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Abstract

During the development of many diseases such as cancer and diabetes, the pattern

of gene expression within certain cells changes. A vital part of understanding these

diseases will come from understanding the factors governing gene expression. This

thesis work focused on mining association rules in the context of gene expression. We

designed and developed a tool that enables domain experts to interactively analyze

association rules that describe relationships in genetic data. Association rules in

their native form deal with sets of items and associations among them. But domain

experts hypothesize that additional factors like relative ordering and spacing of these

items are important aspects governing gene expression.

We proposed hypothesis-based specializations of association rules to identify bi-

ologically significant relationships. Our approach also alleviates the limitations in-

herent in the conventional association rule mining that uses a support-confidence

framework by providing filtering and reordering of association rules according to

other measures of interestingness in addition to support and confidence. Our tool

supports visualization of genetic data in the context of a rule, which facilitates rule

analysis and rule specialization. The improvement in different measures of inter-

estingness (e.g., confidence, lift, and p-value) enabled by our approach is used to

evaluate the significance of the specialized rules.
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Chapter 1

Introduction

During the development of many diseases such as cancer and diabetes, the pattern

of gene expression within certain cells changes. A vital part of understanding these

diseases will come from understanding the factors governing gene expression. This

thesis work focused on association rules mined in the context of gene expression. We

designed and developed a tool that enables domain experts to interactively analyze

association rules that describe relationships in genetic data. Association rules in

their native form deal with sets of items and associations among them. But domain

experts hypothesize that additional factors like relative ordering and spacing of these

items are important aspects governing gene expression.

We proposed hypothesis-based specializations of association rules to identify bi-

ologically significant relationships. Our approach also alleviates the limitations in-

herent in the conventional association rule mining that uses a support-confidence

framework by providing filtering and reordering of association rules according to

other measures of interestingness in addition to support and confidence. Our tool

supports visualization of genetic data in the context of a rule, which facilitates rule

analysis and rule specialization. The improvement in different measures of inter-

1



estingness (e.g., confidence, lift, and p-value) enabled by our approach is used to

evaluate the significance of the specialized rules.

1.1 Biological Motivation

One of the central questions in modern biology today is what controls gene expres-

sion. Deoxyribonucleic acid (DNA) is a complex molecule which encodes genetic

information unique to an organism. Every cell in an organism contains the same set

of instructions encoded in the DNA, and this information is arranged into regions

called genes. Still, a brain cell is very different from a heart cell and performs an

entirely different function. Each cell possesses its own unique characteristics because

each cell “turns on”, or expresses, a different set of genes.

A T T C T A G C T C G A G T C 
T A A G A T C G A G C T C A G 

 
Simplified 

Helical 

Figure 1.1: Structure of a DNA molecule and corresponding linear simplification.

Gene expression is the process by which the information encoded in a gene is

copied (transcribed) into RNA which may further be translated into a protein. The

promoter region of a gene is the portion of the DNA sequence upstream of the gene.

The process of making an RNA copy of the relevant portion of the genes DNA is

called transcription, and the point where the promoter region ends and the gene

begins is called the start of transcription (SoT). RNA is chemically slightly different

from DNA, but contains the relevant information for a particular gene, and it can

move to a part of the cell where that information can be translated into protein.
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Proteins are the basic chemicals that make up the structure of cells and direct their

activities. Each protein has a specific function that is determined by the blueprint

stored in DNA, specifically the gene.

Deeper understanding of gene expression would not only help in the functional

classification of genes but would also be instrumental for developing cures to dis-

eases where the gene expression patterns within a cell change. With technological

advances more genetic data is being collected today than ever before. This is cre-

ating an increasing gap between the rate of data collection and the rate of data

analysis.

Figure 1.2: Central dogma of biology: DNA→RNA→Protein.
During transcription, RNA polymerase (RNAP) copies DNA to RNA using the tem-
plate strand. The RNA transcribed is identical to the RNA-like strand except that
U’s are substituted for T’s. A transcription protein (TP) binds to either enhance
or repress transcription of a gene by assisting or blocking RNAP binding. During
translation, the RNA encodes proteins.

Domain experts attribute the selective activation of genes in any cell to:

1. The presence of a particular set of proteins controlling transcription called

Transcription Proteins (TP) in a given cell.

2. The presence of certain repeated sequences of DNA (motifs) in the promoter

3



region, which is the section of the DNA sequence upstream of the gene. These

motifs are bound by transcription proteins during transcription.

Throughout this thesis we focus on identifying control patterns, defined in terms

of the presence of a motif, to model gene expression. Motifs control gene expression,

as they are putative binding sites which bind the transcriptional proteins. Expres-

sion of each gene may require the presence of a combination of motifs. Domain

experts also hypothesize that inter-motif distances and order of occurrence of motifs

in the promoter region are additional factors that control this regulatory interplay

of motifs and thus also influence gene expression.

1.2 Computational Motivation

Computational processes to identify and shortlist interesting relationships (associa-

tions) between motifs and gene expression, which could then be analyzed biologically

in detail, are gaining importance, as these would help reduce the growing gap be-

tween data collection and analysis. Associations that are statistically significant

may yield biologically valid connections between associated variables. Association

rule mining, introduced in [AIS93], provides a useful mechanism for discovering

relationships between variables in a dataset. Relationships are represented in an

if-then format with statistical measures to indicate the strength of the relationship.

Association rules are of the form:

Antecedent ⇒ Consequent[Support = S,Confidence = C]such that S,C ∈ [0, 1]

4



A rule of this form in a market basket analysis of customer purchases could be:

Bread,Butter ⇒ Eggs[Support = 0.45, Confidence = 0.80]

(1.1)

The Support of the rule is the probability of finding both the antecedent (the

if part) and consequent (the then part) of the rule in a data instance (i.e., a row

in the dataset). For instance, in rule 1.1, the Support of the rule signifies that 45%

of the customers in the database bought all three items, that is, Bread, Butter, and

Eggs.

The Confidence of the rule is the conditional probability of the consequent

given the antecedent. Again, in the context of sample rule 1.1, the Confidence of

the rule signifies that 80% of the customers who bought Bread and Butter bought

Eggs as well.

Previous work at WPI ([MPPT01], [BLT02], [BFG+03], [Ice03], [IRR03]) has

provided the foundation for gene expression association rule mining. [BLT02] fo-

cused on creating a computational biology tool, CAGE, that built association rule

based models to predict gene expression. [BFG+03] implemented a more elaborate

methodology for discovering potential motifs and concentrated on improving the

predictive accuracy of the models. However, none of these systems provide an inter-

face that enhances the ability of a domain expert to analyze the resulting rules. This

work focuses on facilitating visualization of the mined rules with respect to location

of motifs on promoter regions of interest, since this is essential to interpretation of

the rules by domain experts.

Besides setting the base methodology, [MPPT01] also attempted to address the

biological hypothesis - “Does distance between motifs matter?”. [Ice03], [IRR03]

5



extended the idea and focused on incorporating distance information in the min-

ing process itself. But they do not provide a way to verify alternative biological

hypotheses. Consider the following scenario, which brings forth one of the short-

comings of incorporating more constraints in the mining process, and suggests why

it might not be the best approach in an environment where we intend to perform ex-

ploratory analysis. A batch of gene sequences was mined for gene expression related

association rules with a support and confidence of 0.5 or greater. If the user now

wants to find out rules with support and confidence of 0.4 or greater, the only way

to achieve this is to mine again, which is a very time consuming process. From an

exploratory analysis perspective, it is imperative to facilitate visualization of data

in the context of a rule in real-time. So one could mine for association rules with

lowest bounds of support and confidence. Then this work lets the user visualize the

data which may allow the user to quickly perceive a pattern in the data, suggesting

a specialization that would greatly increase the confidence (or other measures of

interestingness). This work also computes the different measures of interestingness

of the specialization over the training data for each such identified specialization

and thereby provides an instantaneous estimate on the statistical strength of the

rule. This work provides the ability to test a few biological hypotheses, as such a

provision is instrumental in the development of an effective data-mining algorithm

for gene expression.

Moreover all the above mentioned efforts were based on the basic support-

confidence framework of rule generation. Several other measures of interestingness

have been proposed to measure the relative importance of association rules (e.g.,

gain [Mor98], chi-squared value [Alv03], and lift [BMS97]). But there is no one

good measure that is applicable to all domains. This work provides a way to analyze

important rules according to several measures and thereby observe the applicability

6



of each of these measures to this problem domain.

[PR05] introduced an algorithm to mine expressive positional relationships from

complex sequential data. We adapted the data to define motifs as events and then

utilized this algorithmic approach to mine for statistically significant association

rules with positional relationships. This work also provides a facility to visualize

genetic data in the context of such positional specializations.

1.3 Problem Statement

Figure 1.3: Hypothetical dataset of 15 genes and 10 motifs.

We designed and developed a tool to facilitate the post-mining analysis of rules

for verifying biological hypotheses and also to aid the visualization of the rules

generated. The tool has been integrated with the WPI-Weka system, a local version

of the open source data mining tool. Mining of a hypothetical gene expression
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dataset as shown in Figure 1.3 would produce association rules of the form:

M8 && M10 ⇒ neural [Support = 0.27, Confidence = 0.67] (1.2)

which states that the presence of Motif M8 and Motif M10 in the promoter region

of a gene implies that there is a 67% likelihood that the gene is expressed in cells of

type neural. Also, 27% of our data instances contain M8, M10 and are expressed in

cells of type neural. The support and confidence statistics are computed from the

hypothetical data in Figure 1.3.

This work will provide the necessary functionality for a domain expert to inter-

actively analyze genetic data in the context of the following biological hypotheses:

1. Inter-motif distance is important in characterizing gene expression. DNA con-

sists of linearly linked nucleotides. Subsequences of the DNA sequence, like

a gene or a promoter region, can be represented for example as ATTTCC-

CGGT. By representing DNA as a sequence, the number of bases could be

used to imply a notion of distance between motifs. In the sample sequence

ATTCGGGGGGTAT we could say that the Motif ATT is at a distance of 7

bases from the Motif TAT. Now consider the following specialized form of rule

1.3:

M8 (0-250) M10 ⇒ neural [Support = 0.20, Confidence = 1.0] (1.3)

That is, the presence of Motif M8 within a distance of 250 bases from Motif

M10 implies that the gene is likely to be expressed in cells of type neural. Again

the support and confidence statistics are computed from the hypothetical data

in Figure 1.3. Notice the change in the statistical measures with respect to

(1.2). Every time a rule is specialized, it may be applicable to fewer data-
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instances (genes) in the dataset. This explains the reduction in the Support

value. The increase in Confidence is indicative of the classification accuracy. A

value of 1.0 signifies that of the data instances (genes) to which the rule could

be applied (i.e., those that match the antecedent of the rule), the expression

type predicted by the consequent of the rule is correct(i.e., it matches the

known expression type of the data instance.

2. Distance of a motif from the start of transcription (SoT) affects gene expres-

sion.

Since many of the known putative regulatory elements are found close to the

Start of Transcription (SoT), we want to find out if the distance of the occur-

rence of a motif to the start of transcription has any effect on gene expression.

This work facilitates visualization of gene sequences, along with the motifs

involved and the start of transcription, in the context of the generic rule of

the form (1.2). This enables the user to form and visualize specializations of

the form:

M8 (0-500) SoT && M10 ⇒ neural [Supp = 0.13, Conf = 1.0] (1.4)

where the presence of Motif M8 within a distance of 500 bases or less from

the Start of Transcription (SoT) and presence of motif M10 anywhere in the

promoter region imply that the gene is likely to be expressed in cells of type

neural. Again the support and confidence statistics are computed from the

hypothetical data in Figure 1.3. Observe again the alteration in support and

confidence as compared to (1.2).
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M10 M8 

rp0 rp1 rp2 rp3 

SoT 

Figure 1.4: Syntax description of order of occurrence based specialized rules.

3. The order of occurrence of motifs affects gene expression. Knowledge of gene

expression regulation is not complete. Domain experts hypothesize that the

order of occurrence of motifs in the regulatory regions could also affect gene

expression. This work provides the facility to visualize the gene sequences in

the context of specializations of the following form which were either mined

directly using the approach in [PR05] or visually observed and enhanced as

a part of the exploratory analysis.

M8 (rp0-rp1) M10 (rp2-rp3) ⇒ neural [Supp = 0.20, Conf = 0.75] (1.5)

This rule states that the presence of an occurrence of Motif M8 in the promoter

region of a gene in between an occurrence of Motif M10 and the Start of

Transcription (SoT) implies that the gene is likely to be expressed in cells of

type neural. rp in the rule above refers to the relative position of the motif

with respect to the Start of Transcription (Figure 1.4). Each motif has a begin

point and an end point and hence requires both a begin index and an end index

to capture the relative positioning of the motifs on the gene sequence. The

support and confidence statistics are computed from the hypothetical data in

Figure 1.3. Here again we notice that the specialization process produces an

improvement in the confidence of the rule.
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For each of the form of specializations discussed above, different measures of

interestingness are computed to estimate if the hypothesis-based specialized rule

better explains the underlying regulatory mechanism as compared to its generic

counterpart.

1.4 Summary of the contributions of this work

This work focused on the development of a computational tool for exploratory spe-

cialization of association rules predicting gene expression in the context of the above

mentioned biological hypotheses. Also it provides for filtering/sorting association

rules based on measures of interestingness beyond the conventional measures of

confidence and support.

The main contributions of this work are a framework and a tool that can:

1. Facilitate exploratory rule analysis (specialization) by providing a user-interface

for rule visualization in the context of different biological hypotheses.

2. Select and present rules according to different interestingness metrics.

3. Test hypotheses relating the order of motifs, inter-motif distance and the dis-

tance of motifs from the start of transcription to gene expression control.

4. Provide updated genetic data, an important resource for any further research

in the domain.

5. Be integrated seamlessly with the WPI Weka system. That is, gene expression

association rules mined with the WPI-Weka system can be visualized and

specialized using this work. Also, a model consisting of interesting rules and

their specializations could be used by the WPI Weka to measure the model’s

classification accuracy over novel data.
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Chapter 2

Background

2.1 Gene Expression

Simply put, a gene is a segment of DNA and is the physical and functional unit

of heredity information. Gene expression is the process of using the information

encoded in a gene to manufacture protein in the cell. Each cell of an organism,

for instance neural or muscle, has the same DNA, but still performs completely

different functions. This phenomenon is often referred to as the “The central dogma

of biology” and is described in more detail in Section 1.1.

With technical advances in all fields, more and more data is being generated

today than ever before, and the field of gene expression is no exception. Thus there

is an imperative need for methods to analyze data at an equivalent rate.

The focus of this work was to design and develop a tool that helps a biologist

to visualize genetic data to explore interesting regulatory patterns governing gene

expression. As discussed in Section 1.1, motifs (repeating DNA segments) control

gene expression, as they are putative binding sites which bind the transcriptional

proteins. Hence, it is central to our work to determine groups of motifs that are likely

12



to be real binding sites collectively controlling expression, which in turn is contingent

upon the quality of the data used to discover (elicit) motifs. This was one of the

prime reasons why we decided to collect data from scratch. We compiled a database

using the Wormbase database [Wor] and RSA database [RSA] that consists of 164

genes, from nine different cell types with at least 30 genes known to be expressed in

each cell type. Furthermore, we conducted a pilot experiment that elicited motifs

from these sequences using both MEME [MEM] and GIBBS [JAC95] to observe the

cost vs quality analysis of both algorithms. Since there was no perceived benefit in

terms of quality of motifs we opted for lower cost (less time-consuming) elicitation

algorithm MotifSampler (GIBBS). The data collection as well as the motif elicitation

process is covered in detail in Section 3.

2.2 Association rules

Association rules were introduced in [AIS93]. Consider a database (D) in relational

format where each record (data instance) consists of n boolean attributes. Associa-

tion rules model relationships of the form: presence of a set A (A ⊂ D) implies the

presence of the another set C (C ⊂ D) where the two sets A and C are disjoint (i.e.,

A
⋂

C = ∅). The most common statistical measures to estimate the strength of the

rule are support and confidence and these have been covered in depth in Section

1.2.

Apriori is the traditional algorithm used to mine association rules [AS94]. Even

a small dataset could yield a large number of rules and so the support-confidence

framework is utilized to identify relationships which are statistically interesting. It

follows an inductive approach to find itemsets (i.e., sets of items belonging to the

data) that occur together frequently, within a dataset. An itemset is frequent if the
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support of the itemset is greater than the minimum support, a threshold provided

as an input parameter. The apriori principle basically states that an itemset is

frequent only if all its subsets are frequent and this principle is utilized in the

inductive approach to search for frequent itemset.

Even with the popularity of the support-confidence framework in the association

rule mining literature there is no one good measure that is applicable to all domains.

Several other measures of interestingness have been proposed to measure the relative

importance of association rules. The lift value of an association rule is another

measure to try to quantify the interestingness of the rule. It is defined as the ratio

of the confidence of the rule and the support of the consequent of the rule. The

p-value of the rule is the probability that the correlation between the antecedent

and the consequent is due to chance by using the chi-square test.

2.3 Prior work at WPI

As discussed in Section 1.2 previous work at WPI has provided the foundation for

gene expression association rule mining. AprioriSetsAndSequences [PR05] intro-

duced an algorithm to mine expressive temporal relationships from complex sequen-

tial data in addition to the regular association rule mining and provides enhanced

pruning mechanism, which is of significant value especially when mining large se-

quence databases. It takes preprocessed sequences, that is sequences of events (e.g.,

the price of a company’s stock recorded every hour or the repeating patterns in

a gene sequence) as input with a minimum support and confidence threshold and

produces association rules with temporal relationships between events. [MPPT01]

attempted to address the biological hypothesis - “Inter-motif distance influences

gene expression”. [Ice03], [IRR03] extended the idea and focused on incorporating
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distance information in the mining process itself. Integrating this work with the

WPI-Weka system has been a shared goal with [Rudss], a work in progress.
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Chapter 3

Data: Motif Elicitation and

Sequence Annotation

The data in the domain of interest (genetics) is sequential in nature. In this section

we present the process followed in order to transform sequential genetic data to a

relational format. That is, a format similar to the conventional database format that

enables the use of existing data-mining algorithms to identify patterns of interest

from a gene regulation perspective.

3.1 Data Collection

It cannot be stressed enough that no matter how good a mining algorithm may be,

the information retrieved/discovered is only as good as the data. Adhering to this

thought, we found an imperative need to collect genetic data from scratch.

C. elegans was our choice of organism. It is a well-studied organism often used as

a model for genetic research because it is genetically tractable, that is, the entire C.

elegans genome has been sequenced and the expression patterns of many genes are
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known. More than 60% of human genes have homologs in the C. elegans genome.

The facts that it is small and easy to culture are some of the secondary reasons why

this nematode is popular amongst biologists.

As a first step we identified cell types to include in our study. The primary

intent was to identify cell types in which there were at least 30 genes known to

be expressed. We require them to be “high-density” cell types, because the data

sample should be large enough to derive statistically significant information. Also,

this would provide us with substantial data to break down into a training set and a

test set.

We used the WormBase [Wor] database and the RSA Database [RSA] for iden-

tifying the cell types based on the conditions delineated above. The next step was

to gather the actual data, that is, the promoter regions for each of the 30 or more

genes per cell type. This data was downloaded from the sources listed above and

manually cross verified using BLAST [BLA]. At the end we were able to identify

nine cell types of interest to us, each of which had at least 30 known genes. We

created nine batches of promoter sequences, one per cell type (Figure 3.1). These

nine batches of gene sequences or promoter subgroups were also the initial input

for the data transformation process as depicted in Figure 3.2, which provides the

graphical overview of the contents of this chapter. Each subsequent step in the data

transformation process corresponds to a subsequent section of this chapter.

Another important decision was with regard to the length of the promoter region

for the data collected. Based on expert opinion, the length of promoter region

included in the data was 5000 base pairs (bp) upstream (5’ to the gene) of the

gene. This choice was influenced by the fact that although the regulatory elements

critical to gene expression are usually proximal to the initiation site, another type of

regulatory elements called enhancers, that may influence expression, can be located
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Cell Type Genes Expressed

ASK bra-1, cam-1, che-3, daf-11, eat-4, egl-4, gpa-14, gpa-15, gpa-3,
ida-1, kin-29, kvs-1, nlp-10, nlp-14, nlp-8, odr-1, opt-3, osm-
3, osm-6, osm-9, sra-7, sra-9, srg-2, srg-8, tax-2, tax-4, tax-6,
unc-103, zig-4, zig-5

ASE ceh-23, che-1, che-3, cog-1, csk-1, egl-2, egl-4, gcy-5, gcy-6, gcy-
7, gpa-3, hen-1, kvs-1, lim-6, mps-1, ncs-1, nlp-14, nlp-3, nlp-7,
npr-1, osm-3, osm-6, osm-9, src-1, tax-2, tax-4, tax-6, unc-5,
nlp-1, flp-6

ASI bra-1, cam-1, ceh-23, che-3, daf-11, daf-28, daf-7, gpa-1, gpa-10,
gpa-14, gpa-3, gpa-4, gpa-5, gpa-6, gpc-1, ida-1, kal-1, kin-29,
nlp-1, nlp-14, nlp-18, nlp-24, nlp-27, nlp-5, nlp-6, nlp-7, nlp-9,
odr-1, opt-3, osm-10, osm-3, osm-6, osm-9, sra-6, srd-1, str-2,
str-3, tax-2, tax-4, tax-6, ttx-3, unc-3, zig-3, zig-4

CAN acy-1, acy-2, cam-1, ced-10, ceh-10, ceh-23, ceh-43, cle-1, ctl-2,
dbl-1, ggr-2, goa-1, gpa-10, gpa-14, gpb-2, gsa-1, hbl-1, jkk-1,
jnk-1, kal-1, lin-14, mig-2, nlp-10, nlp-15, pak-1, unc-129, unc-
73, unc-76, vab-8, cat-1

HSN cam-1, cdh-3, cha-1, clh-3, ctl-2, eat-16, egl-21, egl-3, egl-43,
egl-44, egl-5, flt-1, gar-2, ggr-2, glr-5, goa-1, gpb-2, grd-6, gsa-1,
ham-2, hbl-1, ida-1, inx-4, jkk-1, jnk-1, kal-1, mab-23, mec-6,
mig-1, mig-2, nhx-5, nid-1, nlp-15, nlp-3, sax-3, sem-4, syg-1,
tph-1, unc-103, unc-14, unc-17, unc-40, unc-51, unc-53, unc-73,
unc-76, unc-8, unc-86, cat-1, lin-4

PHA bra-1, ceh-14, che-2, che-3, egl-43, gcy-12, goa-1, gpa-1, gpa-13,
gpa-14, gpa-15, gpa-2, gpa-3, ida-1, lin-11, ncs-1, nlp-14, nlp-7,
npr-1, ocr-2, osm-10, osm-3, osm-6, osm-9, pkc-1, srg-13, tax-6,
unc-103, flp-15, srb-6, tax-2

ADL cam-1, ceh-23, ceh-32, che-3, cog-1, gpa-1, gpa-11, gpa-15, gpa-
3, gpc-1, hlh-2, kvs-1, lin-11, nhr-79, nlp-10, nlp-7, nlp-8, ocr-1,
ocr-2, opt-3, osm-3, osm-6, osm-9, qui-1, srb-6, sre-1, sro-1, tax-
6, ttx-3, unc-103, ver-2

ASH cam-1, ceh-23, che-1, che-3, eat-4, egl-3, egl-4, gpa-1, gpa-11,
gpa-13, gpa-14, gpa-15, gpa-3, gpc-1, hlh-2, kin-29, kvs-1, mps-
1, nhr-79, nlp-15, nlp-3, npr-1, ocr-2, odr-3, opt-3, osm-10, osm-
3, osm-6, osm-9, qui-1, sra-6, srb-6, tax-6, unc-42, unc-8

ALM cam-1, daf-1, deg-3, dyn-1, eat-4, egl-2, egl-21, egl-3, glr-8, goa-
1, jkk-1, jnk-1, lin-14, mec-10, mec-2, mec-3, mec-4, mec-6, mec-
7, mec-8, mig-2, mps-1, mtd-1, nid-1, pag-3, pat-4, pkc-1, ptl-1,
tba-1, tol-1, unc-32, unc-73, unc-86, unc-97

Figure 3.1: List of high density cell types with the associated identified genes that
are expressed in the worm’s adult life stage.
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ASK 

ASE 

ASI 

CAN 

HSN 

PHA 

ADL 

ASH 

ALM 

Motif 
Elicitation 

Gene Name Promoter Sequence
cam-1 TATAATTGCTT…...ATATGTA
ceh-23 GTAGTTATAAG…..TTTTCAG
egl-3 TTTTCATTACA…...CATGGAT
gpa-1 GTAATTATGAA…..ACAACGC

Cell-type based 
Promoter 
subgroups 

Top-3 motifs  
for each cell-type. 
9 such motif triplets 

All Promoter 
Sequences 

    Index Motif
M1 AATT
M2 TATA
M3 TACA

# Gene Name Promoter Sequence
1 cam-1 TATAATTGCTT…...ATATGTA
2 ceh-23 GTAGTTATAAG…..TTTTCAG

…….…………….. …………………………………..
164 gpa-1 GTAATTATGAA…..ACAACGC

Sequence 
Annotation 

All Promoter 
Sequences 

All Motifs 

# Gene Name Promoter Sequence
1 cam-1 3-[M1]-44-[M20]-...-[M3]-3-SoT
2 ceh-23 5-[M2]-…-[M18]-7-SoT

…….…………….. …………………………………..
168 gpa-1 2-[M2]-59-…[M18]-SoT

# Gene M1 M2 …M27
1 cam-1 {4:13} {} …{235:243},{527:536}
2 ceh-23 {} {103:110} …{}

…….……. …….. …….. …
168 gpa-1 {23:32} {433:440} …{}

ARFF 
Generation 

 
 
 
 
 
 

Figure 3.2: Overview of the process from data collection to the ARFF generation.
Promoter regions were grouped based on the cell type in which their associated genes
were expressed. DNA motifs common to promoters within a group were elicited for
each group. All sequences were then annotated with all the elicited motifs. The
gene expression information and the annotated sequences, that is, the sequences
overlaid with the positional information of each motif, are transformed to ARFF
format, Weka’s input format.
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Sample Promoter Sequence in FASTA format

>osm-6 25148409 upstream sequence, from -425 to -1, size 425
TTTTATAATTGCTTATATGTAGTAGTTATATTTTCAGTTTTCATTACATTTCATGGGTAT

TTATTTATTAACTATAATCTTGTATAAGACGATGTAATTATGAAACAACGATTTCACACT

TCCGGTTTTCATGTAAAATTTTTTTCGTTCCAAATAAATTGTTATAAAATTAATTACATC

TTTCATCAAACTTCAAAAATGAAATTGCATTTTTAATAATTAGGAGTCTATTACGGAATT

CATTAAATTTCAGAAAACAAAGTTAACTATATATTTCTCTAGTAGTTCCTTTCCCAGGAG

ACCCTTCCAAGATTTGTATCCACATGTTACCATAGTAACCACTCATTGCTTCTCGCTCAC

ATTGTCTGCTCCCTCTCTTGGGGCTTATATCTCTTTCAAGCTATTACCTTCATTAGTATA

CATCT

Figure 3.3: Sample promoter sequence from the data collected.

several thousand base-pairs from the gene. In case another gene was found within

the 5000 bp upstream sequence of the promoter sequence, the length of the promoter

being considered was truncated at the start of this gene.

The data collected consists of 164 promoter sequences and is a valuable resource

for future work. The collected sequences were represented in the FASTA format for

further processing by motif discovery and annotation tools. A sample sequence is

shown in Figure 3.3.

3.2 Motif Elicitation

The next step in the data transformation process is motif elicitation(Figure 3.2). A

motif is a sequence pattern that occurs repeatedly (ideally at least once per gene) in

a group of related promoter sequences. Motif elicitation is the process of discovering

significant motifs from a group of sequences. There are several tools available that

use different statistical modeling techniques to discover significant motifs. The basic

premise governing the elicitation process is that the regulatory controls governing

the expression of genes in the cells of the same cell type might be in common to at
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least few of these sequences. The idea was to use motif search programs to identify

cell type specific motifs. To avoid over fitting we decided to include only 90% of

the sequences as input to motif elicitation programs and the remaining 10% of the

sequence for testing.

Two different motif elicitation programs (algorithms), MotifSampler [Mot] and

MEME [MEM] were used in the preliminary tests on the same dataset. Motif-

Sampler is a motif finding algorithm that uses GIBBS sampling [JAC95] to find

the position probability matrix that represents the motif. MEME discovers one or

more motifs in a collection of sequences by using the technique of expectation max-

imization [BE94]. Based on the similarity of the outputs from both algorithms and

considerably less computational time exhibited by MotifSampler, GIBBS was our

choice of algorithm to be used for the motif elicitation stage. It is worth noting,

however, that the preliminary tests were in no way a detailed comparative study of

the two methods.

Based on the input from the domain expert it was decided to look for motifs

of size 8, 10, or 12 base pairs. Thus, motif elicitation was performed by executing

MotifSampler individually on each of the nine batches of promoter sequences (Figure

3.2), once for each size. The output of this process was in the form of a set of position

probability matrices (Figure 3.4) each representing a motif. For each combination

of a size and batch, the three best scoring matrices (motifs) were selected for future

use. As a result we ended up with 81 motifs; nine motifs for each cell type.

3.3 Sequence annotation

Motifs identified by MotifSampler are in the form of a probability-matrix. The next

step was to annotate all promoter sequences with the elicited motifs. Annotation
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Sample motif represented as a position probability matrix

# Width = 8
# Consensus = ATAACTAG
# A C G T

0.996545 0.000890 0.000840 0.001726
0.001520 0.000890 0.000840 0.996750
0.499033 0.000890 0.000840 0.499238
0.499033 0.000890 0.000840 0.499238
0.001520 0.498402 0.498352 0.001726
0.001520 0.000890 0.000840 0.996750
0.996545 0.000890 0.000840 0.001726
0.001520 0.000890 0.498352 0.499238

Figure 3.4: Sample motif represented as a position probability matrix.
The commented row titled width provides the length of the motif. The consensus
sequence of the motif is a sample occurrence of the motif built by using the most
common base at each position. Each column of the position probability matrix
corresponds to the bases A, C, G and T respectively. Each row corresponds to a
position of a base within the motif. For instance a position probability matrix for
a motif with width 8 would consist of 8 rows. The value at row i column j in the

matrix is the probability of finding the base j at position i in the motif.

is the process of finding matches of a given motif(s) in a given set of sequences and

also quantifies how good each match is. We used Motif Alignment and Search Tool

(MAST) [MAS] for the annotation process. A PERL script (Appendix B) was

developed to convert probability-matrices from MotifSampler output to correspond-

ing MAST friendly format(log-odds matrices as shown in Figure 3.6). A master

motif file was created which consisted of all 81 identified motifs irrespective of the

cell type. A master gene sequences file was created which consisted of promoter

sequences for all high-density genes listed in Figure 3.1. The master gene sequences

file and the master motif file were fed to MAST as input to annotate all promoter

sequences with all elicited motifs. The MAST output file is a HTML file consisting
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Figure 3.5: MAST annotated sequence sample.
During annotation each supplied sequence is searched for matches with each supplied
motif. The four lines above each motif occurrence contain, respectively, the motif
number of the occurrence, the position p-value (i.e., a measure of the match quality,
lower is better) of the occurrence, the consensus sequence of the motif, and a plus
sign (‘+’) above each letter in the occurrence that has a positive match score to
the motif. MAST can automatically generate the reverse complement strand for
each supplied sequence and search for motif occurrences on either the given strand
or its reverse complement. The (‘+’) or (‘-’) sign alongside the motif number is
used to distinguish whether the match occurred on the given strand or the reverse
complement respectively.
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Sample motif represented as a log odds matrix

# Width = 8
# Consensus = ATAACTAG
# A C G T
166 -766 -757 -764
-770 -766 -757 154
66 -766 -757 54
66 -766 -757 54
-770 146 164 -764
-770 -766 -757 154
166 -766 -757 -764
-770 -766 164 54

Figure 3.6: Sample motif represented as a Log-odds matrix.
This matrix is a log-odds matrix calculated by taking the log (base 2) of the ratio
p/f at each position in the motif where p is the probability of a particular letter at

that position in the motif, and f is the average frequency of that letter in the
training set.
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of all annotated gene sequences. A relevant section of the output file is shown in

Figure 3.5.

3.4 ARFF Generation

A Java module was developed to transform the union of annotated promoter se-

quences from the MAST output and the known gene expression information, that

is, all of the cells in which the gene is expressed, to Attribute-Relation File Format

(ARFF) format dataset. The ARFF format is a format similar to the relational

database format. Each gene occurs as a tuple in the relation. Each motif is an

attribute of the gene tuple. A set-value consisting of the known gene expression

pattern is also an attribute of the gene. A sample of the same has been included in

Appendix A. As mentioned in section 3.2, to avoid mining and exploring relation-

ships that overfit the data, the sequences were divided into a training set (90% of

the sequences) and a test set (10% of the sequence). Thus the ARFF generation

was performed twice, one to create a training set ARFF file and the other for a test

set ARFF file.
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Chapter 4

Data Visualization and Mining

4.1 Mining Process

The sequence annotation process described in Chapter 3, transformed the gene se-

quences into a relational format. This provides us the ability to utilize algorithms

from the WPI-Weka system to discover relationships or patterns that describe gene

expression. These relationships are rules like “Genes whose promoter regions con-

tain the motifs M10 and M16 are often expressed in Neural cells”. The ability to

uncover such relationships in an automated fashion is of prime importance, as they

provide the domain experts with a relevant view of the data that demands further

exploration.

[Ice03] investigated the problem of incorporating hypothesis based information

into the mining process. We instead decided to follow a post mining exploratory

approach for hypothesis testing, that is, to specialize (post-process) interesting rules

produced by conventional association rule mining algorithms. The reasons that

influenced this choice were:

1. It is very difficult, if not impossible, to determine in advance the right distance-
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related and position-related mining parameters so that the mined rules will

capture the desired patterns. This is due to the fact that the appropriate dis-

tance and position values vary for each subset of motifs in the context of each

cell type under consideration. For instance, the appropriate values for the dis-

tance and relative position of motifs M10 and M16 in neural cells might be very

different to those in muscle cells. Furthermore, these values might vary in the

presence of other motifs. That is, the distance and relative position of motifs

M10 and M16 in neural cells might vary even for the same cell type once that

say motif M20 is added to the mix. Since mining association rules is expensive

in terms of execution time, a trial and error approach in which possible values

of the input parameters are guessed would require multiple executions of the

mining algorithm, which would be too time consuming. Another alternative

is to perform an automatic search for the right values of those parameters

within the mining algorithm, but the time complexity of an exhaustive search

is exponential in the size of the input data and would make the runtime of the

mining algorithm prohibitive. It is unclear that good heuristics to prune the

search are possible. Our selected post mining exploratory analysis approach is

much faster since it is performed on one rule (i.e., one subset of motifs under

one cell type) at a time, and only on such rules that are deemed interesting

by the domain expert user.

2. Exploratory analysis often combines visualization with data mining tools that

provides a simple sequence of steps(work flows) to identify and isolate relevant

information. Simplicity is important because we need to bridge the gap be-

tween the domain experts and the tools usage. Equipped with an easy to use

tool, the domain experts could utilize their knowledge to analyze and define

the data patterns displayed by the tool in an intuitive manner. The tool is
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not limiting but instead banks on the experts, and it could easily evolve to

accommodate newer hypotheses.

The association rule mining modules ([Sho01] and [PR05]) of the WPI-Weka

system [WPI] were used to mine for basic gene expression patterns in the annotated

sequences. The visualization system that we develop here facilitates exploratory

analysis to specialize these mined patterns. [Rudss] contributions to WPI Weka

helped integrate the visualization modules into the WPI Weka in a transparent

fashion. The user now has the choice to either save the results of the mining for

perusal at a later point in time or could directly invoke the visualization modules

from the mining modules.

4.2 Visualization and Specialization Module

Some of the prime contributions of this work are the Visualization and Specialization

Module (VSM) which is an extension to the WPI Weka system. This module enables

visualization of the annotated promoter sequences in the context of a specific rule

or a set of motifs. The primary interface of the VSM is the Analysis frame, which is

the first screen to be displayed when VSM is invoked is depicted in Figure 4.1. We

explain the Analysis frame below.

4.2.1 Analysis Frame

The analysis frame is the focal point for using visualization extensions to WPI Weka.

The analysis frame loads with two sections, the Rules area and the Commands

area (Figure 4.1). We explain the Rules area below and we explain each of the

options in the Commands area in subsequent subsections. The Rules area is used

to display base association rules along with the corresponding values for certain
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Rules 
Area 

Commands 
Area 

Figure 4.1: Sample Analysis Frame.
Analysis Frame can either be invoked from the mining interface of the WPI-Weka
system or could be invoked as a standalone application using an exported set of
mined association rules, the associated MAST results (HTML format), and a list
of gene names alongside the known expression patterns. A sample of the gene
expression information file is presented in Figure 4.2.

Sample Gene Expression Information File

nlp-27, ASI

gpc-1 , ASH^ASI^ADL

ocr-1 , ADL

gcy-12, PHA

cat-1 , HSN

tba-1 , ALM

Figure 4.2: A sample gene expression information file.
The file is in CSV (Comma Separated Value) format. First value in each row is
the gene name (e.g., nlp-27). The next value contains a set of cell-types the gene is
known to be expressed in. Elements of the set are separated using the ˆ symbol.
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measures of interestingness. The design is extensible; that is, new measures of

interest could be added in the future with minimal code changes. In the current

state, a Rule tuple consists of the following items:

• Id - this is a unique id assigned to the rule. The usability of this field increases

once the user starts to generate specializations from the rule, as the Id column

helps us trace the history or the specialization path of new rules.

• Antecedent - The left-hand side of the rule. It contains the motifs present

in the rule.

• Consequent - The right-hand side of the rule. It contains the cell-types

predicted by the rule.

• Support - As discussed in Section 1.2, the support of a rule is the relative

frequency with which the antecedent and consequent appear together in the

data. That is, P(Antecedent & Consequent).

• Confidence - As discussed in Section 1.2, the confidence is the likelihood that

the consequent appears in a data instance that contains the antecedent. That

is, P(Consequent|Antecedent).

• Lift - The lift value of an association rule is another measure to try to quantify

the interestingness of the rule. It is defined as the ratio of the confidence of the

rule and the support of the consequent of the rule [BMS97]. In other words

lift (rule) = p (consequent|antecedent) /p (consequent)

• p-Value - The p-value of the rule is the probability that the antecedent and the

consequent would be as highly correlated as they are, just by chance according
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to a Chi square test of independence. We calculate the p-value of an association

rule using the approach in [Alv03].

• Within Cell-Type Support - Provides the support of the rule among only

those instances of the data that contain the consequent of the rule. This metric

is very important in the context of this work because we expect to see different

motifs and rules for different cell types, so we are primarily interested in the

support of the rule within each cell type.

The Commands area of the Analysis frame provides buttons to perform a range

of functions. The following subsections describe each of these functions provided by

the visualization extensions via the analysis frame. It is important to note that most

of these functions are invoked in the context of a specific rule and so it is necessary

to select a rule in the rules area of the analysis frame before invoking a command.

4.2.2 Inter-Motif Distance Plot

Selecting a Rule in the rules area and then invoking the inter-motif distance plot

via the button with the same label lets a user visualize the data in the context of

the rule from an inter-motif distance perspective (Figure 4.3). This action enables a

user to perform exploratory analysis in the context of the hypothesis - “Inter-motif

distance influences gene expression”.

On invoking this command a new frame with the pairwise inter-motif distance

plot(s) is displayed. It displays one graph for each pair of motifs in the rule (selected

in the Analysis Frame). For the sake of simplicity we start with a rule with only two

motifs. We revisit plots originating from rules consisting of more than two motifs

later in the section.

Notice that an inter-motif distance plot (Figure 4.3) is sliced into 2 parts by a
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Figure 4.3: Sample Inter-Motif Distance Frame.
Each graph is displayed with the rule used to establish the context as the title of the
frame. Each graph displays the pairwise inter-motif distance plots(M10 && M16
⇒ expr=ALM, in this case). Along the x-axis of the plot are the id’s of the genes
in question and along the y-axis are the inter-motif distances between the pair of
motifs. For each pair (a,b) of motifs, inter motif distances of all occurrences of motif
a from all occurrences of motif b are plotted. The color of each point is indicative
of the order of occurrence of motifs a and b relative to the SoT. In this graph,
aqua (light) denotes points in which the occurrence of M16 appears in between
the occurrence of M10 and SoT; and magenta (dark) denotes points in which the
occurrence of M10 appears in between the occurrence of M16 and SoT. Each graph
lists only those genes on the x-axis, that support the antecedent of the rule. That is,
genes whose promoter regions contain at least one occurrence of each motif. Genes
on the left of the dotted line also support the consequent of the rule.
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dotted line. The genes on the left of this dividing line are the ones that support

the antecedent and the consequent of the rule and hence support the rule. The

ones on the right are the genes that support only the antecedents of the rule. This

provides the user with an easy mechanism to discover inter-motif distance based

patterns on the left-hand side of the plot that are not as frequent on the right

hand side, as this would let us explore specializations with improved classification

accuracy(and/or confidence). Once the user has utilized the dotted separation and

inter-motif distance plots to define a range of interest, for instance a range of (0-

500) between motifs M10 and M16, the user can invoke the “Visualize Change”

command to visualize the data in the context of the specialization as depicted in

Figure 4.4. Subsequently the specialized rule could be added to the Analysis Frame

using the “Add Specialization” command on the inter-motif distance plot. This

causes a new entry to be inserted in the Analysis Frame (Figure 4.5) with the

following specialization

M10(0− 500)M16 ⇒ expr = ALM (4.1)

Note that the Id field is auto-generated in a fashion that always lets a user trace

back the steps in case we want to later recall which rule was used to derive the

specialization.
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Figure 4.4: Visualize change command from the inter-motif distance plot.
The Visualize Change command from the inter-motif distance plot enables the user
to visualize the data in the context of the specialization. This plot depicts the
specialization M10 [0-500] M16 ⇒ expr=ALM of the original rule M10 && M16 ⇒
expr=ALM from Figure 4.3.
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Figure 4.5: A row representing the addition of a specialization to the Analysis
Frame.

4.2.3 Sequence Plot

Selecting a Rule in the rules area and then clicking the sequence plot button displays

a visualization all the qualifying gene sequences in the context of the rule. This

action enables a user to perform exploratory analysis in the context of the hypothesis

- “Distance of motifs from the SoT influences gene expression”. A qualifying gene

sequence is one that has at least one occurrence of each motif that appears in the

rule (selected in the Analysis Frame). Invoking this command causes a new frame

with the sequence plot overlaid with the motif information to be displayed.

This sequence plot graph provides the user with an easy mechanism to discover

“Distance from SoT” based patterns in the upper part of the plot that are not as

frequent in the lower part as this would let us explore specializations with improved

classification accuracy(and/or confidence). Once the user has utilized the dotted

separation of the plot (into rule supporting and antecedent supporting) and the
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Figure 4.6: Sample Sequence Plot Frame.
Each graph is displayed with the rule used to establish the context as the title of the
frame(M10 && M16 ⇒ expr=ALM, in this case). This sequence plot displays all
gene sequences that contain occurrences of the participating motifs (i.e., motifs M10
and M16). Along the y-axis is the list of gene promoters, that support the antecedent
of the rule. That is, the gene promoters that contain at least one occurrence of each
of the rule motifs. The x-coordinate of each point in the plot is the distance of
the motif from the SoT, which is the far right end of the plot. The color of the
point is used to identify the motif. The graph is sliced into two parts by a dotted
line. The genes in the upper part of this dividing line are the ones that support the
consequent of the rule and hence support the rule. The ones in the lower part are
the genes that support only the antecedents of the rule.
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Figure 4.7: Visualize change command from the sequence plot.
The Visualize Change command from the sequence plot enables the user to visualize
the data in the context of the specialization. This plot depicts the specialization
SoT [0-500] M10 && SoT [0-1750] M16 ⇒ expr=ALM of the original rule M10 &&
M16 ⇒ expr=ALM from Figure 4.6.

rule specific sequence plots to identify a “distance from SoT” clause of interest, the

“Visualize Change” command could be invoked to visualize the data in the context

of the specialization rather than the original rule as depicted in Figure 4.7. Again

the title of the new window is indicating the context setting rule/specialization. If

the user finds the specialization of interest, it can be added to the Analysis Frame

using the “Add Specialization” command on the new sequence plot. Again this

causes the specialization to appear as a new entry in the Analysis Frame with an

auto-generated Id that again lets a user trace back the steps in case the user wants

to later recall which rule was used to derive a specialization (Figure 4.8). In case
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the base rule consisted of more than 1 motif and multiple “distances from SoT”

relationships are defined (one for each motif) each such relationship is represented

as a term and a collection of independent terms constitutes the specialized rule. For

instance see Figure 4.8 for the following specialization, which is interpreted as: “An

occurrence of Motif 10 within 500 bp from the SoT and the presence of an occurrence

of Motif 16 within 1750 bp from the SoT implies that the gene is expressed in cells

of type ALM”.

SoT [0− 500]M10 && SoT [0− 1750]M16 ⇒ expr = ALM (4.2)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8: Analysis Frame with two distance from SoT based specializations.
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Figure 4.9: Inter-Motif Distance Plot for Motifs M5 and M6.
Observe the lack of magenta (dark) dots in the right part of the frame.

4.2.4 Order of occurrence of motifs

We wanted the visual extensions to also accommodate exploratory analysis based

on the hypothesis “The order of occurrence of motifs influences gene expression.”

But during the system design and the system use by the team(including the domain

expert) it was observed that we already had a few ways to visualize gene sequence

data in the context of the “order of the occurrence” of motifs and hence a new plot

was not created. If order of occurrence of motifs was important it could be easily

identified by one of three ways: the color of the points in inter-motif distance plot,

a repeating sequence of color in the sequence plot, or through the operation of the

ASAS mining algorithm itself.
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Figure 4.10: Sequence Plot for Motifs M5 and M6. Observe that in the rule sup-
porting sequences (upper part) a red-dot is usually followed by a blue dot scanning
the gene sequence from right end (SoT) to left.

Color of the points in an inter-motif distance plot. The order of the motifs

in the inter-motif distance plot is represented by color. For instance in Figure 4.3,

M10 to the right of M16 (i.e., M16..M10..SoT) is represented by a magenta (dark)

dot, while M16 to the right of M10 is represented by a aqua (light) dot. Thus, color

provides a quick visual clue whether the order of occurrence of motifs affects gene

expression. If that is the case, the left part of the plot should have more points of

one color than the other part.

Repeated sequence of color in the sequence plot. As mentioned in Section

4.2.3, the sequence plot displays all instances of participating motifs for qualifying
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sequences as they occur on the gene relative to the SoT. Since each motif appears

in its own color and the data is being visualized in the context of a single rule, one

can often see a repetitive pattern of color in the upper part and a lack of the same

in the lower part of the plot. Such a display could also indicate an influence of order

of occurrence on gene expression.

ASAS mining algorithm. The association rule mining module from the WPI-

Weka System [PR05] is capable of mining association rules with order/position based

information and hence it is possible to have some of these rules with order of oc-

currence of motifs available already at the beginning of the exploratory analysis.

Either of the two means mentioned above could be used to visually confirm/observe

the order of occurrence relationship.

4.2.5 Adding Rules Manually

Figure 4.11: Add Rule option in the Analysis Frame provides for free text option to
add rules.

We wanted to allow users to type in specialized rules manually, particularly in

the cases of rules involving order, as well as certain more complex ’hybrid’ rules
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discussed in detail below. To allow this option, we needed to write a grammar

(Figure 4.12) to parse the rules. JavaCC [JCC], Java equivalent of LEX and YACC,

was used to code the grammar and auto-generate the rule parser. The user can

then simply type in the Antecedents and the Consequent of the rule to calculate

the different statistics indicating the interestingness metrics of the rule as shown in

Figure 4.11. Simply typing a complete rule computes the statistics indicating the

interestingness of the rule. The user could also visualize the new rule using either

the sequence plot or the inter-motif distance plot.

A rule keyed in by the user which does not adhere to this grammar results in an

error as shown in Figure 4.13

4.2.6 Hybrid Rule

As described in the grammar governing rule definitions, each rule consists of an

antecedent and a consequent. Antecedents in turn consist of terms. A rule could

also include specialized term, extra hypothesis-based information(constraints) that

the instances of the participating motifs must satisfy in order for a gene sequence

to support the rule.

The system also supports hybrid rules, rules that consist of specialized terms

based on different hypotheses and a gene sequence must satisfy all constraints in

order to support the rule. In Figure 4.10 note that there exists an occurrence of

M5 (the red dot) usually within the first 1600 bp from the SoT (far right end of the

plot). Also note that there is an occurrence of Motif M5 between an occurrence of

Motif M6 (blue dot) and the SoT. It is interesting to combine the two observations

into a rule as follows and visualize it or calculate its interestingness. As we see in

Figure 4.14 that this hybrid specialization:
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Grammar

The grammar is defined as a 4-tuple: (SIGMA, N, P, S):

SIGMA is an alphabet of terminal symbols

N is an alphabet of non-terminal symbols

P is a set of production rules

S in N is the start symbol

Sigma := {SoT, Mn, Mn(rp i - rp i+1), \&\&, (x-y)}

N := {S, L1, L2, C1, C2, CL1, CL2, CL3, CL4, S}

P := {

S = Term | (Term C1 Term) | (T C1 Term)

C1 = && # And

Term = CL1 | CL2 | CL3 | CL4

CL1 = L1 C1 L1 | CL1 C1 L1 # Covers rules based on presence.

CL2 = L1 C2 T # Covers literals of the form distance from SoT.

CL3 = L1 C2 L1 | CL3 C2 L1 # Covers literals of the form Mi at a distance of

# x-y from Mj

CL4 = L2 C1 L2 | CL4 C1 L2 # Covers literals of the form Mi occurs before Mj

L1 = Mn # Motif n

T = SoT # Start of Translation

C2 = (x-y) # Where x and y are integers such that y > x

L2 = Mn (rp i - rp i+1) # Motif n exists from Relative position i to i+1

# on the gene sequence.

}

A sample derivation of an antecedent from the grammar is shown below:

S := Term

CL1

CL1 C1 L1

CL1 && M3

L1 C1 L1 && M3

M1 && M2 && M3

This antecedent is interpreted as:

If Motif 1 is present and Motif 2 is present and Motif 3 is present.

Figure 4.12: Grammar to parse rules.
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Figure 4.13: Grammar based parsing helps identify user errors in typing the rule.

M5 [rp0-rp1] M6 [rp2-rp3] && SoT [0-1600] M5 ⇒ expr=ALM

[Confidence = 0.8333333, Support = 0.08196721] (4.3)

has a higher confidence as compared to the following simpler “order of occurrence”

specialization

M5 [rp0-rp1] M6 [rp2-rp3] ⇒ expr=ALM

[Confidence = 0.8333333, Support = 0.08196721] (4.4)

As seen above hybrid specialization could have multiple specialized terms that

relate to a single motif. A hybrid specialization could post multiple constraints on

the same motif like Distance from SoT and Order of occurrence relative to another

motif. It is important to note that although the rule may have multiple constraints

for the same motif, it is not required that the same instance of the motif satisfies

each of them. In the context of the 4.3 above, it is not required that the instance
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Figure 4.14: Hybrid rules help specify multiple constraints (based on different hy-
potheses) within a single specialization.

of Motif 5 that satisfies the order of occurrence condition is the same M5(instance)

that lies within 1600 base pairs of the SoT. However, there might be a need for the

user to actually specify constraints which are inter-related, aliases are supported by

our rule grammar for exactly this reason.

4.2.7 Aliases

Aliases were included in the grammar to provide the user with an option of defining

inter-related constraints or specialization terms. Consider the following Inter-Motif
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Figure 4.15: Aliases let user define specializations with inter-related constraints.

Distance based specialization from Figure 4.5:

M10[0− 500]M16 ⇒ expr = ALM (4.5)

Visualizing this specialization using a sequence plot (Figure 4.6), one can see

distinctly that not only do motifs M10 (red dot) and M16(blue dot) occur close

together but they also occur in a pattern such that the same instances of M10 and

M16 that are involved in the distance-based relationship also occur in the same order

relative to the SoT. Aliases enable the user to specify such complex relationships in

the rule as follows (Figure 4.15):

M10:a [0-500] M16:b && M16:b [rp0-rp1] M10:a [rp2-rp3] ⇒ expr=ALM (4.6)
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For details of system operation, see User Guide.
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Chapter 5

System Architecture

This tool was conceptualized as an extension to the WPI-Weka system and hence

is also referred to as the “Visualization and Specialization Modules(VSM)”.This

chapter describes the interaction of this tool with the WPI-Weka system and a high

level design overview.

5.1 Component Interaction

Figure 5.1 illustrates how VSM interacts with the WPI-Weka system, to let the user

perform hypothesis-driven exploratory analysis of genetic data in order to create spe-

cialized association rules that predict gene expression. The enumerated arrows with

italicized text denote the different steps that constitute the process of exploratory

analysis to discover specializations predicting gene expression. Each of the steps

along with the inputs and outputs to the process are listed below:

1. Mine association rules. One of the contributions of [Rudss] was to integrate

into a single classifier (AssociateClassifier) within the WPI-Weka system([WPI]),

contributions of previous work at WPI in the field of association rule mining.
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Figure 5.1: Process depicting the flow of data (interactions) between the WPI-Weka
system and the VSM.

The data exchange between the WPI-Weka system and the VSM is in a comma
separated value format which is explained in detail in Figure 5.2.

This classifier or the association rule miner (ARMiner) module of the WPI-

Weka system, takes as input an ARFF file consisting of genetic data and a

MAST output file (Section 3.3) and mines for association rules predicting gene

expression.

2. Transfer mined association rules to VSM. As a part of the integration plan it

was decided that both [Rudss] and this work would support import/export of

rules in a predefined comma-separated values (CSV) format. So as a first step

to analyzing gene expression association rules, [Rudss] could be used to invoke

the VSM with the set of mined rules (Figure 5.2), the MAST output file and

49



CSV interface to transfer rule sets between WPI-Weka and VSM

HEADER

Id,Antecedent,Consequent,Confidence,Support,Lift,p-Value,Event Wt.,Within Cell-Type(s) support

DATA

001, M17, expr=ALM, 0.48148146, 0.325, 1.2037036, 4.9873279E-1, 0, 0.42857143

002, M12, expr=ALM, 0.52830184, 0.35, 1.3207545, 5.021099E-1, 0, 0.10714286

Figure 5.2: CSV interface to transfer rule sets between WPI-Weka system and VSM.
The header section defines a comma separated list of the headers describing the

attributes contained in each data instance. The Data section consists of the actual
set of rules being exported or imported.

the gene expression information.

3. Visualize and Specialize. The implementation of this work, that is the VSM,

would let the user perform hypothesis-driven visualization of data that helps

specialize a set of association rules. See Section 4.2.

4. Transfer the set of specialized rules to the AssociativeClassifier. Again the

VSM as well as [Rudss] support the transfer of set of specialized rules explored

using the VSM to the AssociativeClassifier using the predefined CSV format.

5. Use the classifier to predict gene expression for a novel set of genes. The

classifier can be used to calculate the classification accuracy of the imported

specializations over a test set consisting of novel genes (i.e., genes that have not

been used during mining or specialization) in order to determine the predictive

power of the relationships identified.
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5.2 System Design

This section describes the high level design of the VSM tool from a functional

perspective that is also illustrated in Figure 5.3. We describe the different modules

within the VSM subsystem implementation:

1. MAST Parser. The VSM could be invoked from within the WPI-Weka Sys-

tem or as a standalone application. Irrespective of the invocation mechanism

(i.e., as a standalone application or from within WPI-Weka) it requires as

input the gene expression information (Figure 4.2) and a MAST output file

(Figure 3.5). The information from the MAST output file and the gene expres-

sion information is parsed using this module to populate a multi-level internal

data structure (Figure 5.4) and subsequently the analysis frame (Figure 4.1)

is displayed.

2. Rule Parser. Each base rule, either belonging to the set of rules mined using

the WPI-Weka system or by using the “Add Rule” (Section 4.2.5) command

from the analysis frame is parsed by using this module, that is, an implemen-

tation of the grammar defined in Figure 4.12.

3. Charting Extensions. The parsed information from rule parser and the inter-

nal data structure are used as input to the charting infrastructure to generate

hypothesis-specific plots for data visualization. The charting infrastructure is

created by extending the open source charting library JFreeChart. JFreeChart

separates its data from its presentation layers which means the system could

be extended to add new features to plots with minimal changes. The user’s ex-

ploratory analysis using these plots (data visualization) subsequently produces

specialized rules which in combination to the internal data structure can be
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Figure 5.3: VSM System Design.
Functional design of the VSM. Each step in the exploratory analysis process is
described in terms of the input(s) to the VSM subsystem, corresponding modules
within the VSM invoked, and the output. The vertical rectangle represents the
VSM subsystem with each oval representing a module within the VSM subsystem
implementation. As delineated, the entities to the left of the VSM subsystem are
the input(s) provided to each module and the entities to the right are the output(s)
from the VSM at each step.
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Key (Gene Name) Value 
ceh-43 Expression Pattern Neural 

Gene Name ceh-43 
Length 993 
Motif-based location info M1 250, 523 

M2 944   
nlp-5 Expression Pattern Muscle 

Gene Name nlp-5 
Length 5000 
Motif-based location info M1 3555 

M2 45, 856   
 

Figure 5.4: Hierarchical internal data structure - Hash of hashes.
The top level hash has the gene name as the key attribute. The value element
corresponding to each gene is also a hash consisting of sequence information which,
besides gene specific information like length and expression pattern, contains loca-
tion information organized on a per motif basis. The location information for each
motif (key) consists of all occurrences of the motif on the gene sequence relative to
the SoT. The sample here illustrates the organization of information for two sample
sequences, ceh-43 and nlp-5, each of which contains one or more occurrences of motif
M1 and M2.
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used to calculate the different measures of interestingness for each specialized

rule.

5.3 Implementation Details

Since the WPI-Weka system, which is an extensive collaborative effort within the

KDD Research Group at WPI, is Java based, Java was chosen to implement VSM.

It was during the course of this project and [Rudss] that the WPI-Weka system

was hosted in the WPI sourceforge server. As a part of this project an ant-script

(Java equivalent of a makefile) was also developed that enables users to build the

system from the source with minimal instructions. Eclipse was our choice of the

IDE used as it provides a easy to use interface for both Java based development as

well as CVS based version control.

Elements of good design were extensively applied throughout the development

process. For instance, the support for import/export of CSV file containing the rules

is implemented as a Java interface called the Analyzable interface which makes it

easy for a new implementation to support a certain functionality without restricting

a specific type of implementation. For instance if a new mining algorithm that mines

gene expression rules is added to the WPI-Weka System, it could invoke VSM as

long as it implements the Analyzable interface.
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Chapter 6

Experimental Evaluation

Chapter 3 (Figure 3.2) describes in detail the process to create a dataset in a mining

compatible format (ARFF) starting with data collection. As mentioned in Section

3.2 and again in Section 3.4, to avoid mining and exploring relationships that over

fit the data, the sequences were divided into a training set (90% of the sequences)

and a test set (10% of the sequences). Figure 6.1 illustrates the experimental setup.

6.1 Experimental Protocol and Parameters to be

measured

Mining the training dataset using the WPI-Weka Association Rule Miner produces

gene expression association rules. Different measures of interestingness, including

the traditional measures of support and confidence, are calculated to estimate the

statistical significance of the rules. Once the domain user identifies an interesting

base rule (e.g., based on the values of different measures of interestingness), VSM

could be used to perform hypothesis-driven exploratory analysis of the selected rule
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Figure 6.1: Experimental Setup.
Starting with mining of rules over the training data to the classification of the test
dataset using the explored specialized rules.

to derive a specialized association rule such that the antecedent of the rule consists of

additional constraints based on positional information of the motif(s). This process

is repeated a few times with different base rules to derive a set of specialized rules

that, at least statistically, seem to provide a more accurate representation of the

underlying regulatory mechanism governing gene expression. This set of specialized

rules is then tested for accuracy over a dataset consisting of novel genes (i.e., genes

which were not used to elicit motifs and were also not involved in the mining or

the specialization processes). The classification accuracy is a measure of predictive

power. An improved classification accuracy as compared to the set of base rules

translates to an increase in the confidence of the specialized rule with a reasonable

decrease in the support of the rule and is used to estimate the potential biological

validity of the relationship. Other measures of interestingness like the p-value and

the lift also help to estimate the effectiveness of the rule. The system is extensible
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from the measures of interestingness perspective; that is, it would require minimal

changes for another measure of interestingness to be added to the system.

6.2 Experimental Results and Analysis

The target audience for the tool developed are domain experts trying to identify

biologically interesting relationships. We present a walk through of a small scale

experiment using real genetic data that helps establish the work flow for the process

of performing hypothesis-driven specializations.

As discussed in Section 3.1, the training set consists of 151 gene sequences in

ARFF format. In the experiment reported here, these sequences were mined for

presence based association rule mining with a minimum support of 0.1 and a min-

imum confidence of 0.3. It is important to understand the reason for choosing the

relatively low values for support and confidence. The choice of the low value for the

minimum support is based on the way the dataset is put together. Since we tried to

identify gene sequences for 9 different cell types, each cell type has approximately

11% representation in the dataset, then the motif elicitation and annotation process

were performed with an intent to find cell-type specific motifs. So if a biologically

valid cell-type specific regulatory mechanism was found during the mining process

it is reasonable to expect that it should have low support(i.e., 11% or less). Since

we intend to explore specializations that represent the biological relationship more

effectively as compared to the base rules from which they are derived, we can select

base rules with low confidence measure. The mining process resulted in a total of

269 rules, out of which the following 6 rules were chosen to illustrate effectively all

forms of hypothesis-driven specializations. So we intend to visualize and specialize

2 rules per hypothesis type to illustrate the work flow.
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Motif Consensus sequence

M6 GGAAGAAGAG
M47 GAGAAGAG
M48 TGAGAAAA
M52 GAAGAAGAAGAA
M53 GAAGAAGAAGGA
M54 GAGTGAGAGGGG
M69 GGGGGGGAGG
M77 GAGACGAAGA
M80 GAGAAGAAGAAG

Figure 6.2: List of motifs from the base rules under consideration along with their
consensus sequences.

M6 && M52 ⇒ expr=HSN [Conf. = 0.51428574, Supp. = 0.13333334] (6.1)

M54 && M80 ⇒ expr=HSN [Conf. = 0.4878049, Supp. = 0.14814815] (6.2)

M47 && M53 ⇒ expr=ADL [Conf. = 0.2982456, Supp. = 0.12592593] (6.3)

M48 && M77 ⇒ expr=ALM [Conf. = 0.3125, Supp. = 0.11111111] (6.4)

M69 ⇒ expr=HSN [Conf. = 0.46341464, Supp. = 0.14074074] (6.5)

M6 ⇒ expr=HSN [Conf. = 0.13636364, Supp. = 0.044444446] (6.6)
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6.2.1 Order of motif occurrence specialization of Rules (6.1)

and (6.2)

In this section we specialize Rules (6.1) and (6.2) based on the hypothesis “The

order of occurrence of motifs influences gene expression”. Figures 6.3 and 6.5 depict

the process followed to specialize the base rules from an order of occurrence of motifs

perspective.

An inter-motif distance plot, for instance Figure 6.3, is split into two parts: the

left part containing the sequences that support the rule and the right part containing

the sequences that support the antecedent only. This provides the user with an easy

mechanism to discover order of occurrence based patterns in the left part that are

not as frequent in the right part, as this would let us explore specializations with

improved classification accuracy(and/or confidence). For instance, in Figure 6.3,

many genes on the right-hand side lack magenta (dark) dots. This implies that

the occurrence of Motif 6 in between Motif 52 and the SoT (i.e., M52-M6-SoT)

may positively influence a gene to be expressed in cells of type HSN. Once a user

has identified such an order based relationship that is of interest, the following

corresponding specialized rule can be added to the analysis frame:

M6 [rp0-rp1] M52 [rp2-rp3] ⇒ expr=HSN [Conf. = 0.6363636, Supp. = 0.1037037]

(6.7)

The analysis frame enables the user to estimate the significance of the rule using

the different measures of interestingness computed for the specialized rule. The user

can also compare the interestingness of the specialized rule with that of the base

rule (Figure 6.4).
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Figure 6.3: Inter-motif distance plot for the base rule M6 && M52 ⇒ expr=HSN.
Along the x-axis are the Id’s corresponding to the genes. Along the y-axis is the
inter-motif distance. Each point in the plot, irrespective of the color, represents the
distance between an occurrence of Motif 6 from an occurence of Motif 52. Also notice
the division of the graph into two parts. Each colored dot is representative of the
relative ordering of the occurrence of the motifs relative to the Start of Transcription.
A magenta (dark) dot represents the inter-motif distance between an occurrence of
Motif 6 and Motif 52 such that the occurrence of Motif 6 lies between the occurrence
of Motif 52 and the SoT (i.e., M52-M6-SoT). A aqua (light) dot represents an inter-
motif distance such that the order of occurrence of motifs is M6-M52-SoT. The
left-side part consists of gene sequences which support the rule and the right-side
part consists of the gene sequences that support the antecedent of the rule only.
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Figure 6.4: Analysis frame providing a comparison of the interestingness of the
specialized rule, Rule (6.7), with the base rule, Rule (6.1).

Similarly in Figure 6.5, observe that many genes in the right part of the plot

lack magenta (dark) points. This again indicates that the occurrence of motif 54

between an occurrence of Motif 80 and the SoT (i.e., SoT-M54-M80) may positively

influence gene expression. Again the user could add the following corresponding

specialization to the analysis frame and compare its interestingness to that of the

base rule.

M54[rp0-rp1] M80[rp2-rp3] ⇒ expr=HSN [Conf. = 0.6, Supp. = 0.11111] (6.8)
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Figure 6.5: Inter-motif distance plot for the base rule M54 && M80 ⇒ expr=HSN.

Figure 6.6: Analysis frame providing a comparison of the interestingness of the
specialized rule, Rule (6.8), with the base rule, Rule (6.2).
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6.2.2 Inter-motif distance specialization of Rules (6.3) and

(6.4)

In this section we specialize Rules (6.3) and (6.4) based on the hypothesis “Inter-

motif distance influences gene expression”. Figures 6.7 and 6.9 depict the process

followed to specialize the base rules from an inter-motif distance perspective.

An inter-motif distance plot, for instance Figure 6.7, displays for qualifying gene

the inter-motif distances between each occurrence of Motif 47 from each occurrence

of Motif 53. A qualifying gene is one that contains at least one occurrence of each

motif in the base rule. The splitting of the plot into two parts (as described in

Section 6.2.1), provides the user with an easy mechanism to discover inter-motif

distance pattern in the left part that are not as frequent in the right part, as this

would let us explore specializations with improved classification accuracy(and/or

confidence). For instance, in Figure 6.7, many genes on the right-side part lack

dots in the shaded area of the plot, that is, an inter-motif distance range of 0-250

bp which implies that the occurrence of motifs 47 and 53 within 250 bp from each

other may be positively related to the gene being expressed in cell type ADL. Once

a user has defined an inter-motif distance relationship that is of interest the relevant

region of the plot gets shaded as illustrated in Figure 6.7. Subsequently the following

corresponding specialization can be added to the analysis frame.

M47 [0-250] M53 ⇒ expr=ADL [Conf. = 0.47826087, Supp. = 0.08148148] (6.9)

Again the user can estimate the significance of the rule by using the different mea-

sures of interestingness computed for the specialized rule. The user can also compare

the interestingness of the specialized rule as compared with that of the base rule

(Figure 6.8).
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Figure 6.7: Inter-motif distance plot for the base rule M47 && M53 ⇒ expr=ADL.

Figure 6.8: Analysis frame providing a comparison of the interestingness of the
specialized rule, Rule (6.9), with the base rule, Rule (6.3).
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Similarly in Figure 6.9, observe that many genes lack magenta (dark) points in

the right-side part of the shaded area of the plot, that is, an inter-motif distance

range of 0-500 bp. This implies that the occurrence of motif 77 and 48 within 250

bp from each other and in the order SoT-M77-M48 may positively influence gene

expression in cell type ALM. Subsequent addition of the following corresponding

specialization to the analysis frame enables the user to compare the interestingness

of the specialized rule to that of the base rule (Figure 6.10).

M48:b [0-500] M77:a && M77:a [rp0-rp1] M48:b[rp2-rp3] ⇒ expr=ALM

[Conf. = 0.53846157, Supp. = 0.05185185] (6.10)
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Figure 6.9: Inter-motif distance plot for the base rule M77 [rp0-rp1] M48[rp2-rp3]
⇒ expr=ALM.
Notice that the base rule selected is already an “order of occurrence of motifs” spe-
cialization. This was one of the rules generated by the ASAS algorithm as mentioned
in Section 4.2.4.
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Figure 6.10: Analysis frame providing a comparison of the interestingness of the
specialized rule, Rule (6.10), with the base rule, Rule (6.4).

6.2.3 Distance from SoT specialization of Rules (6.5) and

(6.6)

In this section we specialize Rules (6.5) and (6.6) based on the hypothesis “Distance

of motif occurrence from SoT influences gene expression”. Figures 6.11 and 6.13

depict the process followed to specialize the base rules from a distance from SoT

perspective.

A sequence plot, for instance Figure 6.11, displays qualifying genes with the

motifs overlaid such that a point on the plot represents the distance of that occur-

rence of the motif from the SoT. A qualifying gene is one that contains at least

one occurrence of each motif in the base rule. The color of the point in the plot

is indicative of the motif in question. The splitting of the plot into two parts (as

described in Section 6.2.1), provides the user with an easy mechanism to discover

distance from SoT based pattern in the top part that are not as frequent in the

bottom part, as this would let us explore specializations with improved classifica-
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tion accuracy(and/or confidence). For instance, in Figure 6.11, many genes in the

bottom part lack dots in the area delineated by the SoT (far right end of the plot)

and the vertical line representing the 500 bp from SoT cutoff. This indicates that

an occurrence of Motif 69 within a distance of 500 bp from the SoT may positively

influence gene expression in cell type ADL. Once a user has defined such a “Distance

from SoT” relationship it is indicated in the plot as the vertical line, in the same

color as the one reserved for the motif, as illustrated in Figure 6.11 is added to the

plot. Subsequently the following corresponding specialization can be added to the

analysis frame.

SoT [0-500] M69 ⇒ expr=HSN [Conf. = 0.6666667, Supp. = 0.044444446]

(6.11)

Again the analysis frame with the specialized rule enables the user to compare the

interestingness of the specialized rule with that of the base rule (Figure 6.12).
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Figure 6.11: Sequence plot for the base rule M69 ⇒ expr=HSN.
The sequence plot lists the genes along the y-axis and the distance from SoT along
the x-axis. Each colored dot represents an occurrence of a specific motif. Notice the
division of the graph into two parts using a horizontal line through the plot. The top
part consists of gene sequences which support the rule and the bottom part consists
of the gene sequences that support the antecedent of the rule. A user introduced
vertical line marks the 500 bp distance from SoT.
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Figure 6.12: Analysis frame providing a comparison of the interestingness of the
specialized rule, Rule (6.11), with the base rule, Rule (6.5).

Similarly in Figure 6.13, observe that many genes lack points in the top part in

the 0-350 bp region of the plot, that is, a distance from SoT of 0-350 bp. This implies

that the occurrence of motif 6 within 350 bp from the SoT may positively influence

gene expression in cell HSN. Subsequent addition of the following corresponding

specialization to the analysis frame enables the user to compare the interestingness

of the rule to that of the base rule (Figure 6.14).

SoT [0-350] M6 ⇒ expr=HSN[Conf. = 0.6666667, Supp. = 0.02962963] (6.12)
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Figure 6.13: Sequence plot for the base rule M6 ⇒ expr=HSN.

Figure 6.14: Analysis frame providing a comparison of the interestingness of the
specialized rule, Rule (6.12), with the base rule, Rule (6.6).
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6.2.4 Experimental results

As mentioned all along the analysis phase, an important feature which aids the ex-

ploratory analysis is that as soon as a specialization is added to the analysis frame

using any of the visualization plots the different measures of interestingness of the

newly added specialization are calculated. Thus, the domain user can instantly ob-

serve whether the specialized rule is better or worse on a specific metric and by how

much. For instance, Figure 6.15 lists all the base rules and their corresponding spe-

cializations as they would appear in the analysis frame with the different measures

of interestingness computed over the training data. At this point the user could

save the rule set using the ‘Export Rules’ option from the analysis frame. This

saved rule set can later be imported into the ‘AssociativeClassifier’ within the WPI-

Weka system to test the classification accuracy over a set of novel gene sequences

(test dataset) to estimate the predictive power of the specializations discovered. It

is worth noting that at this point we have established the process which can be

used to identify relationships which are interesting at least over the training data.

Subsequently the user might want to evaluate the quality of the relationships dis-

covered by using a test set either via the associative classifier which would provide

the classification accuracy of the specialized rules or evaluate the different measures

of interestingness using the VSM. Since the functionality to support associative clas-

sification is currently work under progress as a part of another effort here at WPI

[Rudss], we decided to use the VSM to evaluate the strength of the relationship.

Figure 6.16 lists the different measures of interestingness over the test dataset by

using the VSM. This helps to determine if the specializations are really interesting,

or if they are a case of overfit to the training data. Observe specifically the various

measures for rules 1.01, both of which have a positive lift and has all the measures

of interestingness as good as the base rule. Given that no extensive process was
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Id Antecedent Consequent Confidence Support Lift p-Value Within Cell-
Type(s) sup-
port

001 M6 && M52 expr=HSN 0.51428574 0.13333334 1.6530613 2.5550831E-3 0.42857143
001.01 M6 [rp0-rp1] M52 [rp2-rp3] expr=HSN 0.6363636 0.1037037 2.0454545 3.1594354E-4 0.33333334
002 M54 && M80 expr=HSN 0.4878049 0.14814815 1.5679443 3.4031714E-3 0.47619048
002.01 M54[rp0-rp1] M80[rp2-rp3] expr=HSN 0.6 0.11111111 1.9285715 5.4719937E-4 0.35714287
003 M47 && M53 expr=ADL 0.2982456 0.12592593 1.6776316 1.7501895E-3 0.7083333
003.01 M47 [0-250] M53 expr=ADL 0.47826087 0.08148148 2.6902175 3.5008453E-5 0.45833334
004 M77 [rp0-rp1] M48 [rp2-rp3] expr=ALM 0.4 0.1037037 1.9285715 1.0940551E-3 0.5
004.01 M48:b [0-500] M77:a &&

M77:a [rp0-rp1] M48:b[rp2-
rp3]

expr=ALM 0.53846157 0.05185185 2.5961537 1.955872E-3 0.25

005 M69 expr=HSN 0.46341464 0.14074074 1.489547 1.1586854E-2 0.45238096
005.01 SoT [0-500] M69 expr=HSN 0.6666667 0.044444446 2.142857 1.7081774E-2 0.14285715
006 M6 expr=ADL 0.13636364 0.044444446 0.76704544 3.8148643E-1 0.25
006.01 SoT [0-350] M6 expr=HSN 0.6666667 0.02962963 2.142857 5.4289247E-2 0.0952381

Figure 6.15: Statistical measures over training data.
Base rules alongside their corresponding specializations and various measures of
interestingness calculated over the training data, which help identify which special-
izations are interesting, and how much more interesting.

followed to divide the instances between the test set and the training set we believe

this rule still might be an interesting discovery. Also we have hereby established the

process that domain users might follow to verify the strength of a relationship which

seems to be interesting based on the training data. It is important to understand at

this point that this implementation equips the domain user with a tool and a work

flow to identify potential relationships. The actual quality of the specializations

is again contingent on many other things. For instance, the quality of the motifs

elicited as well as the mining process both of which are outside the scope of this

project. It is worth noting that both these areas are being researched in separate

efforts here at WPI.
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Id Antecedent Consequent Confidence Support Lift p-Value Within Cell-
Type(s) sup-
port

001 M6 && M52 expr=HSN 0.6666667 0.16666667 2.0 1.5729921E-1 0.5
001.01 M6 [rp0-rp1] M52 [rp2-rp3] expr=HSN 0.6666667 0.16666667 2.0 1.5729921E-1 0.5
002 M54 && M80 expr=HSN 0.2 0.083333336 0.6 4.0762594E-1 0.25
002.01 M54[rp0-rp1] M80[rp2-rp3] expr=HSN 0.33333334 0.083333336 1.0 1E0 0.25
003 M47 && M53 expr=ADL 0.5 0.25 1.2 5.5818464E-1 0.6
003.01 M47 [0-250] M53 expr=ADL 0.33333334 0.083333336 0.8 7.3531669E-1 0.2
004 M77 [rp0-rp1] M48 [rp2-rp3] expr=ALM 0.6666667 0.16666667 2.0 1.5729921E-1 0.5
004.01 M48:b [0-500] M77:a &&

M77:a [rp0-rp1] M48:b[rp2-
rp3]

expr=ALM 0.0 0.0 0.0 1E0 0.0

005 M69 expr=HSN 1.0 0.16666667 3.0 2.8459734E-2 0.5
005.01 SoT [0-500] M69 expr=HSN 1.0 0.083333336 3.0 1.3964939E-1 0.25
006 M6 expr=ADL 0.0 0.0 0.0 1E0 0.0
006.01 SoT [0-350] M6 expr=HSN 0.0 0.0 0.0 1E0 0.0

Figure 6.16: Specializations and various measures of interestingness evaluated over
the test data.
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Chapter 7

Conclusions and Future Work

The goal of this thesis was to computationally enable the discovery of gene ex-

pression association rules based on several biological hypotheses. We designed and

implemented a tool that helps domain experts visualize genetic data in the context

of various biological hypotheses and perform exploratory analysis of data to discover

specialized gene expression association rules. This process of exploratory analysis

allows for post mining specialization of association rules, which alleviates some of

the shortcomings of incorporating hypothesis-driven information into the mining

process.

This work sketched out a process work flow for exploratory analysis of genetic

data to discover interesting association rules. This work facilitates the process of

identifying interesting rules beyond the conventional support-confidence framework

by adding other measures of interestingness to the analysis process. We established

via the experimental evaluation (Section 6) that the data visualization capabilities

provided by our tool helps human experts in identifying hypothesis-driven special-

ized rules that score better than their generic counterparts in terms of different

measures of interestingness. In addition to the visual mining tool, this work pro-
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vides an updated genetic dataset which is an important resource for future research.

Future work would involve verifying the scalability of the tool to ensure that

the tool performs well with a substantially larger dataset (e.g., so as to support

a genetic database from micro array experiments). Another potential area worth

investigating is to provide the functionality wherein the tool suggests patterns to

the user based on the data being visualized. For instance, the approach proposed

in [Ice03] could be used in an inter-motif distance plot to suggest specialization tips

(visual or textual) to the domain user based only on the section of the data relevant

in the context of the rule being visualized.
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Appendix A

Sample ARFF File

@relation test_ASAS

@attribute gene string

@attribute M1 string

%Width = 8

%Consensus = CCGGCAAT

%Log-Odds Matrix:

%-689 217 -684 -91

%-689 246 -684 -690

%-689 -685 264 -690

%-689 -685 264 -690

%-21 200 -684 -690

%165 -685 -684 -690

%165 -685 -684 -690

%-689 -685 -684 153

@attribute M2 string

%Width = 8

%Consensus = GGAAAACG

%Log-Odds Matrix:

%-736 -731 264 -737

%-736 -731 264 -737

%151 -89 -729 -737

%166 -731 -729 -737

%166 -731 -729 -737

%166 -731 -729 -737
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%-736 232 -729 -181

%-736 -731 221 -41

@attribute M3 string

%Width = 8

%Consensus = GAGAGAGA

%Log-Odds Matrix:

%-689 -685 264 -690

%128 -685 50 -690

%-21 -685 218 -690

%165 -685 -684 -690

%-689 -685 264 -690

%128 -685 50 -690

%-689 -685 264 -690

%165 -685 -684 -690

@attribute M4 string

%Width = 10

%Consensus = GAGArAGAGA

%Log-Odds Matrix:

%-683 -679 263 -683

%143 -679 -16 -683

%-683 -679 263 -683

%158 -679 -172 -683

%44 -91 157 -683

%135 -679 -678 -84

%-683 -679 263 -683

%107 -679 -678 -4

%-683 -679 263 -683

%126 -679 57 -683

@attribute M5 string

%Width = 10

%Consensus = GAGAGrsAGn

%Log-Odds Matrix:

%-727 -722 264 -728

%150 -722 -62 -728

%-727 -235 259 -728

%166 -722 -720 -728
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%-216 42 210 -728

%89 -722 137 -728

%-727 131 178 -728

%112 -722 59 -228

%-727 -722 264 -728

%80 -39 95 -728

@attribute M6 string

%Width = 10

%Consensus = rGAAGAAGAn

%Log-Odds Matrix:

%85 -679 125 -278

%-683 -679 263 -683

%135 -679 -16 -278

%165 -679 -678 -683

%-683 -679 263 -683

%165 -679 -678 -683

%143 -679 -678 -125

%-683 -679 263 -683

%151 -91 -678 -683

%85 -679 105 -182

@attribute M7 string

%Width = 12

%Consensus = AAwTTGCCGGAA

%Log-Odds Matrix:

%152 -685 -80 -690

%152 -685 -80 -690

%52 -685 -684 66

%-689 -685 -684 153

%-689 -685 -23 132

%-120 1 208 -690

%-689 246 -684 -690

%-120 200 -23 -690

%-689 -685 257 -284

%-689 -685 264 -690

%165 -685 -684 -690

%152 -98 -684 -690
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@attribute M8 string

%Width = 12

%Consensus = rAGAAGArGAAr

%Log-Odds Matrix:

%46 -691 181 -696

%130 -691 44 -696

%-695 -691 264 -696

%166 -691 -690 -696

%159 -691 -185 -696

%-126 -691 243 -696

%166 -691 -690 -696

%83 -691 129 -291

%-5 -691 211 -696

%122 -691 70 -696

%166 -691 -690 -696

%60 -691 170 -696

@attribute M9 string

%Width = 12

%Consensus = GrGAGAGwGAGm

%Log-Odds Matrix:

%-91 -658 237 -662

%49 -658 179 -662

%-91 -658 237 -662

%139 -658 6 -662

%-18 -658 216 -662

%148 -658 -657 -160

%-50 -658 227 -662

%81 -658 -150 18

%-662 -167 255 -662

%139 -658 -657 -103

%-662 -658 263 -662

%49 161 -657 -662

@attribute M10 string

%Width = 8

%Consensus = GGGnGGnG

%Log-Odds Matrix:

%-748 -742 264 -749

83



%-313 -742 259 -749

%-748 -742 264 -749

%-19 151 37 -749

%-748 -742 264 -749

%-748 -742 264 -749

%105 -138 78 -749

%-748 -742 264 -749

@attribute M11 string

%Width = 8

%Consensus = GGGAGrAG

%Log-Odds Matrix:

%-716 -711 264 -717

%-716 -711 264 -717

%-716 -711 264 -717

%122 -711 70 -717

%-716 -711 264 -717

%31 -711 192 -717

%113 -711 92 -717

%-716 -711 264 -717

@attribute M12 string

%Width = 8

%Consensus = GGGnGGAG

%Log-Odds Matrix:

%0 -777 209 -785

%-784 -777 264 -785

%-784 -777 264 -785

%0 147 -774 -90

%-784 -777 264 -785

%-784 -777 264 -785

%141 -19 -774 -785

%-784 -777 264 -785

@attribute M13 string

%Width = 10

%Consensus = rnGGGnGGAG

%Log-Odds Matrix:

%94 -711 129 -717
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%-27 -711 157 -40

%-27 -711 220 -717

%-716 -711 264 -717

%-716 -711 264 -717

%-27 140 -710 -40

%-716 -711 264 -717

%-716 -711 264 -717

%138 -5 -710 -717

%-716 -711 264 -717

@attribute M14 string

%Width = 10

%Consensus = GGGnGGnGnn

%Log-Odds Matrix:

%-781 -773 264 -781

%-348 -773 260 -781

%-781 -773 264 -781

%-22 134 -24 -134

%-781 -773 264 -781

%-781 -773 264 -781

%104 -42 43 -781

%-781 -773 260 -360

%-781 72 76 33

%-22 43 60 -50

@attribute M15 string

%Width = 10

%Consensus = AnnGGmGGAG

%Log-Odds Matrix:

%115 -773 89 -781

%-37 -773 152 -21

%4 -773 202 -360

%-73 -773 234 -781

%-781 -773 264 -781

%15 143 2 -781

%-781 -773 264 -781

%-781 -773 264 -781

%121 -773 76 -781

%-781 -773 264 -781
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@attribute M16 string

%Width = 12

%Consensus = GGnGGrnGrGGr

%Log-Odds Matrix:

%-614 -612 263 -615

%-614 -612 263 -615

%-78 -612 198 -90

%-175 -612 217 -90

%-614 -612 234 -90

%20 -612 198 -615

%-21 -612 198 -186

%-614 59 217 -615

%78 -612 149 -615

%-614 -612 217 -33

%-614 -612 249 -186

%20 -612 198 -615

@attribute M17 string

%Width = 12

%Consensus = AwrkGGGmGGAG

%Log-Odds Matrix:

%112 -742 -62 -73

%26 -742 11 38

%97 -235 111 -749

%-217 -39 148 0

%-748 -742 264 -749

%-748 -742 264 -749

%-748 -742 264 -749

%89 119 -740 -749

%-217 -742 254 -749

%-61 -742 230 -749

%144 -742 -21 -749

%-748 -742 264 -749

@attribute M18 string

%Width = 12

%Consensus = kGrGkrrGkGkG

%Log-Odds Matrix:
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%-657 -141 190 -4

%-657 -654 219 -36

%75 -654 154 -658

%-657 -654 263 -658

%-657 -654 190 22

%56 -654 131 -134

%56 -654 173 -658

%-657 -43 243 -658

%-657 -654 173 44

%-657 -654 263 -658

%-657 -654 131 80

%-657 -654 263 -658

@attribute M19 string

%Width = 8

%Consensus = GGGsGGrG

%Log-Odds Matrix:

%-836 -825 264 -837

%-836 -825 264 -837

%-63 -825 228 -414

%-836 110 193 -837

%-836 -825 264 -837

%-92 -825 238 -837

%43 -825 184 -837

%-836 -825 264 -837

@attribute M20 string

%Width = 8

%Consensus = GGGGGnGG

%Log-Odds Matrix:

%-834 -823 264 -835

%-36 -823 224 -835

%-834 -823 264 -835

%-74 -823 234 -835

%-106 -823 241 -835

%-60 74 162 -835

%-834 -823 264 -835

%-834 -823 264 -835
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@attribute M21 string

%Width = 8

%Consensus = GGGnGGrG

%Log-Odds Matrix:

%-52 -836 228 -849

%-848 -836 264 -849

%-848 -836 264 -849

%-22 111 101 -427

%-848 -836 264 -849

%-848 -836 264 -849

%64 -836 167 -849

%-848 -836 264 -849

@attribute M22 string

%Width = 10

%Consensus = GAArAAGAAG

%Log-Odds Matrix:

%-763 -756 264 -764

%129 -756 50 -764

%166 -756 -754 -764

%41 -756 186 -764

%116 -756 86 -764

%166 -756 -754 -764

%-763 -756 264 -764

%166 -756 -754 -764

%161 -756 -754 -335

%-763 -756 264 -764

@attribute M23 string

%Width = 10

%Consensus = GAAGAAGAAn

%Log-Odds Matrix:

%-797 -789 264 -798

%166 -789 -786 -798

%166 -789 -786 -798

%-797 -789 264 -798

%166 -789 -786 -798

%151 -85 -786 -798

%-797 -789 264 -798
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%134 -789 32 -798

%129 -789 49 -798

%-49 -53 202 -798

@attribute M24 string

%Width = 10

%Consensus = GnGrGsGrGG

%Log-Odds Matrix:

%-854 -842 264 -855

%-20 -842 190 -141

%-38 -842 224 -855

%23 -842 197 -855

%-4 -842 211 -855

%-854 104 197 -855

%-422 -842 262 -855

%29 -842 194 -855

%3 -842 208 -855

%-854 -842 264 -855

@attribute M25 string

%Width = 12

%Consensus = TGTGTrTGTGTG

%Log-Odds Matrix:

%-245 -685 -684 145

%-689 -685 264 -689

%-50 -685 -684 117

%-689 -685 264 -689

%-689 30 -684 117

%30 -685 193 -689

%-50 -685 -684 117

%-689 -685 264 -689

%8 -685 -684 95

%-245 -685 255 -689

%-148 -685 -684 136

%-689 -685 264 -689

@attribute M26 string

%Width = 12

%Consensus = AAGAAGAAGAAG
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%Log-Odds Matrix:

%138 -768 14 -776

%153 -103 -766 -776

%-775 -768 264 -776

%166 -768 -766 -776

%148 -768 -44 -776

%4 -768 208 -776

%116 -61 14 -776

%133 -103 -44 -776

%-775 -768 264 -776

%166 -768 -766 -776

%138 -768 14 -776

%-775 -768 264 -776

@attribute M27 string

%Width = 12

%Consensus = TGTGTGTGTGTG

%Log-Odds Matrix:

%-50 -685 -684 117

%-689 -685 264 -689

%-148 -11 -684 106

%-18 -685 217 -689

%-689 -685 -684 153

%-689 -685 264 -689

%8 -685 -684 95

%-50 -685 227 -689

%-91 -685 -684 127

%-689 -685 264 -689

%-148 -685 -684 136

%-689 -685 264 -689

@attribute M28 string

%Width = 8

%Consensus = nGGmGGAG

%Log-Odds Matrix:

%-2 20 159 -738

%-737 -732 264 -738

%-737 -732 264 -738

%50 107 -730 -99

90



%-737 -732 264 -738

%-737 -732 264 -738

%166 -732 -730 -738

%-737 -732 264 -738

@attribute M29 string

%Width = 8

%Consensus = GAAGAAGA

%Log-Odds Matrix:

%-664 -661 263 -664

%165 -661 -660 -664

%165 -661 -660 -664

%-664 -661 263 -664

%165 -661 -660 -664

%165 -661 -660 -664

%-664 -661 263 -664

%165 -661 -660 -664

@attribute M30 string

%Width = 8

%Consensus = GAGAGAGA

%Log-Odds Matrix:

%-679 -676 263 -680

%149 -676 -59 -680

%-679 -676 263 -680

%111 -676 -675 -12

%-679 -676 263 -680

%165 -676 -675 -680

%-679 -676 263 -680

%165 -676 -675 -680

@attribute M31 string

%Width = 10

%Consensus = GATTTACGrG

%Log-Odds Matrix:

%-723 -717 258 -309

%166 -717 -716 -723

%-723 -219 -716 148

%-297 -717 -716 148
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%-723 -717 -716 153

%166 -717 -716 -723

%-723 240 -716 -309

%-201 -717 252 -723

%54 -717 175 -723

%-297 -717 258 -723

@attribute M32 string

%Width = 10

%Consensus = AGAAGAAGAw

%Log-Odds Matrix:

%166 -741 -739 -747

%-746 -741 264 -747

%166 -741 -739 -747

%166 -741 -739 -747

%-746 -741 264 -747

%166 -741 -739 -747

%110 -741 101 -747

%-746 -741 264 -747

%135 10 -739 -747

%29 -741 69 4

@attribute M33 string

%Width = 10

%Consensus = nAAGAAGAAG

%Log-Odds Matrix:

%-11 -707 186 -144

%116 -707 86 -712

%166 -707 -706 -712

%-712 -707 264 -712

%166 -707 -706 -712

%166 -707 -706 -712

%-712 -707 264 -712

%166 -707 -706 -712

%116 -707 -35 -103

%-712 -707 264 -712

@attribute M34 string

%Width = 12
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%Consensus = AAGAnGAAGAAG

%Log-Odds Matrix:

%146 -653 -652 -143

%146 -150 -133 -656

%-228 -653 254 -656

%165 -653 -652 -656

%98 -653 64 -143

%-131 -653 233 -239

%165 -653 -652 -656

%165 -653 -652 -656

%-656 -653 263 -656

%135 -52 -133 -656

%146 -52 -652 -656

%-656 -653 263 -656

@attribute M35 string

%Width = 12

%Consensus = ATGATGATGATG

%Log-Odds Matrix:

%117 -131 42 -637

%-637 -634 -634 153

%-637 -634 263 -637

%165 -634 -634 -637

%-112 -634 -634 131

%-637 24 228 -637

%154 -634 -634 -220

%-637 -634 -114 142

%-209 -634 252 -637

%165 -634 -634 -637

%-637 -634 -114 142

%-637 -33 241 -637

@attribute M36 string

%Width = 12

%Consensus = GAArAAGAAGAr

%Log-Odds Matrix:

%-656 -653 263 -656

%165 -653 -652 -656

%124 -653 64 -656
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%47 -653 180 -656

%165 -653 -652 -656

%146 -653 -652 -143

%-656 -653 233 -86

%146 -653 -35 -656

%165 -653 -652 -656

%-656 -653 263 -656

%111 -52 23 -656

%98 -653 122 -656

@attribute M37 string

%Width = 8

%Consensus = GGGmGGnG

%Log-Odds Matrix:

%-570 -569 262 -571

%-570 -569 262 -571

%-570 -569 262 -571

%65 145 -568 -571

%-570 -83 247 -571

%-570 -569 262 -571

%91 14 32 -571

%-570 -569 262 -571

@attribute M38 string

%Width = 8

%Consensus = AGGTAGGC

%Log-Odds Matrix:

%124 -633 64 -636

%-636 -633 263 -636

%-636 -633 263 -636

%-636 -633 -632 153

%124 -633 -632 -45

%-636 -633 263 -636

%-636 -633 263 -636

%-636 245 -632 -636

@attribute M39 string

%Width = 8

%Consensus = GAAGAAGA
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%Log-Odds Matrix:

%-607 -605 263 -607

%165 -605 -604 -607

%165 -605 -604 -607

%-607 -605 263 -607

%165 -605 -604 -607

%165 -605 -604 -607

%-607 -605 263 -607

%165 -605 -604 -607

@attribute M40 string

%Width = 10

%Consensus = GAAGAAGAAG

%Log-Odds Matrix:

%-570 -569 262 -571

%132 -569 32 -571

%113 72 -568 -571

%-7 -569 211 -571

%164 -569 -568 -571

%164 -569 -568 -571

%-570 -569 262 -571

%164 -569 -568 -571

%164 -569 -568 -571

%-570 -569 262 -571

@attribute M41 string

%Width = 10

%Consensus = GrAGmAGAAG

%Log-Odds Matrix:

%-596 -594 263 -596

%8 -594 204 -596

%165 -594 -593 -596

%-596 -594 250 -197

%65 119 -92 -596

%165 -594 -593 -596

%-596 -594 250 -197

%139 -11 -593 -596

%165 -594 -593 -596

%-596 -594 263 -596
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@attribute M42 string

%Width = 10

%Consensus = GnAGGCAGGC

%Log-Odds Matrix:

%-644 -641 263 -644

%-235 -158 55 90

%165 -641 -640 -644

%-644 -641 263 -644

%-644 -641 263 -644

%-644 195 -640 -22

%127 -641 -141 -95

%-644 -641 245 -152

%-235 -3 225 -644

%-644 218 -640 -95

@attribute M43 string

%Width = 12

%Consensus = AAGAArrAGAAG

%Log-Odds Matrix:

%145 -538 -34 -539

%164 -538 -537 -539

%-539 -538 262 -539

%145 -538 -34 -539

%164 -538 -537 -539

%97 -538 121 -539

%97 -538 121 -539

%164 -538 -537 -539

%-539 -538 262 -539

%164 -538 -537 -539

%164 -538 -537 -539

%-539 -538 262 -539

@attribute M44 string

%Width = 12

%Consensus = AGAAGAAGrAGA

%Log-Odds Matrix:

%164 -519 -519 -521

%-521 -519 261 -521
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%164 -519 -519 -521

%164 -519 -519 -521

%-521 -519 261 -521

%164 -519 -519 -521

%116 -33 -16 -521

%-521 -519 261 -521

%84 -519 140 -521

%116 65 -519 -521

%-521 -33 239 -521

%116 65 -519 -521

@attribute M45 string

%Width = 12

%Consensus = GACGACGACGnC

%Log-Odds Matrix:

%-176 -195 242 -680

%137 -676 18 -680

%-21 191 -675 -284

%-680 -195 257 -680

%152 -676 -80 -680

%-680 217 -23 -284

%-79 -676 235 -680

%137 -195 -23 -680

%-680 246 -675 -680

%-21 -676 208 -284

%52 -676 99 -59

%-680 246 -675 -680

@attribute M46 string

%Width = 8

%Consensus = GnrGGnGG

%Log-Odds Matrix:

%-722 -717 264 -723

%-43 -717 74 54

%21 -717 198 -723

%-164 -717 249 -723

%-722 -717 264 -723

%-43 146 -716 -36

%-722 -717 264 -723
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%-722 -717 264 -723

@attribute M47 string

%Width = 8

%Consensus = GAGAArAG

%Log-Odds Matrix:

%-718 -713 264 -718

%119 -713 -711 -32

%-718 -713 264 -718

%166 -713 -711 -718

%166 -713 -711 -718

%89 -713 137 -718

%166 -713 -711 -718

%-718 -713 264 -718

@attribute M48 string

%Width = 8

%Consensus = TGAGAAAA

%Log-Odds Matrix:

%-743 -738 -736 153

%-743 -738 264 -744

%148 -738 -48 -744

%-743 -738 264 -744

%153 -107 -736 -744

%166 -738 -736 -744

%166 -738 -736 -744

%166 -738 -736 -744

@attribute M49 string

%Width = 10

%Consensus = ArAGrAnGAG

%Log-Odds Matrix:

%120 -676 77 -680

%20 -676 198 -680

%165 -676 -675 -680

%-680 -676 263 -680

%78 -676 150 -680

%128 -676 50 -680

%78 -676 77 -91
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%-680 -676 263 -680

%165 -676 -675 -680

%-272 -676 257 -680

@attribute M50 string

%Width = 10

%Consensus = rGAArAAAGA

%Log-Odds Matrix:

%28 -698 174 -212

%-703 -698 264 -703

%113 -698 94 -703

%142 -698 -5 -703

%54 -698 174 -703

%166 -698 -697 -703

%166 -698 -697 -703

%135 -698 27 -703

%-703 -698 264 -703

%166 -698 -697 -703

@attribute M51 string

%Width = 10

%Consensus = GAGArnAAGA

%Log-Odds Matrix:

%-123 -717 243 -723

%107 -717 106 -723

%-722 -717 264 -723

%166 -717 -716 -723

%21 -717 198 -723

%100 -717 32 -103

%114 -717 90 -723

%134 -717 32 -723

%-722 -717 264 -723

%166 -717 -716 -723

@attribute M52 string

%Width = 12

%Consensus = GAAnAnGAAGAA

%Log-Odds Matrix:

%-33 -663 212 -270
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%165 -663 -662 -667

%142 -663 -9 -667

%103 -663 112 -667

%165 -663 -662 -667

%92 -663 90 -175

%-667 -26 240 -667

%142 -663 -662 -118

%165 -663 -662 -667

%-667 -663 263 -667

%158 -663 -164 -667

%165 -663 -662 -667

@attribute M53 string

%Width = 12

%Consensus = GAArAAGAAnrA

%Log-Odds Matrix:

%8 -688 205 -692

%166 -688 -687 -692

%166 -688 -687 -692

%25 -688 196 -692

%124 -688 64 -692

%159 -688 -687 -296

%-11 -688 205 -296

%166 -688 -687 -692

%166 -688 -687 -692

%-692 -208 196 -4

%98 -688 122 -692

%166 -688 -687 -692

@attribute M54 string

%Width = 12

%Consensus = GArwGAGArrnG

%Log-Odds Matrix:

%-713 -708 264 -714

%137 -708 16 -714

%44 -708 174 -318

%31 -708 -16 43

%-713 -708 264 -714

%117 -708 83 -714
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%-154 -708 247 -714

%110 -34 16 -714

%102 -708 115 -714

%66 -34 115 -714

%76 -2 83 -714

%-713 -708 264 -714

@attribute M55 string

%Width = 8

%Consensus = rGGCGGnG

%Log-Odds Matrix:

%83 -687 144 -691

%-691 -687 264 -691

%-126 -687 243 -691

%-53 194 -87 -691

%-691 -687 264 -691

%-691 -687 264 -691

%104 94 -686 -691

%-691 -687 264 -691

@attribute M56 string

%Width = 8

%Consensus = GGGmGGAG

%Log-Odds Matrix:

%-708 -703 258 -308

%-103 -703 240 -708

%-708 -703 264 -708

%77 135 -702 -708

%-200 -703 252 -708

%-4 -703 211 -708

%113 -23 -5 -708

%-708 -703 264 -708

@attribute M57 string

%Width = 8

%Consensus = GGnGnsGG

%Log-Odds Matrix:

%-678 -675 263 -679

%-678 -675 241 -125
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%-113 88 170 -679

%-40 -675 224 -679

%8 8 157 -679

%-678 177 125 -679

%-678 -675 263 -679

%-678 -675 263 -679

@attribute M58 string

%Width = 10

%Consensus = nnnGGnGGnG

%Log-Odds Matrix:

%14 -202 192 -691

%-85 -104 181 -97

%83 -5 70 -691

%-691 -687 264 -691

%-691 -104 250 -691

%-691 174 -87 -17

%-691 -687 264 -691

%-691 -687 257 -290

%60 53 70 -691

%-691 -687 264 -691

@attribute M59 string

%Width = 10

%Consensus = GrnnnGGCGG

%Log-Odds Matrix:

%-159 -718 203 -51

%39 -718 187 -723

%-60 -718 187 -73

%-723 42 195 -130

%-60 -39 78 14

%-159 -718 248 -723

%-723 -718 264 -723

%-723 185 110 -723

%-723 -718 264 -723

%-723 -718 264 -723

@attribute M60 string

%Width = 10
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%Consensus = rGnGGGGGkG

%Log-Odds Matrix:

%25 -693 196 -697

%-33 -693 222 -697

%-285 88 -35 54

%-697 -693 264 -697

%-132 -693 222 -144

%-697 88 205 -697

%-697 -208 205 -24

%-697 -693 264 -697

%-59 -693 122 27

%-697 -693 264 -697

@attribute M61 string

%Width = 12

%Consensus = nGTGTGTGTGTG

%Log-Odds Matrix:

%88 -599 6 -45

%-601 -599 263 -601

%-90 -599 -598 126

%-90 -599 236 -601

%-601 -599 -598 153

%-601 -599 236 -102

%-186 -599 64 94

%-33 -599 221 -601

%-601 -599 -92 140

%-601 -599 263 -601

%-601 -599 -92 140

%-601 -599 263 -601

@attribute M62 string

%Width = 12

%Consensus = wGTGnGknkGTG

%Log-Odds Matrix:

%46 -687 -184 60

%-691 -5 236 -691

%-279 -687 -686 147

%-691 -202 257 -691

%14 -687 70 18
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%-691 -687 243 -138

%-691 -104 128 60

%14 -687 202 -691

%-691 -687 144 71

%-126 -687 243 -691

%-691 -687 44 118

%-691 -687 264 -691

@attribute M63 string

%Width = 12

%Consensus = GArAAGArrnnG

%Log-Odds Matrix:

%-45 -64 202 -708

%154 -122 -702 -708

%86 -703 140 -708

%154 -703 -104 -708

%166 -703 -702 -708

%-708 -703 264 -708

%166 -703 -702 -708

%96 -703 126 -708

%86 -703 140 -708

%54 -703 111 -83

%86 -703 94 -155

%-708 -703 264 -708

@attribute M64 string

%Width = 8

%Consensus = GGGmGGAG

%Log-Odds Matrix:

%-644 -641 263 -644

%-644 -641 263 -644

%-644 -641 263 -644

%16 118 55 -644

%-644 -158 254 -644

%-644 -641 263 -644

%165 -641 -640 -644

%-644 -641 263 -644

@attribute M65 string
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%Width = 8

%Consensus = GGGrGGrG

%Log-Odds Matrix:

%-667 -663 263 -667

%-667 -663 256 -270

%-667 -663 263 -667

%15 -663 148 -77

%-667 -663 263 -667

%-259 -663 256 -667

%103 -663 112 -667

%-667 -663 263 -667

@attribute M66 string

%Width = 8

%Consensus = GkGkGrGG

%Log-Odds Matrix:

%-739 -734 264 -740

%-739 -734 201 4

%-25 -734 220 -740

%-739 -734 187 26

%-739 -734 264 -740

%82 -734 146 -740

%-739 -734 264 -740

%-739 -734 264 -740

@attribute M67 string

%Width = 10

%Consensus = GAAGnAGAnG

%Log-Odds Matrix:

%-680 -676 263 -680

%159 -676 -178 -680

%165 -676 -675 -680

%-680 -676 235 -91

%100 59 -80 -680

%144 -676 -23 -680

%-680 -676 263 -680

%165 -676 -675 -680

%100 -195 -80 -59

%-680 -676 263 -680
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@attribute M68 string

%Width = 10

%Consensus = GAAGAAGAnG

%Log-Odds Matrix:

%-718 -713 264 -718

%166 -713 -711 -718

%166 -713 -711 -718

%-718 -713 264 -718

%161 -713 -217 -718

%119 -713 59 -323

%-159 -713 242 -323

%105 -713 110 -718

%61 -137 59 -73

%-718 -235 259 -718

@attribute M69 string

%Width = 10

%Consensus = GrGnGrGAGr

%Log-Odds Matrix:

%-735 -730 264 -736

%70 -730 160 -736

%-735 -730 264 -736

%32 -730 77 -4

%-137 -730 245 -736

%79 -730 130 -246

%-57 -730 229 -736

%142 -730 -8 -736

%-735 -730 264 -736

%52 -730 176 -736

@attribute M70 string

%Width = 12

%Consensus = CGATGCACCATG

%Log-Odds Matrix:

%-686 226 -681 -138

%-126 -682 243 -686

%159 -682 -681 -290

%-686 -201 -681 147
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%-686 -682 264 -686

%-686 239 -681 -290

%165 -682 -681 -686

%-686 226 -681 -138

%-686 239 -681 -290

%159 -682 -184 -686

%-686 -682 -681 153

%-53 -682 228 -686

@attribute M71 string

%Width = 12

%Consensus = AAGAAGAAGAnG

%Log-Odds Matrix:

%165 -649 -648 -652

%129 30 -648 -652

%-91 -649 227 -255

%165 -649 -648 -652

%139 -649 -52 -255

%-652 -649 263 -652

%148 -166 -149 -652

%139 -166 -52 -652

%-652 -649 263 -652

%165 -649 -648 -652

%30 62 47 -160

%-652 -649 263 -652

@attribute M72 string

%Width = 12

%Consensus = GAAGAAGAnGAA

%Log-Odds Matrix:

%-652 -649 263 -652

%165 -649 -648 -652

%129 -649 47 -652

%-50 -649 227 -652

%165 -649 -648 -652

%165 -649 -648 -652

%-50 -649 227 -652

%148 -166 -149 -652

%95 -69 -648 -30
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%-652 -649 263 -652

%129 -649 47 -652

%139 -166 -52 -652

@attribute M73 string

%Width = 8

%Consensus = GrkGGGGG

%Log-Odds Matrix:

%-718 -713 264 -718

%102 -713 115 -718

%-718 -713 164 54

%-718 -713 264 -718

%-718 -713 235 -94

%-718 -34 208 -94

%-718 -713 264 -718

%-718 -713 264 -718

@attribute M74 string

%Width = 8

%Consensus = GrAGAGAG

%Log-Odds Matrix:

%-697 -693 264 -697

%77 -693 151 -697

%146 -53 -691 -697

%-697 -693 264 -697

%139 -693 -691 -103

%-697 -693 264 -697

%159 -693 -191 -697

%-697 -693 264 -697

@attribute M75 string

%Width = 8

%Consensus = kGnkGGGG

%Log-Odds Matrix:

%-198 -753 164 29

%-759 -753 264 -760

%94 -753 20 -70

%-759 -753 185 29

%-125 -753 244 -760
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%-759 -176 256 -760

%-759 -753 264 -760

%-759 -753 264 -760

@attribute M76 string

%Width = 10

%Consensus = GGrGrnGGAG

%Log-Odds Matrix:

%13 -718 203 -723

%-216 -718 253 -723

%71 -718 159 -723

%-312 -718 259 -723

%39 -718 187 -723

%13 61 124 -723

%13 -718 203 -723

%-723 -718 264 -723

%155 -718 -120 -723

%-723 -718 264 -723

@attribute M77 string

%Width = 10

%Consensus = nAGAnGAAGA

%Log-Odds Matrix:

%8 -693 196 -296

%166 -693 -691 -697

%-697 -693 264 -697

%159 -208 -691 -697

%66 88 6 -697

%-697 -693 264 -697

%116 69 -691 -697

%166 -693 -691 -697

%-697 -693 264 -697

%139 -693 6 -697

@attribute M78 string

%Width = 10

%Consensus = GGnGGnGGAG

%Log-Odds Matrix:

%-38 -735 224 -741
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%-740 -735 264 -741

%-57 -735 150 -4

%-740 42 224 -741

%-79 -25 205 -741

%-38 74 150 -741

%-740 -25 240 -741

%-330 -735 259 -741

%107 -735 19 -117

%-740 -735 264 -741

@attribute M79 string

%Width = 12

%Consensus = TGnsTGTGyGnG

%Log-Odds Matrix:

%-702 -698 100 98

%-291 -698 258 -703

%-702 -58 100 70

%-65 114 132 -703

%-702 -698 -196 147

%-702 -698 264 -703

%-291 -698 -697 147

%-97 -213 231 -703

%-702 99 -697 89

%-702 -698 264 -703

%-291 -698 100 89

%-702 82 208 -703

@attribute M80 string

%Width = 12

%Consensus = rAGAAGAAGAAG

%Log-Odds Matrix:

%85 -675 142 -679

%165 -675 -674 -679

%-678 -675 241 -125

%165 -675 -674 -679

%117 -33 -674 -125

%-678 -189 256 -679

%126 -675 25 -277

%143 -675 -16 -679

110



%-72 -675 224 -277

%158 -189 -674 -679

%135 -33 -674 -277

%-678 -675 263 -679

@attribute M81 string

%Width = 12

%Consensus = GGGnGnrGAnnG

%Log-Odds Matrix:

%-718 -713 264 -718

%-14 -713 215 -718

%-33 -713 222 -718

%-33 -75 200 -718

%-718 -713 264 -718

%3 98 100 -718

%44 -713 183 -718

%-718 -2 235 -718

%131 -713 42 -718

%3 -75 174 -318

%-81 83 129 -166

%-718 -2 235 -718

@attribute expr string

@data

osm-6, ’{}’, ’{}’, ’{28:35}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{

}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’

, ’{}’, ’{}’, ’{}’, ’{}’, ’{67:74}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’

{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{129:138

}’, ’{}’, ’{}’, ’{}’, ’{48:59}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’,

’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’

{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’ASH^ASI^PHA^ADL^ASE^ASK’

unc-97, ’{}’, ’{2158:2165^1927:1934}’, ’{}’, ’{474:483}’, ’{}’, ’{2124:2133}’, ’

{}’, ’{2087:2098^349:360^331:342^90:101}’, ’{1149:1160}’, ’{}’, ’{}’, ’{}’, ’{}’

, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{2560:2569}’, ’{}’, ’{}’, ’{5

05:516}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{2524:2535^589:

600}’, ’{}’, ’{}’, ’{1090:1097}’, ’{}’, ’{}’, ’{1300:1309}’, ’{}’, ’{}’, ’{}’, ’

{}’, ’{}’, ’{}’, ’{1886:1893^665:672}’, ’{}’, ’{617:626}’, ’{1288:1297}’, ’{}’,
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’{}’, ’{}’, ’{}’, ’{571:578}’, ’{}’, ’{1544:1553^416:425^141:150}’, ’{1106:1115}

’, ’{313:322}’, ’{}’, ’{160:171}’, ’{1022:1033}’, ’{}’, ’{}’, ’{991:998}’, ’{}’,

’{}’, ’{}’, ’{}’, ’{}’, ’{2540:2551^1060:1071}’, ’{74:81}’, ’{}’, ’{}’, ’{}’, ’

{}’, ’{}’, ’{}’, ’{}’, ’{2505:2516}’, ’ALM’

flp-6, ’{}’, ’{}’, ’{}’, ’{4198:4207}’, ’{513:522}’, ’{}’, ’{3836:3847^2013:2024

^1779:1790}’, ’{3555:3566}’, ’{3947:3958}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{447:

456}’, ’{4533:4544^301:312^274:285}’, ’{3975:3986^469:480}’, ’{}’, ’{3231:3238^4

61:468}’, ’{}’, ’{}’, ’{}’, ’{730:739}’, ’{}’, ’{}’, ’{}’, ’{2568:2579}’, ’{}’,

’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{4167:4176^30

82:3091}’, ’{}’, ’{}’, ’{1889:1900}’, ’{2480:2491}’, ’{}’, ’{}’, ’{4724:4731^414

9:4156^713:720^320:327}’, ’{3881:3888^2121:2128^932:939}’, ’{3166:3175}’, ’{2377

:2386^499:508}’, ’{3120:3129^864:873}’, ’{4415:4426^2986:2997}’, ’{4284:4295^245

1:2462^1854:1865}’, ’{573:584}’, ’{}’, ’{}’, ’{1833:1840}’, ’{}’, ’{428:437}’, ’

{}’, ’{1166:1177}’, ’{2197:2208^1791:1802}’, ’{3694:3705}’, ’{}’, ’{3293:3300}’,

’{}’, ’{2100:2109}’, ’{}’, ’{}’, ’{1199:1210}’, ’{3935:3946^384:395}’, ’{}’, ’{

550:557}’, ’{}’, ’{2862:2869}’, ’{}’, ’{3901:3910}’, ’{}’, ’{}’, ’{526:537}’, ’{

}’, ’ASE’

unc-32, ’{}’, ’{}’, ’{155:162}’, ’{}’, ’{1255:1264}’, ’{}’, ’{18:29}’, ’{1061:10

72}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{1315:1326}’, ’{}’,

’{}’, ’{}’, ’{}’, ’{872:881}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’,

’{}’, ’{}’, ’{46:57}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}

’, ’{}’, ’{}’, ’{}’, ’{}’, ’{1243:1252^419:428^232:241}’, ’{1388:1397^853:862}’,

’{}’, ’{}’, ’{1483:1494^1014:1025}’, ’{498:509}’, ’{}’, ’{1275:1282^118:125}’,

’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{

}’, ’{}’, ’{}’, ’{}’, ’{187:194}’, ’{}’, ’{}’, ’{338:347}’, ’{598:607}’, ’{}’, ’

{386:397^165:176}’, ’{1423:1434}’, ’ALM’

unc-86, ’{4936:4943^4428:4435}’, ’{68:75}’, ’{}’, ’{1543:1552^1020:1029}’, ’{}’,

’{1824:1833^1172:1181}’, ’{}’, ’{754:765}’, ’{1838:1849}’, ’{}’, ’{}’, ’{}’, ’{

}’, ’{4694:4703}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{2663:

2672}’, ’{}’, ’{1905:1916^188:199}’, ’{1622:1633}’, ’{480:487}’, ’{}’, ’{1579:15

86^1504:1511}’, ’{}’, ’{1555:1564^1292:1301}’, ’{}’, ’{4656:4667}’, ’{286:297}’,

’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{542:551^527:536}’, ’{}’, ’{}’, ’{842:853}

’, ’{787:794}’, ’{821:828}’, ’{2095:2102^1405:1412}’, ’{1969:1978}’, ’{4683:4692

^4512:4521^2802:2811^1871:1880^1476:1485^714:723}’, ’{}’, ’{2643:2654^901:912}’,

’{957:968^804:815^48:59}’, ’{4618:4629}’, ’{}’, ’{}’, ’{}’, ’{3529:3538}’, ’{}’

, ’{}’, ’{2601:2612}’, ’{3704:3715}’, ’{}’, ’{}’, ’{3843:3850}’, ’{}’, ’{}’, ’{}
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’, ’{}’, ’{}’, ’{}’, ’{4461:4472^1733:1744^730:741}’, ’{3670:3677^695:702}’, ’{}

’, ’{4439:4446}’, ’{}’, ’{3750:3759^866:875}’, ’{}’, ’{}’, ’{}’, ’{4597:4608}’,

’ALM^HSN’

unc-103, ’{2159:2166}’, ’{}’, ’{3055:3062}’, ’{1165:1174}’, ’{4626:4635^669:678}

’, ’{}’, ’{3910:3921^3694:3705^1213:1224}’, ’{575:586}’, ’{3637:3648^3093:3104}’

, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{3393:3402^1451:1460^369:378^75:84}’, ’{2045:20

56^1856:1867^904:915}’, ’{}’, ’{}’, ’{}’, ’{3489:3496}’, ’{2721:2728}’, ’{2969:2

978}’, ’{2461:2470^265:274}’, ’{}’, ’{761:772^11:22}’, ’{2772:2783^2638:2649^91:

102}’, ’{}’, ’{}’, ’{}’, ’{3252:3259^3220:3227^857:864}’, ’{2194:2203}’, ’{2979:

2988^1364:1373}’, ’{}’, ’{}’, ’{2064:2075^938:949^282:293}’, ’{2104:2115}’, ’{}’

, ’{}’, ’{}’, ’{}’, ’{4706:4715^2789:2798}’, ’{4953:4962^2218:2227^1135:1144^104

5:1054}’, ’{2923:2934^125:136}’, ’{3679:3690^3518:3529^2748:2759^2558:2569}’, ’{

4531:4542^4507:4518^4393:4404^3110:3121^2606:2617}’, ’{}’, ’{3042:3049}’, ’{3983

:3990^3624:3631^3369:3376^3327:3334^1929:1936}’, ’{3752:3761^1870:1879^1375:1384

^700:709}’, ’{2007:2016^1277:1286}’, ’{}’, ’{3063:3074^2026:2037^1073:1084^839:8

50}’, ’{3781:3792^3354:3365^3145:3156^3010:3021}’, ’{4231:4242^3764:3775^387:398

}’, ’{4378:4385}’, ’{235:242}’, ’{4315:4322^3806:3813^2096:2103}’, ’{4466:4475^4

454:4463^187:196}’, ’{4117:4126}’, ’{684:693}’, ’{145:156}’, ’{503:514}’, ’{3960

:3971^2544:2555^2495:2506^1352:1363}’, ’{}’, ’{}’, ’{}’, ’{2626:2635^829:838}’,

’{2711:2720}’, ’{419:428}’, ’{}’, ’{}’, ’{2863:2874}’, ’{4486:4493^1945:1952}’,

’{}’, ’{}’, ’{199:208}’, ’{}’, ’{}’, ’{488:499}’, ’{}’, ’{}’, ’HSN^PHA^ADL^ASK’

unc-129, ’{1022:1029^523:530^277:284}’, ’{3597:3604^1177:1184}’, ’{}’, ’{2711:27

20^1954:1963}’, ’{2758:2767}’, ’{654:663}’, ’{3216:3227^18:29}’, ’{1707:1718^565

:576}’, ’{3525:3536}’, ’{}’, ’{}’, ’{}’, ’{99:108}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}

’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{4219:4228}’, ’{}’, ’{3370:3381}’, ’{}’, ’{178

7:1794}’, ’{}’, ’{3537:3544}’, ’{3193:3202^1214:1223}’, ’{}’, ’{880:889}’, ’{}’,

’{4844:4855^2931:2942^1971:1982}’, ’{417:428}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{4455:

4464^3734:3743}’, ’{}’, ’{4192:4203}’, ’{2291:2302}’, ’{}’, ’{3098:3105}’, ’{}’,

’{300:307}’, ’{}’, ’{1765:1774}’, ’{}’, ’{4622:4633^3000:3011^690:701}’, ’{4670

:4681^853:864^824:835^197:208}’, ’{3553:3564}’, ’{}’, ’{792:799}’, ’{3481:3488}’

, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{4010:4021^2786:2797^134:145}’, ’{}’, ’{}’, ’{}

’, ’{}’, ’{}’, ’{}’, ’{}’, ’{1828:1839^1668:1679}’, ’{}’, ’{}’, ’{3859:3866}’, ’

{}’, ’{}’, ’{1857:1866}’, ’{}’, ’{2851:2862}’, ’{3884:3895^3625:3636}’, ’{6:17}’

, ’CAN’

tax-6, ’{}’, ’{749:756^337:344}’, ’{}’, ’{262:271}’, ’{419:428}’, ’{}’, ’{658:66

9}’, ’{703:714}’, ’{}’, ’{}’, ’{}’, ’{120:127}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’
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{}’, ’{}’, ’{}’, ’{786:793}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{83:94}’, ’{372:383}’, ’{

}’, ’{1283:1290}’, ’{200:207}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{1041:1052}’, ’{630:641

^407:418^287:298}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{167:178}’, ’{}’, ’{771

:782}’, ’{470:477}’, ’{497:504}’, ’{}’, ’{214:223}’, ’{}’, ’{}’, ’{}’, ’{1006:10

17}’, ’{}’, ’{834:841}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{431:442}’, ’{}’,

’{}’, ’{110:117}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’

{}’, ’{805:814}’, ’{}’, ’{}’, ’{}’, ’{}’, ’ASH^ASI^PHA^ADL^ASE^ASK’

unc-76, ’{1201:1208}’, ’{910:917}’, ’{}’, ’{439:448^159:168}’, ’{}’, ’{}’, ’{167

3:1684^1159:1170^953:964^921:932}’, ’{2049:2060^1837:1848^510:521}’, ’{693:704^5

98:609^423:434}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{724:733}’, ’{}’, ’{}’, ’{}’, ’{}’, ’

{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{1055:1064}’, ’{681:692^410:421}’, ’{}’, ’{}’, ’{}

’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{1875:1886}’, ’{}’, ’{}’, ’{}’, ’{

}’, ’{}’, ’{}’, ’{1719:1730}’, ’{2134:2145^586:597}’, ’{934:945^225:236^73:84}’,

’{}’, ’{1646:1653}’, ’{}’, ’{}’, ’{102:111}’, ’{}’, ’{}’, ’{1983:1994}’, ’{1783

:1794^52:63^22:33}’, ’{}’, ’{}’, ’{1932:1939}’, ’{179:188}’, ’{876:885}’, ’{}’,

’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{1295:1304}’, ’{}’, ’{}’, ’{}’, ’{114

:125}’, ’{}’, ’{818:825^272:279}’, ’{493:500}’, ’{547:556}’, ’{333:342^143:152}’

, ’{480:489}’, ’{641:652}’, ’{312:323^240:251}’, ’{}’, ’HSN^CAN’

ttx-3, ’{}’, ’{1646:1653}’, ’{}’, ’{}’, ’{1803:1812^51:60}’, ’{}’, ’{1313:1324}’

, ’{2352:2363^1450:1461}’, ’{}’, ’{}’, ’{}’, ’{4419:4426}’, ’{}’, ’{3890:3899}’,

’{3977:3986^3128:3137^1996:2005}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{

}’, ’{4394:4403}’, ’{}’, ’{2322:2333}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’

, ’{}’, ’{}’, ’{1528:1539}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{3643:3654}’,

’{}’, ’{}’, ’{1517:1524}’, ’{4525:4532}’, ’{3287:3294}’, ’{1205:1214}’, ’{452:46

1}’, ’{}’, ’{1486:1497}’, ’{3556:3567}’, ’{1172:1183}’, ’{}’, ’{}’, ’{}’, ’{1499

:1508}’, ’{}’, ’{2525:2534^701:710}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’,

’{}’, ’{}’, ’{}’, ’{}’, ’{1558:1569}’, ’{143:150}’, ’{3268:3275}’, ’{4483:4490}’

, ’{}’, ’{1573:1582^1112:1121}’, ’{}’, ’{}’, ’{}’, ’{4428:4439}’, ’ASI^ADL’

unc-73, ’{3306:3313^922:929^459:466}’, ’{}’, ’{}’, ’{}’, ’{1003:1012}’, ’{1250:1

259}’, ’{1548:1559^1491:1502}’, ’{4088:4099}’, ’{4164:4175^3751:3762^3504:3515}’

, ’{}’, ’{}’, ’{3819:3826}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{3958:3969}’, ’{}’,

’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{4137:4148^3939:3950^3221:3232}’, ’{}’, ’{3909:39

20}’, ’{}’, ’{}’, ’{3861:3868^2236:2243}’, ’{243:252}’, ’{3871:3880}’, ’{}’, ’{}

’, ’{1072:1083}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{2538:2547^1165:1174}’, ’

{}’, ’{}’, ’{2388:2399^1137:1148}’, ’{3790:3797}’, ’{4045:4052}’, ’{3019:3026^16

6:173}’, ’{}’, ’{2674:2683}’, ’{}’, ’{2272:2283^842:853}’, ’{}’, ’{3802:3813^644

:655}’, ’{}’, ’{}’, ’{}’, ’{3833:3842^1094:1103^938:947}’, ’{}’, ’{1742:1751}’,
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’{}’, ’{}’, ’{854:865^192:203}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{4209:4218}’, ’{

2074:2085}’, ’{}’, ’{442:453}’, ’{4111:4118^1153:1160^907:914}’, ’{}’, ’{}’, ’{}

’, ’{1025:1034}’, ’{}’, ’{69:80}’, ’{}’, ’{4008:4019}’, ’ALM^HSN^CAN’

osm-9, ’{3944:3951^2699:2706^1460:1467}’, ’{3545:3552^2368:2375}’, ’{}’, ’{203:2

12}’, ’{4121:4130}’, ’{}’, ’{4836:4847^2925:2936}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’

, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{2452:2463^573:584}’, ’{}’, ’{}’, ’{}’, ’{}’, ’

{682:691}’, ’{}’, ’{2207:2218}’, ’{}’, ’{3211:3222^2227:2238}’, ’{}’, ’{}’, ’{}’

, ’{}’, ’{}’, ’{}’, ’{}’, ’{855:866}’, ’{3952:3963}’, ’{}’, ’{1379:1386}’, ’{}’,

’{}’, ’{2270:2279^109:118}’, ’{}’, ’{2319:2330}’, ’{2153:2164}’, ’{2800:2811}’,

’{1239:1246}’, ’{}’, ’{4616:4623^3526:3533^1538:1545^552:559}’, ’{}’, ’{3597:36

06}’, ’{}’, ’{3357:3368^1224:1235}’, ’{3831:3842}’, ’{693:704^406:417}’, ’{387:3

94}’, ’{}’, ’{}’, ’{2335:2344^71:80}’, ’{2349:2358^288:297}’, ’{4053:4062^3573:3

582}’, ’{299:310}’, ’{3260:3271^2569:2580^366:377}’, ’{}’, ’{}’, ’{2428:2435}’,

’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{}’, ’{4767:4778}’, ’{2625:2632}’, ’{2300:2307}’,

’{}’, ’{2387:2396}’, ’{}’, ’{3620:3629^1714:1723}’, ’{}’, ’{2597:2608}’, ’{}’,

’ASH^ASI^PHA^ADL^ASE^ASK’
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Appendix B

Perl script to convert probability

matrix to log odds matrix.

#!/usr/local/bin/perl -w

use strict;

use Math::Complex;

#

#

my @args = @ARGV;

if(scalar(@args) != 3){

print "\n The # of command line arguments supplied not correct";

print "\nUsage: convert <Prob Matrix motif file> <background Probability File> <output file name>\n";

exit(0);

}

my $probMatrix = shift @args;

my $bgFrequencyFile= shift @args;

my $outputFile= shift @args;

sub slurp {

local $/ = undef;
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open my $fh, $_[0] or die "Can’t open $_[0]: $!";

my $slurp = <$fh>;

return \$slurp;

}

# Open Gene Names file

open(PROB, $probMatrix) || &return_error("File Error","Unable to open " . $probMatrix . ". Reason $!");

# Open Sequence File

#open(BG, $bgFrequencyFile) || &return_error("File Error","Unable to open " . $bgFrequencyFile . ". Reason $!");

# Open Gene Names file

open(FD, "> $outputFile") || &return_error("File Error","Unable to open " . $outputFile . ". Reason $!");

my @bg;

my $bgline = slurp($bgFrequencyFile);

#foreach $bgline (<BG>){

@bg = trim($$bgline) =~ /([\d]+\.[\d]+)\s+([\d]+\.[\d]+)\s+([\d]+\.[\d]+)\s+([\d]+\.[\d]+)/;

#print $bgline;

#last;

#}

print join(@bg);

my @parts;

foreach my $line(<PROB>){

#if($line =~ /^#/){

# print FD $line;

# next;

#}

if(@parts = $line =~ /([\d]+\.[\d]+)\s+([\d]+\.[\d]+)\s+([\d]+\.[\d]+)\s+([\d]+\.[\d]+)/){

for(my $i=0; $i<4; $i++){

print FD round(logn( $parts[$i]/$bg[$i], 2) * 100);

print FD "\t";

}

print FD "\n";

}else{
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print FD $line;

next;

}

}

sub trim {

my @out = @_;

for (@out) {

s/^\s+//;

s/\s+$//;

}

return wantarray ? @out : $out[0];

}

sub round {

my($number) = shift;

return int($number + .5 * ($number <=> 0));

}
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Appendix C

User Guide

C.1 Analysis Frame

The visualization and specialization modules (VSM) could either be invoked from

the mining interface of WPI-Weka system or could be invoked as a standalone

application using exported set of mined association rules, the associated MAST

results (HTML format) and a list of gene names alongside the known expression

patterns. The primary interface of the VSM is the Analysis frame, that is the first

screen to be displayed when VSM is invoked. See Figure C.1. We explain the

Analysis frame below.

The analysis frame loads with two sections, the Rules area and the Commands

area as shown in Figure C.1. We explain the Rules area below and we explain each

of the options in the Commands area in subsequent subsections. The Rules area

is used to display base association rules along with the corresponding values for

certain measures of interestingness. The design is extensible, that is, new measures

of interestingness could be added in the future with minimal code changes. In the

current state, a rule tuple consists of the following items:
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Area 

Commands 
Area 

Figure C.1: Sample Analysis Frame.

• Id - this is a unique id assigned to the rule. The usability of this field increases

once the user starts to generate specializations from the rule, as the Id column

helps us trace the history or the specialization path of new rules.

• Antecedent - The left-hand side of the rule. It contains the motifs present

in the rule.

• Consequent - The right-hand side of the rule. It contains the cell-types

predicted by the rule.

• Support - As discussed in Section 1.2, Rule 1.1; the support of the rule is one

of the popular scales to measure the interestingness of the rule

• Confidence - Confidence is the other popular metric to measure the interest-

ingness of the rule.

• Lift - The lift value of an association rule is another measure to try to quantify

the interestingness of the rule. It is defined as the ratio of the confidence of the
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rule and the support of the consequent of the rule [BMS97]. In other words

lift (rule) = p (consequent|antecedent) /p (consequent)

• p-Value - The p-value of the rule is the probability that the correlation be-

tween the antecedent and the consequent is due to chance by using the chi

square test.

• Within Cell-Type Support - Provides the support of the rule among only

those instances of the data that contain the consequent of the rule.

The Commands area of the Analysis frame provides buttons to perform a range

of functions. Each of the following subsections describe each of these functions

provided by the visualization extensions via the analysis frame. It is important to

note that most of these functions are invoked in the context of a specific rule and

so it is necessary to select a rule in the rules area of the analysis frame before we

invoke a command.

C.2 Inter-Motif Distance Plot

Selecting a Rule in the rules area and then invoking the inter-motif distance plot

via the button with the same label, lets a user visualize the data in the context

of the rule from a inter-motif distance perspective. This action enables a user to

perform exploratory analysis in the context of the hypothesis - “Inter-motif distance

influences gene expression”.

On invoking this command a new frame with the pairwise inter-motif distance

plot(s) is displayed. It displays one graph for each pair of motifs in the rule (selected
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Figure C.2: Sample Inter-Motif Distance Frame - The numeric pointers refer to the
enumerated text explaining Inter-Motif Distance Plot.

in the Analysis Frame). For sake of simplicity we start with a rule with only two

motifs and we revisit plots originating from rules consisting of more than two motifs

in item later in the section. We enlist below the highlights of the information

displayed in an inter-motif distance plot and the numeric annotations in Figure C.2

are references to the information in the following enumeration.

1. Each graph is displayed with the rule used to establish the context as the title

of the frame.

2. Each graph displays the pairwise inter-motif distance plots. For instance, in

Figure C.2 the rule consists of motifs M10 and M16. So for each instance of

M10 on a gene, a distance value from every instance of M16 is computed. Each
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such value corresponds to a point on the graph with distance being plotted on

the y-axis and the x-axis is an id for the gene in question.

3. Rolling your mouse over any such data point displays the relevant gene name

and the distance computed.

4. Each graph could potentially contain points in two colours. The legend ex-

plains the difference. Each point is a distance of an instance of M10 from an

instance of M16 but the color helps identify the order in which these motif in-

stances occur in the gene sequence relative to the Start of Transcription(SoT).

5. Each graph lists only those genes on the X-axis, that support the antecedent of

the rule. That is, genes whose promoter regions contain at least one instance

of both motifs.

6. Another mechanism to aid visual exploration is that each graph is sliced into

two parts by a dotted line. The genes in the left part are the ones that

support the consequent of the rule and hence support the rule. The ones on

the right are the genes that only support the antecedent of the rule. This

provides the user with an easy mechanism to discover inter-motif distance

based patterns on the left part of the plot that are not as frequent on the right

part as this would let us explore specializations with improved classification

accuracy(and/or confidence).

7. We used the charting library, JFreeChart [JFr], as the charting infrastructure

for the visualization extensions. This was an obvious choice because it was

an open source, well-documented API, supporting a wide range of chart types

with a flexible design that is easy to extend. A right-click on the graph area

displays a popup menu with the following options:
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• Zoom - Lets you zoom in or out on the graph.

• Range - Lets the user change the scale of either axis.

• Save - Lets the user save an interesting graph as an image.

• Define Range - This is an important extension we made to the charting

infrastructure that lets the user define, in a graphical fashion, the inter-

motif distance to be used in the specialization. An inter-motif distance

based specialization places conditions on the distance between instances

of the motifs involved. For instance, it could be worth noting that there

are significantly more data points with an inter-motif distance value be-

tween 0 and 500 in the left part of the Figure C.2 as compared to the

same distance range in the right-hand side. The definition of this distance

condition is in the form of a range, for instance, (0-500). Selecting this

option from the menu changes the graph to a range define mode and a

subsequent click and drag can be used to define the range.

• Clear Range - Another extension to the charting infrastructure which

lets a user clear a currently defined range providing an option to redefine

a range.

8. Once the user has utilized the dotted separation and inter-motif distance plots

to identify a range of interest, for instance a range of (0-500) between motifs

M10 and M16, the “Define Range” option from the pop-up menu can be used

to graphically define this range. Once a range has been defined for a plot, it

is highlighted on the graph in a shade of gray. For instance, refer to Figure

C.3 numerical annotation 8.

9. Even after a range has been defined the data being visualized is in the context

of the original rule. At this point the user can invoke the “Visualize Change”
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Figure C.3: Inter-Motif Distance Frame depicting an inter-motif range of 0-500 bp
for Motif pair M10 and M16.
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10 

Figure C.4: Visualize command invoked inter-Motif distance plot displaying data in
the context of the specialised rule M10 (0-500) M16 ⇒ expr = ALM.
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Figure C.5: A row representing the addition of a specialization to the Analysis
Frame.

(Figure C.3 numerical annotation 9) command to visualize the data in the

context of the specialization rather than in the context of the original rule.

For instance Figure C.4. It is worth noting that the title of the new window

is indicating the new context.

10. If the user finds this specialization (Figure C.4)of interest, the specialized rule

can be added to the Analysis Frame using the “Add Specialization” command

on the Inter-Motif distance plot. This causes a new entry to be inserted in the

Analysis Frame with the following specialization

M10(0− 500)M16 ⇒ expr = ALM (C.1)

as shown in Figure C.5. Note that the Id field is auto-generated in a fashion

that always lets a user trace back the steps in case we want to later recall which

rule was used to derive the specialization. Also note the different measures of
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interestingness are computed for the specialized rule.

11. If the base rule consisted of more than two motifs, an inter-motif distance

plot for each pair of motifs is displayed in the same frame (Figure C.6). Each

chart or plot individually provides for defining relationships between a pair of

motifs. In case multiple relationships are defined for more than one pair of

motifs each motif is represented as a term and a collection of independent terms

constitutes the specialized rule. Mechanism to define advanced relationship’s

between each term is also provided and we would revisit the topic later.

C.2.1 Sequence Plot

Select a Rule in the rules area and then click the sequence plot button to visualize

all the qualifying gene sequences in the context of the rule. This action enables a

user to perform exploratory analysis in the context of the hypothesis - “Distance

of motifs from the SoT influence gene expression”. A qualifying gene sequence is

one that has that has at least one instance of each motif that appears in the rule

(selected in the Analysis Frame). Invoking this command causes a new frame with

the sequence plot overlaid with the motif information to be displayed. We enlist

below the highlights of the information displayed in an inter-motif distance plot

and the numeric annotations in Figure C.7 are references to the information in the

following enumeration.

1. Each graph is displayed with the rule used to establish the context as the title

of the frame.

2. Displays the gene sequence plots with motif instances in the context of the

rule. For example, in Figure C.7 the sequence plot displays all relevant gene
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Figure C.6: Multiple pairwise inter-motif distance plots for a base rule with more
than two motifs. For instance the base rule for this plot is M10 && M12 && M16
⇒ expr = ALM.
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Figure C.7: Sample Sequence Plot Frame - The numeric pointers refer to the enu-
merated text explaining the Sequence Plot.

sequences with the instances of participating motifs (i.e., motifs M10 and

M16). So along the y-axis is the list of qualifying gene promoters.

3. For each such gene sequence we plot all the instances of the participating motifs

as they exist on the gene sequence relative to the Start of Transcription(SoT),

which is the far right end of the plot. This makes the x-coordinate of each

point in the plot the distance of the motif from the SoT and the color of the

point is used to identify the motif.

4. Rolling your mouse over any such point displays the relevant gene name and

the distance of the instance of the motif from the SoT.

5. Lists only qualifying genes on the Y-axis, that support the antecedent of the
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rule. That is, the gene sequence has at least one instance of both motifs.

6. Another mechanism to aid visual exploration is that each graph is sliced into

two parts by a horizontal dotted line. The genes in the upper part are the ones

that support the consequent of the rule and hence support the rule. The ones

in the lower part are the genes that support only the antecedents of the rule.

This provides the user with an easy mechanism to discover “Distance from

SoT” based patterns in the upper part of the plot that are not as frequent

in the lower part as this would let us explore specializations with improved

classification accuracy(and/or confidence).

7. The following context-specific options were added to the graph right-click

popup menu in the charting infrastructure:

• Choose Distance from SoT - This extension lets the user choose the

“distance of a motif from the SoT” clause-based specialization in a graph-

ical fashion. Selecting this option from the menu changes the graph to

a distance selection mode. A subsequent click can be used to define the

chosen value for the “distance from the SoT” and a visual confirmation

of the defined distance clause is provided in the form of a vertical dotted

line in the same color as the one reserved for the motif. One such distance

can be defined for each participating motif. For example, in Figure C.8

a distance term of SoT [0-500] M10 is chosen.

• Clear Distance from SoT - This option lets a user clear all currently

defined distances from SoT.

8. Once the user has utilized the dotted separation of the plot (into rule support-

ing and antecedent supporting) and the rule specific sequence plots to identify
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Figure C.8: Sequence Plot Frame depicting a distance of 500 bp from SoT for M10.

a “distance from SoT” clause of interest, the “Visualize Change” command

could be invoked to visualize the data in the context of the specialization

rather than the original rule. Again the title of the new window is indicating

the context setting rule/specialization.

9. If the user finds the specialization of interest, it can be added to the Analysis

Frame using the “Add Specialization” command on the new sequence plot.

Again this causes the specialization to appear as a new entry in the Analysis

Frame with an auto-generated Id that again lets a user trace back the steps in

case the user wants to later recall which rule was used to derive a specialization

(Figure C.9).
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Figure C.9: Analysis Frame depicting a couple of newly added distance from SoT
based specializations.

10. In case the base rule consisted of more than one motif and multiple “distances

from SoT” relationships are defined (one for each motif) each such relationship

is represented as a term and a collection of independent terms constitutes the

specialized rule. For instance see Figure C.9 for the following specialization.

SoT [0− 500]M10 && SoT [0− 1750]M16 ⇒ expr = ALM (C.2)

C.2.2 Order of occurrence of motifs

We wanted the VSM to facilitate exploratory analysis based on the hypothesis “Or-

der of occurrence of motifs influences gene expression”. But during the system design

and the system use by the team(including the domain expert) it was observed that

we already had a few ways to visualize gene sequence data in the context of the

“order of the occurrence” of motifs. If order of occurrence of motifs was important
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Figure C.10: Inter-Motif Distance Plot for Motifs M5 and M6. Observe the lack of
magenta (dark) dots in the right half of the frame.

it could be easily identified by one of the following ways:

1. Color of the points in inter-motif distance plot. The order of the motifs

in the inter-motif distance plot is represented by color. For instance in Figure

C.2, M10 to the right of M16 (i.e., M16..M10..SoT) is represented by a magenta

(dark) dot, while M16 to the right of M10 is represented by a aqua (light) dot.

Thus, color provides a quick visual clue whether the order of occurrence of

motifs affects gene expression; the left half of the plot should have more point

of one color than the other in this case.

2. Repeating sequence of color in the sequence plot - As mentioned in
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Figure C.11: Sequence Plot for Motifs M5 and M6. Observe that in the rule sup-
porting sequences (upper part) a red dot is usually followed by a blue dot scanning
the gene sequence from right end (SoT) to left.
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Section C.2.1, enumeration item 2, the sequence plot displays all instances of

participating motifs for qualifying sequences as they occur on the gene relative

to the SoT. Since each motif appears in its own color and the data is being

visualized in the context of a single rule, one can often see a repetitive pattern

of color in the upper half and a lack of the same in the lower half of the plot.

Such a display could also indicate an influence of order of occurrence on gene

expression. In Figure C.11 one can observe that most sequences in the upper

half have an occurrence of M5 (light point in the graph) closer to the SoT (the

far right end of the plot) that is followed by a dark dot somewhere on the gene

sequence. Also that this pattern is not so frequent in the lower part. Such

pattern observation could indicate order of occurrence type relationship.

3. ASAS mining algorithm - The WPI implementation of association rule

mining [PR05] used by us is capable of mining association rules with order

based information and hence it is possible to have some of these rules being

available already at the beginning of the exploratory analysis. Any of the two

means mentioned above could be used to visually confirm/observe the order

of occurrence relationship.

C.2.3 Add Rule

Irrespective of the method used to identify a potential order of occurrence rela-

tionship between participating motifs the following option from the Analysis Frame

could be used to add order-based rules. Once a user has identified an order-based

(or any other) relationship between motifs, it can use the “Add Rule” option in the

Analysis Frame to add a blank row for the new rule. The user can then simply

type in the Antecedents and the Consequent of the rule to calculate the different
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Figure C.12: Add Rule option in the Analysis Frame provides for free text option
to add rules.

statistics indicating the interestingness metrics of the rule as shown in Figure C.12.

Simply typing a complete rule computes the statistics indicating the interestingness

of the rule. The user could also visualize the new rule using either the sequence plot

or the inter-motif distance plot.

A rule keyed in by the user which does not have a valid syntax results in an error

as shown in Figure C.13

Figure C.13: Grammar based parsing helps identify user-errors in typing the rule.
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C.2.4 Hybrid Rule

As described in the grammar governing rule definitions, each rule consists of an

antecedent and a consequent. Antecedents in turn consists of terms. A rule could

also include specialized term, extra hypothesis-based information(constraints) that

the instances of the participating motifs must satisfy in order for a gene sequence

to support the rule.

Figure C.14: Hybrid rules help specify multiple constraints (based on different hy-
pothesis) within a single specialization.

The system also supports hybrid rules, rules that consists of specialized terms

based on different hypothesis and a gene sequence must satisfy all constraints in

order to support the rule. E.g. With reference to Figure C.11 note that there exists

an instance of M5 (the red dot) usually within the first 1600 bp from the SoT (Far
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right end of the plot). It is interesting to combine the two observations into a rule

as follows and visualize it or calculate its interestingness. As we see in the figure

C.14 that this hybrid specialization:

M5[rp0− rp1]M6[rp2− rp3]&&SoT [0− 1600]M5 ⇒ expr = ALM (C.3)

has a higher confidence as compared to the following simpler “order of occurrence”

specialization

M5[rp0− rp1]M6[rp2− rp3] ⇒ expr = ALM (C.4)

As seen above hybrid specialization could have multiple specialized terms that

relate to a single motif. A hybrid specialization could post multiple constraints on

the same motif like Distance from SoT and Order of occurrence relative to another

motif. It is important to note that although the rule may have multiple constraints

for the same motif, it is not required that the same instance of the motif satisfies

each of them. In the context of the C.3 above, it is not required that the instance

of Motif 5 that satisfies the order of occurrence condition is the same M5(instance)

that lies within 1600 base pairs of the SoT. Although there might be a need for the

user to actually specify constraints which are inter-related and aliases are supported

by the rule grammar for exactly this reason.

C.2.5 Aliases

Aliases were included in the grammar to provide the user with an option of defining

inter-related constraints or specialization terms. Consider the following Inter-Motif

Distance based specialization from Figure C.5:

M10[0− 500]M16 ⇒ expr = ALM (C.5)
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Figure C.15: Aliases let user define specializations with inter-related constraints.

Visualizing this specialization using a sequence plot (Figure C.7, one can see

distinctly that not only do motifs M10 (red dot) and M16(blue dot) occur close

together but they also occur in pattern such that the same instances of M10 and

M16 that are involved in the distance-based relationship also occur in the same order

relative to the SoT. Aliases enable the user to specify such complex relationships in

the rule as follows (Figure C.15:

M10 : a[0− 600]M16 : b&&M16 : b[rp0− rp1]M10 : a[rp2− rp3] ⇒ expr = ALM

(C.6)

140



C.2.6 Delete Rule

A user (usually a domain expert) can often identify rules which are of little biological

significance and may want to delete such rules from the rule set. Simply selecting a

rule from the Analysis frame and then clicking on the “Delete Rule” button could

be used to accomplish exactly this.

C.2.7 Export Rules

This option enables a user to save a copy of the rule set currently in the Analysis

Frame to a text file. This provides the user the facility to resume working on the

rule set at a later point in time or maintain motif based rule sets. The extensions

to WPI-Weka rule-miner [Rudss] ensured that the rule model can also be imported

into the rule mining interface.

C.2.8 Import Rules

This option enables to import a rule model to be imported from a text-file. It could

be either from a previous session of the analysis-frame or could be a rule set exported

from the rule-mining interface. (Thanks Jon)

C.2.9 Hide Current Column

If a user thinks, that one of the columns in the analysis frame is not of use in the

current context the user has the option of removing a column from the display.

Simply select a cell in the column that the user wants to delete and click the “Hide

Current Column” button.
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C.2.10 Sorting in Analysis Frame

The Analysis Frame also provides the option of sorting the rule model in the analysis

frame by simply clicking on the header of the column by which the rule model needs

to be sorted. The order of sorting could also be reversed by simply clicking on the

header column once more.
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