrane was also higher, but the equilibrium constant was lower. Since H2 

recovery was not 100%, the equilibrium expression still applied and limited the 

conversion to what could be called the dynamic equilibrium (Augustine et al., 2011; 

Basile et al., 2001; Damle et al., 2008). The dynamic equilibrium conversion could be 
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calculated by evaluating equation 7.5 with the quadratic formula. The presence of the 

opposing factors (reaction rate, membrane permeance, and equilibrium constant) 

suggested the possibility of a maximum in the CO conversion at some intermediate 

temperature as was observed in Figure 7.5[a]. 

Figure 7.5[b] shows the H2 recovery as a function of temperature for both sets of 

experiments conducted with H2O/CO ratios of 1.6 and 2.6. The H2 recovery increased 

with increasing temperature up to 500°C (with higher H2 recovery corresponding to a 

H2O/CO ratio of 1.6) because the permeance of the Pd-membrane increased with 

temperature. Since the H2 recovery was dependent on the H2 production via the WGS 

reaction, it was possible that there would be a temperature-dependent maximum in H2 

recovery as well, but not necessarily at the same temperature as the maximum in CO 

conversion; this result occurred in the 1-D simulation results in Figure 7.5[b]. A 

maximum in the H2 recovery versus temperature was not observed in the experimental 

data (Figure 7.5[b]), possibly because experiments were not conducted at a high 

enough temperature (greater than 500°C) for it to be observed. 

Basile et al. (1996b) performed a series of six WGS CMR experiments in the 

temperature range of 250 - 360°C and observed a temperature dependent maximum in 

the CO conversion of approximately 93% at 323°C, 1 atma, a H2O/CO ratio of 0.96, and 

GHSV’s of 210 and 420 h-1, utilizing an alumina supported 0.2 �m Pd-membrane. They 

attributed the CO conversion maximum to a compromise between the kinetic reaction 

rate and the thermodynamic equilibrium of the reaction. Barbieri et al. (2008) also 

observed a temperature dependent maximum in the CO conversion of approximately 

94% at 300°C, 6.0 atma, a H2O/CO ratio of 1.0, and a GHSVSTP of 2,070 h-1, utilizing a 

60 �m unsupported Pd/Ag foil. They conducted three WGS CMR experiments at each 

of three different GHSV’s in the temperature range of 280 - 320°C and observed 

maxima for each set of data at 300°C. Both Basile et al. (1996b) and Barbieri et al. 

(2008) utilized a low-temperature shift copper-zinc oxide catalyst. Bi et al. (2009) 

conducted a series of experiments at four different temperatures in the range of 325 - 

400°C, 12.0 atma, a H2O/CO ratio of 3.0, and a GHSVSTP of 6,300 h-1, with a ceramic 

supported 1.4 �m Pd-membrane, and utilizing a custom catalyst with much higher 
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activity at intermediate temperatures. They reported a maximum CO conversion of 

98.0% at 375°C, 1.3% higher than at 400°C, which they attributed to a balance between 

the H2 permeance of the membrane increasing with temperature and the methane 

formation side-reaction which occurred on their catalyst at temperatures exceeding 

375°C. Additionally, although Basile et al. (1996b) utilized an ultra-thin membrane with 

the low H2/N2 ideal selectivity of 8, which could have influenced their results, Barbieri et 

al. (2008) employed a much thicker membrane with a nearly infinite ideal selectivity and 

obtained a very similar maximum CO conversion temperature. The results of the three 

studies (Basile et al., 1996b; Barbieri et al., 2008; Bi et al., 2009) in terms of CO 

conversion as a function of temperature are compared to our results in Figure 7.7. 

 

Figure 7.7. CO conversion as a function of temperature for WGS CMR results from 

several studies. 

 

As seen in Figure 7.7, the conditions and catalyst utilized in the present study resulted 

in a significantly higher optimal temperature than those found in the literature. The 
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temperature of the maximum CO conversion correlated to the optimal operating range 

of the catalysts used. Low-temperature shift catalyst was used by Barbieri et al. (2008) 

and Basile et al. (2006) and their results showed optimal temperatures of 300 – 325°C 

while the present study utilized a high-temperature shift catalyst and observed an 

optimal temperature of approximately 450°C. Bi et al. (2009) suggested that their 

custom catalyst was superior to iron-chrome oxide over the whole temperature range, 

but observed lower H2 yeild (H2 generated from the WGS devided by the CO feed rate) 

at temperatures exceeding 400°C due to CH4 formation. Two unrelated studies (Uemiya 

et al., 1991a; Ma and Lund, 2003) both concluded that the WGS CMR system utilizing a 

Pd membrane thinner than 10 �m and with temperatures less than 400°C would be 

kinetically limited so that no advantage would be gained by the use of a better 

membrane. While the WGS reaction was traditionally conducted at low temperatures, 

with a low GHSV, to take advantage of the equilibrium constant, the CMR allowed for 

the use of a much higher temperature, to take advantage of the higher catalytic activity 

for greater throughput.  The advantages of the WGS CMR operated at high pressure 

and high temperature have not been previously elucidated in the literature. Finally, it 

should be also pointed out that operating at a higher temperature would be preferable in 

terms of energy efficiency in the IGCC process as the WGS operating temperature 

would be closer to the coal gasifier effluent temperature. 

7.3.3. Effect of reaction pressure 

Experiments were conducted with a simulated syngas mixture (19% CO, 18% H2, 8% 

CO2, and 55% H2O), at 400°C, and a GHSVSTP of 4,500 h-1, over a range of pressures, 

utilizing the membranes AA-24R and AA-30. The CO conversion and H2 recovery for 

the set of experiments were plotted versus pressure in Figure 7.8. Since the 

membranes AA-24R and AA-30 had nearly identical permeance of 28.5 and 28.6 

m3/m2-h-atm0.5 respectively at 400°C the results were compared as a single set of data. 

The 1-D simulation (with the parameters listed in Table 7.2) was utilized to generate the 

curves overlaid in the figure. 



160 
 

 

Figure 7.8. CO conversion and H2 recovery versus reaction pressure (Membranes: AA-

24R and AA-30; 19% CO, 18% H2, 8% CO2, and 55% H2O; 400°C; 4,500 h-1). 

 

At total pressures in excess of 2.8 atma H2 was recovered from the system and the CO 

conversion was in excess of the thermodynamic equilibrium. The H2 recovery 

asymptotically approached 100% with increasing pressure, reaching 83% at a pressure 

of 13.9 atma. The CO conversion also asymptotically approached 100% from the 

equilibrium conversion of 89.6%. Since the CO conversion was in excess of equilibrium 

for all of the experiments, there was probably no reaction rate limitation. At the 

temperature of 400°C and moderate feed space velocity, the system was limited by the 

gas boundary layer resistance and the H2 permeance of the supported membrane. As 

the reaction pressure was increased, the driving force for H2 separation was increased, 

resulting in higher H2 recovery. Additionally, with the higher reaction pressure, the 

residence time, �, calculated by equation 6.16, was increased from approximately 1.4 

sec at 4.4 atma to 4.5 sec at 13.9 atma, allowing higher H2 recovery due to the longer 

contact time between the gas mixture and the membrane. 
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The use of the high reaction pressure also negated the use of a sweep gas, allowing for 

the direct production of high purity H2 at significant economic advantage (Criscuoli et al., 

2001; Damle et al., 2008). 

7.3.4. Effect of feed space velocity 

A series of WGS CMR experiments were conducted with the simulated syngas mixture 

composed of 23% CO, 22% H2, 10% CO2, and 45% H2O, at 14.4 atma, and 350, 400, 

and 450°C, and GHSV’s of 1,100 – 5,400 h-1, utilizing the membrane AA-8R. A plot of 

CO conversion versus GHSV for the experiments with temperatures of 400 and 450°C, 

overlaid with the 1-D simulation results, is shown in Figure 7.9[a]. The parameters used 

in the 1-D simulation are listed in Table 7.2. A plot of H2 recovery versus GHSV for 

those same experiments is shown in Figure 7.9[b]. A plot of retentate gas composition 

on a dry basis versus time for three of the experiments performed at 400°C with 

GHSV’s of 1,100, 3,400, and 5,400 h-1 is shown in Figure 7.9[c]. 
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[b]  

[c]  

Figure 7.9 [a] CO conversion versus GHSVSTP [b] H2 recovery versus GHSVSTP [c] 

Retentate composition (dry basis) versus time for three experiments at 400°C 

(Membrane: AA-8R, Feed: 22.7% CO, 22.0% H2, 9.9% CO2, 45.4% H2O, 14.4 atma). 
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For GHSV’s below approximately 2,200 h-1 the CO conversion results at 400°C 

appeared constant, at higher GHSV’s (3,400 – 5,400 h-1) the CO conversion decreased 

in a linear fashion. At 400°C and a GHSVSTP of 1,100 h-1 a CO conversion of 97.9% 

(15% in excess of equilibrium) was achieved with a hydrogen recovery of 87.5%. At 

450°C the CO conversion appeared to be constant at GHSV’s below approximately 

4,500 h-1, then declined at the highest GHSV (5,400 h-1). The maximum conversion 

achieved at 450°C was 97.0% (21% in excess of equilibrium) with a hydrogen recovery 

of 85.2% at a GHSVSTP of 1,100 h-1. The H2 recovery versus GHSV data, Figure 7.9[b], 

displayed the same crossing as that was observed in the CO conversion versus GHSV 

data, Figure 7.9[a], but occurring at a slightly higher GHSV (approximately between 

2,100 – 3,400 h-1). Oddly however, at high GHSV and 450°C the H2 recovery did not 

appear to decrease linearly, instead it seemed to remain level at approximately 78% up 

to a GHSVSTP of 5,400 h-1. The steady state behavior of the reactor was evident from 

the plot of retentate composition over time in Figure 7.9[c]. Measurements of the 

retentate composition, the retentate flow, and the permeate H2 flow all varied by less 

than 5% over the course of 5 hours.  

At GHSV’s below approximately 1,700 h-1 a higher CO conversion was achieved at the 

lower temperature (400°C) while at GHSV’s above approximately 1,700 h-1, higher CO 

conversion was achieved at the higher temperature (450°C). The reason for the 

crossing of these two curves, between approximately 1,100 – 2,100 h-1, was the 

balance of temperature dependent factors which influenced the CO conversion in the 

WGS CMR: kinetic reaction rate, H2 permeance of the membrane, gas phase mass 

transfer, and the thermodynamic equilibrium. At a low GHSV the CO conversion was 

limited by the driving force of H2 across the membrane, such that the system was very 

close to the dynamic equilibrium as defined by equation 7.5 (Iyoha et al., 2007a). The 

equilibrium constant, which was higher at 400°C, allowed for a higher CO conversion. At 

a high GHSV the CO conversion was limited by the kinetic reaction rate, the membrane 

permeance, and the gas phase mass transfer resistance, with both the membrane 

permeance and kinetic reaction rate being higher at higher temperatures. Some 

qualitative discussion can be made about these factors based on the data presented. 

Since the H2 recoveries were very high at low GHSV’s (below approximately 1,700 h-1 at 
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400°C and below approximately 4,500 h-1 at 450°C) the limiting factor was most likely 

the driving force of H2 across the membrane; higher conversion being prevented by a 

minimal 1 atma of H2 pressure in the reaction mixture. At the lowest GHSV’s, if vacuum 

was applied or a sweep gas admitted to the permeate side, further H2 would be 

removed/recovered and CO conversions of very close to 100% would be observed. The 

experiments performed at high GHSV’s (above 1,700 h-1 at 400°C and above 4,500 h-1 

at 450°C) were probably limited by the gas phase mass transfer resistance since the 

experiments exceeded equilibrium conversion, but still had H2 recoveries of significantly 

less than 90%. 

It should be pointed out that even though the H2 recovery was lower at high GHSV, the 

H2 flux through the membrane was higher; at 450°C the H2 flux was 2.4 and 10.5 m3/m2-

h at 1,100 and 5,400 h-1 respectively. Process modeling software should be utilized 

during the design phase of an IGCC plant to determine the optimal GHSV considering 

the trade-off between H2 recovery and H2 flux. In order to achieve a higher H2 recovery 

while still achieving a high H2 flux at high throughput, a longer reactor should be 

employed with a higher flow velocity such that the Reynolds number of the flow would 

be higher for an equivalent GHSV. This would result in a lower gas phase mass transfer 

resistance. 

An anomaly was observed in the characterization of the membrane after the reaction 

experiment conducted at 450°C and a GHSVSTP of 3,300 h-1. The H2 permeance of the 

membrane, tested immediately after the reaction was found to be 26% lower than 

before the experiment. The H2 permeance was observed to slowly recover over the next 

48 hours. It was possible that a short disruption in the H2O feed pump (an air bubble 

potentially) caused a significantly lower H2O/CO ratio and therefore coke formation on 

the membrane. The coke would then slowly be reformed by steam during the remainder 

of the reaction, and would slowly be converted to CH4 after the re-introduction of pure 

H2. Evidence of methane presence was not sought after the reaction, and no coke was 

observed on the membrane after the series of reactions were completed. It seems likely 

that the lower permeance of the membrane during that particular reaction experiment 
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caused the apparent discontinuity in the experimental H2 recovery data at 450°C and a 

GHSVSTP of 2,200 – 3,400 h-1 in Figure 7.9[b]. 

The high mol fraction of CO2 in the retentate stream, already at the elevated pressure of 

14.4 atma makes the WGS CMR very attractive for the potential IGCC process with CO2 

sequestration. The ability of the WGS CMR to deliver a CO2 enriched stream, already at 

elevated pressure has the potential to reduce the compression cost for sequestration by 

over 50% (2.4% net power savings over acid gas removal followed by compression 

{Klara et al., 2007; Gray et al., 2009}). 

The simulation results correlated well with the CO conversion results at all temperatures 

and GHSV’s in Figure 7.9[a], differing by only as little as 1.7% at 450°C and high GHSV. 

There was, however, a discrepancy of up to 13% with the two sets of H2 recovery 

results in Figure 7.9[b]. The discrepancy between the H2 recovery simulation and 

experimental data was the greatest at high GHSV’s. The discrepancy was not so great 

(approximately 4%) at the lowest GHSV’s, but still significant. Since the aspect ratio 

(reactor length divided by characteristic width) was only slightly greater than ten, the 

radial concentration gradient may have had an impact on the H2 recovery (Tiemersma 

et al., 2006). Unfortunately the only way to correct that error would be to utilize a 2-D 

model. Significantly, the qualitative comparison of the model to the experimental data 

showed the same trend with regard to each aspect of the CMR operating parameters: 

temperature, pressure, and feed rate. 

At a GHSVSTP of 4,500 h-1 an additional experiment was conducted at a temperature of 

350°C. Further experiments at 350°C were not conducted due to the declining 

selectivity of the membrane. The results of the three experiments with a GHSVSTP of 

4,500 h-1 as well as the results of the 1-D simulation (parameters listed in Table 7.2) for 

those same conditions are shown in Figure 7.10.  
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Figure 7.10. CO conversion and H2 recovery versus temperature (Membrane: AA-8R, 

Feed: 22.7% CO, 22.0% H2, 9.9% CO2, 45.4% H2O, 14.4 atma, GHSVSTP = 4,500 h-1). 

 

The CO conversion of 57.1% at 350°C was significantly below the equilibrium 

conversion due to the low reaction rate at that temperature. At 400 and 450°C, however, 

the conversion increased to 89.2 and 95.4%, 6.2 and 18.9% in excess of the equilibrium 

conversion respectively. The simulation results correlated well with the experimental 

results at 400 and 450°C but deviated by as much as 20% at 350°C in terms of H2 

recovery. The simulation results indicated the likelihood of a maximum for both CO 

conversion and H2 recovery with regard to the temperature at approximately 460 and 

470°C respectively, although neither maximum was observed experimentally (as 

experiments in this series were not conducted above 450°C). 

The H2 recovery of 49% was considerably lower at 350°C since much less H2 was 

produced. The definition of experimental H2 recovery, equation 7.2, considered both the 

H2 and the CO in the feed to be potential sources of H2, so that if CO conversion was 

low, H2 recovery must also be low. Additionally, a higher partial pressure of H2 remained 

in the retentate at 350°C (2.3 atma) than for 400 or 450°C (1.8 and 1.6 atma 

respectively) suggesting that the permeance of the membrane was considerably lower 
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at 350°C. As was discussed in Chapter 6, reversible adsorption by the WGS species 

significantly lowered the membrane permeance at temperatures of less than 400°C, 

accentuating the need to operate at higher temperatures. 

7.4. Conclusions 

The advantages of the WGS CMR incorporating a supported Pd-membrane and 

operating at high temperatures and high pressures have been investigated. Utilizing 

both a CO/steam feed and a synthetic syngas feed, CO conversions as high as 98% 

were achieved while simultaneously recovering up to 88% of the H2 at the relatively high 

temperature of 450°C. 

A lower H2O/CO ratio of 1.6 was desirable for the sake of higher H2 recovery; however, 

gradual coke formation occurred on the membrane surface, lowering the H2 recovery 

over time for many experiments with H2O/CO ratios of less than 2.6. The effect of the 

reaction pressure was investigated and it was found that both CO conversion and H2 

recovery were strongly dependent on reaction pressure in the range of 3 - 10 atma, and 

reaching 98 and 83% respectively at 13.9 atma. The effect of the operating temperature 

on the CO conversion was investigated and it was found that the optimal operating 

temperature for high CO conversion was dependent on the GHSV and the activity range 

of the catalyst, high GHSV and a high-temperature shift catalyst leading to a high 

optimal operating temperature. The effect of the feed rate on the CO conversion was 

also considered with a synthetic syngas feed. While at the lower temperature of 400°C a 

high CO conversion could only be achieved at the low GHSVSTP of 1,100 h-1 due to the 

combination of low reaction rate and gas boundary layer mass transfer resistance. At 

the higher temperature of 450°C, a CO conversion as high as 94% was achieved with a 

GHSVSTP of 5,400 h-1, indicating that with a higher operating temperature, significantly 

higher throughput could be achieved with a minimal reduction in CO conversion. 
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8. COKE FORMATION IN THE WGS CMR 

8.1. Introduction 

While coke formation is not typically a concern in the WGS PBR due to the high 

H2O/CO ratios employed as well as the coking resistance of both iron-chrome oxide and 

copper-zinc oxide catalysts (Newsome, 1980), coke formation can be a significant 

problem in the WGS Pd-CMR since a lower H2O/CO ratio is preferred (as discussed in 

Chapter 7, Section 7.3.1) and since the Pd-surface most likely has some catalytic 

propensity for coke formation (Li et al., 2007b; 2008b). Coke formation can block active 

sites on the Pd-surface resulting in significant H2 permeance inhibition. Additionally, 

several studies have suggested that carbon may dissolve in the Pd-lattice to some 

extent, causing increased strain and therefore leak growth in Pd-membranes (Selman et 

al., 1970; Li et al., 2007b). 

The objective of this chapter was therefore to investigate the set of conditions which 

favored coking in order to develop a better understanding of the formation mechanisms 

occurring in the WGS CMR system. 

8.2. Background 

8.2.1. Thermodynamics of coke formation 

Two potential routes of coke formation may occur under WGS conditions; CO cracking 

(equation 8.1, also known as the Boudouard reaction, also known as CO 

disproportionation) and CO reduction by H2 (equation 8.2). 

 ��� � ���� � ���   �H = -125.2 kJ/mol   8.1 

 �� � �� � ���� � ���  �H = -84.0 kJ/mol   8.2 

The equilibrium expressions for these reactions are given by equations 8.3 and 8.4 

respectively. 

 1� � IJKM
IJKM          8.3 
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 1& � ILMK
ILMIJK         8.4 

where Pi [atma] is the partial pressure of each gas species, and K1 [atm-1] and K2 [atm-1] 

are the equilibrium constants relating to equations 8.1 and 8.2 respectively. Note that 

the equations were simplified by assuming the activity of solid carbon to be one.  

Carbon formation is thermodynamically favored by these reactions for a given gas 

composition when either of the ratios PCO2/P2
CO or PH2O/PH2-PCO exceed their respective 

equilibrium constants. The equilibrium constants can be calculated by their relationship 

with the change in Gibbs free energy of the reaction, given by equation 8.5. 

 1� � \���� 89�          8.5 

where �Gx [kJ/mol] is the change in Gibbs free energy for reaction x and can be found 

listed for each species in Appendix A. 

The structure of equations 8.3 and 8.4 indicates the relationship between the gas 

composition and the propensity towards coke formation. Coke formation will be favored 

by higher partial pressures of CO and/or H2. Coke formation will be slowed or reversed 

by increased partial pressure of H2O (due to steam reforming of coke) or CO2 (due to 

dry reforming of coke). Since the Gibbs free energies for reactions 8.1 and 8.2 (-52.7 

and -39.0 kJ/mol respectively) at 400°C were negative, coke formation will be more 

thermodynamically favored at lower temperatures. 

It should be noted that when equation 8.2 is subtracted from 8.1 (or vice versa) the 

result is the WGS reaction, therefore �GWGS = �G1 - �G2 and KWGS = K1/K2, and for a 

system at WGS equilibrium, both reactions 8.1 and 8.2 will proceed in the same 

direction. When a given gas composition is not at WGS equilibrium the potential exists 

that coke could be simultaneously deposited by one reaction and reformed by the other, 

with the net rate being dependent on which process is dominant. Jorgensen et al. 

(1995) suggested that net carbon formation should be expected if favored by equations 

8.3 or 8.4, assuming both the reforming and shift reactions had reached equilibrium, 

even for gas mixtures not at equilibrium (such as at the reactor inlet). 
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8.2.2. Kinetics of coke formation 

Even when thermodynamically favored, coke does not readily form from the WGS 

mixture at 100 - 500°C without the presence of a catalyst. Additionally, iron-chrome 

oxide and copper-zinc oxide catalysts are known to be inactive towards the coke 

formation reactions (Newsome, 1980). There is a significant body of literature, however, 

suggesting that the palladium surface is catalytically active towards coke formation 

(Doering et al., 1982; Malciejewski and Baiker, 1994; Krishnankutty and Vannice, 1995; 

Albers et al., 2001; Li et al., 2007b). Doering et al. (1982) first observed that the surface 

activity (for reversible adsorption of CO) of nanometer-sized Pd-particles supported on 

mica, decreased gradually over time at 200°C. They utilized core-electron-energy-loss 

spectroscopy to demonstrate that carbon had deposited onto the Pd surface indicating 

that the Pd surface was catalyzing carbon formation via equation 8.1. Note that the 

surface area available from nano-meter sized particles was very large (approximately 

100 m2/g for 5 nm spherical particles) so the carbon formation rate was probably 

several orders of magnitude greater than that which might occur on a Pd-membrane 

surface. Malciejewski and Baiker (1994) prepared a zirconia supported Pd-catalyst by 

oxidation of a glassy PdZr2 alloy and exposed it to CO in a thermoanalytical balance 

and monitored the effluent gas by mass spectroscopy. They observed a weight gain of 

23%, occurring between 375 and 475°C and a corresponding release of CO2, indicating 

that CO disproportionation, 8.1, was occurring. The authors further showed that coke 

formation from CO was detectable at a temperature as low as 101°C. 

Based on the Langmuir adsorption model, the formation of coke from CO could occur 

via the mechanistic pathway given by equations 8.6 - 8.9: 

 1) ���	� �<= �� <       8.6 

 2) �� <= � < �� <       8.7  

 3) �� < �� <= ��� <       8.8  

 4) ��� <= ����	� �<       8.9 

Neurock (1999) demonstrated that the rate limiting step was Step 2 (equation 8.7, CO 

dissociation) with an activation energy of 264 kJ/mol. The overall reaction rate based on 
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Step 2 was given by equation 8.10. The forward rate constant, k2 [s-1], could then be 

estimated by equation 8.11. 

�& � "&ò !ò< + "�&ò ò! � "& ¡��
IJKM ÒìIJK4 �ÇJ
�PìIJKP
IJKM ¢&1�# ! + "�&ò 
IJKM

ÒìIJK 8.10 

 "& � ¾6�2� 894         8.11 

where �i was the fractional coverage of each species (CO, CO2, O, and C), �* was the 

fraction of unoccupied sites, Kj was the equilibrium constant for the steps 1, 3, and 4, 

and A [s-1] was the frequency factor. The frequency factor was estimated as 9.77*1012  

s-1 based on the vibrational frequency of the Pd-C-O bending mode (330 cm-1) because 

the CO molecule would have to bend to mostly flat on the Pd-surface in order to reach 

the transition state (Alfonso et al., 2006). At 400°C the forward rate constant, k2, was 

3.15*10-8 s-1 or 0.000114 h-1 which was exceedingly low, resulting in approximately 50% 

surface coverage of carbon after 4,400 hours. 

Given that the several literature studies discussed above have shown coke formation at 

even lower temperatures, there is probably a further catalytic aspect to the coke 

formation that is yet uninvestigated such as Pd-support interaction. Johanek et al. 

(2000) demonstrated that CO disproportionation occurred on alumina supported Pd-

clusters, but not on pure Pd or pure alumina samples indicating that the interface 

between the Pd and the support was more catalytically active than the Pd-surface. 

Since the Pd-clusters were approximately 6 nm in size, there was certainly several 

orders of magnitude more contact area between Pd-clusters and support material than 

would be possible for a Pd-membrane surface. 

Alternatively, Rupprechter et al. (2004) conducted an XPS study of coke formation on 

Pd(111) and roughened Pd surfaces, and found that coke formation only occurred on 

the roughened surface and when H2 was present, suggesting that reaction 8.2 

(reduction of CO) was the dominant coke formation pathway at low temperatures 

(25°C). They proposed that coke formation occurred through a formyl intermediate 

pathway, resulting in CH3OH and CHX-C bond formation. 
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8.2.3. Solubility of carbon in palladium 

Several papers have reported on the formation of a Pd/C-phase when palladium 

samples have been exposed to gas phase carbon species (CO, ethylene, and 

acetylene) and/or solid samples of graphitic carbon. Several studies are in agreement 

that for temperatures exceeding approximately 550°C a relatively low concentration (0.3 

- 8 at%) of carbon is soluble in the palladium lattice, increasing with temperature, as 

shown in the phase diagram in Figure 8.1 (Siller et al., 1968; Selman et al., 1970; Yang 

et al., 1990; Yokoyama et al., 1997; Okamoto, 2007). Additionally, several studies have 

reportedly synthesized a Pd/C-phase with 10 – 15 at% carbon at temperatures from 100 

– 500°C depending on the source of carbon (Stachurski and Frackiewicz, 1985; 

Ziemecki et al., 1985; 1987; Lamber et al., 1990; Maciejewski and Baiker, 1994; Hsiung 

et al., 1999; Li et al., 2007b). Unfortunately, no studies have found evidence of carbon 

solubility in both temperature regimes or even attempted to apply the same analytical 

techniques to both regimes to resolve this discrepancy. 

 

Figure 8.1. Pd/C phase diagram (Okamoto, 2007). 
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Additionally, the carbon atoms are mobile to some extent in the palladium lattice as 

demonstrated by several studies. Selman et al. (1970) sealed graphite into palladium 

capsules (with a wall thickness of 500 �m), then heated them in vacuo to 1,400°C; they 

observed ‘rapid’ formation of a black surface coating which they identified as carbon. 

Ziemecki et al. (1988) constructed a type of membrane reactor with a 25 �m thick 

palladium foil, exposing the upstream side of the membrane to ethylene and the 

downstream side to H2O. They found that H2, CO and CO2 were generated on the 

downstream side of the membrane at temperatures between 150 - 375°C indicating that 

ethylene was catalytically decomposed on the upstream side of the membrane, carbon 

atoms (and possibly H atoms) diffused through the membrane, and were then 

catalytically reformed by H2O on the downstream side of the membrane. Based on the 

flow rates of CO and CO2 on the downstream side of the membrane, they calculated the 

diffusion coefficient of carbon in palladium as 5.0*10-12 cm2/s at 310°C (approximately 6 

orders of magnitude lower than that of hydrogen at the same temperature). Hsiung et al. 

(1999) challenged a commercial Johnson Matthey H2 purifier (incorporating a 120 �m 

thick Pd/Ag-alloy membrane of unknown composition and operating at 375°C) with feed 

mixtures composed of H2 and 5 – 60 ppmv CO, CO2, and CH4. When the H2/CO and 

H2/CO2 feed mixtures were admitted they observed up to 50 ppbv of CH4 in the purified 

H2 stream after 90 minutes indicating that both the CO and CO2 were dissociating on 

the membrane surface, and that carbon was diffusing through the dense alloy. When 

they supplied H2/CH4 feed mixtures to the purifier, less than 4 ppbv of CH4 was 

measured in the purified H2 stream indicating that the membrane had nearly infinite 

selectivity. The concentration versus time profile in their study was similar to a 

breakthrough curve, leading to an estimated diffusion coefficient for carbon in the 

Pd/Ag-alloy of 6.7*10-9 cm2/s. Yang et al. (1990) used thermogravimetric analysis to 

simultaneously estimate the solubility and diffusivity of carbon in palladium at 550 - 

700°C. They found relatively low solubility (0.32 – 0.71 at% at 550 and 700°C 

respectively) and diffusivity ranging from 5.0*10-9 to 6.5*10-8 cm2/s at 550 and 700°C 

respectively. Yokoyama et al. (1998) determined the diffusivity of carbon in palladium in 

the high temperature regime (810 – 1,200°C) to be given by equation 8.12. 
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 � ¡½$M
� ¢ � �5\�2�n89        8.12 

where D0 = 0.1995 cm2/s and EA = 132.0 kJ/mol. 

The diffusivity of carbon in palladium is plotted in Figure 8.2 on a logarithmic scale 

versus the inverse absolute temperature for the four studies in which it was estimated. 

The diffusivity value calculated from Ziemecki et al. (1988) falls surprisingly close to 

(approximately 1-order of magnitude greater than) that projected by Yokoyama et al. 

(1988). The large discrepancy with the diffusivity derived from Hsiung et al. (1999) 

cannot be rightly compared since the commercial membrane utilized was of an 

unspecified composition and could therefore have had a much different diffusivity of 

carbon. 

 

Figure 8.2. Diffusivity of carbon in palladium obtained from experimental studies. 

 

By x-ray diffraction it has been established by several authors that the Pd/C-phase (with 

10 – 15 at% C) has a lattice parameter of 3.99 Å, significantly greater than the lattice 
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parameter of pure Pd (3.89 Å), and close to that of the -H/Pd phase (4.02 Å). Similarly 

to the �/ H/Pd phase transition, the formation of the Pd/C-phase has been associated 

with surface distortions and leak growth in thin Pd-layers (Selman et al., 1970; Galuszka 

et al., 1998; Li et al., 2007b). Li et al. (2007b) reported on the formation of the Pd/C-

phase (10 at% C) from exposure to 33% CO in H2 at 500°C. They found that the 

deposition of carbon reduced the N2 leak, but that after repeated cycles of carbon 

deposition and removal, the N2 leak increased significantly. Galuszka et al. (1998) 

tested alumina supported Pd-membranes under methane partial oxidation and methane 

dry reforming conditions, and observed significant deposition of carbon on the Pd-

surface at 550 – 650°C. They also observed swelling and development of porosity in the 

Pd-layer resulting in membrane failure which they associated with the carbon formation. 

Lamber et al. (1990) deposited a thin film of Pd on an amorphous carbon by vacuum 

condensation at 50°C. They measured the Pd-lattice constant to be 2.8% higher than 

the literature value. Upon heating to 425°C under vacuum they observed the lattice 

constant change to the expected 0.390 nm and a film of carbon appear by TEM on the 

Pd-particle surfaces which they interpreted as the decomposition of the Pd/C-phase. 

8.3. Experimental 

8.3.1. Thermodynamic calculations 

The propensity for carbon formation was determined by the minimization of Gibbs free 

energy for the system including the species CO, H2O, CO2, H2, C(s), O2, CH4, C2H6, 

C2H4, C2H2, CH3OH, CH2O, CHOOH, and CO(OH)2 and following the method described 

by Ma and Shipman (1972) and more recently by Lwin (2000). Starting conditions such 

as those described in Table 8.1 were utilized and the above compounds were allowed 

to form via any stoichiometric pathway. For conditions in which coke formation was 

thermodynamically favored, the final moles of carbon in the system would greater than 

zero, indicating net carbon formation. For conditions in which coke formation was 

thermodynamically disfavored, the final moles of carbon would remain equal to zero. 
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Table 8.1. Starting composition for the determination of coke formation. 

 C(s) [mol] CO [mol] H2O [mol] CO2 [mol] H2 [mol] 
CO + H2O 0 1.0 1.0 0 0 
Syngas 0 1.0 1.0 0.435 0.969 

 

The syngas described in Table 8.1 was the same dry gas composition (41.6% CO, 

40.3% H2, and 18.1% CO2) as that used for experiments in Chapter 7, discussed in 

Section 7.2, prepared by Middlesex Gases & Technologies Inc (Everett, MA). 

The attainment of equilibrium was also confirmed by the calculation of the change in 

chemical potential, �
 [kJ/mol], equal to zero for each reaction: 8.1, 8.2, and the WGS. 

The Excel spreadsheet for the minimization of Gibbs free energy is included in 

Appendix E. 

8.3.2. Pd-coupon coking 

The coupons tested in this chapter were prepared according to the procedure described 

in Chapter 3, Section 3.3. The coupons were approximately 11 �m Pd on non-porous 

Hastelloy. The coupons were exposed to gas mixtures in which coke formation was 

thermodynamically favored. The coking conditions are summarized in Table 8.2 for all of 

the coupons tested. An annealed and polished Pd-foil sample was also exposed to 

coking conditions as detailed in Table 8.2. 

 

Table 8.2. Coupon coking conditions (P = 14.4 atma). 

Coupon Feed Temp (°C) Time (h) Catalyst 
C-1, C-2 100% H2 400 100 Quartz sand only 
C-3, C-4 10% CO, 90% H2 450 100 Quartz sand only 
C-5, C-6 66% CO, 33% H2O 400 100 Quartz sand only 
C-7, C-8 66% CO, 33% H2O 400 50 Fe/Cr-oxide 
Pd-Foil 42% CO, 40% H2, 

18% CO2 
400 48 No packing material 
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After coking, the coupons were first analyzed by visual inspection, then by XRD to 

determine if any changes in the lattice constant had occurred. 

8.4. Results and discussion 

Evidence of coke formation was first observed in the WGS CMR due to the gradual 

decrease in H2 recovery over time for several reaction experiments with the membrane 

AA-5 as was discussed in Chapter 7 and seen in Figure 8.3. Coke formation was not 

expected to be problematic since several packed-bed experiments were conducted with 

similar feed conditions and no indications of coke formation on the catalyst were 

observed. After the series of experiments was completed, the membrane was removed 

from the system and coke was observed on the membrane surface by visual inspection 

as seen in Figure 8.4. 

 

Figure 8.3. CO conversion and H2 recovery versus time (Membrane: AA-5, 450°C, 14.4 

atma, H2O/CO = 1.1, and GHSVSTP = 1,600 h-1). 
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Figure 8.4. Membrane AA-5 appearance after use in WGS experiments. 

 

Over the course of WGS CMR testing, several experiments displayed the same gradual 

decline as was observed in Figure 8.3 suggesting that coke formation was also 

occurring on the membrane surfaces in those experiments. In the WGS CMR 

experiments where coke formation was observed on the membrane, none was 

observed on the catalyst by visual inspection. In almost all of the experiments where 

evidence of coking was observed, CH4 was also observed up to 1% in the dry retentate 

gas (CH4 was not observed in the other cases), suggesting that reverse methane 

cracking, equation 8.13, was occurring. 

 ���� �T��� � ���  �H = -122 kJ/mol    8.13 

In one instance, coke formation was also observed to cause a much slower decline in 

H2 recovery as is shown in Figure 8.5[a]. In that case, a short-term (5 hours) experiment 

indicated apparently stable behavior and so a longer experiment was conducted for the 

purposes of leak growth measurement (to be discussed in Chapter 10), but significant 

reductions in H2 recovery and CO conversion were observed. After the reaction, H2 was 
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sent to the membrane at 400°C and the H2 permeance was observed to gradually 

increase from 15 m3/m2-h-atm0.5 to its previous level (21 m3/m2-h-atm0.5) over 100 

hours, as shown in Figure 8.5[b], due most likely to the gradual reduction of coke to 

methane by equation 8.13. 

[a]  

[b]  

Figure 8.5. Evidence of coking for the long-term experiment with membrane IM-79 [a] 

WGS CMR results (23% CO, 22% H2, 10% CO2, 45% H2O; 400°C; 14.6 atma; GHSVSTP 

= 2,100 h-1) [b] Pure H2 permeance at 400°C before and after the reaction experiment. 
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The feed conditions for all of the WGS CMR experiments are plotted in Figure 8.6 

indicating where evidence of coke formation was observed. Three of the experiments 

are labeled in Figure 8.6 as long-term (greater than 50 hours) and the rest were short-

term (less than 10 hours).  

 

Figure 8.6. PBR and CMR experimental results indicating evidence of coke formation. 

 

As can be seen in the Figure 8.6, coke formation occurred on the membranes at 

temperatures of 450°C and below, and with H2O/CO ratios of 2.0 and below. In the 

WGS system, the removal/recovery of H2 from the reaction mixture should have had the 

effect of reducing coke formation by consuming the reactants (CO and H2) in both 

equations 8.1 and 8.2. In contrast, for the MSR system, the removal/recovery of H2 from 

the reaction mixture increased the propensity for carbon formation necessitating a 

higher H2O/CH4 ratio when compared to the conventional PBR (Galuszka et al., 1998; 

Jorgensen et al., 1995; Pedernera et al., 2007). In that system the methane cracking 

reaction, given by equation 8.14 (the reverse of equation 8.13), was prevalent, which 

was thermodynamically favored at higher temperatures. 
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 ��� � ��� � ����        8.14 

The removal of H2 in the MSR system pushed the reaction 8.14 towards coke formation 

because H2 was a side-product in that reaction. While the WGS equilibrium was also 

being achieved in the MSR, it was much less significant at the higher temperatures 

(800°C) at which MSR has typically been conducted (Pedernera et al., 2007). The 

reverse methane cracking reaction, or hydrogenation of coke (equation 8.13), potentially 

explains the CH4 observed in the retentate which coincided closely with other evidence 

of coke formation. Unfortunately, CH4 was not looked for during the gradual recovery of 

the H2 permeance for MA-79 (Figure 8.5[b]). 

Concentration polarization resulted in depletion of H2 from the membrane surface, 

which should have further reduced coke formation in that region. Concentration 

polarization also resulted in a greater concentration of CO in the region close to the 

membrane surface, such that a greater propensity towards coke formation might have 

been expected. Fortunately, the species CO2 and H2O were also concentrated in that 

region, nullifying the effect of increased CO concentration. Since the Pd-surface was 

catalytically active towards the WGS reaction, it could be assumed that the gas mixture 

there would be at WGS equilibrium, such that the reactions 8.1 and 8.2 would both 

proceed in the same direction (Jorgensen et al., 1995). 

8.4.1. Thermodynamic analysis of coke formation in the WGS CMR 

For the CO/H2O and syngas mixtures in the PBR, no coke formation was predicted by 

the minimization of Gibbs free energy over the entire range of experimental conditions. 

The equilibrium compositions of the CO/H2O and syngas mixtures for both low and high 

steam to CO ratios and at both the minimum and maximum temperatures (300 and 

500°C) for the range of experiments conducted are listed in Table 8.3. 
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Table 8.3. Equilibrium mixtures of syngas determined by the minimization of Gibbs free 

energy. 

Initial H2O/CO Temp(°C) C(s) CO H2O H2 CO2 CH4 
CO + H2O 1.0 300 0 0.007% 33.3% 0.12% 50.0% 16.6% 
CO + H2O 1.0 500 0 0.28% 32.8% 0.90% 49.7% 16.2% 
CO + H2O 3.0 300 0 0.003% 71.3% 0.18% 21.5% 7.1% 
CO + H2O 3.0 500 0 0.082% 70.3% 1.3% 21.5% 6.7% 
Syngas 1.0 300 0 0.004% 40.6% 0.15% 39.0% 20.3% 
Syngas 1.0 500 0 0.22% 40.0% 1.1% 38.8% 19.9% 
Syngas 3.0 300 0 0.002% 67.4% 0.20% 21.4% 11.1% 
Syngas 3.0 500 0 0.094% 66.4% 1.4% 21.5% 10.7% 

 

The concentration of the species O2, C2H6, C2H4, C2H2, CH3OH, CH2O, CHOOH, and 

CO(OH)2 were found to drop below 0.01% in the gas phase for all sets of starting 

conditions listed in Table 8.3. A significant amount of CH4 was estimated for the 

equilibrium mixtures because reverse methane steam reforming, equation 8.15, was 

strongly favored at temperatures of less than approximately 600°C. No CH4 was 

observed experimentally for the PBR cases because of the high selectivity of iron-

chrome oxide catalyst towards the WGS reaction (Newsome, 1980). 

 ��� � ��� � ��� � ����       8.15 

No coke formation was predicted by the Gibbs energy minimization for any of the 

starting compositions since sufficient H2 was available in each case to generate CH4 via 

equation 8.13. Based on the thermodynamic analysis, coke formation probably occurred 

as an intermediate phase which was not at equilibrium considering the reactions 8.13 

and 8.15 since the rates of those reactions were very low in the temperature range 

tested. 

8.4.2. Kinetic evaluation of coke formation 

As discussed in Section 8.2.2, the kinetic rate for coke formation was almost certainly 

very low. However, only a very small quantity of coke on the membrane surface had the 

potential to obstruct the H2 flux considerably. Unfortunately, the quantity of coke on the 

membrane AA-5 (pictured in Figure 8.4) was not measureable since the membrane was 



 

irreversibly sealed with a stainless steel ferrule. Several coupons were exposed to 

coking conditions (as listed in 

coke formation. Astonishingly, coke was not observed to a significant extent on any of 

the coupons by visual inspection. The coupons which had the most coke embedded on 

the surface were C-7 and C-8, which were loaded with iron

are shown in Figure 8.7. During the coking of C

occurred at the inlet of the catalyst bed. A plug of coke weighing appro

was lodged at the inlet of the catalyst bed but not encompassing either of the coupons. 

The slight discoloration in the middles of the coupons (shown in 

coke formation which was undetectable by

less than 0.1mg. The coke observed on the Pd

could not be measured.  

Figure 8.7. Coupons C-7 and C

used catalyst (lower right). 

 

The coupons were also examined by XRD to determine if any change in the lattice 

parameter had occurred due to dissolution of carbon into the Pd

1985; 1987). The full XRD spectrum of the coupon C
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a stainless steel ferrule. Several coupons were exposed to 

n Table 8.2) in an effort to better understand the rate of 

coke formation. Astonishingly, coke was not observed to a significant extent on any of 

the coupons by visual inspection. The coupons which had the most coke embedded on 

8, which were loaded with iron-chrome oxide catalyst,

. During the coking of C-7 and C-8 significant coke deposition 

occurred at the inlet of the catalyst bed. A plug of coke weighing appro

was lodged at the inlet of the catalyst bed but not encompassing either of the coupons. 

The slight discoloration in the middles of the coupons (shown in Figure 

coke formation which was undetectable by the microbalance, indicating that it weighed 

. The coke observed on the Pd-foil was equally slight and 

 

7 and C-8 along with coke plug blocking inlet (lower left) and 

The coupons were also examined by XRD to determine if any change in the lattice 

due to dissolution of carbon into the Pd-lattice (Ziemecki 

RD spectrum of the coupon C-3 is shown in Figure 

a stainless steel ferrule. Several coupons were exposed to 

) in an effort to better understand the rate of 

coke formation. Astonishingly, coke was not observed to a significant extent on any of 

the coupons by visual inspection. The coupons which had the most coke embedded on 

chrome oxide catalyst, and 

8 significant coke deposition 

occurred at the inlet of the catalyst bed. A plug of coke weighing approximately 1.1 g 

was lodged at the inlet of the catalyst bed but not encompassing either of the coupons. 

Figure 8.7) was minor 

the microbalance, indicating that it weighed 

foil was equally slight and the weight 

 

blocking inlet (lower left) and 

The coupons were also examined by XRD to determine if any change in the lattice 

lattice (Ziemecki et al., 

Figure 8.8[a] and an 
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overlay of the high definition spectra for the Pd(111) diffraction angle of C-1, C-3, and a 

green (as prepared) coupon are shown in Figure 8.8[b]. The coking results from all of 

the coupons in terms of the Pd(111) diffraction angle and visual appearance are listed in 

Table 8.4. 

[a] [b]  

Figure 8.8. XRD scans of the Pd-coupons [a] C-3: 2� = 10 – 150° [b] C-1, C-3, and a 

green (freshly prepared coupon): 2� = 38 – 42°. 

 

Table 8.4. Coupon coking results. 

Coupon Feed 2�Pd (111) (°) Visual appearance 
C-1, C-2 100% H2 40.15 No coke 
C-3, C-4 10% CO, 90% H2 40.27 No coke 
C-5, C-6 66% CO, 33% H2O 40.27 No coke 
C-7, C-8 66% CO, 33% H2O 40.13 Slight coke at middle 
Pd-Foil 42% CO, 40% H2, 

18% CO2 
40.11 Slight coke at inlet 

end 
 

As was clear from the results listed in Table 8.4, the Pd(111) diffraction angle was 

almost perfectly identical, and in agreement with literature values in all cases tested 

(Ziemecki et al., 1985), suggesting that no Pd/C-phase had formed. It should be noted 

that the diffraction peaks observed for the green coupon were considerably broader due 

to microstrain incorporated into the electroless deposited layer (Guazzone et al., 2006). 
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The relaxation of that strain at temperatures above 300°C was apparent in the sharper 

diffraction peaks of all the coupons exposed to higher temperatures. 

The lack of coke formation on coupons C-5, C-6, C-7, and C-8 seemed to contradict the 

results from the membrane AA-5, in which significant deposits were observed. A 

H2O/CO ratio of 0.5 was utilized for the coupons (significantly lower than the 

experiments with the membrane AA-5), which was thought likely to further increase the 

prevalence of coking. This would seem to suggest that either the separation of H2 or the 

presence of the catalyst was responsible for the coke formation. As was discussed in 

Section 8.4.1, the separation of H2 probably reduced the extent of coke formation. Also, 

no evidence of coke formation was observed in the PBR experiments, supporting the 

literature conclusion that the iron-chrome catalyst was not active towards coke 

formation (Newsome, 1980). It was also noted that there was no shifting of the Pd-fcc 

diffraction peaks, indicating no (or very little) dissolution of carbon into the Pd-lattice. 

The coking conducted by Li et al. (2007b) was accomplished with nearly identical 

conditions to the coking of C-3 and C-4, after which they observed a shift in the Pd(111) 

to approximately 39.0°, indicating formation of the Pd90C10-phase. 

The lack of detectable coke formation on the coupons is in agreement with the 

extremely low rate indicated by the equation 8.11. A possible explanation for the 

discrepancy between the coupon experiments and the relevant literature was that the 

Pd-catalyst interaction or contact allowed for increased catalysis of coking. Johanek et 

al. (2000) demonstrated that CO disproportionation occurred on alumina supported Pd-

clusters, but not on pure-Pd or pure alumina samples. Some other literature works also 

showed coke formation with mica and zirconia supported Pd-clusters at even lower 

temperatures of 100 and 200°C (Doering et al., 1982; Malciejewski and Baiker, 1994). 

The Pd-clusters in those studies had significantly greater surface area than the Pd-

membrane and therefore significantly more contact area between Pd-clusters and 

support material than would be possible for the Pd-coupon surface. Nevertheless, it was 

still possible that the Pd-surface/catalyst interface catalyzed coke formation in a similar 

manner (but with a lower rate). Unfortunately, this theory also seems to be contradicted 
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by the results of the coupons C-7 and C-8, in which significant coke deposits occurred 

on the catalyst, but not on the coupon surfaces. 

Rupprechter et al. (2004) suggested that reaction 8.2 (reduction of CO by H2) was the 

dominant coke formation pathway such that coking occurred through a formyl-

intermediate, resulting in CH3OH and CHx-C bond formation. This alternative 

mechanism was further supported by the application of supported Pd-catalysts to 

methanol synthesis from syngas (Gusovius et al., 1999; Gotti and Prins, 1998). The 

mechanism suggested by those authors involved the adsorption of CO on the basic-

metal-oxide-promoted silica support, followed by H-transfer from the Pd at the support-

Pd interface to generate a formate-intermediate species. That formate-intermediate was 

then reduced to methanol by excess H2 present in the reaction system. CO adsorption 

was favored on the iron-chrome oxide catalyst, while H2 adsorption was disfavored as 

discussed by Podolski et al. (1974). In the WGS CMR, for the catalyst in close contact 

to the Pd-surface, H-atoms could transfer in a similar manner to generate a formate-

intermediate at the Pd/catalyst interface. Since H2 was not present in excess, the 

formate-intermediate would not be reduced to form methanol, potentially allowing for the 

condensation of formate-intermediates into more complex carbon species. For the 

CMR, H2 was depleted from the Pd-surface by the lower tube-side pressure (0.98 

atma), allowing for formate-condensation to coke. For the coupons suspended in the 

reaction mixture, H2 was not depleted by the membrane, potentially allowing for CH3OH 

formation instead of coke. Further experiments should be conducted to determine if this 

may have been occuring. 

The formation of coke was a highly complex phenomenon, much more so than the 

mechanism 8.6 – 8.9 would suggest. After atomic carbon was deposited on the surface, 

some of it would likely be hydrogenated to CH4 via reverse methane cracking 

(Pedernera et al., 2007), some of it may dissolve in the Pd-lattice (as discussed in 

Section 8.2.3), and some of it would form C-C bonds in either a graphitic or amorphous 

manner which could grow off of the Pd-surface. The thermodynamic partition between 

these paths is unclear because the energy of dissolution for carbon in Pd is not known 

and because the resulting allotropes of carbon have not been identified. The relative 
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rates of these processes are also yet unknown, and are probably highly dependent on 

the Pd-surface characteristics and Pd-catalyst interaction. Niemantsverdriet and van 

Langeveld (1986) utilized auger electron spectroscopy in conjunction with secondary ion 

mass spectroscopy to distinguish between allotropes of carbon deposited on several 

precious metals (Rh, Ir, and Pt). A similar technique should be applied to analyze the 

surface of coupons tested under WGS conditions. Siller et al. (1968) used a high 

frequency induction furnace to determine the extent of carbon dissolved in palladium in 

the high temperature range (900 – 1,200°C), a similar technique should be applied to 

determine the dissolved carbon in several foil samples after exposure to various WGS 

conditions. 

8.5. Conclusions 

Coke was observed to form on the Pd-surface in the WGS CMR in several cases, 

gradually lowering the H2 recovery of the reactor by blocking the Pd-surface. Coke was 

not observed to form on the iron-chrome oxide catalyst, even at the lowest H2O/CO ratio 

of 1.1. The thermodynamic calculations indicated that coke formation was disfavored 

over nearly the entire range of experimental conditions and that methane formation was 

favored. In WGS experiments where coke formation occurred, methane production was 

also observed with up to 2% estimated conversion. The formation of methane was likely 

the result of hydrogenation of coke, also known as reverse methane cracking. 

Membranes which were coked were observed to have significantly lower H2 permeance, 

which gradually recovered over 100 hours in H2, likely due to the hydrogenation of coke 

off of the surface. 

Several coupons were exposed to coking conditions for which coke was observed in the 

WGS CMR experiments and also in the literature. No significant coke was observed on 

any Pd-coupons visually or by XRD, seemingly in contradiction to the WGS CMR results 

and the previous literature studies. It seemed likely that the coke formation was 

catalyzed by the Pd-surface in conjunction with the catalyst particles or dust, as has 

been suggested in the literature. The rate of coke formation was impossible to 

determine and the mechanism occurring at the Pd/catalyst interface remains 

speculative.
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9. H2S POISONING OF Pd-MEMBRANES 

9.1. Introduction 

For Pd-membranes to be utilized in the IGCC process, at least a small degree of 

tolerance to H2S is necessary. The exit stream from the coal gasifier typically contains 

0.7 mol% of H2S, which can then be reduced down to 15 ppmv at a reasonable cost by 

the Selexol AGR process (Klara et al., 2007; Korens et al., 2002). It is known in the 

literature that pure Pd-membranes cannot tolerate 15 ppmv of H2S in pure H2 over the 

temperature range of 300 – 500°C due to the formation of bulk Pd4S, leading to loss of 

permeability and sometimes membrane rupture. Pd/Au and Pd/Cu-membranes are 

more promising for the IGCC process since they have a higher threshold for bulk Pd4S 

formation. 

Regardless, exposure of Pd, Pd/Au, and Pd/Cu membranes even to small 

concentrations (less than 1 ppmv) of H2S has resulted in significant decreases in the 

membrane permeance due to surface adsorption of sulfur. What is still undocumented 

in the literature is the effect that other reversibly adsorbed gases (such CO and H2O) 

have on H2S poisoning of these membranes. The objective of this chapter, therefore, 

was to develop a better understanding of H2 permeation behavior of Pd and Pd/Au-

membranes in the presence of H2/H2O mixed gas, simulated syngas, and under WGS 

reaction conditions, with 1 - 20 ppmv of H2S present. 

9.2. Background 

Pure Pd-membranes are known to lose a significant fraction of their permeance due to 

as little as 2 ppmv H2S present in the feed gas (Peters et al., 2012). Furthermore, at 

higher H2S concentrations, and depending on temperature, the bulk Pd4S phase can 

form, resulting in further H2 permeance decrease, pinhole formation, and membrane 

rupture (Chen and Ma, 2010; Pomerantz and Ma, 2009; Morreale et al., 2007; 

Mundschau et al., 2006; Iyoha et al., 2007b). The reaction expression for H2S 

adsorption on Pd, followed by incorporation into the Pd-lattice is given by equation 9.1, 
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the surface adsorption equilibrium expression is given by equation 9.2, and the overall 

equilibrium expression for Pd4S formation is given by equation 9.3. 

 H2S + Pd* � Pd*S + H2 � Pd4S + H2     9.1 
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where K1 was the Langmuir adsorption equilibrium constant for sulfur, K2 was the 

equilibrium constant for Pd4S formation, Px [atma] was the partial pressure of species x 

at the surface, �S was the surface coverage of sulfur, and �* was the fraction of free 

surface sites. Note that the equation 9.3 was simplified such that the activity of each 

solid species aPd and aPd4S was set equaled to one since those species occurred in their 

pure states. The surface adsorption was thought to occur quickly followed by rapid 

dissociation (Alfonso, 2008), while the formation of bulk Pd4S was slower. 

It was calculated and observed experimentally that for a pure Pd surface at 400°C, 

more than 2.8 ppmv H2S in pure H2 would form the bulk Pd4S (Chen and Ma, 2010; 

Mundschau et al., 2006). The equilibrium expression 9.3 indicated that the partial 

pressure of H2 was inversely proportional to the equilibrium constant, meaning that 

when a gas mixture was used with less than 100% H2 (with inert gas making up the 

difference), the threshold concentration of H2S which resulted in Pd4S formation would 

be lower (Iyoha et al., 2007b). Another phenomenon which must be considered was the 

effect that reversibly adsorbed species such as CO and H2O would have on the 

formation of Pd4S. Those gases could potentially compete for active surface sites, 

resulting in a lower surface coverage by sulfur, and perhaps a lower rate of bulk Pd4S 

formation. 

The adsorption of H2S is known to be considerably stronger than that of either H2O or 

CO. It has also been proposed that a sulfur coverage of only 0.25 mono-layer (ML) 

resulted in the complete deactivation of the Pd-surface for H2 adsorption (Wilke and 
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Scheffler, 1995). If H2S is only present at ppmv levels, however, competition for surface 

sites can still occur since H2O and CO are present in much higher concentrations (1 – 

50% by volume). The energy of desorption or binding energy, �Ei [kJ/mol], for each gas 

species is given in Table 9.1. The binding energy can be utilized to estimate the 

adsorption equilibrium constant, �i [atm-1], for each gas species via equation 5.10 

(discussed in Chapter 5). Based on equation 5.10 the adsorption constant at 400°C for 

each species is also tabulated in Table 9.1. Even though the adsorption constant for 

H2S was many orders of magnitude greater than that of CO and H2O, the surface 

coverage of each species was proportional to �iPi as shown in equation 9.4, so values 

of �iPi are listed in Table 9.1 for a syngas mixture (19% CO, 18% H2, 8% CO2, 55% 

H2O, and 1 ppmv H2S) at 14.0 atma. 

 ò� � ÎHIH
�PÎJKIJKPÎLMKILMKPÎJKMIJKMPÎLM®ILM®     9.4 

 

Table 9.1. Proposed binding energies, adsorption constants, and relative surface 

coverage factors for gas species on the palladium surface at 400°C. 

 �Ei [kJ/mol] �i [atm-1] �iPi Reference 
H2S -256 (�S=0) 1.12*107 157 Alfonso, 2005 

-190 (�S=0.5) 274.8 0.0038 
-300 (�S=0) 1.02*1011 1.42*106 Gravil and Toulhoat, 

1999 -244 (�S=0.33) 4.27*106 59.8 
CO -149 0.239 0.64 Guo and Yates, 1989 
H2O -125 0.00691 0.053 Catalano et al., 2011  

 

The adsorption energy of sulfur was found to be strongly dependent on the surface 

coverage of sulfur such that the surface coverage was not well represented by equation 

9.4 and would be better fit by the Temkin equation, 6.11 (Alfonso, 2005; Gravil and 

Toulhoat, 1999). As was discussed in Chapter 6, the effective adsorption energy of H2O 

was considerably higher than the ab initio calculations suggested due most likely to the 

dissociation on the Pd-surface resulting in bound OH and O species (Alfonso, 2006). 
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Competative adsorption could only have occurred between the WGS species and H2S 

at surface coverages of greater than 0.33 – 0.5 ML of sulfur because that was the 

surface coverage range at which �COPCO and �H2OPH2O values (given in Table 9.1) 

eclipsed the value of �H2SPH2S. If the gases CO and H2O competitively adsorbed with 

H2S in an ideal manner such that the Langmuir equation, 9.4, was valid, the combined 

effect might be a net increase in blocked surface sites, and therefore a decrease in the 

H2 permeance of the Pd-membrane. Alternatively, the adsorption of WGS species along 

with H2S may have lowered the binding energy of sulfur such that the Tempkin 

equation, 6.11, was valid. If that occurred, then the presence of those gases could 

potentially reduce the overall fraction of blocked surface sites for H2 adsorption and 

prevent a significant loss of H2 permeance. 

To gain some resistance to H2S poisoning, different Pd-alloys have been fabricated and 

tested: Pd/Cu (Pomerantz and Ma, 2009; Morreale et al., 2004; McKinley, 1967), Pd/Au 

(Chen and Ma, 2010; McKinley, 1967; Peters et al., 2012), and Pd/Fe (Bryden and Ying, 

2002). All of these alloys have experimentally shown a lower extent of surface coverage 

by sulfur and a higher thermodynamic threshold for bulk sulfide formation with respect 

to H2S concentration. The most preferable alloy among the three in terms of membrane 

permeance has been the Pd/Au-alloy since it has higher permeability than pure Pd for 

the gold compositions of 1 – 20 at% (McKinley, 1967). A small range of Pd/Cu-alloy 

compositions around 40 at% Cu form a body-centered cubic (bcc) phase which has a 

slightly higher permeability than pure Pd, but also does not have any of the sulfur 

tolerance that the fcc-Pd/Cu-alloy phase is claimed to have in the composition range of 

1 – 35 at% Cu (Knapton, 1977; Howard et al., 2004; Morreale et al., 2004). 

Chen and Ma (2010) engineered a more effective H2S resistant Pd/Au membrane by 

depositing gold on the surface of a pure Pd-membrane, then partially annealing that 

gold layer. The resulting asymmetric membrane had a high concentration of gold (20 – 

30 at%) on the surface, but which declined to zero several microns into the dense layer. 

This was preferable to minimize the use of expensive gold and to minimize the 

thickness of the lower H2 permeability associated with Pd/Au-alloys containing greater 

than 20 at% Au. 
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9.3. Experimental 

The relevant synthesis details and initial H2 testing results of the membranes utilized in 

this chapter are listed in the Table 9.2. The preparation and initial testing of those 

membranes was discussed in Chapter 4. 

 

Table 9.2. Membranes tested in this chapter, comprehensive details are given in 

Appendix D. 

 Pd/Ag 
[�m] 

Dense 
layer [�m] 

H2 permeance* 
[m3/m2-h-atm0.5] 

Final select.J 
[FH2/FHe] 

Other details 

AA-31 1.8 6.8 22.0 250  
AA-38R N/A 4.4 41.2 2500  
AA-40R N/A 2.7 38.0 340 10 at% Au 
RK-16R N/A 6.0 37.5 675  
*at 400°C 
Gselectivity after final testing 
 

9.3.1. Pd/Au-membrane synthesis 

The Pd/Au asymmetric membrane AA-40R was synthesized by electroplating the pure 

Pd-membrane AA-40 with 0.8 �m (10 at% overall) of gold by the method described in 

the Experimental, Section 3.2.4. The membrane was annealed for 100 hours in H2 at 

450°C such that partial alloying would occur. It was desired that a gold gradient would 

remain with a higher alloy composition (20 – 30 at%) on the surface for increased H2S 

resistance (Chen and Ma, 2010; Chen, 2011). 

9.3.2. Mixed gas and WGS experimental procedure 

H2S was introduced into the feed stream by the addition of one of the gas mixtures 

listed in Table 9.3. The H2/H2S gas mixtures were obtained from Airgas Inc. The H2/H2S 

mixtures were analyzed by Airgas Inc. and the measured compositions in terms of H2S 

concentration are reported in Table 9.3. 
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Table 9.3. H2/H2S mixtures used in this chapter (concentration measured by Airgas Inc). 

Mixture designation Measured H2S (ppmv) Balance 
5 ppm 5.0 H2 

50 ppm 54.8 
400 ppm 406.3 

 

Mixed gas experiments were conducted as per the procedure given in the Experimental, 

Sections 3.4.2 with two exceptions. An unsteady state behavior (H2 permeate flux 

varying by ±30% from the mean over an approximately 10 second interval) was 

observed at intermediate space velocities (3,000 – 6,000 h-1) and 14.6 atma which was 

found to be dependent on the physical orientation of the system. When the system was 

operated with reversed flow (counter-current flow in the downward direction) the 

fluctuations ceased completely, so that orientation was used. Since there was no sweep 

gas, the direction of the flow along the membrane should not have affected the 

separation dynamics. 

The only other clarification of Section 3.4.2 was that the H2S feed was switched on last, 

after all other feed gases, pressure, and stable permeate flows were established. This 

was done to ensure that no spike in the H2S concentration could occur upon start-up or 

shut-down. In some preliminary system testing the stainless steel system components 

adsorbed H2S from the feed such that little or no H2S was detected at the system outlet 

for several hours. When syngas species were introduced into the feed (with H2S still 

present) a significant increase in H2S concentration, of up to ten times that in the feed, 

was sometimes measured at the retentate outlet. Upon shutting off the system, the H2S 

feed was ceased first. The other feed gases were then shut off within 60 seconds. Chen 

(2011) observed that the bulk Pd4S phase on the surface would gradually revert back to 

pure Pd in an H2 atmosphere, so when XRD analysis was planned, the system was 

flushed with helium (1,000 sccm) immediately upon shutting off the feed gases and for 

60 minutes before cooling the system at 2°C/min to room temperature. 

WGS experiments were conducted as per the experimental procedure given in Sections 

3.5.2 – 3.5.3. Again, the only clarifications were that H2S was turned on last during start-
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up and shut off first during shut-down. When XRD analysis was to be conducted, the 

system was flushed with helium and cooled quickly in the same manor. 

9.4. Results and discussion 

The results of the H2S testing are presented in the following manner: experiments 

conducted with H2/inert/H2S mixtures are presented first in Section 9.4.1, followed by 

experiments conducted with H2/H2O/H2S mixtures in Section 9.4.2 to explore how H2O 

could affect the poisoning by H2S. In Section 9.4.3 separation experiments with a 

shifted syngas mixture (enriched in H2 and depleted in CO) were presented which 

highlighted the performance of the Pd90Au10-membrane AA-40R, challenged with up to 

20 ppmv H2S. Finally, in Section 9.4.4 WGS CMR experiments were conducted with a 

pure Pd-membrane and over extended periods of time (400 hours). At the end of 

Section 9.4.4 the irreversible poisoning by H2S (Pd4S formation) is discussed from a 

thermodynamic stand point. SEM images are also presented at the end of Section 9.4.4 

showing interesting morphology changes which were attributed to the poisoning by H2S. 

9.4.1. H2/inert/H2S mixtures 

Testing with H2/N2/H2S mixtures was conducted to confirm the equilibrium relationship 

given by equation 9.2 which expressed that the surface coverage was dependent on the 

H2/H2S ratio in the gas mixture. The initial pure H2 testing at 400°C and the first three 

H2/H2S experiments are shown in Figure 9.1. The H2 permeance shown in the figure 

was determined using the partial pressure of H2 measured in the retentate stream. The 

horizontal dashed line labeled ‘A’ indicated the H2 permeance during poisoning by 1 

ppmv H2S in H2. The horizontal line ‘B’ indicated the ‘recovered’ permeance upon 

switching back to pure H2. The horizontal line ‘C’ indicated the H2 permeance during 

poisoning by 1 ppmv H2S in 50% H2 and 50% N2. 
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Figure 9.1. Initial H2 characterization and H2/H2S testing at 400°C (Membrane: AA-31). 

 

Two poisonings with 1 ppmv H2S in H2 were conducted consecutively for 5 and 12 

hours at a pressure of 2 atma. During both poisonings, the H2 permeance dropped to 

68% of its initial value (horizontal dashed line A). After switching back to pure H2, the 

permeance was observed to return to 87% of its initial value (horizontal line B), 

indicating that there was some irreversible poisoning, perhaps due to trace sulfur 

remaining on the surface. The membrane AA-31 performed much better than a similar 

membrane, C-10, reported by Chen (2011) where a permeance of only 22% of the initial 

value was observed upon 1 ppmv exposure to H2S at 400°C. Following the H2S 

exposure, the membrane C-10 only recovered 67% of its initial permeance upon 

switching back to pure H2. The membrane AA-31 performed comparably to a Pd-

membrane tested by Peters et al. (2012) with 2 ppmv H2S at 450°C. Their membrane 

maintained 62% permeance upon poisoning and recovered up to 95% of the initial 

permeance upon pure H2. The irreversible poisoning was caused by some surface sites 

adsorbing H2S with a very high binding energy, requiring higher temperature (greater 
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than 500°C) to obtain complete removal (Chen and Ma, 2010). The membranes AA-31 

and C-10 were very similarly prepared and the testing conditions were nearly identical 

so it was unclear why the membrane AA-31 performed better. 

The third experiment shown in Figure 9.1 was conducted with 50% N2 in H2 mixed gas, 

first for 2 hours with no H2S, then for 5 hours with 1 ppmv H2S, at 5 atma and 4,500 h-1 

feed rate. During the first two hours, with no H2S present, a H2 permeance 15% lower 

than the ‘recovered permeance’ (horizontal line B) was observed, due to the moderate 

influence of gas boundary layer mass transfer resistance. Upon exposure to 1 ppmv 

H2S, the H2 permeance dropped a further 29% (horizontal line C), which was a 32% 

greater drop than the difference between lines A and B, indicating greater permeance 

inhibition by H2S. The inhibition by 1 ppmv H2S in the 50% H2/N2 mixture was 

significantly greater than the inhibition by 1 ppmv in 100% H2 since the lower partial 

pressure of H2 in the mixture allowed for the shifting of equation 9.1 towards the 

adsorbed species Pd*S. Once the system was returned to pure H2, the rate at which the 

H2 permeance recovered was considerably slower in the third experiment even though it 

eventually returned to the same recovered permeance (horizontal line B). The slower 

permeance recovery was a further indication that the equilibrium was shifted towards 

adsorbed sulfur in the third experiment. Additionally, the permeance returned to the 

same level as before suggesting that there was no further irreversible poisoning. The 

addition of 50% inert gas should have lowered the threshold for Pd4S formation to 1.4 

ppmv and so bulk sulfide formation was not expected (Mundschau et al., 2006). 

9.4.2. H2/H2O/H2S mixtures 

Experiments were conducted with H2/H2O/H2S mixtures as a precursor to experiments 

involving the separation of H2 from syngas with 1 – 20 ppmv H2S. The primary 

motivation for this was to determine if H2O might competitively adsorb with H2S on the 

Pd-surface, lessening the extent of sulfur poisoning on the surface, and potentially 

increasing the threshold for Pd4S formation. The first series of experiments are shown in 

Figure 9.2[a], all conducted with 50% H2 gas mixtures at a total feed rate of 4,550 h-1. 
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[a]  

[b]  

Figure 9.2. H2/H2O/N2 testing of the membrane AA-31 with 1 ppmv of H2S [a] First 

series of experiments (25% H2O) [b] Second series of experiments (4 – 37% H2O). 
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The introduction of 1 ppmv H2S in the 50% H2/N2 mixture, reduced the membrane 

permeance by 39% to 9.9 m3/m2-h-atm0.5 as shown in Figure 9.2[a], moderately greater 

than the 29% reduction previously observed under identical conditions. The H2S 

measured in the retentate increased to 1.1 ppmv over 8 hours to reach nearly 100% 

sulfur mass balance. The extended period required to reach H2S saturation was 

attributed to the clean (not previously exposed to H2S) stainless steel pieces of the pre-

heater, installed shortly before the experiments. The 50% N2 was then replaced with 

25% H2O and 25% N2, resulting in an additional loss of 15% permeance to 8.7 m3/m2-h-

atm0.5 as shown in Figure 9.2[a]. Interestingly, the H2S measured in the retentate spiked 

to over 3.3 ppmv upon admission of the H2O, indicating that the H2O probably caused 

desorption of H2S from the membrane and/or the stainless steel piece of the system. 

The spike in H2S concentration was cause for alarm as the threshold for bulk sulfide 

formation was exceeded for approximately 20 minutes. 

When both H2O and H2S were admitted to the system, they competitively adsorbed on 

the membrane surface, blocking active sites for H2 adsorption and dissociation. The 

observed decrease in H2 permeance indicated that the overall extent of surface 

coverage was probably greater than that due to either species alone. When the H2S 

was shut off, the H2 permeance gradually recovered by about 25% to a level at which 

only surface blocking by H2O (and the irreversibly adsorbed S) was occurring. 

Experiments were then conducted, as shown in Figure 9.2[b], to determine if there was 

some H2O composition under which a higher H2 permeance would be observed than 

that measured during 50% H2/N2 + 1 ppmv H2S conditions, suggesting that adsorption 

of H2O was lowering the binding energy for sulfur. As the amount of H2O in the feed flow 

was decreased (and replaced by inert N2), the H2 permeance continued to decrease, 

eventually to only 43% (7.5 m3/m2-h-atm0.5) of the recovered permeance when the 

system was switched to 50% H2/N2. The final permeance measured was significantly 

lower (21%) than the previous experiment with 1 ppmv H2S in 50% H2/N2 (horizontal 

line A in Figure 9.2[b]), indicating that further irreversible poisoning had occurred on the 

membrane surface, possibly caused by the presence of H2O; there was no clear 

explaination as to why this would occur. Based on the experiments shown in Figure 
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9.2[b], it became obvious that the membrane would have to be recovered at 500�C after 

every set of conditions in order to collect reliable data. 

Following the H2S exposure the membrane only recovered 67% of his initial permeance 

upon switching to pure H2 indicating further irreversible poisoning. The further poisoning 

could have been caused by the spikes in the H2S concentration due to the starting and 

stopping of the H2O feed. 

Even considering the additional irreversible poisoning observed, the membrane AA-31 

performed better than the similar membrane, C-10, reported by Chen (2011), where a 

permeance of only 22% of the initial value was observed upon 1 ppmv exposure to H2S 

at 400°C. A key difference in the system configurations utilized here and by Chen 

(2011) was the temperature control. Since no thermal tape was utilized by Chen (2011) 

it was possible that a temperature gradient existed in their system such that part of the 

membrane was as much as 40°C below the operating temperature, allowing for greater 

poisoning by H2S. 

9.4.3. Syngas/H2S mixtures 

Separation experiments were conducted with a shifted syngas mixture (50% H2, 30% 

CO2, 19% H2O, and 1% CO) to gain a better understanding of the deleterious effects 

that H2S could have on the H2 permeance and stability of the membrane. A pure Pd-

membrane (RK-16R) was utilized as a baseline and a Pd90Au10-membrane (AA-40R) 

was utilized for H2S resistance. The membrane RK-16R was tested for 25 hours under 

the shifted syngas with no H2S present, then for 25 hours with 1 ppmv H2S, then for 25 

hours with 2.5 ppmv H2S. The H2 flux over time and sulfur mass balance for the mixed 

gas testing of RK-16R is shown in Figure 9.3[a]. The membrane AA-40R was tested for 

25 hours under the shifted syngas with no H2S present, then with 1, 2.5, 5, 10, and 20 

ppmv H2S in the feed. The H2 flux over time for the mixed gas testing of AA-40R is 

shown in Figure 9.3[b]. 
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[a]  

[b]  

Figure 9.3. Syngas separation with H2S in feed stream [a] RK-16R [b] AA-40R (50% H2, 

30% CO2, 19% H2O, 1% CO; 14.0 atma; 400°C; 5,600 – 5,800 h-1). 
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Both membranes maintained a stable H2 flux of approximately 14 m3/m2-h when no H2S 

was present, corresponding to a high H2 recovery of 90 – 92%. When 1 ppmv H2S was 

introduced into the feed a gradual drop in H2 flux of 2% was observed in both cases 

most likely due to the reversible adsorption of H2S on the membranes. As shown by the 

sulfur mass balance in Figure 9.3[a] and [b], the H2S concentration measured in the 

retentate gradually increased when 1 ppmv of H2S was introduced, probably because 

the stainless steel walls of the system adsorbed H2S to some extent before becoming 

saturated. The gradual increase in the H2S concentration during the initial testing with 1 

ppmv resulted in the gradual decline of H2 flux from membrane RK-16R (Figure 9.3[a]) 

because of increasing Pd-surface coverage by sulfur. It was unlikely that bulk Pd4S was 

forming in either case because the concentration of H2S at the retentate was still below 

the thermodynamic formation threshold (Chen, 2011; Mundschau et al., 2006). When 

2.5 ppmv H2S was added to the feed the sulfur mass balance quickly approached 100% 

in both cases, but the H2 flux again gradually decreased over 25 hours for both 

membranes. During the second period of testing at 2.5 ppmv H2S for the membrane 

AA-40R (Figure 9.3[b]) a slightly higher feed rate (5,800 h-1) was utilized explaining the 

apparent discontinuous jump in H2 flux; for all other testing periods a feed rate of 5,600 

h-1 was utilized as this was the highest flow rate the flow controllers were capable of 

accurately delivering for the given syngas concentration. 

The H2 flux for the membrane RK-16R decreased significantly over time (8% over 25 h) 

when testing with 2.5 ppmv H2S because bulk Pd4S was probably forming at the 

retentate end of the membrane. The H2S/H2 ratio in the retentate of 3.4*10-5 was 

significantly greater than that at which Pd4S had been previously been formed in pure 

H2/H2S experiments with Pd-coupons (1.0*10-5 molH2S/molH2), and even further above 

the thermodynamic threshold at 400°C, 2.8*10-6 (Chen, 2011; Mundschau et al., 2006). 

The membrane AA-40R was further tested with 5, 10, and 20 ppmv H2S in the feed. 

Stable H2 flux was observed over each 25 hour period indicating that only surface 

adsorption of sulfur was occurring and was responsible for the incremental drops in H2 

permeance. The transition from 2.5 to 5 ppmv H2S caused a considerable drop in H2 

flux due to increasing Pd-surface coverage by sulfur. The further exposure, however, to 
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10 and 20 ppmv did not result in significant drops, suggesting that the surface was 

nearly saturated with sulfur, but that there were still unoccupied active sites for H2 

adsorption. The Pd/Au-surface can be considered to have multiple types of adsorption 

sites which have different binding energy for sulfur (Chen, 2011; Alfonso, 2005). It is 

possible that the addition of Au decreased the binding energy preferentially for some 

surface sites over others such that a portion of low binding energy sites still existed and 

would become saturated with sulfur only by significantly higher concentrations of H2S 

(greater than 20 ppmv). 

The saturation effect can most easily be seen in a plot of H2 recovery versus H2S 

concentration as shown for both membranes in Figure 9.4. Two other studies (Gade et 

al., 2011; Peters et al., 2012) also tested Pd/Au-membranes in shifted syngas with up to 

20 ppmv H2S present; their H2 recoveries are also shown for comparison in Figure 9.4. 

 

Figure 9.4. H2 recovery versus H2S concentration for syngas mixtures containing H2S 

(Membranes: RK-16R, AA-40R, and literature data). 
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As shown in Figure 9.4, a high H2 recovery of 90% was achieved by both membranes 

when no H2S was present since the inhibition by the gas species H2O, CO, and CO2 

were not significant at 400°C. When 1 and 2.5 ppmv H2S were added to the feed, the H2 

recovery achieved by both membranes declined to nearly identical extents, suggesting 

that the surface inhibition by H2S was nearly equivalent. Since the membranes had 

similar pure H2 permeance (37.5 and 38.0 m3/m2-h-atm0.5 for RK-16R and AA-40R 

respectively), it was expected that the Pd/Au-membrane would perform better under 

H2S poisoning due to its sulfur tolerance. It was previously demonstrated by Chen 

(2011) and Peters et al. (2012) that alloying with 5 – 20% Au allowed for better H2 

permeance tolerance to H2S by as much as 40% for a given H2S concentration, yet no 

significant difference was observed between the two membranes presented (Figure 9.4) 

when exposed to H2S in syngas. The key difference between that previous study (Chen, 

2011) and the current results was the presence of the syngas species (H2O, CO, and 

CO2) in the gas stream. It was theorized that the H2S could be reacting on the Pd-

surface with one or more of the syngas species to form an alternate sulfur compound 

such as COS or CH3SH which had a different interaction with the Pd and Pd/Au-

surfaces. Indeed, a new sulfur containing species was visible by GC which may have 

been COS based on the retention time (1.61 min compared to 1.76 min for H2S) and 

information from the GC manufacturer (SRI). The presence of COS was not confirmed 

since no COS standard mixture was available. Since the poisoning effect of COS on Pd 

has not been studied in the literature, it is unclear how its formation would affect the 

membranes. 

The stable H2 flux over time with 20 ppmv of H2S present (Figure 9.3[b]) suggested that 

bulk Pd4S was not forming on the membrane AA-40R. The tolerance of the Pd/Au-

membrane to up to 20 ppmv H2S was unsurprising considering the relevant literature on 

Pd/Au-alloys (Chen and Ma, 2010; Chen, 2011; Mundschau et al., 2006). Chen and Ma 

(2010) showed an 83% decline to a stable H2 permeance when feeding a 50 ppmv H2S 

in H2 mixture. The comparison with the two literature studies (Gade et al., 2011; Peters 

et al., 2012) at 20 ppmv H2S was not ideal since both of those studies worked with 

higher feed rates, resulting in higher H2 flux but lower H2 recovery. H2 fluxes of 8.9 and 

16.9 m3/m2-h were achieved by Gade et al. (2011) for their 10% and 20% Pd/Au-alloys 
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respectively with 20 ppmv H2S present, due to the higher space velocity utilized in their 

study which lowered gas phase mass transfer resistance. At the same time, the lower 

H2 recovery achieved by Gade et al. (2011) resulted in a better partial pressure driving 

force for H2 flux than was achieved in the present study. They observed a significantly 

greater H2 flux when a higher gold content of 20% was utilized, suggesting that a gold 

content of greater than 10% was preferable for both of the situations when H2S was 

present, and when only the syngas species were present. 

After the extended period of testing under shifted syngas mixtures, the membranes RK-

16R and AA-40R were switched directly to helium with a high purge rate and cooled 

quickly to room temperature as described in Section 9.3.2. The membranes were cut 

and characterized by SEM. Samples were cut from the inlet, middle, and outlet ends of 

the membranes as shown in Figure 9.5, so that the extent of Pd4S formation could be 

estimated with respect to the position of the sample in the experimental setup. 

 
Figure 9.5. Diagram of the experimental membrane module indicating the locations 

where membrane samples were cut for characterization.  

 

Since low flow, high recovery conditions were used such that the H2S/H2 ratio was 

considerably higher at the outlet end of the membrane, it was expected that the extent 

of poisoning would be greater there. SEM cross-section images and EDS line scans are 

shown for the outlet-samples of the two membranes RK-16R and AA-40R in Figure 

9.6[a-d]. The results from the outlet-samples were representative for the inlet and 

middle-samples since no significant differences were observed. 
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[a]  [b]  

[c]  [d]  

Figure 9.6. SEM images and EDS line scans of membrane cross-sections [a] SEM, RK-

16R outlet, 2,500X [b] EDS, RK-16R outlet [c] SEM, AA-40R outlet, 2,500X [d] EDS, 

AA-40R outlet. 

 

It was apparent from the SEM images shown in Figure 9.6[a] and [c] that the 

membranes both had similar 5 – 7 �m thick dense Pd and Pd/alloy-layers with 

substantial (5 – 10 �m) grading layers, which was in line with the measured pure H2 

permeance of 40 m3/m2-h-atm0.5. In the EDS line scan of AA-40R (Figure 9.6 [d]) a 

gradient can be seen in the gold concentration, ranging from approximately 16 at% at 

the surface (Position = 12 �m in the figure) to nearly zero over 5 �m, exactly what was 

desired from the synthesis methodology. 

For the pure Pd-membrane RK-16R less than 5 at% sulfur was detected by EDS over 

the whole cross section (Figure 9.6[b]), which was below the accuracy level for EDS, 

suggesting no substantial bulk Pd4S phase was formed on that membrane. For the 
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Pd90Au10 membrane AA-40R up to 9 at% sulfur was observed in the 7 – 12 �m range at 

the membrane surface (Figure 9.6[d]). The measurement accuracy for the EDS 

composition analysis shown in Figure 9.6[d] (specifically considering the position range 

of 7 – 12 �m where both sulfur and gold were detected) was compromised by the partial 

overlap of the sulfur K�1 and gold M�1 x-ray emission peaks (at energies of 2.31 and 

2.12 keV respectively) that were utilized for the calculation. 

The membrane samples were examined by XRD to determine the extent of bulk sulfide 

formation. XRD spectra (2� = 20 - 100°) for the inlet and outlet samples from RK-16R 

are shown in Figure 9.7[a] and [b] respectively. XRD spectra of the inlet and outlet 

samples from AA-40R are shown in Figure 9.7[c] and [d] respectively. 

[a]  [b]  

[c]  [d]  

Figure 9.7. XRD analysis, asterisks indicate characteristic peaks of the Pd4S-tetragonal 

phase (Gronvold, 1956) [a] RK-16R inlet [b] RK-16R outlet [c] AA-40R inlet [d] AA-40R 

outlet. 
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In Figure 9.7[a] and [b] the primary component was identified to be palladium with all 

characteristic peaks of the fcc-structure falling within 1% of their expected diffraction 

angles (Swanson and Tatge, 1953). The diffraction angles corresponding to the first five 

crystal planes of fcc-Pd phase are labeled in Figure 9.7[a] and [b]. For the membrane 

RK-16R, the bulk Pd4S phase was observed only very slightly on the outlet sample as 

evidenced by the characteristic diffraction peaks of the tetragonal-Pd4S phase seen at 

36, 37, 39.5, 43.5, 60, and 64.5°, marked with asterisks in Figure 9.7[b] (Gronvold, 

1956). It was expected that a significant amount of bulk sulfide would be observed since 

the retentate gas composition was in excess of the thermodynamic threshold for Pd4S 

formation. It was speculated that the WGS species were reacting with the adsorbed 

sulfur to form a new, less reactive species (such as COS) and increasing the threshold 

for Pd4S formation. Alternatively, the competitive adsorption of the WGS species may 

have only lowered the rate of bulk sulfide formation so that a longer time frame would 

be necessary for significant Pd4S formation. 

The characteristic diffraction peaks for the fcc-Pd/Au phase in membrane AA-40R 

(Figure 9.7[c] and [d]) were shifted to slightly lower angles (40.1 to 39.0° for the fcc-111 

peak) with respect to the pure Pd-phase due to the slightly greater lattice constant of the 

Pd/Au-alloy (Chen, 2011). Bulk Pd4S phase was observed very slightly on all sections of 

the membrane AA-40R, marked by asterisks on the XRD spectra (Figure 9.7[c] and [d]). 

It was also apparent based on the intensity of the Pd4S peaks that there was a greater 

extent of Pd4S formation towards the outlet end, probably because of the depletion of H2 

along the length of the membrane. 

The permeation of H2 through the membrane resulted in a higher H2S/H2 ratio of the gas 

mixture at the outlet end of the membrane (as compared to the inlet composition), and 

therefore a greater propensity for Pd4S formation by equation 9.1. It was surprising to 

observe Pd4S formation at the inlet end of the membrane AA-40R (Figure 9.7[c]) since 

the H2S/H2 ratio of 4.0*10-5 molH2S/molH2 was less than that utilized by Chen and Ma 

(2010; Chen, 2011) {5.5*10-5 molH2S/molH2} in pure H2/H2S experiments with Pd90Au10 

and Pd82Au18(surface composition) coupons and membranes, after which no bulk 

sulfide was observed. Again, the primary difference between this study and that of Chen 



 

and Ma (2010) was the presen

have occurred to form a new sulfur species with different

surfaces. It was unreasonable to suggest that the WGS species both raised the 

threshold for sulfide formation in the pure Pd case and lowered the threshold

Pd/Au case, so other explainations should be

EDS spot scans of the surface of AA

completely uniform, with some areas having as much as 20

11 at% Au. An X-ray image 

palladium L�1 x-ray emissions. An SEM image of the surface of the 

sample and the gold M�1 x-ray image are shown in 

The x-ray image showed that some areas were indeed rich in gold and others mostly 

absent of gold so spot scans were done on specific locations. The spots

in Figure 9.8[a] had a low gold concentration and the spot 3 had a hig

concentration. The EDS analyses of those spots in terms of Pd, Au, and S are listed in 

Table 9.4. 

[a]

Figure 9.8. Images of AA-40R

gold M�1 emission energy. 
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the presence of the WGS species, suggesting that a reaction 

to form a new sulfur species with different reactivity to the Pd and Pd/Au

unreasonable to suggest that the WGS species both raised the 

threshold for sulfide formation in the pure Pd case and lowered the threshold

her explainations should be sought after. 

EDS spot scans of the surface of AA-40R indicated that the gold concentration was not 

completely uniform, with some areas having as much as 20 at% and others as little as

 was taken by monitoring the gold M�1, sulfur K�

emissions. An SEM image of the surface of the 

ray image are shown in Figure 9.8[a] and [b] respectively. 

image showed that some areas were indeed rich in gold and others mostly 

absent of gold so spot scans were done on specific locations. The spots 

[a] had a low gold concentration and the spot 3 had a hig

concentration. The EDS analyses of those spots in terms of Pd, Au, and S are listed in 

 [b]

40R-outlet at 5,000X [a] SEM image [b] X-ray image of the 

that a reaction might 

reactivity to the Pd and Pd/Au-

unreasonable to suggest that the WGS species both raised the 

threshold for sulfide formation in the pure Pd case and lowered the threshold in the 

that the gold concentration was not 

% and others as little as 

sulfur K�1, and 

emissions. An SEM image of the surface of the AA-40R-outlet 

[a] and [b] respectively. 

image showed that some areas were indeed rich in gold and others mostly 

 labeled 1 and 2 

[a] had a low gold concentration and the spot 3 had a high gold 

concentration. The EDS analyses of those spots in terms of Pd, Au, and S are listed in 

 

ay image of the 
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Table 9.4. Spot scan results corresponding to the locations marked on Figure 9.8[a]. 

 Pd (at%) Au (at%) S (at%) 
Spot 1 (low gold) 86.5 3.2 10.2 
Spot 2 (low gold) 86.9 3.4 9.8 
Spot 3 (high gold) 72.9 22.6 4.5 

 

As suspected, the spots 1 and 2 which were low in gold concentration had significantly 

increased sulfur contents of 10% whereas the spot 3 which was high in gold 

concentration had a much lower sulfur content of 4.5%. Locations which were low in 

gold content adsorbed more sulfur and potentially formed bulk sulfides, while areas 

which were high in gold content were resistant to bulk sulfide formation. Since the sulfur 

composition at spots 1 and 2 was only 10 at% it was likely that any Pd4S was thinner 

than 200 nm since that was the approximate EDS penetration depth. It was probable 

that areas low in gold such as spots 1 and 2 were responsible for the observance of 

bulk Pd4S by XRD, marked by asterisks in Figure 9.7[c] and [d]. 

A steady state appeared to have been reached in the mixed gas separation with 20 

ppmv H2S (Figure 9.3[b]), suggesting that the bulk Pd4S-phase observed could have 

been in equilibrium with the Pd/Au fcc-phase such that no further formation was 

occurring over time. As the Pd4S phase formed, the Au would have become 

concentrated in the remaining alloy, resulting in greater sulfur tolerance. Additionally, if 

bulk sulfides were only forming at low gold concentration sites, those areas would have 

become saturated with sulfur, allowing for equilibrium between the phases present. 

9.4.4. WGS CMR with syngas/H2S feed 

The pure Pd-membrane AA-38R was loaded into the WGS CMR with iron-chrome oxide 

catalyst so that the effect of H2S on the reactor operation could be quantified. The 

membrane was first tested in H2 for 220 hours to determine the H2 permeance and 

selectivity stability as shown in Figure 9.9[a]. Reaction experiments were then 

conducted at 14.6 atma, 400°C, and with simulated syngas (19% CO, 18% H2, 8% CO2, 

55% H2O, and with 0 – 2 ppmv H2S) fed at 2,700 h-1. A lower feed rate was utilized so 

that experiments could be conducted for extended testing periods, accommodating for 
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the capacity of the steam trap which had to be emptied every eight hours. The results of 

the reaction experiments are shown in Figure 9.9[b] in terms of CO conversion, H2 

recovery, and sulfur mass balance for the system. 

 [a]  

[b]  

Figure 9.9. Reaction experiments with H2S in the feed stream [a] Membrane AA-38R 

testing history [b] Reaction experiments conducted with membrane AA-38R (19% CO, 

18% H2, 8% CO2, 55% H2O; 14.6 atma; 400°C; 2,700 h-1). 
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The system was first operated with no H2S present for 100 hours to establish a baseline 

for comparison, then for 100 hours with 1 ppmv H2S, then for 230 hours with 2 ppmv 

H2S in the feed. Between each period of WGS testing, the system was switched to He 

for a leak test and then switched to H2 to test the pure H2 permeance, as shown in 

Figure 9.9[a]. 

During the first 100 hours of WGS reaction testing (shown in Figure 9.9[b]) a stable CO 

conversion and H2 recovery of 98 and 86% respectively were observed. The CO 

conversion and H2 recovery were both consistent with those measured during similar 

experiments utilizing the membranes AA-30 (Chapter 7.3.3) and AA-8R (Chapter 7.3.4). 

Upon the admission of 1 ppmv H2S to the reactor, the H2 recovery was observed to 

gradually decline to 80% over 100 hours due to surface adsorption of H2S resulting in 

surface bound S-atoms blocking H2 adsorption. No H2S was detectable in the retentate 

stream until 80 hours had passed, as shown by the sulfur mass balance (plotted on the 

secondary y-axis in Figure 9.9[b]), since it was being absorbed by the catalyst to form 

either Fe2S3 or Cr3S4 (Bohlbro, 1963). The lack of H2S observed in the retentate 

indicated that some fraction of the membrane area was not being exposed to the full 1 

ppmv of H2S, and that steady-state conditions had not yet been reached. The rate of 

increase in the sulfur mass balance suggested that the time frame necessary to achieve 

steady state was approximately 7.5 additional days, which was prohibitive (considering 

the cost of the pre-mixed syngas and the potential for instrument disruption leading to 

experimental failure). 

The system was switched back to pure H2 and the permeance of the membrane, shown 

in Figure 9.9[a], returned to 89% of its initial permeance, indicating that there was some 

irreversible surface-poisoning by sulfur. The irreversible poisoning resulted in the 11% 

loss of pure H2 permeance, although that could not be compared to the permeance 

recovery in previous experiments since the system was not fully saturated with H2S, and 

therefore the majority of the membrane area was exposed to less than 1 ppmv H2S. In 

order to saturate the system with H2S faster, the higher concentration of 2 ppmv was 

applied to the reactor. 
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Upon the admission of 2 ppmv H2S to the reactor, the H2 recovery further decreased to 

75 – 78% (Figure 9.9[b]) due to increased surface coverage of sulfur on the membrane, 

which lowered the H2 permeance. The CO conversion decreased to 96% also as a 

result of the lower H2 permeance. Over the final 80 hours the retentate H2S 

concentration remained stable at 2.52 ppmv (93% mass balance with respect to the 

feed), with the H2 recovery also constant, suggesting that the system was at steady 

state. The presence of up to 2 ppmv H2S in the feed stream had a relatively minor effect 

on the membrane reactor operation in terms of CO conversion and H2 recovery over 

350 hours at 400°C. Since a low feed space velocity was utilized and there was 

significant gas phase mass transfer resistance, the H2 recovery was relatively 

insensitive to the permeance of the membrane, and therefore insensitive to the 

poisoning effect. 

The significant discrepancy in the sulfur balance, observed from a reaction time of 100 - 

350 h in Figure 9.9[b], suggested that H2S was probably forming bulk iron or chromium 

sulfide species with the catalyst. Bohlbro (1963) reported that iron-chrome oxide 

catalyst retained 0.5 – 1 wt% sulfur when saturated with 75 ppmv H2S in syngas. They 

also showed that the saturation by sulfur did not significantly affect the kinetic rate for 

the WGS reaction. Since the overall discrepancy in the sulfur mass balance amounted 

to an estimated 0.014 g sulfur (0.11 wt% on average desposited on the catalyst), the 

sulfur on the catalyst was not likely detectable by EDS or XRD analysis, and so was not 

looked for. Since the sulfur mass balance stabilized below 100%, it was possible that 

some H2S was also being converted to an alternative sulfur species. A small amount of 

COS was observed by GC, but was not quantitatively determined due to the lack of a 

COS standard. 

After testing under WGS conditions with 2 ppmv H2S, the system was switched to 

helium with a high purge rate and cooled quickly to room temperature as described in 

Section 9.3.2. After the membrane was removed from the reactor, samples were cut 

from the inlet, middle, and outlet and analyzed by XRD as shown in Figure 9.10[a] and 

[b]. The three XRD spectra were virtually identical so the spectrum from the ‘middle’ 

sample is not shown in the figure. 
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[a] [b]  

Figure 9.10. Post-testing characterization of AA-38R by XRD (2� = 20 - 100) [a] Inlet-sample [b] 

Outlet-sample. 

 

Only the palladium fcc-phase was observed by XRD as evidenced by the XRD spectra 

shown in Figure 9.10[a] and [b] of the inlet and outlet samples respectively; the 

characteristic 111, 200, 220, 311, and 222 diffraction peaks were well resolved and 

located to within 1% of their expected angles (Swanson and Tatge, 1953). The XRD 

spectra showed no indication of bulk Pd4S phase on any of the membrane samples. 

The H2S/H2 ratio at both the inlet and outlet (1.1*10-5 and 1.2*10-5 molH2S/molH2) was 

significantly in excess of the thermodynamic threshold for bulk Pd4S formation (2.8*10-6 

molH2S/molH2, Mundschau et al., 2006). The concentration of H2 at the outlet was only 

slightly higher than that at the inlet for the membrane AA-38R due to the relatively low 

concentration of H2 in the feed mixture (18%); over the length of the membrane H2 was 

simultaneously produced by the reaction and removed by the membrane. Chen (2011) 

conducted coupon poisoning experiments with H2/H2S mixtures above and below the 

thermodynamic threshold as shown in Figure 9.11. The inlet and outlet conditions for 

the membranes AA-38R, RK-16R, and AA-40R are plotted in the figure with an arrow 

pointing from the inlet to the outlet conditions. The membrane data was offset slightly 

from 400°C for ease of viewing the data clearly. The thermodynamic threshold for bulk 

sulfide formation was also plotted in the figure as a solid curve, calculated by 

Mundschau et al. (2006). 

fcc-111 
fcc-200 

fcc-220 
fcc-311 

fcc-222 

fcc-111 

fcc-200 

fcc-220 
fcc-311 

fcc-222 
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Figure 9.11. H2S/H2 ratio versus temperature indicating Pd4S formation (Membrane data 

organized as Inlet � Outlet, offset horizontally from 400°C, coupon data from Chen 

{2011} in circles). 

 

In the study by Chen (2011), Pd4S formation on Pd-coupons was found to occur about 

two times above H2S/H2 equilibrium ratio proposed by Mundschau et al. (2006) due to 

an insufficient time necessary to reach thermodynamic equilibrium. The pure Pd-

membrane AA-38R tested in this work was subjected to higher H2S/H2 conditions, and 

for longer time periods than coupons poisoned by Chen (2011) and yet no bulk Pd4S 

was observed. The outlet of the membrane RK-16R was subjected to significantly 

higher H2S/H2 conditions than the coupon poisoned by Chen (2011) where significant 

sulfide formation had occurred, yet only slight Pd4S was observed in RK-16R. 

It was possible that a reaction was occurring on the Pd-surface, resulting in the 

conversion of H2S to a less poisonous species, thereby lowering the effective H2S/H2 

ratio. Faraji et al. (1996) showed that both COS and CH3SH can be formed from H2S 
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C. If this reaction were diffusion limited then only a small 

S conversion would be observed at the outlet, but a significant 

S could have been depleted at the membrane surface. Indeed, a small amount of 

COS was measured by GC in the retentate as was mentioned above. To study this 

potential effect, analysis of the retentate gas stream would have to be conducted by 

to determine the other trace sulfur species present in the retentate 

extent of Pd4S formation in this study as compared to 

t have been due to a change in the H2S concentration

, and may instead have resulted from a lower rate of Pd4S formation

S formation proceeded first by surface adsorption, followed by 

dissociation, followed by incorporation into the bulk. Competition for surface sites by 

other adsorbed species (CO and H2O) could lower the rate of any of those steps.

found to support this possibility. 

, 2011; Morreale et al., 2007; Iyoha et al.

exposure has been observed to cause significant changes in the Pd

morphology so SEM analysis was conducted for several surface samples from each of 

the membranes tested under H2S conditions. SEM images of the membrane AA

samples are shown in Figure 9.12[a] and [b] respectively. Images are 
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Figure 9.12. Surface morphology images of membranes 

AA-38R-inlet [b] AA-38R-outlet [c]

AA-40R-outlet. 

 

The SEM images of the membrane AA

surface morphology, with the inlet sample (
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outlet was somewhat similar to morphology 

- 10 ppmv H2S in H2 (Chen, 
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formation at those locations (Pomerantz and Ma

216 

 [d]

  [f]

. Surface morphology images of membranes poisoned with H

outlet [c] RK-16R-inlet [d] RK-16R-outlet [e] AA
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 2011; Iyoha et al., 2007b). The morphology change was

explained as sulfur segregation to the grain boundaries and the start of bulk Pd

(Pomerantz and Ma, 2009; Chen, 2011). Both SEM images 
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showing more sharply 
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. The surface morphology of AA-38-

observed after Pd poisoning by 5 
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explained as sulfur segregation to the grain boundaries and the start of bulk Pd4S 

. Both SEM images 
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showed some evidence of pinhole formation on the order of 0.5 �m which was 

surprising given the testing temperature of only 400°C (Guazzone and Ma, 2008). 

The images of the membrane RK-16R-inlet and outlet were very similar, showing 

distinct and sharp Pd-crystallites of 1 – 3 �m in size. Surprisingly, the morphology 

observed on the RK-16R-outlet (Figure 9.12[d]) was not at all similar to that of the AA-

38R-outlet, despite the exposure to a greater H2S/H2 ratio, and indications of Pd4S 

formation by XRD (Figure 9.7[b]). The membrane RK-16R showed significantly larger 

grain clusters than AA-38R because no mechanical treatments were conducted on RK-

16R to smooth the surface. The membrane AA-38R had a significant mechanical 

polishing applied after annealing and before initial testing (when the membrane was 

refered to as AA-38, no “R”), resulting in a much finer surface for Pd-plating. The 

surface inhibition by H2S resulted in a rate limitation for the surface adsorption step in 

the H2 permeation mechanism (Ward and Dao, 1999). Since the membrane RK-16R 

had a rough surface (compared to AA-40R), the rate of H2 adsorption may have been 

higher due to more surface sites per superficial area, partially compensating for the 

inhibition by H2S. The increased surface roughness of RK-16R perhaps explained why 

its performance under H2S poisoning was better than expected, and closely in line with 

the results of the Pd/Au-membrane AA-40R. 

The images of the membrane AA-40R-inlet and outlet were similar, showing distinct 

metal crystallites, but also significant porosity or large pinhole formation on the order of 

1 – 3 �m in size. It was unclear whether this unusual porous character resulted from the 

testing in H2S or if it resulted from the fabrication. Regardless, it was unlikely that the 

porosity extended deeply into the Pd/alloy-layer since the selectivity was so high 

(greater than 2,500). It was possible that during the electroplating some palladium was 

displaced off of the surface resulting in small cavities. It was also possible that during 

the annealing at 450°C, the porosity resulted from the Kirkendall effect (Smigelskas and 

Kirkendall, 1947) as gold diffused into the palladium (and away from the surface) at a 

higher rate than palladium diffused into gold. Considering the different fabrication 

methods employed for the membrane AA-40R, it was unsurprising that the surface 

morphology was different from the other two membranes. 
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9.5. Conclusions 

Experiments conducted with 1 ppmv H2S in 100% H2 and in 50% H2/N2 showed that the 

presence of an inert gas (N2) increased the poisoning effect of the 1 ppmv H2S due to 

the nature of the reversible adsorption at low-ppm levels of H2S. Experiments 

conducted on a pure Pd-membrane with 1 ppmv H2S in 50% H2/N2 and 4 – 25% H2O 

(balance N2) resulted in gradually decreasing membrane H2 flux over time, suggesting 

that the combined effect of H2S and H2O was causing more irreversible poisoning to the 

membrane. 

A Pd-membrane was tested under shifted syngas (50% H2, 30% CO2, 19% H2O, 1% 

CO) with 0, 1, and 2.5 ppmv H2S present. With no H2S present, high H2 flux and 

recovery (14.0 m3/m2-h and 90% respectively) were achieved which were consistent 

with previous studies. With 2.5 ppmv H2S present a gradual decline in H2 flux and 

recovery was observed over 25 hours and Pd4S-phase was observed by XRD on the 

membrane surface at the outlet end. A Pd90Au10-membrane was also tested under 

shifted syngas with 0 - 20 ppmv H2S in the feed. The H2 flux decreased significantly with 

increasing amounts of H2S up to 5 ppmv, but then only decreased slightly due to the 

addition of 10 and 20 ppmv H2S, suggesting a saturation of the Pd-surface by sulfur. A 

stable H2 flux of 7.8 m3/m2-h (with 44% H2 recovery) was achieved with 20 ppmv H2S 

present for 25 hours. Regardless of the stable H2 flux, some Pd4S-phase was still 

observed by XRD on the membrane surface at the feed and the retentate ends. 

The WGS Pd-CMR was operated with 0, 1, and 2 ppmv H2S for 440 hours; steady-state 

conditions were achieved only after the system was saturated with H2S for 360 hours. 

With 2 ppmv H2S in the feed, a stable CO conversion and H2 recovery of 96 and 78% 

respectively were achieved for the final 80 hours. No bulk Pd4S was detected anywhere 

on the membrane surface by XRD and the addition of 2 ppmv H2S to the WGS mixture 

did not result in a significant change to the membrane selectivity. 

The low level of Pd4S formation on the Pd-membranes indicated that a reaction was 

probably occurring between H2S and the WGS species on the Pd-surface to produce 

COS, thereby increasing the thermodynamic threshold for Pd4S formation. 



219 
 

10. DURABILITY OF SUPPORTED Pd-MEMBRANES UNDER 

MIXED GAS AND WGS CONDITIONS 

10.1. Introduction 

One of the key performance requirements for PSS supported Pd-membranes to be 

applied in a commercial setting is long-term permeance and selectivity stability. 

Relatively few studies have unambiguously demonstrated robust membrane stability 

over periods on the order of 1,000 hours. In such a context, very thin Pd/alloy-

membranes (1.5 – 5.5 �m) have been prepared on porous alumina or porous ceramic 

supports through electroless deposition and have shown excellent results under pure H2 

testing (Roa and Way, 2003; Hou and Hughes, 2003; Pan et al., 2003). Kulprathipanja 

et al. (2004), on the other hand, tested similar Pd75Cu25-membranes in reactive H2/CO2 

and H2/CO atmospheres and observed a significant decrease in the ideal H2/N2 

selectivity. They also observed increased surface roughness by SEM for which they 

proposed several possible causal roots: lattice stress relaxation, bcc/fcc phase 

transition in the Pd/Cu-alloy, Pd-grain coalescence, or Pd-grain sintering. 

In light of the above considerations, one of the most promising types of membrane for 

use in a membrane reactor process is the dense Pd-membrane supported on PSS due 

to their low support resistance and high mechanical strength. The membranes prepared 

in this study (Chapter 4) as well as several literature examples (Guazzone and Ma, 

2008; Peters et al., 2009) have already shown excellent permeance and selectivity 

stability during pure H2 testing. Several examples from the literature are summarized in 

Table 10.1. 
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Table 10.1. Summary of long-term testing of Pd and Pd/alloy membranes. 

Support Selective layer Temp 
[°C] 

H2 permeance Testing 
conditions 

Testing 
time [h] 

Final 
selectivity 

Reference 

ZnO2/porous 
alumina 

1.5 �m 
Pd90Cu10 

450 12.5 
m3/m2-h-atm 

H2, 2 atma 4,100 7,000 
(H2/N2) 

Roa and Way, 
2003 

Porous 
alumina 

5.5 �m PdAg* 200 – 
400 

15.3 
m3/m2-h-atm0.61 

H2, 4 atma 960 4,500 
(H2/N2) 

Hou and Huges, 
2003 

Porous 
alumina 

3.0 �m 
Pd 

430 16.2 
m3/m2-h-atm 

H2, 2.5 atma 800 1,300 
(H2/N2) 

Pan et al., 2003 

ZnO2/porous 
alumina 

3.0 �m 
Pd75Cu25 

450 8.8 
m3/m2-h-atm 

50% H2/CO2, 95% 
H2/CO, 3.8 atma 

340 11 
(H2/N2) 

Kulprathipanja et 
al., 2004 

Porous 
Hastelloy 

4.0 �m 
Pd 

400 42.6 
m3/m2-h-atm0.5 

H2, 2 atma 2,200 22,000 
(H2/He) 

Guazzone and 
Ma, 2008 

PSS 4.0 �m 
Pd77Ag23 

350 – 
450 

24.2 
m3/m2-h-atm 

50% H2/N2, 19.8 
atma 

2,400 500 
(H2/N2) 

Peters et al., 
2009 

PSS 20 �m 
Pd 

350 5.0 
m3/m2-h-atm0.5 

CH3OH SR, 14.9 
atma 

900 4,000 
(H2/N2) 

Lin and Rei, 
2001 

Self 
supported 

2 – 6 �m Pd 
380 �m Ta 

425 1.74 
m3/m2-h-atm0.5 

66% H2/H2O, 20.8 
atma 

70 >17,000 
(H2/He) 

Torkelson et al., 
2008 

425 1.74 
m3/m2-h-atm0.5 

WGS, 15.4 atma 25 >17,000 
(H2/He) 

Porous 
alumina 

10.9 – 13.8 
�m Pd 

550 17.8 
m3/m2-h-atm 

CH4 SR, 15 – 35 
atma 

120 NR* Li et al., 2011 

PSS <20 �m 
Pd/rare earth* 

495 – 
540 

NR* CH4 SR, 9.1 atma 3,300 >10,000† 
(H2/other) 

Shirasaki et al., 
2009 

*further details not reported †estimated separation factor 
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Examples in the literature of Pd-membranes tested for extended periods under reaction 

conditions are far fewer, and are also listed in Table 10.1. Lin and Rei (2001) fabricated 

a 20 �m Pd-membrane on an alumina graded PSS support and tested it under 

methanol Steam Reforming (SR) conditions for 900 hours at 350°C. They observed a 

stable H2 flux and selectivity over the whole testing period, likely due to the thickness of 

the selective layer. Torkelson et al. (2008) electroless plated a 2 - 6 �m Pd-layer onto a 

dense 380 �m thick Ta-tube. The Pd-layer catalyzed the adsorption and dissociation of 

H2, and the Ta-tube acted as the selective layer. They tested one of the membranes in 

66% H2/H2O, 20.8 atma, and 425°C for 70 hours, observing a stable selectivity and a 

gradual reduction in the H2 flux of 20%, which they attributed to the reversible surface 

adsorption of H2O. They tested another similar membrane for 25 hours in 4% CO, 90% 

H2, and 5% He, then 25 hours in 3% CO, 62% H2, 31% H2O, and 3% He, both at 425°C 

and 15.3 atma, observing a stable H2 permeance and an undetectable leak. Li et al. 

(2011) tested eight Pd/porous alumina membranes simultaneously in a multi-tube MSR 

CMR for over 120 hours of reaction conditions: 550°C, 15 – 35 atma, H2O/CO = 3, and 

1,000 – 3,100 h-1. They reported stable H2 recovery and CH4 conversion, but 

unfortunately did not report post-testing leak or selectivity data. The Tokyo Gas 

Company Ltd. has commercialized a membrane MSR capable of 40 m3/h H2 production 

from natural gas, for which they demonstrated 3,300 hours of membrane permeance 

and selectivity stability for their PSS supported, Pd/rare-earth-metal alloy films. 

However, since their work was proprietary, the membrane synthesis and 

characterization details were not clearly reported (Shirasaki et al., 2009). 

Considering the studies in the literature that included long-term Pd-membranes tested 

under reactive conditions, the membranes utilized all had prohibitively low H2 

permeance (Lin and Rei, 2001; Torkelson et al., 2008) or prohibitively low selectivity 

(Kulprathipanja et al., 2004), rendering those types of membranes unviable for 

commercial applications (Mendes et al., 2010; Shu et al., 1991). Therefore, in addition 

to recognizing the paucity of experimental data concerning highly permeable 

membranes tested for long-term stability under mixed gas and WGS conditions, the 

objective of this study was to develop a comprehensive framework to assist our 

understanding of leak growth mechanisms based on several long-term tests, as well as 
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post-test membrane characterization. In particular, economically viable (lower cost) 

stainless steel supports were utilized so that the membrane synthesis and subsequent 

long-term testing closely mirrored that of a commercial process. Effects such as coke 

formation and surface rearrangement were also discussed in this context since they had 

the potential to gradually alter the H2 permeance of the membranes. 

10.2. Experimental 

The relevant synthesis details and initial H2 testing results of the membranes utilized in 

this chapter are listed in the Table 10.2. The preparation and initial testing of those 

membranes was discussed in Chapter 4. 

 

Table 10.2. Membranes tested in this chapter, comprehensive details are given in 

Appendix D. 

 Pd/Ag 
[�m] 

Dense 
layer [�m] 

H2 permeance* 
[m3/m2-h-atm0.5] 

Final select.J 
[FH2/FHe] 

Other details 

AA-21 4.8 15.7 20.2 175  
AA-24R 6.2 7.4 28.5 365 High temp 

annealing 
AA-29 <1 9.3 24.1 1,700  
AA-30 <1 9.5 28.6 240  
AA-38R N/A 4.4 41.2 2,600  
AA-40R N/A 2.7 38.0 340 10 at% Au 
RK-16R N/A 6.0 37.5 675  
IM-79 12.2 10.2 23.2 1,100  
IM-86b 1.0 7.5 33.7 1,200  
*at 400°C 
Gselectivity after final mixed gas or WGS experiment described here 
 
The rate of leak development or the change in He permeance over time, �FHe/�t, was 

determined by dividing the change in He permeance by the time period between leak 

measurements, equation 10.1. If the plot of He leak versus time was mostly linear, then 

equation 10.1 was applied to the first and final leak measurements for a period of 

uniform testing conditions. Note that the change in He permeance over time is in units 

of m3/m2-h2-atm. 
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�M��ì         10.1 

The H2/CO separation factor was calculated for some membranes during mixed gas 

and WGS testing by equation 2.33. 

 �>��:; �
�>� �:;�s>� s:;�         2.33 

where yH2 is the mole fraction of H2 in the permeate, yCO is the mole fraction of CO in 

the permeate, xH2 is the mole fraction of H2 in the retentate, and xCO is the mole fraction 

of CO in the retentate. 

10.3. Results and discussion 

10.3.1. Effect of high pressure H2 on leak growth 

In the majority of the long-term mixed gas and WGS CMR experiments conducted, a 

pressure of 4.4 – 14.6 atma was utilized, with an H2 partial pressure of up to 7.3 atma. 

Although some studies have been done in the past to rule out the possibility of 

membrane degradation due to high H2 pressure (Guazzone et al., 2006), it was still 

important to rule out that possibility in the present study. As such, the membrane AA-29 

was tested in H2 at the elevated pressure of 4.9 atma for 550 hours. The membrane IM-

79 was also tested with an H2 pressure of 4.9 and 7.9 atma for 50 hours each. The He 

leak of both membranes as well as the H2 permeance (of IM-79 only) is plotted over 

time in Figure 10.1. 
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Figure 10.1. He leak development during pure H2 testing at elevated pressure for AA-29 

and IM-79 (H2 permeance shown for IM-79 only). 

 

As can be seen in Figure 10.1, the slope of the leak over time during high pressure 

testing did not deviate from that measured beforehand, essentially reducing the 

possibility that the elevated H2 pressure adversely affected the dense Pd-layer. As was 

discussed in Chapter 4, Section 4.4.4, the change in stress/strain of approximately 100 

MPa due to 7.9 atma of H2 was not great enough to cause cracks or pinhole formation 

in defect free membranes. The rate of leak growth in both of these membranes, 

4.60*10-6 and 3.46*10-6 m3/m2-h2-atm for AA-29 and IM-79 respectively, was in line with 

other literature results (Guazzone and Ma, 2008; Peters et al., 2009). The leak growth 

rates, �FHe/�t, of all of the membranes tested in this chapter (with regard to the testing 

conditions, and determined by equation 10.1) as well as some examples from the 

literature are listed in Table 10.3. 
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Table 10.3. Comparison of He leak growth rates under H2, mixed gas, and WGS 

conditions. 

Membrane �FHe/�t in H2 at 
400°C 

[m3/m2-h2-atm] 

Conditions, Time [h] �FHe/�t under 
conditions 

[m3/m2-h2-atm] 

�final 
[FH2/FHe] 

Guazzone and 
Ma, 2008 

3.88×10-7 H2, 2,290 N/A 22,000 

Peters et al., 
2009 

6.73×10-6 (N2) H2/N2, 2,400 N/A 500* 

AA-29 4.60×10-6 H2 (4.8 atma) N/A 1,710 
AA-21 2.92×10-5 H2/H2O, 40 4.93×10-4 175 
IM-86b 1.91×10-6 H2/H2O, 190 3.99×10-6 1,230 
RK-16R 2.50×10-5 Shifted syngas, 72G 6.31×10-5 675 
AA-40R 
(10%Au) 

1.25×10-5 Shifted syngas, 24 3.30×10-5 1,540 
Shifted syngas, 144‡ 7.45×10-5 340 

AA-24R 2.90×10-6 WGS, 110 2.66×10-4 365 
IM-79 3.46×10-6 WGS, 65 9.44×10-6 1,110 
AA-30 2.60×10-5 WGS, 500 pt 1 7.52×10-7 2,000 

WGS, 500 pt 2 4.38×10-5 240 

AA-38R <1×10-7 WGS, 124 <1×10-7 11,300 
WGS, 330G 1.98×10-5 2,550 

*H2/N2 selectivity GWith 0 – 2.5 ppmv H2S present ‡With 0 – 20 ppmv H2S present 
 

10.3.2. Effect of H2O on leak growth 

The testing under H2/H2O mixed gas was conducted in order to isolate the effects of the 

H2O on the supported Pd-membrane as a preliminary to long-term WGS tests. In the 

subsequent sections, experiments were conducted with syngas mixtures in which it may 

be supposed that the differences in H2 permeance and He leak stability may be 

attributed to the presences of CO and/or CO2 in the gas mixture. 

The membranes AA-21 and IM-86b were both tested initially in pure H2 then in H2/H2O 

mixtures to determine if the presence of H2O would accelerate the leak growth. The 

membrane AA-21 was tested in H2 at 400°C for 280 hours, then in 37% H2O in H2 at 

14.6 atma and 5,000 – 20,500 h-1 feed flow rate for 40 hours. Figure 10.2 shows the H2 

permeance and He leak of the membrane AA-21 for the whole testing period. 
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Figure 10.2. Testing history of AA-21 including H2, He, and H2/H2O testing (Pure He 

leak plotted on the secondary y-axis). 

 

No significant change in He permeance was observed during an initial, short (8 h) 

period of H2/H2O testing. After a longer period of H2/H2O testing (time = 335 - 365 h in 

Figure 10.2) significant He leak growth was observed, probably due to convection 

cooling of the membrane surface by the high feed rate utilized. In an attempt to 

characterize the permeation behavior over a range of feed rates (discussed in Chapter 

6), a feed rate as high as 4.5 L/min was maintained for one hour during which time the 

temperature was observed to fluctuate by up to 15°C over several minutes, which may 

have been enough to accelerate leak development. It was also possible that incomplete 

mixing was occurring due to the low residence time (1.1 sec by equation 6.16) in the 

pre-heater. The He permeance growth rate is listed in Table 10.3 for the pure H2 testing 

and for the H2/H2O testing periods of AA-21. To better study the effect of H2/H2O 

mixtures, a new pre-heater was constructed with a significantly larger mixing volume 

(160 cm3 instead of 14 cm3), and experiments were conducted at lower total feed rates 

with the membrane IM-86b. 
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The membrane IM-86b was initially tested for 1,000 hours in H2 and had a very low rate 

of He leak growth (1.91*10-6 m3/m2-h2-atm). After the initial H2 testing, the membrane 

was tested under H2/H2O mixtures at 2.6 - 6 atma and 400�C for 50 hour periods, 

between which, the system was switched to He and then back to H2 for pure gas 

permeation measurements. The testing history is shown in Figure 10.3 in terms of pure 

H2 permeance, H2 flux during H2/H2O testing periods, and pure He leak measurements 

plotted on the secondary y-axis. 

 

Figure 10.3. Pure H2 testing of IM-86b, with 50 hour periods of H2/H2O mixed gas 

testing (He leak plotted on the secondary Y-axis). 

 

Following the first 50 hour period of H2/H2O exposure (time = 1,050 hours in Figure 

10.3) the system was switched back to pure H2 and the H2 permeance of the membrane 

remained at 40% of the initial pure H2 permeance, possibly due to poisoning from the 

walls of the newly installed pre-mixer (installed at time = 960 h). After additional H2/H2O 

testing periods the H2 permeance increased slightly, suggesting that the poisoning 

effect had ceased; when the temperature was raised to 450°C nearly complete recovery 
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of the H2 permeance resulted (as shown at time = 1,500 hours in Figure 10.3). The He 

leak slightly decreased, apparently as a result of the first two H2/H2O testing periods, 

which was unusual and may have been due to the poisoning from the walls of the newly 

installed pre-mixer. After the initial decrease in He leak, gradual leak growth occurred at 

a rate of 3.99*10-6 m3/m2-h2-atm, almost equivalent to that observed during pure H2 

testing. The leak growth rate of the membrane MA-86b under pure H2 testing and under 

H2/H2O conditions is listed in Table 10.3. 

Several studies have shown that H2O reversibly adsorbed on the Pd-surface and 

ceased to affect the H2 permeance within less than 30 minutes of returning to pure H2 

(Li et al., 2000; Hou and Hughes, 2002; Gielens et al., 2006). There has been no 

evidence in the literature, during short-term experiments, to suggest that H2O, in any 

form, penetrated into the bulk Pd. It was, therefore, unsurprising that over the long-term 

testing similar rates of leak growth were measured under pure H2 conditions and 

H2/H2O mixed gas conditions in the membrane MA-86b, such that H2O did not 

accelerate the leak growth. 

10.3.3. Effect of syngas on leak growth 

Membranes were tested in a synthetic syngas mixture to determine if the species CO or 

CO2 could have altered the rate of leak growth in the Pd-layer. The pure Pd-membrane 

RK-16R and the Pd/Au membrane AA-40R were both tested in shifted syngas (50% H2, 

30% CO2, 19% H2O, and 1% CO) for extended periods of time, first with no H2S 

present, then with 1 – 20 ppmv H2S for the study conducted in Chapter 9. The leak 

growth and permeate CO levels over time for the membranes RK-16R and AA-40R are 

shown in Figure 10.4[a] and [b] respectively. For the membrane RK-16R, the He leak 

was not measured after initial mixed gas testing and before H2S was introduced, so 

changes in the leak growth of that membrane could be attributed to mixed gas exposure 

and/or H2S poisoning. 
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[a]  

[b]  

Figure 10.4. Leak development during shifted syngas testing [a] RK-16R [b] AA-40R 

(50% H2, 30% CO2, 19% H2O, and 1% CO; 400°C; 13.9 atma; GHSVSTP = 5,600 h-1). 
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The leak growth rate measured for the membrane RK-16R approximately doubled due 

to mixed gas testing with up to 2 ppmv H2S present. The leak growth rate measured in 

the membrane AA-40R also approximately doubled due to mixed gas testing (with no 

H2S) then doubled again due to the addition of up to 20 ppmv H2S (all leak growth rates 

are listed in Table 10.3). While the results were complicated by the simultaneous mixed 

gas and H2S exposure, it was clear that the combination of those factors increased the 

leak growth in the Pd-membrane, significantly exceeding that measured in pure H2 

(Guazzone and Ma, 2008; Peters et al., 2009). As can be seen in Figure 10.4[b], as 

greater concentrations of H2S were added, the leak growth rate increased even more. 

In a related study by Gade et al. (2011), significant leak growth occurred in both 

Pd90Au10 and Pd80Au20-membranes upon exposure to a similar mixed gas composition 

including 20 ppmv H2S, which was attributed to a loss of membrane thickness due to 

corrosion spalling or flaking. Peters et al. (2012) did not observe leak growth but did 

observe a significant surface pitting which they attributed to (intentional) air exposure at 

450°C. Surface morphology and cross-section images were shown of both the 

membranes RK-16R and AA-40R in Chapter 9 (Section 9.4.4). Typical surface 

morphology features were observed for the membrane RK-16R considering the 

extended tested at 400°C. It was unclear from those images if significant surface 

morphology changes occurred with the membrane AA-40R due to the different 

fabrication methodology, as discussed in Chapter 9. The cross-section images showed 

a dense Pd thickness in line with the gravimetric thickness suggesting that no corrosion 

had occurred. 

Interestingly, the CO measured in the permeate stream (Figure 10.4[a]) continuously 

decreased (by about 75%) during the mixed gas testing, seemingly decoupled from the 

He leak which increased over the testing. Since the PSS supports contained both iron 

and chromium, they may have had some catalytic activity towards the WGS reaction. 

The mixture on the support side of the membrane contained greater than 99% H2 in 

most cases, so the reverse-WGS reaction may have been occurring to generate CO 

from the permeating CO2. If the support gradually lost catalytic activity over the 

timeframe of the experiment, that could explain the drop in CO measured in the 
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permeate stream. It should be pointed out that this explaination was purely speculative. 

Regardless of the reason, the level of CO in the permeate stream was not 

representative of the membrane leak rate. 

10.3.4. Effect of the high-temperature WGS reaction on leak growth 

Since it was not thoroughly demonstrated in the previous section whether the syngas 

species had a significant effect on the He leak growth in the Pd-membrane, a series of 

experiments were conducted under WGS conditions with iron-chrome oxide catalyst 

packed in the annular space around the membrane. Several membranes (AA-24R, AA-

30, AA-38R, and IM-79) were mounted in the WGS CMR and tested under reaction 

conditions for extended periods of time. Long-term experiments were also conducted to 

develop a better understanding of the stability of the WGS CMR operation. 

The membrane AA-24R was tested at 400°C, 4.4 atma, and 2,700 h-1 GHSVSTP of 

simulated syngas (19% CO, 55% H2O, 18% H2, and 8% CO2). The reaction pressure of 

4.4 atma was utilized so that there would be a low H2 recovery such that the partial 

pressure of H2 did not change significantly along the length of the membrane. With the 

low H2 recovery, a CO conversion very close to the equilibrium conversion was 

expected. It was intended that the pressure would be elevated to 7.8 and then 14.4 

atma within 100 hours if little or no selectivity decline was observed, followed by 

increases in the feed flow rate. The H2 permeance and He leak of the membrane AA-

24R over the whole testing period are shown in Figure 10.5[a]. The CO conversion and 

H2 recovery are shown in Figure 10.5[b]. The level of CO in the permeate stream and 

the H2/CO separation factor (calculated by equation 2.33) are shown for the first 80 

hours of the experiment in Figure 10.4[c]. After 80 hours the level of CO in the permeate 

exceeded the limits of the detector, and after 110 hours, the experiment was stopped 

due to condensation of H2O in the permeate outlet. The condensation of H2O in the 

room temperature tubing indicated that greater than 2.3% H2O was present in the 

permeate stream (considering the saturated vapor pressure of H2O at 20°C). 
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[a]  

[b]  
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[c]  

Figure 10.5. H2, He, and WGS testing of AA-24R [a] Testing history [b] WGS CMR 

results [c] CO measured in the permeate and H2/CO separation factor during WGS test 

(19% CO, 18% H2, 8% CO2, and 55% H2O; 400°C; 4.4 atma; GHSVSTP = 2,700 h-1). 

 

The He leak, which was stable during pure H2 testing, increased by one-order of 

magnitude during the 110 hour reaction test as shown in Figure 10.4[a]. The average 

rate of leak growth during the reaction test was approximately two orders of magnitude 

greater than during the pure H2 testing (see Table 10.3). Although the CO conversion 

and H2 recovery remained stable over the 110 hour testing period (Figure 10.4[b]), the 

H2/CO separation factor of the membrane declined significantly. The decline in H2/CO 

separation factor was continuous and exponential (note the logarithmic scale on the 

secondary y-axis in Figure 10.4[c]) indicating that the leak growth was not due to any 

particular event such as a loss of pressure or disruption of the H2O feed pump (as had 

previously been problematic) but by the reaction conditions. The ideal H2/He selectivity 

(measured before and after the reaction) also declined from 4,200 to 360. There was 

some doubt as to the viability of the results from the membrane AA-24R since it was 
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annealed at a significantly higher temperature (690°C) before additional Pd-plating, so 

WGS testing was continued with other membranes. 

The membrane IM-79 was tested for 1,100 hours under H2, then under WGS conditions 

for 65 hours, with similar feed conditions: 400°C, 14.6 atma, 23% CO, 22% H2, 10% 

CO2, and 45% H2O at 2,100 h-1). The CO conversion, H2 recovery, and He leak of 

before and after the WGS test are shown in Figure 10.6. 

 

Figure 10.6. WGS CMR results and He leak development of the membrane IM-79 (23% 

CO, 22% H2, 10% CO2, and 45% H2O; 400�C; 14.6 atma; GHSVSTP = 2,100 h-1). 

 

Over the course of 65 hours the H2 recovery gradually decreased due to coke formation 

on the membrane surface as was discussed in Chapter 8 (Section 8.4). The He leak 

growth rate of the membrane over the reaction period was almost three times the rate 

observed under pure H2 (Table 10.3). As was discussed in the introduction of Chapter 

8, the deposition and dissolution of carbon into palladium can result in a significant 

increase in the lattice parameter to 3.99Å. In some studies this increase has been 
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associated with surface distortions and leak growth in thin Pd-layers (Selman et al., 

1970; Galuszka et al., 1998; Li et al., 2007c). Since coke formation was most likely 

occurring on the membrane surface, it was possible that it was also dissolving into the 

Pd-lattice and causing accelerated leak growth (Galuszka et al., 1998; Li et al., 2007c). 

It was only speculative that the coking may have accelerated the leak growth since no 

analysis by XRD was conducted to determine the Pd-lattice parameter. Since a shorter 

testing period (65 hours) was utililized for the membrane IM-79, the accuracy of the leak 

growth rate calculation (equation 10.1) was somewhat dubious. 

The testing of the membrane AA-30 provided the best insight into the effects of the 

WGS conditions on the membrane since the reaction was conducted for the longest 

period of time. The membrane AA-30 was initially tested for 400 hours under pure H2, 

then under the WGS reaction in 100 hour increments for 1,000 hours of reaction time 

and 2,500 hours total testing time. A higher H2O/CO ratio of 3.0 was utilized to avoid 

possible coke formation. In between reaction tests the system was purged with He for 

75 hours so that the leak could be measured, and after 500 hours of WGS conditions, 

the system was also switched to H2 so that the membrane permeance could be 

measured. The H2 permeance of the membrane was measured initially, after 500 hours, 

and after 1,000 hours of reaction time, and is shown along with the He leak over time in 

Figure 10.7[a]. The CO conversion and H2 recovery for the ten-100 hour increments of 

reaction testing is shown in Figure 10.7[b]. The permeating CO is also shown in Figure 

10.7[b]. 
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[a]  

[b]  

Figure 10.7. H2, He, and WGS testing of AA-30 [a] Leak development [b] WGS CMR 

results and CO measured in the permeate (Feed: 19% CO, 18% H2, 8% CO2, and 55% 

H2O; 400�C; GHSVSTP = 2,700 h-1). 
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When the system was switched to H2 at 1,510 and 2,350 hours (Figure 10.7[a]) the H2 

permeance returned to within 90% of its initial value indicating that the Pd-surface was 

mostly free of poisoning such as coke formation. The He leak of the membrane, shown 

in Figure 10.7[a], and the level of CO measured in the permeate, shown in Figure 

10.7[b], both decreased by a factor of 3 upon the first 200 hours of WGS conditions. 

The He leak remained very small until after a total time of 1,510 hours when the system 

was switched to H2. During the final 500 hours of WGS conditions the He leak increased 

in a linear fashion with approximately the same rate as during the initial pure H2 testing 

(Table 10.3). 

The initial decrease in He leak observed with membrane AA-30 upon exposure to WGS 

conditions was unexpected, but not completely unfounded in the literature. Pomerantz 

and Ma (2009) observed an 80% decrease in the He leak of their 12.5 �m PI supported 

Pd92Cu8-membrane after 250 hours exposure to 54 ppmv H2S in H2. They attributed the 

leak decrease to segregation of sulfur to the grain boundaries and defects, resulting in 

blockage. Li et al. (2007b) also observed a slight but reproducible decrease in the N2 

leak of their porous ceramic supported Pd-membrane after exposure to pure CO at 350 

- 450°C which they attributed to the accelerated kinetic rate of coke formation in and 

around defect sites. It has been shown that carbon is soluble in palladium up to 13 at% 

and can be introduced via CO exposure at high temperatures (Li et al., 2000; Yokoyama 

et al., 1998; Ziemecki et al., 1985). It was possible that carbon deposition could have 

occurred preferentially at the grain boundaries and defect sites, lowering the He leak at 

those locations. It seemed likely that if the carbon deposition reduced the leak by some 

mechanism, the effect would have been more significant during the testing of IM-79 

since coke formation was occurring to a greater extent in that experiment. However, as 

the data in Table 10.3 show, there was a positive leak growth rate for IM-79 under the 

reaction conditions indicating that the effect was not significant. 

Upon removal of the membrane AA-30 from the reactor, the IPA bubble test identified a 

single large leak on the weld at the outlet end of the membrane. A rising water leak test, 

shown in Figure 10.8 demonstrated that 65% of the leak was indeed localized in the 0.5 

cm section adjacent to that weld. Furthermore, 23% of the leak was localized in the 1.0 
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cm section adjacent to the other weld, indicating that if both of the welds were covered, 

the remaining 5 cm length of membrane would still have had an ideal selectivity in 

excess of 1,500. 

 

Figure 10.8. Rising water He leak test for the membrane AA-30. 

 

The last example of WGS reaction testing was conducted with the membrane AA-38R 

at 400°C, 14.6 atma, and with 19% CO, 18% H2, 8% CO2, and 55% H2O. The 

membrane was tested under WGS conditions for 124 hours, then with 1 and 2 ppmv 

H2S present in the feed. The CO conversion and H2 recovery for that reaction test were 

reported and discussed in Chapter 9 (Section 9.4.4). The H2 permeance and He leak for 

the membrane AA-38R are shown in Figure 10.9. 
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Figure 10.9. H2 and WGS testing of the membrane AA-38R (19% CO, 18% H2, 8% CO2, 

55% H2O; 14.6 atma; 400°C; GHSVSTP = 2,700 h-1). 

 

The He leak measured both before and after the first two periods of WGS testing (at a 

time of up to 480 hours in Figure 10.9) were below the threshold for accurate detection 

indicating a He permeance growth rate of less than 1.0*10-7 m3/m2-h2-atm. With the 

membrane AA-38R there were no problematic issues during synthesis or testing, 

presenting a clear example that the WGS conditions did not adversely the selectivity in 

a well fabricated membrane with no weld defects. 

The He leak growth rates during WGS testing with 1 and 2 ppmv H2S present were 

more than two-orders of magnitude higher. As discussed in Chapter 9 (Section 9.4.4), 

there was no indication of bulk Pd4S by XRD, but there was a significant surface 

morphology change at the outlet end of the membrane which was related to the H2S 

poisoning phenomena previously observed in the literature (Chen, 2011; Iyoha et al., 

2007b). It was likely that the accelerated leak observed during WGS/H2S testing of AA-

38R was due to this surface morphology change and as a result of poisoning by H2S. 
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Several of the membranes which were tested under WGS conditions (AA-24R, AA-30, 

and IM-79) were cut and the surface morphology was observed by SEM. The 

membrane AA-29 was tested under H2 only for 1,000 hours at 400°C and is shown at 

two different magnifications in Figure 10.10[a] and [b]. The membranes AA-24R is also 

shown at two different magnifications in Figure 10.10[c] and [d]. The membrane AA-30 

is shown in Figure 10.10[e] and the membrane IM-79 is shown in Figure 10.10[f]. 

[a] [b]  

[c] [d]  
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[e]  [f]  

Figure 10.10. SEM images of the Pd-surface morphology [a] AA-29; 2,500X [b] AA-29; 

5,000X [c] AA-24R; 2,500X [d] AA-24R; 5,000X [e] AA-30; 2,500X [f] IM-79; 5,000X. 

 

Extensive pinhole formation was observed on AA-24R potentially due to the high 

temperature annealing during synthesis. Some pinholes on AA-30 and IM-79 of 

approximately 0.2 �m in size were apparent, but could have been attributed to the 

extended testing time of 2,500 and 2,000 hours respectively at 400°C. All three of the 

membranes AA-24R, AA-30, and IM-79 showed a higher degree of sintering among the 

Pd-crystallites than AA-29, similar to what had previously been observed due to higher 

temperature (greater than 500°C) testing in pure H2 (Guazzone et al., 2006). 

Unfortunately, the surface morphology varied distinctly over small distances (less than 

200 �m) on the same sample of the membrane, due perhaps to the nature of electroless 

plating, and indicating the difficulty of surface morphology comparisons. 

In some cases when platinum group metals have been exposed to reactive conditions, 

surface morphology changes were observed at temperatures significantly lower than the 

Tamman temperature, the temperature at which sintering and grain growth were 

expected (Flytzani-Stephanopoulos and Schmidt, 1979). It has been suggested that this 

phenomenon was the result of an increased diffusion rate of surface metal atoms due to 

the interaction of adsorbed gases. Kulprathipanja et al. (2004) reported hillock formation 

on the order of 150 – 400 nm in electroless plated Pd65Cu35-coupons exposed to CO 

and CO2 at 450°C, but not coupons exposed to pure H2. They also reported significant 
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leak growth in their 3.0 �m Pd75Cu25-membrane upon exposure to H2/CO and H2/CO2 

mixtures (detailed in Table 10.1). Since they observed some segregation of the copper 

away from the surface of the coupons, they suggested that the roughening and leak 

growth were most likely due to a bcc to fcc phase change taking place near the surface. 

However, they did not hypothesize as to how CO or CO2 could have caused this. 

In the cases of AA-24R and MA-79, the higher leak growth rate during WGS conditions 

than during pure H2 testing suggested the occurrence of an alternative mechanism of 

leak growth such as the surface morphology rearrangement. However, the 

extraordinarily low rate of leak growth in AA-38R suggested that any morphology 

change which may have been occurring did not penetrate deeply into the Pd-layer. The 

testing of AA-30, where the majority of leak development in the membrane was due to 

weld defects (as also discussed in Chapter 4), also supported this conclusion and 

indicated that the WGS conditions did not significantly affect the rate of leak growth in 

well fabricated membranes. 

Having a reasonably high, experimentally based, lifetime estimate is essential to the 

possibility of commercial applications. Detailed economic analysis regarding IGCC 

applications have identified cost effective options assuming a membrane lifetime of 5 

years (Gray et al., 2009). The membrane lifetime was defined as the length of time 

during which the membrane produced a H2 purity of greater than 94%, suitable for a gas 

turbine in the power block of IGCC (Klara et al., 2007; Gray et al., 2009). Assuming that 

membranes in this study were utilized at a high pressure (14.6 atma) and a low flow 

such that H2 fluxes of 5 – 9 m3/m2-h were achieved as in the WGS and H2/H2O 

experiments respectively, the viable lifetime was as great as ten or more years for AA-

38R, 1.1 years for IM-79, and 0.25 years for AA-30. This was a conservative lifetime 

estimate because helium was used as the impermeable gas for the leak measurements. 

Since the leak through the membrane was mainly due to Knudsen diffusion, the leak of 

other gases such as CO, CO2, and H2O would be lower than that of He since the 

molecular mass of those species is greater (Perry and Green, 1997). The purity of H2 in 

the permeate stream during the WGS CMR experiments with AA-30 (measured by 

collection of residual H2O by cold trap and analysis of the dry permeate gas by GC) 
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dropped below 94% at approximately 2,200 hours, in close agreement with the 

estimated lifetime calculation. 

10.4. Conclusions 

Membranes were tested for up to 2,500 hours under H2, H2/H2O, syngas, and WGS 

conditions at 400°C and exhibited stable H2 permeance and gradual leak development 

(as low as 1.0*10-7 m3/m2-h2-atm) which was in line with testing in pure H2. Experiments 

with H2/H2O mixtures indicated that H2O did not adversely affect the membrane 

selectivity. Long-term testing under WGS conditions also indicated that CO and CO2 did 

not increase the leak growth rate or decrease the H2 permeance of the membranes. 

Moreover, due to the stable membrane behavior, stable CO conversion and H2 recovery 

of over 96% and 88% respectively were achieved for over 900 hours. Given the low leak 

growth rates observed in several membranes under reaction conditions, a membrane 

lifetime of greater than 10 years was projected to be possible. 

A surface morphology change was observed in several membranes that were tested 

under WGS conditions at 400°C which resembled higher temperature annealing effects. 

Given the low rate of leak growth, it was unlikely that this change penetrated deeply into 

the Pd-layer. The gradual leak growth observed under WGS conditions was attributed to 

the observed pinhole formation. For the membranes which exhibited significant leak 

growth, the primary cause was shown to be weld defects inherent in the low cost porous 

stainless steel supports. 

Membranes tested under syngas with 1 – 20 ppmv H2S exhibited higher leak growth 

rates (up to four times greater) than that measured under syngas only. A Pd-membrane 

tested under WGS conditions with 2 ppmv H2S exhibited the same trend, indicating that 

H2S resulted in leak development, potentially due to a gradual penetration of sulfur into 

the Pd-layer forming bulk sulfides. 
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11. CONCLUSIONS 

• The most reliable and reproducible method for membrane synthesis involved 

repetitive alumina grading treatments with successively smaller particle sizes from 

10 to 0.01 �m, and resulted in thin (less than 5 �m), leak free Pd-membranes. 

Membranes prepared by this method exhibited H2 permeance as high as 61.7 

m3/m2-h-atm0.5, with stable selectivity of 3,900 at 400°C. 

• The primary obstacle to the reliable production of thin, leak free Pd-membranes on 

low cost PSS316L supports was defects greater than 10 �m in size, present near the 

welded regions on about half of all supports. The best way of repairing these 

defects was through additional alumina grading and Pd-plating steps applied solely 

to the welded regions. 

• At H2 pressure exceeding 4 atma, the H2 flux was found to exceed Sieverts’ law by 

as much as 56% due to the influence of both the mass transfer resistance in the 

porous support and grading layers and the increased solubility of H-atoms in the 

Pd-layer at higher pressure (greater than 4 atma). 

• The H2 permeance inhibition was found to be significant for CO at temperatures 

below 400°C, and that of H2O was significant at 400°C. The gas phase mass 

transfer resistance was significant over the whole range of feed flow rates tested 

(with Reynolds numbers from 10 to 200). 

• The WGS CMR allowed for the simultaneous recovery of H2 (up to 90%) and CO 

conversion of 98%, significantly in excess of the packed-bed equilibrium 

conversion. Similar results were obtained for both CO/steam feed mixtures and 

simulated syngas mixtures. 

• The WGS CMR was capable of high CO conversion at higher throughput (5,400 h-1 

space velocity) than previous packed-bed and membrane reactor experiments by 

utilization of a higher operating temperature of 450°C and a reaction pressure of 

14 atma. 

• Indications of coke formation were observed in the WGS CMR for H2O/CO ratios 

as high as 1.6 at 300 – 400°C, and as high as 1.1 at 450 – 500°C. A 

thermodynamic analysis indicated that coke formation was not preferred due to the 
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potential for CH4 formation when sufficient H2 was present. The rate of coke 

formation on the Pd-surface was found to vary widely depending on the feed 

conditions and the presence of the iron-chrome oxide catalyst. 

• A Pd-membrane tested under shifted syngas (50% H2, 30% CO2, 19% H2O, and 

1% CO) including up to 2.5 ppmv H2S maintained a stable H2 flux of 14.0 m3/m2-h 

with 90% H2 recovery for 25 hours at 400�C. A Pd90Au10-membrane tested under 

shifted syngas with up to 20 ppmv H2S achieved a stable H2 flux of 7.8 m3/m2-h 

with 44% H2 recovery for 25 hours indicating significant sulfur tolerance by the 

Pd/Au-alloy. 

• The WGS CMR incorporating a Pd-membrane was operated with 0, 1, and 2 ppmv 

H2S in the feed for 440 hours. A stable CO conversion of 96% and H2 recovery of 

78% was achieved for the final 80 hours of testing with 2 ppmv H2S present. 

• Only a slight amount of Pd4S phase was observed on the pure Pd-membranes 

tested with up to 2.5 ppmv H2S in shifted syngas and WGS conditions, potentially 

indicating that the thermodynamic threshold for Pd4S formation (PH2S/PH2) was 

increased by a side reaction of H2S with one of the syngas species. Under the test 

conditions, up to 2.5 ppmv of H2S did not behave as a significant poison to the Pd-

surface. 

• Membranes were tested for up to 1,000 hours under H2/H2O, syngas, and WGS 

conditions at 400�C and exhibited stable H2 permeance and gradual leak 

development which was in line with testing in pure H2. The leak growth rates under 

H2, mixed gas, and WGS conditions were in line with the pinhole formation 

mechanism. 

• Considering the low leak growth rate under WGS conditions at 400�C, a 

membrane lifetime in excess of 10 years was projected for defect free membranes. 

• When both Pd and Pd/Au-membranes were tested under either mixed gas or WGS 

conditions, first with no H2S, then with 2 – 20 ppmv H2S, a higher rate of leak 

growth was observed for higher concentrations of H2S, potentially due to the 

gradual penetration of sulfur into the Pd-layer. This effect was not correlated to the 

formation of bulk Pd4S on the membrane. 
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12. RECOMMENDATIONS FOR FUTURE RESEARCH WORK 

In order to better establish the utility of Pd-membranes for the IGCC process, and to 

develop a more complete understanding of the science, the following recommendations 

are made for future work: 

• For the purpose of a more reliable synthesis methodology, work must be done to 

develop a method of identifying and fixing weld defects in the low cost PSS 

supports. The solution may also consist of a better powder sintering procedure or a 

better welding procedure used in the support manufacturing. 

• There is a discrepancy in the literature between estimated binding energies of CO, 

H2O, and CO2 on the Pd-surface based on adsorption isotherm data (primarily 

collected at temperatures below 200°C) and the observed phenomenon of H2 

permeation inhibition at temperature above 300°C. The study and resolution of this 

discrepancy will lead to a more thorough understanding of surface adsorption 

phenomenon on precious metals. 

• Increased pressure of up to 14 atma in the WGS CMR allowed for significantly 

higher CO conversion and H2 recover for a given feed rate at 400°C. It can be 

theorized from this trend, and by way of the 1-D model, that high CO conversion 

and H2 recovery would still be possible at feed rates of up to 30,000 h-1 at a 

reaction pressure of 50 atma. The potential application of the WGS CMR to the 

IGCC process would be fortified by lab or pilot scale testing at 50 atma to confirm 

this performance potential. 

• Coke formation from CO on the Pd-surface has not been widely studied in the 

literature, thus, the mechanisms and rate expression are unknown. A better 

understanding of this process may have significant implications in the field of 

precious metal catalysis. 

• The interaction of H2S and the syngas species with the Pd-surface is not well 

understood. The potential exists for competitive adsorption and also possibly 

surface reaction producing COS and/or SO2. Either of these phenomena have the 

potential to alter the poisoning effect of H2S on the Pd-membrane. The interactions 
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of these species on the Pd-surface should be further studied by both computational 

chemistry and experimental methods. 

• Long-term tests (up to 1,000 hours) should be conducted with the WGS CMR 

utilizing Pd and Pd/Au-membranes and syngas feed from a coal gasifier that has 

been scrubbed and de-sulfurized (to less than 2 ppmv H2S). Care should be taken 

to identify trace contaminants in the syngas and on the membrane surface after the 

tests, which may correlate to the probable reduction in H2 flux. With this 

information, consideration can be made for more effective gas clean-up or different 

Pd/alloy compositions. 

• When Pd-membranes were tested for extended periods of time (greater than 100 

hours) under H2/H2O and WGS conditions, surface morphology changes were 

observed suggesting the possibility of reaction enhanced sintering. This 

phenomenon has not been previously observed for palladium. The surface 

morphology change should be investigated by exposing both PSS supported Pd-

coupons and Pd-foils to various mixed gas and reaction conditions then observing 

the surface morphology and grain structure. 
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NOMENCLATURE 

Roman Letters 
 
 A - Area [m2]  
 C - Concentration [kmol/m3] 
 D - Diffusivity [m2/h] 
 d - Hydraulic diameter of reactor or particle diameter in packed bed [m] 

E - Energy of a reaction or surface binding energy [kJ/mol] 
F - Permeance of inert gas [m3/m2-h-atm], of H2 [m3/m2-h-atm0.5] 
G - Gibbs free energy of formation or of reaction [kJ/mol] 
J - Volumetric flux [m3/m2-h] 
H - Enthalpy of formation or of reaction [kJ/mol] 
h - Plank’s constant [6.626x10-34 J-s] 
K - Equilibrium constant (unitless), or Langmuir adsorption equilibrium 
constant, or Sieverts’ constant [atmx, x = 0, ½, 1] 
k - Rate constant for surface reaction [kmol/m2-h-atmx], rate constant 
for catalyzed WGS reaction [kmol/kg-h], mass transfer coefficient [m/h], 
Boltzmann constant [1.381x10-23 J/K]  
L - Length [m] or concentration of active sites on a surface [kmol/m2] 
m - Molecular mass [kg/mol] 
N - Molar flow rate, feed flow rate [kmol/h] 
P - Pressure [atma] 
Q - Permeability [�m-m3/m2-h-atm] 
R - Radius [m] or ideal gas constant [0.008314 kJ/mol-K, or 0.0821 m3-
atm/kmol-K] or mass transfer resistance [atm-h/m] 
r - Reaction rate [kmol/kg-h] 
Re - Dimensionless Reynolds number 
Sc - Dimensionless Schmidt number 
Sh - Dimensionless Sherwood number 
S - Entropy of adsorption or reaction [J/mol-K] 
T - Temperature [K] 
t - Time [h] 
V - Volume [m3] 
v - Velocity of gas stream [m/h] 
w - Weight of support plus membrane (for gravimetric thickness) [g] 
XCO - CO conversion (always with subscript ‘CO’) 
x - Mole fraction of a gas species (for selectivity, referring to feed 
composition, unitless) 
YH2 - H2 recovery (always with subscript H2) 
y - Mole fraction of a gas species (for selectivity, refering to permeate 
composition, unitless) 
z - Dimension parallel to the primary axis of flow, axial coordinate in 
the reactor system [m] 
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Greek Symbols  
 

� - Selectivity (unitless), alternately Pd/H phase 
 -  = PCO2PH2/KWGSPCOPH2O is the reaction quotient, alternatively 
Pd/H phase 
� - Inhibition coefficient (unitless)�
� - Change in variable 
� - Thickness [�m] 
	 - Catalyst bed void fraction or porosity (unitless) 
� - Catalytic effectiveness factor (unitless) 
�i - Fraction of surface sites occupied by species i (unitless), molar 
ratio of two species in feed gas (unitless) 
� - Molar density of Pd [1.13*105 mol/m3] 
� - Adsorption equilibrium constant [atm-1] 

 - Dynamic viscosity [kg/m-h], Length prefix ‘micro’, or chemical 
potential [kJ/mol] 
� - H/Pd atomic ratio (unitless), reaction coefficient (unitless) 
� - � = z/L, dimensionless axial coordinate in the reactor system 
� - Mathematical constant truncated to 3 significant digits: 3.14 
� - Density [kg/m3] 
� - Residence time [s] 
 

Subscripts 
 
 A - Activation (as in energy) 

B - Boundary layer (referring to gas boundary layer) 
a - Adsorption 

 b - Bulk gas 
d - Desorption or dissolution 
cat - catalyst 
c - Cross-section 

 H - Atomic hydrogen in the Pd-lattice 
i - Gas species index 

 j - Gas species index or rate step index 
 K - Knudsen 

m - Molar (referring to molar volume Vm) 
out - Outlet end of the membrane separator or reactor 
perm - Permeate 

 r - Reaction, reactor 
ret - Retentate 

 S - Sieverts’ (referring to Sieverts’ constant KS) 
 s - Surface 
 shell - Reactor outer wall or casing 
 tube - Membrane tube 

x - Surface index 
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0 - ‘pre’ or initial, ‘standard’ temperature (273 K) or pressure (1.0 atma) 
Exponents 
 

i - Ideal (referring to separation factor) 
m - Exponent of the pressure of CO in the empirical rate formula 
(equation 2.4) 
n - Exponent of the pressure of H2O in the empirical rate formula 
o - Exponent of the pressure of CO2 in the empirical rate formula 
p - Exponent of the pressure of H2 in the empirical rate formula 
* - Unoccupied or free surface site 
 

Acronyms 
 
 AA - Designation used for membranes prepared by Alexander Augustine 

AGR - Acid gas removal 
bcc - body-centered cubic (crystal structure) 
C - Designation for coupons 
CMR - Catalytic membrane reactor 
CSTR - Continuous stirred tank reactor 
CVD - Chemical vapor deposition 
D - Dimension (referring to one or two dimensional system) 
EA - Designation used for membranes prepared by Dr. M. Engin Ayturk 
EDS - Energy dispersive x-ray spectroscopy 
EP - Electroplating 
EDTA - Ethylenediaminetetraacetic acid 
FPD - Flame-photometric detector 
fcc - face-centered cubic (crystal structure) 
GC - Gas chromatography 
GHSV - Gas hourly space velocity 
IGCC - Integrated gasification combined cycle 

 IM - Designation used for membranes prepared by Dr. Ivan Mardilovich 
IPA - Isopropyl alcohol 
ML - Mono-layer 
MS - Magnetron sputtering 
MSR - Methane-steam reforming (CH4 + H2O � CO2 + 3H2) 
NR - Not reported (referring to documentation in a literature study) 
NTU - Number of transfer units (referring to heat transfer) 
PBR - Packed-bed reactor 
PH - Porous Hastelloy (high Ni-steel alloy) 
PI - Porous Inconel (high Ni-steel alloy) 
PID - Proportional, integral, differential (referring to a control circuit) 
ppmv - Part-per-million by volume 
ppbv - Part-per-billion by volume 
PSS - Porous stainless steel 
PVD - Physical vapor deposition 
RK - Designiation used for membranes prepared by Reyyan Koc 
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rpm - revolutions per minute (referring to angular velocity) 
sccm - Standard cubic centimeters per minute (gas at 273 K, 1 atma) 
SEM - Scanning electron microscope 
SS - Stainless steel (high Cr-steel alloy) or surface-site 
SR - Steam reforming 
STP - Standard temperature pressure (273 K, 1 atma) 
Syngas- ‘Synthesis gas’, mixture of H2, CO, CO2, and H2O 
WGS - Water-gas shift (CO + H2O � CO2 + H2) 
XRD - X-ray diffraction or X-ray diffractometer 
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APPENDIX A: DERIVATION OF EQUATIONS AND OTHER 

EXPRESSIONS 

A.1. WGS equilibrium constant (Bisset, 1977) 

A highly accurate expression for the WGS equilibrium expression was proposed by Bisset 

(1977) given by the equation: 

� � �s�+N�� N�� � ����� �
� + ��[ N�A

�� � N� A��
Z��� � �� �� < NA��� + N� N�� < NA����� 

A.2. Derivation of equation 2.30 

Ficks Law: 

 l � �mn	Dp��:N + :��       2.24 

The flux of a substance diffusing in solution between two points is equal to the diffusivity 

of the substance in solution, multiplied by the concentration gradient, divided by the 

distance between the points. The law has been applied to both solid and fluid solutions. 

The concentration of atomic H in bulk Pd was given by equation 2.25. 

 :s t qrs         2.25 

For convenience, the concentration of atomic hydrogen in the palladium was expressed 

as the H/Pd atomic ratio multiplied by a concentration factor, q � N� N� < NA����n��, 

which was the molar density of palladium. The overall flux of H2 being adsorbed onto 

the surface was given by equation 2.26. 

 l� � B�Ds�N + Y>�� + BpY%&       2.26 

The overall flux of H2 being adsorbed onto the surface was equal to the adsorbing flux 

minus the desorbing flux. The adsorbing flux was proportional to the partial pressure of 

H2 above the surface and the concentration of adjacent free surface sites, (1 - �H)2. The 

desorbing flux was proportional to the concentration of adjacent occupied surface sites, 

�H
2. The flux of H2 being dissolved into the bulk was given by equation 2.27. 
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 lp � qB@Y>�N + us� + qusBv�N + Y>�     2.27 

The overall flux of H2 being dissolved into the bulk was equal to the dissolving flux 

minus the evolving flux. The dissolving flux of atomic hydrogen into the bulk was 

proportional to the fraction of atomic hydrogen occupied surface sites and the fraction of 

vacant spaces in the lattice. The evolving flux of atomic hydrogen onto the surface was 

proportional to the fraction of unoccupied surface sites and the fraction of occupied 

spaces in the lattice. 

Assuming that the bulk diffusion step was rate limiting, equation 2.24 defined the flux. 

The fluxes of adsorption and desorption and dissolution and evolution were at 

equilibrium such that the overall fluxes from equations 2.26 and 2.26 were equal to 

zero. The equations 2.26 and 2.27 were thus simplified to equations 2.26a and 2.27a. 

 B�Ds�N + Y�� � BpY�       2.26a 

 B@Y�N + us� � usBv�N + Y�       2.27a 

The equations 2.26a and 2.27a were combined to create an equilibrium expression 

relating the hydrogen partial pressure above the surface to the H/Pd atomic ratio just 

below the surface. The definition of atomic H-concentration in the bulk, equation 2.25 

was also incorporated resulting in equation 2.28. 

 qB@
Bv ©B�

BpwDs�N + us� � usq � :s      2.28 

The terms ki, ko, ka, and kd were combined to form a single term, Ks, which is known as 

Sieverts’ constant, �� � ��
�� ©��

��. Incorporating equation 2.28 into equation 2.24 for both 

C1 and C2 yielded equation 2.24a. 

 l � mq
	Dp�� ~wDN�N + uN� + wD��* + u���     2.24a 

This equation was commonly simplified by the assumption that uN and u� were much 

less than one so that �N + uN� � N. When this simplification was made, the relationship 

between flux and pressure known as Sieverts’ law, equation 2.29, was arrived at. 
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 l � mq
	Dp�� ~wDN +wD��       2.29 

Instead of simplifying equation 2.24a, uN and u� could be solved for in terms of pressure 

by the substitution shown below resulting in equation 2.28a (a rearrangement of 

equation 2.28). 

 us � w��
£�Pw��         2.28a 

Substituting equation 2.28a into equation 2.24a then simplifying yielded equation 2.30. 

 l � mq
	Dp � wDN

��PwDN + wD�
��PwD��       2.30 

Equation 2.30 implies that at very high pressure (w#� � 1�), the Pd-lattice will be nearly 

saturated with H-atoms, so there will no longer be a strong concentration gradient for 

hydrogen diffusion, resulting in a maximum achievable driving force. In other words, for 

a P1 much greater than Ks, there will no longer be greater flux by further increasing P1. 

A.3. Derivation of equation 4.10 

The resistance of the dense Pd-layer, RPd, was defined by equation 4.10a. 

 ¥I� � �I
ÀLM � Iì�IM

ÀLM         4.10a 

Where P1 and P2 [atma] were the partial pressures of H2 on sides 1 and 2 of the 

membrane and JH2 [m3/m2-h] was the flux of H2 across the membrane. The Sievert’s law 

equation 2.31, was used to substitute for JH2, resulting in equation 4.10b. 

 ¥I� � ¬���Iì�IM�
3LM~wIì�wIM�        4.10b 

Where �Pd [�m] was the thickness of the Pd-layer and QH2 [m3-�m/m2-h-atm0.5] was the 

permeability of hydrogen in the metal. Equation 4.10b was simplified by the equality 

#� + #& � ~w#� �w#&�~w#� +w#&� resulting in equation 4.10. 

 ¥I� � ¬��~wIìPwIM�
3LM         4.10 
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A.4. 1-D simulation output 

Numerical integration of the 1-D modeling equations described in Chapter 5 (equations 

5.4 – 5.18) resulted in a profile of the state variables (XCO and YH2) with regard to the 

axial position in the reactor. As an example, the model was solved with the parameters 

listed in Table A.1. The system dimensions were that of the experimental system 

described in the Experimental, Section 3.5.1. The gas boundary layer mass transfer 

coefficient, kB, was estimated by an empirical correlation as described in Chapters 5 

and 6 (Perry and Green, 1997). The surface inhibition coefficient was estimated from 

the literature binding energies of CO (Guo and Yates, 1989) and H2O (Catalano et al., 

2011) via equations 5.9 – 5.10 described in Chapter 5. 

 

Table A.1. Modeling parameters utilized for the example. 

Catalyst Properties Fe/Cr-oxide 
Catalyst density, �.cat [kg/m3] 1.06*103 
Catalyst void fraction, 	 0.47 
Particle size,  dp [m] 3.5*10-4 (average particle size) 
Rate expression, rCO/(1-) 
[kmol/kg-h] 

ã�Þã ê *�ë\����n89# !# !&�5�±ë#%&�5�5í 
(Equation 5.20, Hla et al., 2009) 

Effectiveness factor,  � 1.0 (assumed) 
Reactor Dimensions Tube-in-tube 
Reactor Length, L [m] 0.065 
Cross-sectional area, Ac [m

2] 2.33*10-4 
Aspect ratio 14.8 
Membrane Properties  Tubular 
Membrane area, APd [m

2] 2.5*10-3 
Permeance, FH2,0 [m

3/m2-h-atm0.5] 26.7 
Binding energy, �Ei [kJ/mol] CO: -149 (Guo and Yates, 1989) 

H2O: -125 (Catalano et al., 2011) 
Feed Properties 
Feed composition, �i �H2O = 2.6, �CO2 = 0, �H2 = 0 
Feed rate, NCO,r,0 [kmol/h] A: 4.79*10-4, B: 1.44*10-3 
Inert sweep, Ni,p,0 [kmol/h] None 
Temperature, T [�C] 400 
Reaction pressure, Ps [atma] 14.6 
Tube-side pressure, Pt [atma] 0.98 
Dynamic viscosity, 
 [kg/h-m] 0.084 
Diffusivity of H2, DH2 [m2/h] 0.0796 
Sherwood number approximation, Sh *�*ÞÜ�5�±±± ¡8�µ ¢

5�ß
 (Equation 5.16, Perry and Green, 

1997) 
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The solution consisted of three datasets: �, XCO, and YH2 as are plotted in Figure A.1. 

 

Figure A.1. CO conversion and H2 recovery versus dimensionless length (A: 

GHSV = 2,900 h-1, B: GHSV = 8,700 h-1). 

 

The H2 recovery, YH2, could be used to determine the H2 flux, JH2, at each point along 

the membrane by equation 5.5a, derived from the definition of H2 recovery, equation 

5.5, and incorporating the parameters listed in Table A.1. The H2 flux versus 

dimensionless length is plotted in Figure A.2.  

 Æ%& t ¹LM[¸
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Figure A.2. H2 flux versus dimensionless length (A: GHSV = 2,900 h-1, B: GHSV = 8,700 

h-1). 

 

The CO conversion and H2 recovery were algebraically related to the partial pressure of 

H2 on the retentate side, PH2,r, by equation 5.6 and the partial pressure of each other 

species on the retentate side, Pi,r, by equation 5.7 (and incorporating the parameters 

listed in Table A.1). The partial pressure of H2 on the retentate side versus 

dimensionless length is plotted in Figure A.3[a]. The partial pressures of CO and CO2 

on the retentate side versus dimensionless length are plotted in Figure A.3[b]. The 

output of the model corresponding to � = 1 was used for comparison with data from the 

experimental system. 
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[a]  

[b]  

Figure A.3. [a] PH2,r versus dimensionless length [b] PCO,r and PCO2,r versus 

dimensionless length (A: GHSV = 2,900 h-1, B: GHSV = 8,700 h-1). 

 

The partial pressure of H2 versus the dimensionless length (Figure A.3[a]) indicated that 

there was initially no H2 present at the reactor inlet. H2 was formed by the reaction more 

rapidly than it was removed so that the partial pressure of H2 increased to a maximum 

level at � = 0.12 and 0.36 for the feed space velocities of 2,900 and 8,700 h-1 

respectively. The partial pressure of CO versus the dimensionless length (Figure A.3[b]) 

decreased exponentially since CO was consumed by the WGS reaction. The partial 

pressure of CO2 (Figure A.3[b]) increased over the dimensionless length since CO2 was 

both generated by the WGS reaction and concentrated by the recovery of H2. 
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APPENDIX B: MEMBRANE FABRICATION PROCEDURE 

Included in this section are two detailed procedures (Synthesis Methods A and B) for 

membrane preparation. A list of all the solutions utilized during membrane fabrication is 

shown in Table B.1. 

For both synthesis methods the support was first cleaned by submerging in Basic 

Cleaning Solution (see Table B.1) at 40°C and sonicated for 30 min. The support was 

then submerged in flowing water for 60 min. The support was sonicated in deionized 

water for 3x5 min (3 submersions of 5 minutes each), IPA for 5 min, and then dried in 

air at 120°C. 

 

Table B.1. Solutions used in membrane synthesis. 

Basic Cleaning Solution (200 mL) 
(components added and mixed in order) 

190 mL H2O 
9 g Na3PO4*12H2O 
13 g Na2CO3 
9 g NaOH 
~1 mL Detergent (added just before use) 

Alumina Slurry 0.01 – 1.0 �m (1 L) 
(components added and mixed in order) 

1 L H2O 
0.1 mL HCl (aqueous concentrated, ~10M) 
0.85 g �-Al2O3 (0.3 �m particles) 
0.14 g �-Al2O3 (1.0 �m particles) 
0.09 g �-Al2O3 (0.01 �m particles) 

Alumina Slurry 10 �m (1 L) 
(components added and mixed in order) 

1 L H2O 
0.1 mL HCl (aqueous concentrated, ~10M) 
4.0 g �-Al2O3 (10 �m particles) 

Alumina Slurry 3 - 5 �m (1 L) 
(components added and mixed in order) 

1000 mL H2O 
0.1 mL HCl (aqueous concentrated, ~10M) 
10 g �-Al2O3 (3 �m particles) 
10 g �-Al2O3 (5 �m particles) 

Alumina Slurry 0.02 - 1.0 �m (1 L) 
(components added and mixed in order) 

1 L H2O 
0.1 mL HCl (aqueous concentrated, ~10M) 
0.5 g �-Al2O3 (0.02 �m particles) 
2 g �-Al2O3 (0.3 �m particles) 
2 g �-Al2O3 (1.0 �m particles) 

Alumina Slurry 0.02-0.3 �m (1 L) 
(components added and mixed in order) 

500 mL H2O 
0.1 mL HCl (aqueous concentrated, ~10M) 
0.5 g SnCl2*2H2O 
0.5 g �-Al2O3 (0.02 �m particles) 
2 g �-Al2O3 (0.3 �m particles) 
500 mL Palladium (II) Chloride Solution (added 
after 15 min) 

Tin(II) Chloride Solution (500 mL) 
(prepared immediately prior to use, 
components added and mixed in order) 

 500 mL H2O 
 0.5 mL HCl (aqueous concentrated, ~10M) 
 0.5 g SnCl2*2H2O 
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Palladium(II) Chloride Solution (1 L)  1 L H2O 
 1.0 mL HCl (aqueous concentrated, ~10M) 
 0.1 g PdCl2 
 (heat to ~40°C and stir to dissolve) 

Pd(II) Plating Solution (1 L) 
(components added and mixed in order) 

 200 mL H2O 
 200 mL NH4OH (aqueous concentrated, ~14M) 
 4.0 g Pd(NH3)4Cl2*H2O 
 40.1 g Na2EDTA*2H2O 
 600 mL H2O (fill to 1 L) 

Ag(I) Plating Solution (1 L) 
(components added and mixed in order) 

 200 mL H2O 
 200 mL NH4OH (aqueous concentrated, ~14M) 
 0.52 g AgNO3 
 40.1 g Na2EDTA*2H2O 
 600 mL H2O (fill to 1 L) 

Hydrazine (1 M, 40 mL) 
(99% Hydrazine is extremely corrosive, toxic, 
and flammable, handle with extreme care) 

1.30 mL Hydrazine (98.5% anhydrous) 
39 mL H2O (fill to 40 mL) 

 

Synthesis Method A 

The support was oxidized by heating in air at 5°C/min to 600°C (PSS) or 700°C (PI) for 

12 hours. Full vacuum (~0.1 atma) was applied to the tube-side of the support and the 

support was submerged in water for 5 min. With vacuum still applied, the support was 

dipped into 1M HCl for ~2 sec, then water for 5 more min. The support was dipped into 

Alumina Slurry (0.02 – 1.0 �m) for 10 sec then withdrawn from the solution into the air. 

When the tube was withdrawn from the solution, care was taken to prevent drips from 

running down from the non-porous section to the porous section of the support causing 

trails. The support was allowed to dry for 5 min. The support was dipped into water for 5 

min, then turned up-right into the air again for 5 min. Care was again taken to prevent 

drips. The vacuum line was detached and the support was dried in air at 120°C for at 

least 5 hours. 

Partial vacuum (~0.5 atma) was applied to the tube-side of the support and the support 

was submerged in water for 5 min. The support was put through one Activation Cycle 

(see Table B.2) then into water for 5 min. Pd(II) Plating Solution (70 mL) was heated 

to 60°C and Hydrazine (0.4 mL) was added. The support, from here on to be referred to 

as ‘the membrane’, was submersed in the plating solution for 10 min followed by water 

for 10 min. When the membrane was submerged in Pd(II) Plating Solution nitrogen 

bubbles could be seen eminating from the membrane surface, confirming that the 
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plating reaction was occurring. The vacuum line was detached, the vacuum was turned 

off, and the membrane was dried in air at 120°C. 

 

Table B.2. Activation Cycle procedure; the membrane was dipped into each solution 

sequentially for the prescribed time. 

Solution Time (min) 
Tin(II) Chloride Solution 5 
H2O (1) 2 
H2O (2) 3 
Palladium (II) Chloride Solution 5 
0.01 M HCl 2 
H2O (3) 3 

 

A Pd/Ag Barrier Treatment was applied by immersing the membrane in the solutions 

listed in Table B.3. 

 

Table B.3. Pd/Ag Barrier Treatment procedure. 

Solution Time (min) T (°C) Details 
H2O 5 25  
1M HCl 0.5 25 Sensitization treatment 
H2O 5 25  
3 Activation Cycles (See Table B.2) 
H2O 10 25  
Pd (II) Plating Sol’n 30 60 0.25 mL Hydrazine added to 70 mL 
H2O 5 60  
Ag(I) Plating Sol’n 60 60 0.4 mL Hydrazine added to 70 mL 
H2O 5 60  
Pd(II) Plating Sol’n 60 60 0.25 mL Hydrazine added to 70 mL 
H2O 5 60  
Ag(I) Plating Sol’n 60 60 0.4 mL Hydrazine added to 70 mL 
H2O 5 60  
Pd(II) Plating Sol’n 60 60 0.4 mL Hydrazine added to 70 mL 
H2O 10 25  
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The membrane was dried in air at 120°C and then lightly polished by hand with 2,400 

grade SiC paper. The membrane was plated with palladium, 3x90 minutes, by 

immersion in the solutions listed in Table B.4. 

 

Table B.4. 1st palladium plating, 3x90 minutes. 

Solution Time (min) T (°C) Details 
H2O 5 25  
1M HCl 0.5 25 Sensitization treatment 
H2O 5 25  
5 Activation Cycles (See Table B.2) 
H2O 10 25  
Pd(II) Plating Sol’n 90 60 0.4 mL Hydrazine added to 70 mL 
H2O 10 60  
Pd(II) Plating Sol’n 90 60 0.4 mL Hydrazine added to 70 mL 
H2O 10 60  
Pd(II) Plating Sol’n 90 60 0.4 mL Hydrazine added to 70 mL 
H2O 10 25  
 

The membrane was dried in air at 120°C and then a Mechanical Treatment was 

performed. The Mechanical Treatment is described in Table B.5. The membrane was 

plated with palladium, 3x90 minutes, by immersion in the solutions listed in Table B.6. 

 

Table B.5. Mechanical Treatment procedure; the membrane was treated on a lathe at 

~200 rpm sequentially with each grade of SiC paper for the prescribed time. 

SiC Paper Grade Time (min) 
600 1 
1,200 2 
2,400 5 
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Table B.6. 2nd palladium plating, 3x90 minutes. 

Solution Time (min) T (°C) Details 
H2O 5 25  
1M HCl 0.5 25 Sensitization treatment 
H2O 5 25  
3 Activation Cycles (See Table B.2) 
Pd(II) Plating Sol’n 90 60 0.4 mL Hydrazine added to 70 mL 
H2O 10 60  
Pd(II) Plating Sol’n 90 60 0.4 mL Hydrazine added to 70 mL 
H2O 10 60  
Pd(II) Plating Sol’n 90 60 0.4 mL Hydrazine added to 70 mL 
H2O 10 25  
 

The membrane was dried in air at 120°C and then a Mechanical Treatment (see Table 

B.5) was performed. The membrane was plated the third time with palladium, 2x90 

minutes, by immersion in the solutions listed in Table B.7. 

 

Table B.7. 3rd palladium plating, 2x90 minutes. 

Solution Time (min) T (°C) Details 
H2O 5 25  
1M HCl 0.5 25 Sensitization treatment 
H2O 5 25  
2 Activation Cycles (See Table B.2) 
H2O 10 25  
Pd(II) Plating Sol’n 90 60 0.4 mL Hydrazine added to 70 mL, partial 

tube-side vacuum 
H2O 10 60  
Pd(II) Plating Sol’n 90 60 0.4 mL Hydrazine added to 70 mL, full 

tube-side vacuum 
H2O 10 60  
 

The membrane was dried in air at 120°C and leak tested by applying 2.4 atmg He to the 

shell-side of the membrane and measuring the tube-side flow. If the flow was less than 

0.05 sccm, the membrane was considered ‘dense’. 

Synthesis Method B 

The cleaned support was graded before and after oxidation by applying the Alumina 

Slurries in the order listed in Table B.8. The support was oxidized by heating in air at 
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5°C/min to 600°C (PSS) or 700°C (PI) for 12 hours. After each 30 sec alumina slurry 

treatment the support was withdrawn into the air and brushed with a nitrile glove to 

remove excess slurry cake. The glove brushing was done aggressively to make sure 

that no excess alumina particles remained free on the surface and to slightly polish the 

support surface (using the alumina particles as polishing grit). Following the oxidation, a 

small amount of Pd was electroless plated after each grading treatment to secure the 

alumina particles to the surface. 

 

Table B.8. Alumina grading treatments for Synthesis Method B. 

Solution Time T (°C) Details 
Alumina Slurry 10 �m 3x30 sec 25 Full tube-side vacuum 
Alumina Slurry 3-5 �m 3x30 sec 25 Full tube-side vacuum 
Oxidation 12 hours   
Alumina Slurry 3-5 �m 3x30 sec 25 Full tube-side vacuum 

1 Activation Cycle 25 Full tube-side vacuum 
Pd(II) Plating Sol’n 5 min 60 0.4 mL Hydrazine added to 70 mL, full 

tube-side vacuum 
Alumina Slurry 0.02-1 �m 3x30 sec  Full tube-side vacuum 

1 Activation Cycle 25 Full tube-side vacuum 
Pd(II) Plating Sol’n 5 min 60 0.4 mL Hydrazine added to 70 mL, full 

tube-side vacuum 
Alumina Slurry 0.02-0.3 �m 3x30 sec  Full tube-side vacuum 

1 Activation Cycle 25 Full tube-side vacuum 
Pd(II) Plating Sol’n 10 min 60 0.4 mL Hydrazine added to 70 mL, full 

tube-side vacuum 
 

The membrane was plated with palladium, 3x90 minutes, by immersion in the solutions 

listed in Table B.9. 
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Table B.9. Palladium plating for Synthesis Method B. 

Solution Time (min) T (°C) Details 
2Activation Cycles (See Table C.2) 
H2O 10 25  
Pd(II) Plating Sol’n 60 60 0.4 mL Hydrazine added to 70 mL 
Alumina Slurry 0.02-0.3 �m 3x30 sec  Full tube-side vacuum 
1 Activation Cycle Full tube-side vacuum 
Pd(II) Plating Sol’n 10 min 60 0.4 mL Hydrazine added to 70 mL, full 

tube-side vacuum 
1Activation Cycle  
H2O 10 25  
Pd(II) Plating Sol’n 60 60 0.4 mL Hydrazine added to 70 mL 
 

The membrane was dried in air at 120°C and leak tested by applying 2.4 atmg He to the 

shell-side of the membrane and measuring the tube-side flow. If the flow was less than 

0.05 sccm, the membrane was considered ‘dense’. 
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APPENDIX C: GC METHOD DETAILS 

A Gas Chromatograph (HP 5890 Series II) equipped with a TCD detector and a 

Carboxen 1000 column was used to analyze the compositions of gas mixtures from the 

retentate and permeate streams for mixed gas and WGS reactor experiments. Argon 

was used as the carrier gas at a flow rate of 20 ml/min and at a column head pressure 

of 300 kPa. The details of the GC method are summarized in Table C.1 and a sample 

chromatograph of an equimolar mixture of H2, N2, CO, and CO2 is shown in Figure C.1. 

 

Table C.1. GC method details for the HP 5890 GC. 

Column 60/80 Carboxen 1000 (15’ x 1/8”) 
Carrier Ar, 20 mL/min (~300 kPa head pressure) 
Oven Isothermal, 150°C (10 min) 
Detector TCD, negative polarity, high sensitivity 

T = 200°C 
Loop Volume 10 �L gas injection, 10 sec injection delay 
Retention Time H2: 1.30 min, N2: 2.41 min, 

CO: 2.85 min, CO2: 7.55 min 
 
 

 
 

Figure C.1. Sample gas chromatograph of a 1:1:1:1 mixture of H2, N2, CO, and CO2. 
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The calibration for different gases (hydrogen, nitrogen, carbon monoxide, and carbon 

dioxide) was performed by using samples of gas with varying composition from flow 

controllers, 50:50-95:5 H2:CO2, and 0:50:50-49:2:49 H2:CO:CO2. Additional calibration 

points were included from a mixed gas cylinder, 80:10:10 CO2:H2:He (AIM Products 

Inc.). Atleast three runs of each gas composition were conducted. The calibration 

curves for H2, CO, and CO2 are shown in Figure C.2. A high degree of linearity was 

observed between the integrated peak area and the concentration of each species. At a 

95% confidence interval, the standard error for the area calculations was 0.2 - 3.6% 

 

[a]  [b]  
 

[c]  
 

Figure C.2. Calibration curves for each of the WGS species [a] H2 [b] CO [c] CO2. 

 

A Gas Chromatograph (SRI Model 8610C) equipped with a FPD detector and a 1/32” 

MXT stainless steel capillary column was used to analyze the feed and retentate 
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streams for concentrations of H2S between 0.1 and 50 ppmv during mixed gas 

experiments as well as WGS reactor experiments. Helium was used as the carrier gas 

at a flow rate of 5 ml/min and at a column head pressure of 300 kPa. The details of the 

GC method are summarized in Table C.2 and a sample chromatogram of a 5 ppmv H2S 

in shifted syngas mixture is shown in Figure C.3.  

 

Table C.2. GC method details for the SRI 8610C GC. 

Column MXT SS Capilary (35’ x 1/32”) 
Carrier He, 5 mL/min (~300 kPa head pressure) 
Oven Isothermal - 50°C (3 min) 
Detector 
(high sensitivity) 

FPD, air: 2 psi, H2: 35 psi 
T = 200°C 

Detector 
(low sensitivity) 

FPD, air: 4 psi, H2: 30 psi 
T = 200°C 

Loop Volume 500 �L gas injection (30 sccm flow rate) 
Retention Time COS: 1.61 min 

H2S: 1.76 min 
 

 

Figure C.3. Sample chromatograph of 5 ppm H2S in 62% H2, 37% CO2, and 1% CO. 
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Only the H2S peak is visible since the other gases have no photo-emission in the 

detector range. The calibration curve for H2S in the range of 0.5 – 5 ppmv was 

conducted by Chen (2011) and for this study as shown in Figure C.4. 

 

Figure C.4. Calibration curves for H2S in H2 with high sensitivity detector setting 

(conducted for this study {2/1/12} and conducted by Chen {2011}). 

 

Figure C.5. Calibration curve for H2S in H2 with low sensitivity detector setting 

(conducted by Chen {2011}). 
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As can be seen from Figure C.4, the calibration curve measured in this study was 

significantly (approximately 50%) below that measured by Chen (2011). Additionally, 

standard samples (5 ppmv H2S in H2) which were run before and after mixed gas and 

WGS reaction samples had peak areas significantly (40 – 90%) below that. The 

discrepancy was potentially caused by decreased sensivity of the detector due to 

fouling and dust over time. The standard samples measured during the experiments 

were used to scale the peak area before applying the calibration curve. The error 

inherent in this method may have been high. 



287 
 

APPENDIX D: SYNTHESIS AND CHARACTERIZATION 

DETAILS FOR ALL MEMBRANES 

Table D.1. Synthesis details of all membranes utilized in this study. 

Membrane Support provider Support type Area Surface pore size Oxidation
(nominal - �m) [cm2] [�m] [°C] Material (Size, �m) Pd-glue [�m] Application Method

AA-1 Mott PI0.1 �m 23.5 10 700 - - -
AA-2 Mott PI0.1 �m 23.5 10 700 Al2O3 (0.01 – 1.0) <1 Vacuum
AA-3 Mott PI0.1 �m 23.5 10 700 Al2O3 (0.01 – 1.0) - Vacuum
AA-4 Mott PI0.1 �m 23.5 10 700 Al2O3 (0.01 – 1.0) 2.4 Vacuum
AA-4R Mott PI0.1 �m 23.5 10 700 Al2O3 (0.01 – 1.0) 2.4 Vacuum
AA-5 Mott PI0.1 �m 23.5 10 700 Al2O3 (0.01 – 1.0) 5.7 Vacuum
AA-6 Mott PI0.1 �m 23.5 10 700 Al2O3 (0.01 – 1.0) 5.4 Vacuum
AA-6R Mott PI0.1 �m 23.5 10 700 Al2O3 (0.01 – 1.0) 5.4 Vacuum
AA-7 Mott PI0.1 �m 23.5 10 700 Al2O3 (0.01 – 1.0) 2.7 Vacuum
AA-7R Mott PI0.1 �m 23.5 10 700 Al2O3 (0.01 – 1.0) 2.7 Vacuum
AA-8 Mott PI0.1 �m 23.5 10 700 Al2O3 (0.01 – 1.0) 1.2 Vacuum
AA-8R Mott PI0.1 �m 23.5 10 700 Al2O3 (0.01 – 1.0) 1.2 Vacuum
AA-8RR Mott PI0.1 �m 23.5 10 700 Al2O3 (0.01 – 1.0) 1.2 Vacuum
AA-8RRR Mott PI0.1 �m 23.5 10 700 Al2O3 (0.01 – 1.0) 1.2 Vacuum
AA-9 Chand Eisenmann PSS3100.2 �m 23.5 Unknow n 550 Al2O3 (0.01 – 1.0) 2.8 Vacuum
AA-10 Chand Eisenmann PSS3100.2 �m 23.5 Unknow n 550 Al2O3 (0.01 – 1.0) 3.0 Vacuum
AA-11 Chand Eisenmann PSS3100.2 �m 23.5 Unknow n 600 Al2O3 (0.01 – 1.0) 2.6 Vacuum
AA-12 Chand Eisenmann PSS316L0.2 �m 23.5 15 600 Al2O3 (0.01 – 1.0) <1 Vacuum
AA-12R Chand Eisenmann PSS316L0.2 �m 23.5 15 600 Al2O3 (0.01 – 1.0) <1 Vacuum
AA-13 Chand Eisenmann PSS316L0.2 �m 23.5 15 600 Al2O3 (0.01 – 1.0) <1 Vacuum
AA-14 Chand Eisenmann PSS316L0.2 �m 23.5 15 600 Al(OH)3 None Vacuum, brushing
AA-14R Chand Eisenmann PSS316L0.2 �m 23.5 15 600 Al(OH)3 None Vacuum, brushing
AA-15 Chand Eisenmann PSS316L0.2 �m 23.5 15 600 Al(OH)3 None Vacuum, brushing
AA-16 Chand Eisenmann PH0.1 �m 23.5 50 700 Al2O3 (0.01 – 1.0) 1.0 Vacuum
AA-17 Chand Eisenmann PH0.1 �m 23.5 50 800 Al(OH)3 None Vacuum, brushing
AA-18 Chand Eisenmann PSS316L0.1 �m 23.5 10 600 Al2O3 (0.01 – 1.0) 1.0 Vacuum
AA-19 Chand Eisenmann PSS316L0.1 �m 23.5 10 600 Al2O3 (0.01 – 1.0) 1.0 Vacuum
AA-20 Chand Eisenmann PSS316L0.2 �m 23.5 15 600 Al2O3 (0.01 – 1.0) 2.2 Vacuum
AA-21 Chand Eisenmann PSS316L0.2 �m 23.5 15 600 Al2O3 (0.01 – 1.0) 1.5 Vacuum
AA-22 Chand Eisenmann PH0.1 �m 23.5 50 800 Al2O3 (0.01 – 5.0) 4.4 Vacuum
AA-23 Chand Eisenmann PSS316L0.1 �m 23.5 10 600 Al2O3 (0.01 – 5.0) 1.0 Vacuum
AA-24 Chand Eisenmann PSS316L0.1 �m 23.5 10 600 Al2O3 (0.01 – 5.0) 2.6 Vacuum
AA-24R Chand Eisenmann PSS316L0.1 �m 23.5 10 600 Al2O3 (0.01 – 5.0) 2.6 Vacuum
AA-25 Chand Eisenmann PSS316L0.1 �m 23.5 10 600 Al2O3 (0.01 – 5.0) 3.1 Vacuum
AA-26 Chand Eisenmann PH0.1 �m 23.5 50 500 Al2O3/Sol Gel None Brushing, calcining
AA-27 Chand Eisenmann PSS316L0.2 �m 23.5 20 500 Al2O3/Sol Gel None Brushing, calcining
AA-28 Chand Eisenmann PSS316L0.2 �m 23.5 20 500 Al2O3/Sol Gel None Brushing, calcining
AA-29 Chand Eisenmann PSS316L0.2 �m 23.5 20 600 Al2O3 (0.01 – 5.0) 4.0 Vacuum, brushing
AA-30 Chand Eisenmann PSS316L0.2 �m 23.5 20 600 Al2O3 (0.01 – 5.0) 2.2 Vacuum, brushing
AA-31 Chand Eisenmann PSS316L0.2 �m 23.5 20 600 Al2O3 (0.01 – 5.0) <1 Vacuum, brushing
AA-32 Chand Eisenmann PSS316L0.2 �m 23.5 20 600 Al2O3 (0.01 – 5.0) 1.8 Vacuum, brushing
AA-33 Chand Eisenmann PSS316L0.2 �m 23.5 20 600 Al2O3 (0.01 – 5.0) <1 Vacuum, brushing
AA-34 Chand Eisenmann PSS316L0.2 �m 23.5 20 600 Al2O3 (0.01 – 5.0) 1.2 Vacuum, brushing
AA-35 Chand Eisenmann PSS316L0.2 �m 23.5 20 600 Al2O3 (0.01 – 10) 1.2 Vacuum, brushing
AA-36 Chand Eisenmann PSS316L0.2 �m 23.5 20 600 Al2O3 (0.01 – 10) 1.2 Vacuum, brushing
AA-37 Mott PSS316L0.2 �m 23.5 10 600 Al2O3 (0.3 – 3.0) 2.1 Sequential grading
AA-38 Mott PSS316L0.2 �m 23.5 10 600 Al2O3 (0.01 – 50) 3.6 Sequential grading
AA-38R Mott PSS316L0.2 �m 23.5 10 600 Al2O3 (0.01 – 50) 3.6 Sequential grading
AA-39 Mott PSS316L0.2 �m 23.5 10 600 Al2O3 (0.01 – 10) 1.2 Sequential grading
AA-40 Mott PSS316L0.2 �m 23.5 10 600 Al2O3 (0.01 – 10) 4.5 Sequential grading
AA-40R Mott PSS316L0.2 �m 23.5 10 600 Al2O3 (0.01 – 10) 5.1 Sequential grading
EA-054† Chand Eisenmann PSS3100.2 �m 23.5 15 750 Al(OH)3 None Vacuum, brushing
IM-79‡ Chand Eisenmann PSS316L0.2 �m 23.5 10 600 Al2O3 (0.01 – 1.0) 4.5 Vacuum
IM-7616C‡ Chand Eisenmann PSS316L0.2 �m 23.5 10 750 Al2O3 (0.01 – 1.0) <1 Vacuum
IM-86b‡ Chand Eisenmann PSS316L0.2 �m 23.5 10 700 Al2O3 (0.01 – 1.0) 2.4 Vacuum
RK-16R* Mott PSS3100.2 �m 23.5 15 600 Al2O3 (0.01 – 10) 2.3 Sequential grading
†Prepared partially by Engin Ayturk
‡Prepared by Ivan Mardilovich
*Prepared by Reyyan Koc

Grading
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Table D.1 (continued). 

Membrane Intermediate layer Dense Pd-layer Other details Post-treatments Overall thickness
Material (Thickness, �m) Gravimetric [�m] [�m]

AA-1 - 10.8 - - 10.8
AA-2 Pd/Ag (3.3) 9.0 - - 12.3
AA-3 - - Crack observed in support, synthesis aborted - -
AA-4 Pd/Ag (4.5) 7.3 - MT and Pd-plating 14.2
AA-4R Pd/Ag (4.5) 9.9 AA-4 MT and Pd-plating - 16.8
AA-5 Pd/Ag (2.7) 9.7 18.1
AA-6 Pd/Ag (2.4) 10.3 MT and Pd-plating 18.1
AA-6R Pd/Ag (2.4) 8.8 AA-6 MT and Pd-plating 16.6
AA-7 Pd/Ag (2.5) 9.1 MT and Pd-plating 14.3
AA-7R Pd/Ag (2.5) 9.1 AA-7 MT and Pd-plating 14.3
AA-8 Pd/Ag (3.4) 6.4 MT and Pd-plating 11.0
AA-8R Pd/Ag (3.4) 7.0 AA-8 MT and Pd-plating MT and Pd-plating 11.6
AA-8RR Pd/Ag (3.4) 8.5 AA-8R MT and Pd-plating MT and Pd-plating 13.1
AA-8RRR Pd/Ag (3.4) 8.8 AA-8RR MT and Pd-plating 13.4
AA-9 Pd/Ag (3.5) 10.0 High He flux after Pd-plating 16.3
AA-10 Pd/Ag (4.5) 5.8 High He flux after Pd-plating 13.3
AA-11 Pd/Ag (5.7) 5.8 Oxidized after Pd-glue, high He flux after Pd-plating 14.1
AA-12 Pd/Ag (<1) 9.9 Weak Pd/Ag layer MT and Pd-plating 10.5
AA-12R Pd/Ag (<1) 12.1 AA-12 MT and Pd-plating 12.7
AA-13 Pd/Ag (<1) 8.7 Weak Pd/Ag layer 8.7
AA-14 None 11.4 3 x Pre-annealing and polishing 11.4
AA-14R None 12.3 AA-14 MT, buffing, Pd-plating 12.3
AA-15 None 8.3 Ruined by H2 embrittlement 3 x Pre-annealing and polishing 8.3
AA-16 Pd/Ag (10.0) - No change in He f lux after Pd/Ag 11.0
AA-17 None 4.7 No change in He f lux after Pd 4.7
AA-18 Pd/Ag (6.0) 12.6 Weld defects Annealing and polishing 19.6
AA-19 Pd/Ag (6.1) - No change in He f lux after Pd/Ag 7.1
AA-20 Pd/Ag (6.8) 13.3 50% of support w as non-uniform 180 �m dense Cu on 50% 22.3
AA-21 Pd/Ag (4.8) 15.7 Annealing and polishing 22.0
AA-22 Pd/Ag (<1) 10.6 Weak Pd/Ag layer 13.5
AA-23 Pd/Ag (<1) 3.1 Weak Pd/Ag layer 4.1
AA-24 Pd/Ag (6.2) 6.9 Annealing @690�C and polishing 15.7
AA-24R Pd/Ag (6.2) 7.4 AA-24 MT and Pd-plating Annealing @690�C and polishing 16.2
AA-25 Pd/Ag (9) 8.5 Annealing and polishing 20.6
AA-26 None 12.8 Peeling occurred, regraded before calcining 12.8
AA-27 None 4.2 Peeling occurred, regraded before calcining 4.2
AA-28 None - Peeling occurred, regraded before calcining -
AA-29 Pd/Ag (<1) 9.3 Graded, Pd/Ag, graded again 13.3
AA-30 Pd/Ag (<1) 9.5 Graded, Pd/Ag, graded again 11.7
AA-31 Pd/Ag (1.8) 6.8 Graded, 2 x Pd/Ag 8.6
AA-32 Pd/Ag (6.2) 8.4 Graded, 2 x Pd/Ag 16.4
AA-33 Pd/Ag (3.0) 3.8 Graded, 2 x Pd/Ag Attempted Cr-plating 7.7
AA-34 Pd/Ag (2.7) 4.1 Graded, 2 x Pd/Ag 8.0
AA-35 Pd/Ag (2.3) 4.8 2 x Grading, Pd/Ag 8.3
AA-36 Pd/Ag (2.7) 4.7 2 x Grading, Pd/Ag 8.6
AA-37 - 3.9 Peeling occurred on annealing 6.0
AA-38 - 1.5 1 heavy polishing treatment 5.1
AA-38R - 4.4 AA-38 MT and Pd-plating 8.0
AA-39 - 2.7 Ni w eld plating 0.6 �m Ag (13%w t) 4.5
AA-40 - 1.5 6.0
AA-40R - 2.0 1 heavy polishing treatment, AA-40 MT and Pd 0.7 �m Au (9%w t) 7.9
EA-054† None 9.3 Weld defects 9.3
IM-79‡ Pd/Ag (12.2) 10.2 heavy polishing, 4 x Pd/Ag 26.9
IM-7616C‡ Pd/Ag (5.6) 17.3 23.5
IM-86b‡ Pd/Ag (1.0) 7.5 heavy polishing, 2 x Pd/Ag 10.9
RK-16R* - 6.0 Tested first by Reyyan Koc 8.3
†Prepared partially by Engin Ayturk
‡Prepared by Ivan Mardilovich
*Prepared by Reyyan Koc
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Table D.1 (continued). 

Membrane Testing time EA Initial leak Leak after 50 h Initial selectivity Leak grow th rate in H2

[h] 300�C 350�C 400�C 450�C 500�C [kJ/mol] [m3/m2-h-atm] [m3/m2-h-atm] [FH2/FHe] 400ºC [m3/m2-atm-h2]

AA-1 500 - 12.3 15.3 18.7 - 14.37 0.000200 - - -
AA-2 300 23.5 27.2 33 38.1 41.1 10.82 0.003275 0.062848 125 -
AA-3 Not tested
AA-4 250 8 - 30 - 39.5 16.85 0.000200 0.007660 13,000 -
AA-4R 100 - - 24.7 - - - 0.000200 0.000200 71,600 -
AA-5 1310 11.8 14.5 18.5 21 - 11.01 0.000613 0.002400 4600 -
AA-6 2000 13.3 17.3 21.3 25.3 - 14.74 0.000200 0.001864 7100 -
AA-6R 1400 - 26.9 31.5 36.7 - 11.61 0.000200 0.000740 2,500 -
AA-7 250 17.7 21.9 23.0 29.3 - 10.67 0.000843 0.004213 14,400 -
AA-7R 350 - - - 27.1 - - 0.000460 0.002272 11,600 -
AA-8 320 20.7 23.8 27.8 33.5 - 10.87 0.000332 0.001251 41,800 -
AA-8R 770 - 22.7 26.9 32.4 - 15.17 0.000200 0.000996 13,400 -
AA-8RR 1050 - 23.1 28.4 32.6 - 12.96 0.000200 0.002145 6300 -
AA-8RRR 1280 - - - 33.4 - - 0.000200 0.000306 43,600 -
AA-9 Not tested
AA-10 Not tested
AA-11 Not tested
AA-12 175 - 18.3 23.1 29.0 - 13.98 0.000200 0.005004 2450 -
AA-12R 125 - - - 36.4 - - 0.000200 0.004366 3500 -
AA-13 Not tested
AA-14 300 - 20.2 24.1 28.8 - 13.11 0.000536 0.000919 9840 -
AA-14R 125 - 19.1 22.7 26.2 - 11.84 0.020706 0.027830 575 -
AA-15 Not tested
AA-16 Not tested
AA-17 Not tested
AA-18 450 - 10.6 14.5 18.2 - 20.23 0.003574 0.006153 2000 -
AA-19 Not tested
AA-20 Not tested
AA-21 864 14.3 17.2 20.2 23.7 - 12.97 0.004774 0.006689 1245 8.630E-06
AA-22 150 - 19.8 25.0 37.0 - 23.12 0.009702 0.014911 850 -
AA-23 Not tested
AA-24 220 - 19.5 24.2 28.5 - 14.17 0.010468 0.012511 670 -
AA-24R 860 - - 28.5 - - - 0.000894 0.001404 12,700 2.911E-06
AA-25 170 - 18.2 28.8 37.9 - 27.63 0.000945 0.006740 12,600 -
AA-26 290 - 12.6 17.8 22.0 26.3 19.54 0.013583 0.024587 385 1.121E-04
AA-27 Not tested
AA-28 Not tested
AA-29 1100 - 20.0 24.1 27.6 - 12.07 0.001251 0.003319 9100 4.596E-06
AA-30 2500 - - 28.6 - - - 0.003753 0.004238 2960 3.013E-05
AA-31 780 - - 22.0 - - - 0.016851 0.021702 540 5.643E-06
AA-32 Not tested
AA-33 Not tested
AA-34 Not tested
AA-35 Not tested
AA-36 Not tested
AA-37 Not tested
AA-38 215 - 52.6 61.7 66.8 - 9.00 0.002630 0.003753 10,500 -
AA-38R 860 - - 41.2 - - - 0.000200 0.000200 75,000 6.281E-06
AA-39 290 - - 19.0 - 30.0 - 0.024000 0.029872 345 -
AA-40 215 56.1 - 62.0 - 86.5 7.71 0.044936 0.081702 570 -
AA-40R 970 - - 38.0 - - - 0.000587 0.001353 25,000 1.254E-05
EA-054† Not tested
IM-79‡ 1800 - - 23.2 26.9 - - 0.000536 0.001302 17,000 1.441E-06
IM-7616C‡ 450 - 2.6 - 2.9 - - 0.023234 0.059745 35 -
IM-86b‡ 2250 - - 33.7 35.0 - - 0.003830 0.005004 3770 1.910E-06
; /	�;N 170 - - 37.5 - - - 0.013300 0.016300 1166 2.496E-05
†Prepared partially by Engin Ayturk
‡Prepared by Ivan Mardilovich
*Prepared by Reyyan Koc

H2 permeance [m3/m2h*atm0.5]
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Table D.1 (continued). 

Membrane Leak grow th rate in H2 Intermediate selectivity Mixed or WGS conditions Leak grow th rate Final selectivity
450ºC [m3/m2-atm-h2] [FH2/FHe] conditions, time [m3/m2-atm-h2] [FH2/FHe]

AA-1 - - - - -
AA-2 - 105 - - -
AA-3 Not tested
AA-4 - 125 - - -
AA-4R - 54,600 - - -
AA-5 - 2150 WGS, 400 - 450°C, 24 h 1.300E-03 2800
AA-6 4.468E-05 2120 Mixed gas, 350 - 450°C, 3.600E-04 1100
AA-6R 2.783E-05 1110 WGS, 350 - 500°C, 35 h 1.100E-02 840
AA-7 - 880 - - -
AA-7R - 2100 WGS, 450°C, 24 h 0, 0.146 25
AA-8 - 2560 - - -
AA-8R - - WGS, 350 - 450°C, 72 h 2.580E-02 174
AA-8RR 2.068E-05 4000 WGS, 450°C, 72 h 8.100E-03 305
AA-8RRR 5.617E-04 500 - - -
AA-9 Not tested
AA-10 Not tested
AA-11 Not tested
AA-12 - 1370 - - -
AA-12R 3.906E-04 235 - - -
AA-13 Not tested
AA-14 - 190 - - -
AA-14R - 300 - - -
AA-15 Not tested
AA-16 Not tested
AA-17 Not tested
AA-18 6.587E-06 420 - - -
AA-19 Not tested
AA-20 Not tested
AA-21 2.265E-05 765 H2/H2O, 400°C, 70 h 1.900E-02 175
AA-22 - 80 - - -
AA-23 Not tested
AA-24 - 200 - - -
AA-24R - 4200 WGS, 400°C, 110 h 1.000E-02 365
AA-25 - 78 - - -
AA-26 2.436E-04 110 - - -
AA-27 Not tested
AA-28 Not tested
AA-29 - 1710 - - -
AA-30 - 825 WGS, 400°C, 1000 h 1.100E-03 240
AA-31 - 250 - - -
AA-32 Not tested
AA-33 Not tested
AA-34 Not tested
AA-35 Not tested
AA-36 Not tested
AA-37 Not tested
AA-38 2.377E-05 3900 - - -
AA-38R - 75,000 WGS, 400°C, 440 h 5.200E-04 2550
AA-39 - 155 - - -
AA-40 - 200 - - -
AA-40R - 1600 Syngas, 400°C, 0 - 20 ppm 7.450E-05 340
EA-054† Not tested
IM-79‡ 2.911E-05 1350 WGS, 400°C, 65 h 3.750E-04 330
IM-7616C‡ - 5 - - -
IM-86b‡ - 2130 H2/H2O, 400°C, 190 h 1.000E-04 20
; /	�;N - 920 Syngas, 400°C, 0 - 2.5 ppm 6.310E-05 675
†Prepared partially by Engin Ayturk
‡Prepared by Ivan Mardilovich
*Prepared by Reyyan Koc  
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APPENDIX E: CODE FOR MODELING 

The following Matlab® code was utilized to solve the 1-D model simulations conducted 

in this study. The model which the code is based on was discussed in Chapter 5. The 

code is structured as follows: 

1. Constants: system specifications, catalyst properties, membrane properties, and 

temperature 

2. Feed conditions: flow rate, pressure, and gas composition 

3. Thermodynamic and rate calculations: equilibrium constant and reaction rate 

constant 

4. Flow dynamics: Reynolds number, Schmidt number, velocity, viscosity, and 

diffusivity 

5. Reaction and separation coefficients: dimensionless rate constant and mass 

transfer coefficients for membrane and gas boundary layer 

6. Integration: Integration of function containing steady state mass balance 

equations from : � ; � "� � � ��� <��� ! �� �� �� = � ��   �� +  �� � � = ���� ��� � 
 � ��� � > � � �!  ����� �

05 6 �%� ?�� ����@@�� �@@� �� ���� ��� A + � �� ��� �* � ��= �� ��+ ����B � ����� �7 + �! � )C + ��� �� � �� � ��

$�� �� ����! �  @� ��� � �� �+ ���D� 1 � �� �� ��E � ��� � �� �+ ���� = � �� � @����� * �� = � � � � E � 8 � ����! � ���
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%Program to simulate the WGS CMR via a 1-D model, incorporating iron-chrome 
%oxide catalyst rate law, gas boundary layer mass transfer resistance and Pd-
%surface inhibition. Program is currently configured to vary GHSV from 50 to 
3500 h-1 
%Written by Alex Augustine 
 
global k m n o p K B C D PT thT thH2O thH2 thCO2 thHe Pp a b c;  
q = 40;             %Simulation runs 'q' times with 1 variable changing 
X = zeros(q,3);     %Matrix to store results from each run 
for i = 1:1:q; 
 
% 1. Constants 
    d = 10;              %Pd-layer thickness (um) 
    r = 0.5*2.54/(2*100);    %membrane tube radius (m) 
    L = 0.065;                %membrane tube length (m) 
    Ri = (27/32)*2.54/(2*100);    %reactor shell radius (m) 
    Ap = pi*2*r*L;      %membrane surface area (m^2) 
    Ac = pi*(Ri^2-r^2); %catalyst bed cross section (m^2) 
    phi = 0.47;         %catalyst void fraction 
    roc = 2130;         %catalyst bulk density (kg/m^3) 
    ro = (1-phi)*roc;   %catalyst bed density (kg/m^3) 
    T = 400+273;        %temperature (K) 
    R = 0.08206;        %ideal gas constant (m^3atm/kmolK) 
    Perm = 30.0;       %membrane permeance (m^3/m^2hatm^0.5 
 
% 2. Feed conditions 
    FCO = 0.00001*i;     %feed rate of CO (kmol/hr) 
    thH2O = 55/19;      %ratio of H2O/CO (-) 
    thH2 = 18/19;       %ratio of H2/CO (-) 
    thCO2 = 8/19;       %ratio of CO2/CO (-) 
    thHe = 0.01;        %ratio of inert He sweep He/CO (-) 
    thT = 1+thH2O+thCO2+thH2;   %sum of all feed components (-) 
    PT = 14.6;          %feed pressure (atma) 
    Pp = 1.0;          %tube-side pressure (atma) 
 
% 3. Thermodynamic and rate calculations 
    %Reaction kinetics on Fe/Cr oxide catalyst 
    lnk0=11.7;Ea=122;m=1;n=0;o=0;p=0; %Rhodes et al. 2002 
    k = exp(lnk0-(Ea/(0.008314*T)))*3600;  %kinetic rate (kmol/kg*h) 
    GH2O = -241.74+0.04174*T+7.428*10^-6*T^2; 
    GCO = -109.885-0.092218*T+1.454*10^-6*T^2; 
    GCO2 = -393.36-0.0038212*T+1.3322*10^-6*T^2; 
    G = GCO2-GH2O-GCO; 
    K = exp(-G/(0.008314*T)); 
    a = 101000*((6.626e-34)^3)*exp(149/(0.008314*T))/((T^2.5)*(1.38e-
23)*(6.28*(4.65e-23)*(1.38e-23))^1.5); %CO 
    b = 101000*((6.626e-34)^3)*exp(135/(0.008314*T))/((T^2.5)*(1.38e-
23)*(6.28*(2.99e-23)*(1.38e-23))^1.5); %H2O 
 
% 4. Flow dynamics 
    v = FCO*thT*22.4/(phi*3600*Ac);  %flow velocity (m/s); 
    Di = 0.000026*phi;          %diffusivity, H2 in mixture (m^2/s) 
    u = 0.0000254;          %estimated viscosity (kg/m-s) 
    car = 0.000175;         %characteristic length (m) 
    rho = PT*(28+thH2*2+thCO2*40+thH2O*18)/(thT*1000*R*T)  %density of the 
gas mixture (kg/m3) 
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%Sherwood number empirical correlation by Wakao and Funazkri 
    Sh = 2 + 1.1*((rho*car*v/u)^0.6)*((u/(car*Di))^0.333); 
 
% 5. Reaction and separation coefficients 
    B = ro*Ac*L/FCO;            %inverse reaction rate on catalyst kg*h/kmol 
    C = Perm*Ap/(FCO*22.4);          %membrane resistance (atm^-0.5) 
    D = Sh*Di*Ap*3600/(R*T*FCO*car); %gas boundary layer resistance(atm^-1) 
 
% 6. Integration with Matlab algorithm ODE23s (calls upon function  
    %'wgsdot') 
    x0 = [0; 0]; 
    [z,x]=ode23s(@wgsdot, (0:0.005:1), x0); 
%saving results from integration 
    X(i,1)=FCO*thT*1697000; %saving flow rate as GHSV (h-1) 
%kmol/hr * 1697000hr/kmol*hr (13.2mL reactor) 
    X(i,2)=x(201,1); 
    X(i,3)=x(201,2)/(1+thH2); 
end 
 
% 7. Plotting of the results 
figure('position',[20, 50, 700, 350]); %define figure dimensions 
subplot(1,2,1)                         %generate first figure 
plot(X(:,1), X(:,2));                  %plot XCO vs. membrane permeance 
xlabel('GHSV (h-1)'); 
ylabel('CO Conversion'); 
subplot(1,2,2)                         %generate second figure 
plot(X(:,1), X(:,3));                  %plot YH2 vs. membrane permeance 
xlabel('GHSV (h-1)'); 
ylabel('H2 Recovery'); 
 

The code called upon the following function, ‘wgsdot’ which contained the steady state 

differential equations to be solved.  

function [xdot]=wgsdot(z,x) 
%function containing the steady state mass balance equations for the 1-D 
%simulation 'WGS' 
 
global k m n o p K B C D PT thT thH2O thH2 thCO2 thHe Pp a b c; 
 
%Partial pressure of each species 
PH2O = (thH2O-x(1))*PT/(thT-x(2));      %partial pressure of H2O (atma) 
PCO = (1-x(1))*PT/(thT-x(2));           %partial pressure of CO (atma) 
PH2 = (thH2+x(1)-x(2))*PT/(thT-x(2));   %partial pressure of H2 (atma) 
PCO2 = (thCO2+x(1))*PT/(thT-x(2));      %partial pressure of CO2 (atma) 
PpH2 = x(2)*Pp/(x(2)+thHe);        %partial pressure of H2 in permeate (atma) 
 
r1 = k*(PCO^m)*(PH2O^n)*(PCO2^o)*(PH2^p)*(PCO*PH2O-PH2*PCO2/K); 
%Reaction rate (kmol/kg*h) 
 
%Square root partial pressure of H2 at Pd-surface considering membrane 
%resistance, C, and gas boundary layer resistance, D (atm^0.5) 
ep = -(0.5*C/D)+0.5*sqrt(((C/D)^2)+4*C*sqrt(PpH2)/D+4*PH2); 
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%Correction factor to account for reduction in velocity in the retentate 
rgd = D*log((ep^2)/PT+1)*PT/(ep^2); 
%Square root partial pressure of H2 at Pd-surface considering removalof H2 
ep1 = -(0.5*C/rgd)+0.5*sqrt(((C/rgd)^2)+4*C*sqrt(PpH2)/rgd+4*PH2); 
 
%Empirical surface activity parameters 
S = 1/(1+PCO*a+PH2O*b); 
 
%Steady state mass balance equations 
dXCO2 = B*r1;              %mass balance of CO (dimensionless) 
dYH2 = C*(ep1-PpH2^0.5)*S; %mass balance of H2 (dimensionless) 
xdot = [dXCO2; dYH2];   %function definition 
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The following Excel® spreadsheet was utilized to determine the thermodynamic 

propensity for coke formation in the WGS CMR. 

 

Where ni was the mols of species i which was varied in order to minimize the Gibbs free 

energy, yi was the mol fraction of species i in the gas phase, �Gf was the standard 

Gibbs free energy of formation for each species. The Excel® Solver algorithm was 

utilized to minimize �G by varying the values of ni, under the constraint that the mass 

balance for C, H, and O remained constant. The fugacity of the gas species CO, H2O, 

CO2, and H2 were 0.997, 0.979, 0.997, and 1.003 respectively at 10 atma and 300°C 

(Perry and Green, 1997) so the ideal gas law was assumed. 
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